[ARC] Add SYNTAX_NOP and SYNTAX_1OP for extension instructions
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "dfp.h"
38 #include "tracepoint.h"
39 #include "observer.h"
40 #include "objfiles.h"
41 #include "extension.h"
42
43 extern unsigned int overload_debug;
44 /* Local functions. */
45
46 static int typecmp (int staticp, int varargs, int nargs,
47 struct field t1[], struct value *t2[]);
48
49 static struct value *search_struct_field (const char *, struct value *,
50 struct type *, int);
51
52 static struct value *search_struct_method (const char *, struct value **,
53 struct value **,
54 int, int *, struct type *);
55
56 static int find_oload_champ_namespace (struct value **, int,
57 const char *, const char *,
58 struct symbol ***,
59 struct badness_vector **,
60 const int no_adl);
61
62 static
63 int find_oload_champ_namespace_loop (struct value **, int,
64 const char *, const char *,
65 int, struct symbol ***,
66 struct badness_vector **, int *,
67 const int no_adl);
68
69 static int find_oload_champ (struct value **, int, int,
70 struct fn_field *, VEC (xmethod_worker_ptr) *,
71 struct symbol **, struct badness_vector **);
72
73 static int oload_method_static_p (struct fn_field *, int);
74
75 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
76
77 static enum
78 oload_classification classify_oload_match (struct badness_vector *,
79 int, int);
80
81 static struct value *value_struct_elt_for_reference (struct type *,
82 int, struct type *,
83 const char *,
84 struct type *,
85 int, enum noside);
86
87 static struct value *value_namespace_elt (const struct type *,
88 const char *, int , enum noside);
89
90 static struct value *value_maybe_namespace_elt (const struct type *,
91 const char *, int,
92 enum noside);
93
94 static CORE_ADDR allocate_space_in_inferior (int);
95
96 static struct value *cast_into_complex (struct type *, struct value *);
97
98 static void find_method_list (struct value **, const char *,
99 int, struct type *, struct fn_field **, int *,
100 VEC (xmethod_worker_ptr) **,
101 struct type **, int *);
102
103 void _initialize_valops (void);
104
105 #if 0
106 /* Flag for whether we want to abandon failed expression evals by
107 default. */
108
109 static int auto_abandon = 0;
110 #endif
111
112 int overload_resolution = 0;
113 static void
114 show_overload_resolution (struct ui_file *file, int from_tty,
115 struct cmd_list_element *c,
116 const char *value)
117 {
118 fprintf_filtered (file, _("Overload resolution in evaluating "
119 "C++ functions is %s.\n"),
120 value);
121 }
122
123 /* Find the address of function name NAME in the inferior. If OBJF_P
124 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
125 is defined. */
126
127 struct value *
128 find_function_in_inferior (const char *name, struct objfile **objf_p)
129 {
130 struct block_symbol sym;
131
132 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
133 if (sym.symbol != NULL)
134 {
135 if (SYMBOL_CLASS (sym.symbol) != LOC_BLOCK)
136 {
137 error (_("\"%s\" exists in this program but is not a function."),
138 name);
139 }
140
141 if (objf_p)
142 *objf_p = symbol_objfile (sym.symbol);
143
144 return value_of_variable (sym.symbol, sym.block);
145 }
146 else
147 {
148 struct bound_minimal_symbol msymbol =
149 lookup_bound_minimal_symbol (name);
150
151 if (msymbol.minsym != NULL)
152 {
153 struct objfile *objfile = msymbol.objfile;
154 struct gdbarch *gdbarch = get_objfile_arch (objfile);
155
156 struct type *type;
157 CORE_ADDR maddr;
158 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
159 type = lookup_function_type (type);
160 type = lookup_pointer_type (type);
161 maddr = BMSYMBOL_VALUE_ADDRESS (msymbol);
162
163 if (objf_p)
164 *objf_p = objfile;
165
166 return value_from_pointer (type, maddr);
167 }
168 else
169 {
170 if (!target_has_execution)
171 error (_("evaluation of this expression "
172 "requires the target program to be active"));
173 else
174 error (_("evaluation of this expression requires the "
175 "program to have a function \"%s\"."),
176 name);
177 }
178 }
179 }
180
181 /* Allocate NBYTES of space in the inferior using the inferior's
182 malloc and return a value that is a pointer to the allocated
183 space. */
184
185 struct value *
186 value_allocate_space_in_inferior (int len)
187 {
188 struct objfile *objf;
189 struct value *val = find_function_in_inferior ("malloc", &objf);
190 struct gdbarch *gdbarch = get_objfile_arch (objf);
191 struct value *blocklen;
192
193 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
194 val = call_function_by_hand (val, 1, &blocklen);
195 if (value_logical_not (val))
196 {
197 if (!target_has_execution)
198 error (_("No memory available to program now: "
199 "you need to start the target first"));
200 else
201 error (_("No memory available to program: call to malloc failed"));
202 }
203 return val;
204 }
205
206 static CORE_ADDR
207 allocate_space_in_inferior (int len)
208 {
209 return value_as_long (value_allocate_space_in_inferior (len));
210 }
211
212 /* Cast struct value VAL to type TYPE and return as a value.
213 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
214 for this to work. Typedef to one of the codes is permitted.
