Add entry for change in solib-osf.c (osf_in_dynsym_resolve_code).
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
3 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33 #include "regcache.h"
34 #include "cp-abi.h"
35
36 #include <errno.h>
37 #include "gdb_string.h"
38
39 /* Flag indicating HP compilers were used; needed to correctly handle some
40 value operations with HP aCC code/runtime. */
41 extern int hp_som_som_object_present;
42
43 extern int overload_debug;
44 /* Local functions. */
45
46 static int typecmp (int staticp, struct type *t1[], value_ptr t2[]);
47
48 static CORE_ADDR find_function_addr (value_ptr, struct type **);
49 static value_ptr value_arg_coerce (value_ptr, struct type *, int);
50
51
52 static CORE_ADDR value_push (CORE_ADDR, value_ptr);
53
54 static value_ptr search_struct_field (char *, value_ptr, int,
55 struct type *, int);
56
57 static value_ptr search_struct_method (char *, value_ptr *,
58 value_ptr *,
59 int, int *, struct type *);
60
61 static int check_field_in (struct type *, const char *);
62
63 static CORE_ADDR allocate_space_in_inferior (int);
64
65 static value_ptr cast_into_complex (struct type *, value_ptr);
66
67 static struct fn_field *find_method_list (value_ptr * argp, char *method,
68 int offset, int *static_memfuncp,
69 struct type *type, int *num_fns,
70 struct type **basetype,
71 int *boffset);
72
73 void _initialize_valops (void);
74
75 /* Flag for whether we want to abandon failed expression evals by default. */
76
77 #if 0
78 static int auto_abandon = 0;
79 #endif
80
81 int overload_resolution = 0;
82
83 /* This boolean tells what gdb should do if a signal is received while in
84 a function called from gdb (call dummy). If set, gdb unwinds the stack
85 and restore the context to what as it was before the call.
86 The default is to stop in the frame where the signal was received. */
87
88 int unwind_on_signal_p = 0;
89 \f
90
91
92 /* Find the address of function name NAME in the inferior. */
93
94 value_ptr
95 find_function_in_inferior (char *name)
96 {
97 register struct symbol *sym;
98 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
99 if (sym != NULL)
100 {
101 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
102 {
103 error ("\"%s\" exists in this program but is not a function.",
104 name);
105 }
106 return value_of_variable (sym, NULL);
107 }
108 else
109 {
110 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
111 if (msymbol != NULL)
112 {
113 struct type *type;
114 CORE_ADDR maddr;
115 type = lookup_pointer_type (builtin_type_char);
116 type = lookup_function_type (type);
117 type = lookup_pointer_type (type);
118 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
119 return value_from_pointer (type, maddr);
120 }
121 else
122 {
123 if (!target_has_execution)
124 error ("evaluation of this expression requires the target program to be active");
125 else
126 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
127 }
128 }
129 }
130
131 /* Allocate NBYTES of space in the inferior using the inferior's malloc
132 and return a value that is a pointer to the allocated space. */
133
134 value_ptr
135 value_allocate_space_in_inferior (int len)
136 {
137 value_ptr blocklen;
138 register value_ptr val = find_function_in_inferior ("malloc");
139
140 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
141 val = call_function_by_hand (val, 1, &blocklen);
142 if (value_logical_not (val))
143 {
144 if (!target_has_execution)
145 error ("No memory available to program now: you need to start the target first");
146 else
147 error ("No memory available to program: call to malloc failed");
148 }
149 return val;
150 }
151
152 static CORE_ADDR
153 allocate_space_in_inferior (int len)
154 {
155 return value_as_long (value_allocate_space_in_inferior (len));
156 }
157
158 /* Cast value ARG2 to type TYPE and return as a value.
159 More general than a C cast: accepts any two types of the same length,
160 and if ARG2 is an lvalue it can be cast into anything at all. */
161 /* In C++, casts may change pointer or object representations. */
162
163 value_ptr
164 value_cast (struct type *type, register value_ptr arg2)
165 {
166 register enum type_code code1;
167 register enum type_code code2;
168 register int scalar;
169 struct type *type2;
170
171 int convert_to_boolean = 0;
172
173 if (VALUE_TYPE (arg2) == type)
174 return arg2;
175
176 CHECK_TYPEDEF (type);
177 code1 = TYPE_CODE (type);
178 COERCE_REF (arg2);
179 type2 = check_typedef (VALUE_TYPE (arg2));
180
181 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
182 is treated like a cast to (TYPE [N])OBJECT,
183 where N is sizeof(OBJECT)/sizeof(TYPE). */
184 if (code1 == TYPE_CODE_ARRAY)
185 {
186 struct type *element_type = TYPE_TARGET_TYPE (type);
187 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
188 if (element_length > 0
189 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
190 {
191 struct type *range_type = TYPE_INDEX_TYPE (type);
192 int val_length = TYPE_LENGTH (type2);
193 LONGEST low_bound, high_bound, new_length;
194 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
195 low_bound = 0, high_bound = 0;
196 new_length = val_length / element_length;
197 if (val_length % element_length != 0)
198 warning ("array element type size does not divide object size in cast");
199 /* FIXME-type-allocation: need a way to free this type when we are
200 done with it. */
201 range_type = create_range_type ((struct type *) NULL,
202 TYPE_TARGET_TYPE (range_type),
203 low_bound,
204 new_length + low_bound - 1);
205 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
206 element_type, range_type);
207 return arg2;
208 }
209 }
210
211 if (current_language->c_style_arrays
212 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
213 arg2 = value_coerce_array (arg2);
214
215 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
216 arg2 = value_coerce_function (arg2);
217
218 type2 = check_typedef (VALUE_TYPE (arg2));
219 COERCE_VARYING_ARRAY (arg2, type2);
220 code2 = TYPE_CODE (type2);
221
222 if (code1 == TYPE_CODE_COMPLEX)
223 return cast_into_complex (type, arg2);
224 if (code1 == TYPE_CODE_BOOL)
225 {
226 code1 = TYPE_CODE_INT;
227 convert_to_boolean = 1;
228 }
229 if (code1 == TYPE_CODE_CHAR)
230 code1 = TYPE_CODE_INT;
231 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
232 code2 = TYPE_CODE_INT;
233
234 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
235 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
236
237 if (code1 == TYPE_CODE_STRUCT
238 && code2 == TYPE_CODE_STRUCT
239 && TYPE_NAME (type) != 0)
240 {
241 /* Look in the type of the source to see if it contains the
242 type of the target as a superclass. If so, we'll need to
243 offset the object in addition to changing its type. */
244 value_ptr v = search_struct_field (type_name_no_tag (type),
245 arg2, 0, type2, 1);
246 if (v)
247 {
248 VALUE_TYPE (v) = type;
249 return v;
250 }
251 }
252 if (code1 == TYPE_CODE_FLT && scalar)
253 return value_from_double (type, value_as_double (arg2));
254 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
255 || code1 == TYPE_CODE_RANGE)
256 && (scalar || code2 == TYPE_CODE_PTR))
257 {
258 LONGEST longest;
259
260 if (hp_som_som_object_present && /* if target compiled by HP aCC */
261 (code2 == TYPE_CODE_PTR))
262 {
263 unsigned int *ptr;
264 value_ptr retvalp;
265
266 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
267 {
268 /* With HP aCC, pointers to data members have a bias */
269 case TYPE_CODE_MEMBER:
270 retvalp = value_from_longest (type, value_as_long (arg2));
271 /* force evaluation */
272 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
273 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
274 return retvalp;
275
276 /* While pointers to methods don't really point to a function */
277 case TYPE_CODE_METHOD:
278 error ("Pointers to methods not supported with HP aCC");
279
280 default:
281 break; /* fall out and go to normal handling */
282 }
283 }
284 longest = value_as_long (arg2);
285 return value_from_longest (type, convert_to_boolean ?
286 (LONGEST) (longest ? 1 : 0) : longest);
287 }
288 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
289 code2 == TYPE_CODE_ENUM ||
290 code2 == TYPE_CODE_RANGE))
291 {
292 /* TYPE_LENGTH (type) is the length of a pointer, but we really
293 want the length of an address! -- we are really dealing with
294 addresses (i.e., gdb representations) not pointers (i.e.,
295 target representations) here.
296
297 This allows things like "print *(int *)0x01000234" to work
298 without printing a misleading message -- which would
299 otherwise occur when dealing with a target having two byte
300 pointers and four byte addresses. */
301
302 int addr_bit = TARGET_ADDR_BIT;
303
304 LONGEST longest = value_as_long (arg2);
305 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
306 {
307 if (longest >= ((LONGEST) 1 << addr_bit)
308 || longest <= -((LONGEST) 1 << addr_bit))
309 warning ("value truncated");
310 }
311 return value_from_longest (type, longest);
312 }
313 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
314 {
315 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
316 {
317 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
318 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
319 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
320 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
321 && !value_logical_not (arg2))
322 {
323 value_ptr v;
324
325 /* Look in the type of the source to see if it contains the
326 type of the target as a superclass. If so, we'll need to
327 offset the pointer rather than just change its type. */
328 if (TYPE_NAME (t1) != NULL)
329 {
330 v = search_struct_field (type_name_no_tag (t1),
331 value_ind (arg2), 0, t2, 1);
332 if (v)
333 {
334 v = value_addr (v);
335 VALUE_TYPE (v) = type;
336 return v;
337 }
338 }
339
340 /* Look in the type of the target to see if it contains the
341 type of the source as a superclass. If so, we'll need to
342 offset the pointer rather than just change its type.
343 FIXME: This fails silently with virtual inheritance. */
344 if (TYPE_NAME (t2) != NULL)
345 {
346 v = search_struct_field (type_name_no_tag (t2),
347 value_zero (t1, not_lval), 0, t1, 1);
348 if (v)
349 {
350 value_ptr v2 = value_ind (arg2);
351 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
352 + VALUE_OFFSET (v);
353
354 /* JYG: adjust the new pointer value and
355 embedded offset. */
356 v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v);
357 VALUE_EMBEDDED_OFFSET (v2) = 0;
358
359 v2 = value_addr (v2);
360 VALUE_TYPE (v2) = type;
361 return v2;
362 }
363 }
364 }
365 /* No superclass found, just fall through to change ptr type. */
366 }
367 VALUE_TYPE (arg2) = type;
368 arg2 = value_change_enclosing_type (arg2, type);
369 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
370 return arg2;
371 }
372 else if (chill_varying_type (type))
373 {
374 struct type *range1, *range2, *eltype1, *eltype2;
375 value_ptr val;
376 int count1, count2;
377 LONGEST low_bound, high_bound;
378 char *valaddr, *valaddr_data;
379 /* For lint warning about eltype2 possibly uninitialized: */
380 eltype2 = NULL;
381 if (code2 == TYPE_CODE_BITSTRING)
382 error ("not implemented: converting bitstring to varying type");
383 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
384 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
385 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
386 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
387 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
388 error ("Invalid conversion to varying type");
389 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
390 range2 = TYPE_FIELD_TYPE (type2, 0);
391 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
392 count1 = -1;
393 else
394 count1 = high_bound - low_bound + 1;
395 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
396 count1 = -1, count2 = 0; /* To force error before */
397 else
398 count2 = high_bound - low_bound + 1;
399 if (count2 > count1)
400 error ("target varying type is too small");
401 val = allocate_value (type);
402 valaddr = VALUE_CONTENTS_RAW (val);
403 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
404 /* Set val's __var_length field to count2. */
405 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
406 count2);
407 /* Set the __var_data field to count2 elements copied from arg2. */
408 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
409 count2 * TYPE_LENGTH (eltype2));
410 /* Zero the rest of the __var_data field of val. */
411 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
412 (count1 - count2) * TYPE_LENGTH (eltype2));
413 return val;
414 }
415 else if (VALUE_LVAL (arg2) == lval_memory)
416 {
417 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
418 VALUE_BFD_SECTION (arg2));
419 }
420 else if (code1 == TYPE_CODE_VOID)
421 {
422 return value_zero (builtin_type_void, not_lval);
423 }
424 else
425 {
426 error ("Invalid cast.");
427 return 0;
428 }
429 }
430
431 /* Create a value of type TYPE that is zero, and return it. */
432
433 value_ptr
434 value_zero (struct type *type, enum lval_type lv)
435 {
436 register value_ptr val = allocate_value (type);
437
438 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
439 VALUE_LVAL (val) = lv;
440
441 return val;
442 }
443
444 /* Return a value with type TYPE located at ADDR.
445
446 Call value_at only if the data needs to be fetched immediately;
447 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
448 value_at_lazy instead. value_at_lazy simply records the address of
449 the data and sets the lazy-evaluation-required flag. The lazy flag
450 is tested in the VALUE_CONTENTS macro, which is used if and when
451 the contents are actually required.
