gdb: ignore generated gcore
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "dfp.h"
38 #include "user-regs.h"
39 #include "tracepoint.h"
40 #include <errno.h>
41 #include "gdb_string.h"
42 #include "gdb_assert.h"
43 #include "cp-support.h"
44 #include "observer.h"
45 #include "objfiles.h"
46 #include "symtab.h"
47 #include "exceptions.h"
48
49 extern unsigned int overload_debug;
50 /* Local functions. */
51
52 static int typecmp (int staticp, int varargs, int nargs,
53 struct field t1[], struct value *t2[]);
54
55 static struct value *search_struct_field (const char *, struct value *,
56 int, struct type *, int);
57
58 static struct value *search_struct_method (const char *, struct value **,
59 struct value **,
60 int, int *, struct type *);
61
62 static int find_oload_champ_namespace (struct value **, int,
63 const char *, const char *,
64 struct symbol ***,
65 struct badness_vector **,
66 const int no_adl);
67
68 static
69 int find_oload_champ_namespace_loop (struct value **, int,
70 const char *, const char *,
71 int, struct symbol ***,
72 struct badness_vector **, int *,
73 const int no_adl);
74
75 static int find_oload_champ (struct value **, int, int, int,
76 struct fn_field *, struct symbol **,
77 struct badness_vector **);
78
79 static int oload_method_static (int, struct fn_field *, int);
80
81 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
82
83 static enum
84 oload_classification classify_oload_match (struct badness_vector *,
85 int, int);
86
87 static struct value *value_struct_elt_for_reference (struct type *,
88 int, struct type *,
89 char *,
90 struct type *,
91 int, enum noside);
92
93 static struct value *value_namespace_elt (const struct type *,
94 char *, int , enum noside);
95
96 static struct value *value_maybe_namespace_elt (const struct type *,
97 char *, int,
98 enum noside);
99
100 static CORE_ADDR allocate_space_in_inferior (int);
101
102 static struct value *cast_into_complex (struct type *, struct value *);
103
104 static struct fn_field *find_method_list (struct value **, const char *,
105 int, struct type *, int *,
106 struct type **, int *);
107
108 void _initialize_valops (void);
109
110 #if 0
111 /* Flag for whether we want to abandon failed expression evals by
112 default. */
113
114 static int auto_abandon = 0;
115 #endif
116
117 int overload_resolution = 0;
118 static void
119 show_overload_resolution (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c,
121 const char *value)
122 {
123 fprintf_filtered (file, _("Overload resolution in evaluating "
124 "C++ functions is %s.\n"),
125 value);
126 }
127
128 /* Find the address of function name NAME in the inferior. If OBJF_P
129 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
130 is defined. */
131
132 struct value *
133 find_function_in_inferior (const char *name, struct objfile **objf_p)
134 {
135 struct symbol *sym;
136
137 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
138 if (sym != NULL)
139 {
140 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
141 {
142 error (_("\"%s\" exists in this program but is not a function."),
143 name);
144 }
145
146 if (objf_p)
147 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
148
149 return value_of_variable (sym, NULL);
150 }
151 else
152 {
153 struct minimal_symbol *msymbol =
154 lookup_minimal_symbol (name, NULL, NULL);
155
156 if (msymbol != NULL)
157 {
158 struct objfile *objfile = msymbol_objfile (msymbol);
159 struct gdbarch *gdbarch = get_objfile_arch (objfile);
160
161 struct type *type;
162 CORE_ADDR maddr;
163 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
164 type = lookup_function_type (type);
165 type = lookup_pointer_type (type);
166 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
167
168 if (objf_p)
169 *objf_p = objfile;
170
171 return value_from_pointer (type, maddr);
172 }
173 else
174 {
175 if (!target_has_execution)
176 error (_("evaluation of this expression "
177 "requires the target program to be active"));
178 else
179 error (_("evaluation of this expression requires the "
180 "program to have a function \"%s\"."),
181 name);
182 }
183 }
184 }
185
186 /* Allocate NBYTES of space in the inferior using the inferior's
187 malloc and return a value that is a pointer to the allocated
188 space. */
189
190 struct value *
191 value_allocate_space_in_inferior (int len)
192 {
193 struct objfile *objf;
194 struct value *val = find_function_in_inferior ("malloc", &objf);
195 struct gdbarch *gdbarch = get_objfile_arch (objf);
196 struct value *blocklen;
197
198 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
199 val = call_function_by_hand (val, 1, &blocklen);
200 if (value_logical_not (val))
201 {
202 if (!target_has_execution)
203 error (_("No memory available to program now: "
204 "you need to start the target first"));
205 else
206 error (_("No memory available to program: call to malloc failed"));
207 }
208 return val;
209 }
210
211 static CORE_ADDR
212 allocate_space_in_inferior (int len)
213 {
214 return value_as_long (value_allocate_space_in_inferior (len));
215 }
216
217 /* Cast struct value VAL to type TYPE and return as a value.
218 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
219 for this to work. Typedef to one of the codes is permitted.
220 Returns NULL if the cast is neither an upcast nor a downcast. */
221
222 static struct value *
223 value_cast_structs (struct type *type, struct value *v2)
224 {
225 struct type *t1;
226 struct type *t2;
227 struct value *v;
228
229 gdb_assert (type != NULL && v2 != NULL);
230
231 t1 = check_typedef (type);
232 t2 = check_typedef (value_type (v2));
233
234 /* Check preconditions. */
235 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
236 || TYPE_CODE (t1) == TYPE_CODE_UNION)
237 && !!"Precondition is that type is of STRUCT or UNION kind.");
238 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
239 || TYPE_CODE (t2) == TYPE_CODE_UNION)
240 && !!"Precondition is that value is of STRUCT or UNION kind");
241
242 if (TYPE_NAME (t1) != NULL
243 && TYPE_NAME (t2) != NULL
244 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
245 return NULL;
246
247 /* Upcasting: look in the type of the source to see if it contains the
248 type of the target as a superclass. If so, we'll need to
249 offset the pointer rather than just change its type. */
250 if (TYPE_NAME (t1) != NULL)
251 {
252 v = search_struct_field (type_name_no_tag (t1),
253 v2, 0, t2, 1);
254 if (v)
255 return v;
256 }
257
258 /* Downcasting: look in the type of the target to see if it contains the
259 type of the source as a superclass. If so, we'll need to
260 offset the pointer rather than just change its type. */
261 if (TYPE_NAME (t2) != NULL)
262 {
263 /* Try downcasting using the run-time type of the value. */
264 int full, top, using_enc;
265 struct type *real_type;
266
267 real_type = value_rtti_type (v2, &full, &top, &using_enc);
268 if (real_type)
269 {
270 v = value_full_object (v2, real_type, full, top, using_enc);
271 v = value_at_lazy (real_type, value_address (v));
272
273 /* We might be trying to cast to the outermost enclosing
274 type, in which case search_struct_field won't work. */
275 if (TYPE_NAME (real_type) != NULL
276 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
277 return v;
278
279 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
280 if (v)
281 return v;
282 }
283
284 /* Try downcasting using information from the destination type
285 T2. This wouldn't work properly for classes with virtual
286 bases, but those were handled above. */
287 v = search_struct_field (type_name_no_tag (t2),
288 value_zero (t1, not_lval), 0, t1, 1);
289 if (v)
290 {
291 /* Downcasting is possible (t1 is superclass of v2). */
292 CORE_ADDR addr2 = value_address (v2);
293
294 addr2 -= value_address (v) + value_embedded_offset (v);
295 return value_at (type, addr2);
296 }
297 }
298
299 return NULL;
300 }
301
302 /* Cast one pointer or reference type to another. Both TYPE and
303 the type of ARG2 should be pointer types, or else both should be
304 reference types. If SUBCLASS_CHECK is non-zero, this will force a
305 check to see whether TYPE is a superclass of ARG2's type. If
306 SUBCLASS_CHECK is zero, then the subclass check is done only when
307 ARG2 is itself non-zero. Returns the new pointer or reference. */
308
309 struct value *
310 value_cast_pointers (struct type *type, struct value *arg2,
311 int subclass_check)
312 {
313 struct type *type1 = check_typedef (type);
314 struct type *type2 = check_typedef (value_type (arg2));
315 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
316 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
317
318 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
319 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
320 && (subclass_check || !value_logical_not (arg2)))
321 {
322 struct value *v2;
323
324 if (TYPE_CODE (type2) == TYPE_CODE_REF)
325 v2 = coerce_ref (arg2);
326 else
327 v2 = value_ind (arg2);
328 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
329 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
330 v2 = value_cast_structs (t1, v2);
331 /* At this point we have what we can have, un-dereference if needed. */
332 if (v2)
333 {
334 struct value *v = value_addr (v2);
335
336 deprecated_set_value_type (v, type);
337 return v;
338 }
339 }
340
341 /* No superclass found, just change the pointer type. */
342 arg2 = value_copy (arg2);
343 deprecated_set_value_type (arg2, type);
344 set_value_enclosing_type (arg2, type);
345 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
346 return arg2;
347 }
348
349 /* Cast value ARG2 to type TYPE and return as a value.
350 More general than a C cast: accepts any two types of the same length,
351 and if ARG2 is an lvalue it can be cast into anything at all. */
352 /* In C++, casts may change pointer or object representations. */
353
354 struct value *
355 value_cast (struct type *type, struct value *arg2)
356 {
357 enum type_code code1;
358 enum type_code code2;
359 int scalar;
360 struct type *type2;
361
362 int convert_to_boolean = 0;
363
364 if (value_type (arg2) == type)
365 return arg2;
366
367 code1 = TYPE_CODE (check_typedef (type));
368
369 /* Check if we are casting struct reference to struct reference. */
370 if (code1 == TYPE_CODE_REF)
371 {
372 /* We dereference type; then we recurse and finally
373 we generate value of the given reference. Nothing wrong with
374 that. */
375 struct type *t1 = check_typedef (type);
376 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
377 struct value *val = value_cast (dereftype, arg2);
378
379 return value_ref (val);
380 }
381
382 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
383
384 if (code2 == TYPE_CODE_REF)
385 /* We deref the value and then do the cast. */
386 return value_cast (type, coerce_ref (arg2));
387
388 CHECK_TYPEDEF (type);
389 code1 = TYPE_CODE (type);
390 arg2 = coerce_ref (arg2);
391 type2 = check_typedef (value_type (arg2));
392
393 /* You can't cast to a reference type. See value_cast_pointers
394 instead. */
395 gdb_assert (code1 != TYPE_CODE_REF);
396
397 /* A cast to an undetermined-length array_type, such as
398 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
399 where N is sizeof(OBJECT)/sizeof(TYPE). */
400 if (code1 == TYPE_CODE_ARRAY)
401 {
402 struct type *element_type = TYPE_TARGET_TYPE (type);
403 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
404
405 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
406 {
407 struct type *range_type = TYPE_INDEX_TYPE (type);
408 int val_length = TYPE_LENGTH (type2);
409 LONGEST low_bound, high_bound, new_length;
410
411 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
412 low_bound = 0, high_bound = 0;
413 new_length = val_length / element_length;
414 if (val_length % element_length != 0)
415 warning (_("array element type size does not "
416 "divide object size in cast"));
417 /* FIXME-type-allocation: need a way to free this type when
418 we are done with it. */
419 range_type = create_range_type ((struct type *) NULL,
420 TYPE_TARGET_TYPE (range_type),
421 low_bound,
422 new_length + low_bound - 1);
423 deprecated_set_value_type (arg2,
424 create_array_type ((struct type *) NULL,
425 element_type,
426 range_type));
427 return arg2;
428 }
429 }
430
431 if (current_language->c_style_arrays
432 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
433 && !TYPE_VECTOR (type2))
434 arg2 = value_coerce_array (arg2);
435
436 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
437 arg2 = value_coerce_function (arg2);
438
439 type2 = check_typedef (value_type (arg2));
440 code2 = TYPE_CODE (type2);
441
442 if (code1 == TYPE_CODE_COMPLEX)
443 return cast_into_complex (type, arg2);
444 if (code1 == TYPE_CODE_BOOL)
445 {
446 code1 = TYPE_CODE_INT;
447 convert_to_boolean = 1;
448 }
449 if (code1 == TYPE_CODE_CHAR)
450 code1 = TYPE_CODE_INT;
451 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
452 code2 = TYPE_CODE_INT;
453
454 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
455 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
456 || code2 == TYPE_CODE_RANGE);
457
458 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
459 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
460 && TYPE_NAME (type) != 0)
461 {
462 struct value *v = value_cast_structs (type, arg2);
463
464 if (v)
465 return v;
466 }
467
468 if (code1 == TYPE_CODE_FLT && scalar)
469 return value_from_double (type, value_as_double (arg2));
470 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
471 {
472 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
473 int dec_len = TYPE_LENGTH (type);
474 gdb_byte dec[16];
475
476 if (code2 == TYPE_CODE_FLT)
477 decimal_from_floating (arg2, dec, dec_len, byte_order);
478 else if (code2 == TYPE_CODE_DECFLOAT)
479 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
480 byte_order, dec, dec_len, byte_order);
481 else
482 /* The only option left is an integral type. */
483 decimal_from_integral (arg2, dec, dec_len, byte_order);
484
485 return value_from_decfloat (type, dec);
486 }
487 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
488 || code1 == TYPE_CODE_RANGE)
489 && (scalar || code2 == TYPE_CODE_PTR
490 || code2 == TYPE_CODE_MEMBERPTR))
491 {
492 LONGEST longest;
493
494 /* When we cast pointers to integers, we mustn't use
495 gdbarch_pointer_to_address to find the address the pointer
496 represents, as value_as_long would. GDB should evaluate
497 expressions just as the compiler would --- and the compiler
498 sees a cast as a simple reinterpretation of the pointer's
499 bits. */
500 if (code2 == TYPE_CODE_PTR)
501 longest = extract_unsigned_integer
502 (value_contents (arg2), TYPE_LENGTH (type2),
503 gdbarch_byte_order (get_type_arch (type2)));
504 else
505 longest = value_as_long (arg2);
506 return value_from_longest (type, convert_to_boolean ?