215 Returns NULL if the cast is neither an upcast nor a downcast. */
216
217 static struct value *
218 value_cast_structs (struct type *type, struct value *v2)
219 {
220 struct type *t1;
221 struct type *t2;
222 struct value *v;
223
224 gdb_assert (type != NULL && v2 != NULL);
225
226 t1 = check_typedef (type);
227 t2 = check_typedef (value_type (v2));
228
229 /* Check preconditions. */
230 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
231 || TYPE_CODE (t1) == TYPE_CODE_UNION)
232 && !!"Precondition is that type is of STRUCT or UNION kind.");
233 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
234 || TYPE_CODE (t2) == TYPE_CODE_UNION)
235 && !!"Precondition is that value is of STRUCT or UNION kind");
236
237 if (TYPE_NAME (t1) != NULL
238 && TYPE_NAME (t2) != NULL
239 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
240 return NULL;
241
242 /* Upcasting: look in the type of the source to see if it contains the
243 type of the target as a superclass. If so, we'll need to
244 offset the pointer rather than just change its type. */
245 if (TYPE_NAME (t1) != NULL)
246 {
247 v = search_struct_field (type_name_no_tag (t1),
248 v2, t2, 1);
249 if (v)
250 return v;
251 }
252
253 /* Downcasting: look in the type of the target to see if it contains the
254 type of the source as a superclass. If so, we'll need to
255 offset the pointer rather than just change its type. */
256 if (TYPE_NAME (t2) != NULL)
257 {
258 /* Try downcasting using the run-time type of the value. */
259 int full, top, using_enc;
260 struct type *real_type;
261
262 real_type = value_rtti_type (v2, &full, &top, &using_enc);
263 if (real_type)
264 {
265 v = value_full_object (v2, real_type, full, top, using_enc);
266 v = value_at_lazy (real_type, value_address (v));
267 real_type = value_type (v);
268
269 /* We might be trying to cast to the outermost enclosing
270 type, in which case search_struct_field won't work. */
271 if (TYPE_NAME (real_type) != NULL
272 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
273 return v;
274
275 v = search_struct_field (type_name_no_tag (t2), v, real_type, 1);
276 if (v)
277 return v;
278 }
279
280 /* Try downcasting using information from the destination type
281 T2. This wouldn't work properly for classes with virtual
282 bases, but those were handled above. */
283 v = search_struct_field (type_name_no_tag (t2),
284 value_zero (t1, not_lval), t1, 1);
285 if (v)
286 {
287 /* Downcasting is possible (t1 is superclass of v2). */
288 CORE_ADDR addr2 = value_address (v2);
289
290 addr2 -= value_address (v) + value_embedded_offset (v);
291 return value_at (type, addr2);
292 }
293 }
294
295 return NULL;
296 }
297
298 /* Cast one pointer or reference type to another. Both TYPE and
299 the type of ARG2 should be pointer types, or else both should be
300 reference types. If SUBCLASS_CHECK is non-zero, this will force a
301 check to see whether TYPE is a superclass of ARG2's type. If
302 SUBCLASS_CHECK is zero, then the subclass check is done only when
303 ARG2 is itself non-zero. Returns the new pointer or reference. */
304
305 struct value *
306 value_cast_pointers (struct type *type, struct value *arg2,
307 int subclass_check)
308 {
309 struct type *type1 = check_typedef (type);
310 struct type *type2 = check_typedef (value_type (arg2));
311 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
312 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
313
314 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
315 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
316 && (subclass_check || !value_logical_not (arg2)))
317 {
318 struct value *v2;
319
320 if (TYPE_CODE (type2) == TYPE_CODE_REF)
321 v2 = coerce_ref (arg2);
322 else
323 v2 = value_ind (arg2);
324 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
325 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
326 v2 = value_cast_structs (t1, v2);
327 /* At this point we have what we can have, un-dereference if needed. */
328 if (v2)
329 {
330 struct value *v = value_addr (v2);
331
332 deprecated_set_value_type (v, type);
333 return v;
334 }
335 }
336
337 /* No superclass found, just change the pointer type. */
338 arg2 = value_copy (arg2);
339 deprecated_set_value_type (arg2, type);
340 set_value_enclosing_type (arg2, type);
341 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
342 return arg2;
343 }
344
345 /* Cast value ARG2 to type TYPE and return as a value.
346 More general than a C cast: accepts any two types of the same length,
347 and if ARG2 is an lvalue it can be cast into anything at all. */
348 /* In C++, casts may change pointer or object representations. */
349
350 struct value *
351 value_cast (struct type *type, struct value *arg2)
352 {
353 enum type_code code1;
354 enum type_code code2;
355 int scalar;
356 struct type *type2;
357
358 int convert_to_boolean = 0;
359
360 if (value_type (arg2) == type)
361 return arg2;
362
363 code1 = TYPE_CODE (check_typedef (type));
364
365 /* Check if we are casting struct reference to struct reference. */
366 if (code1 == TYPE_CODE_REF)
367 {
368 /* We dereference type; then we recurse and finally
369 we generate value of the given reference. Nothing wrong with
370 that. */
371 struct type *t1 = check_typedef (type);
372 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
373 struct value *val = value_cast (dereftype, arg2);
374
375 return value_ref (val);
376 }
377
378 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
379
380 if (code2 == TYPE_CODE_REF)
381 /* We deref the value and then do the cast. */
382 return value_cast (type, coerce_ref (arg2));
383
384 type = check_typedef (type);
385 code1 = TYPE_CODE (type);
386 arg2 = coerce_ref (arg2);
387 type2 = check_typedef (value_type (arg2));
388
389 /* You can't cast to a reference type. See value_cast_pointers
390 instead. */
391 gdb_assert (code1 != TYPE_CODE_REF);
392
393 /* A cast to an undetermined-length array_type, such as
394 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
395 where N is sizeof(OBJECT)/sizeof(TYPE). */
396 if (code1 == TYPE_CODE_ARRAY)
397 {
398 struct type *element_type = TYPE_TARGET_TYPE (type);
399 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
400
401 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
402 {
403 struct type *range_type = TYPE_INDEX_TYPE (type);
404 int val_length = TYPE_LENGTH (type2);
405 LONGEST low_bound, high_bound, new_length;
406
407 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
408 low_bound = 0, high_bound = 0;
409 new_length = val_length / element_length;
410 if (val_length % element_length != 0)
411 warning (_("array element type size does not "
412 "divide object size in cast"));
413 /* FIXME-type-allocation: need a way to free this type when
414 we are done with it. */
415 range_type = create_static_range_type ((struct type *) NULL,
416 TYPE_TARGET_TYPE (range_type),
417 low_bound,
418 new_length + low_bound - 1);
419 deprecated_set_value_type (arg2,
420 create_array_type ((struct type *) NULL,
421 element_type,
422 range_type));
423 return arg2;
424 }
425 }
426
427 if (current_language->c_style_arrays
428 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
429 && !TYPE_VECTOR (type2))
430 arg2 = value_coerce_array (arg2);
431
432 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
433 arg2 = value_coerce_function (arg2);
434
435 type2 = check_typedef (value_type (arg2));
436 code2 = TYPE_CODE (type2);
437
438 if (code1 == TYPE_CODE_COMPLEX)
439 return cast_into_complex (type, arg2);
440 if (code1 == TYPE_CODE_BOOL)
441 {
442 code1 = TYPE_CODE_INT;
443 convert_to_boolean = 1;
444 }
445 if (code1 == TYPE_CODE_CHAR)
446 code1 = TYPE_CODE_INT;
447 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
448 code2 = TYPE_CODE_INT;
449
450 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
451 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
452 || code2 == TYPE_CODE_RANGE);
453
454 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
455 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
456 && TYPE_NAME (type) != 0)
457 {
458 struct value *v = value_cast_structs (type, arg2);
459
460 if (v)
461 return v;
462 }
463
464 if (code1 == TYPE_CODE_FLT && scalar)
465 return value_from_double (type, value_as_double (arg2));
466 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
467 {
468 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
469 int dec_len = TYPE_LENGTH (type);
470 gdb_byte dec[16];
471
472 if (code2 == TYPE_CODE_FLT)
473 decimal_from_floating (arg2, dec, dec_len, byte_order);
474 else if (code2 == TYPE_CODE_DECFLOAT)
475 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
476 byte_order, dec, dec_len, byte_order);
477 else
478 /* The only option left is an integral type. */
479 decimal_from_integral (arg2, dec, dec_len, byte_order);
480
481 return value_from_decfloat (type, dec);
482 }
483 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
484 || code1 == TYPE_CODE_RANGE)
485 && (scalar || code2 == TYPE_CODE_PTR
486 || code2 == TYPE_CODE_MEMBERPTR))
487 {
488 LONGEST longest;
489
490 /* When we cast pointers to integers, we mustn't use
491 gdbarch_pointer_to_address to find the address the pointer
492 represents, as value_as_long would. GDB should evaluate
493 expressions just as the compiler would --- and the compiler
494 sees a cast as a simple reinterpretation of the pointer's
495 bits. */
496 if (code2 == TYPE_CODE_PTR)
497 longest = extract_unsigned_integer
498 (value_contents (arg2), TYPE_LENGTH (type2),
499 gdbarch_byte_order (get_type_arch (type2)));
500 else
501 longest = value_as_long (arg2);
502 return value_from_longest (type, convert_to_boolean ?
