a1da69dcba4dedf4170bcb6a3e1c2c315eae4dd7
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
3 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "gdbcore.h"
30 #include "target.h"
31 #include "demangle.h"
32 #include "language.h"
33 #include "gdbcmd.h"
34 #include "regcache.h"
35 #include "cp-abi.h"
36
37 #include <errno.h>
38 #include "gdb_string.h"
39 #include "gdb_assert.h"
40
41 /* Flag indicating HP compilers were used; needed to correctly handle some
42 value operations with HP aCC code/runtime. */
43 extern int hp_som_som_object_present;
44
45 extern int overload_debug;
46 /* Local functions. */
47
48 static int typecmp (int staticp, int varargs, int nargs,
49 struct field t1[], struct value *t2[]);
50
51 static CORE_ADDR find_function_addr (struct value *, struct type **);
52 static struct value *value_arg_coerce (struct value *, struct type *, int);
53
54
55 static CORE_ADDR value_push (CORE_ADDR, struct value *);
56
57 static struct value *search_struct_field (char *, struct value *, int,
58 struct type *, int);
59
60 static struct value *search_struct_method (char *, struct value **,
61 struct value **,
62 int, int *, struct type *);
63
64 static int check_field_in (struct type *, const char *);
65
66 static CORE_ADDR allocate_space_in_inferior (int);
67
68 static struct value *cast_into_complex (struct type *, struct value *);
69
70 static struct fn_field *find_method_list (struct value ** argp, char *method,
71 int offset,
72 struct type *type, int *num_fns,
73 struct type **basetype,
74 int *boffset);
75
76 void _initialize_valops (void);
77
78 /* Flag for whether we want to abandon failed expression evals by default. */
79
80 #if 0
81 static int auto_abandon = 0;
82 #endif
83
84 int overload_resolution = 0;
85
86 /* This boolean tells what gdb should do if a signal is received while in
87 a function called from gdb (call dummy). If set, gdb unwinds the stack
88 and restore the context to what as it was before the call.
89 The default is to stop in the frame where the signal was received. */
90
91 int unwind_on_signal_p = 0;
92 \f
93
94
95 /* Find the address of function name NAME in the inferior. */
96
97 struct value *
98 find_function_in_inferior (const char *name)
99 {
100 register struct symbol *sym;
101 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
102 if (sym != NULL)
103 {
104 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
105 {
106 error ("\"%s\" exists in this program but is not a function.",
107 name);
108 }
109 return value_of_variable (sym, NULL);
110 }
111 else
112 {
113 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
114 if (msymbol != NULL)
115 {
116 struct type *type;
117 CORE_ADDR maddr;
118 type = lookup_pointer_type (builtin_type_char);
119 type = lookup_function_type (type);
120 type = lookup_pointer_type (type);
121 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
122 return value_from_pointer (type, maddr);
123 }
124 else
125 {
126 if (!target_has_execution)
127 error ("evaluation of this expression requires the target program to be active");
128 else
129 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
130 }
131 }
132 }
133
134 /* Allocate NBYTES of space in the inferior using the inferior's malloc
135 and return a value that is a pointer to the allocated space. */
136
137 struct value *
138 value_allocate_space_in_inferior (int len)
139 {
140 struct value *blocklen;
141 struct value *val = find_function_in_inferior (NAME_OF_MALLOC);
142
143 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
144 val = call_function_by_hand (val, 1, &blocklen);
145 if (value_logical_not (val))
146 {
147 if (!target_has_execution)
148 error ("No memory available to program now: you need to start the target first");
149 else
150 error ("No memory available to program: call to malloc failed");
151 }
152 return val;
153 }
154
155 static CORE_ADDR
156 allocate_space_in_inferior (int len)
157 {
158 return value_as_long (value_allocate_space_in_inferior (len));
159 }
160
161 /* Cast value ARG2 to type TYPE and return as a value.
162 More general than a C cast: accepts any two types of the same length,
163 and if ARG2 is an lvalue it can be cast into anything at all. */
164 /* In C++, casts may change pointer or object representations. */
165
166 struct value *
167 value_cast (struct type *type, struct value *arg2)
168 {
169 register enum type_code code1;
170 register enum type_code code2;
171 register int scalar;
172 struct type *type2;
173
174 int convert_to_boolean = 0;
175
176 if (VALUE_TYPE (arg2) == type)
177 return arg2;
178
179 CHECK_TYPEDEF (type);
180 code1 = TYPE_CODE (type);
181 COERCE_REF (arg2);
182 type2 = check_typedef (VALUE_TYPE (arg2));
183
184 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
185 is treated like a cast to (TYPE [N])OBJECT,
186 where N is sizeof(OBJECT)/sizeof(TYPE). */
187 if (code1 == TYPE_CODE_ARRAY)
188 {
189 struct type *element_type = TYPE_TARGET_TYPE (type);
190 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
191 if (element_length > 0
192 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
193 {
194 struct type *range_type = TYPE_INDEX_TYPE (type);
195 int val_length = TYPE_LENGTH (type2);
196 LONGEST low_bound, high_bound, new_length;
197 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
198 low_bound = 0, high_bound = 0;
199 new_length = val_length / element_length;
200 if (val_length % element_length != 0)
201 warning ("array element type size does not divide object size in cast");
202 /* FIXME-type-allocation: need a way to free this type when we are
203 done with it. */
204 range_type = create_range_type ((struct type *) NULL,
205 TYPE_TARGET_TYPE (range_type),
206 low_bound,
207 new_length + low_bound - 1);
208 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
209 element_type, range_type);
210 return arg2;
211 }
212 }
213
214 if (current_language->c_style_arrays
215 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
216 arg2 = value_coerce_array (arg2);
217
218 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
219 arg2 = value_coerce_function (arg2);
220
221 type2 = check_typedef (VALUE_TYPE (arg2));
222 COERCE_VARYING_ARRAY (arg2, type2);
223 code2 = TYPE_CODE (type2);
224
225 if (code1 == TYPE_CODE_COMPLEX)
226 return cast_into_complex (type, arg2);
227 if (code1 == TYPE_CODE_BOOL)
228 {
229 code1 = TYPE_CODE_INT;
230 convert_to_boolean = 1;
231 }
232 if (code1 == TYPE_CODE_CHAR)
233 code1 = TYPE_CODE_INT;
234 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
235 code2 = TYPE_CODE_INT;
236
237 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
238 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
239
240 if (code1 == TYPE_CODE_STRUCT
241 && code2 == TYPE_CODE_STRUCT
242 && TYPE_NAME (type) != 0)
243 {
244 /* Look in the type of the source to see if it contains the
245 type of the target as a superclass. If so, we'll need to
246 offset the object in addition to changing its type. */
247 struct value *v = search_struct_field (type_name_no_tag (type),
248 arg2, 0, type2, 1);
249 if (v)
250 {
251 VALUE_TYPE (v) = type;
252 return v;
253 }
254 }
255 if (code1 == TYPE_CODE_FLT && scalar)
256 return value_from_double (type, value_as_double (arg2));
257 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
258 || code1 == TYPE_CODE_RANGE)
259 && (scalar || code2 == TYPE_CODE_PTR))
260 {
261 LONGEST longest;
262
263 if (hp_som_som_object_present && /* if target compiled by HP aCC */
264 (code2 == TYPE_CODE_PTR))
265 {
266 unsigned int *ptr;
267 struct value *retvalp;
268
269 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
270 {
271 /* With HP aCC, pointers to data members have a bias */
272 case TYPE_CODE_MEMBER:
273 retvalp = value_from_longest (type, value_as_long (arg2));
274 /* force evaluation */
275 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
276 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
277 return retvalp;
278
279 /* While pointers to methods don't really point to a function */
280 case TYPE_CODE_METHOD:
281 error ("Pointers to methods not supported with HP aCC");
282
283 default:
284 break; /* fall out and go to normal handling */
285 }
286 }
287
288 /* When we cast pointers to integers, we mustn't use
289 POINTER_TO_ADDRESS to find the address the pointer
290 represents, as value_as_long would. GDB should evaluate
291 expressions just as the compiler would --- and the compiler
292 sees a cast as a simple reinterpretation of the pointer's
293 bits. */
294 if (code2 == TYPE_CODE_PTR)
295 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
296 TYPE_LENGTH (type2));
297 else
298 longest = value_as_long (arg2);
299 return value_from_longest (type, convert_to_boolean ?
300 (LONGEST) (longest ? 1 : 0) : longest);
301 }
302 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
303 code2 == TYPE_CODE_ENUM ||
304 code2 == TYPE_CODE_RANGE))
305 {
306 /* TYPE_LENGTH (type) is the length of a pointer, but we really
307 want the length of an address! -- we are really dealing with
308 addresses (i.e., gdb representations) not pointers (i.e.,
309 target representations) here.
310
311 This allows things like "print *(int *)0x01000234" to work
312 without printing a misleading message -- which would
313 otherwise occur when dealing with a target having two byte
314 pointers and four byte addresses. */
315
316 int addr_bit = TARGET_ADDR_BIT;
317
318 LONGEST longest = value_as_long (arg2);
319 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
320 {
321 if (longest >= ((LONGEST) 1 << addr_bit)
322 || longest <= -((LONGEST) 1 << addr_bit))
323 warning ("value truncated");
324 }
325 return value_from_longest (type, longest);
326 }
327 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
328 {
329 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
330 {
331 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
332 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
333 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
334 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
335 && !value_logical_not (arg2))
336 {
337 struct value *v;
338
339 /* Look in the type of the source to see if it contains the
340 type of the target as a superclass. If so, we'll need to
341 offset the pointer rather than just change its type. */
342 if (TYPE_NAME (t1) != NULL)
343 {
344 v = search_struct_field (type_name_no_tag (t1),
345 value_ind (arg2), 0, t2, 1);
346 if (v)
347 {
348 v = value_addr (v);
349 VALUE_TYPE (v) = type;
350 return v;
351 }
352 }
353
354 /* Look in the type of the target to see if it contains the
355 type of the source as a superclass. If so, we'll need to
356 offset the pointer rather than just change its type.
357 FIXME: This fails silently with virtual inheritance. */
358 if (TYPE_NAME (t2) != NULL)
359 {
360 v = search_struct_field (type_name_no_tag (t2),
361 value_zero (t1, not_lval), 0, t1, 1);
362 if (v)
363 {
364 CORE_ADDR addr2 = value_as_address (arg2);
365 addr2 -= (VALUE_ADDRESS (v)
366 + VALUE_OFFSET (v)
367 + VALUE_EMBEDDED_OFFSET (v));
368 return value_from_pointer (type, addr2);
369 }
370 }
371 }
372 /* No superclass found, just fall through to change ptr type. */
373 }
374 VALUE_TYPE (arg2) = type;
375 arg2 = value_change_enclosing_type (arg2, type);
376 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
377 return arg2;
378 }
379 /* OBSOLETE else if (chill_varying_type (type)) */
380 /* OBSOLETE { */
381 /* OBSOLETE struct type *range1, *range2, *eltype1, *eltype2; */
382 /* OBSOLETE struct value *val; */
383 /* OBSOLETE int count1, count2; */
384 /* OBSOLETE LONGEST low_bound, high_bound; */
385 /* OBSOLETE char *valaddr, *valaddr_data; */
386 /* OBSOLETE *//* For lint warning about eltype2 possibly uninitialized: */
387 /* OBSOLETE eltype2 = NULL; */
388 /* OBSOLETE if (code2 == TYPE_CODE_BITSTRING) */
389 /* OBSOLETE error ("not implemented: converting bitstring to varying type"); */
390 /* OBSOLETE if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING) */
391 /* OBSOLETE || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))), */
392 /* OBSOLETE eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)), */
393 /* OBSOLETE (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2) */
394 /* OBSOLETE *//*|| TYPE_CODE (eltype1) != TYPE_CODE (eltype2) *//* ))) */
395 /* OBSOLETE error ("Invalid conversion to varying type"); */
396 /* OBSOLETE range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0); */
397 /* OBSOLETE range2 = TYPE_FIELD_TYPE (type2, 0); */
398 /* OBSOLETE if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0) */
399 /* OBSOLETE count1 = -1; */
400 /* OBSOLETE else */
401 /* OBSOLETE count1 = high_bound - low_bound + 1; */
402 /* OBSOLETE if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0) */
403 /* OBSOLETE count1 = -1, count2 = 0; *//* To force error before */
404 /* OBSOLETE else */
405 /* OBSOLETE count2 = high_bound - low_bound + 1; */
406 /* OBSOLETE if (count2 > count1) */
407 /* OBSOLETE error ("target varying type is too small"); */
408 /* OBSOLETE val = allocate_value (type); */
409 /* OBSOLETE valaddr = VALUE_CONTENTS_RAW (val); */
410 /* OBSOLETE valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8; */
411 /* OBSOLETE *//* Set val's __var_length field to count2. */
412 /* OBSOLETE store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)), */
413 /* OBSOLETE count2); */
414 /* OBSOLETE *//* Set the __var_data field to count2 elements copied from arg2. */
415 /* OBSOLETE memcpy (valaddr_data, VALUE_CONTENTS (arg2), */
416 /* OBSOLETE count2 * TYPE_LENGTH (eltype2)); */
417 /* OBSOLETE *//* Zero the rest of the __var_data field of val. */
418 /* OBSOLETE memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0', */
419 /* OBSOLETE (count1 - count2) * TYPE_LENGTH (eltype2)); */
420 /* OBSOLETE return val; */
421 /* OBSOLETE } */
422 else if (VALUE_LVAL (arg2) == lval_memory)
423 {
424 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
425 VALUE_BFD_SECTION (arg2));
426 }
427 else if (code1 == TYPE_CODE_VOID)
428 {
429 return value_zero (builtin_type_void, not_lval);
430 }
431 else
432 {
433 error ("Invalid cast.");
434 return 0;
435 }
436 }
437
438 /* Create a value of type TYPE that is zero, and return it. */
439
440 struct value *
441 value_zero (struct type *type, enum lval_type lv)
442 {
443 struct value *val = allocate_value (type);
444
445 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
446 VALUE_LVAL (val) = lv;
447
448 return val;
449 }
450
451 /* Return a value with type TYPE located at ADDR.
