trad-frame cleanups
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "target-float.h"
38 #include "tracepoint.h"
39 #include "observable.h"
40 #include "objfiles.h"
41 #include "extension.h"
42 #include "gdbtypes.h"
43 #include "gdbsupport/byte-vector.h"
44
45 /* Local functions. */
46
47 static int typecmp (int staticp, int varargs, int nargs,
48 struct field t1[], struct value *t2[]);
49
50 static struct value *search_struct_field (const char *, struct value *,
51 struct type *, int);
52
53 static struct value *search_struct_method (const char *, struct value **,
54 struct value **,
55 LONGEST, int *, struct type *);
56
57 static int find_oload_champ_namespace (gdb::array_view<value *> args,
58 const char *, const char *,
59 std::vector<symbol *> *oload_syms,
60 badness_vector *,
61 const int no_adl);
62
63 static int find_oload_champ_namespace_loop (gdb::array_view<value *> args,
64 const char *, const char *,
65 int, std::vector<symbol *> *oload_syms,
66 badness_vector *, int *,
67 const int no_adl);
68
69 static int find_oload_champ (gdb::array_view<value *> args,
70 size_t num_fns,
71 fn_field *methods,
72 xmethod_worker_up *xmethods,
73 symbol **functions,
74 badness_vector *oload_champ_bv);
75
76 static int oload_method_static_p (struct fn_field *, int);
77
78 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
79
80 static enum oload_classification classify_oload_match
81 (const badness_vector &, int, int);
82
83 static struct value *value_struct_elt_for_reference (struct type *,
84 int, struct type *,
85 const char *,
86 struct type *,
87 int, enum noside);
88
89 static struct value *value_namespace_elt (const struct type *,
90 const char *, int , enum noside);
91
92 static struct value *value_maybe_namespace_elt (const struct type *,
93 const char *, int,
94 enum noside);
95
96 static CORE_ADDR allocate_space_in_inferior (int);
97
98 static struct value *cast_into_complex (struct type *, struct value *);
99
100 bool overload_resolution = false;
101 static void
102 show_overload_resolution (struct ui_file *file, int from_tty,
103 struct cmd_list_element *c,
104 const char *value)
105 {
106 fprintf_filtered (file, _("Overload resolution in evaluating "
107 "C++ functions is %s.\n"),
108 value);
109 }
110
111 /* Find the address of function name NAME in the inferior. If OBJF_P
112 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
113 is defined. */
114
115 struct value *
116 find_function_in_inferior (const char *name, struct objfile **objf_p)
117 {
118 struct block_symbol sym;
119
120 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
121 if (sym.symbol != NULL)
122 {
123 if (SYMBOL_CLASS (sym.symbol) != LOC_BLOCK)
124 {
125 error (_("\"%s\" exists in this program but is not a function."),
126 name);
127 }
128
129 if (objf_p)
130 *objf_p = symbol_objfile (sym.symbol);
131
132 return value_of_variable (sym.symbol, sym.block);
133 }
134 else
135 {
136 struct bound_minimal_symbol msymbol =
137 lookup_bound_minimal_symbol (name);
138
139 if (msymbol.minsym != NULL)
140 {
141 struct objfile *objfile = msymbol.objfile;
142 struct gdbarch *gdbarch = objfile->arch ();
143
144 struct type *type;
145 CORE_ADDR maddr;
146 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
147 type = lookup_function_type (type);
148 type = lookup_pointer_type (type);
149 maddr = BMSYMBOL_VALUE_ADDRESS (msymbol);
150
151 if (objf_p)
152 *objf_p = objfile;
153
154 return value_from_pointer (type, maddr);
155 }
156 else
157 {
158 if (!target_has_execution ())
159 error (_("evaluation of this expression "
160 "requires the target program to be active"));
161 else
162 error (_("evaluation of this expression requires the "
163 "program to have a function \"%s\"."),
164 name);
165 }
166 }
167 }
168
169 /* Allocate NBYTES of space in the inferior using the inferior's
170 malloc and return a value that is a pointer to the allocated
171 space. */
172
173 struct value *
174 value_allocate_space_in_inferior (int len)
175 {
176 struct objfile *objf;
177 struct value *val = find_function_in_inferior ("malloc", &objf);
178 struct gdbarch *gdbarch = objf->arch ();
179 struct value *blocklen;
180
181 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
182 val = call_function_by_hand (val, NULL, blocklen);
183 if (value_logical_not (val))
184 {
185 if (!target_has_execution ())
186 error (_("No memory available to program now: "
187 "you need to start the target first"));
188 else
189 error (_("No memory available to program: call to malloc failed"));
190 }
191 return val;
192 }
193
194 static CORE_ADDR
195 allocate_space_in_inferior (int len)
196 {
197 return value_as_long (value_allocate_space_in_inferior (len));
198 }
199
200 /* Cast struct value VAL to type TYPE and return as a value.
201 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
202 for this to work. Typedef to one of the codes is permitted.
203 Returns NULL if the cast is neither an upcast nor a downcast. */
204
205 static struct value *
206 value_cast_structs (struct type *type, struct value *v2)
207 {
208 struct type *t1;
209 struct type *t2;
210 struct value *v;
211
212 gdb_assert (type != NULL && v2 != NULL);
213
214 t1 = check_typedef (type);
215 t2 = check_typedef (value_type (v2));
216
217 /* Check preconditions. */
218 gdb_assert ((t1->code () == TYPE_CODE_STRUCT
219 || t1->code () == TYPE_CODE_UNION)
220 && !!"Precondition is that type is of STRUCT or UNION kind.");
221 gdb_assert ((t2->code () == TYPE_CODE_STRUCT
222 || t2->code () == TYPE_CODE_UNION)
223 && !!"Precondition is that value is of STRUCT or UNION kind");
224
225 if (t1->name () != NULL
226 && t2->name () != NULL
227 && !strcmp (t1->name (), t2->name ()))
228 return NULL;
229
230 /* Upcasting: look in the type of the source to see if it contains the
231 type of the target as a superclass. If so, we'll need to
232 offset the pointer rather than just change its type. */
233 if (t1->name () != NULL)
234 {
235 v = search_struct_field (t1->name (),
236 v2, t2, 1);
237 if (v)
238 return v;
239 }
240
241 /* Downcasting: look in the type of the target to see if it contains the
242 type of the source as a superclass. If so, we'll need to
243 offset the pointer rather than just change its type. */
244 if (t2->name () != NULL)
245 {
246 /* Try downcasting using the run-time type of the value. */
247 int full, using_enc;
248 LONGEST top;
249 struct type *real_type;
250
251 real_type = value_rtti_type (v2, &full, &top, &using_enc);
252 if (real_type)
253 {
254 v = value_full_object (v2, real_type, full, top, using_enc);
255 v = value_at_lazy (real_type, value_address (v));
256 real_type = value_type (v);
257
258 /* We might be trying to cast to the outermost enclosing
259 type, in which case search_struct_field won't work. */
260 if (real_type->name () != NULL
261 && !strcmp (real_type->name (), t1->name ()))
262 return v;
263
264 v = search_struct_field (t2->name (), v, real_type, 1);
265 if (v)
266 return v;
267 }
268
269 /* Try downcasting using information from the destination type
270 T2. This wouldn't work properly for classes with virtual
271 bases, but those were handled above. */
272 v = search_struct_field (t2->name (),
273 value_zero (t1, not_lval), t1, 1);
274 if (v)
275 {
276 /* Downcasting is possible (t1 is superclass of v2). */
277 CORE_ADDR addr2 = value_address (v2);
278
279 addr2 -= value_address (v) + value_embedded_offset (v);
280 return value_at (type, addr2);
281 }
282 }
283
284 return NULL;
285 }
286
287 /* Cast one pointer or reference type to another. Both TYPE and
288 the type of ARG2 should be pointer types, or else both should be
289 reference types. If SUBCLASS_CHECK is non-zero, this will force a
290 check to see whether TYPE is a superclass of ARG2's type. If
291 SUBCLASS_CHECK is zero, then the subclass check is done only when
292 ARG2 is itself non-zero. Returns the new pointer or reference. */
293
294 struct value *
295 value_cast_pointers (struct type *type, struct value *arg2,
296 int subclass_check)
297 {
298 struct type *type1 = check_typedef (type);
299 struct type *type2 = check_typedef (value_type (arg2));
300 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
301 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
302
303 if (t1->code () == TYPE_CODE_STRUCT
304 && t2->code () == TYPE_CODE_STRUCT
305 && (subclass_check || !value_logical_not (arg2)))
306 {
307 struct value *v2;
308
309 if (TYPE_IS_REFERENCE (type2))
310 v2 = coerce_ref (arg2);
311 else
312 v2 = value_ind (arg2);
313 gdb_assert (check_typedef (value_type (v2))->code ()
314 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
315 v2 = value_cast_structs (t1, v2);
316 /* At this point we have what we can have, un-dereference if needed. */
317 if (v2)
318 {
319 struct value *v = value_addr (v2);
320
321 deprecated_set_value_type (v, type);
322 return v;
323 }
324 }
325
326 /* No superclass found, just change the pointer type. */
327 arg2 = value_copy (arg2);
328 deprecated_set_value_type (arg2, type);
329 set_value_enclosing_type (arg2, type);
330 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
331 return arg2;
332 }
333
334 /* See value.h. */
335
336 gdb_mpq
337 value_to_gdb_mpq (struct value *value)
338 {
339 struct type *type = check_typedef (value_type (value));
340
341 gdb_mpq result;
342 if (is_floating_type (type))
343 {
344 double d = target_float_to_host_double (value_contents (value),
345 type);
346 mpq_set_d (result.val, d);
347 }
348 else
349 {
350 gdb_assert (is_integral_type (type)
351 || is_fixed_point_type (type));
352
353 gdb_mpz vz;
354 vz.read (gdb::make_array_view (value_contents (value),
355 TYPE_LENGTH (type)),
356 type_byte_order (type), type->is_unsigned ());
357 mpq_set_z (result.val, vz.val);
358
359 if (is_fixed_point_type (type))
360 mpq_mul (result.val, result.val,
361 type->fixed_point_scaling_factor ().val);
362 }
363
364 return result;
365 }
366
367 /* Assuming that TO_TYPE is a fixed point type, return a value
368 corresponding to the cast of FROM_VAL to that type. */
369
370 static struct value *
371 value_cast_to_fixed_point (struct type *to_type, struct value *from_val)
372 {
373 struct type *from_type = value_type (from_val);
374
375 if (from_type == to_type)
376 return from_val;
377
378 if (!is_floating_type (from_type)
379 && !is_integral_type (from_type)
380 && !is_fixed_point_type (from_type))
381 error (_("Invalid conversion from type %s to fixed point type %s"),
382 from_type->name (), to_type->name ());
383
384 gdb_mpq vq = value_to_gdb_mpq (from_val);
385
386 /* Divide that value by the scaling factor to obtain the unscaled
387 value, first in rational form, and then in integer form. */
388
389 mpq_div (vq.val, vq.val, to_type->fixed_point_scaling_factor ().val);
390 gdb_mpz unscaled = vq.get_rounded ();
391
392 /* Finally, create the result value, and pack the unscaled value
393 in it. */
394 struct value *result = allocate_value (to_type);
395 unscaled.write (gdb::make_array_view (value_contents_raw (result),
396 TYPE_LENGTH (to_type)),
397 type_byte_order (to_type),
398 to_type->is_unsigned ());
399
400 return result;
401 }
402
403 /* Cast value ARG2 to type TYPE and return as a value.
404 More general than a C cast: accepts any two types of the same length,
405 and if ARG2 is an lvalue it can be cast into anything at all. */
406 /* In C++, casts may change pointer or object representations. */
407
408 struct value *
409 value_cast (struct type *type, struct value *arg2)
410 {
411 enum type_code code1;
412 enum type_code code2;
413 int scalar;
414 struct type *type2;
415
416 int convert_to_boolean = 0;
417
418 if (value_type (arg2) == type)
419 return arg2;
420
421 if (is_fixed_point_type (type))
422 return value_cast_to_fixed_point (type, arg2);
423
424 /* Check if we are casting struct reference to struct reference. */
425 if (TYPE_IS_REFERENCE (check_typedef (type)))
426 {
427 /* We dereference type; then we recurse and finally
428 we generate value of the given reference. Nothing wrong with
429 that. */
430 struct type *t1 = check_typedef (type);
431 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
432 struct value *val = value_cast (dereftype, arg2);
433
434 return value_ref (val, t1->code ());
435 }
436
437 if (TYPE_IS_REFERENCE (check_typedef (value_type (arg2))))
438 /* We deref the value and then do the cast. */
439 return value_cast (type, coerce_ref (arg2));
440
441 /* Strip typedefs / resolve stubs in order to get at the type's
442 code/length, but remember the original type, to use as the
443 resulting type of the cast, in case it was a typedef. */
444 struct type *to_type = type;
445
446 type = check_typedef (type);
447 code1 = type->code ();
448 arg2 = coerce_ref (arg2);
449 type2 = check_typedef (value_type (arg2));
450
451 /* You can't cast to a reference type. See value_cast_pointers
452 instead. */
453 gdb_assert (!TYPE_IS_REFERENCE (type));
454
455 /* A cast to an undetermined-length array_type, such as
456 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
457 where N is sizeof(OBJECT)/sizeof(TYPE). */
458 if (code1 == TYPE_CODE_ARRAY)
459 {
460 struct type *element_type = TYPE_TARGET_TYPE (type);
461 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
462
463 if (element_length > 0 && type->bounds ()->high.kind () == PROP_UNDEFINED)
464 {
465 struct type *range_type = type->index_type ();
466 int val_length = TYPE_LENGTH (type2);
467 LONGEST low_bound, high_bound, new_length;
468
469 if (!get_discrete_bounds (range_type, &low_bound, &high_bound))
470 low_bound = 0, high_bound = 0;
471 new_length = val_length / element_length;
472 if (val_length % element_length != 0)
473 warning (_("array element type size does not "
474 "divide object size in cast"));
475 /* FIXME-type-allocation: need a way to free this type when
476 we are done with it. */
477 range_type = create_static_range_type (NULL,
478 TYPE_TARGET_TYPE (range_type),
479 low_bound,
480 new_length + low_bound - 1);
481 deprecated_set_value_type (arg2,
482 create_array_type (NULL,
483 element_type,
484 range_type));
485 return arg2;
486 }
487 }
488
489 if (current_language->c_style_arrays_p ()
490 && type2->code () == TYPE_CODE_ARRAY
491 && !type2->is_vector ())
492 arg2 = value_coerce_array (arg2);
493
494 if (type2->code () == TYPE_CODE_FUNC)
495 arg2 = value_coerce_function (arg2);
496
497 type2 = check_typedef (value_type (arg2));
498 code2 = type2->code ();
499
500 if (code1 == TYPE_CODE_COMPLEX)
501 return cast_into_complex (to_type, arg2);
502 if (code1 == TYPE_CODE_BOOL)
503 {
504 code1 = TYPE_CODE_INT;
505 convert_to_boolean = 1;
506 }
507 if (code1 == TYPE_CODE_CHAR)
508 code1 = TYPE_CODE_INT;
509 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
510 code2 = TYPE_CODE_INT;
511
512 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
513 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
514 || code2 == TYPE_CODE_RANGE
515 || is_fixed_point_type (type2));
516
517 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
518 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
519 && type->name () != 0)
520 {
521 struct value *v = value_cast_structs (to_type, arg2);
522
523 if (v)
524 return v;
525 }
526
527 if (is_floating_type (type) && scalar)
528 {
529 if (is_floating_value (arg2))
530 {
531 struct value *v = allocate_value (to_type);
532 target_float_convert (value_contents (arg2), type2,
533 value_contents_raw (v), type);
534 return v;
535 }
536 else if (is_fixed_point_type (type2))
537 {
538 gdb_mpq fp_val;
539
540 fp_val.read_fixed_point
541 (gdb::make_array_view (value_contents (arg2), TYPE_LENGTH (type2)),
542 type_byte_order (type2), type2->is_unsigned (),
543 type2->fixed_point_scaling_factor ());
544
545 struct value *v = allocate_value (to_type);
546 target_float_from_host_double (value_contents_raw (v),
547 to_type, mpq_get_d (fp_val.val));
548 return v;
549 }
550
551 /* The only option left is an integral type. */
552 if (type2->is_unsigned ())
553 return value_from_ulongest (to_type, value_as_long (arg2));
554 else
555 return value_from_longest (to_type, value_as_long (arg2));
556 }
557 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
558 || code1 == TYPE_CODE_RANGE)
559 && (scalar || code2 == TYPE_CODE_PTR
560 || code2 == TYPE_CODE_MEMBERPTR))
561 {
562 LONGEST longest;
563
564 /* When we cast pointers to integers, we mustn't use
565 gdbarch_pointer_to_address to find the address the pointer
566 represents, as value_as_long would. GDB should evaluate
567 expressions just as the compiler would --- and the compiler
568 sees a cast as a simple reinterpretation of the pointer's
569 bits. */
570 if (code2 == TYPE_CODE_PTR)
571 longest = extract_unsigned_integer
572 (value_contents (arg2), TYPE_LENGTH (type2),
573 type_byte_order (type2));
574 else
575 longest = value_as_long (arg2);
576 return value_from_longest (to_type, convert_to_boolean ?