503 (LONGEST) (longest ? 1 : 0) : longest);
504 }
505 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
506 || code2 == TYPE_CODE_ENUM
507 || code2 == TYPE_CODE_RANGE))
508 {
509 /* TYPE_LENGTH (type) is the length of a pointer, but we really
510 want the length of an address! -- we are really dealing with
511 addresses (i.e., gdb representations) not pointers (i.e.,
512 target representations) here.
513
514 This allows things like "print *(int *)0x01000234" to work
515 without printing a misleading message -- which would
516 otherwise occur when dealing with a target having two byte
517 pointers and four byte addresses. */
518
519 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
520 LONGEST longest = value_as_long (arg2);
521
522 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
523 {
524 if (longest >= ((LONGEST) 1 << addr_bit)
525 || longest <= -((LONGEST) 1 << addr_bit))
526 warning (_("value truncated"));
527 }
528 return value_from_longest (type, longest);
529 }
530 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
531 && value_as_long (arg2) == 0)
532 {
533 struct value *result = allocate_value (type);
534
535 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
536 return result;
537 }
538 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
539 && value_as_long (arg2) == 0)
540 {
541 /* The Itanium C++ ABI represents NULL pointers to members as
542 minus one, instead of biasing the normal case. */
543 return value_from_longest (type, -1);
544 }
545 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
546 && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
547 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
548 error (_("Cannot convert between vector values of different sizes"));
549 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
550 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
551 error (_("can only cast scalar to vector of same size"));
552 else if (code1 == TYPE_CODE_VOID)
553 {
554 return value_zero (type, not_lval);
555 }
556 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
557 {
558 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
559 return value_cast_pointers (type, arg2, 0);
560
561 arg2 = value_copy (arg2);
562 deprecated_set_value_type (arg2, type);
563 set_value_enclosing_type (arg2, type);
564 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
565 return arg2;
566 }
567 else if (VALUE_LVAL (arg2) == lval_memory)
568 return value_at_lazy (type, value_address (arg2));
569 else
570 {
571 error (_("Invalid cast."));
572 return 0;
573 }
574 }
575
576 /* The C++ reinterpret_cast operator. */
577
578 struct value *
579 value_reinterpret_cast (struct type *type, struct value *arg)
580 {
581 struct value *result;
582 struct type *real_type = check_typedef (type);
583 struct type *arg_type, *dest_type;
584 int is_ref = 0;
585 enum type_code dest_code, arg_code;
586
587 /* Do reference, function, and array conversion. */
588 arg = coerce_array (arg);
589
590 /* Attempt to preserve the type the user asked for. */
591 dest_type = type;
592
593 /* If we are casting to a reference type, transform
594 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
595 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
596 {
597 is_ref = 1;
598 arg = value_addr (arg);
599 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
600 real_type = lookup_pointer_type (real_type);
601 }
602
603 arg_type = value_type (arg);
604
605 dest_code = TYPE_CODE (real_type);
606 arg_code = TYPE_CODE (arg_type);
607
608 /* We can convert pointer types, or any pointer type to int, or int
609 type to pointer. */
610 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
611 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
612 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
613 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
614 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
615 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
616 || (dest_code == arg_code
617 && (dest_code == TYPE_CODE_PTR
618 || dest_code == TYPE_CODE_METHODPTR
619 || dest_code == TYPE_CODE_MEMBERPTR)))
620 result = value_cast (dest_type, arg);
621 else
622 error (_("Invalid reinterpret_cast"));
623
624 if (is_ref)
625 result = value_cast (type, value_ref (value_ind (result)));
626
627 return result;
628 }
629
630 /* A helper for value_dynamic_cast. This implements the first of two
631 runtime checks: we iterate over all the base classes of the value's
632 class which are equal to the desired class; if only one of these
633 holds the value, then it is the answer. */
634
635 static int
636 dynamic_cast_check_1 (struct type *desired_type,
637 const gdb_byte *valaddr,
638 int embedded_offset,
639 CORE_ADDR address,
640 struct value *val,
641 struct type *search_type,
642 CORE_ADDR arg_addr,
643 struct type *arg_type,
644 struct value **result)
645 {
646 int i, result_count = 0;
647
648 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
649 {
650 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
651 address, val);
652
653 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
654 {
655 if (address + embedded_offset + offset >= arg_addr
656 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
657 {
658 ++result_count;
659 if (!*result)
660 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
661 address + embedded_offset + offset);
662 }
663 }
664 else
665 result_count += dynamic_cast_check_1 (desired_type,
666 valaddr,
667 embedded_offset + offset,
668 address, val,
669 TYPE_BASECLASS (search_type, i),
670 arg_addr,
671 arg_type,
672 result);
673 }
674
675 return result_count;
676 }
677
678 /* A helper for value_dynamic_cast. This implements the second of two
679 runtime checks: we look for a unique public sibling class of the
680 argument's declared class. */
681
682 static int
683 dynamic_cast_check_2 (struct type *desired_type,
684 const gdb_byte *valaddr,
685 int embedded_offset,
686 CORE_ADDR address,
687 struct value *val,
688 struct type *search_type,
689 struct value **result)
690 {
691 int i, result_count = 0;
692
693 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
694 {
695 int offset;
696
697 if (! BASETYPE_VIA_PUBLIC (search_type, i))
698 continue;
699
700 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
701 address, val);
702 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
703 {
704 ++result_count;
705 if (*result == NULL)
706 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
707 address + embedded_offset + offset);
708 }
709 else
710 result_count += dynamic_cast_check_2 (desired_type,
711 valaddr,
712 embedded_offset + offset,
713 address, val,
714 TYPE_BASECLASS (search_type, i),
715 result);
716 }
717
718 return result_count;
719 }
720
721 /* The C++ dynamic_cast operator. */
722
723 struct value *
724 value_dynamic_cast (struct type *type, struct value *arg)