452
453 Call value_at only if the data needs to be fetched immediately;
454 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
455 value_at_lazy instead. value_at_lazy simply records the address of
456 the data and sets the lazy-evaluation-required flag. The lazy flag
457 is tested in the VALUE_CONTENTS macro, which is used if and when
458 the contents are actually required.
459
460 Note: value_at does *NOT* handle embedded offsets; perform such
461 adjustments before or after calling it. */
462
463 struct value *
464 value_at (struct type *type, CORE_ADDR addr, asection *sect)
465 {
466 struct value *val;
467
468 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
469 error ("Attempt to dereference a generic pointer.");
470
471 val = allocate_value (type);
472
473 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
474
475 VALUE_LVAL (val) = lval_memory;
476 VALUE_ADDRESS (val) = addr;
477 VALUE_BFD_SECTION (val) = sect;
478
479 return val;
480 }
481
482 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
483
484 struct value *
485 value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
486 {
487 struct value *val;
488
489 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
490 error ("Attempt to dereference a generic pointer.");
491
492 val = allocate_value (type);
493
494 VALUE_LVAL (val) = lval_memory;
495 VALUE_ADDRESS (val) = addr;
496 VALUE_LAZY (val) = 1;
497 VALUE_BFD_SECTION (val) = sect;
498
499 return val;
500 }
501
502 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
503 if the current data for a variable needs to be loaded into
504 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
505 clears the lazy flag to indicate that the data in the buffer is valid.
506
507 If the value is zero-length, we avoid calling read_memory, which would
508 abort. We mark the value as fetched anyway -- all 0 bytes of it.
509
510 This function returns a value because it is used in the VALUE_CONTENTS
511 macro as part of an expression, where a void would not work. The
512 value is ignored. */
513
514 int
515 value_fetch_lazy (struct value *val)
516 {
517 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
518 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
519
520 struct type *type = VALUE_TYPE (val);
521 if (length)
522 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
523
524 VALUE_LAZY (val) = 0;
525 return 0;
526 }
527
528
529 /* Store the contents of FROMVAL into the location of TOVAL.
530 Return a new value with the location of TOVAL and contents of FROMVAL. */
531
532 struct value *
533 value_assign (struct value *toval, struct value *fromval)
534 {
535 register struct type *type;
536 struct value *val;
537 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
538 int use_buffer = 0;
539
540 if (!toval->modifiable)
541 error ("Left operand of assignment is not a modifiable lvalue.");
542
543 COERCE_REF (toval);
544
545 type = VALUE_TYPE (toval);
546 if (VALUE_LVAL (toval) != lval_internalvar)
547 fromval = value_cast (type, fromval);
548 else
549 COERCE_ARRAY (fromval);
550 CHECK_TYPEDEF (type);
551
552 /* If TOVAL is a special machine register requiring conversion
553 of program values to a special raw format,
554 convert FROMVAL's contents now, with result in `raw_buffer',
555 and set USE_BUFFER to the number of bytes to write. */
556
557 if (VALUE_REGNO (toval) >= 0)
558 {
559 int regno = VALUE_REGNO (toval);
560 if (CONVERT_REGISTER_P (regno))
561 {
562 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
563 VALUE_TO_REGISTER (fromtype, regno, VALUE_CONTENTS (fromval), raw_buffer);
564 use_buffer = REGISTER_RAW_SIZE (regno);
565 }
566 }
567
568 switch (VALUE_LVAL (toval))
569 {
570 case lval_internalvar:
571 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
572 val = value_copy (VALUE_INTERNALVAR (toval)->value);
573 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
574 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
575 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
576 return val;
577
578 case lval_internalvar_component:
579 set_internalvar_component (VALUE_INTERNALVAR (toval),
580 VALUE_OFFSET (toval),
581 VALUE_BITPOS (toval),
582 VALUE_BITSIZE (toval),
583 fromval);
584 break;
585
586 case lval_memory:
587 {
588 char *dest_buffer;
589 CORE_ADDR changed_addr;
590 int changed_len;
591
592 if (VALUE_BITSIZE (toval))
593 {
594 char buffer[sizeof (LONGEST)];
595 /* We assume that the argument to read_memory is in units of
596 host chars. FIXME: Is that correct? */
597 changed_len = (VALUE_BITPOS (toval)
598 + VALUE_BITSIZE (toval)
599 + HOST_CHAR_BIT - 1)
600 / HOST_CHAR_BIT;
601
602 if (changed_len > (int) sizeof (LONGEST))
603 error ("Can't handle bitfields which don't fit in a %d bit word.",
604 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
605
606 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
607 buffer, changed_len);
608 modify_field (buffer, value_as_long (fromval),
609 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
610 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
611 dest_buffer = buffer;
612 }
613 else if (use_buffer)
614 {
615 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
616 changed_len = use_buffer;
617 dest_buffer = raw_buffer;
618 }
619 else
620 {
621 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
622 changed_len = TYPE_LENGTH (type);
623 dest_buffer = VALUE_CONTENTS (fromval);
624 }
625
626 write_memory (changed_addr, dest_buffer, changed_len);
627 if (memory_changed_hook)
628 memory_changed_hook (changed_addr, changed_len);
629 target_changed_event ();
630 }
631 break;
632
633 case lval_reg_frame_relative:
634 case lval_register:
635 {
636 struct frame_id old_frame;
637 /* value is stored in a series of registers in the frame
638 specified by the structure. Copy that value out, modify
639 it, and copy it back in. */
640 int amount_copied;
641 int amount_to_copy;
642 char *buffer;
643 int value_reg;
644 int reg_offset;
645 int byte_offset;
646 int regno;
647 struct frame_info *frame;
648
649 /* Since modifying a register can trash the frame chain, we
650 save the old frame and then restore the new frame
651 afterwards. */
652 get_frame_id (selected_frame, &old_frame);
653
654 /* Figure out which frame this is in currently. */
655 if (VALUE_LVAL (toval) == lval_register)
656 {
657 frame = get_current_frame ();
658 value_reg = VALUE_REGNO (toval);
659 }
660 else
661 {
662 for (frame = get_current_frame ();
663 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
664 frame = get_prev_frame (frame))
665 ;
666 value_reg = VALUE_FRAME_REGNUM (toval);
667 }
668
669 if (!frame)
670 error ("Value being assigned to is no longer active.");
671
672 /* Locate the first register that falls in the value that
673 needs to be transfered. Compute the offset of the value in
674 that register. */
675 {
676 int offset;
677 for (reg_offset = value_reg, offset = 0;
678 offset + REGISTER_RAW_SIZE (reg_offset) <= VALUE_OFFSET (toval);
679 reg_offset++);
680 byte_offset = VALUE_OFFSET (toval) - offset;
681 }
682
683 /* Compute the number of register aligned values that need to
684 be copied. */
685 if (VALUE_BITSIZE (toval))
686 amount_to_copy = byte_offset + 1;
687 else
688 amount_to_copy = byte_offset + TYPE_LENGTH (type);
689
690 /* And a bounce buffer. Be slightly over generous. */
691 buffer = (char *) alloca (amount_to_copy
692 + MAX_REGISTER_RAW_SIZE);
693
694 /* Copy it in. */
695 for (regno = reg_offset, amount_copied = 0;
696 amount_copied < amount_to_copy;
697 amount_copied += REGISTER_RAW_SIZE (regno), regno++)
698 {
699 frame_register_read (frame, regno, buffer + amount_copied);
700 }
701
702 /* Modify what needs to be modified. */
703 if (VALUE_BITSIZE (toval))
704 {
705 modify_field (buffer + byte_offset,
706 value_as_long (fromval),
707 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
708 }
709 else if (use_buffer)
710 {
711 memcpy (buffer + VALUE_OFFSET (toval), raw_buffer, use_buffer);
712 }
713 else
714 {
715 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
716 TYPE_LENGTH (type));
717 /* Do any conversion necessary when storing this type to
718 more than one register. */
719 #ifdef REGISTER_CONVERT_FROM_TYPE
720 REGISTER_CONVERT_FROM_TYPE (value_reg, type,
721 (buffer + byte_offset));
722 #endif
723 }
724
725 /* Copy it out. */
726 for (regno = reg_offset, amount_copied = 0;
727 amount_copied < amount_to_copy;
728 amount_copied += REGISTER_RAW_SIZE (regno), regno++)
729 {
730 enum lval_type lval;
731 CORE_ADDR addr;
732 int optim;
733 int realnum;
734
735 /* Just find out where to put it. */
736 frame_register (frame, regno, &optim, &lval, &addr, &realnum,
737 NULL);
738
739 if (optim)
740 error ("Attempt to assign to a value that was optimized out.");
741 if (lval == lval_memory)
742 write_memory (addr, buffer + amount_copied,
743 REGISTER_RAW_SIZE (regno));
744 else if (lval == lval_register)
745 regcache_cooked_write (current_regcache, realnum,
746 (buffer + amount_copied));
747 else
748 error ("Attempt to assign to an unmodifiable value.");
749 }
750
751 if (register_changed_hook)
752 register_changed_hook (-1);
753 target_changed_event ();
754
755 /* Assigning to the stack pointer, frame pointer, and other
756 (architecture and calling convention specific) registers
757 may cause the frame cache to be out of date. We just do
758 this on all assignments to registers for simplicity; I
759 doubt the slowdown matters. */
760 reinit_frame_cache ();
761
762 /* Having destoroyed the frame cache, restore the selected
763 frame. */
764 /* FIXME: cagney/2002-11-02: There has to be a better way of
765 doing this. Instead of constantly saving/restoring the
766 frame. Why not create a get_selected_frame() function
767 that, having saved the selected frame's ID can
768 automatically re-find the previously selected frame
769 automatically. */
770 {
771 struct frame_info *fi = frame_find_by_id (old_frame);
772 if (fi != NULL)
773 select_frame (fi);
774 }
775 }
776 break;
777
778
779 default:
780 error ("Left operand of assignment is not an lvalue.");
781 }
782
783 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
784 If the field is signed, and is negative, then sign extend. */
785 if ((VALUE_BITSIZE (toval) > 0)
786 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
787 {
788 LONGEST fieldval = value_as_long (fromval);
789 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
790
791 fieldval &= valmask;
792 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
793 fieldval |= ~valmask;
794
795 fromval = value_from_longest (type, fieldval);
796 }
797
798 val = value_copy (toval);
799 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
800 TYPE_LENGTH (type));
801 VALUE_TYPE (val) = type;
802 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
803 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
804 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
805
806 return val;
807 }
808
809 /* Extend a value VAL to COUNT repetitions of its type. */
810
811 struct value *
812 value_repeat (struct value *arg1, int count)
813 {
814 struct value *val;
815
816 if (VALUE_LVAL (arg1) != lval_memory)
817 error ("Only values in memory can be extended with '@'.");
818 if (count < 1)
819 error ("Invalid number %d of repetitions.", count);
820
821 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
822
823 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
824 VALUE_CONTENTS_ALL_RAW (val),
825 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
826 VALUE_LVAL (val) = lval_memory;
827 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
828
829 return val;
830 }
831
832 struct value *
833 value_of_variable (struct symbol *var, struct block *b)
834 {
835 struct value *val;
836 struct frame_info *frame = NULL;
837
838 if (!b)
839 frame = NULL; /* Use selected frame. */
840 else if (symbol_read_needs_frame (var))
841 {
842 frame = block_innermost_frame (b);
843 if (!frame)
844 {
845 if (BLOCK_FUNCTION (b)
846 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
847 error ("No frame is currently executing in block %s.",
848 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
849 else
850 error ("No frame is currently executing in specified block");
851 }
852 }
853
854 val = read_var_value (var, frame);
855 if (!val)
856 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
857
858 return val;
859 }
860
861 /* Given a value which is an array, return a value which is a pointer to its
862 first element, regardless of whether or not the array has a nonzero lower
863 bound.
864
865 FIXME: A previous comment here indicated that this routine should be
866 substracting the array's lower bound. It's not clear to me that this
867 is correct. Given an array subscripting operation, it would certainly
868 work to do the adjustment here, essentially computing:
869
870 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
871
872 However I believe a more appropriate and logical place to account for
873 the lower bound is to do so in value_subscript, essentially computing:
874
875 (&array[0] + ((index - lowerbound) * sizeof array[0]))
876
877 As further evidence consider what would happen with operations other
878 than array subscripting, where the caller would get back a value that
879 had an address somewhere before the actual first element of the array,
880 and the information about the lower bound would be lost because of
881 the coercion to pointer type.
882 */
883
884 struct value *
885 value_coerce_array (struct value *arg1)
886 {
887 register struct type *type = check_typedef (VALUE_TYPE (arg1));
888
889 if (VALUE_LVAL (arg1) != lval_memory)
890 error ("Attempt to take address of value not located in memory.");
891
892 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
893 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
894 }
895
896 /* Given a value which is a function, return a value which is a pointer
897 to it. */
898
899 struct value *
900 value_coerce_function (struct value *arg1)
901 {
902 struct value *retval;
903
904 if (VALUE_LVAL (arg1) != lval_memory)
905 error ("Attempt to take address of value not located in memory.");
906
907 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
908 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
909 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
910 return retval;
911 }
912
913 /* Return a pointer value for the object for which ARG1 is the contents. */
914
915 struct value *
916 value_addr (struct value *arg1)
917 {
918 struct value *arg2;
919
920 struct type *type = check_typedef (VALUE_TYPE (arg1));
921 if (TYPE_CODE (type) == TYPE_CODE_REF)
922 {
923 /* Copy the value, but change the type from (T&) to (T*).