577 (LONGEST) (longest ? 1 : 0) : longest);
578 }
579 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
580 || code2 == TYPE_CODE_ENUM
581 || code2 == TYPE_CODE_RANGE))
582 {
583 /* TYPE_LENGTH (type) is the length of a pointer, but we really
584 want the length of an address! -- we are really dealing with
585 addresses (i.e., gdb representations) not pointers (i.e.,
586 target representations) here.
587
588 This allows things like "print *(int *)0x01000234" to work
589 without printing a misleading message -- which would
590 otherwise occur when dealing with a target having two byte
591 pointers and four byte addresses. */
592
593 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
594 LONGEST longest = value_as_long (arg2);
595
596 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
597 {
598 if (longest >= ((LONGEST) 1 << addr_bit)
599 || longest <= -((LONGEST) 1 << addr_bit))
600 warning (_("value truncated"));
601 }
602 return value_from_longest (to_type, longest);
603 }
604 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
605 && value_as_long (arg2) == 0)
606 {
607 struct value *result = allocate_value (to_type);
608
609 cplus_make_method_ptr (to_type, value_contents_writeable (result), 0, 0);
610 return result;
611 }
612 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
613 && value_as_long (arg2) == 0)
614 {
615 /* The Itanium C++ ABI represents NULL pointers to members as
616 minus one, instead of biasing the normal case. */
617 return value_from_longest (to_type, -1);
618 }
619 else if (code1 == TYPE_CODE_ARRAY && type->is_vector ()
620 && code2 == TYPE_CODE_ARRAY && type2->is_vector ()
621 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
622 error (_("Cannot convert between vector values of different sizes"));
623 else if (code1 == TYPE_CODE_ARRAY && type->is_vector () && scalar
624 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
625 error (_("can only cast scalar to vector of same size"));
626 else if (code1 == TYPE_CODE_VOID)
627 {
628 return value_zero (to_type, not_lval);
629 }
630 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
631 {
632 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
633 return value_cast_pointers (to_type, arg2, 0);
634
635 arg2 = value_copy (arg2);
636 deprecated_set_value_type (arg2, to_type);
637 set_value_enclosing_type (arg2, to_type);
638 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
639 return arg2;
640 }
641 else if (VALUE_LVAL (arg2) == lval_memory)
642 return value_at_lazy (to_type, value_address (arg2));
643 else
644 {
645 if (current_language->la_language == language_ada)
646 error (_("Invalid type conversion."));
647 error (_("Invalid cast."));
648 }
649 }
650
651 /* The C++ reinterpret_cast operator. */
652
653 struct value *
654 value_reinterpret_cast (struct type *type, struct value *arg)
655 {
656 struct value *result;
657 struct type *real_type = check_typedef (type);
658 struct type *arg_type, *dest_type;
659 int is_ref = 0;
660 enum type_code dest_code, arg_code;
661
662 /* Do reference, function, and array conversion. */
663 arg = coerce_array (arg);
664
665 /* Attempt to preserve the type the user asked for. */
666 dest_type = type;
667
668 /* If we are casting to a reference type, transform
669 reinterpret_cast<T&[&]>(V) to *reinterpret_cast<T*>(&V). */
670 if (TYPE_IS_REFERENCE (real_type))
671 {
672 is_ref = 1;
673 arg = value_addr (arg);
674 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
675 real_type = lookup_pointer_type (real_type);
676 }
677
678 arg_type = value_type (arg);
679
680 dest_code = real_type->code ();
681 arg_code = arg_type->code ();
682
683 /* We can convert pointer types, or any pointer type to int, or int
684 type to pointer. */
685 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
686 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
687 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
688 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
689 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
690 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
691 || (dest_code == arg_code
692 && (dest_code == TYPE_CODE_PTR
693 || dest_code == TYPE_CODE_METHODPTR
694 || dest_code == TYPE_CODE_MEMBERPTR)))
695 result = value_cast (dest_type, arg);
696 else
697 error (_("Invalid reinterpret_cast"));
698
699 if (is_ref)
700 result = value_cast (type, value_ref (value_ind (result),
701 type->code ()));
702
703 return result;
704 }
705
706 /* A helper for value_dynamic_cast. This implements the first of two
707 runtime checks: we iterate over all the base classes of the value's
708 class which are equal to the desired class; if only one of these
709 holds the value, then it is the answer. */
710
711 static int
712 dynamic_cast_check_1 (struct type *desired_type,
713 const gdb_byte *valaddr,
714 LONGEST embedded_offset,
715 CORE_ADDR address,
716 struct value *val,
717 struct type *search_type,
718 CORE_ADDR arg_addr,
719 struct type *arg_type,
720 struct value **result)
721 {
722 int i, result_count = 0;
723
724 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
725 {
726 LONGEST offset = baseclass_offset (search_type, i, valaddr,
727 embedded_offset,
728 address, val);
729
730 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
731 {
732 if (address + embedded_offset + offset >= arg_addr
733 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
734 {
735 ++result_count;
736 if (!*result)
737 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
738 address + embedded_offset + offset);
739 }
740 }
741 else
742 result_count += dynamic_cast_check_1 (desired_type,
743 valaddr,
744 embedded_offset + offset,
745 address, val,
746 TYPE_BASECLASS (search_type, i),
747 arg_addr,
748 arg_type,
749 result);
750 }
751
752 return result_count;
753 }
754
755 /* A helper for value_dynamic_cast. This implements the second of two
756 runtime checks: we look for a unique public sibling class of the
757 argument's declared class. */
758
759 static int
760 dynamic_cast_check_2 (struct type *desired_type,
761 const gdb_byte *valaddr,
762 LONGEST embedded_offset,
763 CORE_ADDR address,
764 struct value *val,
765 struct type *search_type,
766 struct value **result)
767 {
768 int i, result_count = 0;
769
770 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
771 {
772 LONGEST offset;
773
774 if (! BASETYPE_VIA_PUBLIC (search_type, i))
775 continue;
776
777 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
778 address, val);
779 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
780 {
781 ++result_count;
782 if (*result == NULL)
783 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
784 address + embedded_offset + offset);
785 }
786 else
787 result_count += dynamic_cast_check_2 (desired_type,
788 valaddr,
789 embedded_offset + offset,
790 address, val,
791 TYPE_BASECLASS (search_type, i),
792 result);
793 }
794
795 return result_count;
796 }
797
798 /* The C++ dynamic_cast operator. */
799
800 struct value *
801 value_dynamic_cast (struct type *type, struct value *arg)
802 {
803 int full, using_enc;
804 LONGEST top;
805 struct type *resolved_type = check_typedef (type);
806 struct type *arg_type = check_typedef (value_type (arg));
807 struct type *class_type, *rtti_type;
808 struct value *result, *tem, *original_arg = arg;
809 CORE_ADDR addr;
810 int is_ref = TYPE_IS_REFERENCE (resolved_type);
811
812 if (resolved_type->code () != TYPE_CODE_PTR
813 && !TYPE_IS_REFERENCE (resolved_type))
814 error (_("Argument to dynamic_cast must be a pointer or reference type"));
815 if (TYPE_TARGET_TYPE (resolved_type)->code () != TYPE_CODE_VOID
816 && TYPE_TARGET_TYPE (resolved_type)->code () != TYPE_CODE_STRUCT)
817 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
818
819 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
820 if (resolved_type->code () == TYPE_CODE_PTR)
821 {
822 if (arg_type->code () != TYPE_CODE_PTR
823 && ! (arg_type->code () == TYPE_CODE_INT
824 && value_as_long (arg) == 0))
825 error (_("Argument to dynamic_cast does not have pointer type"));
826 if (arg_type->code () == TYPE_CODE_PTR)
827 {
828 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
829 if (arg_type->code () != TYPE_CODE_STRUCT)
830 error (_("Argument to dynamic_cast does "
831 "not have pointer to class type"));
832 }
833
834 /* Handle NULL pointers. */
835 if (value_as_long (arg) == 0)
836 return value_zero (type, not_lval);
837
838 arg = value_ind (arg);
839 }
840 else
841 {
842 if (arg_type->code () != TYPE_CODE_STRUCT)
843 error (_("Argument to dynamic_cast does not have class type"));
844 }
845
846 /* If the classes are the same, just return the argument. */
847 if (class_types_same_p (class_type, arg_type))
848 return value_cast (type, arg);
849
850 /* If the target type is a unique base class of the argument's
851 declared type, just cast it. */
852 if (is_ancestor (class_type, arg_type))
853 {
854 if (is_unique_ancestor (class_type, arg))
855 return value_cast (type, original_arg);
856 error (_("Ambiguous dynamic_cast"));
857 }
858
859 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
860 if (! rtti_type)
861 error (_("Couldn't determine value's most derived type for dynamic_cast"));
862
863 /* Compute the most derived object's address. */
864 addr = value_address (arg);
865 if (full)
866 {
867 /* Done. */
868 }
869 else if (using_enc)
870 addr += top;
871 else
872 addr += top + value_embedded_offset (arg);
873
874 /* dynamic_cast<void *> means to return a pointer to the
875 most-derived object. */
876 if (resolved_type->code () == TYPE_CODE_PTR
877 && TYPE_TARGET_TYPE (resolved_type)->code () == TYPE_CODE_VOID)
878 return value_at_lazy (type, addr);
879
880 tem = value_at (type, addr);
881 type = value_type (tem);
882
883 /* The first dynamic check specified in 5.2.7. */
884 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
885 {
886 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
887 return tem;
888 result = NULL;
889 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
890 value_contents_for_printing (tem),
891 value_embedded_offset (tem),
892 value_address (tem), tem,
893 rtti_type, addr,
894 arg_type,
895 &result) == 1)
896 return value_cast (type,
897 is_ref
898 ? value_ref (result, resolved_type->code ())
899 : value_addr (result));
900 }
901
902 /* The second dynamic check specified in 5.2.7. */
903 result = NULL;
904 if (is_public_ancestor (arg_type, rtti_type)
905 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
906 value_contents_for_printing (tem),
907 value_embedded_offset (tem),
908 value_address (tem), tem,
909 rtti_type, &result) == 1)
910 return value_cast (type,
911 is_ref
912 ? value_ref (result, resolved_type->code ())
913 : value_addr (result));
914
915 if (resolved_type->code () == TYPE_CODE_PTR)
916 return value_zero (type, not_lval);
917
918 error (_("dynamic_cast failed"));
919 }
920
921 /* Create a value of type TYPE that is zero, and return it. */
922
923 struct value *
924 value_zero (struct type *type, enum lval_type lv)
925 {
926 struct value *val = allocate_value (type);
927
928 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
929 return val;
930 }
931
932 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
933
934 struct value *
935 value_one (struct type *type)
936 {
937 struct type *type1 = check_typedef (type);
938 struct value *val;
939
940 if (is_integral_type (type1) || is_floating_type (type1))
941 {
942 val = value_from_longest (type, (LONGEST) 1);
943 }
944 else if (type1->code () == TYPE_CODE_ARRAY && type1->is_vector ())
945 {
946 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
947 int i;
948 LONGEST low_bound, high_bound;
949 struct value *tmp;
950
951 if (!get_array_bounds (type1, &low_bound, &high_bound))
952 error (_("Could not determine the vector bounds"));
953
954 val = allocate_value (type);
955 for (i = 0; i < high_bound - low_bound + 1; i++)
956 {
957 tmp = value_one (eltype);
958 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
959 value_contents_all (tmp), TYPE_LENGTH (eltype));
960 }
961 }
962 else
963 {
964 error (_("Not a numeric type."));
965 }
966
967 /* value_one result is never used for assignments to. */
968 gdb_assert (VALUE_LVAL (val) == not_lval);
969
970 return val;
971 }
972
973 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.
974 The type of the created value may differ from the passed type TYPE.
975 Make sure to retrieve the returned values's new type after this call
976 e.g. in case the type is a variable length array. */
977
978 static struct value *
979 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
980 {
981 struct value *val;
982
983 if (check_typedef (type)->code () == TYPE_CODE_VOID)
984 error (_("Attempt to dereference a generic pointer."));
985
986 val = value_from_contents_and_address (type, NULL, addr);
987
988 if (!lazy)
989 value_fetch_lazy (val);
990
991 return val;
992 }
993
994 /* Return a value with type TYPE located at ADDR.
995
996 Call value_at only if the data needs to be fetched immediately;
997 if we can be 'lazy' and defer the fetch, perhaps indefinitely, call
998 value_at_lazy instead. value_at_lazy simply records the address of
999 the data and sets the lazy-evaluation-required flag. The lazy flag
1000 is tested in the value_contents macro, which is used if and when
1001 the contents are actually required. The type of the created value
1002 may differ from the passed type TYPE. Make sure to retrieve the
1003 returned values's new type after this call e.g. in case the type
1004 is a variable length array.
1005
1006 Note: value_at does *NOT* handle embedded offsets; perform such
1007 adjustments before or after calling it. */
1008
1009 struct value *
1010 value_at (struct type *type, CORE_ADDR addr)
1011 {
1012 return get_value_at (type, addr, 0);
1013 }
1014
1015 /* Return a lazy value with type TYPE located at ADDR (cf. value_at).
1016 The type of the created value may differ from the passed type TYPE.
1017 Make sure to retrieve the returned values's new type after this call
1018 e.g. in case the type is a variable length array. */
1019
1020 struct value *
1021 value_at_lazy (struct type *type, CORE_ADDR addr)
1022 {
1023 return get_value_at (type, addr, 1);
1024 }
1025
1026 void
1027 read_value_memory (struct value *val, LONGEST bit_offset,
1028 int stack, CORE_ADDR memaddr,
1029 gdb_byte *buffer, size_t length)
1030 {
1031 ULONGEST xfered_total = 0;
1032 struct gdbarch *arch = get_value_arch (val);
1033 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1034 enum target_object object;
1035
1036 object = stack ? TARGET_OBJECT_STACK_MEMORY : TARGET_OBJECT_MEMORY;
1037
1038 while (xfered_total < length)
1039 {
1040 enum target_xfer_status status;
1041 ULONGEST xfered_partial;
1042
1043 status = target_xfer_partial (current_top_target (),
1044 object, NULL,
1045 buffer + xfered_total * unit_size, NULL,
1046 memaddr + xfered_total,
1047 length - xfered_total,
1048 &xfered_partial);
1049
1050 if (status == TARGET_XFER_OK)
1051 /* nothing */;
1052 else if (status == TARGET_XFER_UNAVAILABLE)
1053 mark_value_bits_unavailable (val, (xfered_total * HOST_CHAR_BIT
1054 + bit_offset),
1055 xfered_partial * HOST_CHAR_BIT);
1056 else if (status == TARGET_XFER_EOF)
1057 memory_error (TARGET_XFER_E_IO, memaddr + xfered_total);
1058 else
1059 memory_error (status, memaddr + xfered_total);
1060
1061 xfered_total += xfered_partial;
1062 QUIT;
1063 }
1064 }
1065
1066 /* Store the contents of FROMVAL into the location of TOVAL.