725 {
726 int full, top, using_enc;
727 struct type *resolved_type = check_typedef (type);
728 struct type *arg_type = check_typedef (value_type (arg));
729 struct type *class_type, *rtti_type;
730 struct value *result, *tem, *original_arg = arg;
731 CORE_ADDR addr;
732 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
733
734 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
735 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
736 error (_("Argument to dynamic_cast must be a pointer or reference type"));
737 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
738 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_STRUCT)
739 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
740
741 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
742 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
743 {
744 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
745 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
746 && value_as_long (arg) == 0))
747 error (_("Argument to dynamic_cast does not have pointer type"));
748 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
749 {
750 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
751 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
752 error (_("Argument to dynamic_cast does "
753 "not have pointer to class type"));
754 }
755
756 /* Handle NULL pointers. */
757 if (value_as_long (arg) == 0)
758 return value_zero (type, not_lval);
759
760 arg = value_ind (arg);
761 }
762 else
763 {
764 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
765 error (_("Argument to dynamic_cast does not have class type"));
766 }
767
768 /* If the classes are the same, just return the argument. */
769 if (class_types_same_p (class_type, arg_type))
770 return value_cast (type, arg);
771
772 /* If the target type is a unique base class of the argument's
773 declared type, just cast it. */
774 if (is_ancestor (class_type, arg_type))
775 {
776 if (is_unique_ancestor (class_type, arg))
777 return value_cast (type, original_arg);
778 error (_("Ambiguous dynamic_cast"));
779 }
780
781 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
782 if (! rtti_type)
783 error (_("Couldn't determine value's most derived type for dynamic_cast"));
784
785 /* Compute the most derived object's address. */
786 addr = value_address (arg);
787 if (full)
788 {
789 /* Done. */
790 }
791 else if (using_enc)
792 addr += top;
793 else
794 addr += top + value_embedded_offset (arg);
795
796 /* dynamic_cast<void *> means to return a pointer to the
797 most-derived object. */
798 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
799 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
800 return value_at_lazy (type, addr);
801
802 tem = value_at (type, addr);
803 type = value_type (tem);
804
805 /* The first dynamic check specified in 5.2.7. */
806 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
807 {
808 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
809 return tem;
810 result = NULL;
811 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
812 value_contents_for_printing (tem),
813 value_embedded_offset (tem),
814 value_address (tem), tem,
815 rtti_type, addr,
816 arg_type,
817 &result) == 1)
818 return value_cast (type,
819 is_ref ? value_ref (result) : value_addr (result));
820 }
821
822 /* The second dynamic check specified in 5.2.7. */
823 result = NULL;
824 if (is_public_ancestor (arg_type, rtti_type)
825 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
826 value_contents_for_printing (tem),
827 value_embedded_offset (tem),
828 value_address (tem), tem,
829 rtti_type, &result) == 1)
830 return value_cast (type,
831 is_ref ? value_ref (result) : value_addr (result));
832
833 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
834 return value_zero (type, not_lval);
835
836 error (_("dynamic_cast failed"));
837 }
838
839 /* Create a value of type TYPE that is zero, and return it. */
840
841 struct value *
842 value_zero (struct type *type, enum lval_type lv)
843 {
844 struct value *val = allocate_value (type);
845
846 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
847 return val;
848 }
849
850 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
851
852 struct value *
853 value_one (struct type *type)
854 {
855 struct type *type1 = check_typedef (type);
856 struct value *val;
857
858 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
859 {
860 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
861 gdb_byte v[16];
862
863 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
864 val = value_from_decfloat (type, v);
865 }
866 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
867 {
868 val = value_from_double (type, (DOUBLEST) 1);
869 }
870 else if (is_integral_type (type1))
871 {
872 val = value_from_longest (type, (LONGEST) 1);
873 }
874 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
875 {
876 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
877 int i;
878 LONGEST low_bound, high_bound;
879 struct value *tmp;
880
881 if (!get_array_bounds (type1, &low_bound, &high_bound))
882 error (_("Could not determine the vector bounds"));
883
884 val = allocate_value (type);
885 for (i = 0; i < high_bound - low_bound + 1; i++)
886 {
887 tmp = value_one (eltype);
888 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
889 value_contents_all (tmp), TYPE_LENGTH (eltype));
890 }
891 }
892 else
893 {
894 error (_("Not a numeric type."));
895 }
896
897 /* value_one result is never used for assignments to. */
898 gdb_assert (VALUE_LVAL (val) == not_lval);
899
900 return val;
901 }
902
903 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.
904 The type of the created value may differ from the passed type TYPE.
905 Make sure to retrieve the returned values's new type after this call
906 e.g. in case the type is a variable length array. */
907
908 static struct value *
909 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
910 {
911 struct value *val;
912
913 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
914 error (_("Attempt to dereference a generic pointer."));
915
916 val = value_from_contents_and_address (type, NULL, addr);
917
918 if (!lazy)
919 value_fetch_lazy (val);
920
921 return val;
922 }
923
924 /* Return a value with type TYPE located at ADDR.
925
926 Call value_at only if the data needs to be fetched immediately;
927 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
928 value_at_lazy instead. value_at_lazy simply records the address of
929 the data and sets the lazy-evaluation-required flag. The lazy flag
930 is tested in the value_contents macro, which is used if and when
931 the contents are actually required. The type of the created value
932 may differ from the passed type TYPE. Make sure to retrieve the
933 returned values's new type after this call e.g. in case the type
934 is a variable length array.