507 (LONGEST) (longest ? 1 : 0) : longest);
508 }
509 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
510 || code2 == TYPE_CODE_ENUM
511 || code2 == TYPE_CODE_RANGE))
512 {
513 /* TYPE_LENGTH (type) is the length of a pointer, but we really
514 want the length of an address! -- we are really dealing with
515 addresses (i.e., gdb representations) not pointers (i.e.,
516 target representations) here.
517
518 This allows things like "print *(int *)0x01000234" to work
519 without printing a misleading message -- which would
520 otherwise occur when dealing with a target having two byte
521 pointers and four byte addresses. */
522
523 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
524 LONGEST longest = value_as_long (arg2);
525
526 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
527 {
528 if (longest >= ((LONGEST) 1 << addr_bit)
529 || longest <= -((LONGEST) 1 << addr_bit))
530 warning (_("value truncated"));
531 }
532 return value_from_longest (type, longest);
533 }
534 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
535 && value_as_long (arg2) == 0)
536 {
537 struct value *result = allocate_value (type);
538
539 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
540 return result;
541 }
542 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
543 && value_as_long (arg2) == 0)
544 {
545 /* The Itanium C++ ABI represents NULL pointers to members as
546 minus one, instead of biasing the normal case. */
547 return value_from_longest (type, -1);
548 }
549 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
550 && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
551 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
552 error (_("Cannot convert between vector values of different sizes"));
553 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
554 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
555 error (_("can only cast scalar to vector of same size"));
556 else if (code1 == TYPE_CODE_VOID)
557 {
558 return value_zero (type, not_lval);
559 }
560 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
561 {
562 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
563 return value_cast_pointers (type, arg2, 0);
564
565 arg2 = value_copy (arg2);
566 deprecated_set_value_type (arg2, type);
567 set_value_enclosing_type (arg2, type);
568 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
569 return arg2;
570 }
571 else if (VALUE_LVAL (arg2) == lval_memory)
572 return value_at_lazy (type, value_address (arg2));
573 else
574 {
575 error (_("Invalid cast."));
576 return 0;
577 }
578 }
579
580 /* The C++ reinterpret_cast operator. */
581
582 struct value *
583 value_reinterpret_cast (struct type *type, struct value *arg)
584 {
585 struct value *result;
586 struct type *real_type = check_typedef (type);
587 struct type *arg_type, *dest_type;
588 int is_ref = 0;
589 enum type_code dest_code, arg_code;
590
591 /* Do reference, function, and array conversion. */
592 arg = coerce_array (arg);
593
594 /* Attempt to preserve the type the user asked for. */
595 dest_type = type;
596
597 /* If we are casting to a reference type, transform
598 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
599 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
600 {
601 is_ref = 1;
602 arg = value_addr (arg);
603 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
604 real_type = lookup_pointer_type (real_type);
605 }
606
607 arg_type = value_type (arg);
608
609 dest_code = TYPE_CODE (real_type);
610 arg_code = TYPE_CODE (arg_type);
611
612 /* We can convert pointer types, or any pointer type to int, or int
613 type to pointer. */
614 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
615 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
616 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
617 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
618 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
619 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
620 || (dest_code == arg_code
621 && (dest_code == TYPE_CODE_PTR
622 || dest_code == TYPE_CODE_METHODPTR
623 || dest_code == TYPE_CODE_MEMBERPTR)))
624 result = value_cast (dest_type, arg);
625 else
626 error (_("Invalid reinterpret_cast"));
627
628 if (is_ref)
629 result = value_cast (type, value_ref (value_ind (result)));
630
631 return result;
632 }
633
634 /* A helper for value_dynamic_cast. This implements the first of two
635 runtime checks: we iterate over all the base classes of the value's
636 class which are equal to the desired class; if only one of these
637 holds the value, then it is the answer. */
638
639 static int
640 dynamic_cast_check_1 (struct type *desired_type,
641 const gdb_byte *valaddr,
642 int embedded_offset,
643 CORE_ADDR address,
644 struct value *val,
645 struct type *search_type,
646 CORE_ADDR arg_addr,
647 struct type *arg_type,
648 struct value **result)
649 {
650 int i, result_count = 0;
651
652 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
653 {
654 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
655 address, val);
656
657 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
658 {
659 if (address + embedded_offset + offset >= arg_addr
660 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
661 {
662 ++result_count;
663 if (!*result)
664 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
665 address + embedded_offset + offset);
666 }
667 }
668 else
669 result_count += dynamic_cast_check_1 (desired_type,
670 valaddr,
671 embedded_offset + offset,
672 address, val,
673 TYPE_BASECLASS (search_type, i),
674 arg_addr,
675 arg_type,
676 result);
677 }
678
679 return result_count;
680 }
681
682 /* A helper for value_dynamic_cast. This implements the second of two
683 runtime checks: we look for a unique public sibling class of the
684 argument's declared class. */
685
686 static int
687 dynamic_cast_check_2 (struct type *desired_type,
688 const gdb_byte *valaddr,
689 int embedded_offset,
690 CORE_ADDR address,
691 struct value *val,
692 struct type *search_type,
693 struct value **result)
694 {
695 int i, result_count = 0;
696
697 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
698 {
699 int offset;
700
701 if (! BASETYPE_VIA_PUBLIC (search_type, i))
702 continue;
703
704 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
705 address, val);
706 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
707 {
708 ++result_count;
709 if (*result == NULL)
710 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
711 address + embedded_offset + offset);
712 }
713 else
714 result_count += dynamic_cast_check_2 (desired_type,
715 valaddr,
716 embedded_offset + offset,
717 address, val,
718 TYPE_BASECLASS (search_type, i),
719 result);
720 }
721
722 return result_count;
723 }
724
725 /* The C++ dynamic_cast operator. */
726
727 struct value *
728 value_dynamic_cast (struct type *type, struct value *arg)
729 {
730 int full, top, using_enc;
731 struct type *resolved_type = check_typedef (type);
732 struct type *arg_type = check_typedef (value_type (arg));
733 struct type *class_type, *rtti_type;
734 struct value *result, *tem, *original_arg = arg;
735 CORE_ADDR addr;
736 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
737
738 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
739 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
740 error (_("Argument to dynamic_cast must be a pointer or reference type"));
741 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
742 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
743 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
744
745 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
746 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
747 {
748 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
749 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
750 && value_as_long (arg) == 0))
751 error (_("Argument to dynamic_cast does not have pointer type"));
752 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
753 {
754 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
755 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
756 error (_("Argument to dynamic_cast does "
757 "not have pointer to class type"));
758 }
759
760 /* Handle NULL pointers. */
761 if (value_as_long (arg) == 0)
762 return value_zero (type, not_lval);
763
764 arg = value_ind (arg);
765 }
766 else
767 {
768 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
769 error (_("Argument to dynamic_cast does not have class type"));
770 }
771
772 /* If the classes are the same, just return the argument. */
773 if (class_types_same_p (class_type, arg_type))
774 return value_cast (type, arg);
775
776 /* If the target type is a unique base class of the argument's
777 declared type, just cast it. */
778 if (is_ancestor (class_type, arg_type))
779 {
780 if (is_unique_ancestor (class_type, arg))
781 return value_cast (type, original_arg);
782 error (_("Ambiguous dynamic_cast"));
783 }
784
785 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
786 if (! rtti_type)
787 error (_("Couldn't determine value's most derived type for dynamic_cast"));
788
789 /* Compute the most derived object's address. */
790 addr = value_address (arg);
791 if (full)
792 {
793 /* Done. */
794 }
795 else if (using_enc)
796 addr += top;
797 else
798 addr += top + value_embedded_offset (arg);
799
800 /* dynamic_cast<void *> means to return a pointer to the
801 most-derived object. */
802 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
803 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
804 return value_at_lazy (type, addr);
805
806 tem = value_at (type, addr);
807
808 /* The first dynamic check specified in 5.2.7. */
809 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
810 {
811 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
812 return tem;
813 result = NULL;
814 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
815 value_contents_for_printing (tem),
816 value_embedded_offset (tem),
817 value_address (tem), tem,
818 rtti_type, addr,
819 arg_type,
820 &result) == 1)
821 return value_cast (type,
822 is_ref ? value_ref (result) : value_addr (result));
823 }
824
825 /* The second dynamic check specified in 5.2.7. */
826 result = NULL;
827 if (is_public_ancestor (arg_type, rtti_type)
828 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
829 value_contents_for_printing (tem),
830 value_embedded_offset (tem),
831 value_address (tem), tem,
832 rtti_type, &result) == 1)
833 return value_cast (type,
834 is_ref ? value_ref (result) : value_addr (result));
835
836 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
837 return value_zero (type, not_lval);
838
839 error (_("dynamic_cast failed"));
840 }
841
842 /* Create a value of type TYPE that is zero, and return it. */
843
844 struct value *
845 value_zero (struct type *type, enum lval_type lv)
846 {
847 struct value *val = allocate_value (type);
848
849 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
850 return val;
851 }
852
853 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
854
855 struct value *
856 value_one (struct type *type)
857 {
858 struct type *type1 = check_typedef (type);
859 struct value *val;
860
861 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
862 {
863 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
864 gdb_byte v[16];
865
866 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
867 val = value_from_decfloat (type, v);
868 }
869 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
870 {
871 val = value_from_double (type, (DOUBLEST) 1);
872 }
873 else if (is_integral_type (type1))
874 {
875 val = value_from_longest (type, (LONGEST) 1);
876 }
877 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
878 {
879 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
880 int i;
881 LONGEST low_bound, high_bound;
882 struct value *tmp;
883
884 if (!get_array_bounds (type1, &low_bound, &high_bound))
885 error (_("Could not determine the vector bounds"));
886
887 val = allocate_value (type);
888 for (i = 0; i < high_bound - low_bound + 1; i++)
889 {
890 tmp = value_one (eltype);
891 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
892 value_contents_all (tmp), TYPE_LENGTH (eltype));
893 }
894 }
895 else
896 {
897 error (_("Not a numeric type."));
898 }
899
900 /* value_one result is never used for assignments to. */
901 gdb_assert (VALUE_LVAL (val) == not_lval);
902
903 return val;
904 }
905
906 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
907
908 static struct value *
909 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
910 {
911 struct value *val;
912
913 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
914 error (_("Attempt to dereference a generic pointer."));
915
916 val = value_from_contents_and_address (type, NULL, addr);
917
918 if (!lazy)
919 value_fetch_lazy (val);
920
921 return val;
922 }
923
924 /* Return a value with type TYPE located at ADDR.
925
926 Call value_at only if the data needs to be fetched immediately;
927 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
928 value_at_lazy instead. value_at_lazy simply records the address of
929 the data and sets the lazy-evaluation-required flag. The lazy flag
930 is tested in the value_contents macro, which is used if and when
931 the contents are actually required.
932
933 Note: value_at does *NOT* handle embedded offsets; perform such
934 adjustments before or after calling it. */
935
936 struct value *
937 value_at (struct type *type, CORE_ADDR addr)
938 {
939 return get_value_at (type, addr, 0);
940 }
941
942 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
943
944 struct value *
945 value_at_lazy (struct type *type, CORE_ADDR addr)
946 {
947 return get_value_at (type, addr, 1);
948 }
949
950 /* Called only from the value_contents and value_contents_all()
951 macros, if the current data for a variable needs to be loaded into
952 value_contents(VAL). Fetches the data from the user's process, and
953 clears the lazy flag to indicate that the data in the buffer is
954 valid.
955
956 If the value is zero-length, we avoid calling read_memory, which
957 would abort. We mark the value as fetched anyway -- all 0 bytes of
958 it.