452
453 Note: value_at does *NOT* handle embedded offsets; perform such
454 adjustments before or after calling it. */
455
456 value_ptr
457 value_at (struct type *type, CORE_ADDR addr, asection *sect)
458 {
459 register value_ptr val;
460
461 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
462 error ("Attempt to dereference a generic pointer.");
463
464 val = allocate_value (type);
465
466 if (GDB_TARGET_IS_D10V
467 && TYPE_CODE (type) == TYPE_CODE_PTR
468 && TYPE_TARGET_TYPE (type)
469 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
470 {
471 /* pointer to function */
472 unsigned long num;
473 unsigned short snum;
474 snum = read_memory_unsigned_integer (addr, 2);
475 num = D10V_MAKE_IADDR (snum);
476 store_address (VALUE_CONTENTS_RAW (val), 4, num);
477 }
478 else if (GDB_TARGET_IS_D10V
479 && TYPE_CODE (type) == TYPE_CODE_PTR)
480 {
481 /* pointer to data */
482 unsigned long num;
483 unsigned short snum;
484 snum = read_memory_unsigned_integer (addr, 2);
485 num = D10V_MAKE_DADDR (snum);
486 store_address (VALUE_CONTENTS_RAW (val), 4, num);
487 }
488 else
489 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
490
491 VALUE_LVAL (val) = lval_memory;
492 VALUE_ADDRESS (val) = addr;
493 VALUE_BFD_SECTION (val) = sect;
494
495 return val;
496 }
497
498 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
499
500 value_ptr
501 value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
502 {
503 register value_ptr val;
504
505 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
506 error ("Attempt to dereference a generic pointer.");
507
508 val = allocate_value (type);
509
510 VALUE_LVAL (val) = lval_memory;
511 VALUE_ADDRESS (val) = addr;
512 VALUE_LAZY (val) = 1;
513 VALUE_BFD_SECTION (val) = sect;
514
515 return val;
516 }
517
518 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
519 if the current data for a variable needs to be loaded into
520 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
521 clears the lazy flag to indicate that the data in the buffer is valid.
522
523 If the value is zero-length, we avoid calling read_memory, which would
524 abort. We mark the value as fetched anyway -- all 0 bytes of it.
525
526 This function returns a value because it is used in the VALUE_CONTENTS
527 macro as part of an expression, where a void would not work. The
528 value is ignored. */
529
530 int
531 value_fetch_lazy (register value_ptr val)
532 {
533 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
534 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
535
536 struct type *type = VALUE_TYPE (val);
537 if (GDB_TARGET_IS_D10V
538 && TYPE_CODE (type) == TYPE_CODE_PTR
539 && TYPE_TARGET_TYPE (type)
540 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
541 {
542 /* pointer to function */
543 unsigned long num;
544 unsigned short snum;
545 snum = read_memory_unsigned_integer (addr, 2);
546 num = D10V_MAKE_IADDR (snum);
547 store_address (VALUE_CONTENTS_RAW (val), 4, num);
548 }
549 else if (GDB_TARGET_IS_D10V
550 && TYPE_CODE (type) == TYPE_CODE_PTR)
551 {
552 /* pointer to data */
553 unsigned long num;
554 unsigned short snum;
555 snum = read_memory_unsigned_integer (addr, 2);
556 num = D10V_MAKE_DADDR (snum);
557 store_address (VALUE_CONTENTS_RAW (val), 4, num);
558 }
559 else if (length)
560 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
561
562 VALUE_LAZY (val) = 0;
563 return 0;
564 }
565
566
567 /* Store the contents of FROMVAL into the location of TOVAL.
568 Return a new value with the location of TOVAL and contents of FROMVAL. */
569
570 value_ptr
571 value_assign (register value_ptr toval, register value_ptr fromval)
572 {
573 register struct type *type;
574 register value_ptr val;
575 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
576 int use_buffer = 0;
577
578 if (!toval->modifiable)
579 error ("Left operand of assignment is not a modifiable lvalue.");
580
581 COERCE_REF (toval);
582
583 type = VALUE_TYPE (toval);
584 if (VALUE_LVAL (toval) != lval_internalvar)
585 fromval = value_cast (type, fromval);
586 else
587 COERCE_ARRAY (fromval);
588 CHECK_TYPEDEF (type);
589
590 /* If TOVAL is a special machine register requiring conversion
591 of program values to a special raw format,
592 convert FROMVAL's contents now, with result in `raw_buffer',
593 and set USE_BUFFER to the number of bytes to write. */
594
595 if (VALUE_REGNO (toval) >= 0)
596 {
597 int regno = VALUE_REGNO (toval);
598 if (REGISTER_CONVERTIBLE (regno))
599 {
600 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
601 REGISTER_CONVERT_TO_RAW (fromtype, regno,
602 VALUE_CONTENTS (fromval), raw_buffer);
603 use_buffer = REGISTER_RAW_SIZE (regno);
604 }
605 }
606
607 switch (VALUE_LVAL (toval))
608 {
609 case lval_internalvar:
610 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
611 val = value_copy (VALUE_INTERNALVAR (toval)->value);
612 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
613 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
614 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
615 return val;
616
617 case lval_internalvar_component:
618 set_internalvar_component (VALUE_INTERNALVAR (toval),
619 VALUE_OFFSET (toval),
620 VALUE_BITPOS (toval),
621 VALUE_BITSIZE (toval),
622 fromval);
623 break;
624
625 case lval_memory:
626 {
627 char *dest_buffer;
628 CORE_ADDR changed_addr;
629 int changed_len;
630
631 if (VALUE_BITSIZE (toval))
632 {
633 char buffer[sizeof (LONGEST)];
634 /* We assume that the argument to read_memory is in units of
635 host chars. FIXME: Is that correct? */
636 changed_len = (VALUE_BITPOS (toval)
637 + VALUE_BITSIZE (toval)
638 + HOST_CHAR_BIT - 1)
639 / HOST_CHAR_BIT;
640
641 if (changed_len > (int) sizeof (LONGEST))
642 error ("Can't handle bitfields which don't fit in a %d bit word.",
643 sizeof (LONGEST) * HOST_CHAR_BIT);
644
645 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
646 buffer, changed_len);
647 modify_field (buffer, value_as_long (fromval),
648 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
649 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
650 dest_buffer = buffer;
651 }
652 else if (use_buffer)
653 {
654 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
655 changed_len = use_buffer;
656 dest_buffer = raw_buffer;
657 }
658 else
659 {
660 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
661 changed_len = TYPE_LENGTH (type);
662 dest_buffer = VALUE_CONTENTS (fromval);
663 }
664
665 write_memory (changed_addr, dest_buffer, changed_len);
666 if (memory_changed_hook)
667 memory_changed_hook (changed_addr, changed_len);
668 }
669 break;
670
671 case lval_register:
672 if (VALUE_BITSIZE (toval))
673 {
674 char buffer[sizeof (LONGEST)];
675 int len =
676 REGISTER_RAW_SIZE (VALUE_REGNO (toval)) - VALUE_OFFSET (toval);
677
678 if (len > (int) sizeof (LONGEST))
679 error ("Can't handle bitfields in registers larger than %d bits.",
680 sizeof (LONGEST) * HOST_CHAR_BIT);
681
682 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
683 > len * HOST_CHAR_BIT)
684 /* Getting this right would involve being very careful about
685 byte order. */
686 error ("Can't assign to bitfields that cross register "
687 "boundaries.");
688
689 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
690 buffer, len);
691 modify_field (buffer, value_as_long (fromval),
692 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
693 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
694 buffer, len);
695 }
696 else if (use_buffer)
697 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
698 raw_buffer, use_buffer);
699 else
700 {
701 /* Do any conversion necessary when storing this type to more
702 than one register. */
703 #ifdef REGISTER_CONVERT_FROM_TYPE
704 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
705 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
706 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
707 raw_buffer, TYPE_LENGTH (type));
708 #else
709 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
710 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
711 #endif
712 }
713 /* Assigning to the stack pointer, frame pointer, and other
714 (architecture and calling convention specific) registers may
715 cause the frame cache to be out of date. We just do this
716 on all assignments to registers for simplicity; I doubt the slowdown
717 matters. */
718 reinit_frame_cache ();
719 break;
720
721 case lval_reg_frame_relative:
722 {
723 /* value is stored in a series of registers in the frame
724 specified by the structure. Copy that value out, modify
725 it, and copy it back in. */
726 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
727 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
728 int byte_offset = VALUE_OFFSET (toval) % reg_size;
729 int reg_offset = VALUE_OFFSET (toval) / reg_size;
730 int amount_copied;
731
732 /* Make the buffer large enough in all cases. */
733 char *buffer = (char *) alloca (amount_to_copy
734 + sizeof (LONGEST)
735 + MAX_REGISTER_RAW_SIZE);
736
737 int regno;
738 struct frame_info *frame;
739
740 /* Figure out which frame this is in currently. */
741 for (frame = get_current_frame ();
742 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
743 frame = get_prev_frame (frame))
744 ;
745
746 if (!frame)
747 error ("Value being assigned to is no longer active.");
748
749 amount_to_copy += (reg_size - amount_to_copy % reg_size);
750
751 /* Copy it out. */
752 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
753 amount_copied = 0);
754 amount_copied < amount_to_copy;
755 amount_copied += reg_size, regno++)
756 {
757 get_saved_register (buffer + amount_copied,
758 (int *) NULL, (CORE_ADDR *) NULL,
759 frame, regno, (enum lval_type *) NULL);
760 }
761
762 /* Modify what needs to be modified. */
763 if (VALUE_BITSIZE (toval))
764 modify_field (buffer + byte_offset,
765 value_as_long (fromval),
766 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
767 else if (use_buffer)
768 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
769 else
770 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
771 TYPE_LENGTH (type));
772
773 /* Copy it back. */
774 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
775 amount_copied = 0);
776 amount_copied < amount_to_copy;
777 amount_copied += reg_size, regno++)
778 {
779 enum lval_type lval;
780 CORE_ADDR addr;
781 int optim;
782
783 /* Just find out where to put it. */
784 get_saved_register ((char *) NULL,
785 &optim, &addr, frame, regno, &lval);
786
787 if (optim)
788 error ("Attempt to assign to a value that was optimized out.");
789 if (lval == lval_memory)
790 write_memory (addr, buffer + amount_copied, reg_size);
791 else if (lval == lval_register)
792 write_register_bytes (addr, buffer + amount_copied, reg_size);
793 else
794 error ("Attempt to assign to an unmodifiable value.");
795 }
796
797 if (register_changed_hook)
798 register_changed_hook (-1);
799 }
800 break;
801
802
803 default:
804 error ("Left operand of assignment is not an lvalue.");
805 }
806
807 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
808 If the field is signed, and is negative, then sign extend. */
809 if ((VALUE_BITSIZE (toval) > 0)
810 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
811 {
812 LONGEST fieldval = value_as_long (fromval);
813 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
814
815 fieldval &= valmask;
816 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
817 fieldval |= ~valmask;
818
819 fromval = value_from_longest (type, fieldval);
820 }
821
822 val = value_copy (toval);
823 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
824 TYPE_LENGTH (type));
825 VALUE_TYPE (val) = type;
826 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
827 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
828 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
829
830 return val;
831 }
832
833 /* Extend a value VAL to COUNT repetitions of its type. */
834
835 value_ptr
836 value_repeat (value_ptr arg1, int count)
837 {
838 register value_ptr val;
839
840 if (VALUE_LVAL (arg1) != lval_memory)
841 error ("Only values in memory can be extended with '@'.");
842 if (count < 1)
843 error ("Invalid number %d of repetitions.", count);
844
845 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
846
847 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
848 VALUE_CONTENTS_ALL_RAW (val),
849 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
850 VALUE_LVAL (val) = lval_memory;
851 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
852
853 return val;
854 }
855
856 value_ptr
857 value_of_variable (struct symbol *var, struct block *b)
858 {
859 value_ptr val;
860 struct frame_info *frame = NULL;
861
862 if (!b)
863 frame = NULL; /* Use selected frame. */
864 else if (symbol_read_needs_frame (var))
865 {
866 frame = block_innermost_frame (b);
867 if (!frame)
868 {
869 if (BLOCK_FUNCTION (b)
870 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
871 error ("No frame is currently executing in block %s.",
872 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
873 else
874 error ("No frame is currently executing in specified block");
875 }
876 }
877
878 val = read_var_value (var, frame);
879 if (!val)
880 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
881
882 return val;
883 }
884
885 /* Given a value which is an array, return a value which is a pointer to its
886 first element, regardless of whether or not the array has a nonzero lower
887 bound.