935
936 Note: value_at does *NOT* handle embedded offsets; perform such
937 adjustments before or after calling it. */
938
939 struct value *
940 value_at (struct type *type, CORE_ADDR addr)
941 {
942 return get_value_at (type, addr, 0);
943 }
944
945 /* Return a lazy value with type TYPE located at ADDR (cf. value_at).
946 The type of the created value may differ from the passed type TYPE.
947 Make sure to retrieve the returned values's new type after this call
948 e.g. in case the type is a variable length array. */
949
950 struct value *
951 value_at_lazy (struct type *type, CORE_ADDR addr)
952 {
953 return get_value_at (type, addr, 1);
954 }
955
956 void
957 read_value_memory (struct value *val, int embedded_offset,
958 int stack, CORE_ADDR memaddr,
959 gdb_byte *buffer, size_t length)
960 {
961 ULONGEST xfered_total = 0;
962 struct gdbarch *arch = get_value_arch (val);
963 int unit_size = gdbarch_addressable_memory_unit_size (arch);
964 enum target_object object;
965
966 object = stack ? TARGET_OBJECT_STACK_MEMORY : TARGET_OBJECT_MEMORY;
967
968 while (xfered_total < length)
969 {
970 enum target_xfer_status status;
971 ULONGEST xfered_partial;
972
973 status = target_xfer_partial (current_target.beneath,
974 object, NULL,
975 buffer + xfered_total * unit_size, NULL,
976 memaddr + xfered_total,
977 length - xfered_total,
978 &xfered_partial);
979
980 if (status == TARGET_XFER_OK)
981 /* nothing */;
982 else if (status == TARGET_XFER_UNAVAILABLE)
983 mark_value_bytes_unavailable (val, embedded_offset + xfered_total,
984 xfered_partial);
985 else if (status == TARGET_XFER_EOF)
986 memory_error (TARGET_XFER_E_IO, memaddr + xfered_total);
987 else
988 memory_error (status, memaddr + xfered_total);
989
990 xfered_total += xfered_partial;
991 QUIT;
992 }
993 }
994
995 /* Store the contents of FROMVAL into the location of TOVAL.
996 Return a new value with the location of TOVAL and contents of FROMVAL. */
997
998 struct value *
999 value_assign (struct value *toval, struct value *fromval)
1000 {
1001 struct type *type;
1002 struct value *val;
1003 struct frame_id old_frame;
1004
1005 if (!deprecated_value_modifiable (toval))
1006 error (_("Left operand of assignment is not a modifiable lvalue."));
1007
1008 toval = coerce_ref (toval);
1009
1010 type = value_type (toval);
1011 if (VALUE_LVAL (toval) != lval_internalvar)
1012 fromval = value_cast (type, fromval);
1013 else
1014 {
1015 /* Coerce arrays and functions to pointers, except for arrays
1016 which only live in GDB's storage. */
1017 if (!value_must_coerce_to_target (fromval))
1018 fromval = coerce_array (fromval);
1019 }
1020
1021 type = check_typedef (type);
1022
1023 /* Since modifying a register can trash the frame chain, and
1024 modifying memory can trash the frame cache, we save the old frame
1025 and then restore the new frame afterwards. */
1026 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1027
1028 switch (VALUE_LVAL (toval))
1029 {
1030 case lval_internalvar:
1031 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1032 return value_of_internalvar (get_type_arch (type),
1033 VALUE_INTERNALVAR (toval));
1034
1035 case lval_internalvar_component:
1036 {
1037 int offset = value_offset (toval);
1038
1039 /* Are we dealing with a bitfield?
1040
1041 It is important to mention that `value_parent (toval)' is
1042 non-NULL iff `value_bitsize (toval)' is non-zero. */
1043 if (value_bitsize (toval))
1044 {
1045 /* VALUE_INTERNALVAR below refers to the parent value, while
1046 the offset is relative to this parent value. */
1047 gdb_assert (value_parent (value_parent (toval)) == NULL);
1048 offset += value_offset (value_parent (toval));
1049 }
1050
1051 set_internalvar_component (VALUE_INTERNALVAR (toval),
1052 offset,
1053 value_bitpos (toval),
1054 value_bitsize (toval),
1055 fromval);
1056 }
1057 break;
1058
1059 case lval_memory:
1060 {
1061 const gdb_byte *dest_buffer;
1062 CORE_ADDR changed_addr;
1063 int changed_len;
1064 gdb_byte buffer[sizeof (LONGEST)];
1065
1066 if (value_bitsize (toval))
1067 {
1068 struct value *parent = value_parent (toval);
1069
1070 changed_addr = value_address (parent) + value_offset (toval);
1071 changed_len = (value_bitpos (toval)
1072 + value_bitsize (toval)
1073 + HOST_CHAR_BIT - 1)
1074 / HOST_CHAR_BIT;
1075
1076 /* If we can read-modify-write exactly the size of the
1077 containing type (e.g. short or int) then do so. This
1078 is safer for volatile bitfields mapped to hardware
1079 registers. */
1080 if (changed_len < TYPE_LENGTH (type)
1081 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1082 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1083 changed_len = TYPE_LENGTH (type);
1084
1085 if (changed_len > (int) sizeof (LONGEST))
1086 error (_("Can't handle bitfields which "
1087 "don't fit in a %d bit word."),
1088 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1089
1090 read_memory (changed_addr, buffer, changed_len);
1091 modify_field (type, buffer, value_as_long (fromval),
1092 value_bitpos (toval), value_bitsize (toval));
1093 dest_buffer = buffer;
1094 }
1095 else
1096 {
1097 changed_addr = value_address (toval);
1098 changed_len = type_length_units (type);
1099 dest_buffer = value_contents (fromval);
1100 }
1101
1102 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1103 }
1104 break;
1105
1106 case lval_register:
1107 {
1108 struct frame_info *frame;
1109 struct gdbarch *gdbarch;
1110 int value_reg;
1111
1112 /* Figure out which frame this is in currently. */
1113 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1114 value_reg = VALUE_REGNUM (toval);
1115
1116 if (!frame)
1117 error (_("Value being assigned to is no longer active."));
1118
1119 gdbarch = get_frame_arch (frame);
1120
1121 if (value_bitsize (toval))
1122 {