959
960 This function returns a value because it is used in the
961 value_contents macro as part of an expression, where a void would
962 not work. The value is ignored. */
963
964 int
965 value_fetch_lazy (struct value *val)
966 {
967 gdb_assert (value_lazy (val));
968 allocate_value_contents (val);
969 if (value_bitsize (val))
970 {
971 /* To read a lazy bitfield, read the entire enclosing value. This
972 prevents reading the same block of (possibly volatile) memory once
973 per bitfield. It would be even better to read only the containing
974 word, but we have no way to record that just specific bits of a
975 value have been fetched. */
976 struct type *type = check_typedef (value_type (val));
977 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
978 struct value *parent = value_parent (val);
979 LONGEST offset = value_offset (val);
980 LONGEST num;
981
982 if (!value_bits_valid (val,
983 TARGET_CHAR_BIT * offset + value_bitpos (val),
984 value_bitsize (val)))
985 error (_("value has been optimized out"));
986
987 if (!unpack_value_bits_as_long (value_type (val),
988 value_contents_for_printing (parent),
989 offset,
990 value_bitpos (val),
991 value_bitsize (val), parent, &num))
992 mark_value_bytes_unavailable (val,
993 value_embedded_offset (val),
994 TYPE_LENGTH (type));
995 else
996 store_signed_integer (value_contents_raw (val), TYPE_LENGTH (type),
997 byte_order, num);
998 }
999 else if (VALUE_LVAL (val) == lval_memory)
1000 {
1001 CORE_ADDR addr = value_address (val);
1002 struct type *type = check_typedef (value_enclosing_type (val));
1003
1004 if (TYPE_LENGTH (type))
1005 read_value_memory (val, 0, value_stack (val),
1006 addr, value_contents_all_raw (val),
1007 TYPE_LENGTH (type));
1008 }
1009 else if (VALUE_LVAL (val) == lval_register)
1010 {
1011 struct frame_info *frame;
1012 int regnum;
1013 struct type *type = check_typedef (value_type (val));
1014 struct value *new_val = val, *mark = value_mark ();
1015
1016 /* Offsets are not supported here; lazy register values must
1017 refer to the entire register. */
1018 gdb_assert (value_offset (val) == 0);
1019
1020 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
1021 {
1022 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
1023 regnum = VALUE_REGNUM (new_val);
1024
1025 gdb_assert (frame != NULL);
1026
1027 /* Convertible register routines are used for multi-register
1028 values and for interpretation in different types
1029 (e.g. float or int from a double register). Lazy
1030 register values should have the register's natural type,
1031 so they do not apply. */
1032 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
1033 regnum, type));
1034
1035 new_val = get_frame_register_value (frame, regnum);
1036 }
1037
1038 /* If it's still lazy (for instance, a saved register on the
1039 stack), fetch it. */
1040 if (value_lazy (new_val))
1041 value_fetch_lazy (new_val);
1042
1043 /* If the register was not saved, mark it optimized out. */
1044 if (value_optimized_out (new_val))
1045 set_value_optimized_out (val, 1);
1046 else
1047 {
1048 set_value_lazy (val, 0);
1049 value_contents_copy (val, value_embedded_offset (val),
1050 new_val, value_embedded_offset (new_val),
1051 TYPE_LENGTH (type));
1052 }
1053
1054 if (frame_debug)
1055 {
1056 struct gdbarch *gdbarch;
1057 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1058 regnum = VALUE_REGNUM (val);
1059 gdbarch = get_frame_arch (frame);
1060
1061 fprintf_unfiltered (gdb_stdlog,
1062 "{ value_fetch_lazy "
1063 "(frame=%d,regnum=%d(%s),...) ",
1064 frame_relative_level (frame), regnum,
1065 user_reg_map_regnum_to_name (gdbarch, regnum));
1066
1067 fprintf_unfiltered (gdb_stdlog, "->");
1068 if (value_optimized_out (new_val))
1069 fprintf_unfiltered (gdb_stdlog, " optimized out");
1070 else
1071 {
1072 int i;
1073 const gdb_byte *buf = value_contents (new_val);
1074
1075 if (VALUE_LVAL (new_val) == lval_register)
1076 fprintf_unfiltered (gdb_stdlog, " register=%d",
1077 VALUE_REGNUM (new_val));
1078 else if (VALUE_LVAL (new_val) == lval_memory)
1079 fprintf_unfiltered (gdb_stdlog, " address=%s",
1080 paddress (gdbarch,
1081 value_address (new_val)));
1082 else
1083 fprintf_unfiltered (gdb_stdlog, " computed");
1084
1085 fprintf_unfiltered (gdb_stdlog, " bytes=");
1086 fprintf_unfiltered (gdb_stdlog, "[");
1087 for (i = 0; i < register_size (gdbarch, regnum); i++)
1088 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1089 fprintf_unfiltered (gdb_stdlog, "]");
1090 }
1091
1092 fprintf_unfiltered (gdb_stdlog, " }\n");
1093 }
1094
1095 /* Dispose of the intermediate values. This prevents
1096 watchpoints from trying to watch the saved frame pointer. */
1097 value_free_to_mark (mark);
1098 }
1099 else if (VALUE_LVAL (val) == lval_computed
1100 && value_computed_funcs (val)->read != NULL)
1101 value_computed_funcs (val)->read (val);
1102 else if (value_optimized_out (val))
1103 /* Keep it optimized out. */;
1104 else
1105 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
1106
1107 set_value_lazy (val, 0);
1108 return 0;
1109 }
1110
1111 void
1112 read_value_memory (struct value *val, int embedded_offset,
1113 int stack, CORE_ADDR memaddr,
1114 gdb_byte *buffer, size_t length)
1115 {
1116 if (length)
1117 {
1118 VEC(mem_range_s) *available_memory;
1119
1120 if (get_traceframe_number () < 0
1121 || !traceframe_available_memory (&available_memory, memaddr, length))
1122 {
1123 if (stack)
1124 read_stack (memaddr, buffer, length);
1125 else
1126 read_memory (memaddr, buffer, length);
1127 }
1128 else
1129 {
1130 struct target_section_table *table;
1131 struct cleanup *old_chain;
1132 CORE_ADDR unavail;
1133 mem_range_s *r;
1134 int i;
1135
1136 /* Fallback to reading from read-only sections. */
1137 table = target_get_section_table (&exec_ops);
1138 available_memory =
1139 section_table_available_memory (available_memory,
1140 memaddr, length,
1141 table->sections,
1142 table->sections_end);
1143
1144 old_chain = make_cleanup (VEC_cleanup(mem_range_s),
1145 &available_memory);
1146
1147 normalize_mem_ranges (available_memory);
1148
1149 /* Mark which bytes are unavailable, and read those which
1150 are available. */
1151
1152 unavail = memaddr;
1153
1154 for (i = 0;
1155 VEC_iterate (mem_range_s, available_memory, i, r);
1156 i++)
1157 {
1158 if (mem_ranges_overlap (r->start, r->length,
1159 memaddr, length))
1160 {
1161 CORE_ADDR lo1, hi1, lo2, hi2;
1162 CORE_ADDR start, end;
1163
1164 /* Get the intersection window. */
1165 lo1 = memaddr;
1166 hi1 = memaddr + length;
1167 lo2 = r->start;
1168 hi2 = r->start + r->length;
1169 start = max (lo1, lo2);
1170 end = min (hi1, hi2);
1171
1172 gdb_assert (end - memaddr <= length);
1173
1174 if (start > unavail)
1175 mark_value_bytes_unavailable (val,
1176 (embedded_offset
1177 + unavail - memaddr),
1178 start - unavail);
1179 unavail = end;
1180
1181 read_memory (start, buffer + start - memaddr, end - start);
1182 }
1183 }
1184
1185 if (unavail != memaddr + length)
1186 mark_value_bytes_unavailable (val,
1187 embedded_offset + unavail - memaddr,
1188 (memaddr + length) - unavail);
1189
1190 do_cleanups (old_chain);
1191 }
1192 }
1193 }
1194
1195 /* Store the contents of FROMVAL into the location of TOVAL.
1196 Return a new value with the location of TOVAL and contents of FROMVAL. */
1197
1198 struct value *
1199 value_assign (struct value *toval, struct value *fromval)
1200 {
1201 struct type *type;
1202 struct value *val;
1203 struct frame_id old_frame;
1204
1205 if (!deprecated_value_modifiable (toval))
1206 error (_("Left operand of assignment is not a modifiable lvalue."));
1207
1208 toval = coerce_ref (toval);
1209
1210 type = value_type (toval);
1211 if (VALUE_LVAL (toval) != lval_internalvar)
1212 fromval = value_cast (type, fromval);
1213 else
1214 {
1215 /* Coerce arrays and functions to pointers, except for arrays
1216 which only live in GDB's storage. */
1217 if (!value_must_coerce_to_target (fromval))
1218 fromval = coerce_array (fromval);
1219 }
1220
1221 CHECK_TYPEDEF (type);
1222
1223 /* Since modifying a register can trash the frame chain, and
1224 modifying memory can trash the frame cache, we save the old frame
1225 and then restore the new frame afterwards. */
1226 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1227
1228 switch (VALUE_LVAL (toval))
1229 {
1230 case lval_internalvar:
1231 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1232 return value_of_internalvar (get_type_arch (type),
1233 VALUE_INTERNALVAR (toval));
1234
1235 case lval_internalvar_component:
1236 {
1237 int offset = value_offset (toval);
1238
1239 /* Are we dealing with a bitfield?
1240
1241 It is important to mention that `value_parent (toval)' is
1242 non-NULL iff `value_bitsize (toval)' is non-zero. */
1243 if (value_bitsize (toval))
1244 {
1245 /* VALUE_INTERNALVAR below refers to the parent value, while
1246 the offset is relative to this parent value. */
1247 gdb_assert (value_parent (value_parent (toval)) == NULL);
1248 offset += value_offset (value_parent (toval));
1249 }
1250
1251 set_internalvar_component (VALUE_INTERNALVAR (toval),
1252 offset,
1253 value_bitpos (toval),
1254 value_bitsize (toval),
1255 fromval);
1256 }
1257 break;
1258
1259 case lval_memory:
1260 {
1261 const gdb_byte *dest_buffer;
1262 CORE_ADDR changed_addr;
1263 int changed_len;
1264 gdb_byte buffer[sizeof (LONGEST)];
1265
1266 if (value_bitsize (toval))
1267 {
1268 struct value *parent = value_parent (toval);
1269
1270 changed_addr = value_address (parent) + value_offset (toval);
1271 changed_len = (value_bitpos (toval)
1272 + value_bitsize (toval)
1273 + HOST_CHAR_BIT - 1)
1274 / HOST_CHAR_BIT;
1275
1276 /* If we can read-modify-write exactly the size of the
1277 containing type (e.g. short or int) then do so. This
1278 is safer for volatile bitfields mapped to hardware
1279 registers. */
1280 if (changed_len < TYPE_LENGTH (type)
1281 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1282 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1283 changed_len = TYPE_LENGTH (type);
1284
1285 if (changed_len > (int) sizeof (LONGEST))
1286 error (_("Can't handle bitfields which "
1287 "don't fit in a %d bit word."),
1288 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1289
1290 read_memory (changed_addr, buffer, changed_len);
1291 modify_field (type, buffer, value_as_long (fromval),
1292 value_bitpos (toval), value_bitsize (toval));
1293 dest_buffer = buffer;
1294 }
1295 else
1296 {
1297 changed_addr = value_address (toval);
1298 changed_len = TYPE_LENGTH (type);
1299 dest_buffer = value_contents (fromval);
1300 }
1301
1302 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1303 }
1304 break;
1305
1306 case lval_register:
1307 {
1308 struct frame_info *frame;
1309 struct gdbarch *gdbarch;
1310 int value_reg;
1311
1312 /* Figure out which frame this is in currently. */
1313 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1314 value_reg = VALUE_REGNUM (toval);
1315
1316 if (!frame)
1317 error (_("Value being assigned to is no longer active."));
1318
1319 gdbarch = get_frame_arch (frame);
1320 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1321 {
1322 /* If TOVAL is a special machine register requiring
1323 conversion of program values to a special raw
1324 format. */
1325 gdbarch_value_to_register (gdbarch, frame,
1326 VALUE_REGNUM (toval), type,
1327 value_contents (fromval));
1328 }
1329 else
1330 {
1331 if (value_bitsize (toval))
1332 {
1333 struct value *parent = value_parent (toval);
1334 int offset = value_offset (parent) + value_offset (toval);
1335 int changed_len;
1336 gdb_byte buffer[sizeof (LONGEST)];
1337 int optim, unavail;
1338
1339 changed_len = (value_bitpos (toval)
1340 + value_bitsize (toval)
1341 + HOST_CHAR_BIT - 1)
1342 / HOST_CHAR_BIT;
1343
1344 if (changed_len > (int) sizeof (LONGEST))
1345 error (_("Can't handle bitfields which "
1346 "don't fit in a %d bit word."),
1347 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1348
1349 if (!get_frame_register_bytes (frame, value_reg, offset,
1350 changed_len, buffer,
1351 &optim, &unavail))
1352 {
1353 if (optim)
1354 error (_("value has been optimized out"));
1355 if (unavail)
1356 throw_error (NOT_AVAILABLE_ERROR,
1357 _("value is not available"));
1358 }
1359
1360 modify_field (type, buffer, value_as_long (fromval),
1361 value_bitpos (toval), value_bitsize (toval));
1362
1363 put_frame_register_bytes (frame, value_reg, offset,
1364 changed_len, buffer);
1365 }
1366 else
1367 {
1368 put_frame_register_bytes (frame, value_reg,
1369 value_offset (toval),
1370 TYPE_LENGTH (type),
1371 value_contents (fromval));
1372 }
1373 }
1374
1375 if (deprecated_register_changed_hook)
1376 deprecated_register_changed_hook (-1);
1377 break;
1378 }
1379
1380 case lval_computed:
1381 {
1382 const struct lval_funcs *funcs = value_computed_funcs (toval);
1383
1384 if (funcs->write != NULL)
1385 {
1386 funcs->write (toval, fromval);
1387 break;
1388 }
1389 }
1390 /* Fall through. */
1391
1392 default:
1393 error (_("Left operand of assignment is not an lvalue."));
1394 }
1395
1396 /* Assigning to the stack pointer, frame pointer, and other
1397 (architecture and calling convention specific) registers may
1398 cause the frame cache and regcache to be out of date. Assigning to memory
1399 also can. We just do this on all assignments to registers or
1400 memory, for simplicity's sake; I doubt the slowdown matters. */
1401 switch (VALUE_LVAL (toval))
1402 {
1403 case lval_memory:
1404 case lval_register:
1405 case lval_computed:
1406
1407 observer_notify_target_changed (&current_target);
1408
1409 /* Having destroyed the frame cache, restore the selected
1410 frame. */
1411
1412 /* FIXME: cagney/2002-11-02: There has to be a better way of
1413 doing this. Instead of constantly saving/restoring the
1414 frame. Why not create a get_selected_frame() function that,
1415 having saved the selected frame's ID can automatically
1416 re-find the previously selected frame automatically. */
1417
1418 {
1419 struct frame_info *fi = frame_find_by_id (old_frame);
1420
1421 if (fi != NULL)
1422 select_frame (fi);
1423 }
1424
1425 break;
1426 default:
1427 break;
1428 }
1429
1430 /* If the field does not entirely fill a LONGEST, then zero the sign
1431 bits. If the field is signed, and is negative, then sign
1432 extend. */
1433 if ((value_bitsize (toval) > 0)
1434 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1435 {
1436 LONGEST fieldval = value_as_long (fromval);
1437 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1438
1439 fieldval &= valmask;
1440 if (!TYPE_UNSIGNED (type)
1441 && (fieldval & (valmask ^ (valmask >> 1))))
1442 fieldval |= ~valmask;
1443
1444 fromval = value_from_longest (type, fieldval);
1445 }
1446
1447 /* The return value is a copy of TOVAL so it shares its location
1448 information, but its contents are updated from FROMVAL. This
1449 implies the returned value is not lazy, even if TOVAL was. */
1450 val = value_copy (toval);
1451 set_value_lazy (val, 0);
1452 memcpy (value_contents_raw (val), value_contents (fromval),
1453 TYPE_LENGTH (type));
1454
1455 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1456 in the case of pointer types. For object types, the enclosing type
1457 and embedded offset must *not* be copied: the target object refered
1458 to by TOVAL retains its original dynamic type after assignment. */
1459 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1460 {
1461 set_value_enclosing_type (val, value_enclosing_type (fromval));
1462 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1463 }
1464
1465 return val;
1466 }
1467
1468 /* Extend a value VAL to COUNT repetitions of its type. */
1469
1470 struct value *
1471 value_repeat (struct value *arg1, int count)
1472 {
1473 struct value *val;
1474
1475 if (VALUE_LVAL (arg1) != lval_memory)
1476 error (_("Only values in memory can be extended with '@'."));
1477 if (count < 1)
1478 error (_("Invalid number %d of repetitions."), count);
1479
1480 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1481
1482 VALUE_LVAL (val) = lval_memory;
1483 set_value_address (val, value_address (arg1));
1484
1485 read_value_memory (val, 0, value_stack (val), value_address (val),
1486 value_contents_all_raw (val),
1487 TYPE_LENGTH (value_enclosing_type (val)));
1488
1489 return val;
1490 }
1491
1492 struct value *
1493 value_of_variable (struct symbol *var, const struct block *b)
1494 {
1495 struct frame_info *frame;
1496
1497 if (!symbol_read_needs_frame (var))
1498 frame = NULL;
1499 else if (!b)
1500 frame = get_selected_frame (_("No frame selected."));
1501 else
1502 {
1503 frame = block_innermost_frame (b);
1504 if (!frame)
1505 {
1506 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1507 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1508 error (_("No frame is currently executing in block %s."),
1509 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1510 else
1511 error (_("No frame is currently executing in specified block"));
1512 }
1513 }
1514
1515 return read_var_value (var, frame);
1516 }
1517
1518 struct value *
1519 address_of_variable (struct symbol *var, const struct block *b)
1520 {
1521 struct type *type = SYMBOL_TYPE (var);
1522 struct value *val;
1523
1524 /* Evaluate it first; if the result is a memory address, we're fine.