1067 Return a new value with the location of TOVAL and contents of FROMVAL. */
1068
1069 struct value *
1070 value_assign (struct value *toval, struct value *fromval)
1071 {
1072 struct type *type;
1073 struct value *val;
1074 struct frame_id old_frame;
1075
1076 if (!deprecated_value_modifiable (toval))
1077 error (_("Left operand of assignment is not a modifiable lvalue."));
1078
1079 toval = coerce_ref (toval);
1080
1081 type = value_type (toval);
1082 if (VALUE_LVAL (toval) != lval_internalvar)
1083 fromval = value_cast (type, fromval);
1084 else
1085 {
1086 /* Coerce arrays and functions to pointers, except for arrays
1087 which only live in GDB's storage. */
1088 if (!value_must_coerce_to_target (fromval))
1089 fromval = coerce_array (fromval);
1090 }
1091
1092 type = check_typedef (type);
1093
1094 /* Since modifying a register can trash the frame chain, and
1095 modifying memory can trash the frame cache, we save the old frame
1096 and then restore the new frame afterwards. */
1097 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1098
1099 switch (VALUE_LVAL (toval))
1100 {
1101 case lval_internalvar:
1102 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1103 return value_of_internalvar (get_type_arch (type),
1104 VALUE_INTERNALVAR (toval));
1105
1106 case lval_internalvar_component:
1107 {
1108 LONGEST offset = value_offset (toval);
1109
1110 /* Are we dealing with a bitfield?
1111
1112 It is important to mention that `value_parent (toval)' is
1113 non-NULL iff `value_bitsize (toval)' is non-zero. */
1114 if (value_bitsize (toval))
1115 {
1116 /* VALUE_INTERNALVAR below refers to the parent value, while
1117 the offset is relative to this parent value. */
1118 gdb_assert (value_parent (value_parent (toval)) == NULL);
1119 offset += value_offset (value_parent (toval));
1120 }
1121
1122 set_internalvar_component (VALUE_INTERNALVAR (toval),
1123 offset,
1124 value_bitpos (toval),
1125 value_bitsize (toval),
1126 fromval);
1127 }
1128 break;
1129
1130 case lval_memory:
1131 {
1132 const gdb_byte *dest_buffer;
1133 CORE_ADDR changed_addr;
1134 int changed_len;
1135 gdb_byte buffer[sizeof (LONGEST)];
1136
1137 if (value_bitsize (toval))
1138 {
1139 struct value *parent = value_parent (toval);
1140
1141 changed_addr = value_address (parent) + value_offset (toval);
1142 changed_len = (value_bitpos (toval)
1143 + value_bitsize (toval)
1144 + HOST_CHAR_BIT - 1)
1145 / HOST_CHAR_BIT;
1146
1147 /* If we can read-modify-write exactly the size of the
1148 containing type (e.g. short or int) then do so. This
1149 is safer for volatile bitfields mapped to hardware
1150 registers. */
1151 if (changed_len < TYPE_LENGTH (type)
1152 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1153 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1154 changed_len = TYPE_LENGTH (type);
1155
1156 if (changed_len > (int) sizeof (LONGEST))
1157 error (_("Can't handle bitfields which "
1158 "don't fit in a %d bit word."),
1159 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1160
1161 read_memory (changed_addr, buffer, changed_len);
1162 modify_field (type, buffer, value_as_long (fromval),
1163 value_bitpos (toval), value_bitsize (toval));
1164 dest_buffer = buffer;
1165 }
1166 else
1167 {
1168 changed_addr = value_address (toval);
1169 changed_len = type_length_units (type);
1170 dest_buffer = value_contents (fromval);
1171 }
1172
1173 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1174 }
1175 break;
1176
1177 case lval_register:
1178 {
1179 struct frame_info *frame;
1180 struct gdbarch *gdbarch;
1181 int value_reg;
1182
1183 /* Figure out which frame this is in currently.
1184
1185 We use VALUE_FRAME_ID for obtaining the value's frame id instead of
1186 VALUE_NEXT_FRAME_ID due to requiring a frame which may be passed to
1187 put_frame_register_bytes() below. That function will (eventually)
1188 perform the necessary unwind operation by first obtaining the next
1189 frame. */
1190 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1191
1192 value_reg = VALUE_REGNUM (toval);
1193
1194 if (!frame)
1195 error (_("Value being assigned to is no longer active."));
1196
1197 gdbarch = get_frame_arch (frame);
1198
1199 if (value_bitsize (toval))
1200 {
1201 struct value *parent = value_parent (toval);
1202 LONGEST offset = value_offset (parent) + value_offset (toval);
1203 size_t changed_len;
1204 gdb_byte buffer[sizeof (LONGEST)];
1205 int optim, unavail;
1206
1207 changed_len = (value_bitpos (toval)
1208 + value_bitsize (toval)
1209 + HOST_CHAR_BIT - 1)
1210 / HOST_CHAR_BIT;
1211
1212 if (changed_len > sizeof (LONGEST))
1213 error (_("Can't handle bitfields which "
1214 "don't fit in a %d bit word."),
1215 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1216
1217 if (!get_frame_register_bytes (frame, value_reg, offset,
1218 {buffer, changed_len},
1219 &optim, &unavail))
1220 {
1221 if (optim)
1222 throw_error (OPTIMIZED_OUT_ERROR,
1223 _("value has been optimized out"));
1224 if (unavail)
1225 throw_error (NOT_AVAILABLE_ERROR,
1226 _("value is not available"));
1227 }
1228
1229 modify_field (type, buffer, value_as_long (fromval),
1230 value_bitpos (toval), value_bitsize (toval));
1231
1232 put_frame_register_bytes (frame, value_reg, offset,
1233 {buffer, changed_len});
1234 }
1235 else
1236 {
1237 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval),
1238 type))
1239 {
1240 /* If TOVAL is a special machine register requiring
1241 conversion of program values to a special raw
1242 format. */
1243 gdbarch_value_to_register (gdbarch, frame,
1244 VALUE_REGNUM (toval), type,
1245 value_contents (fromval));
1246 }
1247 else
1248 {
1249 put_frame_register_bytes (frame, value_reg,
1250 value_offset (toval),
1251 {value_contents (fromval),
1252 TYPE_LENGTH (type)});
1253 }
1254 }
1255
1256 gdb::observers::register_changed.notify (frame, value_reg);
1257 break;
1258 }
1259
1260 case lval_computed:
1261 {
1262 const struct lval_funcs *funcs = value_computed_funcs (toval);
1263
1264 if (funcs->write != NULL)
1265 {
1266 funcs->write (toval, fromval);
1267 break;
1268 }
1269 }
1270 /* Fall through. */
1271
1272 default:
1273 error (_("Left operand of assignment is not an lvalue."));
1274 }
1275
1276 /* Assigning to the stack pointer, frame pointer, and other
1277 (architecture and calling convention specific) registers may
1278 cause the frame cache and regcache to be out of date. Assigning to memory
1279 also can. We just do this on all assignments to registers or
1280 memory, for simplicity's sake; I doubt the slowdown matters. */
1281 switch (VALUE_LVAL (toval))
1282 {
1283 case lval_memory:
1284 case lval_register:
1285 case lval_computed:
1286
1287 gdb::observers::target_changed.notify (current_top_target ());
1288
1289 /* Having destroyed the frame cache, restore the selected
1290 frame. */
1291
1292 /* FIXME: cagney/2002-11-02: There has to be a better way of
1293 doing this. Instead of constantly saving/restoring the
1294 frame. Why not create a get_selected_frame() function that,
1295 having saved the selected frame's ID can automatically
1296 re-find the previously selected frame automatically. */
1297
1298 {
1299 struct frame_info *fi = frame_find_by_id (old_frame);
1300
1301 if (fi != NULL)
1302 select_frame (fi);
1303 }
1304
1305 break;
1306 default:
1307 break;
1308 }
1309
1310 /* If the field does not entirely fill a LONGEST, then zero the sign
1311 bits. If the field is signed, and is negative, then sign
1312 extend. */
1313 if ((value_bitsize (toval) > 0)
1314 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1315 {
1316 LONGEST fieldval = value_as_long (fromval);
1317 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1318
1319 fieldval &= valmask;
1320 if (!type->is_unsigned ()
1321 && (fieldval & (valmask ^ (valmask >> 1))))
1322 fieldval |= ~valmask;
1323
1324 fromval = value_from_longest (type, fieldval);
1325 }
1326
1327 /* The return value is a copy of TOVAL so it shares its location
1328 information, but its contents are updated from FROMVAL. This
1329 implies the returned value is not lazy, even if TOVAL was. */
1330 val = value_copy (toval);
1331 set_value_lazy (val, 0);
1332 memcpy (value_contents_raw (val), value_contents (fromval),
1333 TYPE_LENGTH (type));
1334
1335 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1336 in the case of pointer types. For object types, the enclosing type
1337 and embedded offset must *not* be copied: the target object refered
1338 to by TOVAL retains its original dynamic type after assignment. */
1339 if (type->code () == TYPE_CODE_PTR)
1340 {
1341 set_value_enclosing_type (val, value_enclosing_type (fromval));
1342 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1343 }
1344
1345 return val;
1346 }
1347
1348 /* Extend a value ARG1 to COUNT repetitions of its type. */
1349
1350 struct value *
1351 value_repeat (struct value *arg1, int count)
1352 {
1353 struct value *val;
1354
1355 if (VALUE_LVAL (arg1) != lval_memory)
1356 error (_("Only values in memory can be extended with '@'."));
1357 if (count < 1)
1358 error (_("Invalid number %d of repetitions."), count);
1359
1360 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1361
1362 VALUE_LVAL (val) = lval_memory;
1363 set_value_address (val, value_address (arg1));
1364
1365 read_value_memory (val, 0, value_stack (val), value_address (val),
1366 value_contents_all_raw (val),
1367 type_length_units (value_enclosing_type (val)));
1368
1369 return val;
1370 }
1371
1372 struct value *
1373 value_of_variable (struct symbol *var, const struct block *b)
1374 {
1375 struct frame_info *frame = NULL;
1376
1377 if (symbol_read_needs_frame (var))
1378 frame = get_selected_frame (_("No frame selected."));
1379
1380 return read_var_value (var, b, frame);
1381 }
1382
1383 struct value *
1384 address_of_variable (struct symbol *var, const struct block *b)
1385 {
1386 struct type *type = SYMBOL_TYPE (var);
1387 struct value *val;
1388
1389 /* Evaluate it first; if the result is a memory address, we're fine.
1390 Lazy evaluation pays off here. */
1391
1392 val = value_of_variable (var, b);
1393 type = value_type (val);
1394
1395 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1396 || type->code () == TYPE_CODE_FUNC)
1397 {
1398 CORE_ADDR addr = value_address (val);
1399
1400 return value_from_pointer (lookup_pointer_type (type), addr);
1401 }
1402
1403 /* Not a memory address; check what the problem was. */
1404 switch (VALUE_LVAL (val))
1405 {
1406 case lval_register:
1407 {
1408 struct frame_info *frame;
1409 const char *regname;
1410
1411 frame = frame_find_by_id (VALUE_NEXT_FRAME_ID (val));
1412 gdb_assert (frame);
1413
1414 regname = gdbarch_register_name (get_frame_arch (frame),
1415 VALUE_REGNUM (val));
1416 gdb_assert (regname && *regname);
1417
1418 error (_("Address requested for identifier "
1419 "\"%s\" which is in register $%s"),
1420 var->print_name (), regname);
1421 break;
1422 }
1423
1424 default:
1425 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1426 var->print_name ());
1427 break;
1428 }
1429
1430 return val;
1431 }
1432
1433 /* See value.h. */
1434
1435 bool
1436 value_must_coerce_to_target (struct value *val)
1437 {
1438 struct type *valtype;
1439
1440 /* The only lval kinds which do not live in target memory. */
1441 if (VALUE_LVAL (val) != not_lval
1442 && VALUE_LVAL (val) != lval_internalvar
1443 && VALUE_LVAL (val) != lval_xcallable)
1444 return false;
1445
1446 valtype = check_typedef (value_type (val));
1447
1448 switch (valtype->code ())
1449 {
1450 case TYPE_CODE_ARRAY:
1451 return valtype->is_vector () ? 0 : 1;
1452 case TYPE_CODE_STRING:
1453 return true;
1454 default:
1455 return false;
1456 }
1457 }
1458
1459 /* Make sure that VAL lives in target memory if it's supposed to. For
1460 instance, strings are constructed as character arrays in GDB's
1461 storage, and this function copies them to the target. */
1462
1463 struct value *
1464 value_coerce_to_target (struct value *val)
1465 {
1466 LONGEST length;
1467 CORE_ADDR addr;
1468
1469 if (!value_must_coerce_to_target (val))
1470 return val;
1471
1472 length = TYPE_LENGTH (check_typedef (value_type (val)));
1473 addr = allocate_space_in_inferior (length);
1474 write_memory (addr, value_contents (val), length);
1475 return value_at_lazy (value_type (val), addr);
1476 }
1477
1478 /* Given a value which is an array, return a value which is a pointer
1479 to its first element, regardless of whether or not the array has a
1480 nonzero lower bound.
1481
1482 FIXME: A previous comment here indicated that this routine should
1483 be substracting the array's lower bound. It's not clear to me that
1484 this is correct. Given an array subscripting operation, it would
1485 certainly work to do the adjustment here, essentially computing:
1486
1487 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1488
1489 However I believe a more appropriate and logical place to account
1490 for the lower bound is to do so in value_subscript, essentially
1491 computing:
1492
1493 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1494
1495 As further evidence consider what would happen with operations
1496 other than array subscripting, where the caller would get back a
1497 value that had an address somewhere before the actual first element
1498 of the array, and the information about the lower bound would be
1499 lost because of the coercion to pointer type. */
1500
1501 struct value *
1502 value_coerce_array (struct value *arg1)
1503 {
1504 struct type *type = check_typedef (value_type (arg1));
1505
1506 /* If the user tries to do something requiring a pointer with an
1507 array that has not yet been pushed to the target, then this would
1508 be a good time to do so. */
1509 arg1 = value_coerce_to_target (arg1);
1510
1511 if (VALUE_LVAL (arg1) != lval_memory)
1512 error (_("Attempt to take address of value not located in memory."));
1513
1514 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1515 value_address (arg1));
1516 }
1517
1518 /* Given a value which is a function, return a value which is a pointer
1519 to it. */
1520
1521 struct value *
1522 value_coerce_function (struct value *arg1)
1523 {
1524 struct value *retval;
1525
1526 if (VALUE_LVAL (arg1) != lval_memory)
1527 error (_("Attempt to take address of value not located in memory."));
1528
1529 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1530 value_address (arg1));
1531 return retval;
1532 }
1533
1534 /* Return a pointer value for the object for which ARG1 is the
1535 contents. */
1536
1537 struct value *
1538 value_addr (struct value *arg1)
1539 {
1540 struct value *arg2;
1541 struct type *type = check_typedef (value_type (arg1));
1542
1543 if (TYPE_IS_REFERENCE (type))
1544 {
1545 if (value_bits_synthetic_pointer (arg1, value_embedded_offset (arg1),
1546 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1547 arg1 = coerce_ref (arg1);
1548 else
1549 {
1550 /* Copy the value, but change the type from (T&) to (T*). We
1551 keep the same location information, which is efficient, and
1552 allows &(&X) to get the location containing the reference.
1553 Do the same to its enclosing type for consistency. */
1554 struct type *type_ptr
1555 = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1556 struct type *enclosing_type
1557 = check_typedef (value_enclosing_type (arg1));
1558 struct type *enclosing_type_ptr
1559 = lookup_pointer_type (TYPE_TARGET_TYPE (enclosing_type));
1560
1561 arg2 = value_copy (arg1);
1562 deprecated_set_value_type (arg2, type_ptr);
1563 set_value_enclosing_type (arg2, enclosing_type_ptr);
1564
1565 return arg2;
1566 }
1567 }
1568 if (type->code () == TYPE_CODE_FUNC)
1569 return value_coerce_function (arg1);
1570
1571 /* If this is an array that has not yet been pushed to the target,
1572 then this would be a good time to force it to memory. */
1573 arg1 = value_coerce_to_target (arg1);
1574
1575 if (VALUE_LVAL (arg1) != lval_memory)
1576 error (_("Attempt to take address of value not located in memory."));
1577
1578 /* Get target memory address. */
1579 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1580 (value_address (arg1)
1581 + value_embedded_offset (arg1)));
1582
1583 /* This may be a pointer to a base subobject; so remember the
1584 full derived object's type ... */
1585 set_value_enclosing_type (arg2,
1586 lookup_pointer_type (value_enclosing_type (arg1)));
1587 /* ... and also the relative position of the subobject in the full
1588 object. */
1589 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1590 return arg2;
1591 }
1592
1593 /* Return a reference value for the object for which ARG1 is the
1594 contents. */
1595
1596 struct value *
1597 value_ref (struct value *arg1, enum type_code refcode)
1598 {
1599 struct value *arg2;
1600 struct type *type = check_typedef (value_type (arg1));
1601
1602 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
1603
1604 if ((type->code () == TYPE_CODE_REF
1605 || type->code () == TYPE_CODE_RVALUE_REF)
1606 && type->code () == refcode)
1607 return arg1;
1608
1609 arg2 = value_addr (arg1);
1610 deprecated_set_value_type (arg2, lookup_reference_type (type, refcode));
1611 return arg2;
1612 }
1613
1614 /* Given a value of a pointer type, apply the C unary * operator to
1615 it. */
1616
1617 struct value *
1618 value_ind (struct value *arg1)
1619 {
1620 struct type *base_type;
1621 struct value *arg2;
1622
1623 arg1 = coerce_array (arg1);
1624
1625 base_type = check_typedef (value_type (arg1));
1626
1627 if (VALUE_LVAL (arg1) == lval_computed)
1628 {
1629 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1630
1631 if (funcs->indirect)
1632 {
1633 struct value *result = funcs->indirect (arg1);
1634
1635 if (result)
1636 return result;
1637 }
1638 }
1639
1640 if (base_type->code () == TYPE_CODE_PTR)
1641 {
1642 struct type *enc_type;
1643
1644 /* We may be pointing to something embedded in a larger object.