1123 struct value *parent = value_parent (toval);
1124 int offset = value_offset (parent) + value_offset (toval);
1125 int changed_len;
1126 gdb_byte buffer[sizeof (LONGEST)];
1127 int optim, unavail;
1128
1129 changed_len = (value_bitpos (toval)
1130 + value_bitsize (toval)
1131 + HOST_CHAR_BIT - 1)
1132 / HOST_CHAR_BIT;
1133
1134 if (changed_len > (int) sizeof (LONGEST))
1135 error (_("Can't handle bitfields which "
1136 "don't fit in a %d bit word."),
1137 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1138
1139 if (!get_frame_register_bytes (frame, value_reg, offset,
1140 changed_len, buffer,
1141 &optim, &unavail))
1142 {
1143 if (optim)
1144 throw_error (OPTIMIZED_OUT_ERROR,
1145 _("value has been optimized out"));
1146 if (unavail)
1147 throw_error (NOT_AVAILABLE_ERROR,
1148 _("value is not available"));
1149 }
1150
1151 modify_field (type, buffer, value_as_long (fromval),
1152 value_bitpos (toval), value_bitsize (toval));
1153
1154 put_frame_register_bytes (frame, value_reg, offset,
1155 changed_len, buffer);
1156 }
1157 else
1158 {
1159 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval),
1160 type))
1161 {
1162 /* If TOVAL is a special machine register requiring
1163 conversion of program values to a special raw
1164 format. */
1165 gdbarch_value_to_register (gdbarch, frame,
1166 VALUE_REGNUM (toval), type,
1167 value_contents (fromval));
1168 }
1169 else
1170 {
1171 put_frame_register_bytes (frame, value_reg,
1172 value_offset (toval),
1173 TYPE_LENGTH (type),
1174 value_contents (fromval));
1175 }
1176 }
1177
1178 observer_notify_register_changed (frame, value_reg);
1179 break;
1180 }
1181
1182 case lval_computed:
1183 {
1184 const struct lval_funcs *funcs = value_computed_funcs (toval);
1185
1186 if (funcs->write != NULL)
1187 {
1188 funcs->write (toval, fromval);
1189 break;
1190 }
1191 }
1192 /* Fall through. */
1193
1194 default:
1195 error (_("Left operand of assignment is not an lvalue."));
1196 }
1197
1198 /* Assigning to the stack pointer, frame pointer, and other
1199 (architecture and calling convention specific) registers may
1200 cause the frame cache and regcache to be out of date. Assigning to memory
1201 also can. We just do this on all assignments to registers or
1202 memory, for simplicity's sake; I doubt the slowdown matters. */
1203 switch (VALUE_LVAL (toval))
1204 {
1205 case lval_memory:
1206 case lval_register:
1207 case lval_computed:
1208
1209 observer_notify_target_changed (&current_target);
1210
1211 /* Having destroyed the frame cache, restore the selected
1212 frame. */
1213
1214 /* FIXME: cagney/2002-11-02: There has to be a better way of
1215 doing this. Instead of constantly saving/restoring the
1216 frame. Why not create a get_selected_frame() function that,
1217 having saved the selected frame's ID can automatically
1218 re-find the previously selected frame automatically. */
1219
1220 {
1221 struct frame_info *fi = frame_find_by_id (old_frame);
1222
1223 if (fi != NULL)
1224 select_frame (fi);
1225 }
1226
1227 break;
1228 default:
1229 break;
1230 }
1231
1232 /* If the field does not entirely fill a LONGEST, then zero the sign
1233 bits. If the field is signed, and is negative, then sign
1234 extend. */
1235 if ((value_bitsize (toval) > 0)
1236 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1237 {
1238 LONGEST fieldval = value_as_long (fromval);
1239 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1240
1241 fieldval &= valmask;
1242 if (!TYPE_UNSIGNED (type)
1243 && (fieldval & (valmask ^ (valmask >> 1))))
1244 fieldval |= ~valmask;
1245
1246 fromval = value_from_longest (type, fieldval);
1247 }
1248
1249 /* The return value is a copy of TOVAL so it shares its location
1250 information, but its contents are updated from FROMVAL. This
1251 implies the returned value is not lazy, even if TOVAL was. */
1252 val = value_copy (toval);
1253 set_value_lazy (val, 0);
1254 memcpy (value_contents_raw (val), value_contents (fromval),
1255 TYPE_LENGTH (type));
1256
1257 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1258 in the case of pointer types. For object types, the enclosing type
1259 and embedded offset must *not* be copied: the target object refered
1260 to by TOVAL retains its original dynamic type after assignment. */
1261 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1262 {
1263 set_value_enclosing_type (val, value_enclosing_type (fromval));
1264 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1265 }
1266
1267 return val;
1268 }
1269
1270 /* Extend a value VAL to COUNT repetitions of its type. */
1271
1272 struct value *
1273 value_repeat (struct value *arg1, int count)
1274 {
1275 struct value *val;
1276
1277 if (VALUE_LVAL (arg1) != lval_memory)
1278 error (_("Only values in memory can be extended with '@'."));
1279 if (count < 1)
1280 error (_("Invalid number %d of repetitions."), count);
1281
1282 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1283
1284 VALUE_LVAL (val) = lval_memory;
1285 set_value_address (val, value_address (arg1));
1286
1287 read_value_memory (val, 0, value_stack (val), value_address (val),
1288 value_contents_all_raw (val),
1289 type_length_units (value_enclosing_type (val)));
1290
1291 return val;
1292 }
1293
1294 struct value *
1295 value_of_variable (struct symbol *var, const struct block *b)
1296 {
1297 struct frame_info *frame = NULL;
1298
1299 if (symbol_read_needs_frame (var))
1300 frame = get_selected_frame (_("No frame selected."));
1301
1302 return read_var_value (var, b, frame);
1303 }
1304
1305 struct value *
1306 address_of_variable (struct symbol *var, const struct block *b)
1307 {
1308 struct type *type = SYMBOL_TYPE (var);
1309 struct value *val;
1310
1311 /* Evaluate it first; if the result is a memory address, we're fine.