1525 Lazy evaluation pays off here. */
1526
1527 val = value_of_variable (var, b);
1528
1529 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1530 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1531 {
1532 CORE_ADDR addr = value_address (val);
1533
1534 return value_from_pointer (lookup_pointer_type (type), addr);
1535 }
1536
1537 /* Not a memory address; check what the problem was. */
1538 switch (VALUE_LVAL (val))
1539 {
1540 case lval_register:
1541 {
1542 struct frame_info *frame;
1543 const char *regname;
1544
1545 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1546 gdb_assert (frame);
1547
1548 regname = gdbarch_register_name (get_frame_arch (frame),
1549 VALUE_REGNUM (val));
1550 gdb_assert (regname && *regname);
1551
1552 error (_("Address requested for identifier "
1553 "\"%s\" which is in register $%s"),
1554 SYMBOL_PRINT_NAME (var), regname);
1555 break;
1556 }
1557
1558 default:
1559 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1560 SYMBOL_PRINT_NAME (var));
1561 break;
1562 }
1563
1564 return val;
1565 }
1566
1567 /* Return one if VAL does not live in target memory, but should in order
1568 to operate on it. Otherwise return zero. */
1569
1570 int
1571 value_must_coerce_to_target (struct value *val)
1572 {
1573 struct type *valtype;
1574
1575 /* The only lval kinds which do not live in target memory. */
1576 if (VALUE_LVAL (val) != not_lval
1577 && VALUE_LVAL (val) != lval_internalvar)
1578 return 0;
1579
1580 valtype = check_typedef (value_type (val));
1581
1582 switch (TYPE_CODE (valtype))
1583 {
1584 case TYPE_CODE_ARRAY:
1585 return TYPE_VECTOR (valtype) ? 0 : 1;
1586 case TYPE_CODE_STRING:
1587 return 1;
1588 default:
1589 return 0;
1590 }
1591 }
1592
1593 /* Make sure that VAL lives in target memory if it's supposed to. For
1594 instance, strings are constructed as character arrays in GDB's
1595 storage, and this function copies them to the target. */
1596
1597 struct value *
1598 value_coerce_to_target (struct value *val)
1599 {
1600 LONGEST length;
1601 CORE_ADDR addr;
1602
1603 if (!value_must_coerce_to_target (val))
1604 return val;
1605
1606 length = TYPE_LENGTH (check_typedef (value_type (val)));
1607 addr = allocate_space_in_inferior (length);
1608 write_memory (addr, value_contents (val), length);
1609 return value_at_lazy (value_type (val), addr);
1610 }
1611
1612 /* Given a value which is an array, return a value which is a pointer
1613 to its first element, regardless of whether or not the array has a
1614 nonzero lower bound.
1615
1616 FIXME: A previous comment here indicated that this routine should
1617 be substracting the array's lower bound. It's not clear to me that
1618 this is correct. Given an array subscripting operation, it would
1619 certainly work to do the adjustment here, essentially computing:
1620
1621 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1622
1623 However I believe a more appropriate and logical place to account
1624 for the lower bound is to do so in value_subscript, essentially
1625 computing:
1626
1627 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1628
1629 As further evidence consider what would happen with operations
1630 other than array subscripting, where the caller would get back a
1631 value that had an address somewhere before the actual first element
1632 of the array, and the information about the lower bound would be
1633 lost because of the coercion to pointer type. */
1634
1635 struct value *
1636 value_coerce_array (struct value *arg1)
1637 {
1638 struct type *type = check_typedef (value_type (arg1));
1639
1640 /* If the user tries to do something requiring a pointer with an
1641 array that has not yet been pushed to the target, then this would
1642 be a good time to do so. */
1643 arg1 = value_coerce_to_target (arg1);
1644
1645 if (VALUE_LVAL (arg1) != lval_memory)
1646 error (_("Attempt to take address of value not located in memory."));
1647
1648 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1649 value_address (arg1));
1650 }
1651
1652 /* Given a value which is a function, return a value which is a pointer
1653 to it. */
1654
1655 struct value *
1656 value_coerce_function (struct value *arg1)
1657 {
1658 struct value *retval;
1659
1660 if (VALUE_LVAL (arg1) != lval_memory)
1661 error (_("Attempt to take address of value not located in memory."));
1662
1663 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1664 value_address (arg1));
1665 return retval;
1666 }
1667
1668 /* Return a pointer value for the object for which ARG1 is the
1669 contents. */
1670
1671 struct value *
1672 value_addr (struct value *arg1)
1673 {
1674 struct value *arg2;
1675 struct type *type = check_typedef (value_type (arg1));
1676
1677 if (TYPE_CODE (type) == TYPE_CODE_REF)
1678 {
1679 /* Copy the value, but change the type from (T&) to (T*). We
1680 keep the same location information, which is efficient, and
1681 allows &(&X) to get the location containing the reference. */
1682 arg2 = value_copy (arg1);
1683 deprecated_set_value_type (arg2,
1684 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1685 return arg2;
1686 }
1687 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1688 return value_coerce_function (arg1);
1689
1690 /* If this is an array that has not yet been pushed to the target,
1691 then this would be a good time to force it to memory. */
1692 arg1 = value_coerce_to_target (arg1);
1693
1694 if (VALUE_LVAL (arg1) != lval_memory)
1695 error (_("Attempt to take address of value not located in memory."));
1696
1697 /* Get target memory address. */
1698 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1699 (value_address (arg1)
1700 + value_embedded_offset (arg1)));
1701
1702 /* This may be a pointer to a base subobject; so remember the
1703 full derived object's type ... */
1704 set_value_enclosing_type (arg2,
1705 lookup_pointer_type (value_enclosing_type (arg1)));
1706 /* ... and also the relative position of the subobject in the full
1707 object. */
1708 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1709 return arg2;
1710 }
1711
1712 /* Return a reference value for the object for which ARG1 is the
1713 contents. */
1714
1715 struct value *
1716 value_ref (struct value *arg1)
1717 {
1718 struct value *arg2;
1719 struct type *type = check_typedef (value_type (arg1));
1720
1721 if (TYPE_CODE (type) == TYPE_CODE_REF)
1722 return arg1;
1723
1724 arg2 = value_addr (arg1);
1725 deprecated_set_value_type (arg2, lookup_reference_type (type));
1726 return arg2;
1727 }
1728
1729 /* Given a value of a pointer type, apply the C unary * operator to
1730 it. */
1731
1732 struct value *
1733 value_ind (struct value *arg1)
1734 {
1735 struct type *base_type;
1736 struct value *arg2;
1737
1738 arg1 = coerce_array (arg1);
1739
1740 base_type = check_typedef (value_type (arg1));
1741
1742 if (VALUE_LVAL (arg1) == lval_computed)
1743 {
1744 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1745
1746 if (funcs->indirect)
1747 {
1748 struct value *result = funcs->indirect (arg1);
1749
1750 if (result)
1751 return result;
1752 }
1753 }
1754
1755 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1756 {
1757 struct type *enc_type;
1758
1759 /* We may be pointing to something embedded in a larger object.
1760 Get the real type of the enclosing object. */
1761 enc_type = check_typedef (value_enclosing_type (arg1));
1762 enc_type = TYPE_TARGET_TYPE (enc_type);
1763
1764 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1765 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1766 /* For functions, go through find_function_addr, which knows
1767 how to handle function descriptors. */
1768 arg2 = value_at_lazy (enc_type,
1769 find_function_addr (arg1, NULL));
1770 else
1771 /* Retrieve the enclosing object pointed to. */
1772 arg2 = value_at_lazy (enc_type,
1773 (value_as_address (arg1)
1774 - value_pointed_to_offset (arg1)));
1775
1776 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1777 }
1778
1779 error (_("Attempt to take contents of a non-pointer value."));
1780 return 0; /* For lint -- never reached. */
1781 }
1782 \f
1783 /* Create a value for an array by allocating space in GDB, copying the
1784 data into that space, and then setting up an array value.
1785
1786 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1787 is populated from the values passed in ELEMVEC.
1788
1789 The element type of the array is inherited from the type of the
1790 first element, and all elements must have the same size (though we
1791 don't currently enforce any restriction on their types). */
1792
1793 struct value *
1794 value_array (int lowbound, int highbound, struct value **elemvec)
1795 {
1796 int nelem;
1797 int idx;
1798 unsigned int typelength;
1799 struct value *val;
1800 struct type *arraytype;
1801
1802 /* Validate that the bounds are reasonable and that each of the
1803 elements have the same size. */
1804
1805 nelem = highbound - lowbound + 1;
1806 if (nelem <= 0)
1807 {
1808 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1809 }
1810 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1811 for (idx = 1; idx < nelem; idx++)
1812 {
1813 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1814 {
1815 error (_("array elements must all be the same size"));
1816 }
1817 }
1818
1819 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1820 lowbound, highbound);
1821
1822 if (!current_language->c_style_arrays)
1823 {
1824 val = allocate_value (arraytype);
1825 for (idx = 0; idx < nelem; idx++)
1826 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1827 typelength);
1828 return val;
1829 }
1830
1831 /* Allocate space to store the array, and then initialize it by
1832 copying in each element. */
1833
1834 val = allocate_value (arraytype);
1835 for (idx = 0; idx < nelem; idx++)
1836 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1837 return val;
1838 }
1839
1840 struct value *
1841 value_cstring (char *ptr, ssize_t len, struct type *char_type)
1842 {
1843 struct value *val;
1844 int lowbound = current_language->string_lower_bound;
1845 ssize_t highbound = len / TYPE_LENGTH (char_type);
1846 struct type *stringtype
1847 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1848
1849 val = allocate_value (stringtype);
1850 memcpy (value_contents_raw (val), ptr, len);
1851 return val;
1852 }
1853
1854 /* Create a value for a string constant by allocating space in the
1855 inferior, copying the data into that space, and returning the
1856 address with type TYPE_CODE_STRING. PTR points to the string
1857 constant data; LEN is number of characters.
1858
1859 Note that string types are like array of char types with a lower
1860 bound of zero and an upper bound of LEN - 1. Also note that the
1861 string may contain embedded null bytes. */
1862
1863 struct value *
1864 value_string (char *ptr, ssize_t len, struct type *char_type)
1865 {
1866 struct value *val;
1867 int lowbound = current_language->string_lower_bound;
1868 ssize_t highbound = len / TYPE_LENGTH (char_type);
1869 struct type *stringtype
1870 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1871
1872 val = allocate_value (stringtype);
1873 memcpy (value_contents_raw (val), ptr, len);
1874 return val;
1875 }
1876
1877 \f
1878 /* See if we can pass arguments in T2 to a function which takes
1879 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1880 a NULL-terminated vector. If some arguments need coercion of some
1881 sort, then the coerced values are written into T2. Return value is
1882 0 if the arguments could be matched, or the position at which they
1883 differ if not.
1884
1885 STATICP is nonzero if the T1 argument list came from a static
1886 member function. T2 will still include the ``this'' pointer, but
1887 it will be skipped.
1888
1889 For non-static member functions, we ignore the first argument,
1890 which is the type of the instance variable. This is because we
1891 want to handle calls with objects from derived classes. This is
1892 not entirely correct: we should actually check to make sure that a
1893 requested operation is type secure, shouldn't we? FIXME. */
1894
1895 static int
1896 typecmp (int staticp, int varargs, int nargs,
1897 struct field t1[], struct value *t2[])
1898 {
1899 int i;
1900
1901 if (t2 == 0)
1902 internal_error (__FILE__, __LINE__,
1903 _("typecmp: no argument list"));
1904
1905 /* Skip ``this'' argument if applicable. T2 will always include
1906 THIS. */
1907 if (staticp)
1908 t2 ++;
1909
1910 for (i = 0;
1911 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1912 i++)
1913 {
1914 struct type *tt1, *tt2;
1915
1916 if (!t2[i])
1917 return i + 1;
1918
1919 tt1 = check_typedef (t1[i].type);
1920 tt2 = check_typedef (value_type (t2[i]));
1921
1922 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1923 /* We should be doing hairy argument matching, as below. */
1924 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1925 == TYPE_CODE (tt2)))
1926 {
1927 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1928 t2[i] = value_coerce_array (t2[i]);
1929 else
1930 t2[i] = value_ref (t2[i]);
1931 continue;
1932 }
1933
1934 /* djb - 20000715 - Until the new type structure is in the
1935 place, and we can attempt things like implicit conversions,
1936 we need to do this so you can take something like a map<const
1937 char *>, and properly access map["hello"], because the
1938 argument to [] will be a reference to a pointer to a char,
1939 and the argument will be a pointer to a char. */
1940 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1941 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1942 {
1943 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1944 }
1945 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1946 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1947 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1948 {
1949 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1950 }
1951 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1952 continue;
1953 /* Array to pointer is a `trivial conversion' according to the
1954 ARM. */
1955
1956 /* We should be doing much hairier argument matching (see
1957 section 13.2 of the ARM), but as a quick kludge, just check
1958 for the same type code. */
1959 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1960 return i + 1;
1961 }
1962 if (varargs || t2[i] == NULL)
1963 return 0;
1964 return i + 1;
1965 }
1966
1967 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1968 and *LAST_BOFFSET, and possibly throws an exception if the field
1969 search has yielded ambiguous results. */
1970
1971 static void
1972 update_search_result (struct value **result_ptr, struct value *v,
1973 int *last_boffset, int boffset,
1974 const char *name, struct type *type)
1975 {
1976 if (v != NULL)
1977 {
1978 if (*result_ptr != NULL
1979 /* The result is not ambiguous if all the classes that are
1980 found occupy the same space. */
1981 && *last_boffset != boffset)
1982 error (_("base class '%s' is ambiguous in type '%s'"),
1983 name, TYPE_SAFE_NAME (type));
1984 *result_ptr = v;
1985 *last_boffset = boffset;
1986 }
1987 }
1988
1989 /* A helper for search_struct_field. This does all the work; most
1990 arguments are as passed to search_struct_field. The result is
1991 stored in *RESULT_PTR, which must be initialized to NULL.