1645 Get the real type of the enclosing object. */
1646 enc_type = check_typedef (value_enclosing_type (arg1));
1647 enc_type = TYPE_TARGET_TYPE (enc_type);
1648
1649 CORE_ADDR base_addr;
1650 if (check_typedef (enc_type)->code () == TYPE_CODE_FUNC
1651 || check_typedef (enc_type)->code () == TYPE_CODE_METHOD)
1652 {
1653 /* For functions, go through find_function_addr, which knows
1654 how to handle function descriptors. */
1655 base_addr = find_function_addr (arg1, NULL);
1656 }
1657 else
1658 {
1659 /* Retrieve the enclosing object pointed to. */
1660 base_addr = (value_as_address (arg1)
1661 - value_pointed_to_offset (arg1));
1662 }
1663 arg2 = value_at_lazy (enc_type, base_addr);
1664 enc_type = value_type (arg2);
1665 return readjust_indirect_value_type (arg2, enc_type, base_type,
1666 arg1, base_addr);
1667 }
1668
1669 error (_("Attempt to take contents of a non-pointer value."));
1670 }
1671 \f
1672 /* Create a value for an array by allocating space in GDB, copying the
1673 data into that space, and then setting up an array value.
1674
1675 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1676 is populated from the values passed in ELEMVEC.
1677
1678 The element type of the array is inherited from the type of the
1679 first element, and all elements must have the same size (though we
1680 don't currently enforce any restriction on their types). */
1681
1682 struct value *
1683 value_array (int lowbound, int highbound, struct value **elemvec)
1684 {
1685 int nelem;
1686 int idx;
1687 ULONGEST typelength;
1688 struct value *val;
1689 struct type *arraytype;
1690
1691 /* Validate that the bounds are reasonable and that each of the
1692 elements have the same size. */
1693
1694 nelem = highbound - lowbound + 1;
1695 if (nelem <= 0)
1696 {
1697 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1698 }
1699 typelength = type_length_units (value_enclosing_type (elemvec[0]));
1700 for (idx = 1; idx < nelem; idx++)
1701 {
1702 if (type_length_units (value_enclosing_type (elemvec[idx]))
1703 != typelength)
1704 {
1705 error (_("array elements must all be the same size"));
1706 }
1707 }
1708
1709 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1710 lowbound, highbound);
1711
1712 if (!current_language->c_style_arrays_p ())
1713 {
1714 val = allocate_value (arraytype);
1715 for (idx = 0; idx < nelem; idx++)
1716 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1717 typelength);
1718 return val;
1719 }
1720
1721 /* Allocate space to store the array, and then initialize it by
1722 copying in each element. */
1723
1724 val = allocate_value (arraytype);
1725 for (idx = 0; idx < nelem; idx++)
1726 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1727 return val;
1728 }
1729
1730 struct value *
1731 value_cstring (const char *ptr, ssize_t len, struct type *char_type)
1732 {
1733 struct value *val;
1734 int lowbound = current_language->string_lower_bound ();
1735 ssize_t highbound = len / TYPE_LENGTH (char_type);
1736 struct type *stringtype
1737 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1738
1739 val = allocate_value (stringtype);
1740 memcpy (value_contents_raw (val), ptr, len);
1741 return val;
1742 }
1743
1744 /* Create a value for a string constant by allocating space in the
1745 inferior, copying the data into that space, and returning the
1746 address with type TYPE_CODE_STRING. PTR points to the string
1747 constant data; LEN is number of characters.
1748
1749 Note that string types are like array of char types with a lower
1750 bound of zero and an upper bound of LEN - 1. Also note that the
1751 string may contain embedded null bytes. */
1752
1753 struct value *
1754 value_string (const char *ptr, ssize_t len, struct type *char_type)
1755 {
1756 struct value *val;
1757 int lowbound = current_language->string_lower_bound ();
1758 ssize_t highbound = len / TYPE_LENGTH (char_type);
1759 struct type *stringtype
1760 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1761
1762 val = allocate_value (stringtype);
1763 memcpy (value_contents_raw (val), ptr, len);
1764 return val;
1765 }
1766
1767 \f
1768 /* See if we can pass arguments in T2 to a function which takes
1769 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1770 a NULL-terminated vector. If some arguments need coercion of some
1771 sort, then the coerced values are written into T2. Return value is
1772 0 if the arguments could be matched, or the position at which they
1773 differ if not.
1774
1775 STATICP is nonzero if the T1 argument list came from a static
1776 member function. T2 will still include the ``this'' pointer, but
1777 it will be skipped.
1778
1779 For non-static member functions, we ignore the first argument,
1780 which is the type of the instance variable. This is because we
1781 want to handle calls with objects from derived classes. This is
1782 not entirely correct: we should actually check to make sure that a
1783 requested operation is type secure, shouldn't we? FIXME. */
1784
1785 static int
1786 typecmp (int staticp, int varargs, int nargs,
1787 struct field t1[], struct value *t2[])
1788 {
1789 int i;
1790
1791 if (t2 == 0)
1792 internal_error (__FILE__, __LINE__,
1793 _("typecmp: no argument list"));
1794
1795 /* Skip ``this'' argument if applicable. T2 will always include
1796 THIS. */
1797 if (staticp)
1798 t2 ++;
1799
1800 for (i = 0;
1801 (i < nargs) && t1[i].type ()->code () != TYPE_CODE_VOID;
1802 i++)
1803 {
1804 struct type *tt1, *tt2;
1805
1806 if (!t2[i])
1807 return i + 1;
1808
1809 tt1 = check_typedef (t1[i].type ());
1810 tt2 = check_typedef (value_type (t2[i]));
1811
1812 if (TYPE_IS_REFERENCE (tt1)
1813 /* We should be doing hairy argument matching, as below. */
1814 && (check_typedef (TYPE_TARGET_TYPE (tt1))->code ()
1815 == tt2->code ()))
1816 {
1817 if (tt2->code () == TYPE_CODE_ARRAY)
1818 t2[i] = value_coerce_array (t2[i]);
1819 else
1820 t2[i] = value_ref (t2[i], tt1->code ());
1821 continue;
1822 }
1823
1824 /* djb - 20000715 - Until the new type structure is in the
1825 place, and we can attempt things like implicit conversions,
1826 we need to do this so you can take something like a map<const
1827 char *>, and properly access map["hello"], because the
1828 argument to [] will be a reference to a pointer to a char,
1829 and the argument will be a pointer to a char. */
1830 while (TYPE_IS_REFERENCE (tt1) || tt1->code () == TYPE_CODE_PTR)
1831 {
1832 tt1 = check_typedef ( TYPE_TARGET_TYPE (tt1) );
1833 }
1834 while (tt2->code () == TYPE_CODE_ARRAY
1835 || tt2->code () == TYPE_CODE_PTR
1836 || TYPE_IS_REFERENCE (tt2))
1837 {
1838 tt2 = check_typedef (TYPE_TARGET_TYPE (tt2));
1839 }
1840 if (tt1->code () == tt2->code ())
1841 continue;
1842 /* Array to pointer is a `trivial conversion' according to the
1843 ARM. */
1844
1845 /* We should be doing much hairier argument matching (see
1846 section 13.2 of the ARM), but as a quick kludge, just check
1847 for the same type code. */
1848 if (t1[i].type ()->code () != value_type (t2[i])->code ())
1849 return i + 1;
1850 }
1851 if (varargs || t2[i] == NULL)
1852 return 0;
1853 return i + 1;
1854 }
1855
1856 /* Helper class for search_struct_field that keeps track of found
1857 results and possibly throws an exception if the search yields
1858 ambiguous results. See search_struct_field for description of
1859 LOOKING_FOR_BASECLASS. */
1860
1861 struct struct_field_searcher
1862 {
1863 /* A found field. */
1864 struct found_field
1865 {
1866 /* Path to the structure where the field was found. */
1867 std::vector<struct type *> path;
1868
1869 /* The field found. */
1870 struct value *field_value;
1871 };
1872
1873 /* See corresponding fields for description of parameters. */
1874 struct_field_searcher (const char *name,
1875 struct type *outermost_type,
1876 bool looking_for_baseclass)
1877 : m_name (name),
1878 m_looking_for_baseclass (looking_for_baseclass),
1879 m_outermost_type (outermost_type)
1880 {
1881 }
1882
1883 /* The search entry point. If LOOKING_FOR_BASECLASS is true and the
1884 base class search yields ambiguous results, this throws an
1885 exception. If LOOKING_FOR_BASECLASS is false, the found fields
1886 are accumulated and the caller (search_struct_field) takes care
1887 of throwing an error if the field search yields ambiguous
1888 results. The latter is done that way so that the error message
1889 can include a list of all the found candidates. */
1890 void search (struct value *arg, LONGEST offset, struct type *type);
1891
1892 const std::vector<found_field> &fields ()
1893 {
1894 return m_fields;
1895 }
1896
1897 struct value *baseclass ()
1898 {
1899 return m_baseclass;
1900 }
1901
1902 private:
1903 /* Update results to include V, a found field/baseclass. */
1904 void update_result (struct value *v, LONGEST boffset);
1905
1906 /* The name of the field/baseclass we're searching for. */
1907 const char *m_name;
1908
1909 /* Whether we're looking for a baseclass, or a field. */
1910 const bool m_looking_for_baseclass;
1911
1912 /* The offset of the baseclass containing the field/baseclass we
1913 last recorded. */
1914 LONGEST m_last_boffset = 0;
1915
1916 /* If looking for a baseclass, then the result is stored here. */
1917 struct value *m_baseclass = nullptr;
1918
1919 /* When looking for fields, the found candidates are stored
1920 here. */
1921 std::vector<found_field> m_fields;
1922
1923 /* The type of the initial type passed to search_struct_field; this
1924 is used for error reporting when the lookup is ambiguous. */
1925 struct type *m_outermost_type;
1926
1927 /* The full path to the struct being inspected. E.g. for field 'x'
1928 defined in class B inherited by class A, we have A and B pushed
1929 on the path. */
1930 std::vector <struct type *> m_struct_path;
1931 };
1932
1933 void
1934 struct_field_searcher::update_result (struct value *v, LONGEST boffset)
1935 {
1936 if (v != NULL)
1937 {
1938 if (m_looking_for_baseclass)
1939 {
1940 if (m_baseclass != nullptr
1941 /* The result is not ambiguous if all the classes that are
1942 found occupy the same space. */
1943 && m_last_boffset != boffset)
1944 error (_("base class '%s' is ambiguous in type '%s'"),
1945 m_name, TYPE_SAFE_NAME (m_outermost_type));
1946
1947 m_baseclass = v;
1948 m_last_boffset = boffset;
1949 }
1950 else
1951 {
1952 /* The field is not ambiguous if it occupies the same
1953 space. */
1954 if (m_fields.empty () || m_last_boffset != boffset)
1955 m_fields.push_back ({m_struct_path, v});
1956 }
1957 }
1958 }
1959
1960 /* A helper for search_struct_field. This does all the work; most
1961 arguments are as passed to search_struct_field. */
1962
1963 void
1964 struct_field_searcher::search (struct value *arg1, LONGEST offset,
1965 struct type *type)
1966 {
1967 int i;
1968 int nbases;
1969
1970 m_struct_path.push_back (type);
1971 SCOPE_EXIT { m_struct_path.pop_back (); };
1972
1973 type = check_typedef (type);
1974 nbases = TYPE_N_BASECLASSES (type);
1975
1976 if (!m_looking_for_baseclass)
1977 for (i = type->num_fields () - 1; i >= nbases; i--)
1978 {
1979 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1980
1981 if (t_field_name && (strcmp_iw (t_field_name, m_name) == 0))
1982 {
1983 struct value *v;
1984
1985 if (field_is_static (&type->field (i)))
1986 v = value_static_field (type, i);
1987 else
1988 v = value_primitive_field (arg1, offset, i, type);
1989
1990 update_result (v, offset);
1991 return;
1992 }
1993
1994 if (t_field_name
1995 && t_field_name[0] == '\0')
1996 {
1997 struct type *field_type = type->field (i).type ();
1998
1999 if (field_type->code () == TYPE_CODE_UNION
2000 || field_type->code () == TYPE_CODE_STRUCT)
2001 {
2002 /* Look for a match through the fields of an anonymous
2003 union, or anonymous struct. C++ provides anonymous
2004 unions.
2005
2006 In the GNU Chill (now deleted from GDB)
2007 implementation of variant record types, each
2008 <alternative field> has an (anonymous) union type,
2009 each member of the union represents a <variant
2010 alternative>. Each <variant alternative> is
2011 represented as a struct, with a member for each
2012 <variant field>. */
2013
2014 LONGEST new_offset = offset;
2015
2016 /* This is pretty gross. In G++, the offset in an
2017 anonymous union is relative to the beginning of the
2018 enclosing struct. In the GNU Chill (now deleted
2019 from GDB) implementation of variant records, the
2020 bitpos is zero in an anonymous union field, so we
2021 have to add the offset of the union here. */
2022 if (field_type->code () == TYPE_CODE_STRUCT
2023 || (field_type->num_fields () > 0
2024 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2025 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2026
2027 search (arg1, new_offset, field_type);
2028 }
2029 }
2030 }
2031
2032 for (i = 0; i < nbases; i++)
2033 {
2034 struct value *v = NULL;
2035 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2036 /* If we are looking for baseclasses, this is what we get when
2037 we hit them. But it could happen that the base part's member
2038 name is not yet filled in. */
2039 int found_baseclass = (m_looking_for_baseclass
2040 && TYPE_BASECLASS_NAME (type, i) != NULL
2041 && (strcmp_iw (m_name,
2042 TYPE_BASECLASS_NAME (type,
2043 i)) == 0));
2044 LONGEST boffset = value_embedded_offset (arg1) + offset;
2045
2046 if (BASETYPE_VIA_VIRTUAL (type, i))
2047 {
2048 struct value *v2;
2049
2050 boffset = baseclass_offset (type, i,
2051 value_contents_for_printing (arg1),
2052 value_embedded_offset (arg1) + offset,
2053 value_address (arg1),
2054 arg1);
2055
2056 /* The virtual base class pointer might have been clobbered
2057 by the user program. Make sure that it still points to a
2058 valid memory location. */
2059
2060 boffset += value_embedded_offset (arg1) + offset;
2061 if (boffset < 0
2062 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
2063 {
2064 CORE_ADDR base_addr;
2065
2066 base_addr = value_address (arg1) + boffset;
2067 v2 = value_at_lazy (basetype, base_addr);
2068 if (target_read_memory (base_addr,
2069 value_contents_raw (v2),
2070 TYPE_LENGTH (value_type (v2))) != 0)
2071 error (_("virtual baseclass botch"));
2072 }
2073 else
2074 {
2075 v2 = value_copy (arg1);
2076 deprecated_set_value_type (v2, basetype);
2077 set_value_embedded_offset (v2, boffset);
2078 }
2079
2080 if (found_baseclass)
2081 v = v2;
2082 else
2083 search (v2, 0, TYPE_BASECLASS (type, i));
2084 }
2085 else if (found_baseclass)
2086 v = value_primitive_field (arg1, offset, i, type);
2087 else
2088 {
2089 search (arg1, offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2090 basetype);
2091 }
2092
2093 update_result (v, boffset);
2094 }
2095 }
2096
2097 /* Helper function used by value_struct_elt to recurse through
2098 baseclasses. Look for a field NAME in ARG1. Search in it assuming
2099 it has (class) type TYPE. If found, return value, else return NULL.