924 We keep the same location information, which is efficient,
925 and allows &(&X) to get the location containing the reference. */
926 arg2 = value_copy (arg1);
927 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
928 return arg2;
929 }
930 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
931 return value_coerce_function (arg1);
932
933 if (VALUE_LVAL (arg1) != lval_memory)
934 error ("Attempt to take address of value not located in memory.");
935
936 /* Get target memory address */
937 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
938 (VALUE_ADDRESS (arg1)
939 + VALUE_OFFSET (arg1)
940 + VALUE_EMBEDDED_OFFSET (arg1)));
941
942 /* This may be a pointer to a base subobject; so remember the
943 full derived object's type ... */
944 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
945 /* ... and also the relative position of the subobject in the full object */
946 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
947 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
948 return arg2;
949 }
950
951 /* Given a value of a pointer type, apply the C unary * operator to it. */
952
953 struct value *
954 value_ind (struct value *arg1)
955 {
956 struct type *base_type;
957 struct value *arg2;
958
959 COERCE_ARRAY (arg1);
960
961 base_type = check_typedef (VALUE_TYPE (arg1));
962
963 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
964 error ("not implemented: member types in value_ind");
965
966 /* Allow * on an integer so we can cast it to whatever we want.
967 This returns an int, which seems like the most C-like thing
968 to do. "long long" variables are rare enough that
969 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
970 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
971 return value_at_lazy (builtin_type_int,
972 (CORE_ADDR) value_as_long (arg1),
973 VALUE_BFD_SECTION (arg1));
974 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
975 {
976 struct type *enc_type;
977 /* We may be pointing to something embedded in a larger object */
978 /* Get the real type of the enclosing object */
979 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
980 enc_type = TYPE_TARGET_TYPE (enc_type);
981 /* Retrieve the enclosing object pointed to */
982 arg2 = value_at_lazy (enc_type,
983 value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
984 VALUE_BFD_SECTION (arg1));
985 /* Re-adjust type */
986 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
987 /* Add embedding info */
988 arg2 = value_change_enclosing_type (arg2, enc_type);
989 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
990
991 /* We may be pointing to an object of some derived type */
992 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
993 return arg2;
994 }
995
996 error ("Attempt to take contents of a non-pointer value.");
997 return 0; /* For lint -- never reached */
998 }
999 \f
1000 /* Pushing small parts of stack frames. */
1001
1002 /* Push one word (the size of object that a register holds). */
1003
1004 CORE_ADDR
1005 push_word (CORE_ADDR sp, ULONGEST word)
1006 {
1007 register int len = REGISTER_SIZE;
1008 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
1009
1010 store_unsigned_integer (buffer, len, word);
1011 if (INNER_THAN (1, 2))
1012 {
1013 /* stack grows downward */
1014 sp -= len;
1015 write_memory (sp, buffer, len);
1016 }
1017 else
1018 {
1019 /* stack grows upward */
1020 write_memory (sp, buffer, len);
1021 sp += len;
1022 }
1023
1024 return sp;
1025 }
1026
1027 /* Push LEN bytes with data at BUFFER. */
1028
1029 CORE_ADDR
1030 push_bytes (CORE_ADDR sp, char *buffer, int len)
1031 {
1032 if (INNER_THAN (1, 2))
1033 {
1034 /* stack grows downward */
1035 sp -= len;
1036 write_memory (sp, buffer, len);
1037 }
1038 else
1039 {
1040 /* stack grows upward */
1041 write_memory (sp, buffer, len);
1042 sp += len;
1043 }
1044
1045 return sp;
1046 }
1047
1048 #ifndef PARM_BOUNDARY
1049 #define PARM_BOUNDARY (0)
1050 #endif
1051
1052 /* Push onto the stack the specified value VALUE. Pad it correctly for
1053 it to be an argument to a function. */
1054
1055 static CORE_ADDR
1056 value_push (register CORE_ADDR sp, struct value *arg)
1057 {
1058 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1059 register int container_len = len;
1060 register int offset;
1061
1062 /* How big is the container we're going to put this value in? */
1063 if (PARM_BOUNDARY)
1064 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1065 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1066
1067 /* Are we going to put it at the high or low end of the container? */
1068 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1069 offset = container_len - len;
1070 else
1071 offset = 0;
1072
1073 if (INNER_THAN (1, 2))
1074 {
1075 /* stack grows downward */
1076 sp -= container_len;
1077 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1078 }
1079 else
1080 {
1081 /* stack grows upward */
1082 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1083 sp += container_len;
1084 }
1085
1086 return sp;
1087 }
1088
1089 CORE_ADDR
1090 default_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1091 int struct_return, CORE_ADDR struct_addr)
1092 {
1093 /* ASSERT ( !struct_return); */
1094 int i;
1095 for (i = nargs - 1; i >= 0; i--)
1096 sp = value_push (sp, args[i]);
1097 return sp;
1098 }
1099
1100
1101 /* Functions to use for the COERCE_FLOAT_TO_DOUBLE gdbarch method.
1102
1103 How you should pass arguments to a function depends on whether it
1104 was defined in K&R style or prototype style. If you define a
1105 function using the K&R syntax that takes a `float' argument, then
1106 callers must pass that argument as a `double'. If you define the
1107 function using the prototype syntax, then you must pass the
1108 argument as a `float', with no promotion.
1109
1110 Unfortunately, on certain older platforms, the debug info doesn't
1111 indicate reliably how each function was defined. A function type's
1112 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
1113 defined in prototype style. When calling a function whose
1114 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults the
1115 COERCE_FLOAT_TO_DOUBLE gdbarch method to decide what to do.
1116
1117 For modern targets, it is proper to assume that, if the prototype
1118 flag is clear, that can be trusted: `float' arguments should be
1119 promoted to `double'. You should register the function
1120 `standard_coerce_float_to_double' to get this behavior.
1121
1122 For some older targets, if the prototype flag is clear, that
1123 doesn't tell us anything. So we guess that, if we don't have a
1124 type for the formal parameter (i.e., the first argument to
1125 COERCE_FLOAT_TO_DOUBLE is null), then we should promote it;
1126 otherwise, we should leave it alone. The function
1127 `default_coerce_float_to_double' provides this behavior; it is the
1128 default value, for compatibility with older configurations. */
1129 int
1130 default_coerce_float_to_double (struct type *formal, struct type *actual)
1131 {
1132 return formal == NULL;
1133 }
1134
1135
1136 int
1137 standard_coerce_float_to_double (struct type *formal, struct type *actual)
1138 {
1139 return 1;
1140 }
1141
1142
1143 /* Perform the standard coercions that are specified
1144 for arguments to be passed to C functions.
1145
1146 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1147 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1148
1149 static struct value *
1150 value_arg_coerce (struct value *arg, struct type *param_type,
1151 int is_prototyped)
1152 {
1153 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1154 register struct type *type
1155 = param_type ? check_typedef (param_type) : arg_type;
1156
1157 switch (TYPE_CODE (type))
1158 {
1159 case TYPE_CODE_REF:
1160 if (TYPE_CODE (arg_type) != TYPE_CODE_REF
1161 && TYPE_CODE (arg_type) != TYPE_CODE_PTR)
1162 {
1163 arg = value_addr (arg);
1164 VALUE_TYPE (arg) = param_type;
1165 return arg;
1166 }
1167 break;
1168 case TYPE_CODE_INT:
1169 case TYPE_CODE_CHAR:
1170 case TYPE_CODE_BOOL:
1171 case TYPE_CODE_ENUM:
1172 /* If we don't have a prototype, coerce to integer type if necessary. */
1173 if (!is_prototyped)
1174 {
1175 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1176 type = builtin_type_int;
1177 }
1178 /* Currently all target ABIs require at least the width of an integer
1179 type for an argument. We may have to conditionalize the following
1180 type coercion for future targets. */
1181 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1182 type = builtin_type_int;
1183 break;
1184 case TYPE_CODE_FLT:
1185 /* FIXME: We should always convert floats to doubles in the
1186 non-prototyped case. As many debugging formats include
1187 no information about prototyping, we have to live with
1188 COERCE_FLOAT_TO_DOUBLE for now. */
1189 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
1190 {
1191 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1192 type = builtin_type_double;
1193 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1194 type = builtin_type_long_double;
1195 }
1196 break;
1197 case TYPE_CODE_FUNC:
1198 type = lookup_pointer_type (type);
1199 break;
1200 case TYPE_CODE_ARRAY:
1201 /* Arrays are coerced to pointers to their first element, unless
1202 they are vectors, in which case we want to leave them alone,
1203 because they are passed by value. */
1204 if (current_language->c_style_arrays)
1205 if (!TYPE_VECTOR (type))
1206 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1207 break;
1208 case TYPE_CODE_UNDEF:
1209 case TYPE_CODE_PTR:
1210 case TYPE_CODE_STRUCT:
1211 case TYPE_CODE_UNION:
1212 case TYPE_CODE_VOID:
1213 case TYPE_CODE_SET:
1214 case TYPE_CODE_RANGE:
1215 case TYPE_CODE_STRING:
1216 case TYPE_CODE_BITSTRING:
1217 case TYPE_CODE_ERROR:
1218 case TYPE_CODE_MEMBER:
1219 case TYPE_CODE_METHOD:
1220 case TYPE_CODE_COMPLEX:
1221 default:
1222 break;
1223 }
1224
1225 return value_cast (type, arg);
1226 }
1227
1228 /* Determine a function's address and its return type from its value.
1229 Calls error() if the function is not valid for calling. */
1230
1231 static CORE_ADDR
1232 find_function_addr (struct value *function, struct type **retval_type)
1233 {
1234 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1235 register enum type_code code = TYPE_CODE (ftype);
1236 struct type *value_type;
1237 CORE_ADDR funaddr;
1238
1239 /* If it's a member function, just look at the function
1240 part of it. */
1241
1242 /* Determine address to call. */
1243 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1244 {
1245 funaddr = VALUE_ADDRESS (function);
1246 value_type = TYPE_TARGET_TYPE (ftype);
1247 }
1248 else if (code == TYPE_CODE_PTR)
1249 {
1250 funaddr = value_as_address (function);
1251 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1252 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1253 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1254 {
1255 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1256 value_type = TYPE_TARGET_TYPE (ftype);
1257 }
1258 else
1259 value_type = builtin_type_int;
1260 }
1261 else if (code == TYPE_CODE_INT)
1262 {
1263 /* Handle the case of functions lacking debugging info.
1264 Their values are characters since their addresses are char */
1265 if (TYPE_LENGTH (ftype) == 1)
1266 funaddr = value_as_address (value_addr (function));
1267 else
1268 /* Handle integer used as address of a function. */
1269 funaddr = (CORE_ADDR) value_as_long (function);
1270
1271 value_type = builtin_type_int;
1272 }
1273 else
1274 error ("Invalid data type for function to be called.");
1275
1276 *retval_type = value_type;
1277 return funaddr;
1278 }
1279
1280 /* All this stuff with a dummy frame may seem unnecessarily complicated
1281 (why not just save registers in GDB?). The purpose of pushing a dummy
1282 frame which looks just like a real frame is so that if you call a
1283 function and then hit a breakpoint (get a signal, etc), "backtrace"
1284 will look right. Whether the backtrace needs to actually show the
1285 stack at the time the inferior function was called is debatable, but
1286 it certainly needs to not display garbage. So if you are contemplating
1287 making dummy frames be different from normal frames, consider that. */
1288
1289 /* Perform a function call in the inferior.
1290 ARGS is a vector of values of arguments (NARGS of them).
1291 FUNCTION is a value, the function to be called.
1292 Returns a value representing what the function returned.
1293 May fail to return, if a breakpoint or signal is hit
1294 during the execution of the function.
1295
1296 ARGS is modified to contain coerced values. */
1297
1298 static struct value *
1299 hand_function_call (struct value *function, int nargs, struct value **args)
1300 {
1301 register CORE_ADDR sp;
1302 register int i;
1303 int rc;
1304 CORE_ADDR start_sp;
1305 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1306 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1307 and remove any extra bytes which might exist because ULONGEST is
1308 bigger than REGISTER_SIZE.