888
889 FIXME: A previous comment here indicated that this routine should be
890 substracting the array's lower bound. It's not clear to me that this
891 is correct. Given an array subscripting operation, it would certainly
892 work to do the adjustment here, essentially computing:
893
894 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
895
896 However I believe a more appropriate and logical place to account for
897 the lower bound is to do so in value_subscript, essentially computing:
898
899 (&array[0] + ((index - lowerbound) * sizeof array[0]))
900
901 As further evidence consider what would happen with operations other
902 than array subscripting, where the caller would get back a value that
903 had an address somewhere before the actual first element of the array,
904 and the information about the lower bound would be lost because of
905 the coercion to pointer type.
906 */
907
908 value_ptr
909 value_coerce_array (value_ptr arg1)
910 {
911 register struct type *type = check_typedef (VALUE_TYPE (arg1));
912
913 if (VALUE_LVAL (arg1) != lval_memory)
914 error ("Attempt to take address of value not located in memory.");
915
916 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
917 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
918 }
919
920 /* Given a value which is a function, return a value which is a pointer
921 to it. */
922
923 value_ptr
924 value_coerce_function (value_ptr arg1)
925 {
926 value_ptr retval;
927
928 if (VALUE_LVAL (arg1) != lval_memory)
929 error ("Attempt to take address of value not located in memory.");
930
931 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
932 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
933 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
934 return retval;
935 }
936
937 /* Return a pointer value for the object for which ARG1 is the contents. */
938
939 value_ptr
940 value_addr (value_ptr arg1)
941 {
942 value_ptr arg2;
943
944 struct type *type = check_typedef (VALUE_TYPE (arg1));
945 if (TYPE_CODE (type) == TYPE_CODE_REF)
946 {
947 /* Copy the value, but change the type from (T&) to (T*).
948 We keep the same location information, which is efficient,
949 and allows &(&X) to get the location containing the reference. */
950 arg2 = value_copy (arg1);
951 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
952 return arg2;
953 }
954 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
955 return value_coerce_function (arg1);
956
957 if (VALUE_LVAL (arg1) != lval_memory)
958 error ("Attempt to take address of value not located in memory.");
959
960 /* Get target memory address */
961 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
962 (VALUE_ADDRESS (arg1)
963 + VALUE_OFFSET (arg1)
964 + VALUE_EMBEDDED_OFFSET (arg1)));
965
966 /* This may be a pointer to a base subobject; so remember the
967 full derived object's type ... */
968 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
969 /* ... and also the relative position of the subobject in the full object */
970 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
971 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
972 return arg2;
973 }
974
975 /* Given a value of a pointer type, apply the C unary * operator to it. */
976
977 value_ptr
978 value_ind (value_ptr arg1)
979 {
980 struct type *base_type;
981 value_ptr arg2;
982
983 COERCE_ARRAY (arg1);
984
985 base_type = check_typedef (VALUE_TYPE (arg1));
986
987 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
988 error ("not implemented: member types in value_ind");
989
990 /* Allow * on an integer so we can cast it to whatever we want.
991 This returns an int, which seems like the most C-like thing
992 to do. "long long" variables are rare enough that
993 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
994 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
995 return value_at (builtin_type_int,
996 (CORE_ADDR) value_as_long (arg1),
997 VALUE_BFD_SECTION (arg1));
998 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
999 {
1000 struct type *enc_type;
1001 /* We may be pointing to something embedded in a larger object */
1002 /* Get the real type of the enclosing object */
1003 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
1004 enc_type = TYPE_TARGET_TYPE (enc_type);
1005 /* Retrieve the enclosing object pointed to */
1006 arg2 = value_at_lazy (enc_type,
1007 value_as_pointer (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
1008 VALUE_BFD_SECTION (arg1));
1009 /* Re-adjust type */
1010 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
1011 /* Add embedding info */
1012 arg2 = value_change_enclosing_type (arg2, enc_type);
1013 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
1014
1015 /* We may be pointing to an object of some derived type */
1016 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1017 return arg2;
1018 }
1019
1020 error ("Attempt to take contents of a non-pointer value.");
1021 return 0; /* For lint -- never reached */
1022 }
1023 \f
1024 /* Pushing small parts of stack frames. */
1025
1026 /* Push one word (the size of object that a register holds). */
1027
1028 CORE_ADDR
1029 push_word (CORE_ADDR sp, ULONGEST word)
1030 {
1031 register int len = REGISTER_SIZE;
1032 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
1033
1034 store_unsigned_integer (buffer, len, word);
1035 if (INNER_THAN (1, 2))
1036 {
1037 /* stack grows downward */
1038 sp -= len;
1039 write_memory (sp, buffer, len);
1040 }
1041 else
1042 {
1043 /* stack grows upward */
1044 write_memory (sp, buffer, len);
1045 sp += len;
1046 }
1047
1048 return sp;
1049 }
1050
1051 /* Push LEN bytes with data at BUFFER. */
1052
1053 CORE_ADDR
1054 push_bytes (CORE_ADDR sp, char *buffer, int len)
1055 {
1056 if (INNER_THAN (1, 2))
1057 {
1058 /* stack grows downward */
1059 sp -= len;
1060 write_memory (sp, buffer, len);
1061 }
1062 else
1063 {
1064 /* stack grows upward */
1065 write_memory (sp, buffer, len);
1066 sp += len;
1067 }
1068
1069 return sp;
1070 }
1071
1072 #ifndef PARM_BOUNDARY
1073 #define PARM_BOUNDARY (0)
1074 #endif
1075
1076 /* Push onto the stack the specified value VALUE. Pad it correctly for
1077 it to be an argument to a function. */
1078
1079 static CORE_ADDR
1080 value_push (register CORE_ADDR sp, value_ptr arg)
1081 {
1082 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1083 register int container_len = len;
1084 register int offset;
1085
1086 /* How big is the container we're going to put this value in? */
1087 if (PARM_BOUNDARY)
1088 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1089 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1090
1091 /* Are we going to put it at the high or low end of the container? */
1092 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1093 offset = container_len - len;
1094 else
1095 offset = 0;
1096
1097 if (INNER_THAN (1, 2))
1098 {
1099 /* stack grows downward */
1100 sp -= container_len;
1101 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1102 }
1103 else
1104 {
1105 /* stack grows upward */
1106 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1107 sp += container_len;
1108 }
1109
1110 return sp;
1111 }
1112
1113 #ifndef PUSH_ARGUMENTS
1114 #define PUSH_ARGUMENTS default_push_arguments
1115 #endif
1116
1117 CORE_ADDR
1118 default_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
1119 int struct_return, CORE_ADDR struct_addr)
1120 {
1121 /* ASSERT ( !struct_return); */
1122 int i;
1123 for (i = nargs - 1; i >= 0; i--)
1124 sp = value_push (sp, args[i]);
1125 return sp;
1126 }
1127
1128
1129 /* A default function for COERCE_FLOAT_TO_DOUBLE: do the coercion only
1130 when we don't have any type for the argument at hand. This occurs
1131 when we have no debug info, or when passing varargs.
1132
1133 This is an annoying default: the rule the compiler follows is to do
1134 the standard promotions whenever there is no prototype in scope,
1135 and almost all targets want this behavior. But there are some old
1136 architectures which want this odd behavior. If you want to go
1137 through them all and fix them, please do. Modern gdbarch-style
1138 targets may find it convenient to use standard_coerce_float_to_double. */
1139 int
1140 default_coerce_float_to_double (struct type *formal, struct type *actual)
1141 {
1142 return formal == NULL;
1143 }
1144
1145
1146 /* Always coerce floats to doubles when there is no prototype in scope.
1147 If your architecture follows the standard type promotion rules for
1148 calling unprototyped functions, your gdbarch init function can pass
1149 this function to set_gdbarch_coerce_float_to_double to use its logic. */
1150 int
1151 standard_coerce_float_to_double (struct type *formal, struct type *actual)
1152 {
1153 return 1;
1154 }
1155
1156
1157 /* Perform the standard coercions that are specified
1158 for arguments to be passed to C functions.
1159
1160 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1161 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1162
1163 static value_ptr
1164 value_arg_coerce (value_ptr arg, struct type *param_type, int is_prototyped)
1165 {
1166 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1167 register struct type *type
1168 = param_type ? check_typedef (param_type) : arg_type;
1169
1170 switch (TYPE_CODE (type))
1171 {
1172 case TYPE_CODE_REF:
1173 if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
1174 {
1175 arg = value_addr (arg);
1176 VALUE_TYPE (arg) = param_type;
1177 return arg;
1178 }
1179 break;
1180 case TYPE_CODE_INT:
1181 case TYPE_CODE_CHAR:
1182 case TYPE_CODE_BOOL:
1183 case TYPE_CODE_ENUM:
1184 /* If we don't have a prototype, coerce to integer type if necessary. */
1185 if (!is_prototyped)
1186 {
1187 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1188 type = builtin_type_int;
1189 }
1190 /* Currently all target ABIs require at least the width of an integer
1191 type for an argument. We may have to conditionalize the following
1192 type coercion for future targets. */
1193 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1194 type = builtin_type_int;
1195 break;
1196 case TYPE_CODE_FLT:
1197 /* FIXME: We should always convert floats to doubles in the
1198 non-prototyped case. As many debugging formats include
1199 no information about prototyping, we have to live with
1200 COERCE_FLOAT_TO_DOUBLE for now. */
1201 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
1202 {
1203 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1204 type = builtin_type_double;
1205 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1206 type = builtin_type_long_double;
1207 }
1208 break;
1209 case TYPE_CODE_FUNC:
1210 type = lookup_pointer_type (type);
1211 break;
1212 case TYPE_CODE_ARRAY:
1213 if (current_language->c_style_arrays)
1214 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1215 break;
1216 case TYPE_CODE_UNDEF:
1217 case TYPE_CODE_PTR:
1218 case TYPE_CODE_STRUCT:
1219 case TYPE_CODE_UNION:
1220 case TYPE_CODE_VOID:
1221 case TYPE_CODE_SET:
1222 case TYPE_CODE_RANGE:
1223 case TYPE_CODE_STRING:
1224 case TYPE_CODE_BITSTRING:
1225 case TYPE_CODE_ERROR:
1226 case TYPE_CODE_MEMBER:
1227 case TYPE_CODE_METHOD:
1228 case TYPE_CODE_COMPLEX:
1229 default:
1230 break;
1231 }
1232
1233 return value_cast (type, arg);
1234 }
1235
1236 /* Determine a function's address and its return type from its value.
1237 Calls error() if the function is not valid for calling. */
1238
1239 static CORE_ADDR
1240 find_function_addr (value_ptr function, struct type **retval_type)
1241 {
1242 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1243 register enum type_code code = TYPE_CODE (ftype);
1244 struct type *value_type;
1245 CORE_ADDR funaddr;
1246
1247 /* If it's a member function, just look at the function
1248 part of it. */
1249
1250 /* Determine address to call. */
1251 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1252 {
1253 funaddr = VALUE_ADDRESS (function);
1254 value_type = TYPE_TARGET_TYPE (ftype);
1255 }
1256 else if (code == TYPE_CODE_PTR)
1257 {
1258 funaddr = value_as_pointer (function);
1259 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1260 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1261 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1262 {
1263 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1264 value_type = TYPE_TARGET_TYPE (ftype);
1265 }
1266 else
1267 value_type = builtin_type_int;
1268 }
1269 else if (code == TYPE_CODE_INT)
1270 {
1271 /* Handle the case of functions lacking debugging info.
1272 Their values are characters since their addresses are char */
1273 if (TYPE_LENGTH (ftype) == 1)
1274 funaddr = value_as_pointer (value_addr (function));
1275 else
1276 /* Handle integer used as address of a function. */
1277 funaddr = (CORE_ADDR) value_as_long (function);
1278
1279 value_type = builtin_type_int;
1280 }
1281 else
1282 error ("Invalid data type for function to be called.");
1283
1284 *retval_type = value_type;
1285 return funaddr;
1286 }
1287
1288 /* All this stuff with a dummy frame may seem unnecessarily complicated
1289 (why not just save registers in GDB?). The purpose of pushing a dummy
1290 frame which looks just like a real frame is so that if you call a
1291 function and then hit a breakpoint (get a signal, etc), "backtrace"
1292 will look right. Whether the backtrace needs to actually show the
1293 stack at the time the inferior function was called is debatable, but
1294 it certainly needs to not display garbage. So if you are contemplating
1295 making dummy frames be different from normal frames, consider that. */
1296
1297 /* Perform a function call in the inferior.
1298 ARGS is a vector of values of arguments (NARGS of them).
1299 FUNCTION is a value, the function to be called.
1300 Returns a value representing what the function returned.
1301 May fail to return, if a breakpoint or signal is hit
1302 during the execution of the function.
1303
1304 ARGS is modified to contain coerced values. */
1305
1306 static value_ptr hand_function_call (value_ptr function, int nargs,
1307 value_ptr * args);
1308 static value_ptr
1309 hand_function_call (value_ptr function, int nargs, value_ptr *args)
1310 {
1311 register CORE_ADDR sp;
1312 register int i;
1313 int rc;
1314 CORE_ADDR start_sp;
1315 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1316 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1317 and remove any extra bytes which might exist because ULONGEST is
1318 bigger than REGISTER_SIZE.