2100
2101 If LOOKING_FOR_BASECLASS, then instead of looking for struct
2102 fields, look for a baseclass named NAME. */
2103
2104 static struct value *
2105 search_struct_field (const char *name, struct value *arg1,
2106 struct type *type, int looking_for_baseclass)
2107 {
2108 struct_field_searcher searcher (name, type, looking_for_baseclass);
2109
2110 searcher.search (arg1, 0, type);
2111
2112 if (!looking_for_baseclass)
2113 {
2114 const auto &fields = searcher.fields ();
2115
2116 if (fields.empty ())
2117 return nullptr;
2118 else if (fields.size () == 1)
2119 return fields[0].field_value;
2120 else
2121 {
2122 std::string candidates;
2123
2124 for (auto &&candidate : fields)
2125 {
2126 gdb_assert (!candidate.path.empty ());
2127
2128 struct type *field_type = value_type (candidate.field_value);
2129 struct type *struct_type = candidate.path.back ();
2130
2131 std::string path;
2132 bool first = true;
2133 for (struct type *t : candidate.path)
2134 {
2135 if (first)
2136 first = false;
2137 else
2138 path += " -> ";
2139 path += t->name ();
2140 }
2141
2142 candidates += string_printf ("\n '%s %s::%s' (%s)",
2143 TYPE_SAFE_NAME (field_type),
2144 TYPE_SAFE_NAME (struct_type),
2145 name,
2146 path.c_str ());
2147 }
2148
2149 error (_("Request for member '%s' is ambiguous in type '%s'."
2150 " Candidates are:%s"),
2151 name, TYPE_SAFE_NAME (type),
2152 candidates.c_str ());
2153 }
2154 }
2155 else
2156 return searcher.baseclass ();
2157 }
2158
2159 /* Helper function used by value_struct_elt to recurse through
2160 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2161 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2162 TYPE.
2163
2164 If found, return value, else if name matched and args not return
2165 (value) -1, else return NULL. */
2166
2167 static struct value *
2168 search_struct_method (const char *name, struct value **arg1p,
2169 struct value **args, LONGEST offset,
2170 int *static_memfuncp, struct type *type)
2171 {
2172 int i;
2173 struct value *v;
2174 int name_matched = 0;
2175
2176 type = check_typedef (type);
2177 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2178 {
2179 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2180
2181 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2182 {
2183 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2184 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2185
2186 name_matched = 1;
2187 check_stub_method_group (type, i);
2188 if (j > 0 && args == 0)
2189 error (_("cannot resolve overloaded method "
2190 "`%s': no arguments supplied"), name);
2191 else if (j == 0 && args == 0)
2192 {
2193 v = value_fn_field (arg1p, f, j, type, offset);
2194 if (v != NULL)
2195 return v;
2196 }
2197 else
2198 while (j >= 0)
2199 {
2200 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2201 TYPE_FN_FIELD_TYPE (f, j)->has_varargs (),
2202 TYPE_FN_FIELD_TYPE (f, j)->num_fields (),
2203 TYPE_FN_FIELD_ARGS (f, j), args))
2204 {
2205 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2206 return value_virtual_fn_field (arg1p, f, j,
2207 type, offset);
2208 if (TYPE_FN_FIELD_STATIC_P (f, j)
2209 && static_memfuncp)
2210 *static_memfuncp = 1;
2211 v = value_fn_field (arg1p, f, j, type, offset);
2212 if (v != NULL)
2213 return v;
2214 }
2215 j--;
2216 }
2217 }
2218 }
2219
2220 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2221 {
2222 LONGEST base_offset;
2223 LONGEST this_offset;
2224
2225 if (BASETYPE_VIA_VIRTUAL (type, i))
2226 {
2227 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2228 struct value *base_val;
2229 const gdb_byte *base_valaddr;
2230
2231 /* The virtual base class pointer might have been
2232 clobbered by the user program. Make sure that it
2233 still points to a valid memory location. */
2234
2235 if (offset < 0 || offset >= TYPE_LENGTH (type))
2236 {
2237 CORE_ADDR address;
2238
2239 gdb::byte_vector tmp (TYPE_LENGTH (baseclass));
2240 address = value_address (*arg1p);
2241
2242 if (target_read_memory (address + offset,
2243 tmp.data (), TYPE_LENGTH (baseclass)) != 0)
2244 error (_("virtual baseclass botch"));
2245
2246 base_val = value_from_contents_and_address (baseclass,
2247 tmp.data (),
2248 address + offset);
2249 base_valaddr = value_contents_for_printing (base_val);
2250 this_offset = 0;
2251 }
2252 else
2253 {
2254 base_val = *arg1p;
2255 base_valaddr = value_contents_for_printing (*arg1p);
2256 this_offset = offset;
2257 }
2258
2259 base_offset = baseclass_offset (type, i, base_valaddr,
2260 this_offset, value_address (base_val),
2261 base_val);
2262 }
2263 else
2264 {
2265 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2266 }
2267 v = search_struct_method (name, arg1p, args, base_offset + offset,
2268 static_memfuncp, TYPE_BASECLASS (type, i));
2269 if (v == (struct value *) - 1)
2270 {
2271 name_matched = 1;
2272 }
2273 else if (v)
2274 {
2275 /* FIXME-bothner: Why is this commented out? Why is it here? */
2276 /* *arg1p = arg1_tmp; */
2277 return v;
2278 }
2279 }
2280 if (name_matched)
2281 return (struct value *) - 1;
2282 else
2283 return NULL;
2284 }
2285
2286 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2287 extract the component named NAME from the ultimate target
2288 structure/union and return it as a value with its appropriate type.
2289 ERR is used in the error message if *ARGP's type is wrong.
2290
2291 C++: ARGS is a list of argument types to aid in the selection of
2292 an appropriate method. Also, handle derived types.
2293
2294 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2295 where the truthvalue of whether the function that was resolved was
2296 a static member function or not is stored.
2297
2298 ERR is an error message to be printed in case the field is not
2299 found. */
2300
2301 struct value *
2302 value_struct_elt (struct value **argp, struct value **args,
2303 const char *name, int *static_memfuncp, const char *err)
2304 {
2305 struct type *t;
2306 struct value *v;
2307
2308 *argp = coerce_array (*argp);
2309
2310 t = check_typedef (value_type (*argp));
2311
2312 /* Follow pointers until we get to a non-pointer. */
2313
2314 while (t->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2315 {
2316 *argp = value_ind (*argp);
2317 /* Don't coerce fn pointer to fn and then back again! */
2318 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2319 *argp = coerce_array (*argp);
2320 t = check_typedef (value_type (*argp));
2321 }
2322
2323 if (t->code () != TYPE_CODE_STRUCT
2324 && t->code () != TYPE_CODE_UNION)
2325 error (_("Attempt to extract a component of a value that is not a %s."),
2326 err);
2327
2328 /* Assume it's not, unless we see that it is. */
2329 if (static_memfuncp)
2330 *static_memfuncp = 0;
2331
2332 if (!args)
2333 {
2334 /* if there are no arguments ...do this... */
2335
2336 /* Try as a field first, because if we succeed, there is less
2337 work to be done. */
2338 v = search_struct_field (name, *argp, t, 0);
2339 if (v)
2340 return v;
2341
2342 /* C++: If it was not found as a data field, then try to
2343 return it as a pointer to a method. */
2344 v = search_struct_method (name, argp, args, 0,
2345 static_memfuncp, t);
2346
2347 if (v == (struct value *) - 1)
2348 error (_("Cannot take address of method %s."), name);
2349 else if (v == 0)
2350 {
2351 if (TYPE_NFN_FIELDS (t))
2352 error (_("There is no member or method named %s."), name);
2353 else
2354 error (_("There is no member named %s."), name);
2355 }
2356 return v;
2357 }
2358
2359 v = search_struct_method (name, argp, args, 0,
2360 static_memfuncp, t);
2361
2362 if (v == (struct value *) - 1)
2363 {
2364 error (_("One of the arguments you tried to pass to %s could not "
2365 "be converted to what the function wants."), name);
2366 }
2367 else if (v == 0)
2368 {
2369 /* See if user tried to invoke data as function. If so, hand it
2370 back. If it's not callable (i.e., a pointer to function),
2371 gdb should give an error. */
2372 v = search_struct_field (name, *argp, t, 0);
2373 /* If we found an ordinary field, then it is not a method call.
2374 So, treat it as if it were a static member function. */
2375 if (v && static_memfuncp)
2376 *static_memfuncp = 1;
2377 }
2378
2379 if (!v)
2380 throw_error (NOT_FOUND_ERROR,
2381 _("Structure has no component named %s."), name);
2382 return v;
2383 }
2384
2385 /* Given *ARGP, a value of type structure or union, or a pointer/reference
2386 to a structure or union, extract and return its component (field) of
2387 type FTYPE at the specified BITPOS.
2388 Throw an exception on error. */
2389
2390 struct value *
2391 value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
2392 const char *err)
2393 {
2394 struct type *t;
2395 int i;
2396
2397 *argp = coerce_array (*argp);
2398
2399 t = check_typedef (value_type (*argp));
2400
2401 while (t->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2402 {
2403 *argp = value_ind (*argp);
2404 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2405 *argp = coerce_array (*argp);
2406 t = check_typedef (value_type (*argp));
2407 }
2408
2409 if (t->code () != TYPE_CODE_STRUCT
2410 && t->code () != TYPE_CODE_UNION)
2411 error (_("Attempt to extract a component of a value that is not a %s."),
2412 err);
2413
2414 for (i = TYPE_N_BASECLASSES (t); i < t->num_fields (); i++)
2415 {
2416 if (!field_is_static (&t->field (i))
2417 && bitpos == TYPE_FIELD_BITPOS (t, i)
2418 && types_equal (ftype, t->field (i).type ()))
2419 return value_primitive_field (*argp, 0, i, t);
2420 }
2421
2422 error (_("No field with matching bitpos and type."));
2423
2424 /* Never hit. */
2425 return NULL;
2426 }
2427
2428 /* Search through the methods of an object (and its bases) to find a
2429 specified method. Return a reference to the fn_field list METHODS of
2430 overloaded instances defined in the source language. If available
2431 and matching, a vector of matching xmethods defined in extension
2432 languages are also returned in XMETHODS.
2433
2434 Helper function for value_find_oload_list.
2435 ARGP is a pointer to a pointer to a value (the object).
2436 METHOD is a string containing the method name.
2437 OFFSET is the offset within the value.
2438 TYPE is the assumed type of the object.
2439 METHODS is a pointer to the matching overloaded instances defined
2440 in the source language. Since this is a recursive function,
2441 *METHODS should be set to NULL when calling this function.
2442 NUM_FNS is the number of overloaded instances. *NUM_FNS should be set to
2443 0 when calling this function.
2444 XMETHODS is the vector of matching xmethod workers. *XMETHODS
2445 should also be set to NULL when calling this function.
2446 BASETYPE is set to the actual type of the subobject where the
2447 method is found.
2448 BOFFSET is the offset of the base subobject where the method is found. */
2449
2450 static void
2451 find_method_list (struct value **argp, const char *method,
2452 LONGEST offset, struct type *type,
2453 gdb::array_view<fn_field> *methods,
2454 std::vector<xmethod_worker_up> *xmethods,
2455 struct type **basetype, LONGEST *boffset)
2456 {
2457 int i;
2458 struct fn_field *f = NULL;
2459
2460 gdb_assert (methods != NULL && xmethods != NULL);
2461 type = check_typedef (type);
2462
2463 /* First check in object itself.
2464 This function is called recursively to search through base classes.
2465 If there is a source method match found at some stage, then we need not
2466 look for source methods in consequent recursive calls. */
2467 if (methods->empty ())
2468 {
2469 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2470 {
2471 /* pai: FIXME What about operators and type conversions? */
2472 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2473
2474 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2475 {
2476 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2477 f = TYPE_FN_FIELDLIST1 (type, i);
2478 *methods = gdb::make_array_view (f, len);
2479
2480 *basetype = type;
2481 *boffset = offset;
2482
2483 /* Resolve any stub methods. */
2484 check_stub_method_group (type, i);
2485
2486 break;
2487 }
2488 }
2489 }
2490
2491 /* Unlike source methods, xmethods can be accumulated over successive
2492 recursive calls. In other words, an xmethod named 'm' in a class
2493 will not hide an xmethod named 'm' in its base class(es). We want
2494 it to be this way because xmethods are after all convenience functions
2495 and hence there is no point restricting them with something like method
2496 hiding. Moreover, if hiding is done for xmethods as well, then we will
2497 have to provide a mechanism to un-hide (like the 'using' construct). */
2498 get_matching_xmethod_workers (type, method, xmethods);
2499
2500 /* If source methods are not found in current class, look for them in the
2501 base classes. We also have to go through the base classes to gather
2502 extension methods. */
2503 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2504 {
2505 LONGEST base_offset;
2506
2507 if (BASETYPE_VIA_VIRTUAL (type, i))
2508 {
2509 base_offset = baseclass_offset (type, i,
2510 value_contents_for_printing (*argp),
2511 value_offset (*argp) + offset,
2512 value_address (*argp), *argp);
2513 }
2514 else /* Non-virtual base, simply use bit position from debug
2515 info. */
2516 {
2517 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2518 }
2519
2520 find_method_list (argp, method, base_offset + offset,
2521 TYPE_BASECLASS (type, i), methods,
2522 xmethods, basetype, boffset);
2523 }
2524 }
2525
2526 /* Return the list of overloaded methods of a specified name. The methods
2527 could be those GDB finds in the binary, or xmethod. Methods found in
2528 the binary are returned in METHODS, and xmethods are returned in
2529 XMETHODS.
2530
2531 ARGP is a pointer to a pointer to a value (the object).
2532 METHOD is the method name.
2533 OFFSET is the offset within the value contents.
2534 METHODS is the list of matching overloaded instances defined in
2535 the source language.
2536 XMETHODS is the vector of matching xmethod workers defined in
2537 extension languages.
2538 BASETYPE is set to the type of the base subobject that defines the
2539 method.
2540 BOFFSET is the offset of the base subobject which defines the method. */
2541
2542 static void
2543 value_find_oload_method_list (struct value **argp, const char *method,
2544 LONGEST offset,
2545 gdb::array_view<fn_field> *methods,
2546 std::vector<xmethod_worker_up> *xmethods,
2547 struct type **basetype, LONGEST *boffset)
2548 {
2549 struct type *t;
2550
2551 t = check_typedef (value_type (*argp));
2552
2553 /* Code snarfed from value_struct_elt. */
2554 while (t->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2555 {
2556 *argp = value_ind (*argp);
2557 /* Don't coerce fn pointer to fn and then back again! */
2558 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2559 *argp = coerce_array (*argp);
2560 t = check_typedef (value_type (*argp));
2561 }
2562
2563 if (t->code () != TYPE_CODE_STRUCT
2564 && t->code () != TYPE_CODE_UNION)
2565 error (_("Attempt to extract a component of a "
2566 "value that is not a struct or union"));
2567
2568 gdb_assert (methods != NULL && xmethods != NULL);
2569
2570 /* Clear the lists. */
2571 *methods = {};
2572 xmethods->clear ();
2573
2574 find_method_list (argp, method, 0, t, methods, xmethods,
2575 basetype, boffset);
2576 }
2577
2578 /* Given an array of arguments (ARGS) (which includes an entry for
2579 "this" in the case of C++ methods), the NAME of a function, and
2580 whether it's a method or not (METHOD), find the best function that
2581 matches on the argument types according to the overload resolution
2582 rules.
2583
2584 METHOD can be one of three values:
2585 NON_METHOD for non-member functions.
2586 METHOD: for member functions.
2587 BOTH: used for overload resolution of operators where the
2588 candidates are expected to be either member or non member
2589 functions. In this case the first argument ARGTYPES
2590 (representing 'this') is expected to be a reference to the
2591 target object, and will be dereferenced when attempting the
2592 non-member search.
2593
2594 In the case of class methods, the parameter OBJ is an object value
2595 in which to search for overloaded methods.
2596
2597 In the case of non-method functions, the parameter FSYM is a symbol
2598 corresponding to one of the overloaded functions.