1309
1310 NOTE: This is pretty wierd, as the call dummy is actually a
1311 sequence of instructions. But CISC machines will have
1312 to pack the instructions into REGISTER_SIZE units (and
1313 so will RISC machines for which INSTRUCTION_SIZE is not
1314 REGISTER_SIZE).
1315
1316 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1317 target byte order. */
1318
1319 static ULONGEST *dummy;
1320 int sizeof_dummy1;
1321 char *dummy1;
1322 CORE_ADDR old_sp;
1323 struct type *value_type;
1324 unsigned char struct_return;
1325 CORE_ADDR struct_addr = 0;
1326 struct regcache *retbuf;
1327 struct cleanup *retbuf_cleanup;
1328 struct inferior_status *inf_status;
1329 struct cleanup *inf_status_cleanup;
1330 CORE_ADDR funaddr;
1331 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1332 CORE_ADDR real_pc;
1333 struct type *param_type = NULL;
1334 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1335 int n_method_args = 0;
1336
1337 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1338 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1339 dummy1 = alloca (sizeof_dummy1);
1340 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1341
1342 if (!target_has_execution)
1343 noprocess ();
1344
1345 /* Create a cleanup chain that contains the retbuf (buffer
1346 containing the register values). This chain is create BEFORE the
1347 inf_status chain so that the inferior status can cleaned up
1348 (restored or discarded) without having the retbuf freed. */
1349 retbuf = regcache_xmalloc (current_gdbarch);
1350 retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
1351
1352 /* A cleanup for the inferior status. Create this AFTER the retbuf
1353 so that this can be discarded or applied without interfering with
1354 the regbuf. */
1355 inf_status = save_inferior_status (1);
1356 inf_status_cleanup = make_cleanup_restore_inferior_status (inf_status);
1357
1358 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1359 (and POP_FRAME for restoring them). (At least on most machines)
1360 they are saved on the stack in the inferior. */
1361 PUSH_DUMMY_FRAME;
1362
1363 old_sp = read_sp ();
1364
1365 /* Ensure that the initial SP is correctly aligned. */
1366 if (gdbarch_frame_align_p (current_gdbarch))
1367 {
1368 /* NOTE: cagney/2002-09-18:
1369
1370 On a RISC architecture, a void parameterless generic dummy
1371 frame (i.e., no parameters, no result) typically does not
1372 need to push anything the stack and hence can leave SP and
1373 FP. Similarly, a framelss (possibly leaf) function does not
1374 push anything on the stack and, hence, that too can leave FP
1375 and SP unchanged. As a consequence, a sequence of void
1376 parameterless generic dummy frame calls to frameless
1377 functions will create a sequence of effectively identical
1378 frames (SP, FP and TOS and PC the same). This, not
1379 suprisingly, results in what appears to be a stack in an
1380 infinite loop --- when GDB tries to find a generic dummy
1381 frame on the internal dummy frame stack, it will always find
1382 the first one.
1383
1384 To avoid this problem, the code below always grows the stack.
1385 That way, two dummy frames can never be identical. It does
1386 burn a few bytes of stack but that is a small price to pay
1387 :-). */
1388 sp = gdbarch_frame_align (current_gdbarch, old_sp);
1389 if (sp == old_sp)
1390 {
1391 if (INNER_THAN (1, 2))
1392 /* Stack grows down. */
1393 sp = gdbarch_frame_align (current_gdbarch, old_sp - 1);
1394 else
1395 /* Stack grows up. */
1396 sp = gdbarch_frame_align (current_gdbarch, old_sp + 1);
1397 }
1398 gdb_assert ((INNER_THAN (1, 2) && sp <= old_sp)
1399 || (INNER_THAN (2, 1) && sp >= old_sp));
1400 }
1401 else
1402 /* FIXME: cagney/2002-09-18: Hey, you loose! Who knows how badly
1403 aligned the SP is! Further, per comment above, if the generic
1404 dummy frame ends up empty (because nothing is pushed) GDB won't
1405 be able to correctly perform back traces. If a target is
1406 having trouble with backtraces, first thing to do is add
1407 FRAME_ALIGN() to its architecture vector. After that, try
1408 adding SAVE_DUMMY_FRAME_TOS() and modifying FRAME_CHAIN so that
1409 when the next outer frame is a generic dummy, it returns the
1410 current frame's base. */
1411 sp = old_sp;
1412
1413 if (INNER_THAN (1, 2))
1414 {
1415 /* Stack grows down */
1416 sp -= sizeof_dummy1;
1417 start_sp = sp;
1418 }
1419 else
1420 {
1421 /* Stack grows up */
1422 start_sp = sp;
1423 sp += sizeof_dummy1;
1424 }
1425
1426 /* NOTE: cagney/2002-09-10: Don't bother re-adjusting the stack
1427 after allocating space for the call dummy. A target can specify
1428 a SIZEOF_DUMMY1 (via SIZEOF_CALL_DUMMY_WORDS) such that all local
1429 alignment requirements are met. */
1430
1431 funaddr = find_function_addr (function, &value_type);
1432 CHECK_TYPEDEF (value_type);
1433
1434 {
1435 struct block *b = block_for_pc (funaddr);
1436 /* If compiled without -g, assume GCC 2. */
1437 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1438 }
1439
1440 /* Are we returning a value using a structure return or a normal
1441 value return? */
1442
1443 struct_return = using_struct_return (function, funaddr, value_type,
1444 using_gcc);
1445
1446 /* Create a call sequence customized for this function
1447 and the number of arguments for it. */
1448 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1449 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1450 REGISTER_SIZE,
1451 (ULONGEST) dummy[i]);
1452
1453 #ifdef GDB_TARGET_IS_HPPA
1454 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1455 value_type, using_gcc);
1456 #else
1457 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1458 value_type, using_gcc);
1459 real_pc = start_sp;
1460 #endif
1461
1462 if (CALL_DUMMY_LOCATION == ON_STACK)
1463 {
1464 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1465 if (USE_GENERIC_DUMMY_FRAMES)
1466 generic_save_call_dummy_addr (start_sp, start_sp + sizeof_dummy1);
1467 }
1468
1469 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1470 {
1471 /* Convex Unix prohibits executing in the stack segment. */
1472 /* Hope there is empty room at the top of the text segment. */
1473 extern CORE_ADDR text_end;
1474 static int checked = 0;
1475 if (!checked)
1476 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1477 if (read_memory_integer (start_sp, 1) != 0)
1478 error ("text segment full -- no place to put call");
1479 checked = 1;
1480 sp = old_sp;
1481 real_pc = text_end - sizeof_dummy1;
1482 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1483 if (USE_GENERIC_DUMMY_FRAMES)
1484 generic_save_call_dummy_addr (real_pc, real_pc + sizeof_dummy1);
1485 }
1486
1487 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1488 {
1489 extern CORE_ADDR text_end;
1490 int errcode;
1491 sp = old_sp;
1492 real_pc = text_end;
1493 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1494 if (errcode != 0)
1495 error ("Cannot write text segment -- call_function failed");
1496 if (USE_GENERIC_DUMMY_FRAMES)
1497 generic_save_call_dummy_addr (real_pc, real_pc + sizeof_dummy1);
1498 }
1499
1500 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1501 {
1502 real_pc = funaddr;
1503 if (USE_GENERIC_DUMMY_FRAMES)
1504 /* NOTE: cagney/2002-04-13: The entry point is going to be
1505 modified with a single breakpoint. */
1506 generic_save_call_dummy_addr (CALL_DUMMY_ADDRESS (),
1507 CALL_DUMMY_ADDRESS () + 1);
1508 }
1509
1510 #ifdef lint
1511 sp = old_sp; /* It really is used, for some ifdef's... */
1512 #endif
1513
1514 if (nargs < TYPE_NFIELDS (ftype))
1515 error ("too few arguments in function call");
1516
1517 for (i = nargs - 1; i >= 0; i--)
1518 {
1519 int prototyped;
1520
1521 /* FIXME drow/2002-05-31: Should just always mark methods as
1522 prototyped. Can we respect TYPE_VARARGS? Probably not. */
1523 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1524 prototyped = 1;
1525 else
1526 prototyped = TYPE_PROTOTYPED (ftype);
1527
1528 if (i < TYPE_NFIELDS (ftype))
1529 args[i] = value_arg_coerce (args[i], TYPE_FIELD_TYPE (ftype, i),
1530 prototyped);
1531 else
1532 args[i] = value_arg_coerce (args[i], NULL, 0);
1533
1534 /*elz: this code is to handle the case in which the function to be called
1535 has a pointer to function as parameter and the corresponding actual argument
1536 is the address of a function and not a pointer to function variable.
1537 In aCC compiled code, the calls through pointers to functions (in the body
1538 of the function called by hand) are made via $$dyncall_external which
1539 requires some registers setting, this is taken care of if we call
1540 via a function pointer variable, but not via a function address.
1541 In cc this is not a problem. */
1542
1543 if (using_gcc == 0)
1544 if (param_type && TYPE_CODE (ftype) != TYPE_CODE_METHOD)
1545 /* if this parameter is a pointer to function */
1546 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1547 if (TYPE_CODE (TYPE_TARGET_TYPE (param_type)) == TYPE_CODE_FUNC)
1548 /* elz: FIXME here should go the test about the compiler used
1549 to compile the target. We want to issue the error
1550 message only if the compiler used was HP's aCC.
1551 If we used HP's cc, then there is no problem and no need
1552 to return at this point */
1553 if (using_gcc == 0) /* && compiler == aCC */
1554 /* go see if the actual parameter is a variable of type
1555 pointer to function or just a function */
1556 if (args[i]->lval == not_lval)
1557 {
1558 char *arg_name;
1559 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1560 error ("\
1561 You cannot use function <%s> as argument. \n\
1562 You must use a pointer to function type variable. Command ignored.", arg_name);
1563 }
1564 }
1565
1566 if (REG_STRUCT_HAS_ADDR_P ())
1567 {
1568 /* This is a machine like the sparc, where we may need to pass a
1569 pointer to the structure, not the structure itself. */
1570 for (i = nargs - 1; i >= 0; i--)
1571 {
1572 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1573 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1574 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1575 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1576 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1577 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1578 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1579 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1580 && TYPE_LENGTH (arg_type) > 8)
1581 )
1582 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1583 {
1584 CORE_ADDR addr;
1585 int len; /* = TYPE_LENGTH (arg_type); */
1586 int aligned_len;
1587 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1588 len = TYPE_LENGTH (arg_type);
1589
1590 if (STACK_ALIGN_P ())
1591 /* MVS 11/22/96: I think at least some of this
1592 stack_align code is really broken. Better to let
1593 PUSH_ARGUMENTS adjust the stack in a target-defined
1594 manner. */
1595 aligned_len = STACK_ALIGN (len);
1596 else
1597 aligned_len = len;
1598 if (INNER_THAN (1, 2))
1599 {
1600 /* stack grows downward */
1601 sp -= aligned_len;
1602 /* ... so the address of the thing we push is the
1603 stack pointer after we push it. */
1604 addr = sp;
1605 }
1606 else
1607 {
1608 /* The stack grows up, so the address of the thing
1609 we push is the stack pointer before we push it. */
1610 addr = sp;
1611 sp += aligned_len;
1612 }
1613 /* Push the structure. */
1614 write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
1615 /* The value we're going to pass is the address of the
1616 thing we just pushed. */
1617 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1618 (LONGEST) addr); */
1619 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1620 addr);
1621 }
1622 }
1623 }
1624
1625
1626 /* Reserve space for the return structure to be written on the
1627 stack, if necessary. Make certain that the value is correctly
1628 aligned. */
1629
1630 if (struct_return)
1631 {
1632 int len = TYPE_LENGTH (value_type);
1633 if (STACK_ALIGN_P ())
1634 /* MVS 11/22/96: I think at least some of this stack_align
1635 code is really broken. Better to let PUSH_ARGUMENTS adjust
1636 the stack in a target-defined manner. */
1637 len = STACK_ALIGN (len);
1638 if (INNER_THAN (1, 2))
1639 {
1640 /* Stack grows downward. Align STRUCT_ADDR and SP after
1641 making space for the return value. */
1642 sp -= len;
1643 if (gdbarch_frame_align_p (current_gdbarch))
1644 sp = gdbarch_frame_align (current_gdbarch, sp);
1645 struct_addr = sp;
1646 }
1647 else
1648 {
1649 /* Stack grows upward. Align the frame, allocate space, and
1650 then again, re-align the frame??? */
1651 if (gdbarch_frame_align_p (current_gdbarch))
1652 sp = gdbarch_frame_align (current_gdbarch, sp);
1653 struct_addr = sp;
1654 sp += len;
1655 if (gdbarch_frame_align_p (current_gdbarch))
1656 sp = gdbarch_frame_align (current_gdbarch, sp);
1657 }
1658 }
1659
1660 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1661 on other architectures. This is because all the alignment is
1662 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1663 in hppa_push_arguments */
1664 if (EXTRA_STACK_ALIGNMENT_NEEDED)
1665 {
1666 /* MVS 11/22/96: I think at least some of this stack_align code
1667 is really broken. Better to let PUSH_ARGUMENTS adjust the
1668 stack in a target-defined manner. */
1669 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1670 {
1671 /* If stack grows down, we must leave a hole at the top. */
1672 int len = 0;
1673
1674 for (i = nargs - 1; i >= 0; i--)
1675 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1676 if (CALL_DUMMY_STACK_ADJUST_P)
1677 len += CALL_DUMMY_STACK_ADJUST;
1678 sp -= STACK_ALIGN (len) - len;
1679 }
1680 }
1681
1682 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1683
1684 if (PUSH_RETURN_ADDRESS_P ())
1685 /* for targets that use no CALL_DUMMY */
1686 /* There are a number of targets now which actually don't write
1687 any CALL_DUMMY instructions into the target, but instead just
1688 save the machine state, push the arguments, and jump directly
1689 to the callee function. Since this doesn't actually involve
1690 executing a JSR/BSR instruction, the return address must be set
1691 up by hand, either by pushing onto the stack or copying into a
1692 return-address register as appropriate. Formerly this has been
1693 done in PUSH_ARGUMENTS, but that's overloading its
1694 functionality a bit, so I'm making it explicit to do it here. */
1695 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1696
1697 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
1698 {
1699 /* If stack grows up, we must leave a hole at the bottom, note
1700 that sp already has been advanced for the arguments! */
1701 if (CALL_DUMMY_STACK_ADJUST_P)
1702 sp += CALL_DUMMY_STACK_ADJUST;
1703 sp = STACK_ALIGN (sp);
1704 }
1705
1706 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1707 anything here! */
1708 /* MVS 11/22/96: I think at least some of this stack_align code is
1709 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1710 a target-defined manner. */
1711 if (CALL_DUMMY_STACK_ADJUST_P)
1712 if (INNER_THAN (1, 2))
1713 {
1714 /* stack grows downward */
1715 sp -= CALL_DUMMY_STACK_ADJUST;
1716 }
1717
1718 /* Store the address at which the structure is supposed to be
1719 written. Note that this (and the code which reserved the space
1720 above) assumes that gcc was used to compile this function. Since
1721 it doesn't cost us anything but space and if the function is pcc
1722 it will ignore this value, we will make that assumption.