1319
1320 NOTE: This is pretty wierd, as the call dummy is actually a
1321 sequence of instructions. But CISC machines will have
1322 to pack the instructions into REGISTER_SIZE units (and
1323 so will RISC machines for which INSTRUCTION_SIZE is not
1324 REGISTER_SIZE).
1325
1326 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1327 target byte order. */
1328
1329 static ULONGEST *dummy;
1330 int sizeof_dummy1;
1331 char *dummy1;
1332 CORE_ADDR old_sp;
1333 struct type *value_type;
1334 unsigned char struct_return;
1335 CORE_ADDR struct_addr = 0;
1336 struct inferior_status *inf_status;
1337 struct cleanup *old_chain;
1338 CORE_ADDR funaddr;
1339 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1340 CORE_ADDR real_pc;
1341 struct type *param_type = NULL;
1342 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1343
1344 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1345 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1346 dummy1 = alloca (sizeof_dummy1);
1347 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1348
1349 if (!target_has_execution)
1350 noprocess ();
1351
1352 inf_status = save_inferior_status (1);
1353 old_chain = make_cleanup_restore_inferior_status (inf_status);
1354
1355 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1356 (and POP_FRAME for restoring them). (At least on most machines)
1357 they are saved on the stack in the inferior. */
1358 PUSH_DUMMY_FRAME;
1359
1360 old_sp = sp = read_sp ();
1361
1362 if (INNER_THAN (1, 2))
1363 {
1364 /* Stack grows down */
1365 sp -= sizeof_dummy1;
1366 start_sp = sp;
1367 }
1368 else
1369 {
1370 /* Stack grows up */
1371 start_sp = sp;
1372 sp += sizeof_dummy1;
1373 }
1374
1375 funaddr = find_function_addr (function, &value_type);
1376 CHECK_TYPEDEF (value_type);
1377
1378 {
1379 struct block *b = block_for_pc (funaddr);
1380 /* If compiled without -g, assume GCC 2. */
1381 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1382 }
1383
1384 /* Are we returning a value using a structure return or a normal
1385 value return? */
1386
1387 struct_return = using_struct_return (function, funaddr, value_type,
1388 using_gcc);
1389
1390 /* Create a call sequence customized for this function
1391 and the number of arguments for it. */
1392 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1393 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1394 REGISTER_SIZE,
1395 (ULONGEST) dummy[i]);
1396
1397 #ifdef GDB_TARGET_IS_HPPA
1398 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1399 value_type, using_gcc);
1400 #else
1401 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1402 value_type, using_gcc);
1403 real_pc = start_sp;
1404 #endif
1405
1406 if (CALL_DUMMY_LOCATION == ON_STACK)
1407 {
1408 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1409 }
1410
1411 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1412 {
1413 /* Convex Unix prohibits executing in the stack segment. */
1414 /* Hope there is empty room at the top of the text segment. */
1415 extern CORE_ADDR text_end;
1416 static int checked = 0;
1417 if (!checked)
1418 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1419 if (read_memory_integer (start_sp, 1) != 0)
1420 error ("text segment full -- no place to put call");
1421 checked = 1;
1422 sp = old_sp;
1423 real_pc = text_end - sizeof_dummy1;
1424 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1425 }
1426
1427 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1428 {
1429 extern CORE_ADDR text_end;
1430 int errcode;
1431 sp = old_sp;
1432 real_pc = text_end;
1433 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1434 if (errcode != 0)
1435 error ("Cannot write text segment -- call_function failed");
1436 }
1437
1438 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1439 {
1440 real_pc = funaddr;
1441 }
1442
1443 #ifdef lint
1444 sp = old_sp; /* It really is used, for some ifdef's... */
1445 #endif
1446
1447 if (nargs < TYPE_NFIELDS (ftype))
1448 error ("too few arguments in function call");
1449
1450 for (i = nargs - 1; i >= 0; i--)
1451 {
1452 /* If we're off the end of the known arguments, do the standard
1453 promotions. FIXME: if we had a prototype, this should only
1454 be allowed if ... were present. */
1455 if (i >= TYPE_NFIELDS (ftype))
1456 args[i] = value_arg_coerce (args[i], NULL, 0);
1457
1458 else
1459 {
1460 int is_prototyped = TYPE_FLAGS (ftype) & TYPE_FLAG_PROTOTYPED;
1461 param_type = TYPE_FIELD_TYPE (ftype, i);
1462
1463 args[i] = value_arg_coerce (args[i], param_type, is_prototyped);
1464 }
1465
1466 /*elz: this code is to handle the case in which the function to be called
1467 has a pointer to function as parameter and the corresponding actual argument
1468 is the address of a function and not a pointer to function variable.
1469 In aCC compiled code, the calls through pointers to functions (in the body
1470 of the function called by hand) are made via $$dyncall_external which
1471 requires some registers setting, this is taken care of if we call
1472 via a function pointer variable, but not via a function address.
1473 In cc this is not a problem. */
1474
1475 if (using_gcc == 0)
1476 if (param_type)
1477 /* if this parameter is a pointer to function */
1478 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1479 if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
1480 /* elz: FIXME here should go the test about the compiler used
1481 to compile the target. We want to issue the error
1482 message only if the compiler used was HP's aCC.
1483 If we used HP's cc, then there is no problem and no need
1484 to return at this point */
1485 if (using_gcc == 0) /* && compiler == aCC */
1486 /* go see if the actual parameter is a variable of type
1487 pointer to function or just a function */
1488 if (args[i]->lval == not_lval)
1489 {
1490 char *arg_name;
1491 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1492 error ("\
1493 You cannot use function <%s> as argument. \n\
1494 You must use a pointer to function type variable. Command ignored.", arg_name);
1495 }
1496 }
1497
1498 if (REG_STRUCT_HAS_ADDR_P ())
1499 {
1500 /* This is a machine like the sparc, where we may need to pass a
1501 pointer to the structure, not the structure itself. */
1502 for (i = nargs - 1; i >= 0; i--)
1503 {
1504 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1505 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1506 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1507 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1508 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1509 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1510 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1511 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1512 && TYPE_LENGTH (arg_type) > 8)
1513 )
1514 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1515 {
1516 CORE_ADDR addr;
1517 int len; /* = TYPE_LENGTH (arg_type); */
1518 int aligned_len;
1519 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1520 len = TYPE_LENGTH (arg_type);
1521
1522 if (STACK_ALIGN_P ())
1523 /* MVS 11/22/96: I think at least some of this
1524 stack_align code is really broken. Better to let
1525 PUSH_ARGUMENTS adjust the stack in a target-defined
1526 manner. */
1527 aligned_len = STACK_ALIGN (len);
1528 else
1529 aligned_len = len;
1530 if (INNER_THAN (1, 2))
1531 {
1532 /* stack grows downward */
1533 sp -= aligned_len;
1534 /* ... so the address of the thing we push is the
1535 stack pointer after we push it. */
1536 addr = sp;
1537 }
1538 else
1539 {
1540 /* The stack grows up, so the address of the thing
1541 we push is the stack pointer before we push it. */
1542 addr = sp;
1543 sp += aligned_len;
1544 }
1545 /* Push the structure. */
1546 write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
1547 /* The value we're going to pass is the address of the
1548 thing we just pushed. */
1549 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1550 (LONGEST) addr); */
1551 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1552 addr);
1553 }
1554 }
1555 }
1556
1557
1558 /* Reserve space for the return structure to be written on the
1559 stack, if necessary */
1560
1561 if (struct_return)
1562 {
1563 int len = TYPE_LENGTH (value_type);
1564 if (STACK_ALIGN_P ())
1565 /* MVS 11/22/96: I think at least some of this stack_align
1566 code is really broken. Better to let PUSH_ARGUMENTS adjust
1567 the stack in a target-defined manner. */
1568 len = STACK_ALIGN (len);
1569 if (INNER_THAN (1, 2))
1570 {
1571 /* stack grows downward */
1572 sp -= len;
1573 struct_addr = sp;
1574 }
1575 else
1576 {
1577 /* stack grows upward */
1578 struct_addr = sp;
1579 sp += len;
1580 }
1581 }
1582
1583 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1584 on other architectures. This is because all the alignment is
1585 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1586 in hppa_push_arguments */
1587 if (EXTRA_STACK_ALIGNMENT_NEEDED)
1588 {
1589 /* MVS 11/22/96: I think at least some of this stack_align code
1590 is really broken. Better to let PUSH_ARGUMENTS adjust the
1591 stack in a target-defined manner. */
1592 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1593 {
1594 /* If stack grows down, we must leave a hole at the top. */
1595 int len = 0;
1596
1597 for (i = nargs - 1; i >= 0; i--)
1598 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1599 if (CALL_DUMMY_STACK_ADJUST_P)
1600 len += CALL_DUMMY_STACK_ADJUST;
1601 sp -= STACK_ALIGN (len) - len;
1602 }
1603 }
1604
1605 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1606
1607 #ifdef PUSH_RETURN_ADDRESS /* for targets that use no CALL_DUMMY */
1608 /* There are a number of targets now which actually don't write any
1609 CALL_DUMMY instructions into the target, but instead just save the
1610 machine state, push the arguments, and jump directly to the callee
1611 function. Since this doesn't actually involve executing a JSR/BSR
1612 instruction, the return address must be set up by hand, either by
1613 pushing onto the stack or copying into a return-address register
1614 as appropriate. Formerly this has been done in PUSH_ARGUMENTS,
1615 but that's overloading its functionality a bit, so I'm making it
1616 explicit to do it here. */
1617 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1618 #endif /* PUSH_RETURN_ADDRESS */
1619
1620 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
1621 {
1622 /* If stack grows up, we must leave a hole at the bottom, note
1623 that sp already has been advanced for the arguments! */
1624 if (CALL_DUMMY_STACK_ADJUST_P)
1625 sp += CALL_DUMMY_STACK_ADJUST;
1626 sp = STACK_ALIGN (sp);
1627 }
1628
1629 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1630 anything here! */
1631 /* MVS 11/22/96: I think at least some of this stack_align code is
1632 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1633 a target-defined manner. */
1634 if (CALL_DUMMY_STACK_ADJUST_P)
1635 if (INNER_THAN (1, 2))
1636 {
1637 /* stack grows downward */
1638 sp -= CALL_DUMMY_STACK_ADJUST;
1639 }
1640
1641 /* Store the address at which the structure is supposed to be
1642 written. Note that this (and the code which reserved the space
1643 above) assumes that gcc was used to compile this function. Since
1644 it doesn't cost us anything but space and if the function is pcc
1645 it will ignore this value, we will make that assumption.
1646
1647 Also note that on some machines (like the sparc) pcc uses a
1648 convention like gcc's. */
1649
1650 if (struct_return)
1651 STORE_STRUCT_RETURN (struct_addr, sp);
1652
1653 /* Write the stack pointer. This is here because the statements above
1654 might fool with it. On SPARC, this write also stores the register
1655 window into the right place in the new stack frame, which otherwise
1656 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1657 write_sp (sp);
1658
1659 if (SAVE_DUMMY_FRAME_TOS_P ())
1660 SAVE_DUMMY_FRAME_TOS (sp);
1661
1662 {
1663 char *retbuf = (char*) alloca (REGISTER_BYTES);
1664 char *name;
1665 struct symbol *symbol;
1666
1667 name = NULL;
1668 symbol = find_pc_function (funaddr);
1669 if (symbol)
1670 {
1671 name = SYMBOL_SOURCE_NAME (symbol);
1672 }
1673 else
1674 {
1675 /* Try the minimal symbols. */
1676 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1677
1678 if (msymbol)
1679 {
1680 name = SYMBOL_SOURCE_NAME (msymbol);
1681 }
1682 }
1683 if (name == NULL)
1684 {
1685 char format[80];
1686 sprintf (format, "at %s", local_hex_format ());
1687 name = alloca (80);
1688 /* FIXME-32x64: assumes funaddr fits in a long. */
1689 sprintf (name, format, (unsigned long) funaddr);
1690 }
1691
1692 /* Execute the stack dummy routine, calling FUNCTION.
1693 When it is done, discard the empty frame
1694 after storing the contents of all regs into retbuf. */
1695 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1696
1697 if (rc == 1)
1698 {
1699 /* We stopped inside the FUNCTION because of a random signal.