2599
2600 Return value is an integer: 0 -> good match, 10 -> debugger applied
2601 non-standard coercions, 100 -> incompatible.
2602
2603 If a method is being searched for, VALP will hold the value.
2604 If a non-method is being searched for, SYMP will hold the symbol
2605 for it.
2606
2607 If a method is being searched for, and it is a static method,
2608 then STATICP will point to a non-zero value.
2609
2610 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2611 ADL overload candidates when performing overload resolution for a fully
2612 qualified name.
2613
2614 If NOSIDE is EVAL_AVOID_SIDE_EFFECTS, then OBJP's memory cannot be
2615 read while picking the best overload match (it may be all zeroes and thus
2616 not have a vtable pointer), in which case skip virtual function lookup.
2617 This is ok as typically EVAL_AVOID_SIDE_EFFECTS is only used to determine
2618 the result type.
2619
2620 Note: This function does *not* check the value of
2621 overload_resolution. Caller must check it to see whether overload
2622 resolution is permitted. */
2623
2624 int
2625 find_overload_match (gdb::array_view<value *> args,
2626 const char *name, enum oload_search_type method,
2627 struct value **objp, struct symbol *fsym,
2628 struct value **valp, struct symbol **symp,
2629 int *staticp, const int no_adl,
2630 const enum noside noside)
2631 {
2632 struct value *obj = (objp ? *objp : NULL);
2633 struct type *obj_type = obj ? value_type (obj) : NULL;
2634 /* Index of best overloaded function. */
2635 int func_oload_champ = -1;
2636 int method_oload_champ = -1;
2637 int src_method_oload_champ = -1;
2638 int ext_method_oload_champ = -1;
2639
2640 /* The measure for the current best match. */
2641 badness_vector method_badness;
2642 badness_vector func_badness;
2643 badness_vector ext_method_badness;
2644 badness_vector src_method_badness;
2645
2646 struct value *temp = obj;
2647 /* For methods, the list of overloaded methods. */
2648 gdb::array_view<fn_field> methods;
2649 /* For non-methods, the list of overloaded function symbols. */
2650 std::vector<symbol *> functions;
2651 /* For xmethods, the vector of xmethod workers. */
2652 std::vector<xmethod_worker_up> xmethods;
2653 struct type *basetype = NULL;
2654 LONGEST boffset;
2655
2656 const char *obj_type_name = NULL;
2657 const char *func_name = NULL;
2658 gdb::unique_xmalloc_ptr<char> temp_func;
2659 enum oload_classification match_quality;
2660 enum oload_classification method_match_quality = INCOMPATIBLE;
2661 enum oload_classification src_method_match_quality = INCOMPATIBLE;
2662 enum oload_classification ext_method_match_quality = INCOMPATIBLE;
2663 enum oload_classification func_match_quality = INCOMPATIBLE;
2664
2665 /* Get the list of overloaded methods or functions. */
2666 if (method == METHOD || method == BOTH)
2667 {
2668 gdb_assert (obj);
2669
2670 /* OBJ may be a pointer value rather than the object itself. */
2671 obj = coerce_ref (obj);
2672 while (check_typedef (value_type (obj))->code () == TYPE_CODE_PTR)
2673 obj = coerce_ref (value_ind (obj));
2674 obj_type_name = value_type (obj)->name ();
2675
2676 /* First check whether this is a data member, e.g. a pointer to
2677 a function. */
2678 if (check_typedef (value_type (obj))->code () == TYPE_CODE_STRUCT)
2679 {
2680 *valp = search_struct_field (name, obj,
2681 check_typedef (value_type (obj)), 0);
2682 if (*valp)
2683 {
2684 *staticp = 1;
2685 return 0;
2686 }
2687 }
2688
2689 /* Retrieve the list of methods with the name NAME. */
2690 value_find_oload_method_list (&temp, name, 0, &methods,
2691 &xmethods, &basetype, &boffset);
2692 /* If this is a method only search, and no methods were found
2693 the search has failed. */
2694 if (method == METHOD && methods.empty () && xmethods.empty ())
2695 error (_("Couldn't find method %s%s%s"),
2696 obj_type_name,
2697 (obj_type_name && *obj_type_name) ? "::" : "",
2698 name);
2699 /* If we are dealing with stub method types, they should have
2700 been resolved by find_method_list via
2701 value_find_oload_method_list above. */
2702 if (!methods.empty ())
2703 {
2704 gdb_assert (TYPE_SELF_TYPE (methods[0].type) != NULL);
2705
2706 src_method_oload_champ
2707 = find_oload_champ (args,
2708 methods.size (),
2709 methods.data (), NULL, NULL,
2710 &src_method_badness);
2711
2712 src_method_match_quality = classify_oload_match
2713 (src_method_badness, args.size (),
2714 oload_method_static_p (methods.data (), src_method_oload_champ));
2715 }
2716
2717 if (!xmethods.empty ())
2718 {
2719 ext_method_oload_champ
2720 = find_oload_champ (args,
2721 xmethods.size (),
2722 NULL, xmethods.data (), NULL,
2723 &ext_method_badness);
2724 ext_method_match_quality = classify_oload_match (ext_method_badness,
2725 args.size (), 0);
2726 }
2727
2728 if (src_method_oload_champ >= 0 && ext_method_oload_champ >= 0)
2729 {
2730 switch (compare_badness (ext_method_badness, src_method_badness))
2731 {
2732 case 0: /* Src method and xmethod are equally good. */
2733 /* If src method and xmethod are equally good, then
2734 xmethod should be the winner. Hence, fall through to the
2735 case where a xmethod is better than the source
2736 method, except when the xmethod match quality is
2737 non-standard. */
2738 /* FALLTHROUGH */
2739 case 1: /* Src method and ext method are incompatible. */
2740 /* If ext method match is not standard, then let source method
2741 win. Otherwise, fallthrough to let xmethod win. */
2742 if (ext_method_match_quality != STANDARD)
2743 {
2744 method_oload_champ = src_method_oload_champ;
2745 method_badness = src_method_badness;
2746 ext_method_oload_champ = -1;
2747 method_match_quality = src_method_match_quality;
2748 break;
2749 }
2750 /* FALLTHROUGH */
2751 case 2: /* Ext method is champion. */
2752 method_oload_champ = ext_method_oload_champ;
2753 method_badness = ext_method_badness;
2754 src_method_oload_champ = -1;
2755 method_match_quality = ext_method_match_quality;
2756 break;
2757 case 3: /* Src method is champion. */
2758 method_oload_champ = src_method_oload_champ;
2759 method_badness = src_method_badness;
2760 ext_method_oload_champ = -1;
2761 method_match_quality = src_method_match_quality;
2762 break;
2763 default:
2764 gdb_assert_not_reached ("Unexpected overload comparison "
2765 "result");
2766 break;
2767 }
2768 }
2769 else if (src_method_oload_champ >= 0)
2770 {
2771 method_oload_champ = src_method_oload_champ;
2772 method_badness = src_method_badness;
2773 method_match_quality = src_method_match_quality;
2774 }
2775 else if (ext_method_oload_champ >= 0)
2776 {
2777 method_oload_champ = ext_method_oload_champ;
2778 method_badness = ext_method_badness;
2779 method_match_quality = ext_method_match_quality;
2780 }
2781 }
2782
2783 if (method == NON_METHOD || method == BOTH)
2784 {
2785 const char *qualified_name = NULL;
2786
2787 /* If the overload match is being search for both as a method
2788 and non member function, the first argument must now be
2789 dereferenced. */
2790 if (method == BOTH)
2791 args[0] = value_ind (args[0]);
2792
2793 if (fsym)
2794 {
2795 qualified_name = fsym->natural_name ();
2796
2797 /* If we have a function with a C++ name, try to extract just
2798 the function part. Do not try this for non-functions (e.g.
2799 function pointers). */
2800 if (qualified_name
2801 && (check_typedef (SYMBOL_TYPE (fsym))->code ()
2802 == TYPE_CODE_FUNC))
2803 {
2804 temp_func = cp_func_name (qualified_name);
2805
2806 /* If cp_func_name did not remove anything, the name of the
2807 symbol did not include scope or argument types - it was
2808 probably a C-style function. */
2809 if (temp_func != nullptr)
2810 {
2811 if (strcmp (temp_func.get (), qualified_name) == 0)
2812 func_name = NULL;
2813 else
2814 func_name = temp_func.get ();
2815 }
2816 }
2817 }
2818 else
2819 {
2820 func_name = name;
2821 qualified_name = name;
2822 }
2823
2824 /* If there was no C++ name, this must be a C-style function or
2825 not a function at all. Just return the same symbol. Do the
2826 same if cp_func_name fails for some reason. */
2827 if (func_name == NULL)
2828 {
2829 *symp = fsym;
2830 return 0;
2831 }
2832
2833 func_oload_champ = find_oload_champ_namespace (args,
2834 func_name,
2835 qualified_name,
2836 &functions,
2837 &func_badness,
2838 no_adl);
2839
2840 if (func_oload_champ >= 0)
2841 func_match_quality = classify_oload_match (func_badness,
2842 args.size (), 0);
2843 }
2844
2845 /* Did we find a match ? */
2846 if (method_oload_champ == -1 && func_oload_champ == -1)
2847 throw_error (NOT_FOUND_ERROR,
2848 _("No symbol \"%s\" in current context."),
2849 name);
2850
2851 /* If we have found both a method match and a function
2852 match, find out which one is better, and calculate match
2853 quality. */
2854 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2855 {
2856 switch (compare_badness (func_badness, method_badness))
2857 {
2858 case 0: /* Top two contenders are equally good. */
2859 /* FIXME: GDB does not support the general ambiguous case.
2860 All candidates should be collected and presented the
2861 user. */
2862 error (_("Ambiguous overload resolution"));
2863 break;
2864 case 1: /* Incomparable top contenders. */
2865 /* This is an error incompatible candidates
2866 should not have been proposed. */
2867 error (_("Internal error: incompatible "
2868 "overload candidates proposed"));
2869 break;
2870 case 2: /* Function champion. */
2871 method_oload_champ = -1;
2872 match_quality = func_match_quality;
2873 break;
2874 case 3: /* Method champion. */
2875 func_oload_champ = -1;
2876 match_quality = method_match_quality;
2877 break;
2878 default:
2879 error (_("Internal error: unexpected overload comparison result"));
2880 break;
2881 }
2882 }
2883 else
2884 {
2885 /* We have either a method match or a function match. */
2886 if (method_oload_champ >= 0)
2887 match_quality = method_match_quality;
2888 else
2889 match_quality = func_match_quality;
2890 }
2891
2892 if (match_quality == INCOMPATIBLE)
2893 {
2894 if (method == METHOD)
2895 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2896 obj_type_name,
2897 (obj_type_name && *obj_type_name) ? "::" : "",
2898 name);
2899 else
2900 error (_("Cannot resolve function %s to any overloaded instance"),
2901 func_name);
2902 }
2903 else if (match_quality == NON_STANDARD)
2904 {
2905 if (method == METHOD)
2906 warning (_("Using non-standard conversion to match "
2907 "method %s%s%s to supplied arguments"),
2908 obj_type_name,
2909 (obj_type_name && *obj_type_name) ? "::" : "",
2910 name);
2911 else
2912 warning (_("Using non-standard conversion to match "
2913 "function %s to supplied arguments"),
2914 func_name);
2915 }
2916
2917 if (staticp != NULL)
2918 *staticp = oload_method_static_p (methods.data (), method_oload_champ);
2919
2920 if (method_oload_champ >= 0)
2921 {
2922 if (src_method_oload_champ >= 0)
2923 {
2924 if (TYPE_FN_FIELD_VIRTUAL_P (methods, method_oload_champ)
2925 && noside != EVAL_AVOID_SIDE_EFFECTS)
2926 {
2927 *valp = value_virtual_fn_field (&temp, methods.data (),
2928 method_oload_champ, basetype,
2929 boffset);
2930 }
2931 else
2932 *valp = value_fn_field (&temp, methods.data (),
2933 method_oload_champ, basetype, boffset);
2934 }
2935 else
2936 *valp = value_from_xmethod
2937 (std::move (xmethods[ext_method_oload_champ]));
2938 }
2939 else
2940 *symp = functions[func_oload_champ];
2941
2942 if (objp)
2943 {
2944 struct type *temp_type = check_typedef (value_type (temp));
2945 struct type *objtype = check_typedef (obj_type);
2946
2947 if (temp_type->code () != TYPE_CODE_PTR
2948 && (objtype->code () == TYPE_CODE_PTR
2949 || TYPE_IS_REFERENCE (objtype)))
2950 {
2951 temp = value_addr (temp);
2952 }
2953 *objp = temp;
2954 }
2955
2956 switch (match_quality)
2957 {
2958 case INCOMPATIBLE:
2959 return 100;
2960 case NON_STANDARD:
2961 return 10;
2962 default: /* STANDARD */
2963 return 0;
2964 }
2965 }
2966
2967 /* Find the best overload match, searching for FUNC_NAME in namespaces
2968 contained in QUALIFIED_NAME until it either finds a good match or
2969 runs out of namespaces. It stores the overloaded functions in
2970 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. If NO_ADL,
2971 argument dependent lookup is not performed. */
2972
2973 static int
2974 find_oload_champ_namespace (gdb::array_view<value *> args,
2975 const char *func_name,
2976 const char *qualified_name,
2977 std::vector<symbol *> *oload_syms,
2978 badness_vector *oload_champ_bv,
2979 const int no_adl)
2980 {
2981 int oload_champ;
2982
2983 find_oload_champ_namespace_loop (args,
2984 func_name,
2985 qualified_name, 0,
2986 oload_syms, oload_champ_bv,
2987 &oload_champ,
2988 no_adl);
2989
2990 return oload_champ;
2991 }
2992
2993 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2994 how deep we've looked for namespaces, and the champ is stored in
2995 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2996 if it isn't. Other arguments are the same as in
2997 find_oload_champ_namespace. */
2998
2999 static int
3000 find_oload_champ_namespace_loop (gdb::array_view<value *> args,
3001 const char *func_name,
3002 const char *qualified_name,
3003 int namespace_len,
3004 std::vector<symbol *> *oload_syms,
3005 badness_vector *oload_champ_bv,
3006 int *oload_champ,
3007 const int no_adl)
3008 {
3009 int next_namespace_len = namespace_len;
3010 int searched_deeper = 0;
3011 int new_oload_champ;
3012 char *new_namespace;
3013
3014 if (next_namespace_len != 0)
3015 {
3016 gdb_assert (qualified_name[next_namespace_len] == ':');
3017 next_namespace_len += 2;
3018 }
3019 next_namespace_len +=
3020 cp_find_first_component (qualified_name + next_namespace_len);
3021
3022 /* First, see if we have a deeper namespace we can search in.
3023 If we get a good match there, use it. */
3024
3025 if (qualified_name[next_namespace_len] == ':')
3026 {
3027 searched_deeper = 1;
3028
3029 if (find_oload_champ_namespace_loop (args,
3030 func_name, qualified_name,
3031 next_namespace_len,
3032 oload_syms, oload_champ_bv,
3033 oload_champ, no_adl))
3034 {
3035 return 1;
3036 }
3037 };
3038
3039 /* If we reach here, either we're in the deepest namespace or we
3040 didn't find a good match in a deeper namespace. But, in the
3041 latter case, we still have a bad match in a deeper namespace;
3042 note that we might not find any match at all in the current
3043 namespace. (There's always a match in the deepest namespace,
3044 because this overload mechanism only gets called if there's a
3045 function symbol to start off with.) */
3046
3047 new_namespace = (char *) alloca (namespace_len + 1);
3048 strncpy (new_namespace, qualified_name, namespace_len);
3049 new_namespace[namespace_len] = '\0';
3050
3051 std::vector<symbol *> new_oload_syms
3052 = make_symbol_overload_list (func_name, new_namespace);
3053
3054 /* If we have reached the deepest level perform argument
3055 determined lookup. */
3056 if (!searched_deeper && !no_adl)
3057 {
3058 int ix;
3059 struct type **arg_types;
3060
3061 /* Prepare list of argument types for overload resolution. */
3062 arg_types = (struct type **)
3063 alloca (args.size () * (sizeof (struct type *)));
3064 for (ix = 0; ix < args.size (); ix++)
3065 arg_types[ix] = value_type (args[ix]);
3066 add_symbol_overload_list_adl ({arg_types, args.size ()}, func_name,
3067 &new_oload_syms);
3068 }
3069
3070 badness_vector new_oload_champ_bv;
3071 new_oload_champ = find_oload_champ (args,
3072 new_oload_syms.size (),
3073 NULL, NULL, new_oload_syms.data (),
3074 &new_oload_champ_bv);
3075
3076 /* Case 1: We found a good match. Free earlier matches (if any),
3077 and return it. Case 2: We didn't find a good match, but we're
3078 not the deepest function. Then go with the bad match that the
3079 deeper function found. Case 3: We found a bad match, and we're
3080 the deepest function. Then return what we found, even though
3081 it's a bad match. */
3082
3083 if (new_oload_champ != -1
3084 && classify_oload_match (new_oload_champ_bv, args.size (), 0) == STANDARD)
3085 {
3086 *oload_syms = std::move (new_oload_syms);
3087 *oload_champ = new_oload_champ;
3088 *oload_champ_bv = std::move (new_oload_champ_bv);
3089 return 1;
3090 }
3091 else if (searched_deeper)
3092 {
3093 return 0;
3094 }
3095 else
3096 {
3097 *oload_syms = std::move (new_oload_syms);
3098 *oload_champ = new_oload_champ;
3099 *oload_champ_bv = std::move (new_oload_champ_bv);
3100 return 0;
3101 }
3102 }
3103
3104 /* Look for a function to take ARGS. Find the best match from among
3105 the overloaded methods or functions given by METHODS or FUNCTIONS
3106 or XMETHODS, respectively. One, and only one of METHODS, FUNCTIONS
3107 and XMETHODS can be non-NULL.