1723
1724 Also note that on some machines (like the sparc) pcc uses a
1725 convention like gcc's. */
1726
1727 if (struct_return)
1728 STORE_STRUCT_RETURN (struct_addr, sp);
1729
1730 /* Write the stack pointer. This is here because the statements above
1731 might fool with it. On SPARC, this write also stores the register
1732 window into the right place in the new stack frame, which otherwise
1733 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1734 write_sp (sp);
1735
1736 if (SAVE_DUMMY_FRAME_TOS_P ())
1737 SAVE_DUMMY_FRAME_TOS (sp);
1738
1739 {
1740 char *name;
1741 struct symbol *symbol;
1742
1743 name = NULL;
1744 symbol = find_pc_function (funaddr);
1745 if (symbol)
1746 {
1747 name = SYMBOL_SOURCE_NAME (symbol);
1748 }
1749 else
1750 {
1751 /* Try the minimal symbols. */
1752 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1753
1754 if (msymbol)
1755 {
1756 name = SYMBOL_SOURCE_NAME (msymbol);
1757 }
1758 }
1759 if (name == NULL)
1760 {
1761 char format[80];
1762 sprintf (format, "at %s", local_hex_format ());
1763 name = alloca (80);
1764 /* FIXME-32x64: assumes funaddr fits in a long. */
1765 sprintf (name, format, (unsigned long) funaddr);
1766 }
1767
1768 /* Execute the stack dummy routine, calling FUNCTION.
1769 When it is done, discard the empty frame
1770 after storing the contents of all regs into retbuf. */
1771 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1772
1773 if (rc == 1)
1774 {
1775 /* We stopped inside the FUNCTION because of a random signal.
1776 Further execution of the FUNCTION is not allowed. */
1777
1778 if (unwind_on_signal_p)
1779 {
1780 /* The user wants the context restored. */
1781
1782 /* We must get back to the frame we were before the dummy call. */
1783 POP_FRAME;
1784
1785 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1786 a C++ name with arguments and stuff. */
1787 error ("\
1788 The program being debugged was signaled while in a function called from GDB.\n\
1789 GDB has restored the context to what it was before the call.\n\
1790 To change this behavior use \"set unwindonsignal off\"\n\
1791 Evaluation of the expression containing the function (%s) will be abandoned.",
1792 name);
1793 }
1794 else
1795 {
1796 /* The user wants to stay in the frame where we stopped (default).*/
1797
1798 /* If we restored the inferior status (via the cleanup),
1799 we would print a spurious error message (Unable to
1800 restore previously selected frame), would write the
1801 registers from the inf_status (which is wrong), and
1802 would do other wrong things. */
1803 discard_cleanups (inf_status_cleanup);
1804 discard_inferior_status (inf_status);
1805
1806 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1807 a C++ name with arguments and stuff. */
1808 error ("\
1809 The program being debugged was signaled while in a function called from GDB.\n\
1810 GDB remains in the frame where the signal was received.\n\
1811 To change this behavior use \"set unwindonsignal on\"\n\
1812 Evaluation of the expression containing the function (%s) will be abandoned.",
1813 name);
1814 }
1815 }
1816
1817 if (rc == 2)
1818 {
1819 /* We hit a breakpoint inside the FUNCTION. */
1820
1821 /* If we restored the inferior status (via the cleanup), we
1822 would print a spurious error message (Unable to restore
1823 previously selected frame), would write the registers from
1824 the inf_status (which is wrong), and would do other wrong
1825 things. */
1826 discard_cleanups (inf_status_cleanup);
1827 discard_inferior_status (inf_status);
1828
1829 /* The following error message used to say "The expression
1830 which contained the function call has been discarded." It
1831 is a hard concept to explain in a few words. Ideally, GDB
1832 would be able to resume evaluation of the expression when
1833 the function finally is done executing. Perhaps someday
1834 this will be implemented (it would not be easy). */
1835
1836 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1837 a C++ name with arguments and stuff. */
1838 error ("\
1839 The program being debugged stopped while in a function called from GDB.\n\
1840 When the function (%s) is done executing, GDB will silently\n\
1841 stop (instead of continuing to evaluate the expression containing\n\
1842 the function call).", name);
1843 }
1844
1845 /* If we get here the called FUNCTION run to completion. */
1846
1847 /* Restore the inferior status, via its cleanup. At this stage,
1848 leave the RETBUF alone. */
1849 do_cleanups (inf_status_cleanup);
1850
1851 /* Figure out the value returned by the function. */
1852 /* elz: I defined this new macro for the hppa architecture only.
1853 this gives us a way to get the value returned by the function
1854 from the stack, at the same address we told the function to put
1855 it. We cannot assume on the pa that r28 still contains the
1856 address of the returned structure. Usually this will be
1857 overwritten by the callee. I don't know about other
1858 architectures, so I defined this macro */
1859 #ifdef VALUE_RETURNED_FROM_STACK
1860 if (struct_return)
1861 {
1862 do_cleanups (retbuf_cleanup);
1863 return VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1864 }
1865 #endif
1866 /* NOTE: cagney/2002-09-10: Only when the stack has been correctly
1867 aligned (using frame_align()) do we can trust STRUCT_ADDR and
1868 fetch the return value direct from the stack. This lack of
1869 trust comes about because legacy targets have a nasty habit of
1870 silently, and local to PUSH_ARGUMENTS(), moving STRUCT_ADDR.
1871 For such targets, just hope that value_being_returned() can
1872 find the adjusted value. */
1873 if (struct_return && gdbarch_frame_align_p (current_gdbarch))
1874 {
1875 struct value *retval = value_at (value_type, struct_addr, NULL);
1876 do_cleanups (retbuf_cleanup);
1877 return retval;
1878 }
1879 else
1880 {
1881 struct value *retval = value_being_returned (value_type, retbuf,
1882 struct_return);
1883 do_cleanups (retbuf_cleanup);
1884 return retval;
1885 }
1886 }
1887 }
1888
1889 struct value *
1890 call_function_by_hand (struct value *function, int nargs, struct value **args)
1891 {
1892 if (CALL_DUMMY_P)
1893 {
1894 return hand_function_call (function, nargs, args);
1895 }
1896 else
1897 {
1898 error ("Cannot invoke functions on this machine.");
1899 }
1900 }
1901 \f
1902
1903
1904 /* Create a value for an array by allocating space in the inferior, copying
1905 the data into that space, and then setting up an array value.
1906
1907 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1908 populated from the values passed in ELEMVEC.
1909
1910 The element type of the array is inherited from the type of the
1911 first element, and all elements must have the same size (though we
1912 don't currently enforce any restriction on their types). */
1913
1914 struct value *
1915 value_array (int lowbound, int highbound, struct value **elemvec)
1916 {
1917 int nelem;
1918 int idx;
1919 unsigned int typelength;
1920 struct value *val;
1921 struct type *rangetype;
1922 struct type *arraytype;
1923 CORE_ADDR addr;
1924
1925 /* Validate that the bounds are reasonable and that each of the elements
1926 have the same size. */
1927
1928 nelem = highbound - lowbound + 1;
1929 if (nelem <= 0)
1930 {
1931 error ("bad array bounds (%d, %d)", lowbound, highbound);
1932 }
1933 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1934 for (idx = 1; idx < nelem; idx++)
1935 {
1936 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1937 {
1938 error ("array elements must all be the same size");
1939 }
1940 }
1941
1942 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1943 lowbound, highbound);
1944 arraytype = create_array_type ((struct type *) NULL,
1945 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1946
1947 if (!current_language->c_style_arrays)
1948 {
1949 val = allocate_value (arraytype);
1950 for (idx = 0; idx < nelem; idx++)
1951 {
1952 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1953 VALUE_CONTENTS_ALL (elemvec[idx]),
1954 typelength);
1955 }
1956 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1957 return val;
1958 }
1959
1960 /* Allocate space to store the array in the inferior, and then initialize
1961 it by copying in each element. FIXME: Is it worth it to create a
1962 local buffer in which to collect each value and then write all the
1963 bytes in one operation? */
1964
1965 addr = allocate_space_in_inferior (nelem * typelength);
1966 for (idx = 0; idx < nelem; idx++)
1967 {
1968 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1969 typelength);
1970 }
1971
1972 /* Create the array type and set up an array value to be evaluated lazily. */
1973
1974 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1975 return (val);
1976 }
1977
1978 /* Create a value for a string constant by allocating space in the inferior,
1979 copying the data into that space, and returning the address with type
1980 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1981 of characters.
1982 Note that string types are like array of char types with a lower bound of
1983 zero and an upper bound of LEN - 1. Also note that the string may contain
1984 embedded null bytes. */
1985
1986 struct value *
1987 value_string (char *ptr, int len)
1988 {
1989 struct value *val;
1990 int lowbound = current_language->string_lower_bound;
1991 struct type *rangetype = create_range_type ((struct type *) NULL,
1992 builtin_type_int,
1993 lowbound, len + lowbound - 1);
1994 struct type *stringtype
1995 = create_string_type ((struct type *) NULL, rangetype);
1996 CORE_ADDR addr;
1997
1998 if (current_language->c_style_arrays == 0)
1999 {
2000 val = allocate_value (stringtype);
2001 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
2002 return val;
2003 }
2004
2005
2006 /* Allocate space to store the string in the inferior, and then
2007 copy LEN bytes from PTR in gdb to that address in the inferior. */
2008
2009 addr = allocate_space_in_inferior (len);
2010 write_memory (addr, ptr, len);
2011
2012 val = value_at_lazy (stringtype, addr, NULL);
2013 return (val);
2014 }
2015
2016 struct value *
2017 value_bitstring (char *ptr, int len)
2018 {
2019 struct value *val;
2020 struct type *domain_type = create_range_type (NULL, builtin_type_int,
2021 0, len - 1);
2022 struct type *type = create_set_type ((struct type *) NULL, domain_type);
2023 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
2024 val = allocate_value (type);
2025 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
2026 return val;
2027 }
2028 \f
2029 /* See if we can pass arguments in T2 to a function which takes arguments
2030 of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
2031 vector. If some arguments need coercion of some sort, then the coerced
2032 values are written into T2. Return value is 0 if the arguments could be
2033 matched, or the position at which they differ if not.
2034
2035 STATICP is nonzero if the T1 argument list came from a
2036 static member function. T2 will still include the ``this'' pointer,
2037 but it will be skipped.
2038
2039 For non-static member functions, we ignore the first argument,
2040 which is the type of the instance variable. This is because we want
2041 to handle calls with objects from derived classes. This is not
2042 entirely correct: we should actually check to make sure that a
2043 requested operation is type secure, shouldn't we? FIXME. */
2044
2045 static int
2046 typecmp (int staticp, int varargs, int nargs,
2047 struct field t1[], struct value *t2[])
2048 {
2049 int i;
2050
2051 if (t2 == 0)
2052 internal_error (__FILE__, __LINE__, "typecmp: no argument list");
2053
2054 /* Skip ``this'' argument if applicable. T2 will always include THIS. */
2055 if (staticp)
2056 t2 ++;
2057
2058 for (i = 0;
2059 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
2060 i++)
2061 {
2062 struct type *tt1, *tt2;
2063
2064 if (!t2[i])
2065 return i + 1;
2066
2067 tt1 = check_typedef (t1[i].type);
2068 tt2 = check_typedef (VALUE_TYPE (t2[i]));
2069
2070 if (TYPE_CODE (tt1) == TYPE_CODE_REF
2071 /* We should be doing hairy argument matching, as below. */
2072 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
2073 {
2074 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
2075 t2[i] = value_coerce_array (t2[i]);
2076 else
2077 t2[i] = value_addr (t2[i]);
2078 continue;
2079 }
2080
2081 /* djb - 20000715 - Until the new type structure is in the
2082 place, and we can attempt things like implicit conversions,
2083 we need to do this so you can take something like a map<const
2084 char *>, and properly access map["hello"], because the
2085 argument to [] will be a reference to a pointer to a char,
2086 and the argument will be a pointer to a char. */
2087 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
2088 TYPE_CODE (tt1) == TYPE_CODE_PTR)
2089 {
2090 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
2091 }
2092 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
2093 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
2094 TYPE_CODE(tt2) == TYPE_CODE_REF)
2095 {
2096 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
2097 }
2098 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
2099 continue;
2100 /* Array to pointer is a `trivial conversion' according to the ARM. */
2101
2102 /* We should be doing much hairier argument matching (see section 13.2
2103 of the ARM), but as a quick kludge, just check for the same type
2104 code. */
2105 if (TYPE_CODE (t1[i].type) != TYPE_CODE (VALUE_TYPE (t2[i])))
2106 return i + 1;
2107 }
2108 if (varargs || t2[i] == NULL)
2109 return 0;
2110 return i + 1;
2111 }
2112
2113 /* Helper function used by value_struct_elt to recurse through baseclasses.
2114 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2115 and search in it assuming it has (class) type TYPE.