1992 OUTERMOST_TYPE is the type of the initial type passed to
1993 search_struct_field; this is used for error reporting when the
1994 lookup is ambiguous. */
1995
1996 static void
1997 do_search_struct_field (const char *name, struct value *arg1, int offset,
1998 struct type *type, int looking_for_baseclass,
1999 struct value **result_ptr,
2000 int *last_boffset,
2001 struct type *outermost_type)
2002 {
2003 int i;
2004 int nbases;
2005
2006 CHECK_TYPEDEF (type);
2007 nbases = TYPE_N_BASECLASSES (type);
2008
2009 if (!looking_for_baseclass)
2010 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2011 {
2012 const char *t_field_name = TYPE_FIELD_NAME (type, i);
2013
2014 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2015 {
2016 struct value *v;
2017
2018 if (field_is_static (&TYPE_FIELD (type, i)))
2019 {
2020 v = value_static_field (type, i);
2021 if (v == 0)
2022 error (_("field %s is nonexistent or "
2023 "has been optimized out"),
2024 name);
2025 }
2026 else
2027 v = value_primitive_field (arg1, offset, i, type);
2028 *result_ptr = v;
2029 return;
2030 }
2031
2032 if (t_field_name
2033 && (t_field_name[0] == '\0'
2034 || (TYPE_CODE (type) == TYPE_CODE_UNION
2035 && (strcmp_iw (t_field_name, "else") == 0))))
2036 {
2037 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2038
2039 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2040 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2041 {
2042 /* Look for a match through the fields of an anonymous
2043 union, or anonymous struct. C++ provides anonymous
2044 unions.
2045
2046 In the GNU Chill (now deleted from GDB)
2047 implementation of variant record types, each
2048 <alternative field> has an (anonymous) union type,
2049 each member of the union represents a <variant
2050 alternative>. Each <variant alternative> is
2051 represented as a struct, with a member for each
2052 <variant field>. */
2053
2054 struct value *v = NULL;
2055 int new_offset = offset;
2056
2057 /* This is pretty gross. In G++, the offset in an
2058 anonymous union is relative to the beginning of the
2059 enclosing struct. In the GNU Chill (now deleted
2060 from GDB) implementation of variant records, the
2061 bitpos is zero in an anonymous union field, so we
2062 have to add the offset of the union here. */
2063 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2064 || (TYPE_NFIELDS (field_type) > 0
2065 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2066 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2067
2068 do_search_struct_field (name, arg1, new_offset,
2069 field_type,
2070 looking_for_baseclass, &v,
2071 last_boffset,
2072 outermost_type);
2073 if (v)
2074 {
2075 *result_ptr = v;
2076 return;
2077 }
2078 }
2079 }
2080 }
2081
2082 for (i = 0; i < nbases; i++)
2083 {
2084 struct value *v = NULL;
2085 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2086 /* If we are looking for baseclasses, this is what we get when
2087 we hit them. But it could happen that the base part's member
2088 name is not yet filled in. */
2089 int found_baseclass = (looking_for_baseclass
2090 && TYPE_BASECLASS_NAME (type, i) != NULL
2091 && (strcmp_iw (name,
2092 TYPE_BASECLASS_NAME (type,
2093 i)) == 0));
2094 int boffset = value_embedded_offset (arg1) + offset;
2095
2096 if (BASETYPE_VIA_VIRTUAL (type, i))
2097 {
2098 struct value *v2;
2099
2100 boffset = baseclass_offset (type, i,
2101 value_contents_for_printing (arg1),
2102 value_embedded_offset (arg1) + offset,
2103 value_address (arg1),
2104 arg1);
2105
2106 /* The virtual base class pointer might have been clobbered
2107 by the user program. Make sure that it still points to a
2108 valid memory location. */
2109
2110 boffset += value_embedded_offset (arg1) + offset;
2111 if (boffset < 0
2112 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
2113 {
2114 CORE_ADDR base_addr;
2115
2116 v2 = allocate_value (basetype);
2117 base_addr = value_address (arg1) + boffset;
2118 if (target_read_memory (base_addr,
2119 value_contents_raw (v2),
2120 TYPE_LENGTH (basetype)) != 0)
2121 error (_("virtual baseclass botch"));
2122 VALUE_LVAL (v2) = lval_memory;
2123 set_value_address (v2, base_addr);
2124 }
2125 else
2126 {
2127 v2 = value_copy (arg1);
2128 deprecated_set_value_type (v2, basetype);
2129 set_value_embedded_offset (v2, boffset);
2130 }
2131
2132 if (found_baseclass)
2133 v = v2;
2134 else
2135 {
2136 do_search_struct_field (name, v2, 0,
2137 TYPE_BASECLASS (type, i),
2138 looking_for_baseclass,
2139 result_ptr, last_boffset,
2140 outermost_type);
2141 }
2142 }
2143 else if (found_baseclass)
2144 v = value_primitive_field (arg1, offset, i, type);
2145 else
2146 {
2147 do_search_struct_field (name, arg1,
2148 offset + TYPE_BASECLASS_BITPOS (type,
2149 i) / 8,
2150 basetype, looking_for_baseclass,
2151 result_ptr, last_boffset,
2152 outermost_type);
2153 }
2154
2155 update_search_result (result_ptr, v, last_boffset,
2156 boffset, name, outermost_type);
2157 }
2158 }
2159
2160 /* Helper function used by value_struct_elt to recurse through
2161 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2162 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2163 TYPE. If found, return value, else return NULL.
2164
2165 If LOOKING_FOR_BASECLASS, then instead of looking for struct
2166 fields, look for a baseclass named NAME. */
2167
2168 static struct value *
2169 search_struct_field (const char *name, struct value *arg1, int offset,
2170 struct type *type, int looking_for_baseclass)
2171 {
2172 struct value *result = NULL;
2173 int boffset = 0;
2174
2175 do_search_struct_field (name, arg1, offset, type, looking_for_baseclass,
2176 &result, &boffset, type);
2177 return result;
2178 }
2179
2180 /* Helper function used by value_struct_elt to recurse through
2181 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2182 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2183 TYPE.
2184
2185 If found, return value, else if name matched and args not return
2186 (value) -1, else return NULL. */
2187
2188 static struct value *
2189 search_struct_method (const char *name, struct value **arg1p,
2190 struct value **args, int offset,
2191 int *static_memfuncp, struct type *type)
2192 {
2193 int i;
2194 struct value *v;
2195 int name_matched = 0;
2196 char dem_opname[64];
2197
2198 CHECK_TYPEDEF (type);
2199 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2200 {
2201 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2202
2203 /* FIXME! May need to check for ARM demangling here. */
2204 if (strncmp (t_field_name, "__", 2) == 0 ||
2205 strncmp (t_field_name, "op", 2) == 0 ||
2206 strncmp (t_field_name, "type", 4) == 0)
2207 {
2208 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2209 t_field_name = dem_opname;
2210 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2211 t_field_name = dem_opname;
2212 }
2213 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2214 {
2215 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2216 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2217
2218 name_matched = 1;
2219 check_stub_method_group (type, i);
2220 if (j > 0 && args == 0)
2221 error (_("cannot resolve overloaded method "
2222 "`%s': no arguments supplied"), name);
2223 else if (j == 0 && args == 0)
2224 {
2225 v = value_fn_field (arg1p, f, j, type, offset);
2226 if (v != NULL)
2227 return v;
2228 }
2229 else
2230 while (j >= 0)
2231 {
2232 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2233 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2234 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2235 TYPE_FN_FIELD_ARGS (f, j), args))
2236 {
2237 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2238 return value_virtual_fn_field (arg1p, f, j,
2239 type, offset);
2240 if (TYPE_FN_FIELD_STATIC_P (f, j)
2241 && static_memfuncp)
2242 *static_memfuncp = 1;
2243 v = value_fn_field (arg1p, f, j, type, offset);
2244 if (v != NULL)
2245 return v;
2246 }
2247 j--;
2248 }
2249 }
2250 }
2251
2252 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2253 {
2254 int base_offset;
2255 int this_offset;
2256
2257 if (BASETYPE_VIA_VIRTUAL (type, i))
2258 {
2259 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2260 struct value *base_val;
2261 const gdb_byte *base_valaddr;
2262
2263 /* The virtual base class pointer might have been
2264 clobbered by the user program. Make sure that it
2265 still points to a valid memory location. */
2266
2267 if (offset < 0 || offset >= TYPE_LENGTH (type))
2268 {
2269 gdb_byte *tmp;
2270 struct cleanup *back_to;
2271 CORE_ADDR address;
2272
2273 tmp = xmalloc (TYPE_LENGTH (baseclass));
2274 back_to = make_cleanup (xfree, tmp);
2275 address = value_address (*arg1p);
2276
2277 if (target_read_memory (address + offset,
2278 tmp, TYPE_LENGTH (baseclass)) != 0)
2279 error (_("virtual baseclass botch"));
2280
2281 base_val = value_from_contents_and_address (baseclass,
2282 tmp,
2283 address + offset);
2284 base_valaddr = value_contents_for_printing (base_val);
2285 this_offset = 0;
2286 do_cleanups (back_to);
2287 }
2288 else
2289 {
2290 base_val = *arg1p;
2291 base_valaddr = value_contents_for_printing (*arg1p);
2292 this_offset = offset;
2293 }
2294
2295 base_offset = baseclass_offset (type, i, base_valaddr,
2296 this_offset, value_address (base_val),
2297 base_val);
2298 }
2299 else
2300 {
2301 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2302 }
2303 v = search_struct_method (name, arg1p, args, base_offset + offset,
2304 static_memfuncp, TYPE_BASECLASS (type, i));
2305 if (v == (struct value *) - 1)
2306 {
2307 name_matched = 1;
2308 }
2309 else if (v)
2310 {
2311 /* FIXME-bothner: Why is this commented out? Why is it here? */
2312 /* *arg1p = arg1_tmp; */
2313 return v;
2314 }
2315 }
2316 if (name_matched)
2317 return (struct value *) - 1;
2318 else
2319 return NULL;
2320 }
2321
2322 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2323 extract the component named NAME from the ultimate target
2324 structure/union and return it as a value with its appropriate type.
2325 ERR is used in the error message if *ARGP's type is wrong.
2326
2327 C++: ARGS is a list of argument types to aid in the selection of
2328 an appropriate method. Also, handle derived types.
2329
2330 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2331 where the truthvalue of whether the function that was resolved was
2332 a static member function or not is stored.
2333
2334 ERR is an error message to be printed in case the field is not
2335 found. */
2336
2337 struct value *
2338 value_struct_elt (struct value **argp, struct value **args,
2339 const char *name, int *static_memfuncp, const char *err)
2340 {
2341 struct type *t;
2342 struct value *v;
2343
2344 *argp = coerce_array (*argp);
2345
2346 t = check_typedef (value_type (*argp));
2347
2348 /* Follow pointers until we get to a non-pointer. */
2349
2350 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2351 {
2352 *argp = value_ind (*argp);
2353 /* Don't coerce fn pointer to fn and then back again! */
2354 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2355 *argp = coerce_array (*argp);
2356 t = check_typedef (value_type (*argp));
2357 }
2358
2359 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2360 && TYPE_CODE (t) != TYPE_CODE_UNION)
2361 error (_("Attempt to extract a component of a value that is not a %s."),
2362 err);
2363
2364 /* Assume it's not, unless we see that it is. */
2365 if (static_memfuncp)
2366 *static_memfuncp = 0;
2367
2368 if (!args)
2369 {
2370 /* if there are no arguments ...do this... */
2371
2372 /* Try as a field first, because if we succeed, there is less
2373 work to be done. */
2374 v = search_struct_field (name, *argp, 0, t, 0);
2375 if (v)
2376 return v;
2377
2378 /* C++: If it was not found as a data field, then try to
2379 return it as a pointer to a method. */
2380 v = search_struct_method (name, argp, args, 0,
2381 static_memfuncp, t);
2382
2383 if (v == (struct value *) - 1)
2384 error (_("Cannot take address of method %s."), name);
2385 else if (v == 0)
2386 {
2387 if (TYPE_NFN_FIELDS (t))
2388 error (_("There is no member or method named %s."), name);
2389 else
2390 error (_("There is no member named %s."), name);
2391 }
2392 return v;
2393 }
2394
2395 v = search_struct_method (name, argp, args, 0,
2396 static_memfuncp, t);
2397
2398 if (v == (struct value *) - 1)
2399 {
2400 error (_("One of the arguments you tried to pass to %s could not "
2401 "be converted to what the function wants."), name);
2402 }
2403 else if (v == 0)
2404 {
2405 /* See if user tried to invoke data as function. If so, hand it
2406 back. If it's not callable (i.e., a pointer to function),
2407 gdb should give an error. */
2408 v = search_struct_field (name, *argp, 0, t, 0);
2409 /* If we found an ordinary field, then it is not a method call.
2410 So, treat it as if it were a static member function. */
2411 if (v && static_memfuncp)
2412 *static_memfuncp = 1;
2413 }
2414
2415 if (!v)
2416 throw_error (NOT_FOUND_ERROR,
2417 _("Structure has no component named %s."), name);
2418 return v;
2419 }
2420
2421 /* Search through the methods of an object (and its bases) to find a
2422 specified method. Return the pointer to the fn_field list of
2423 overloaded instances.