1700 Further execution of the FUNCTION is not allowed. */
1701
1702 if (unwind_on_signal_p)
1703 {
1704 /* The user wants the context restored. */
1705
1706 /* We must get back to the frame we were before the dummy call. */
1707 POP_FRAME;
1708
1709 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1710 a C++ name with arguments and stuff. */
1711 error ("\
1712 The program being debugged was signaled while in a function called from GDB.\n\
1713 GDB has restored the context to what it was before the call.\n\
1714 To change this behavior use \"set unwindonsignal off\"\n\
1715 Evaluation of the expression containing the function (%s) will be abandoned.",
1716 name);
1717 }
1718 else
1719 {
1720 /* The user wants to stay in the frame where we stopped (default).*/
1721
1722 /* If we did the cleanups, we would print a spurious error
1723 message (Unable to restore previously selected frame),
1724 would write the registers from the inf_status (which is
1725 wrong), and would do other wrong things. */
1726 discard_cleanups (old_chain);
1727 discard_inferior_status (inf_status);
1728
1729 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1730 a C++ name with arguments and stuff. */
1731 error ("\
1732 The program being debugged was signaled while in a function called from GDB.\n\
1733 GDB remains in the frame where the signal was received.\n\
1734 To change this behavior use \"set unwindonsignal on\"\n\
1735 Evaluation of the expression containing the function (%s) will be abandoned.",
1736 name);
1737 }
1738 }
1739
1740 if (rc == 2)
1741 {
1742 /* We hit a breakpoint inside the FUNCTION. */
1743
1744 /* If we did the cleanups, we would print a spurious error
1745 message (Unable to restore previously selected frame),
1746 would write the registers from the inf_status (which is
1747 wrong), and would do other wrong things. */
1748 discard_cleanups (old_chain);
1749 discard_inferior_status (inf_status);
1750
1751 /* The following error message used to say "The expression
1752 which contained the function call has been discarded." It
1753 is a hard concept to explain in a few words. Ideally, GDB
1754 would be able to resume evaluation of the expression when
1755 the function finally is done executing. Perhaps someday
1756 this will be implemented (it would not be easy). */
1757
1758 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1759 a C++ name with arguments and stuff. */
1760 error ("\
1761 The program being debugged stopped while in a function called from GDB.\n\
1762 When the function (%s) is done executing, GDB will silently\n\
1763 stop (instead of continuing to evaluate the expression containing\n\
1764 the function call).", name);
1765 }
1766
1767 /* If we get here the called FUNCTION run to completion. */
1768 do_cleanups (old_chain);
1769
1770 /* Figure out the value returned by the function. */
1771 /* elz: I defined this new macro for the hppa architecture only.
1772 this gives us a way to get the value returned by the function from the stack,
1773 at the same address we told the function to put it.
1774 We cannot assume on the pa that r28 still contains the address of the returned
1775 structure. Usually this will be overwritten by the callee.
1776 I don't know about other architectures, so I defined this macro
1777 */
1778
1779 #ifdef VALUE_RETURNED_FROM_STACK
1780 if (struct_return)
1781 return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1782 #endif
1783
1784 return value_being_returned (value_type, retbuf, struct_return);
1785 }
1786 }
1787
1788 value_ptr
1789 call_function_by_hand (value_ptr function, int nargs, value_ptr *args)
1790 {
1791 if (CALL_DUMMY_P)
1792 {
1793 return hand_function_call (function, nargs, args);
1794 }
1795 else
1796 {
1797 error ("Cannot invoke functions on this machine.");
1798 }
1799 }
1800 \f
1801
1802
1803 /* Create a value for an array by allocating space in the inferior, copying
1804 the data into that space, and then setting up an array value.
1805
1806 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1807 populated from the values passed in ELEMVEC.
1808
1809 The element type of the array is inherited from the type of the
1810 first element, and all elements must have the same size (though we
1811 don't currently enforce any restriction on their types). */
1812
1813 value_ptr
1814 value_array (int lowbound, int highbound, value_ptr *elemvec)
1815 {
1816 int nelem;
1817 int idx;
1818 unsigned int typelength;
1819 value_ptr val;
1820 struct type *rangetype;
1821 struct type *arraytype;
1822 CORE_ADDR addr;
1823
1824 /* Validate that the bounds are reasonable and that each of the elements
1825 have the same size. */
1826
1827 nelem = highbound - lowbound + 1;
1828 if (nelem <= 0)
1829 {
1830 error ("bad array bounds (%d, %d)", lowbound, highbound);
1831 }
1832 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1833 for (idx = 1; idx < nelem; idx++)
1834 {
1835 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1836 {
1837 error ("array elements must all be the same size");
1838 }
1839 }
1840
1841 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1842 lowbound, highbound);
1843 arraytype = create_array_type ((struct type *) NULL,
1844 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1845
1846 if (!current_language->c_style_arrays)
1847 {
1848 val = allocate_value (arraytype);
1849 for (idx = 0; idx < nelem; idx++)
1850 {
1851 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1852 VALUE_CONTENTS_ALL (elemvec[idx]),
1853 typelength);
1854 }
1855 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1856 return val;
1857 }
1858
1859 /* Allocate space to store the array in the inferior, and then initialize
1860 it by copying in each element. FIXME: Is it worth it to create a
1861 local buffer in which to collect each value and then write all the
1862 bytes in one operation? */
1863
1864 addr = allocate_space_in_inferior (nelem * typelength);
1865 for (idx = 0; idx < nelem; idx++)
1866 {
1867 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1868 typelength);
1869 }
1870
1871 /* Create the array type and set up an array value to be evaluated lazily. */
1872
1873 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1874 return (val);
1875 }
1876
1877 /* Create a value for a string constant by allocating space in the inferior,
1878 copying the data into that space, and returning the address with type
1879 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1880 of characters.
1881 Note that string types are like array of char types with a lower bound of
1882 zero and an upper bound of LEN - 1. Also note that the string may contain
1883 embedded null bytes. */
1884
1885 value_ptr
1886 value_string (char *ptr, int len)
1887 {
1888 value_ptr val;
1889 int lowbound = current_language->string_lower_bound;
1890 struct type *rangetype = create_range_type ((struct type *) NULL,
1891 builtin_type_int,
1892 lowbound, len + lowbound - 1);
1893 struct type *stringtype
1894 = create_string_type ((struct type *) NULL, rangetype);
1895 CORE_ADDR addr;
1896
1897 if (current_language->c_style_arrays == 0)
1898 {
1899 val = allocate_value (stringtype);
1900 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1901 return val;
1902 }
1903
1904
1905 /* Allocate space to store the string in the inferior, and then
1906 copy LEN bytes from PTR in gdb to that address in the inferior. */
1907
1908 addr = allocate_space_in_inferior (len);
1909 write_memory (addr, ptr, len);
1910
1911 val = value_at_lazy (stringtype, addr, NULL);
1912 return (val);
1913 }
1914
1915 value_ptr
1916 value_bitstring (char *ptr, int len)
1917 {
1918 value_ptr val;
1919 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1920 0, len - 1);
1921 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1922 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1923 val = allocate_value (type);
1924 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1925 return val;
1926 }
1927 \f
1928 /* See if we can pass arguments in T2 to a function which takes arguments
1929 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1930 arguments need coercion of some sort, then the coerced values are written
1931 into T2. Return value is 0 if the arguments could be matched, or the
1932 position at which they differ if not.
1933
1934 STATICP is nonzero if the T1 argument list came from a
1935 static member function.
1936
1937 For non-static member functions, we ignore the first argument,
1938 which is the type of the instance variable. This is because we want
1939 to handle calls with objects from derived classes. This is not
1940 entirely correct: we should actually check to make sure that a
1941 requested operation is type secure, shouldn't we? FIXME. */
1942
1943 static int
1944 typecmp (int staticp, struct type *t1[], value_ptr t2[])
1945 {
1946 int i;
1947
1948 if (t2 == 0)
1949 return 1;
1950 if (staticp && t1 == 0)
1951 return t2[1] != 0;
1952 if (t1 == 0)
1953 return 1;
1954 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID)
1955 return 0;
1956 if (t1[!staticp] == 0)
1957 return 0;
1958 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1959 {
1960 struct type *tt1, *tt2;
1961 if (!t2[i])
1962 return i + 1;
1963 tt1 = check_typedef (t1[i]);
1964 tt2 = check_typedef (VALUE_TYPE (t2[i]));
1965 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1966 /* We should be doing hairy argument matching, as below. */
1967 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1968 {
1969 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1970 t2[i] = value_coerce_array (t2[i]);
1971 else
1972 t2[i] = value_addr (t2[i]);
1973 continue;
1974 }
1975
1976 /* djb - 20000715 - Until the new type structure is in the
1977 place, and we can attempt things like implicit conversions,
1978 we need to do this so you can take something like a map<const
1979 char *>, and properly access map["hello"], because the
1980 argument to [] will be a reference to a pointer to a char,
1981 and the argument will be a pointer to a char. */
1982 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
1983 TYPE_CODE (tt1) == TYPE_CODE_PTR)
1984 {
1985 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1986 }
1987 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
1988 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
1989 TYPE_CODE(tt2) == TYPE_CODE_REF)
1990 {
1991 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
1992 }
1993 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1994 continue;
1995 /* Array to pointer is a `trivial conversion' according to the ARM. */
1996
1997 /* We should be doing much hairier argument matching (see section 13.2
1998 of the ARM), but as a quick kludge, just check for the same type
1999 code. */
2000 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
2001 return i + 1;
2002 }
2003 if (!t1[i])
2004 return 0;
2005 return t2[i] ? i + 1 : 0;
2006 }
2007
2008 /* Helper function used by value_struct_elt to recurse through baseclasses.
2009 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2010 and search in it assuming it has (class) type TYPE.
2011 If found, return value, else return NULL.
2012
2013 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2014 look for a baseclass named NAME. */
2015
2016 static value_ptr
2017 search_struct_field (char *name, register value_ptr arg1, int offset,
2018 register struct type *type, int looking_for_baseclass)
2019 {
2020 int i;
2021 int nbases = TYPE_N_BASECLASSES (type);
2022
2023 CHECK_TYPEDEF (type);
2024
2025 if (!looking_for_baseclass)
2026 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2027 {
2028 char *t_field_name = TYPE_FIELD_NAME (type, i);
2029
2030 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2031 {
2032 value_ptr v;
2033 if (TYPE_FIELD_STATIC (type, i))
2034 v = value_static_field (type, i);
2035 else
2036 v = value_primitive_field (arg1, offset, i, type);
2037 if (v == 0)
2038 error ("there is no field named %s", name);
2039 return v;
2040 }
2041
2042 if (t_field_name
2043 && (t_field_name[0] == '\0'
2044 || (TYPE_CODE (type) == TYPE_CODE_UNION
2045 && (strcmp_iw (t_field_name, "else") == 0))))
2046 {
2047 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2048 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2049 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2050 {
2051 /* Look for a match through the fields of an anonymous union,
2052 or anonymous struct. C++ provides anonymous unions.
2053
2054 In the GNU Chill implementation of variant record types,
2055 each <alternative field> has an (anonymous) union type,
2056 each member of the union represents a <variant alternative>.
2057 Each <variant alternative> is represented as a struct,
2058 with a member for each <variant field>. */
2059
2060 value_ptr v;
2061 int new_offset = offset;
2062
2063 /* This is pretty gross. In G++, the offset in an anonymous
2064 union is relative to the beginning of the enclosing struct.
2065 In the GNU Chill implementation of variant records,
2066 the bitpos is zero in an anonymous union field, so we
2067 have to add the offset of the union here. */
2068 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2069 || (TYPE_NFIELDS (field_type) > 0
2070 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2071 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2072
2073 v = search_struct_field (name, arg1, new_offset, field_type,
2074 looking_for_baseclass);
2075 if (v)
2076 return v;
2077 }
2078 }
2079 }
2080
2081 for (i = 0; i < nbases; i++)
2082 {
2083 value_ptr v;
2084 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2085 /* If we are looking for baseclasses, this is what we get when we
2086 hit them. But it could happen that the base part's member name
2087 is not yet filled in. */
2088 int found_baseclass = (looking_for_baseclass
2089 && TYPE_BASECLASS_NAME (type, i) != NULL
2090 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2091
2092 if (BASETYPE_VIA_VIRTUAL (type, i))
2093 {
2094 int boffset;
2095 value_ptr v2 = allocate_value (basetype);
2096
2097 boffset = baseclass_offset (type, i,
2098 VALUE_CONTENTS (arg1) + offset,
2099 VALUE_ADDRESS (arg1)
2100 + VALUE_OFFSET (arg1) + offset);
2101 if (boffset == -1)
2102 error ("virtual baseclass botch");
2103
2104 /* The virtual base class pointer might have been clobbered by the
2105 user program. Make sure that it still points to a valid memory
2106 location. */
2107
2108 boffset += offset;
2109 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2110 {
2111 CORE_ADDR base_addr;
2112
2113 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2114 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2115 TYPE_LENGTH (basetype)) != 0)
2116 error ("virtual baseclass botch");
2117 VALUE_LVAL (v2) = lval_memory;
2118 VALUE_ADDRESS (v2) = base_addr;
2119 }
2120 else
2121 {
2122 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2123 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2124 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2125 if (VALUE_LAZY (arg1))
2126 VALUE_LAZY (v2) = 1;
2127 else
2128 memcpy (VALUE_CONTENTS_RAW (v2),
2129 VALUE_CONTENTS_RAW (arg1) + boffset,
2130 TYPE_LENGTH (basetype));
2131 }
2132
2133 if (found_baseclass)
2134 return v2;
2135 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2136 looking_for_baseclass);
2137 }
2138 else if (found_baseclass)
2139 v = value_primitive_field (arg1, offset, i, type);
2140 else
2141 v = search_struct_field (name, arg1,
2142 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2143 basetype, looking_for_baseclass);
2144 if (v)
2145 return v;
2146 }
2147 return NULL;
2148 }
2149
2150
2151 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2152 * in an object pointed to by VALADDR (on the host), assumed to be of
2153 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2154 * looking (in case VALADDR is the contents of an enclosing object).