2116 If found, return value, else return NULL.
2117
2118 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2119 look for a baseclass named NAME. */
2120
2121 static struct value *
2122 search_struct_field (char *name, struct value *arg1, int offset,
2123 register struct type *type, int looking_for_baseclass)
2124 {
2125 int i;
2126 int nbases = TYPE_N_BASECLASSES (type);
2127
2128 CHECK_TYPEDEF (type);
2129
2130 if (!looking_for_baseclass)
2131 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2132 {
2133 char *t_field_name = TYPE_FIELD_NAME (type, i);
2134
2135 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2136 {
2137 struct value *v;
2138 if (TYPE_FIELD_STATIC (type, i))
2139 {
2140 v = value_static_field (type, i);
2141 if (v == 0)
2142 error ("field %s is nonexistent or has been optimised out",
2143 name);
2144 }
2145 else
2146 {
2147 v = value_primitive_field (arg1, offset, i, type);
2148 if (v == 0)
2149 error ("there is no field named %s", name);
2150 }
2151 return v;
2152 }
2153
2154 if (t_field_name
2155 && (t_field_name[0] == '\0'
2156 || (TYPE_CODE (type) == TYPE_CODE_UNION
2157 && (strcmp_iw (t_field_name, "else") == 0))))
2158 {
2159 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2160 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2161 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2162 {
2163 /* Look for a match through the fields of an anonymous union,
2164 or anonymous struct. C++ provides anonymous unions.
2165
2166 In the GNU Chill (OBSOLETE) implementation of
2167 variant record types, each <alternative field> has
2168 an (anonymous) union type, each member of the union
2169 represents a <variant alternative>. Each <variant
2170 alternative> is represented as a struct, with a
2171 member for each <variant field>. */
2172
2173 struct value *v;
2174 int new_offset = offset;
2175
2176 /* This is pretty gross. In G++, the offset in an
2177 anonymous union is relative to the beginning of the
2178 enclosing struct. In the GNU Chill (OBSOLETE)
2179 implementation of variant records, the bitpos is
2180 zero in an anonymous union field, so we have to add
2181 the offset of the union here. */
2182 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2183 || (TYPE_NFIELDS (field_type) > 0
2184 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2185 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2186
2187 v = search_struct_field (name, arg1, new_offset, field_type,
2188 looking_for_baseclass);
2189 if (v)
2190 return v;
2191 }
2192 }
2193 }
2194
2195 for (i = 0; i < nbases; i++)
2196 {
2197 struct value *v;
2198 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2199 /* If we are looking for baseclasses, this is what we get when we
2200 hit them. But it could happen that the base part's member name
2201 is not yet filled in. */
2202 int found_baseclass = (looking_for_baseclass
2203 && TYPE_BASECLASS_NAME (type, i) != NULL
2204 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2205
2206 if (BASETYPE_VIA_VIRTUAL (type, i))
2207 {
2208 int boffset;
2209 struct value *v2 = allocate_value (basetype);
2210
2211 boffset = baseclass_offset (type, i,
2212 VALUE_CONTENTS (arg1) + offset,
2213 VALUE_ADDRESS (arg1)
2214 + VALUE_OFFSET (arg1) + offset);
2215 if (boffset == -1)
2216 error ("virtual baseclass botch");
2217
2218 /* The virtual base class pointer might have been clobbered by the
2219 user program. Make sure that it still points to a valid memory
2220 location. */
2221
2222 boffset += offset;
2223 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2224 {
2225 CORE_ADDR base_addr;
2226
2227 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2228 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2229 TYPE_LENGTH (basetype)) != 0)
2230 error ("virtual baseclass botch");
2231 VALUE_LVAL (v2) = lval_memory;
2232 VALUE_ADDRESS (v2) = base_addr;
2233 }
2234 else
2235 {
2236 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2237 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2238 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2239 if (VALUE_LAZY (arg1))
2240 VALUE_LAZY (v2) = 1;
2241 else
2242 memcpy (VALUE_CONTENTS_RAW (v2),
2243 VALUE_CONTENTS_RAW (arg1) + boffset,
2244 TYPE_LENGTH (basetype));
2245 }
2246
2247 if (found_baseclass)
2248 return v2;
2249 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2250 looking_for_baseclass);
2251 }
2252 else if (found_baseclass)
2253 v = value_primitive_field (arg1, offset, i, type);
2254 else
2255 v = search_struct_field (name, arg1,
2256 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2257 basetype, looking_for_baseclass);
2258 if (v)
2259 return v;
2260 }
2261 return NULL;
2262 }
2263
2264
2265 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2266 * in an object pointed to by VALADDR (on the host), assumed to be of
2267 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2268 * looking (in case VALADDR is the contents of an enclosing object).
2269 *
2270 * This routine recurses on the primary base of the derived class because
2271 * the virtual base entries of the primary base appear before the other
2272 * virtual base entries.
2273 *
2274 * If the virtual base is not found, a negative integer is returned.
2275 * The magnitude of the negative integer is the number of entries in
2276 * the virtual table to skip over (entries corresponding to various
2277 * ancestral classes in the chain of primary bases).
2278 *
2279 * Important: This assumes the HP / Taligent C++ runtime
2280 * conventions. Use baseclass_offset() instead to deal with g++
2281 * conventions. */
2282
2283 void
2284 find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2285 int offset, int *boffset_p, int *skip_p)
2286 {
2287 int boffset; /* offset of virtual base */
2288 int index; /* displacement to use in virtual table */
2289 int skip;
2290
2291 struct value *vp;
2292 CORE_ADDR vtbl; /* the virtual table pointer */
2293 struct type *pbc; /* the primary base class */
2294
2295 /* Look for the virtual base recursively in the primary base, first.
2296 * This is because the derived class object and its primary base
2297 * subobject share the primary virtual table. */
2298
2299 boffset = 0;
2300 pbc = TYPE_PRIMARY_BASE (type);
2301 if (pbc)
2302 {
2303 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2304 if (skip < 0)
2305 {
2306 *boffset_p = boffset;
2307 *skip_p = -1;
2308 return;
2309 }
2310 }
2311 else
2312 skip = 0;
2313
2314
2315 /* Find the index of the virtual base according to HP/Taligent
2316 runtime spec. (Depth-first, left-to-right.) */
2317 index = virtual_base_index_skip_primaries (basetype, type);
2318
2319 if (index < 0)
2320 {
2321 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2322 *boffset_p = 0;
2323 return;
2324 }
2325
2326 /* pai: FIXME -- 32x64 possible problem */
2327 /* First word (4 bytes) in object layout is the vtable pointer */
2328 vtbl = *(CORE_ADDR *) (valaddr + offset);
2329
2330 /* Before the constructor is invoked, things are usually zero'd out. */
2331 if (vtbl == 0)
2332 error ("Couldn't find virtual table -- object may not be constructed yet.");
2333
2334
2335 /* Find virtual base's offset -- jump over entries for primary base
2336 * ancestors, then use the index computed above. But also adjust by
2337 * HP_ACC_VBASE_START for the vtable slots before the start of the
2338 * virtual base entries. Offset is negative -- virtual base entries
2339 * appear _before_ the address point of the virtual table. */
2340
2341 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2342 & use long type */
2343
2344 /* epstein : FIXME -- added param for overlay section. May not be correct */
2345 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2346 boffset = value_as_long (vp);
2347 *skip_p = -1;
2348 *boffset_p = boffset;
2349 return;
2350 }
2351
2352
2353 /* Helper function used by value_struct_elt to recurse through baseclasses.
2354 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2355 and search in it assuming it has (class) type TYPE.
2356 If found, return value, else if name matched and args not return (value)-1,
2357 else return NULL. */
2358
2359 static struct value *
2360 search_struct_method (char *name, struct value **arg1p,
2361 struct value **args, int offset,
2362 int *static_memfuncp, register struct type *type)
2363 {
2364 int i;
2365 struct value *v;
2366 int name_matched = 0;
2367 char dem_opname[64];
2368
2369 CHECK_TYPEDEF (type);
2370 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2371 {
2372 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2373 /* FIXME! May need to check for ARM demangling here */
2374 if (strncmp (t_field_name, "__", 2) == 0 ||
2375 strncmp (t_field_name, "op", 2) == 0 ||
2376 strncmp (t_field_name, "type", 4) == 0)
2377 {
2378 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2379 t_field_name = dem_opname;
2380 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2381 t_field_name = dem_opname;
2382 }
2383 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2384 {
2385 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2386 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2387 name_matched = 1;
2388
2389 check_stub_method_group (type, i);
2390 if (j > 0 && args == 0)
2391 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2392 else if (j == 0 && args == 0)
2393 {
2394 v = value_fn_field (arg1p, f, j, type, offset);
2395 if (v != NULL)
2396 return v;
2397 }
2398 else
2399 while (j >= 0)
2400 {
2401 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2402 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2403 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2404 TYPE_FN_FIELD_ARGS (f, j), args))
2405 {
2406 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2407 return value_virtual_fn_field (arg1p, f, j, type, offset);
2408 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2409 *static_memfuncp = 1;
2410 v = value_fn_field (arg1p, f, j, type, offset);
2411 if (v != NULL)
2412 return v;
2413 }
2414 j--;
2415 }
2416 }
2417 }
2418
2419 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2420 {
2421 int base_offset;
2422
2423 if (BASETYPE_VIA_VIRTUAL (type, i))
2424 {
2425 if (TYPE_HAS_VTABLE (type))
2426 {
2427 /* HP aCC compiled type, search for virtual base offset
2428 according to HP/Taligent runtime spec. */
2429 int skip;
2430 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2431 VALUE_CONTENTS_ALL (*arg1p),
2432 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2433 &base_offset, &skip);
2434 if (skip >= 0)
2435 error ("Virtual base class offset not found in vtable");
2436 }
2437 else
2438 {
2439 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2440 char *base_valaddr;
2441
2442 /* The virtual base class pointer might have been clobbered by the
2443 user program. Make sure that it still points to a valid memory
2444 location. */
2445
2446 if (offset < 0 || offset >= TYPE_LENGTH (type))
2447 {
2448 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2449 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2450 + VALUE_OFFSET (*arg1p) + offset,
2451 base_valaddr,
2452 TYPE_LENGTH (baseclass)) != 0)
2453 error ("virtual baseclass botch");
2454 }
2455 else
2456 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2457
2458 base_offset =
2459 baseclass_offset (type, i, base_valaddr,
2460 VALUE_ADDRESS (*arg1p)
2461 + VALUE_OFFSET (*arg1p) + offset);
2462 if (base_offset == -1)
2463 error ("virtual baseclass botch");
2464 }
2465 }
2466 else
2467 {
2468 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2469 }
2470 v = search_struct_method (name, arg1p, args, base_offset + offset,
2471 static_memfuncp, TYPE_BASECLASS (type, i));
2472 if (v == (struct value *) - 1)
2473 {
2474 name_matched = 1;
2475 }
2476 else if (v)
2477 {
2478 /* FIXME-bothner: Why is this commented out? Why is it here? */
2479 /* *arg1p = arg1_tmp; */
2480 return v;
2481 }
2482 }
2483 if (name_matched)
2484 return (struct value *) - 1;
2485 else
2486 return NULL;
2487 }
2488
2489 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2490 extract the component named NAME from the ultimate target structure/union
2491 and return it as a value with its appropriate type.
2492 ERR is used in the error message if *ARGP's type is wrong.
2493
2494 C++: ARGS is a list of argument types to aid in the selection of
2495 an appropriate method. Also, handle derived types.
2496
2497 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2498 where the truthvalue of whether the function that was resolved was
2499 a static member function or not is stored.
2500
2501 ERR is an error message to be printed in case the field is not found. */
2502
2503 struct value *
2504 value_struct_elt (struct value **argp, struct value **args,
2505 char *name, int *static_memfuncp, char *err)
2506 {
2507 register struct type *t;
2508 struct value *v;
2509
2510 COERCE_ARRAY (*argp);
2511
2512 t = check_typedef (VALUE_TYPE (*argp));
2513
2514 /* Follow pointers until we get to a non-pointer. */
2515
2516 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2517 {
2518 *argp = value_ind (*argp);
2519 /* Don't coerce fn pointer to fn and then back again! */
2520 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2521 COERCE_ARRAY (*argp);
2522 t = check_typedef (VALUE_TYPE (*argp));
2523 }
2524
2525 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2526 error ("not implemented: member type in value_struct_elt");
2527
2528 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2529 && TYPE_CODE (t) != TYPE_CODE_UNION)
2530 error ("Attempt to extract a component of a value that is not a %s.", err);
2531
2532 /* Assume it's not, unless we see that it is. */
2533 if (static_memfuncp)
2534 *static_memfuncp = 0;
2535
2536 if (!args)
2537 {
2538 /* if there are no arguments ...do this... */
2539
2540 /* Try as a field first, because if we succeed, there
2541 is less work to be done. */
2542 v = search_struct_field (name, *argp, 0, t, 0);
2543 if (v)
2544 return v;
2545
2546 /* C++: If it was not found as a data field, then try to
2547 return it as a pointer to a method. */
2548
2549 if (destructor_name_p (name, t))
2550 error ("Cannot get value of destructor");
2551
2552 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2553
2554 if (v == (struct value *) - 1)
2555 error ("Cannot take address of a method");
2556 else if (v == 0)
2557 {
2558 if (TYPE_NFN_FIELDS (t))
2559 error ("There is no member or method named %s.", name);
2560 else
2561 error ("There is no member named %s.", name);
2562 }
2563 return v;
2564 }
2565
2566 if (destructor_name_p (name, t))
2567 {
2568 if (!args[1])
2569 {
2570 /* Destructors are a special case. */
2571 int m_index, f_index;
2572
2573 v = NULL;
2574 if (get_destructor_fn_field (t, &m_index, &f_index))
2575 {
2576 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2577 f_index, NULL, 0);
2578 }
2579 if (v == NULL)
2580 error ("could not find destructor function named %s.", name);
2581 else
2582 return v;
2583 }
2584 else
2585 {
2586 error ("destructor should not have any argument");
2587 }
2588 }
2589 else
2590 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2591
2592 if (v == (struct value *) - 1)
2593 {
2594 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
2595 }
2596 else if (v == 0)
2597 {
2598 /* See if user tried to invoke data as function. If so,
2599 hand it back. If it's not callable (i.e., a pointer to function),
2600 gdb should give an error. */
2601 v = search_struct_field (name, *argp, 0, t, 0);
2602 }
2603
2604 if (!v)
2605 error ("Structure has no component named %s.", name);
2606 return v;
2607 }
2608
2609 /* Search through the methods of an object (and its bases)
2610 * to find a specified method. Return the pointer to the
2611 * fn_field list of overloaded instances.