2424
2425 Helper function for value_find_oload_list.
2426 ARGP is a pointer to a pointer to a value (the object).
2427 METHOD is a string containing the method name.
2428 OFFSET is the offset within the value.
2429 TYPE is the assumed type of the object.
2430 NUM_FNS is the number of overloaded instances.
2431 BASETYPE is set to the actual type of the subobject where the
2432 method is found.
2433 BOFFSET is the offset of the base subobject where the method is found. */
2434
2435 static struct fn_field *
2436 find_method_list (struct value **argp, const char *method,
2437 int offset, struct type *type, int *num_fns,
2438 struct type **basetype, int *boffset)
2439 {
2440 int i;
2441 struct fn_field *f;
2442 CHECK_TYPEDEF (type);
2443
2444 *num_fns = 0;
2445
2446 /* First check in object itself. */
2447 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2448 {
2449 /* pai: FIXME What about operators and type conversions? */
2450 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2451
2452 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2453 {
2454 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2455 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2456
2457 *num_fns = len;
2458 *basetype = type;
2459 *boffset = offset;
2460
2461 /* Resolve any stub methods. */
2462 check_stub_method_group (type, i);
2463
2464 return f;
2465 }
2466 }
2467
2468 /* Not found in object, check in base subobjects. */
2469 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2470 {
2471 int base_offset;
2472
2473 if (BASETYPE_VIA_VIRTUAL (type, i))
2474 {
2475 base_offset = baseclass_offset (type, i,
2476 value_contents_for_printing (*argp),
2477 value_offset (*argp) + offset,
2478 value_address (*argp), *argp);
2479 }
2480 else /* Non-virtual base, simply use bit position from debug
2481 info. */
2482 {
2483 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2484 }
2485 f = find_method_list (argp, method, base_offset + offset,
2486 TYPE_BASECLASS (type, i), num_fns,
2487 basetype, boffset);
2488 if (f)
2489 return f;
2490 }
2491 return NULL;
2492 }
2493
2494 /* Return the list of overloaded methods of a specified name.
2495
2496 ARGP is a pointer to a pointer to a value (the object).
2497 METHOD is the method name.
2498 OFFSET is the offset within the value contents.
2499 NUM_FNS is the number of overloaded instances.
2500 BASETYPE is set to the type of the base subobject that defines the
2501 method.
2502 BOFFSET is the offset of the base subobject which defines the method. */
2503
2504 static struct fn_field *
2505 value_find_oload_method_list (struct value **argp, const char *method,
2506 int offset, int *num_fns,
2507 struct type **basetype, int *boffset)
2508 {
2509 struct type *t;
2510
2511 t = check_typedef (value_type (*argp));
2512
2513 /* Code snarfed from value_struct_elt. */
2514 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2515 {
2516 *argp = value_ind (*argp);
2517 /* Don't coerce fn pointer to fn and then back again! */
2518 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2519 *argp = coerce_array (*argp);
2520 t = check_typedef (value_type (*argp));
2521 }
2522
2523 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2524 && TYPE_CODE (t) != TYPE_CODE_UNION)
2525 error (_("Attempt to extract a component of a "
2526 "value that is not a struct or union"));
2527
2528 return find_method_list (argp, method, 0, t, num_fns,
2529 basetype, boffset);
2530 }
2531
2532 /* Given an array of arguments (ARGS) (which includes an
2533 entry for "this" in the case of C++ methods), the number of
2534 arguments NARGS, the NAME of a function, and whether it's a method or
2535 not (METHOD), find the best function that matches on the argument types
2536 according to the overload resolution rules.
2537
2538 METHOD can be one of three values:
2539 NON_METHOD for non-member functions.
2540 METHOD: for member functions.
2541 BOTH: used for overload resolution of operators where the
2542 candidates are expected to be either member or non member
2543 functions. In this case the first argument ARGTYPES
2544 (representing 'this') is expected to be a reference to the
2545 target object, and will be dereferenced when attempting the
2546 non-member search.
2547
2548 In the case of class methods, the parameter OBJ is an object value
2549 in which to search for overloaded methods.
2550
2551 In the case of non-method functions, the parameter FSYM is a symbol
2552 corresponding to one of the overloaded functions.
2553
2554 Return value is an integer: 0 -> good match, 10 -> debugger applied
2555 non-standard coercions, 100 -> incompatible.
2556
2557 If a method is being searched for, VALP will hold the value.
2558 If a non-method is being searched for, SYMP will hold the symbol
2559 for it.
2560
2561 If a method is being searched for, and it is a static method,
2562 then STATICP will point to a non-zero value.
2563
2564 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2565 ADL overload candidates when performing overload resolution for a fully
2566 qualified name.
2567
2568 Note: This function does *not* check the value of
2569 overload_resolution. Caller must check it to see whether overload
2570 resolution is permitted. */
2571
2572 int
2573 find_overload_match (struct value **args, int nargs,
2574 const char *name, enum oload_search_type method,
2575 struct value **objp, struct symbol *fsym,
2576 struct value **valp, struct symbol **symp,
2577 int *staticp, const int no_adl)
2578 {
2579 struct value *obj = (objp ? *objp : NULL);
2580 struct type *obj_type = obj ? value_type (obj) : NULL;
2581 /* Index of best overloaded function. */
2582 int func_oload_champ = -1;
2583 int method_oload_champ = -1;
2584
2585 /* The measure for the current best match. */
2586 struct badness_vector *method_badness = NULL;
2587 struct badness_vector *func_badness = NULL;
2588
2589 struct value *temp = obj;
2590 /* For methods, the list of overloaded methods. */
2591 struct fn_field *fns_ptr = NULL;
2592 /* For non-methods, the list of overloaded function symbols. */
2593 struct symbol **oload_syms = NULL;
2594 /* Number of overloaded instances being considered. */
2595 int num_fns = 0;
2596 struct type *basetype = NULL;
2597 int boffset;
2598
2599 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2600
2601 const char *obj_type_name = NULL;
2602 const char *func_name = NULL;
2603 enum oload_classification match_quality;
2604 enum oload_classification method_match_quality = INCOMPATIBLE;
2605 enum oload_classification func_match_quality = INCOMPATIBLE;
2606
2607 /* Get the list of overloaded methods or functions. */
2608 if (method == METHOD || method == BOTH)
2609 {
2610 gdb_assert (obj);
2611
2612 /* OBJ may be a pointer value rather than the object itself. */
2613 obj = coerce_ref (obj);
2614 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2615 obj = coerce_ref (value_ind (obj));
2616 obj_type_name = TYPE_NAME (value_type (obj));
2617
2618 /* First check whether this is a data member, e.g. a pointer to
2619 a function. */
2620 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2621 {
2622 *valp = search_struct_field (name, obj, 0,
2623 check_typedef (value_type (obj)), 0);
2624 if (*valp)
2625 {
2626 *staticp = 1;
2627 do_cleanups (all_cleanups);
2628 return 0;
2629 }
2630 }
2631
2632 /* Retrieve the list of methods with the name NAME. */
2633 fns_ptr = value_find_oload_method_list (&temp, name,
2634 0, &num_fns,
2635 &basetype, &boffset);
2636 /* If this is a method only search, and no methods were found
2637 the search has faild. */
2638 if (method == METHOD && (!fns_ptr || !num_fns))
2639 error (_("Couldn't find method %s%s%s"),
2640 obj_type_name,
2641 (obj_type_name && *obj_type_name) ? "::" : "",
2642 name);
2643 /* If we are dealing with stub method types, they should have
2644 been resolved by find_method_list via
2645 value_find_oload_method_list above. */
2646 if (fns_ptr)
2647 {
2648 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2649 method_oload_champ = find_oload_champ (args, nargs, method,
2650 num_fns, fns_ptr,
2651 oload_syms, &method_badness);
2652
2653 method_match_quality =
2654 classify_oload_match (method_badness, nargs,
2655 oload_method_static (method, fns_ptr,
2656 method_oload_champ));
2657
2658 make_cleanup (xfree, method_badness);
2659 }
2660
2661 }
2662
2663 if (method == NON_METHOD || method == BOTH)
2664 {
2665 const char *qualified_name = NULL;
2666
2667 /* If the overload match is being search for both as a method
2668 and non member function, the first argument must now be
2669 dereferenced. */
2670 if (method == BOTH)
2671 args[0] = value_ind (args[0]);
2672
2673 if (fsym)
2674 {
2675 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2676
2677 /* If we have a function with a C++ name, try to extract just
2678 the function part. Do not try this for non-functions (e.g.
2679 function pointers). */
2680 if (qualified_name
2681 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2682 == TYPE_CODE_FUNC)
2683 {
2684 char *temp;
2685
2686 temp = cp_func_name (qualified_name);
2687
2688 /* If cp_func_name did not remove anything, the name of the
2689 symbol did not include scope or argument types - it was
2690 probably a C-style function. */
2691 if (temp)
2692 {
2693 make_cleanup (xfree, temp);
2694 if (strcmp (temp, qualified_name) == 0)
2695 func_name = NULL;
2696 else
2697 func_name = temp;
2698 }
2699 }
2700 }
2701 else
2702 {
2703 func_name = name;
2704 qualified_name = name;
2705 }
2706
2707 /* If there was no C++ name, this must be a C-style function or
2708 not a function at all. Just return the same symbol. Do the
2709 same if cp_func_name fails for some reason. */
2710 if (func_name == NULL)
2711 {
2712 *symp = fsym;
2713 do_cleanups (all_cleanups);
2714 return 0;
2715 }
2716
2717 func_oload_champ = find_oload_champ_namespace (args, nargs,
2718 func_name,
2719 qualified_name,
2720 &oload_syms,
2721 &func_badness,
2722 no_adl);
2723
2724 if (func_oload_champ >= 0)
2725 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2726
2727 make_cleanup (xfree, oload_syms);
2728 make_cleanup (xfree, func_badness);
2729 }
2730
2731 /* Did we find a match ? */
2732 if (method_oload_champ == -1 && func_oload_champ == -1)
2733 throw_error (NOT_FOUND_ERROR,
2734 _("No symbol \"%s\" in current context."),
2735 name);
2736
2737 /* If we have found both a method match and a function
2738 match, find out which one is better, and calculate match
2739 quality. */
2740 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2741 {
2742 switch (compare_badness (func_badness, method_badness))
2743 {
2744 case 0: /* Top two contenders are equally good. */
2745 /* FIXME: GDB does not support the general ambiguous case.
2746 All candidates should be collected and presented the
2747 user. */
2748 error (_("Ambiguous overload resolution"));
2749 break;
2750 case 1: /* Incomparable top contenders. */
2751 /* This is an error incompatible candidates
2752 should not have been proposed. */
2753 error (_("Internal error: incompatible "
2754 "overload candidates proposed"));
2755 break;
2756 case 2: /* Function champion. */
2757 method_oload_champ = -1;
2758 match_quality = func_match_quality;
2759 break;
2760 case 3: /* Method champion. */
2761 func_oload_champ = -1;
2762 match_quality = method_match_quality;
2763 break;
2764 default:
2765 error (_("Internal error: unexpected overload comparison result"));
2766 break;
2767 }
2768 }
2769 else
2770 {
2771 /* We have either a method match or a function match. */
2772 if (method_oload_champ >= 0)
2773 match_quality = method_match_quality;
2774 else
2775 match_quality = func_match_quality;
2776 }
2777
2778 if (match_quality == INCOMPATIBLE)
2779 {
2780 if (method == METHOD)
2781 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2782 obj_type_name,
2783 (obj_type_name && *obj_type_name) ? "::" : "",
2784 name);
2785 else
2786 error (_("Cannot resolve function %s to any overloaded instance"),
2787 func_name);
2788 }
2789 else if (match_quality == NON_STANDARD)
2790 {
2791 if (method == METHOD)
2792 warning (_("Using non-standard conversion to match "
2793 "method %s%s%s to supplied arguments"),
2794 obj_type_name,
2795 (obj_type_name && *obj_type_name) ? "::" : "",
2796 name);
2797 else
2798 warning (_("Using non-standard conversion to match "
2799 "function %s to supplied arguments"),
2800 func_name);
2801 }
2802
2803 if (staticp != NULL)
2804 *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2805
2806 if (method_oload_champ >= 0)
2807 {
2808 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2809 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2810 basetype, boffset);
2811 else
2812 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2813 basetype, boffset);
2814 }
2815 else
2816 *symp = oload_syms[func_oload_champ];
2817
2818 if (objp)
2819 {
2820 struct type *temp_type = check_typedef (value_type (temp));
2821 struct type *objtype = check_typedef (obj_type);
2822
2823 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2824 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2825 || TYPE_CODE (objtype) == TYPE_CODE_REF))
2826 {
2827 temp = value_addr (temp);
2828 }
2829 *objp = temp;
2830 }
2831
2832 do_cleanups (all_cleanups);
2833
2834 switch (match_quality)
2835 {
2836 case INCOMPATIBLE:
2837 return 100;
2838 case NON_STANDARD:
2839 return 10;
2840 default: /* STANDARD */
2841 return 0;
2842 }
2843 }
2844
2845 /* Find the best overload match, searching for FUNC_NAME in namespaces
2846 contained in QUALIFIED_NAME until it either finds a good match or
2847 runs out of namespaces. It stores the overloaded functions in
2848 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2849 calling function is responsible for freeing *OLOAD_SYMS and
2850 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2851 performned. */
2852
2853 static int
2854 find_oload_champ_namespace (struct value **args, int nargs,
2855 const char *func_name,
2856 const char *qualified_name,
2857 struct symbol ***oload_syms,
2858 struct badness_vector **oload_champ_bv,
2859 const int no_adl)
2860 {
2861 int oload_champ;
2862
2863 find_oload_champ_namespace_loop (args, nargs,
2864 func_name,
2865 qualified_name, 0,
2866 oload_syms, oload_champ_bv,
2867 &oload_champ,
2868 no_adl);
2869
2870 return oload_champ;
2871 }
2872
2873 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2874 how deep we've looked for namespaces, and the champ is stored in
2875 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2876 if it isn't. Other arguments are the same as in
2877 find_oload_champ_namespace
2878
2879 It is the caller's responsibility to free *OLOAD_SYMS and
2880 *OLOAD_CHAMP_BV. */
2881
2882 static int
2883 find_oload_champ_namespace_loop (struct value **args, int nargs,
2884 const char *func_name,
2885 const char *qualified_name,
2886 int namespace_len,
2887 struct symbol ***oload_syms,
2888 struct badness_vector **oload_champ_bv,
2889 int *oload_champ,
2890 const int no_adl)
2891 {
2892 int next_namespace_len = namespace_len;
2893 int searched_deeper = 0;
2894 int num_fns = 0;
2895 struct cleanup *old_cleanups;
2896 int new_oload_champ;
2897 struct symbol **new_oload_syms;
2898 struct badness_vector *new_oload_champ_bv;
2899 char *new_namespace;
2900
2901 if (next_namespace_len != 0)
2902 {
2903 gdb_assert (qualified_name[next_namespace_len] == ':');
2904 next_namespace_len += 2;
2905 }
2906 next_namespace_len +=
2907 cp_find_first_component (qualified_name + next_namespace_len);
2908
2909 /* Initialize these to values that can safely be xfree'd. */
2910 *oload_syms = NULL;
2911 *oload_champ_bv = NULL;
2912
2913 /* First, see if we have a deeper namespace we can search in.