2155 *
2156 * This routine recurses on the primary base of the derived class because
2157 * the virtual base entries of the primary base appear before the other
2158 * virtual base entries.
2159 *
2160 * If the virtual base is not found, a negative integer is returned.
2161 * The magnitude of the negative integer is the number of entries in
2162 * the virtual table to skip over (entries corresponding to various
2163 * ancestral classes in the chain of primary bases).
2164 *
2165 * Important: This assumes the HP / Taligent C++ runtime
2166 * conventions. Use baseclass_offset() instead to deal with g++
2167 * conventions. */
2168
2169 void
2170 find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2171 int offset, int *boffset_p, int *skip_p)
2172 {
2173 int boffset; /* offset of virtual base */
2174 int index; /* displacement to use in virtual table */
2175 int skip;
2176
2177 value_ptr vp;
2178 CORE_ADDR vtbl; /* the virtual table pointer */
2179 struct type *pbc; /* the primary base class */
2180
2181 /* Look for the virtual base recursively in the primary base, first.
2182 * This is because the derived class object and its primary base
2183 * subobject share the primary virtual table. */
2184
2185 boffset = 0;
2186 pbc = TYPE_PRIMARY_BASE (type);
2187 if (pbc)
2188 {
2189 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2190 if (skip < 0)
2191 {
2192 *boffset_p = boffset;
2193 *skip_p = -1;
2194 return;
2195 }
2196 }
2197 else
2198 skip = 0;
2199
2200
2201 /* Find the index of the virtual base according to HP/Taligent
2202 runtime spec. (Depth-first, left-to-right.) */
2203 index = virtual_base_index_skip_primaries (basetype, type);
2204
2205 if (index < 0)
2206 {
2207 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2208 *boffset_p = 0;
2209 return;
2210 }
2211
2212 /* pai: FIXME -- 32x64 possible problem */
2213 /* First word (4 bytes) in object layout is the vtable pointer */
2214 vtbl = *(CORE_ADDR *) (valaddr + offset);
2215
2216 /* Before the constructor is invoked, things are usually zero'd out. */
2217 if (vtbl == 0)
2218 error ("Couldn't find virtual table -- object may not be constructed yet.");
2219
2220
2221 /* Find virtual base's offset -- jump over entries for primary base
2222 * ancestors, then use the index computed above. But also adjust by
2223 * HP_ACC_VBASE_START for the vtable slots before the start of the
2224 * virtual base entries. Offset is negative -- virtual base entries
2225 * appear _before_ the address point of the virtual table. */
2226
2227 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2228 & use long type */
2229
2230 /* epstein : FIXME -- added param for overlay section. May not be correct */
2231 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2232 boffset = value_as_long (vp);
2233 *skip_p = -1;
2234 *boffset_p = boffset;
2235 return;
2236 }
2237
2238
2239 /* Helper function used by value_struct_elt to recurse through baseclasses.
2240 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2241 and search in it assuming it has (class) type TYPE.
2242 If found, return value, else if name matched and args not return (value)-1,
2243 else return NULL. */
2244
2245 static value_ptr
2246 search_struct_method (char *name, register value_ptr *arg1p,
2247 register value_ptr *args, int offset,
2248 int *static_memfuncp, register struct type *type)
2249 {
2250 int i;
2251 value_ptr v;
2252 int name_matched = 0;
2253 char dem_opname[64];
2254
2255 CHECK_TYPEDEF (type);
2256 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2257 {
2258 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2259 /* FIXME! May need to check for ARM demangling here */
2260 if (strncmp (t_field_name, "__", 2) == 0 ||
2261 strncmp (t_field_name, "op", 2) == 0 ||
2262 strncmp (t_field_name, "type", 4) == 0)
2263 {
2264 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2265 t_field_name = dem_opname;
2266 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2267 t_field_name = dem_opname;
2268 }
2269 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2270 {
2271 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2272 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2273 name_matched = 1;
2274
2275 if (j > 0 && args == 0)
2276 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2277 while (j >= 0)
2278 {
2279 if (TYPE_FN_FIELD_STUB (f, j))
2280 check_stub_method (type, i, j);
2281 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2282 TYPE_FN_FIELD_ARGS (f, j), args))
2283 {
2284 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2285 return value_virtual_fn_field (arg1p, f, j, type, offset);
2286 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2287 *static_memfuncp = 1;
2288 v = value_fn_field (arg1p, f, j, type, offset);
2289 if (v != NULL)
2290 return v;
2291 }
2292 j--;
2293 }
2294 }
2295 }
2296
2297 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2298 {
2299 int base_offset;
2300
2301 if (BASETYPE_VIA_VIRTUAL (type, i))
2302 {
2303 if (TYPE_HAS_VTABLE (type))
2304 {
2305 /* HP aCC compiled type, search for virtual base offset
2306 according to HP/Taligent runtime spec. */
2307 int skip;
2308 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2309 VALUE_CONTENTS_ALL (*arg1p),
2310 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2311 &base_offset, &skip);
2312 if (skip >= 0)
2313 error ("Virtual base class offset not found in vtable");
2314 }
2315 else
2316 {
2317 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2318 char *base_valaddr;
2319
2320 /* The virtual base class pointer might have been clobbered by the
2321 user program. Make sure that it still points to a valid memory
2322 location. */
2323
2324 if (offset < 0 || offset >= TYPE_LENGTH (type))
2325 {
2326 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2327 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2328 + VALUE_OFFSET (*arg1p) + offset,
2329 base_valaddr,
2330 TYPE_LENGTH (baseclass)) != 0)
2331 error ("virtual baseclass botch");
2332 }
2333 else
2334 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2335
2336 base_offset =
2337 baseclass_offset (type, i, base_valaddr,
2338 VALUE_ADDRESS (*arg1p)
2339 + VALUE_OFFSET (*arg1p) + offset);
2340 if (base_offset == -1)
2341 error ("virtual baseclass botch");
2342 }
2343 }
2344 else
2345 {
2346 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2347 }
2348 v = search_struct_method (name, arg1p, args, base_offset + offset,
2349 static_memfuncp, TYPE_BASECLASS (type, i));
2350 if (v == (value_ptr) - 1)
2351 {
2352 name_matched = 1;
2353 }
2354 else if (v)
2355 {
2356 /* FIXME-bothner: Why is this commented out? Why is it here? */
2357 /* *arg1p = arg1_tmp; */
2358 return v;
2359 }
2360 }
2361 if (name_matched)
2362 return (value_ptr) - 1;
2363 else
2364 return NULL;
2365 }
2366
2367 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2368 extract the component named NAME from the ultimate target structure/union
2369 and return it as a value with its appropriate type.
2370 ERR is used in the error message if *ARGP's type is wrong.
2371
2372 C++: ARGS is a list of argument types to aid in the selection of
2373 an appropriate method. Also, handle derived types.
2374
2375 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2376 where the truthvalue of whether the function that was resolved was
2377 a static member function or not is stored.
2378
2379 ERR is an error message to be printed in case the field is not found. */
2380
2381 value_ptr
2382 value_struct_elt (register value_ptr *argp, register value_ptr *args,
2383 char *name, int *static_memfuncp, char *err)
2384 {
2385 register struct type *t;
2386 value_ptr v;
2387
2388 COERCE_ARRAY (*argp);
2389
2390 t = check_typedef (VALUE_TYPE (*argp));
2391
2392 /* Follow pointers until we get to a non-pointer. */
2393
2394 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2395 {
2396 *argp = value_ind (*argp);
2397 /* Don't coerce fn pointer to fn and then back again! */
2398 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2399 COERCE_ARRAY (*argp);
2400 t = check_typedef (VALUE_TYPE (*argp));
2401 }
2402
2403 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2404 error ("not implemented: member type in value_struct_elt");
2405
2406 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2407 && TYPE_CODE (t) != TYPE_CODE_UNION)
2408 error ("Attempt to extract a component of a value that is not a %s.", err);
2409
2410 /* Assume it's not, unless we see that it is. */
2411 if (static_memfuncp)
2412 *static_memfuncp = 0;
2413
2414 if (!args)
2415 {
2416 /* if there are no arguments ...do this... */
2417
2418 /* Try as a field first, because if we succeed, there
2419 is less work to be done. */
2420 v = search_struct_field (name, *argp, 0, t, 0);
2421 if (v)
2422 return v;
2423
2424 /* C++: If it was not found as a data field, then try to
2425 return it as a pointer to a method. */
2426
2427 if (destructor_name_p (name, t))
2428 error ("Cannot get value of destructor");
2429
2430 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2431
2432 if (v == (value_ptr) - 1)
2433 error ("Cannot take address of a method");
2434 else if (v == 0)
2435 {
2436 if (TYPE_NFN_FIELDS (t))
2437 error ("There is no member or method named %s.", name);
2438 else
2439 error ("There is no member named %s.", name);
2440 }
2441 return v;
2442 }
2443
2444 if (destructor_name_p (name, t))
2445 {
2446 if (!args[1])
2447 {
2448 /* Destructors are a special case. */
2449 int m_index, f_index;
2450
2451 v = NULL;
2452 if (get_destructor_fn_field (t, &m_index, &f_index))
2453 {
2454 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2455 f_index, NULL, 0);
2456 }
2457 if (v == NULL)
2458 error ("could not find destructor function named %s.", name);
2459 else
2460 return v;
2461 }
2462 else
2463 {
2464 error ("destructor should not have any argument");
2465 }
2466 }
2467 else
2468 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2469
2470 if (v == (value_ptr) - 1)
2471 {
2472 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
2473 }
2474 else if (v == 0)
2475 {
2476 /* See if user tried to invoke data as function. If so,
2477 hand it back. If it's not callable (i.e., a pointer to function),
2478 gdb should give an error. */
2479 v = search_struct_field (name, *argp, 0, t, 0);
2480 }
2481
2482 if (!v)
2483 error ("Structure has no component named %s.", name);
2484 return v;
2485 }
2486
2487 /* Search through the methods of an object (and its bases)
2488 * to find a specified method. Return the pointer to the
2489 * fn_field list of overloaded instances.
2490 * Helper function for value_find_oload_list.
2491 * ARGP is a pointer to a pointer to a value (the object)
2492 * METHOD is a string containing the method name
2493 * OFFSET is the offset within the value
2494 * STATIC_MEMFUNCP is set if the method is static
2495 * TYPE is the assumed type of the object
2496 * NUM_FNS is the number of overloaded instances
2497 * BASETYPE is set to the actual type of the subobject where the method is found
2498 * BOFFSET is the offset of the base subobject where the method is found */
2499
2500 static struct fn_field *
2501 find_method_list (value_ptr *argp, char *method, int offset,
2502 int *static_memfuncp, struct type *type, int *num_fns,
2503 struct type **basetype, int *boffset)
2504 {
2505 int i;
2506 struct fn_field *f;
2507 CHECK_TYPEDEF (type);
2508
2509 *num_fns = 0;
2510
2511 /* First check in object itself */
2512 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2513 {
2514 /* pai: FIXME What about operators and type conversions? */
2515 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2516 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2517 {
2518 *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
2519 *basetype = type;
2520 *boffset = offset;
2521 return TYPE_FN_FIELDLIST1 (type, i);
2522 }
2523 }
2524
2525 /* Not found in object, check in base subobjects */
2526 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2527 {
2528 int base_offset;
2529 if (BASETYPE_VIA_VIRTUAL (type, i))
2530 {
2531 if (TYPE_HAS_VTABLE (type))
2532 {
2533 /* HP aCC compiled type, search for virtual base offset
2534 * according to HP/Taligent runtime spec. */
2535 int skip;
2536 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2537 VALUE_CONTENTS_ALL (*argp),
2538 offset + VALUE_EMBEDDED_OFFSET (*argp),
2539 &base_offset, &skip);
2540 if (skip >= 0)
2541 error ("Virtual base class offset not found in vtable");
2542 }
2543 else
2544 {
2545 /* probably g++ runtime model */
2546 base_offset = VALUE_OFFSET (*argp) + offset;
2547 base_offset =
2548 baseclass_offset (type, i,
2549 VALUE_CONTENTS (*argp) + base_offset,
2550 VALUE_ADDRESS (*argp) + base_offset);
2551 if (base_offset == -1)
2552 error ("virtual baseclass botch");
2553 }
2554 }
2555 else
2556 /* non-virtual base, simply use bit position from debug info */
2557 {
2558 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2559 }
2560 f = find_method_list (argp, method, base_offset + offset,
2561 static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
2562 if (f)
2563 return f;
2564 }
2565 return NULL;
2566 }
2567
2568 /* Return the list of overloaded methods of a specified name.