1312 Lazy evaluation pays off here. */
1313
1314 val = value_of_variable (var, b);
1315 type = value_type (val);
1316
1317 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1318 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1319 {
1320 CORE_ADDR addr = value_address (val);
1321
1322 return value_from_pointer (lookup_pointer_type (type), addr);
1323 }
1324
1325 /* Not a memory address; check what the problem was. */
1326 switch (VALUE_LVAL (val))
1327 {
1328 case lval_register:
1329 {
1330 struct frame_info *frame;
1331 const char *regname;
1332
1333 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1334 gdb_assert (frame);
1335
1336 regname = gdbarch_register_name (get_frame_arch (frame),
1337 VALUE_REGNUM (val));
1338 gdb_assert (regname && *regname);
1339
1340 error (_("Address requested for identifier "
1341 "\"%s\" which is in register $%s"),
1342 SYMBOL_PRINT_NAME (var), regname);
1343 break;
1344 }
1345
1346 default:
1347 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1348 SYMBOL_PRINT_NAME (var));
1349 break;
1350 }
1351
1352 return val;
1353 }
1354
1355 /* Return one if VAL does not live in target memory, but should in order
1356 to operate on it. Otherwise return zero. */
1357
1358 int
1359 value_must_coerce_to_target (struct value *val)
1360 {
1361 struct type *valtype;
1362
1363 /* The only lval kinds which do not live in target memory. */
1364 if (VALUE_LVAL (val) != not_lval
1365 && VALUE_LVAL (val) != lval_internalvar
1366 && VALUE_LVAL (val) != lval_xcallable)
1367 return 0;
1368
1369 valtype = check_typedef (value_type (val));
1370
1371 switch (TYPE_CODE (valtype))
1372 {
1373 case TYPE_CODE_ARRAY:
1374 return TYPE_VECTOR (valtype) ? 0 : 1;
1375 case TYPE_CODE_STRING:
1376 return 1;
1377 default:
1378 return 0;
1379 }
1380 }
1381
1382 /* Make sure that VAL lives in target memory if it's supposed to. For
1383 instance, strings are constructed as character arrays in GDB's
1384 storage, and this function copies them to the target. */
1385
1386 struct value *
1387 value_coerce_to_target (struct value *val)
1388 {
1389 LONGEST length;
1390 CORE_ADDR addr;
1391
1392 if (!value_must_coerce_to_target (val))
1393 return val;
1394
1395 length = TYPE_LENGTH (check_typedef (value_type (val)));
1396 addr = allocate_space_in_inferior (length);
1397 write_memory (addr, value_contents (val), length);
1398 return value_at_lazy (value_type (val), addr);
1399 }
1400
1401 /* Given a value which is an array, return a value which is a pointer
1402 to its first element, regardless of whether or not the array has a
1403 nonzero lower bound.
1404
1405 FIXME: A previous comment here indicated that this routine should
1406 be substracting the array's lower bound. It's not clear to me that
1407 this is correct. Given an array subscripting operation, it would
1408 certainly work to do the adjustment here, essentially computing:
1409
1410 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1411
1412 However I believe a more appropriate and logical place to account
1413 for the lower bound is to do so in value_subscript, essentially
1414 computing:
1415
1416 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1417
1418 As further evidence consider what would happen with operations
1419 other than array subscripting, where the caller would get back a
1420 value that had an address somewhere before the actual first element
1421 of the array, and the information about the lower bound would be
1422 lost because of the coercion to pointer type. */
1423
1424 struct value *
1425 value_coerce_array (struct value *arg1)
1426 {
1427 struct type *type = check_typedef (value_type (arg1));
1428
1429 /* If the user tries to do something requiring a pointer with an
1430 array that has not yet been pushed to the target, then this would
1431 be a good time to do so. */
1432 arg1 = value_coerce_to_target (arg1);
1433
1434 if (VALUE_LVAL (arg1) != lval_memory)
1435 error (_("Attempt to take address of value not located in memory."));
1436
1437 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1438 value_address (arg1));
1439 }
1440
1441 /* Given a value which is a function, return a value which is a pointer
1442 to it. */
1443
1444 struct value *
1445 value_coerce_function (struct value *arg1)
1446 {
1447 struct value *retval;
1448
1449 if (VALUE_LVAL (arg1) != lval_memory)
1450 error (_("Attempt to take address of value not located in memory."));
1451
1452 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1453 value_address (arg1));
1454 return retval;
1455 }
1456
1457 /* Return a pointer value for the object for which ARG1 is the
1458 contents. */
1459
1460 struct value *
1461 value_addr (struct value *arg1)
1462 {
1463 struct value *arg2;
1464 struct type *type = check_typedef (value_type (arg1));
1465
1466 if (TYPE_CODE (type) == TYPE_CODE_REF)
1467 {
1468 /* Copy the value, but change the type from (T&) to (T*). We
1469 keep the same location information, which is efficient, and
1470 allows &(&X) to get the location containing the reference.
1471 Do the same to its enclosing type for consistency. */
1472 struct type *type_ptr
1473 = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1474 struct type *enclosing_type
1475 = check_typedef (value_enclosing_type (arg1));
1476 struct type *enclosing_type_ptr
1477 = lookup_pointer_type (TYPE_TARGET_TYPE (enclosing_type));
1478
1479 arg2 = value_copy (arg1);
1480 deprecated_set_value_type (arg2, type_ptr);
1481 set_value_enclosing_type (arg2, enclosing_type_ptr);
1482
1483 return arg2;
1484 }
1485 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1486 return value_coerce_function (arg1);
1487
1488 /* If this is an array that has not yet been pushed to the target,
1489 then this would be a good time to force it to memory. */
1490 arg1 = value_coerce_to_target (arg1);
1491
1492 if (VALUE_LVAL (arg1) != lval_memory)
1493 error (_("Attempt to take address of value not located in memory."));
1494
1495 /* Get target memory address. */
1496 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1497 (value_address (arg1)
1498 + value_embedded_offset (arg1)));
1499
1500 /* This may be a pointer to a base subobject; so remember the
1501 full derived object's type ... */
1502 set_value_enclosing_type (arg2,
1503 lookup_pointer_type (value_enclosing_type (arg1)));
1504 /* ... and also the relative position of the subobject in the full
1505 object. */
1506 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1507 return arg2;
1508 }
1509
1510 /* Return a reference value for the object for which ARG1 is the
1511 contents. */
1512
1513 struct value *
1514 value_ref (struct value *arg1)
1515 {
1516 struct value *arg2;
1517 struct type *type = check_typedef (value_type (arg1));
1518
1519 if (TYPE_CODE (type) == TYPE_CODE_REF)
1520 return arg1;
1521
1522 arg2 = value_addr (arg1);
1523 deprecated_set_value_type (arg2, lookup_reference_type (type));
1524 return arg2;
1525 }
1526
1527 /* Given a value of a pointer type, apply the C unary * operator to
1528 it. */
1529
1530 struct value *
1531 value_ind (struct value *arg1)
1532 {
1533 struct type *base_type;
1534 struct value *arg2;
1535
1536 arg1 = coerce_array (arg1);
1537
1538 base_type = check_typedef (value_type (arg1));
1539
1540 if (VALUE_LVAL (arg1) == lval_computed)
1541 {
1542 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1543
1544 if (funcs->indirect)
1545 {
1546 struct value *result = funcs->indirect (arg1);
1547
1548 if (result)
1549 return result;
1550 }
1551 }
1552
1553 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1554 {
1555 struct type *enc_type;
1556
1557 /* We may be pointing to something embedded in a larger object.