3108
3109 NUM_FNS is the length of the array pointed at by METHODS, FUNCTIONS
3110 or XMETHODS, whichever is non-NULL.
3111
3112 Return the index of the best match; store an indication of the
3113 quality of the match in OLOAD_CHAMP_BV. */
3114
3115 static int
3116 find_oload_champ (gdb::array_view<value *> args,
3117 size_t num_fns,
3118 fn_field *methods,
3119 xmethod_worker_up *xmethods,
3120 symbol **functions,
3121 badness_vector *oload_champ_bv)
3122 {
3123 /* A measure of how good an overloaded instance is. */
3124 badness_vector bv;
3125 /* Index of best overloaded function. */
3126 int oload_champ = -1;
3127 /* Current ambiguity state for overload resolution. */
3128 int oload_ambiguous = 0;
3129 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
3130
3131 /* A champion can be found among methods alone, or among functions
3132 alone, or in xmethods alone, but not in more than one of these
3133 groups. */
3134 gdb_assert ((methods != NULL) + (functions != NULL) + (xmethods != NULL)
3135 == 1);
3136
3137 /* Consider each candidate in turn. */
3138 for (size_t ix = 0; ix < num_fns; ix++)
3139 {
3140 int jj;
3141 int static_offset = 0;
3142 std::vector<type *> parm_types;
3143
3144 if (xmethods != NULL)
3145 parm_types = xmethods[ix]->get_arg_types ();
3146 else
3147 {
3148 size_t nparms;
3149
3150 if (methods != NULL)
3151 {
3152 nparms = TYPE_FN_FIELD_TYPE (methods, ix)->num_fields ();
3153 static_offset = oload_method_static_p (methods, ix);
3154 }
3155 else
3156 nparms = SYMBOL_TYPE (functions[ix])->num_fields ();
3157
3158 parm_types.reserve (nparms);
3159 for (jj = 0; jj < nparms; jj++)
3160 {
3161 type *t = (methods != NULL
3162 ? (TYPE_FN_FIELD_ARGS (methods, ix)[jj].type ())
3163 : SYMBOL_TYPE (functions[ix])->field (jj).type ());
3164 parm_types.push_back (t);
3165 }
3166 }
3167
3168 /* Compare parameter types to supplied argument types. Skip
3169 THIS for static methods. */
3170 bv = rank_function (parm_types,
3171 args.slice (static_offset));
3172
3173 if (overload_debug)
3174 {
3175 if (methods != NULL)
3176 fprintf_filtered (gdb_stderr,
3177 "Overloaded method instance %s, # of parms %d\n",
3178 methods[ix].physname, (int) parm_types.size ());
3179 else if (xmethods != NULL)
3180 fprintf_filtered (gdb_stderr,
3181 "Xmethod worker, # of parms %d\n",
3182 (int) parm_types.size ());
3183 else
3184 fprintf_filtered (gdb_stderr,
3185 "Overloaded function instance "
3186 "%s # of parms %d\n",
3187 functions[ix]->demangled_name (),
3188 (int) parm_types.size ());
3189
3190 fprintf_filtered (gdb_stderr,
3191 "...Badness of length : {%d, %d}\n",
3192 bv[0].rank, bv[0].subrank);
3193
3194 for (jj = 1; jj < bv.size (); jj++)
3195 fprintf_filtered (gdb_stderr,
3196 "...Badness of arg %d : {%d, %d}\n",
3197 jj, bv[jj].rank, bv[jj].subrank);
3198 }
3199
3200 if (oload_champ_bv->empty ())
3201 {
3202 *oload_champ_bv = std::move (bv);
3203 oload_champ = 0;
3204 }
3205 else /* See whether current candidate is better or worse than
3206 previous best. */
3207 switch (compare_badness (bv, *oload_champ_bv))
3208 {
3209 case 0: /* Top two contenders are equally good. */
3210 oload_ambiguous = 1;
3211 break;
3212 case 1: /* Incomparable top contenders. */
3213 oload_ambiguous = 2;
3214 break;
3215 case 2: /* New champion, record details. */
3216 *oload_champ_bv = std::move (bv);
3217 oload_ambiguous = 0;
3218 oload_champ = ix;
3219 break;
3220 case 3:
3221 default:
3222 break;
3223 }
3224 if (overload_debug)
3225 fprintf_filtered (gdb_stderr, "Overload resolution "
3226 "champion is %d, ambiguous? %d\n",
3227 oload_champ, oload_ambiguous);
3228 }
3229
3230 return oload_champ;
3231 }
3232
3233 /* Return 1 if we're looking at a static method, 0 if we're looking at
3234 a non-static method or a function that isn't a method. */
3235
3236 static int
3237 oload_method_static_p (struct fn_field *fns_ptr, int index)
3238 {
3239 if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3240 return 1;
3241 else
3242 return 0;
3243 }
3244
3245 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3246
3247 static enum oload_classification
3248 classify_oload_match (const badness_vector &oload_champ_bv,
3249 int nargs,
3250 int static_offset)
3251 {
3252 int ix;
3253 enum oload_classification worst = STANDARD;
3254
3255 for (ix = 1; ix <= nargs - static_offset; ix++)
3256 {
3257 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3258 or worse return INCOMPATIBLE. */
3259 if (compare_ranks (oload_champ_bv[ix],
3260 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3261 return INCOMPATIBLE; /* Truly mismatched types. */
3262 /* Otherwise If this conversion is as bad as
3263 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3264 else if (compare_ranks (oload_champ_bv[ix],
3265 NS_POINTER_CONVERSION_BADNESS) <= 0)
3266 worst = NON_STANDARD; /* Non-standard type conversions
3267 needed. */
3268 }
3269
3270 /* If no INCOMPATIBLE classification was found, return the worst one
3271 that was found (if any). */
3272 return worst;
3273 }
3274
3275 /* C++: return 1 is NAME is a legitimate name for the destructor of
3276 type TYPE. If TYPE does not have a destructor, or if NAME is
3277 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3278 have CHECK_TYPEDEF applied, this function will apply it itself. */
3279
3280 int
3281 destructor_name_p (const char *name, struct type *type)
3282 {
3283 if (name[0] == '~')
3284 {
3285 const char *dname = type_name_or_error (type);
3286 const char *cp = strchr (dname, '<');
3287 unsigned int len;
3288
3289 /* Do not compare the template part for template classes. */
3290 if (cp == NULL)
3291 len = strlen (dname);
3292 else
3293 len = cp - dname;
3294 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3295 error (_("name of destructor must equal name of class"));
3296 else
3297 return 1;
3298 }
3299 return 0;
3300 }
3301
3302 /* Find an enum constant named NAME in TYPE. TYPE must be an "enum
3303 class". If the name is found, return a value representing it;
3304 otherwise throw an exception. */
3305
3306 static struct value *
3307 enum_constant_from_type (struct type *type, const char *name)
3308 {
3309 int i;
3310 int name_len = strlen (name);
3311
3312 gdb_assert (type->code () == TYPE_CODE_ENUM
3313 && TYPE_DECLARED_CLASS (type));
3314
3315 for (i = TYPE_N_BASECLASSES (type); i < type->num_fields (); ++i)
3316 {
3317 const char *fname = TYPE_FIELD_NAME (type, i);
3318 int len;
3319
3320 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_ENUMVAL
3321 || fname == NULL)
3322 continue;
3323
3324 /* Look for the trailing "::NAME", since enum class constant
3325 names are qualified here. */
3326 len = strlen (fname);
3327 if (len + 2 >= name_len
3328 && fname[len - name_len - 2] == ':'
3329 && fname[len - name_len - 1] == ':'
3330 && strcmp (&fname[len - name_len], name) == 0)
3331 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, i));
3332 }
3333
3334 error (_("no constant named \"%s\" in enum \"%s\""),
3335 name, type->name ());
3336 }
3337
3338 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3339 return the appropriate member (or the address of the member, if
3340 WANT_ADDRESS). This function is used to resolve user expressions
3341 of the form "DOMAIN::NAME". For more details on what happens, see
3342 the comment before value_struct_elt_for_reference. */
3343
3344 struct value *
3345 value_aggregate_elt (struct type *curtype, const char *name,
3346 struct type *expect_type, int want_address,
3347 enum noside noside)
3348 {
3349 switch (curtype->code ())
3350 {
3351 case TYPE_CODE_STRUCT:
3352 case TYPE_CODE_UNION:
3353 return value_struct_elt_for_reference (curtype, 0, curtype,
3354 name, expect_type,
3355 want_address, noside);
3356 case TYPE_CODE_NAMESPACE:
3357 return value_namespace_elt (curtype, name,
3358 want_address, noside);
3359
3360 case TYPE_CODE_ENUM:
3361 return enum_constant_from_type (curtype, name);
3362
3363 default:
3364 internal_error (__FILE__, __LINE__,
3365 _("non-aggregate type in value_aggregate_elt"));
3366 }
3367 }
3368
3369 /* Compares the two method/function types T1 and T2 for "equality"
3370 with respect to the methods' parameters. If the types of the
3371 two parameter lists are the same, returns 1; 0 otherwise. This
3372 comparison may ignore any artificial parameters in T1 if
3373 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3374 the first artificial parameter in T1, assumed to be a 'this' pointer.
3375
3376 The type T2 is expected to have come from make_params (in eval.c). */
3377
3378 static int
3379 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3380 {
3381 int start = 0;
3382
3383 if (t1->num_fields () > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3384 ++start;
3385
3386 /* If skipping artificial fields, find the first real field
3387 in T1. */
3388 if (skip_artificial)
3389 {
3390 while (start < t1->num_fields ()
3391 && TYPE_FIELD_ARTIFICIAL (t1, start))
3392 ++start;
3393 }
3394
3395 /* Now compare parameters. */
3396
3397 /* Special case: a method taking void. T1 will contain no
3398 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3399 if ((t1->num_fields () - start) == 0 && t2->num_fields () == 1
3400 && t2->field (0).type ()->code () == TYPE_CODE_VOID)
3401 return 1;
3402
3403 if ((t1->num_fields () - start) == t2->num_fields ())
3404 {
3405 int i;
3406
3407 for (i = 0; i < t2->num_fields (); ++i)
3408 {
3409 if (compare_ranks (rank_one_type (t1->field (start + i).type (),
3410 t2->field (i).type (), NULL),
3411 EXACT_MATCH_BADNESS) != 0)
3412 return 0;
3413 }
3414
3415 return 1;
3416 }
3417
3418 return 0;
3419 }
3420
3421 /* C++: Given an aggregate type VT, and a class type CLS, search
3422 recursively for CLS using value V; If found, store the offset
3423 which is either fetched from the virtual base pointer if CLS
3424 is virtual or accumulated offset of its parent classes if
3425 CLS is non-virtual in *BOFFS, set ISVIRT to indicate if CLS
3426 is virtual, and return true. If not found, return false. */
3427
3428 static bool
3429 get_baseclass_offset (struct type *vt, struct type *cls,
3430 struct value *v, int *boffs, bool *isvirt)
3431 {
3432 for (int i = 0; i < TYPE_N_BASECLASSES (vt); i++)
3433 {
3434 struct type *t = vt->field (i).type ();
3435 if (types_equal (t, cls))
3436 {
3437 if (BASETYPE_VIA_VIRTUAL (vt, i))
3438 {
3439 const gdb_byte *adr = value_contents_for_printing (v);
3440 *boffs = baseclass_offset (vt, i, adr, value_offset (v),
3441 value_as_long (v), v);
3442 *isvirt = true;
3443 }
3444 else
3445 *isvirt = false;
3446 return true;
3447 }
3448
3449 if (get_baseclass_offset (check_typedef (t), cls, v, boffs, isvirt))
3450 {
3451 if (*isvirt == false) /* Add non-virtual base offset. */
3452 {
3453 const gdb_byte *adr = value_contents_for_printing (v);
3454 *boffs += baseclass_offset (vt, i, adr, value_offset (v),
3455 value_as_long (v), v);
3456 }
3457 return true;
3458 }
3459 }
3460
3461 return false;
3462 }
3463
3464 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3465 return the address of this member as a "pointer to member" type.
3466 If INTYPE is non-null, then it will be the type of the member we
3467 are looking for. This will help us resolve "pointers to member
3468 functions". This function is used to resolve user expressions of
3469 the form "DOMAIN::NAME". */
3470
3471 static struct value *
3472 value_struct_elt_for_reference (struct type *domain, int offset,
3473 struct type *curtype, const char *name,
3474 struct type *intype,
3475 int want_address,
3476 enum noside noside)
3477 {
3478 struct type *t = check_typedef (curtype);
3479 int i;
3480 struct value *result;
3481
3482 if (t->code () != TYPE_CODE_STRUCT
3483 && t->code () != TYPE_CODE_UNION)
3484 error (_("Internal error: non-aggregate type "
3485 "to value_struct_elt_for_reference"));
3486
3487 for (i = t->num_fields () - 1; i >= TYPE_N_BASECLASSES (t); i--)
3488 {
3489 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3490
3491 if (t_field_name && strcmp (t_field_name, name) == 0)
3492 {
3493 if (field_is_static (&t->field (i)))
3494 {
3495 struct value *v = value_static_field (t, i);
3496 if (want_address)
3497 v = value_addr (v);
3498 return v;
3499 }
3500 if (TYPE_FIELD_PACKED (t, i))
3501 error (_("pointers to bitfield members not allowed"));
3502
3503 if (want_address)
3504 return value_from_longest
3505 (lookup_memberptr_type (t->field (i).type (), domain),
3506 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3507 else if (noside != EVAL_NORMAL)
3508 return allocate_value (t->field (i).type ());
3509 else
3510 {
3511 /* Try to evaluate NAME as a qualified name with implicit
3512 this pointer. In this case, attempt to return the
3513 equivalent to `this->*(&TYPE::NAME)'. */
3514 struct value *v = value_of_this_silent (current_language);
3515 if (v != NULL)
3516 {
3517 struct value *ptr, *this_v = v;
3518 long mem_offset;
3519 struct type *type, *tmp;
3520
3521 ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
3522 type = check_typedef (value_type (ptr));
3523 gdb_assert (type != NULL
3524 && type->code () == TYPE_CODE_MEMBERPTR);
3525 tmp = lookup_pointer_type (TYPE_SELF_TYPE (type));
3526 v = value_cast_pointers (tmp, v, 1);
3527 mem_offset = value_as_long (ptr);
3528 if (domain != curtype)
3529 {
3530 /* Find class offset of type CURTYPE from either its
3531 parent type DOMAIN or the type of implied this. */
3532 int boff = 0;
3533 bool isvirt = false;
3534 if (get_baseclass_offset (domain, curtype, v, &boff,
3535 &isvirt))
3536 mem_offset += boff;
3537 else
3538 {
3539 struct type *p = check_typedef (value_type (this_v));
3540 p = check_typedef (TYPE_TARGET_TYPE (p));
3541 if (get_baseclass_offset (p, curtype, this_v,
3542 &boff, &isvirt))
3543 mem_offset += boff;
3544 }
3545 }
3546 tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type));
3547 result = value_from_pointer (tmp,
3548 value_as_long (v) + mem_offset);
3549 return value_ind (result);
3550 }
3551
3552 error (_("Cannot reference non-static field \"%s\""), name);
3553 }
3554 }
3555 }
3556
3557 /* C++: If it was not found as a data field, then try to return it
3558 as a pointer to a method. */
3559
3560 /* Perform all necessary dereferencing. */
3561 while (intype && intype->code () == TYPE_CODE_PTR)
3562 intype = TYPE_TARGET_TYPE (intype);
3563
3564 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3565 {
3566 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3567
3568 if (t_field_name && strcmp (t_field_name, name) == 0)
3569 {
3570 int j;
3571 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3572 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3573
3574 check_stub_method_group (t, i);
3575
3576 if (intype)
3577 {
3578 for (j = 0; j < len; ++j)
3579 {
3580 if (TYPE_CONST (intype) != TYPE_FN_FIELD_CONST (f, j))
3581 continue;
3582 if (TYPE_VOLATILE (intype) != TYPE_FN_FIELD_VOLATILE (f, j))
3583 continue;
3584
3585 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3586 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3587 intype, 1))
3588 break;
3589 }
3590
3591 if (j == len)
3592 error (_("no member function matches "
3593 "that type instantiation"));
3594 }
3595 else
3596 {
3597 int ii;
3598
3599 j = -1;
3600 for (ii = 0; ii < len; ++ii)
3601 {
3602 /* Skip artificial methods. This is necessary if,
3603 for example, the user wants to "print
3604 subclass::subclass" with only one user-defined
3605 constructor. There is no ambiguity in this case.