2569 * ARGP is a pointer to a pointer to a value (the object)
2570 * METHOD is the method name
2571 * OFFSET is the offset within the value contents
2572 * STATIC_MEMFUNCP is set if the method is static
2573 * NUM_FNS is the number of overloaded instances
2574 * BASETYPE is set to the type of the base subobject that defines the method
2575 * BOFFSET is the offset of the base subobject which defines the method */
2576
2577 struct fn_field *
2578 value_find_oload_method_list (value_ptr *argp, char *method, int offset,
2579 int *static_memfuncp, int *num_fns,
2580 struct type **basetype, int *boffset)
2581 {
2582 struct type *t;
2583
2584 t = check_typedef (VALUE_TYPE (*argp));
2585
2586 /* code snarfed from value_struct_elt */
2587 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2588 {
2589 *argp = value_ind (*argp);
2590 /* Don't coerce fn pointer to fn and then back again! */
2591 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2592 COERCE_ARRAY (*argp);
2593 t = check_typedef (VALUE_TYPE (*argp));
2594 }
2595
2596 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2597 error ("Not implemented: member type in value_find_oload_lis");
2598
2599 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2600 && TYPE_CODE (t) != TYPE_CODE_UNION)
2601 error ("Attempt to extract a component of a value that is not a struct or union");
2602
2603 /* Assume it's not static, unless we see that it is. */
2604 if (static_memfuncp)
2605 *static_memfuncp = 0;
2606
2607 return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
2608
2609 }
2610
2611 /* Given an array of argument types (ARGTYPES) (which includes an
2612 entry for "this" in the case of C++ methods), the number of
2613 arguments NARGS, the NAME of a function whether it's a method or
2614 not (METHOD), and the degree of laxness (LAX) in conforming to
2615 overload resolution rules in ANSI C++, find the best function that
2616 matches on the argument types according to the overload resolution
2617 rules.
2618
2619 In the case of class methods, the parameter OBJ is an object value
2620 in which to search for overloaded methods.
2621
2622 In the case of non-method functions, the parameter FSYM is a symbol
2623 corresponding to one of the overloaded functions.
2624
2625 Return value is an integer: 0 -> good match, 10 -> debugger applied
2626 non-standard coercions, 100 -> incompatible.
2627
2628 If a method is being searched for, VALP will hold the value.
2629 If a non-method is being searched for, SYMP will hold the symbol for it.
2630
2631 If a method is being searched for, and it is a static method,
2632 then STATICP will point to a non-zero value.
2633
2634 Note: This function does *not* check the value of
2635 overload_resolution. Caller must check it to see whether overload
2636 resolution is permitted.
2637 */
2638
2639 int
2640 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
2641 int lax, value_ptr obj, struct symbol *fsym,
2642 value_ptr *valp, struct symbol **symp, int *staticp)
2643 {
2644 int nparms;
2645 struct type **parm_types;
2646 int champ_nparms = 0;
2647
2648 short oload_champ = -1; /* Index of best overloaded function */
2649 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2650 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2651 short oload_ambig_champ = -1; /* 2nd contender for best match */
2652 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2653 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2654
2655 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2656 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2657
2658 value_ptr temp = obj;
2659 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2660 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2661 int num_fns = 0; /* Number of overloaded instances being considered */
2662 struct type *basetype = NULL;
2663 int boffset;
2664 register int jj;
2665 register int ix;
2666
2667 char *obj_type_name = NULL;
2668 char *func_name = NULL;
2669
2670 /* Get the list of overloaded methods or functions */
2671 if (method)
2672 {
2673 int i;
2674 int len;
2675 struct type *domain;
2676 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2677 /* Hack: evaluate_subexp_standard often passes in a pointer
2678 value rather than the object itself, so try again */
2679 if ((!obj_type_name || !*obj_type_name) &&
2680 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2681 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2682
2683 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2684 staticp,
2685 &num_fns,
2686 &basetype, &boffset);
2687 if (!fns_ptr || !num_fns)
2688 error ("Couldn't find method %s%s%s",
2689 obj_type_name,
2690 (obj_type_name && *obj_type_name) ? "::" : "",
2691 name);
2692 domain = TYPE_DOMAIN_TYPE (fns_ptr[0].type);
2693 len = TYPE_NFN_FIELDS (domain);
2694 /* NOTE: dan/2000-03-10: This stuff is for STABS, which won't
2695 give us the info we need directly in the types. We have to
2696 use the method stub conversion to get it. Be aware that this
2697 is by no means perfect, and if you use STABS, please move to
2698 DWARF-2, or something like it, because trying to improve
2699 overloading using STABS is really a waste of time. */
2700 for (i = 0; i < len; i++)
2701 {
2702 int j;
2703 struct fn_field *f = TYPE_FN_FIELDLIST1 (domain, i);
2704 int len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
2705
2706 for (j = 0; j < len2; j++)
2707 {
2708 if (TYPE_FN_FIELD_STUB (f, j) && (!strcmp_iw (TYPE_FN_FIELDLIST_NAME (domain,i),name)))
2709 check_stub_method (domain, i, j);
2710 }
2711 }
2712 }
2713 else
2714 {
2715 int i = -1;
2716 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2717
2718 /* If the name is NULL this must be a C-style function.
2719 Just return the same symbol. */
2720 if (!func_name)
2721 {
2722 *symp = fsym;
2723 return 0;
2724 }
2725
2726 oload_syms = make_symbol_overload_list (fsym);
2727 while (oload_syms[++i])
2728 num_fns++;
2729 if (!num_fns)
2730 error ("Couldn't find function %s", func_name);
2731 }
2732
2733 oload_champ_bv = NULL;
2734
2735 /* Consider each candidate in turn */
2736 for (ix = 0; ix < num_fns; ix++)
2737 {
2738 if (method)
2739 {
2740 /* For static member functions, we won't have a this pointer, but nothing
2741 else seems to handle them right now, so we just pretend ourselves */
2742 nparms=0;
2743
2744 if (TYPE_FN_FIELD_ARGS(fns_ptr,ix))
2745 {
2746 while (TYPE_CODE(TYPE_FN_FIELD_ARGS(fns_ptr,ix)[nparms]) != TYPE_CODE_VOID)
2747 nparms++;
2748 }
2749 }
2750 else
2751 {
2752 /* If it's not a method, this is the proper place */
2753 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2754 }
2755
2756 /* Prepare array of parameter types */
2757 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2758 for (jj = 0; jj < nparms; jj++)
2759 parm_types[jj] = (method
2760 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj])
2761 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2762
2763 /* Compare parameter types to supplied argument types */
2764 bv = rank_function (parm_types, nparms, arg_types, nargs);
2765
2766 if (!oload_champ_bv)
2767 {
2768 oload_champ_bv = bv;
2769 oload_champ = 0;
2770 champ_nparms = nparms;
2771 }
2772 else
2773 /* See whether current candidate is better or worse than previous best */
2774 switch (compare_badness (bv, oload_champ_bv))
2775 {
2776 case 0:
2777 oload_ambiguous = 1; /* top two contenders are equally good */
2778 oload_ambig_champ = ix;
2779 break;
2780 case 1:
2781 oload_ambiguous = 2; /* incomparable top contenders */
2782 oload_ambig_champ = ix;
2783 break;
2784 case 2:
2785 oload_champ_bv = bv; /* new champion, record details */
2786 oload_ambiguous = 0;
2787 oload_champ = ix;
2788 oload_ambig_champ = -1;
2789 champ_nparms = nparms;
2790 break;
2791 case 3:
2792 default:
2793 break;
2794 }
2795 xfree (parm_types);
2796 if (overload_debug)
2797 {
2798 if (method)
2799 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2800 else
2801 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2802 for (jj = 0; jj < nargs; jj++)
2803 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2804 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2805 }
2806 } /* end loop over all candidates */
2807 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2808 if they have the exact same goodness. This is because there is no
2809 way to differentiate based on return type, which we need to in
2810 cases like overloads of .begin() <It's both const and non-const> */
2811 #if 0
2812 if (oload_ambiguous)
2813 {
2814 if (method)
2815 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2816 obj_type_name,
2817 (obj_type_name && *obj_type_name) ? "::" : "",
2818 name);
2819 else
2820 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2821 func_name);
2822 }
2823 #endif
2824
2825 /* Check how bad the best match is */
2826 for (ix = 1; ix <= nargs; ix++)
2827 {
2828 if (oload_champ_bv->rank[ix] >= 100)
2829 oload_incompatible = 1; /* truly mismatched types */
2830
2831 else if (oload_champ_bv->rank[ix] >= 10)
2832 oload_non_standard = 1; /* non-standard type conversions needed */
2833 }
2834 if (oload_incompatible)
2835 {
2836 if (method)
2837 error ("Cannot resolve method %s%s%s to any overloaded instance",
2838 obj_type_name,
2839 (obj_type_name && *obj_type_name) ? "::" : "",
2840 name);
2841 else
2842 error ("Cannot resolve function %s to any overloaded instance",
2843 func_name);
2844 }
2845 else if (oload_non_standard)
2846 {
2847 if (method)
2848 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2849 obj_type_name,
2850 (obj_type_name && *obj_type_name) ? "::" : "",
2851 name);
2852 else
2853 warning ("Using non-standard conversion to match function %s to supplied arguments",
2854 func_name);
2855 }
2856
2857 if (method)
2858 {
2859 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2860 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2861 else
2862 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2863 }
2864 else
2865 {
2866 *symp = oload_syms[oload_champ];
2867 xfree (func_name);
2868 }
2869
2870 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2871 }
2872
2873 /* C++: return 1 is NAME is a legitimate name for the destructor
2874 of type TYPE. If TYPE does not have a destructor, or
2875 if NAME is inappropriate for TYPE, an error is signaled. */
2876 int
2877 destructor_name_p (const char *name, const struct type *type)
2878 {
2879 /* destructors are a special case. */
2880
2881 if (name[0] == '~')
2882 {
2883 char *dname = type_name_no_tag (type);
2884 char *cp = strchr (dname, '<');
2885 unsigned int len;
2886
2887 /* Do not compare the template part for template classes. */
2888 if (cp == NULL)
2889 len = strlen (dname);
2890 else
2891 len = cp - dname;
2892 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2893 error ("name of destructor must equal name of class");
2894 else
2895 return 1;
2896 }
2897 return 0;
2898 }
2899
2900 /* Helper function for check_field: Given TYPE, a structure/union,
2901 return 1 if the component named NAME from the ultimate
2902 target structure/union is defined, otherwise, return 0. */
2903
2904 static int
2905 check_field_in (register struct type *type, const char *name)
2906 {
2907 register int i;
2908
2909 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2910 {
2911 char *t_field_name = TYPE_FIELD_NAME (type, i);
2912 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2913 return 1;
2914 }
2915
2916 /* C++: If it was not found as a data field, then try to
2917 return it as a pointer to a method. */
2918
2919 /* Destructors are a special case. */
2920 if (destructor_name_p (name, type))
2921 {
2922 int m_index, f_index;
2923
2924 return get_destructor_fn_field (type, &m_index, &f_index);
2925 }
2926
2927 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2928 {
2929 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2930 return 1;
2931 }
2932
2933 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2934 if (check_field_in (TYPE_BASECLASS (type, i), name))
2935 return 1;
2936
2937 return 0;
2938 }
2939
2940
2941 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2942 return 1 if the component named NAME from the ultimate
2943 target structure/union is defined, otherwise, return 0. */
2944
2945 int
2946 check_field (register value_ptr arg1, const char *name)
2947 {
2948 register struct type *t;
2949
2950 COERCE_ARRAY (arg1);
2951
2952 t = VALUE_TYPE (arg1);
2953
2954 /* Follow pointers until we get to a non-pointer. */
2955
2956 for (;;)
2957 {
2958 CHECK_TYPEDEF (t);
2959 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2960 break;
2961 t = TYPE_TARGET_TYPE (t);
2962 }
2963
2964 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2965 error ("not implemented: member type in check_field");
2966
2967 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2968 && TYPE_CODE (t) != TYPE_CODE_UNION)
2969 error ("Internal error: `this' is not an aggregate");
2970
2971 return check_field_in (t, name);
2972 }
2973
2974 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2975 return the address of this member as a "pointer to member"
2976 type. If INTYPE is non-null, then it will be the type
2977 of the member we are looking for. This will help us resolve
2978 "pointers to member functions". This function is used
2979 to resolve user expressions of the form "DOMAIN::NAME". */
2980
2981 value_ptr
2982 value_struct_elt_for_reference (struct type *domain, int offset,
2983 struct type *curtype, char *name,
2984 struct type *intype)
2985 {
2986 register struct type *t = curtype;
2987 register int i;
2988 value_ptr v;
2989
2990 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2991 && TYPE_CODE (t) != TYPE_CODE_UNION)