2914 If we get a good match there, use it. */
2915
2916 if (qualified_name[next_namespace_len] == ':')
2917 {
2918 searched_deeper = 1;
2919
2920 if (find_oload_champ_namespace_loop (args, nargs,
2921 func_name, qualified_name,
2922 next_namespace_len,
2923 oload_syms, oload_champ_bv,
2924 oload_champ, no_adl))
2925 {
2926 return 1;
2927 }
2928 };
2929
2930 /* If we reach here, either we're in the deepest namespace or we
2931 didn't find a good match in a deeper namespace. But, in the
2932 latter case, we still have a bad match in a deeper namespace;
2933 note that we might not find any match at all in the current
2934 namespace. (There's always a match in the deepest namespace,
2935 because this overload mechanism only gets called if there's a
2936 function symbol to start off with.) */
2937
2938 old_cleanups = make_cleanup (xfree, *oload_syms);
2939 make_cleanup (xfree, *oload_champ_bv);
2940 new_namespace = alloca (namespace_len + 1);
2941 strncpy (new_namespace, qualified_name, namespace_len);
2942 new_namespace[namespace_len] = '\0';
2943 new_oload_syms = make_symbol_overload_list (func_name,
2944 new_namespace);
2945
2946 /* If we have reached the deepest level perform argument
2947 determined lookup. */
2948 if (!searched_deeper && !no_adl)
2949 {
2950 int ix;
2951 struct type **arg_types;
2952
2953 /* Prepare list of argument types for overload resolution. */
2954 arg_types = (struct type **)
2955 alloca (nargs * (sizeof (struct type *)));
2956 for (ix = 0; ix < nargs; ix++)
2957 arg_types[ix] = value_type (args[ix]);
2958 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2959 }
2960
2961 while (new_oload_syms[num_fns])
2962 ++num_fns;
2963
2964 new_oload_champ = find_oload_champ (args, nargs, 0, num_fns,
2965 NULL, new_oload_syms,
2966 &new_oload_champ_bv);
2967
2968 /* Case 1: We found a good match. Free earlier matches (if any),
2969 and return it. Case 2: We didn't find a good match, but we're
2970 not the deepest function. Then go with the bad match that the
2971 deeper function found. Case 3: We found a bad match, and we're
2972 the deepest function. Then return what we found, even though
2973 it's a bad match. */
2974
2975 if (new_oload_champ != -1
2976 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2977 {
2978 *oload_syms = new_oload_syms;
2979 *oload_champ = new_oload_champ;
2980 *oload_champ_bv = new_oload_champ_bv;
2981 do_cleanups (old_cleanups);
2982 return 1;
2983 }
2984 else if (searched_deeper)
2985 {
2986 xfree (new_oload_syms);
2987 xfree (new_oload_champ_bv);
2988 discard_cleanups (old_cleanups);
2989 return 0;
2990 }
2991 else
2992 {
2993 *oload_syms = new_oload_syms;
2994 *oload_champ = new_oload_champ;
2995 *oload_champ_bv = new_oload_champ_bv;
2996 do_cleanups (old_cleanups);
2997 return 0;
2998 }
2999 }
3000
3001 /* Look for a function to take NARGS args of ARGS. Find
3002 the best match from among the overloaded methods or functions
3003 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
3004 The number of methods/functions in the list is given by NUM_FNS.
3005 Return the index of the best match; store an indication of the
3006 quality of the match in OLOAD_CHAMP_BV.
3007
3008 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
3009
3010 static int
3011 find_oload_champ (struct value **args, int nargs, int method,
3012 int num_fns, struct fn_field *fns_ptr,
3013 struct symbol **oload_syms,
3014 struct badness_vector **oload_champ_bv)
3015 {
3016 int ix;
3017 /* A measure of how good an overloaded instance is. */
3018 struct badness_vector *bv;
3019 /* Index of best overloaded function. */
3020 int oload_champ = -1;
3021 /* Current ambiguity state for overload resolution. */
3022 int oload_ambiguous = 0;
3023 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
3024
3025 *oload_champ_bv = NULL;
3026
3027 /* Consider each candidate in turn. */
3028 for (ix = 0; ix < num_fns; ix++)
3029 {
3030 int jj;
3031 int static_offset = oload_method_static (method, fns_ptr, ix);
3032 int nparms;
3033 struct type **parm_types;
3034
3035 if (method)
3036 {
3037 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
3038 }
3039 else
3040 {
3041 /* If it's not a method, this is the proper place. */
3042 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
3043 }
3044
3045 /* Prepare array of parameter types. */
3046 parm_types = (struct type **)
3047 xmalloc (nparms * (sizeof (struct type *)));
3048 for (jj = 0; jj < nparms; jj++)
3049 parm_types[jj] = (method
3050 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
3051 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
3052 jj));
3053
3054 /* Compare parameter types to supplied argument types. Skip
3055 THIS for static methods. */
3056 bv = rank_function (parm_types, nparms,
3057 args + static_offset,
3058 nargs - static_offset);
3059
3060 if (!*oload_champ_bv)
3061 {
3062 *oload_champ_bv = bv;
3063 oload_champ = 0;
3064 }
3065 else /* See whether current candidate is better or worse than
3066 previous best. */
3067 switch (compare_badness (bv, *oload_champ_bv))
3068 {
3069 case 0: /* Top two contenders are equally good. */
3070 oload_ambiguous = 1;
3071 break;
3072 case 1: /* Incomparable top contenders. */
3073 oload_ambiguous = 2;
3074 break;
3075 case 2: /* New champion, record details. */
3076 *oload_champ_bv = bv;
3077 oload_ambiguous = 0;
3078 oload_champ = ix;
3079 break;
3080 case 3:
3081 default:
3082 break;
3083 }
3084 xfree (parm_types);
3085 if (overload_debug)
3086 {
3087 if (method)
3088 fprintf_filtered (gdb_stderr,
3089 "Overloaded method instance %s, # of parms %d\n",
3090 fns_ptr[ix].physname, nparms);
3091 else
3092 fprintf_filtered (gdb_stderr,
3093 "Overloaded function instance "
3094 "%s # of parms %d\n",
3095 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
3096 nparms);
3097 for (jj = 0; jj < nargs - static_offset; jj++)
3098 fprintf_filtered (gdb_stderr,
3099 "...Badness @ %d : %d\n",
3100 jj, bv->rank[jj].rank);
3101 fprintf_filtered (gdb_stderr, "Overload resolution "
3102 "champion is %d, ambiguous? %d\n",
3103 oload_champ, oload_ambiguous);
3104 }
3105 }
3106
3107 return oload_champ;
3108 }
3109
3110 /* Return 1 if we're looking at a static method, 0 if we're looking at
3111 a non-static method or a function that isn't a method. */
3112
3113 static int
3114 oload_method_static (int method, struct fn_field *fns_ptr, int index)
3115 {
3116 if (method && fns_ptr && index >= 0
3117 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3118 return 1;
3119 else
3120 return 0;
3121 }
3122
3123 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3124
3125 static enum oload_classification
3126 classify_oload_match (struct badness_vector *oload_champ_bv,
3127 int nargs,
3128 int static_offset)
3129 {
3130 int ix;
3131 enum oload_classification worst = STANDARD;
3132
3133 for (ix = 1; ix <= nargs - static_offset; ix++)
3134 {
3135 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3136 or worse return INCOMPATIBLE. */
3137 if (compare_ranks (oload_champ_bv->rank[ix],
3138 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3139 return INCOMPATIBLE; /* Truly mismatched types. */
3140 /* Otherwise If this conversion is as bad as
3141 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3142 else if (compare_ranks (oload_champ_bv->rank[ix],
3143 NS_POINTER_CONVERSION_BADNESS) <= 0)
3144 worst = NON_STANDARD; /* Non-standard type conversions
3145 needed. */
3146 }
3147
3148 /* If no INCOMPATIBLE classification was found, return the worst one
3149 that was found (if any). */
3150 return worst;
3151 }
3152
3153 /* C++: return 1 is NAME is a legitimate name for the destructor of
3154 type TYPE. If TYPE does not have a destructor, or if NAME is
3155 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3156 have CHECK_TYPEDEF applied, this function will apply it itself. */
3157
3158 int
3159 destructor_name_p (const char *name, struct type *type)
3160 {
3161 if (name[0] == '~')
3162 {
3163 const char *dname = type_name_no_tag_or_error (type);
3164 const char *cp = strchr (dname, '<');
3165 unsigned int len;
3166
3167 /* Do not compare the template part for template classes. */
3168 if (cp == NULL)
3169 len = strlen (dname);
3170 else
3171 len = cp - dname;
3172 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3173 error (_("name of destructor must equal name of class"));
3174 else
3175 return 1;
3176 }
3177 return 0;
3178 }
3179
3180 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3181 return the appropriate member (or the address of the member, if
3182 WANT_ADDRESS). This function is used to resolve user expressions
3183 of the form "DOMAIN::NAME". For more details on what happens, see
3184 the comment before value_struct_elt_for_reference. */
3185
3186 struct value *
3187 value_aggregate_elt (struct type *curtype, char *name,
3188 struct type *expect_type, int want_address,
3189 enum noside noside)
3190 {
3191 switch (TYPE_CODE (curtype))
3192 {
3193 case TYPE_CODE_STRUCT:
3194 case TYPE_CODE_UNION:
3195 return value_struct_elt_for_reference (curtype, 0, curtype,
3196 name, expect_type,
3197 want_address, noside);
3198 case TYPE_CODE_NAMESPACE:
3199 return value_namespace_elt (curtype, name,
3200 want_address, noside);
3201 default:
3202 internal_error (__FILE__, __LINE__,
3203 _("non-aggregate type in value_aggregate_elt"));
3204 }
3205 }
3206
3207 /* Compares the two method/function types T1 and T2 for "equality"
3208 with respect to the methods' parameters. If the types of the
3209 two parameter lists are the same, returns 1; 0 otherwise. This
3210 comparison may ignore any artificial parameters in T1 if
3211 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3212 the first artificial parameter in T1, assumed to be a 'this' pointer.
3213
3214 The type T2 is expected to have come from make_params (in eval.c). */
3215
3216 static int
3217 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3218 {
3219 int start = 0;
3220
3221 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3222 ++start;
3223
3224 /* If skipping artificial fields, find the first real field
3225 in T1. */
3226 if (skip_artificial)
3227 {
3228 while (start < TYPE_NFIELDS (t1)
3229 && TYPE_FIELD_ARTIFICIAL (t1, start))
3230 ++start;
3231 }
3232
3233 /* Now compare parameters. */
3234
3235 /* Special case: a method taking void. T1 will contain no
3236 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3237 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3238 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3239 return 1;
3240
3241 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3242 {
3243 int i;
3244
3245 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3246 {
3247 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3248 TYPE_FIELD_TYPE (t2, i), NULL),
3249 EXACT_MATCH_BADNESS) != 0)
3250 return 0;
3251 }
3252
3253 return 1;
3254 }
3255
3256 return 0;
3257 }
3258
3259 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3260 return the address of this member as a "pointer to member" type.
3261 If INTYPE is non-null, then it will be the type of the member we
3262 are looking for. This will help us resolve "pointers to member
3263 functions". This function is used to resolve user expressions of
3264 the form "DOMAIN::NAME". */
3265
3266 static struct value *
3267 value_struct_elt_for_reference (struct type *domain, int offset,
3268 struct type *curtype, char *name,
3269 struct type *intype,
3270 int want_address,
3271 enum noside noside)
3272 {
3273 struct type *t = curtype;
3274 int i;
3275 struct value *v, *result;
3276
3277 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3278 && TYPE_CODE (t) != TYPE_CODE_UNION)
3279 error (_("Internal error: non-aggregate type "
3280 "to value_struct_elt_for_reference"));
3281
3282 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3283 {
3284 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3285
3286 if (t_field_name && strcmp (t_field_name, name) == 0)
3287 {
3288 if (field_is_static (&TYPE_FIELD (t, i)))
3289 {
3290 v = value_static_field (t, i);
3291 if (v == NULL)
3292 error (_("static field %s has been optimized out"),
3293 name);
3294 if (want_address)
3295 v = value_addr (v);
3296 return v;
3297 }
3298 if (TYPE_FIELD_PACKED (t, i))
3299 error (_("pointers to bitfield members not allowed"));
3300
3301 if (want_address)
3302 return value_from_longest
3303 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3304 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3305 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3306 return allocate_value (TYPE_FIELD_TYPE (t, i));
3307 else
3308 error (_("Cannot reference non-static field \"%s\""), name);
3309 }
3310 }
3311
3312 /* C++: If it was not found as a data field, then try to return it
3313 as a pointer to a method. */
3314
3315 /* Perform all necessary dereferencing. */
3316 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3317 intype = TYPE_TARGET_TYPE (intype);
3318
3319 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3320 {
3321 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3322 char dem_opname[64];
3323
3324 if (strncmp (t_field_name, "__", 2) == 0
3325 || strncmp (t_field_name, "op", 2) == 0
3326 || strncmp (t_field_name, "type", 4) == 0)
3327 {
3328 if (cplus_demangle_opname (t_field_name,
3329 dem_opname, DMGL_ANSI))
3330 t_field_name = dem_opname;
3331 else if (cplus_demangle_opname (t_field_name,
3332 dem_opname, 0))
3333 t_field_name = dem_opname;
3334 }
3335 if (t_field_name && strcmp (t_field_name, name) == 0)
3336 {
3337 int j;
3338 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3339 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3340
3341 check_stub_method_group (t, i);
3342
3343 if (intype)
3344 {
3345 for (j = 0; j < len; ++j)
3346 {
3347 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3348 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3349 intype, 1))
3350 break;
3351 }
3352
3353 if (j == len)
3354 error (_("no member function matches "
3355 "that type instantiation"));
3356 }
3357 else
3358 {
3359 int ii;
3360
3361 j = -1;
3362 for (ii = 0; ii < len; ++ii)
3363 {
3364 /* Skip artificial methods. This is necessary if,
3365 for example, the user wants to "print
3366 subclass::subclass" with only one user-defined
3367 constructor. There is no ambiguity in this case.