2612 * Helper function for value_find_oload_list.
2613 * ARGP is a pointer to a pointer to a value (the object)
2614 * METHOD is a string containing the method name
2615 * OFFSET is the offset within the value
2616 * TYPE is the assumed type of the object
2617 * NUM_FNS is the number of overloaded instances
2618 * BASETYPE is set to the actual type of the subobject where the method is found
2619 * BOFFSET is the offset of the base subobject where the method is found */
2620
2621 static struct fn_field *
2622 find_method_list (struct value **argp, char *method, int offset,
2623 struct type *type, int *num_fns,
2624 struct type **basetype, int *boffset)
2625 {
2626 int i;
2627 struct fn_field *f;
2628 CHECK_TYPEDEF (type);
2629
2630 *num_fns = 0;
2631
2632 /* First check in object itself */
2633 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2634 {
2635 /* pai: FIXME What about operators and type conversions? */
2636 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2637 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2638 {
2639 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2640 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2641
2642 *num_fns = len;
2643 *basetype = type;
2644 *boffset = offset;
2645
2646 /* Resolve any stub methods. */
2647 check_stub_method_group (type, i);
2648
2649 return f;
2650 }
2651 }
2652
2653 /* Not found in object, check in base subobjects */
2654 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2655 {
2656 int base_offset;
2657 if (BASETYPE_VIA_VIRTUAL (type, i))
2658 {
2659 if (TYPE_HAS_VTABLE (type))
2660 {
2661 /* HP aCC compiled type, search for virtual base offset
2662 * according to HP/Taligent runtime spec. */
2663 int skip;
2664 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2665 VALUE_CONTENTS_ALL (*argp),
2666 offset + VALUE_EMBEDDED_OFFSET (*argp),
2667 &base_offset, &skip);
2668 if (skip >= 0)
2669 error ("Virtual base class offset not found in vtable");
2670 }
2671 else
2672 {
2673 /* probably g++ runtime model */
2674 base_offset = VALUE_OFFSET (*argp) + offset;
2675 base_offset =
2676 baseclass_offset (type, i,
2677 VALUE_CONTENTS (*argp) + base_offset,
2678 VALUE_ADDRESS (*argp) + base_offset);
2679 if (base_offset == -1)
2680 error ("virtual baseclass botch");
2681 }
2682 }
2683 else
2684 /* non-virtual base, simply use bit position from debug info */
2685 {
2686 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2687 }
2688 f = find_method_list (argp, method, base_offset + offset,
2689 TYPE_BASECLASS (type, i), num_fns, basetype,
2690 boffset);
2691 if (f)
2692 return f;
2693 }
2694 return NULL;
2695 }
2696
2697 /* Return the list of overloaded methods of a specified name.
2698 * ARGP is a pointer to a pointer to a value (the object)
2699 * METHOD is the method name
2700 * OFFSET is the offset within the value contents
2701 * NUM_FNS is the number of overloaded instances
2702 * BASETYPE is set to the type of the base subobject that defines the method
2703 * BOFFSET is the offset of the base subobject which defines the method */
2704
2705 struct fn_field *
2706 value_find_oload_method_list (struct value **argp, char *method, int offset,
2707 int *num_fns, struct type **basetype,
2708 int *boffset)
2709 {
2710 struct type *t;
2711
2712 t = check_typedef (VALUE_TYPE (*argp));
2713
2714 /* code snarfed from value_struct_elt */
2715 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2716 {
2717 *argp = value_ind (*argp);
2718 /* Don't coerce fn pointer to fn and then back again! */
2719 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2720 COERCE_ARRAY (*argp);
2721 t = check_typedef (VALUE_TYPE (*argp));
2722 }
2723
2724 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2725 error ("Not implemented: member type in value_find_oload_lis");
2726
2727 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2728 && TYPE_CODE (t) != TYPE_CODE_UNION)
2729 error ("Attempt to extract a component of a value that is not a struct or union");
2730
2731 return find_method_list (argp, method, 0, t, num_fns, basetype, boffset);
2732 }
2733
2734 /* Given an array of argument types (ARGTYPES) (which includes an
2735 entry for "this" in the case of C++ methods), the number of
2736 arguments NARGS, the NAME of a function whether it's a method or
2737 not (METHOD), and the degree of laxness (LAX) in conforming to
2738 overload resolution rules in ANSI C++, find the best function that
2739 matches on the argument types according to the overload resolution
2740 rules.
2741
2742 In the case of class methods, the parameter OBJ is an object value
2743 in which to search for overloaded methods.
2744
2745 In the case of non-method functions, the parameter FSYM is a symbol
2746 corresponding to one of the overloaded functions.
2747
2748 Return value is an integer: 0 -> good match, 10 -> debugger applied
2749 non-standard coercions, 100 -> incompatible.
2750
2751 If a method is being searched for, VALP will hold the value.
2752 If a non-method is being searched for, SYMP will hold the symbol for it.
2753
2754 If a method is being searched for, and it is a static method,
2755 then STATICP will point to a non-zero value.
2756
2757 Note: This function does *not* check the value of
2758 overload_resolution. Caller must check it to see whether overload
2759 resolution is permitted.
2760 */
2761
2762 int
2763 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
2764 int lax, struct value **objp, struct symbol *fsym,
2765 struct value **valp, struct symbol **symp, int *staticp)
2766 {
2767 int nparms;
2768 struct type **parm_types;
2769 int champ_nparms = 0;
2770 struct value *obj = (objp ? *objp : NULL);
2771
2772 short oload_champ = -1; /* Index of best overloaded function */
2773 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2774 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2775 short oload_ambig_champ = -1; /* 2nd contender for best match */
2776 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2777 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2778
2779 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2780 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2781
2782 struct value *temp = obj;
2783 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2784 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2785 int num_fns = 0; /* Number of overloaded instances being considered */
2786 struct type *basetype = NULL;
2787 int boffset;
2788 register int jj;
2789 register int ix;
2790 int static_offset;
2791 struct cleanup *cleanups = NULL;
2792
2793 char *obj_type_name = NULL;
2794 char *func_name = NULL;
2795
2796 /* Get the list of overloaded methods or functions */
2797 if (method)
2798 {
2799 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2800 /* Hack: evaluate_subexp_standard often passes in a pointer
2801 value rather than the object itself, so try again */
2802 if ((!obj_type_name || !*obj_type_name) &&
2803 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2804 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2805
2806 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2807 &num_fns,
2808 &basetype, &boffset);
2809 if (!fns_ptr || !num_fns)
2810 error ("Couldn't find method %s%s%s",
2811 obj_type_name,
2812 (obj_type_name && *obj_type_name) ? "::" : "",
2813 name);
2814 /* If we are dealing with stub method types, they should have
2815 been resolved by find_method_list via value_find_oload_method_list
2816 above. */
2817 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2818 }
2819 else
2820 {
2821 int i = -1;
2822 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2823
2824 /* If the name is NULL this must be a C-style function.
2825 Just return the same symbol. */
2826 if (!func_name)
2827 {
2828 *symp = fsym;
2829 return 0;
2830 }
2831
2832 oload_syms = make_symbol_overload_list (fsym);
2833 cleanups = make_cleanup (xfree, oload_syms);
2834 while (oload_syms[++i])
2835 num_fns++;
2836 if (!num_fns)
2837 error ("Couldn't find function %s", func_name);
2838 }
2839
2840 oload_champ_bv = NULL;
2841
2842 /* Consider each candidate in turn */
2843 for (ix = 0; ix < num_fns; ix++)
2844 {
2845 static_offset = 0;
2846 if (method)
2847 {
2848 if (TYPE_FN_FIELD_STATIC_P (fns_ptr, ix))
2849 static_offset = 1;
2850 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2851 }
2852 else
2853 {
2854 /* If it's not a method, this is the proper place */
2855 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2856 }
2857
2858 /* Prepare array of parameter types */
2859 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2860 for (jj = 0; jj < nparms; jj++)
2861 parm_types[jj] = (method
2862 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2863 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2864
2865 /* Compare parameter types to supplied argument types. Skip THIS for
2866 static methods. */
2867 bv = rank_function (parm_types, nparms, arg_types + static_offset,
2868 nargs - static_offset);
2869
2870 if (!oload_champ_bv)
2871 {
2872 oload_champ_bv = bv;
2873 oload_champ = 0;
2874 champ_nparms = nparms;
2875 }
2876 else
2877 /* See whether current candidate is better or worse than previous best */
2878 switch (compare_badness (bv, oload_champ_bv))
2879 {
2880 case 0:
2881 oload_ambiguous = 1; /* top two contenders are equally good */
2882 oload_ambig_champ = ix;
2883 break;
2884 case 1:
2885 oload_ambiguous = 2; /* incomparable top contenders */
2886 oload_ambig_champ = ix;
2887 break;
2888 case 2:
2889 oload_champ_bv = bv; /* new champion, record details */
2890 oload_ambiguous = 0;
2891 oload_champ = ix;
2892 oload_ambig_champ = -1;
2893 champ_nparms = nparms;
2894 break;
2895 case 3:
2896 default:
2897 break;
2898 }
2899 xfree (parm_types);
2900 if (overload_debug)
2901 {
2902 if (method)
2903 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2904 else
2905 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2906 for (jj = 0; jj < nargs - static_offset; jj++)
2907 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2908 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2909 }
2910 } /* end loop over all candidates */
2911 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2912 if they have the exact same goodness. This is because there is no
2913 way to differentiate based on return type, which we need to in
2914 cases like overloads of .begin() <It's both const and non-const> */
2915 #if 0
2916 if (oload_ambiguous)
2917 {
2918 if (method)
2919 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2920 obj_type_name,
2921 (obj_type_name && *obj_type_name) ? "::" : "",
2922 name);
2923 else
2924 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2925 func_name);
2926 }
2927 #endif
2928
2929 /* Check how bad the best match is. */
2930 static_offset = 0;
2931 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2932 static_offset = 1;
2933 for (ix = 1; ix <= nargs - static_offset; ix++)
2934 {
2935 if (oload_champ_bv->rank[ix] >= 100)
2936 oload_incompatible = 1; /* truly mismatched types */
2937
2938 else if (oload_champ_bv->rank[ix] >= 10)
2939 oload_non_standard = 1; /* non-standard type conversions needed */
2940 }
2941 if (oload_incompatible)
2942 {
2943 if (method)
2944 error ("Cannot resolve method %s%s%s to any overloaded instance",
2945 obj_type_name,
2946 (obj_type_name && *obj_type_name) ? "::" : "",
2947 name);
2948 else
2949 error ("Cannot resolve function %s to any overloaded instance",
2950 func_name);
2951 }
2952 else if (oload_non_standard)
2953 {
2954 if (method)
2955 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2956 obj_type_name,
2957 (obj_type_name && *obj_type_name) ? "::" : "",
2958 name);
2959 else
2960 warning ("Using non-standard conversion to match function %s to supplied arguments",
2961 func_name);
2962 }
2963
2964 if (method)
2965 {
2966 if (staticp && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2967 *staticp = 1;
2968 else if (staticp)
2969 *staticp = 0;
2970 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2971 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2972 else
2973 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2974 }
2975 else
2976 {
2977 *symp = oload_syms[oload_champ];
2978 xfree (func_name);
2979 }
2980
2981 if (objp)
2982 {
2983 if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR
2984 && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR)
2985 {
2986 temp = value_addr (temp);
2987 }
2988 *objp = temp;
2989 }
2990 if (cleanups != NULL)
2991 do_cleanups (cleanups);
2992
2993 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2994 }
2995
2996 /* C++: return 1 is NAME is a legitimate name for the destructor
2997 of type TYPE. If TYPE does not have a destructor, or
2998 if NAME is inappropriate for TYPE, an error is signaled. */
2999 int
3000 destructor_name_p (const char *name, const struct type *type)
3001 {
3002 /* destructors are a special case. */
3003
3004 if (name[0] == '~')
3005 {
3006 char *dname = type_name_no_tag (type);
3007 char *cp = strchr (dname, '<');
3008 unsigned int len;
3009
3010 /* Do not compare the template part for template classes. */
3011 if (cp == NULL)
3012 len = strlen (dname);
3013 else
3014 len = cp - dname;
3015 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
3016 error ("name of destructor must equal name of class");
3017 else
3018 return 1;
3019 }
3020 return 0;
3021 }
3022
3023 /* Helper function for check_field: Given TYPE, a structure/union,
3024 return 1 if the component named NAME from the ultimate
3025 target structure/union is defined, otherwise, return 0. */
3026
3027 static int
3028 check_field_in (register struct type *type, const char *name)
3029 {
3030 register int i;
3031
3032 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
3033 {
3034 char *t_field_name = TYPE_FIELD_NAME (type, i);
3035 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
3036 return 1;
3037 }
3038
3039 /* C++: If it was not found as a data field, then try to
3040 return it as a pointer to a method. */
3041
3042 /* Destructors are a special case. */
3043 if (destructor_name_p (name, type))
3044 {
3045 int m_index, f_index;
3046
3047 return get_destructor_fn_field (type, &m_index, &f_index);
3048 }
3049
3050 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
3051 {
3052 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
3053 return 1;
3054 }
3055
3056 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3057 if (check_field_in (TYPE_BASECLASS (type, i), name))
3058 return 1;
3059
3060 return 0;
3061 }
3062
3063
3064 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
3065 return 1 if the component named NAME from the ultimate
3066 target structure/union is defined, otherwise, return 0. */
3067
3068 int
3069 check_field (struct value *arg1, const char *name)
3070 {
3071 register struct type *t;
3072
3073 COERCE_ARRAY (arg1);
3074
3075 t = VALUE_TYPE (arg1);
3076
3077 /* Follow pointers until we get to a non-pointer. */
3078
3079 for (;;)
3080 {
3081 CHECK_TYPEDEF (t);
3082 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
3083 break;
3084 t = TYPE_TARGET_TYPE (t);
3085 }
3086
3087 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