3606 We are careful here to allow artificial methods
3607 if they are the unique result. */
3608 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3609 {
3610 if (j == -1)
3611 j = ii;
3612 continue;
3613 }
3614
3615 /* Desired method is ambiguous if more than one
3616 method is defined. */
3617 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3618 error (_("non-unique member `%s' requires "
3619 "type instantiation"), name);
3620
3621 j = ii;
3622 }
3623
3624 if (j == -1)
3625 error (_("no matching member function"));
3626 }
3627
3628 if (TYPE_FN_FIELD_STATIC_P (f, j))
3629 {
3630 struct symbol *s =
3631 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3632 0, VAR_DOMAIN, 0).symbol;
3633
3634 if (s == NULL)
3635 return NULL;
3636
3637 if (want_address)
3638 return value_addr (read_var_value (s, 0, 0));
3639 else
3640 return read_var_value (s, 0, 0);
3641 }
3642
3643 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3644 {
3645 if (want_address)
3646 {
3647 result = allocate_value
3648 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3649 cplus_make_method_ptr (value_type (result),
3650 value_contents_writeable (result),
3651 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3652 }
3653 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3654 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3655 else
3656 error (_("Cannot reference virtual member function \"%s\""),
3657 name);
3658 }
3659 else
3660 {
3661 struct symbol *s =
3662 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3663 0, VAR_DOMAIN, 0).symbol;
3664
3665 if (s == NULL)
3666 return NULL;
3667
3668 struct value *v = read_var_value (s, 0, 0);
3669 if (!want_address)
3670 result = v;
3671 else
3672 {
3673 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3674 cplus_make_method_ptr (value_type (result),
3675 value_contents_writeable (result),
3676 value_address (v), 0);
3677 }
3678 }
3679 return result;
3680 }
3681 }
3682 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3683 {
3684 struct value *v;
3685 int base_offset;
3686
3687 if (BASETYPE_VIA_VIRTUAL (t, i))
3688 base_offset = 0;
3689 else
3690 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3691 v = value_struct_elt_for_reference (domain,
3692 offset + base_offset,
3693 TYPE_BASECLASS (t, i),
3694 name, intype,
3695 want_address, noside);
3696 if (v)
3697 return v;
3698 }
3699
3700 /* As a last chance, pretend that CURTYPE is a namespace, and look
3701 it up that way; this (frequently) works for types nested inside
3702 classes. */
3703
3704 return value_maybe_namespace_elt (curtype, name,
3705 want_address, noside);
3706 }
3707
3708 /* C++: Return the member NAME of the namespace given by the type
3709 CURTYPE. */
3710
3711 static struct value *
3712 value_namespace_elt (const struct type *curtype,
3713 const char *name, int want_address,
3714 enum noside noside)
3715 {
3716 struct value *retval = value_maybe_namespace_elt (curtype, name,
3717 want_address,
3718 noside);
3719
3720 if (retval == NULL)
3721 error (_("No symbol \"%s\" in namespace \"%s\"."),
3722 name, curtype->name ());
3723
3724 return retval;
3725 }
3726
3727 /* A helper function used by value_namespace_elt and
3728 value_struct_elt_for_reference. It looks up NAME inside the
3729 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3730 is a class and NAME refers to a type in CURTYPE itself (as opposed
3731 to, say, some base class of CURTYPE). */
3732
3733 static struct value *
3734 value_maybe_namespace_elt (const struct type *curtype,
3735 const char *name, int want_address,
3736 enum noside noside)
3737 {
3738 const char *namespace_name = curtype->name ();
3739 struct block_symbol sym;
3740 struct value *result;
3741
3742 sym = cp_lookup_symbol_namespace (namespace_name, name,
3743 get_selected_block (0), VAR_DOMAIN);
3744
3745 if (sym.symbol == NULL)
3746 return NULL;
3747 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3748 && (SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF))
3749 result = allocate_value (SYMBOL_TYPE (sym.symbol));
3750 else
3751 result = value_of_variable (sym.symbol, sym.block);
3752
3753 if (want_address)
3754 result = value_addr (result);
3755
3756 return result;
3757 }
3758
3759 /* Given a pointer or a reference value V, find its real (RTTI) type.
3760
3761 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3762 and refer to the values computed for the object pointed to. */
3763
3764 struct type *
3765 value_rtti_indirect_type (struct value *v, int *full,
3766 LONGEST *top, int *using_enc)
3767 {
3768 struct value *target = NULL;
3769 struct type *type, *real_type, *target_type;
3770
3771 type = value_type (v);
3772 type = check_typedef (type);
3773 if (TYPE_IS_REFERENCE (type))
3774 target = coerce_ref (v);
3775 else if (type->code () == TYPE_CODE_PTR)
3776 {
3777
3778 try
3779 {
3780 target = value_ind (v);
3781 }
3782 catch (const gdb_exception_error &except)
3783 {
3784 if (except.error == MEMORY_ERROR)
3785 {
3786 /* value_ind threw a memory error. The pointer is NULL or
3787 contains an uninitialized value: we can't determine any
3788 type. */
3789 return NULL;
3790 }
3791 throw;
3792 }
3793 }
3794 else
3795 return NULL;
3796
3797 real_type = value_rtti_type (target, full, top, using_enc);
3798
3799 if (real_type)
3800 {
3801 /* Copy qualifiers to the referenced object. */
3802 target_type = value_type (target);
3803 real_type = make_cv_type (TYPE_CONST (target_type),
3804 TYPE_VOLATILE (target_type), real_type, NULL);
3805 if (TYPE_IS_REFERENCE (type))
3806 real_type = lookup_reference_type (real_type, type->code ());
3807 else if (type->code () == TYPE_CODE_PTR)
3808 real_type = lookup_pointer_type (real_type);
3809 else
3810 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3811
3812 /* Copy qualifiers to the pointer/reference. */
3813 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3814 real_type, NULL);
3815 }
3816
3817 return real_type;
3818 }
3819
3820 /* Given a value pointed to by ARGP, check its real run-time type, and
3821 if that is different from the enclosing type, create a new value
3822 using the real run-time type as the enclosing type (and of the same
3823 type as ARGP) and return it, with the embedded offset adjusted to
3824 be the correct offset to the enclosed object. RTYPE is the type,
3825 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3826 by value_rtti_type(). If these are available, they can be supplied
3827 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3828 NULL if they're not available. */
3829
3830 struct value *
3831 value_full_object (struct value *argp,
3832 struct type *rtype,
3833 int xfull, int xtop,
3834 int xusing_enc)
3835 {
3836 struct type *real_type;
3837 int full = 0;
3838 LONGEST top = -1;
3839 int using_enc = 0;
3840 struct value *new_val;
3841
3842 if (rtype)
3843 {
3844 real_type = rtype;
3845 full = xfull;
3846 top = xtop;
3847 using_enc = xusing_enc;
3848 }
3849 else
3850 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3851
3852 /* If no RTTI data, or if object is already complete, do nothing. */
3853 if (!real_type || real_type == value_enclosing_type (argp))
3854 return argp;
3855
3856 /* In a destructor we might see a real type that is a superclass of
3857 the object's type. In this case it is better to leave the object
3858 as-is. */
3859 if (full
3860 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3861 return argp;
3862
3863 /* If we have the full object, but for some reason the enclosing
3864 type is wrong, set it. */
3865 /* pai: FIXME -- sounds iffy */
3866 if (full)
3867 {
3868 argp = value_copy (argp);
3869 set_value_enclosing_type (argp, real_type);
3870 return argp;
3871 }
3872
3873 /* Check if object is in memory. */
3874 if (VALUE_LVAL (argp) != lval_memory)
3875 {
3876 warning (_("Couldn't retrieve complete object of RTTI "
3877 "type %s; object may be in register(s)."),
3878 real_type->name ());
3879
3880 return argp;
3881 }
3882
3883 /* All other cases -- retrieve the complete object. */
3884 /* Go back by the computed top_offset from the beginning of the
3885 object, adjusting for the embedded offset of argp if that's what
3886 value_rtti_type used for its computation. */
3887 new_val = value_at_lazy (real_type, value_address (argp) - top +
3888 (using_enc ? 0 : value_embedded_offset (argp)));
3889 deprecated_set_value_type (new_val, value_type (argp));
3890 set_value_embedded_offset (new_val, (using_enc
3891 ? top + value_embedded_offset (argp)
3892 : top));
3893 return new_val;
3894 }
3895
3896
3897 /* Return the value of the local variable, if one exists. Throw error
3898 otherwise, such as if the request is made in an inappropriate context. */
3899
3900 struct value *
3901 value_of_this (const struct language_defn *lang)
3902 {
3903 struct block_symbol sym;
3904 const struct block *b;
3905 struct frame_info *frame;
3906
3907 if (lang->name_of_this () == NULL)
3908 error (_("no `this' in current language"));
3909
3910 frame = get_selected_frame (_("no frame selected"));
3911
3912 b = get_frame_block (frame, NULL);
3913
3914 sym = lookup_language_this (lang, b);
3915 if (sym.symbol == NULL)
3916 error (_("current stack frame does not contain a variable named `%s'"),
3917 lang->name_of_this ());
3918
3919 return read_var_value (sym.symbol, sym.block, frame);
3920 }
3921
3922 /* Return the value of the local variable, if one exists. Return NULL
3923 otherwise. Never throw error. */
3924
3925 struct value *
3926 value_of_this_silent (const struct language_defn *lang)
3927 {
3928 struct value *ret = NULL;
3929
3930 try
3931 {
3932 ret = value_of_this (lang);
3933 }
3934 catch (const gdb_exception_error &except)
3935 {
3936 }
3937
3938 return ret;
3939 }
3940
3941 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3942 elements long, starting at LOWBOUND. The result has the same lower
3943 bound as the original ARRAY. */
3944
3945 struct value *
3946 value_slice (struct value *array, int lowbound, int length)
3947 {
3948 struct type *slice_range_type, *slice_type, *range_type;
3949 LONGEST lowerbound, upperbound;
3950 struct value *slice;
3951 struct type *array_type;
3952
3953 array_type = check_typedef (value_type (array));
3954 if (array_type->code () != TYPE_CODE_ARRAY
3955 && array_type->code () != TYPE_CODE_STRING)
3956 error (_("cannot take slice of non-array"));
3957
3958 if (type_not_allocated (array_type))
3959 error (_("array not allocated"));
3960 if (type_not_associated (array_type))
3961 error (_("array not associated"));
3962
3963 range_type = array_type->index_type ();
3964 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
3965 error (_("slice from bad array or bitstring"));
3966
3967 if (lowbound < lowerbound || length < 0
3968 || lowbound + length - 1 > upperbound)
3969 error (_("slice out of range"));
3970
3971 /* FIXME-type-allocation: need a way to free this type when we are
3972 done with it. */
3973 slice_range_type = create_static_range_type (NULL,
3974 TYPE_TARGET_TYPE (range_type),
3975 lowbound,
3976 lowbound + length - 1);
3977
3978 {
3979 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3980 LONGEST offset
3981 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3982
3983 slice_type = create_array_type (NULL,
3984 element_type,
3985 slice_range_type);
3986 slice_type->set_code (array_type->code ());
3987
3988 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3989 slice = allocate_value_lazy (slice_type);
3990 else
3991 {
3992 slice = allocate_value (slice_type);
3993 value_contents_copy (slice, 0, array, offset,
3994 type_length_units (slice_type));
3995 }
3996
3997 set_value_component_location (slice, array);
3998 set_value_offset (slice, value_offset (array) + offset);
3999 }
4000
4001 return slice;
4002 }
4003
4004 /* See value.h. */
4005
4006 struct value *
4007 value_literal_complex (struct value *arg1,
4008 struct value *arg2,
4009 struct type *type)
4010 {
4011 struct value *val;
4012 struct type *real_type = TYPE_TARGET_TYPE (type);
4013
4014 val = allocate_value (type);
4015 arg1 = value_cast (real_type, arg1);
4016 arg2 = value_cast (real_type, arg2);
4017
4018 memcpy (value_contents_raw (val),
4019 value_contents (arg1), TYPE_LENGTH (real_type));
4020 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
4021 value_contents (arg2), TYPE_LENGTH (real_type));
4022 return val;
4023 }
4024
4025 /* See value.h. */
4026
4027 struct value *
4028 value_real_part (struct value *value)
4029 {
4030 struct type *type = check_typedef (value_type (value));
4031 struct type *ttype = TYPE_TARGET_TYPE (type);
4032
4033 gdb_assert (type->code () == TYPE_CODE_COMPLEX);
4034 return value_from_component (value, ttype, 0);
4035 }
4036
4037 /* See value.h. */
4038
4039 struct value *
4040 value_imaginary_part (struct value *value)
4041 {
4042 struct type *type = check_typedef (value_type (value));
4043 struct type *ttype = TYPE_TARGET_TYPE (type);
4044
4045 gdb_assert (type->code () == TYPE_CODE_COMPLEX);
4046 return value_from_component (value, ttype,
4047 TYPE_LENGTH (check_typedef (ttype)));
4048 }
4049
4050 /* Cast a value into the appropriate complex data type. */
4051
4052 static struct value *
4053 cast_into_complex (struct type *type, struct value *val)
4054 {
4055 struct type *real_type = TYPE_TARGET_TYPE (type);
4056
4057 if (value_type (val)->code () == TYPE_CODE_COMPLEX)
4058 {
4059 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
4060 struct value *re_val = allocate_value (val_real_type);
4061 struct value *im_val = allocate_value (val_real_type);
4062
4063 memcpy (value_contents_raw (re_val),
4064 value_contents (val), TYPE_LENGTH (val_real_type));
4065 memcpy (value_contents_raw (im_val),
4066 value_contents (val) + TYPE_LENGTH (val_real_type),
4067 TYPE_LENGTH (val_real_type));
4068
4069 return value_literal_complex (re_val, im_val, type);
4070 }
4071 else if (value_type (val)->code () == TYPE_CODE_FLT
4072 || value_type (val)->code () == TYPE_CODE_INT)
4073 return value_literal_complex (val,
4074 value_zero (real_type, not_lval),
4075 type);
4076 else
4077 error (_("cannot cast non-number to complex"));
4078 }
4079
4080 void _initialize_valops ();
4081 void
4082 _initialize_valops ()
4083 {
4084 add_setshow_boolean_cmd ("overload-resolution", class_support,
4085 &overload_resolution, _("\
4086 Set overload resolution in evaluating C++ functions."), _("\
4087 Show overload resolution in evaluating C++ functions."),
4088 NULL, NULL,
4089 show_overload_resolution,
4090 &setlist, &showlist);
4091 overload_resolution = 1;
4092 }
This page took 0.225996 seconds and 4 git commands to generate.