3368 We are careful here to allow artificial methods
3369 if they are the unique result. */
3370 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3371 {
3372 if (j == -1)
3373 j = ii;
3374 continue;
3375 }
3376
3377 /* Desired method is ambiguous if more than one
3378 method is defined. */
3379 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3380 error (_("non-unique member `%s' requires "
3381 "type instantiation"), name);
3382
3383 j = ii;
3384 }
3385
3386 if (j == -1)
3387 error (_("no matching member function"));
3388 }
3389
3390 if (TYPE_FN_FIELD_STATIC_P (f, j))
3391 {
3392 struct symbol *s =
3393 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3394 0, VAR_DOMAIN, 0);
3395
3396 if (s == NULL)
3397 return NULL;
3398
3399 if (want_address)
3400 return value_addr (read_var_value (s, 0));
3401 else
3402 return read_var_value (s, 0);
3403 }
3404
3405 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3406 {
3407 if (want_address)
3408 {
3409 result = allocate_value
3410 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3411 cplus_make_method_ptr (value_type (result),
3412 value_contents_writeable (result),
3413 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3414 }
3415 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3416 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3417 else
3418 error (_("Cannot reference virtual member function \"%s\""),
3419 name);
3420 }
3421 else
3422 {
3423 struct symbol *s =
3424 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3425 0, VAR_DOMAIN, 0);
3426
3427 if (s == NULL)
3428 return NULL;
3429
3430 v = read_var_value (s, 0);
3431 if (!want_address)
3432 result = v;
3433 else
3434 {
3435 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3436 cplus_make_method_ptr (value_type (result),
3437 value_contents_writeable (result),
3438 value_address (v), 0);
3439 }
3440 }
3441 return result;
3442 }
3443 }
3444 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3445 {
3446 struct value *v;
3447 int base_offset;
3448
3449 if (BASETYPE_VIA_VIRTUAL (t, i))
3450 base_offset = 0;
3451 else
3452 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3453 v = value_struct_elt_for_reference (domain,
3454 offset + base_offset,
3455 TYPE_BASECLASS (t, i),
3456 name, intype,
3457 want_address, noside);
3458 if (v)
3459 return v;
3460 }
3461
3462 /* As a last chance, pretend that CURTYPE is a namespace, and look
3463 it up that way; this (frequently) works for types nested inside
3464 classes. */
3465
3466 return value_maybe_namespace_elt (curtype, name,
3467 want_address, noside);
3468 }
3469
3470 /* C++: Return the member NAME of the namespace given by the type
3471 CURTYPE. */
3472
3473 static struct value *
3474 value_namespace_elt (const struct type *curtype,
3475 char *name, int want_address,
3476 enum noside noside)
3477 {
3478 struct value *retval = value_maybe_namespace_elt (curtype, name,
3479 want_address,
3480 noside);
3481
3482 if (retval == NULL)
3483 error (_("No symbol \"%s\" in namespace \"%s\"."),
3484 name, TYPE_TAG_NAME (curtype));
3485
3486 return retval;
3487 }
3488
3489 /* A helper function used by value_namespace_elt and
3490 value_struct_elt_for_reference. It looks up NAME inside the
3491 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3492 is a class and NAME refers to a type in CURTYPE itself (as opposed
3493 to, say, some base class of CURTYPE). */
3494
3495 static struct value *
3496 value_maybe_namespace_elt (const struct type *curtype,
3497 char *name, int want_address,
3498 enum noside noside)
3499 {
3500 const char *namespace_name = TYPE_TAG_NAME (curtype);
3501 struct symbol *sym;
3502 struct value *result;
3503
3504 sym = cp_lookup_symbol_namespace (namespace_name, name,
3505 get_selected_block (0), VAR_DOMAIN);
3506
3507 if (sym == NULL)
3508 {
3509 char *concatenated_name = alloca (strlen (namespace_name) + 2
3510 + strlen (name) + 1);
3511
3512 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3513 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3514 }
3515
3516 if (sym == NULL)
3517 return NULL;
3518 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3519 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3520 result = allocate_value (SYMBOL_TYPE (sym));
3521 else
3522 result = value_of_variable (sym, get_selected_block (0));
3523
3524 if (result && want_address)
3525 result = value_addr (result);
3526
3527 return result;
3528 }
3529
3530 /* Given a pointer or a reference value V, find its real (RTTI) type.
3531
3532 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3533 and refer to the values computed for the object pointed to. */
3534
3535 struct type *
3536 value_rtti_indirect_type (struct value *v, int *full,
3537 int *top, int *using_enc)
3538 {
3539 struct value *target;
3540 struct type *type, *real_type, *target_type;
3541
3542 type = value_type (v);
3543 type = check_typedef (type);
3544 if (TYPE_CODE (type) == TYPE_CODE_REF)
3545 target = coerce_ref (v);
3546 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3547 target = value_ind (v);
3548 else
3549 return NULL;
3550
3551 real_type = value_rtti_type (target, full, top, using_enc);
3552
3553 if (real_type)
3554 {
3555 /* Copy qualifiers to the referenced object. */
3556 target_type = value_type (target);
3557 real_type = make_cv_type (TYPE_CONST (target_type),
3558 TYPE_VOLATILE (target_type), real_type, NULL);
3559 if (TYPE_CODE (type) == TYPE_CODE_REF)
3560 real_type = lookup_reference_type (real_type);
3561 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3562 real_type = lookup_pointer_type (real_type);
3563 else
3564 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3565
3566 /* Copy qualifiers to the pointer/reference. */
3567 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3568 real_type, NULL);
3569 }
3570
3571 return real_type;
3572 }
3573
3574 /* Given a value pointed to by ARGP, check its real run-time type, and
3575 if that is different from the enclosing type, create a new value
3576 using the real run-time type as the enclosing type (and of the same
3577 type as ARGP) and return it, with the embedded offset adjusted to
3578 be the correct offset to the enclosed object. RTYPE is the type,
3579 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3580 by value_rtti_type(). If these are available, they can be supplied
3581 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3582 NULL if they're not available. */
3583
3584 struct value *
3585 value_full_object (struct value *argp,
3586 struct type *rtype,
3587 int xfull, int xtop,
3588 int xusing_enc)
3589 {
3590 struct type *real_type;
3591 int full = 0;
3592 int top = -1;
3593 int using_enc = 0;
3594 struct value *new_val;
3595
3596 if (rtype)
3597 {
3598 real_type = rtype;
3599 full = xfull;
3600 top = xtop;
3601 using_enc = xusing_enc;
3602 }
3603 else
3604 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3605
3606 /* If no RTTI data, or if object is already complete, do nothing. */
3607 if (!real_type || real_type == value_enclosing_type (argp))
3608 return argp;
3609
3610 /* In a destructor we might see a real type that is a superclass of
3611 the object's type. In this case it is better to leave the object
3612 as-is. */
3613 if (full
3614 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3615 return argp;
3616
3617 /* If we have the full object, but for some reason the enclosing
3618 type is wrong, set it. */
3619 /* pai: FIXME -- sounds iffy */
3620 if (full)
3621 {
3622 argp = value_copy (argp);
3623 set_value_enclosing_type (argp, real_type);
3624 return argp;
3625 }
3626
3627 /* Check if object is in memory. */
3628 if (VALUE_LVAL (argp) != lval_memory)
3629 {
3630 warning (_("Couldn't retrieve complete object of RTTI "
3631 "type %s; object may be in register(s)."),
3632 TYPE_NAME (real_type));
3633
3634 return argp;
3635 }
3636
3637 /* All other cases -- retrieve the complete object. */
3638 /* Go back by the computed top_offset from the beginning of the
3639 object, adjusting for the embedded offset of argp if that's what
3640 value_rtti_type used for its computation. */
3641 new_val = value_at_lazy (real_type, value_address (argp) - top +
3642 (using_enc ? 0 : value_embedded_offset (argp)));
3643 deprecated_set_value_type (new_val, value_type (argp));
3644 set_value_embedded_offset (new_val, (using_enc
3645 ? top + value_embedded_offset (argp)
3646 : top));
3647 return new_val;
3648 }
3649
3650
3651 /* Return the value of the local variable, if one exists. Throw error
3652 otherwise, such as if the request is made in an inappropriate context. */
3653
3654 struct value *
3655 value_of_this (const struct language_defn *lang)
3656 {
3657 struct symbol *sym;
3658 struct block *b;
3659 struct frame_info *frame;
3660
3661 if (!lang->la_name_of_this)
3662 error (_("no `this' in current language"));
3663
3664 frame = get_selected_frame (_("no frame selected"));
3665
3666 b = get_frame_block (frame, NULL);
3667
3668 sym = lookup_language_this (lang, b);
3669 if (sym == NULL)
3670 error (_("current stack frame does not contain a variable named `%s'"),
3671 lang->la_name_of_this);
3672
3673 return read_var_value (sym, frame);
3674 }
3675
3676 /* Return the value of the local variable, if one exists. Return NULL
3677 otherwise. Never throw error. */
3678
3679 struct value *
3680 value_of_this_silent (const struct language_defn *lang)
3681 {
3682 struct value *ret = NULL;
3683 volatile struct gdb_exception except;
3684
3685 TRY_CATCH (except, RETURN_MASK_ERROR)
3686 {
3687 ret = value_of_this (lang);
3688 }
3689
3690 return ret;
3691 }
3692
3693 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3694 elements long, starting at LOWBOUND. The result has the same lower
3695 bound as the original ARRAY. */
3696
3697 struct value *
3698 value_slice (struct value *array, int lowbound, int length)
3699 {
3700 struct type *slice_range_type, *slice_type, *range_type;
3701 LONGEST lowerbound, upperbound;
3702 struct value *slice;
3703 struct type *array_type;
3704
3705 array_type = check_typedef (value_type (array));
3706 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3707 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
3708 error (_("cannot take slice of non-array"));
3709
3710 range_type = TYPE_INDEX_TYPE (array_type);
3711 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3712 error (_("slice from bad array or bitstring"));
3713
3714 if (lowbound < lowerbound || length < 0
3715 || lowbound + length - 1 > upperbound)
3716 error (_("slice out of range"));
3717
3718 /* FIXME-type-allocation: need a way to free this type when we are
3719 done with it. */
3720 slice_range_type = create_range_type ((struct type *) NULL,
3721 TYPE_TARGET_TYPE (range_type),
3722 lowbound,
3723 lowbound + length - 1);
3724
3725 {
3726 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3727 LONGEST offset =
3728 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3729
3730 slice_type = create_array_type ((struct type *) NULL,
3731 element_type,
3732 slice_range_type);
3733 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3734
3735 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3736 slice = allocate_value_lazy (slice_type);
3737 else
3738 {
3739 slice = allocate_value (slice_type);
3740 value_contents_copy (slice, 0, array, offset,
3741 TYPE_LENGTH (slice_type));
3742 }
3743
3744 set_value_component_location (slice, array);
3745 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3746 set_value_offset (slice, value_offset (array) + offset);
3747 }
3748 return slice;
3749 }
3750
3751 /* Create a value for a FORTRAN complex number. Currently most of the
3752 time values are coerced to COMPLEX*16 (i.e. a complex number
3753 composed of 2 doubles. This really should be a smarter routine
3754 that figures out precision inteligently as opposed to assuming
3755 doubles. FIXME: fmb */
3756
3757 struct value *
3758 value_literal_complex (struct value *arg1,
3759 struct value *arg2,
3760 struct type *type)
3761 {
3762 struct value *val;
3763 struct type *real_type = TYPE_TARGET_TYPE (type);
3764
3765 val = allocate_value (type);
3766 arg1 = value_cast (real_type, arg1);
3767 arg2 = value_cast (real_type, arg2);
3768
3769 memcpy (value_contents_raw (val),
3770 value_contents (arg1), TYPE_LENGTH (real_type));
3771 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3772 value_contents (arg2), TYPE_LENGTH (real_type));
3773 return val;
3774 }
3775
3776 /* Cast a value into the appropriate complex data type. */
3777
3778 static struct value *
3779 cast_into_complex (struct type *type, struct value *val)
3780 {
3781 struct type *real_type = TYPE_TARGET_TYPE (type);
3782
3783 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3784 {
3785 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3786 struct value *re_val = allocate_value (val_real_type);
3787 struct value *im_val = allocate_value (val_real_type);
3788
3789 memcpy (value_contents_raw (re_val),
3790 value_contents (val), TYPE_LENGTH (val_real_type));
3791 memcpy (value_contents_raw (im_val),
3792 value_contents (val) + TYPE_LENGTH (val_real_type),
3793 TYPE_LENGTH (val_real_type));
3794
3795 return value_literal_complex (re_val, im_val, type);
3796 }
3797 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3798 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3799 return value_literal_complex (val,
3800 value_zero (real_type, not_lval),
3801 type);
3802 else
3803 error (_("cannot cast non-number to complex"));
3804 }
3805
3806 void
3807 _initialize_valops (void)
3808 {
3809 add_setshow_boolean_cmd ("overload-resolution", class_support,
3810 &overload_resolution, _("\
3811 Set overload resolution in evaluating C++ functions."), _("\
3812 Show overload resolution in evaluating C++ functions."),
3813 NULL, NULL,
3814 show_overload_resolution,
3815 &setlist, &showlist);
3816 overload_resolution = 1;
3817 }
This page took 0.171017 seconds and 4 git commands to generate.