3088 error ("not implemented: member type in check_field");
3089
3090 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3091 && TYPE_CODE (t) != TYPE_CODE_UNION)
3092 error ("Internal error: `this' is not an aggregate");
3093
3094 return check_field_in (t, name);
3095 }
3096
3097 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3098 return the address of this member as a "pointer to member"
3099 type. If INTYPE is non-null, then it will be the type
3100 of the member we are looking for. This will help us resolve
3101 "pointers to member functions". This function is used
3102 to resolve user expressions of the form "DOMAIN::NAME". */
3103
3104 struct value *
3105 value_struct_elt_for_reference (struct type *domain, int offset,
3106 struct type *curtype, char *name,
3107 struct type *intype)
3108 {
3109 register struct type *t = curtype;
3110 register int i;
3111 struct value *v;
3112
3113 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3114 && TYPE_CODE (t) != TYPE_CODE_UNION)
3115 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3116
3117 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3118 {
3119 char *t_field_name = TYPE_FIELD_NAME (t, i);
3120
3121 if (t_field_name && STREQ (t_field_name, name))
3122 {
3123 if (TYPE_FIELD_STATIC (t, i))
3124 {
3125 v = value_static_field (t, i);
3126 if (v == NULL)
3127 error ("static field %s has been optimized out",
3128 name);
3129 return v;
3130 }
3131 if (TYPE_FIELD_PACKED (t, i))
3132 error ("pointers to bitfield members not allowed");
3133
3134 return value_from_longest
3135 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3136 domain)),
3137 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3138 }
3139 }
3140
3141 /* C++: If it was not found as a data field, then try to
3142 return it as a pointer to a method. */
3143
3144 /* Destructors are a special case. */
3145 if (destructor_name_p (name, t))
3146 {
3147 error ("member pointers to destructors not implemented yet");
3148 }
3149
3150 /* Perform all necessary dereferencing. */
3151 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3152 intype = TYPE_TARGET_TYPE (intype);
3153
3154 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3155 {
3156 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3157 char dem_opname[64];
3158
3159 if (strncmp (t_field_name, "__", 2) == 0 ||
3160 strncmp (t_field_name, "op", 2) == 0 ||
3161 strncmp (t_field_name, "type", 4) == 0)
3162 {
3163 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3164 t_field_name = dem_opname;
3165 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3166 t_field_name = dem_opname;
3167 }
3168 if (t_field_name && STREQ (t_field_name, name))
3169 {
3170 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3171 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3172
3173 check_stub_method_group (t, i);
3174
3175 if (intype == 0 && j > 1)
3176 error ("non-unique member `%s' requires type instantiation", name);
3177 if (intype)
3178 {
3179 while (j--)
3180 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3181 break;
3182 if (j < 0)
3183 error ("no member function matches that type instantiation");
3184 }
3185 else
3186 j = 0;
3187
3188 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3189 {
3190 return value_from_longest
3191 (lookup_reference_type
3192 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3193 domain)),
3194 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3195 }
3196 else
3197 {
3198 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3199 0, VAR_NAMESPACE, 0, NULL);
3200 if (s == NULL)
3201 {
3202 v = 0;
3203 }
3204 else
3205 {
3206 v = read_var_value (s, 0);
3207 #if 0
3208 VALUE_TYPE (v) = lookup_reference_type
3209 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3210 domain));
3211 #endif
3212 }
3213 return v;
3214 }
3215 }
3216 }
3217 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3218 {
3219 struct value *v;
3220 int base_offset;
3221
3222 if (BASETYPE_VIA_VIRTUAL (t, i))
3223 base_offset = 0;
3224 else
3225 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3226 v = value_struct_elt_for_reference (domain,
3227 offset + base_offset,
3228 TYPE_BASECLASS (t, i),
3229 name,
3230 intype);
3231 if (v)
3232 return v;
3233 }
3234 return 0;
3235 }
3236
3237
3238 /* Given a pointer value V, find the real (RTTI) type
3239 of the object it points to.
3240 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3241 and refer to the values computed for the object pointed to. */
3242
3243 struct type *
3244 value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
3245 {
3246 struct value *target;
3247
3248 target = value_ind (v);
3249
3250 return value_rtti_type (target, full, top, using_enc);
3251 }
3252
3253 /* Given a value pointed to by ARGP, check its real run-time type, and
3254 if that is different from the enclosing type, create a new value
3255 using the real run-time type as the enclosing type (and of the same
3256 type as ARGP) and return it, with the embedded offset adjusted to
3257 be the correct offset to the enclosed object
3258 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3259 parameters, computed by value_rtti_type(). If these are available,
3260 they can be supplied and a second call to value_rtti_type() is avoided.
3261 (Pass RTYPE == NULL if they're not available */
3262
3263 struct value *
3264 value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
3265 int xusing_enc)
3266 {
3267 struct type *real_type;
3268 int full = 0;
3269 int top = -1;
3270 int using_enc = 0;
3271 struct value *new_val;
3272
3273 if (rtype)
3274 {
3275 real_type = rtype;
3276 full = xfull;
3277 top = xtop;
3278 using_enc = xusing_enc;
3279 }
3280 else
3281 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3282
3283 /* If no RTTI data, or if object is already complete, do nothing */
3284 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3285 return argp;
3286
3287 /* If we have the full object, but for some reason the enclosing
3288 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3289 if (full)
3290 {
3291 argp = value_change_enclosing_type (argp, real_type);
3292 return argp;
3293 }
3294
3295 /* Check if object is in memory */
3296 if (VALUE_LVAL (argp) != lval_memory)
3297 {
3298 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3299
3300 return argp;
3301 }
3302
3303 /* All other cases -- retrieve the complete object */
3304 /* Go back by the computed top_offset from the beginning of the object,
3305 adjusting for the embedded offset of argp if that's what value_rtti_type
3306 used for its computation. */
3307 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3308 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3309 VALUE_BFD_SECTION (argp));
3310 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3311 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3312 return new_val;
3313 }
3314
3315
3316
3317
3318 /* Return the value of the local variable, if one exists.
3319 Flag COMPLAIN signals an error if the request is made in an
3320 inappropriate context. */
3321
3322 struct value *
3323 value_of_local (const char *name, int complain)
3324 {
3325 struct symbol *func, *sym;
3326 struct block *b;
3327 int i;
3328 struct value * ret;
3329
3330 if (selected_frame == 0)
3331 {
3332 if (complain)
3333 error ("no frame selected");
3334 else
3335 return 0;
3336 }
3337
3338 func = get_frame_function (selected_frame);
3339 if (!func)
3340 {
3341 if (complain)
3342 error ("no `%s' in nameless context", name);
3343 else
3344 return 0;
3345 }
3346
3347 b = SYMBOL_BLOCK_VALUE (func);
3348 i = BLOCK_NSYMS (b);
3349 if (i <= 0)
3350 {
3351 if (complain)
3352 error ("no args, no `%s'", name);
3353 else
3354 return 0;
3355 }
3356
3357 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3358 symbol instead of the LOC_ARG one (if both exist). */
3359 sym = lookup_block_symbol (b, name, NULL, VAR_NAMESPACE);
3360 if (sym == NULL)
3361 {
3362 if (complain)
3363 error ("current stack frame does not contain a variable named `%s'", name);
3364 else
3365 return NULL;
3366 }
3367
3368 ret = read_var_value (sym, selected_frame);
3369 if (ret == 0 && complain)
3370 error ("`%s' argument unreadable", name);
3371 return ret;
3372 }
3373
3374 /* C++/Objective-C: return the value of the class instance variable,
3375 if one exists. Flag COMPLAIN signals an error if the request is
3376 made in an inappropriate context. */
3377
3378 struct value *
3379 value_of_this (int complain)
3380 {
3381 if (current_language->la_language == language_objc)
3382 return value_of_local ("self", complain);
3383 else
3384 return value_of_local ("this", complain);
3385 }
3386
3387 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3388 long, starting at LOWBOUND. The result has the same lower bound as
3389 the original ARRAY. */
3390
3391 struct value *
3392 value_slice (struct value *array, int lowbound, int length)
3393 {
3394 struct type *slice_range_type, *slice_type, *range_type;
3395 LONGEST lowerbound, upperbound;
3396 struct value *slice;
3397 struct type *array_type;
3398 array_type = check_typedef (VALUE_TYPE (array));
3399 COERCE_VARYING_ARRAY (array, array_type);
3400 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3401 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3402 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3403 error ("cannot take slice of non-array");
3404 range_type = TYPE_INDEX_TYPE (array_type);
3405 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3406 error ("slice from bad array or bitstring");
3407 if (lowbound < lowerbound || length < 0
3408 || lowbound + length - 1 > upperbound)
3409 /* OBSOLETE Chill allows zero-length strings but not arrays. */
3410 /* OBSOLETE || (current_language->la_language == language_chill */
3411 /* OBSOLETE && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY)) */
3412 error ("slice out of range");
3413 /* FIXME-type-allocation: need a way to free this type when we are
3414 done with it. */
3415 slice_range_type = create_range_type ((struct type *) NULL,
3416 TYPE_TARGET_TYPE (range_type),
3417 lowbound, lowbound + length - 1);
3418 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3419 {
3420 int i;
3421 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3422 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3423 slice = value_zero (slice_type, not_lval);
3424 for (i = 0; i < length; i++)
3425 {
3426 int element = value_bit_index (array_type,
3427 VALUE_CONTENTS (array),
3428 lowbound + i);
3429 if (element < 0)
3430 error ("internal error accessing bitstring");
3431 else if (element > 0)
3432 {
3433 int j = i % TARGET_CHAR_BIT;
3434 if (BITS_BIG_ENDIAN)
3435 j = TARGET_CHAR_BIT - 1 - j;
3436 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3437 }
3438 }
3439 /* We should set the address, bitssize, and bitspos, so the clice
3440 can be used on the LHS, but that may require extensions to
3441 value_assign. For now, just leave as a non_lval. FIXME. */
3442 }
3443 else
3444 {
3445 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3446 LONGEST offset
3447 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3448 slice_type = create_array_type ((struct type *) NULL, element_type,
3449 slice_range_type);
3450 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3451 slice = allocate_value (slice_type);
3452 if (VALUE_LAZY (array))
3453 VALUE_LAZY (slice) = 1;
3454 else
3455 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3456 TYPE_LENGTH (slice_type));
3457 if (VALUE_LVAL (array) == lval_internalvar)
3458 VALUE_LVAL (slice) = lval_internalvar_component;
3459 else
3460 VALUE_LVAL (slice) = VALUE_LVAL (array);
3461 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3462 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3463 }
3464 return slice;
3465 }
3466
3467 /* Assuming OBSOLETE chill_varying_type (VARRAY) is true, return an
3468 equivalent value as a fixed-length array. */
3469
3470 struct value *
3471 varying_to_slice (struct value *varray)
3472 {
3473 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3474 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3475 VALUE_CONTENTS (varray)
3476 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3477 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3478 }
3479
3480 /* Create a value for a FORTRAN complex number. Currently most of
3481 the time values are coerced to COMPLEX*16 (i.e. a complex number
3482 composed of 2 doubles. This really should be a smarter routine
3483 that figures out precision inteligently as opposed to assuming
3484 doubles. FIXME: fmb */
3485
3486 struct value *
3487 value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
3488 {
3489 struct value *val;
3490 struct type *real_type = TYPE_TARGET_TYPE (type);
3491
3492 val = allocate_value (type);
3493 arg1 = value_cast (real_type, arg1);
3494 arg2 = value_cast (real_type, arg2);
3495
3496 memcpy (VALUE_CONTENTS_RAW (val),
3497 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3498 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3499 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3500 return val;
3501 }
3502
3503 /* Cast a value into the appropriate complex data type. */
3504
3505 static struct value *
3506 cast_into_complex (struct type *type, struct value *val)
3507 {
3508 struct type *real_type = TYPE_TARGET_TYPE (type);
3509 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3510 {
3511 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3512 struct value *re_val = allocate_value (val_real_type);
3513 struct value *im_val = allocate_value (val_real_type);
3514
3515 memcpy (VALUE_CONTENTS_RAW (re_val),
3516 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3517 memcpy (VALUE_CONTENTS_RAW (im_val),
3518 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3519 TYPE_LENGTH (val_real_type));
3520
3521 return value_literal_complex (re_val, im_val, type);
3522 }
3523 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3524 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3525 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3526 else
3527 error ("cannot cast non-number to complex");
3528 }
3529
3530 void
3531 _initialize_valops (void)
3532 {
3533 #if 0
3534 add_show_from_set
3535 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3536 "Set automatic abandonment of expressions upon failure.",
3537 &setlist),
3538 &showlist);
3539 #endif
3540
3541 add_show_from_set
3542 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3543 "Set overload resolution in evaluating C++ functions.",
3544 &setlist),
3545 &showlist);
3546 overload_resolution = 1;
3547
3548 add_show_from_set (
3549 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3550 (char *) &unwind_on_signal_p,
3551 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3552 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3553 is received while in a function called from gdb (call dummy). If set, gdb\n\
3554 unwinds the stack and restore the context to what as it was before the call.\n\
3555 The default is to stop in the frame where the signal was received.", &setlist),
3556 &showlist);
3557 }
This page took 0.130818 seconds and 3 git commands to generate.