2992 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
2993
2994 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2995 {
2996 char *t_field_name = TYPE_FIELD_NAME (t, i);
2997
2998 if (t_field_name && STREQ (t_field_name, name))
2999 {
3000 if (TYPE_FIELD_STATIC (t, i))
3001 {
3002 v = value_static_field (t, i);
3003 if (v == NULL)
3004 error ("Internal error: could not find static variable %s",
3005 name);
3006 return v;
3007 }
3008 if (TYPE_FIELD_PACKED (t, i))
3009 error ("pointers to bitfield members not allowed");
3010
3011 return value_from_longest
3012 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3013 domain)),
3014 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3015 }
3016 }
3017
3018 /* C++: If it was not found as a data field, then try to
3019 return it as a pointer to a method. */
3020
3021 /* Destructors are a special case. */
3022 if (destructor_name_p (name, t))
3023 {
3024 error ("member pointers to destructors not implemented yet");
3025 }
3026
3027 /* Perform all necessary dereferencing. */
3028 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3029 intype = TYPE_TARGET_TYPE (intype);
3030
3031 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3032 {
3033 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3034 char dem_opname[64];
3035
3036 if (strncmp (t_field_name, "__", 2) == 0 ||
3037 strncmp (t_field_name, "op", 2) == 0 ||
3038 strncmp (t_field_name, "type", 4) == 0)
3039 {
3040 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3041 t_field_name = dem_opname;
3042 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3043 t_field_name = dem_opname;
3044 }
3045 if (t_field_name && STREQ (t_field_name, name))
3046 {
3047 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3048 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3049
3050 if (intype == 0 && j > 1)
3051 error ("non-unique member `%s' requires type instantiation", name);
3052 if (intype)
3053 {
3054 while (j--)
3055 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3056 break;
3057 if (j < 0)
3058 error ("no member function matches that type instantiation");
3059 }
3060 else
3061 j = 0;
3062
3063 if (TYPE_FN_FIELD_STUB (f, j))
3064 check_stub_method (t, i, j);
3065 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3066 {
3067 return value_from_longest
3068 (lookup_reference_type
3069 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3070 domain)),
3071 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3072 }
3073 else
3074 {
3075 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3076 0, VAR_NAMESPACE, 0, NULL);
3077 if (s == NULL)
3078 {
3079 v = 0;
3080 }
3081 else
3082 {
3083 v = read_var_value (s, 0);
3084 #if 0
3085 VALUE_TYPE (v) = lookup_reference_type
3086 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3087 domain));
3088 #endif
3089 }
3090 return v;
3091 }
3092 }
3093 }
3094 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3095 {
3096 value_ptr v;
3097 int base_offset;
3098
3099 if (BASETYPE_VIA_VIRTUAL (t, i))
3100 base_offset = 0;
3101 else
3102 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3103 v = value_struct_elt_for_reference (domain,
3104 offset + base_offset,
3105 TYPE_BASECLASS (t, i),
3106 name,
3107 intype);
3108 if (v)
3109 return v;
3110 }
3111 return 0;
3112 }
3113
3114
3115 /* Given a pointer value V, find the real (RTTI) type
3116 of the object it points to.
3117 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3118 and refer to the values computed for the object pointed to. */
3119
3120 struct type *
3121 value_rtti_target_type (value_ptr v, int *full, int *top, int *using_enc)
3122 {
3123 value_ptr target;
3124
3125 target = value_ind (v);
3126
3127 return value_rtti_type (target, full, top, using_enc);
3128 }
3129
3130 /* Given a value pointed to by ARGP, check its real run-time type, and
3131 if that is different from the enclosing type, create a new value
3132 using the real run-time type as the enclosing type (and of the same
3133 type as ARGP) and return it, with the embedded offset adjusted to
3134 be the correct offset to the enclosed object
3135 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3136 parameters, computed by value_rtti_type(). If these are available,
3137 they can be supplied and a second call to value_rtti_type() is avoided.
3138 (Pass RTYPE == NULL if they're not available */
3139
3140 value_ptr
3141 value_full_object (value_ptr argp, struct type *rtype, int xfull, int xtop,
3142 int xusing_enc)
3143 {
3144 struct type *real_type;
3145 int full = 0;
3146 int top = -1;
3147 int using_enc = 0;
3148 value_ptr new_val;
3149
3150 if (rtype)
3151 {
3152 real_type = rtype;
3153 full = xfull;
3154 top = xtop;
3155 using_enc = xusing_enc;
3156 }
3157 else
3158 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3159
3160 /* If no RTTI data, or if object is already complete, do nothing */
3161 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3162 return argp;
3163
3164 /* If we have the full object, but for some reason the enclosing
3165 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3166 if (full)
3167 {
3168 argp = value_change_enclosing_type (argp, real_type);
3169 return argp;
3170 }
3171
3172 /* Check if object is in memory */
3173 if (VALUE_LVAL (argp) != lval_memory)
3174 {
3175 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3176
3177 return argp;
3178 }
3179
3180 /* All other cases -- retrieve the complete object */
3181 /* Go back by the computed top_offset from the beginning of the object,
3182 adjusting for the embedded offset of argp if that's what value_rtti_type
3183 used for its computation. */
3184 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3185 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3186 VALUE_BFD_SECTION (argp));
3187 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3188 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3189 return new_val;
3190 }
3191
3192
3193
3194
3195 /* C++: return the value of the class instance variable, if one exists.
3196 Flag COMPLAIN signals an error if the request is made in an
3197 inappropriate context. */
3198
3199 value_ptr
3200 value_of_this (int complain)
3201 {
3202 struct symbol *func, *sym;
3203 struct block *b;
3204 int i;
3205 static const char funny_this[] = "this";
3206 value_ptr this;
3207
3208 if (selected_frame == 0)
3209 {
3210 if (complain)
3211 error ("no frame selected");
3212 else
3213 return 0;
3214 }
3215
3216 func = get_frame_function (selected_frame);
3217 if (!func)
3218 {
3219 if (complain)
3220 error ("no `this' in nameless context");
3221 else
3222 return 0;
3223 }
3224
3225 b = SYMBOL_BLOCK_VALUE (func);
3226 i = BLOCK_NSYMS (b);
3227 if (i <= 0)
3228 {
3229 if (complain)
3230 error ("no args, no `this'");
3231 else
3232 return 0;
3233 }
3234
3235 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3236 symbol instead of the LOC_ARG one (if both exist). */
3237 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
3238 if (sym == NULL)
3239 {
3240 if (complain)
3241 error ("current stack frame not in method");
3242 else
3243 return NULL;
3244 }
3245
3246 this = read_var_value (sym, selected_frame);
3247 if (this == 0 && complain)
3248 error ("`this' argument at unknown address");
3249 return this;
3250 }
3251
3252 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3253 long, starting at LOWBOUND. The result has the same lower bound as
3254 the original ARRAY. */
3255
3256 value_ptr
3257 value_slice (value_ptr array, int lowbound, int length)
3258 {
3259 struct type *slice_range_type, *slice_type, *range_type;
3260 LONGEST lowerbound, upperbound, offset;
3261 value_ptr slice;
3262 struct type *array_type;
3263 array_type = check_typedef (VALUE_TYPE (array));
3264 COERCE_VARYING_ARRAY (array, array_type);
3265 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3266 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3267 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3268 error ("cannot take slice of non-array");
3269 range_type = TYPE_INDEX_TYPE (array_type);
3270 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3271 error ("slice from bad array or bitstring");
3272 if (lowbound < lowerbound || length < 0
3273 || lowbound + length - 1 > upperbound
3274 /* Chill allows zero-length strings but not arrays. */
3275 || (current_language->la_language == language_chill
3276 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3277 error ("slice out of range");
3278 /* FIXME-type-allocation: need a way to free this type when we are
3279 done with it. */
3280 slice_range_type = create_range_type ((struct type *) NULL,
3281 TYPE_TARGET_TYPE (range_type),
3282 lowbound, lowbound + length - 1);
3283 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3284 {
3285 int i;
3286 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3287 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3288 slice = value_zero (slice_type, not_lval);
3289 for (i = 0; i < length; i++)
3290 {
3291 int element = value_bit_index (array_type,
3292 VALUE_CONTENTS (array),
3293 lowbound + i);
3294 if (element < 0)
3295 error ("internal error accessing bitstring");
3296 else if (element > 0)
3297 {
3298 int j = i % TARGET_CHAR_BIT;
3299 if (BITS_BIG_ENDIAN)
3300 j = TARGET_CHAR_BIT - 1 - j;
3301 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3302 }
3303 }
3304 /* We should set the address, bitssize, and bitspos, so the clice
3305 can be used on the LHS, but that may require extensions to
3306 value_assign. For now, just leave as a non_lval. FIXME. */
3307 }
3308 else
3309 {
3310 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3311 offset
3312 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3313 slice_type = create_array_type ((struct type *) NULL, element_type,
3314 slice_range_type);
3315 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3316 slice = allocate_value (slice_type);
3317 if (VALUE_LAZY (array))
3318 VALUE_LAZY (slice) = 1;
3319 else
3320 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3321 TYPE_LENGTH (slice_type));
3322 if (VALUE_LVAL (array) == lval_internalvar)
3323 VALUE_LVAL (slice) = lval_internalvar_component;
3324 else
3325 VALUE_LVAL (slice) = VALUE_LVAL (array);
3326 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3327 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3328 }
3329 return slice;
3330 }
3331
3332 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3333 value as a fixed-length array. */
3334
3335 value_ptr
3336 varying_to_slice (value_ptr varray)
3337 {
3338 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3339 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3340 VALUE_CONTENTS (varray)
3341 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3342 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3343 }
3344
3345 /* Create a value for a FORTRAN complex number. Currently most of
3346 the time values are coerced to COMPLEX*16 (i.e. a complex number
3347 composed of 2 doubles. This really should be a smarter routine
3348 that figures out precision inteligently as opposed to assuming
3349 doubles. FIXME: fmb */
3350
3351 value_ptr
3352 value_literal_complex (value_ptr arg1, value_ptr arg2, struct type *type)
3353 {
3354 register value_ptr val;
3355 struct type *real_type = TYPE_TARGET_TYPE (type);
3356
3357 val = allocate_value (type);
3358 arg1 = value_cast (real_type, arg1);
3359 arg2 = value_cast (real_type, arg2);
3360
3361 memcpy (VALUE_CONTENTS_RAW (val),
3362 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3363 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3364 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3365 return val;
3366 }
3367
3368 /* Cast a value into the appropriate complex data type. */
3369
3370 static value_ptr
3371 cast_into_complex (struct type *type, register value_ptr val)
3372 {
3373 struct type *real_type = TYPE_TARGET_TYPE (type);
3374 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3375 {
3376 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3377 value_ptr re_val = allocate_value (val_real_type);
3378 value_ptr im_val = allocate_value (val_real_type);
3379
3380 memcpy (VALUE_CONTENTS_RAW (re_val),
3381 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3382 memcpy (VALUE_CONTENTS_RAW (im_val),
3383 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3384 TYPE_LENGTH (val_real_type));
3385
3386 return value_literal_complex (re_val, im_val, type);
3387 }
3388 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3389 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3390 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3391 else
3392 error ("cannot cast non-number to complex");
3393 }
3394
3395 void
3396 _initialize_valops (void)
3397 {
3398 #if 0
3399 add_show_from_set
3400 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3401 "Set automatic abandonment of expressions upon failure.",
3402 &setlist),
3403 &showlist);
3404 #endif
3405
3406 add_show_from_set
3407 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3408 "Set overload resolution in evaluating C++ functions.",
3409 &setlist),
3410 &showlist);
3411 overload_resolution = 1;
3412
3413 add_show_from_set (
3414 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3415 (char *) &unwind_on_signal_p,
3416 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3417 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3418 is received while in a function called from gdb (call dummy). If set, gdb\n\
3419 unwinds the stack and restore the context to what as it was before the call.\n\
3420 The default is to stop in the frame where the signal was received.", &setlist),
3421 &showlist);
3422 }
This page took 0.107504 seconds and 4 git commands to generate.