1558 Get the real type of the enclosing object. */
1559 enc_type = check_typedef (value_enclosing_type (arg1));
1560 enc_type = TYPE_TARGET_TYPE (enc_type);
1561
1562 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1563 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1564 /* For functions, go through find_function_addr, which knows
1565 how to handle function descriptors. */
1566 arg2 = value_at_lazy (enc_type,
1567 find_function_addr (arg1, NULL));
1568 else
1569 /* Retrieve the enclosing object pointed to. */
1570 arg2 = value_at_lazy (enc_type,
1571 (value_as_address (arg1)
1572 - value_pointed_to_offset (arg1)));
1573
1574 enc_type = value_type (arg2);
1575 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1576 }
1577
1578 error (_("Attempt to take contents of a non-pointer value."));
1579 return 0; /* For lint -- never reached. */
1580 }
1581 \f
1582 /* Create a value for an array by allocating space in GDB, copying the
1583 data into that space, and then setting up an array value.
1584
1585 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1586 is populated from the values passed in ELEMVEC.
1587
1588 The element type of the array is inherited from the type of the
1589 first element, and all elements must have the same size (though we
1590 don't currently enforce any restriction on their types). */
1591
1592 struct value *
1593 value_array (int lowbound, int highbound, struct value **elemvec)
1594 {
1595 int nelem;
1596 int idx;
1597 unsigned int typelength;
1598 struct value *val;
1599 struct type *arraytype;
1600
1601 /* Validate that the bounds are reasonable and that each of the
1602 elements have the same size. */
1603
1604 nelem = highbound - lowbound + 1;
1605 if (nelem <= 0)
1606 {
1607 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1608 }
1609 typelength = type_length_units (value_enclosing_type (elemvec[0]));
1610 for (idx = 1; idx < nelem; idx++)
1611 {
1612 if (type_length_units (value_enclosing_type (elemvec[idx]))
1613 != typelength)
1614 {
1615 error (_("array elements must all be the same size"));
1616 }
1617 }
1618
1619 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1620 lowbound, highbound);
1621
1622 if (!current_language->c_style_arrays)
1623 {
1624 val = allocate_value (arraytype);
1625 for (idx = 0; idx < nelem; idx++)
1626 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1627 typelength);
1628 return val;
1629 }
1630
1631 /* Allocate space to store the array, and then initialize it by
1632 copying in each element. */
1633
1634 val = allocate_value (arraytype);
1635 for (idx = 0; idx < nelem; idx++)
1636 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1637 return val;
1638 }
1639
1640 struct value *
1641 value_cstring (const char *ptr, ssize_t len, struct type *char_type)
1642 {
1643 struct value *val;
1644 int lowbound = current_language->string_lower_bound;
1645 ssize_t highbound = len / TYPE_LENGTH (char_type);
1646 struct type *stringtype
1647 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1648
1649 val = allocate_value (stringtype);
1650 memcpy (value_contents_raw (val), ptr, len);
1651 return val;
1652 }
1653
1654 /* Create a value for a string constant by allocating space in the
1655 inferior, copying the data into that space, and returning the
1656 address with type TYPE_CODE_STRING. PTR points to the string
1657 constant data; LEN is number of characters.
1658
1659 Note that string types are like array of char types with a lower
1660 bound of zero and an upper bound of LEN - 1. Also note that the
1661 string may contain embedded null bytes. */
1662
1663 struct value *
1664 value_string (const char *ptr, ssize_t len, struct type *char_type)
1665 {
1666 struct value *val;
1667 int lowbound = current_language->string_lower_bound;
1668 ssize_t highbound = len / TYPE_LENGTH (char_type);
1669 struct type *stringtype
1670 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1671
1672 val = allocate_value (stringtype);
1673 memcpy (value_contents_raw (val), ptr, len);
1674 return val;
1675 }
1676
1677 \f
1678 /* See if we can pass arguments in T2 to a function which takes
1679 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1680 a NULL-terminated vector. If some arguments need coercion of some
1681 sort, then the coerced values are written into T2. Return value is
1682 0 if the arguments could be matched, or the position at which they
1683 differ if not.
1684
1685 STATICP is nonzero if the T1 argument list came from a static
1686 member function. T2 will still include the ``this'' pointer, but
1687 it will be skipped.
1688
1689 For non-static member functions, we ignore the first argument,
1690 which is the type of the instance variable. This is because we
1691 want to handle calls with objects from derived classes. This is
1692 not entirely correct: we should actually check to make sure that a
1693 requested operation is type secure, shouldn't we? FIXME. */
1694
1695 static int
1696 typecmp (int staticp, int varargs, int nargs,
1697 struct field t1[], struct value *t2[])
1698 {
1699 int i;
1700
1701 if (t2 == 0)
1702 internal_error (__FILE__, __LINE__,
1703 _("typecmp: no argument list"));
1704
1705 /* Skip ``this'' argument if applicable. T2 will always include
1706 THIS. */
1707 if (staticp)
1708 t2 ++;
1709
1710 for (i = 0;
1711 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1712 i++)
1713 {
1714 struct type *tt1, *tt2;
1715
1716 if (!t2[i])
1717 return i + 1;
1718
1719 tt1 = check_typedef (t1[i].type);
1720 tt2 = check_typedef (value_type (t2[i]));
1721
1722 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1723 /* We should be doing hairy argument matching, as below. */
1724 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1725 == TYPE_CODE (tt2)))
1726 {
1727 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1728 t2[i] = value_coerce_array (t2[i]);
1729 else
1730 t2[i] = value_ref (t2[i]);
1731 continue;
1732 }
1733
1734 /* djb - 20000715 - Until the new type structure is in the
1735 place, and we can attempt things like implicit conversions,
1736 we need to do this so you can take something like a map<const
1737 char *>, and properly access map["hello"], because the
1738 argument to [] will be a reference to a pointer to a char,
1739 and the argument will be a pointer to a char. */
1740 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1741 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1742 {
1743 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1744 }
1745 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1746 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1747 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1748 {
1749 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1750 }
1751 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1752 continue;
1753 /* Array to pointer is a `trivial conversion' according to the
1754 ARM. */
1755
1756 /* We should be doing much hairier argument matching (see
1757 section 13.2 of the ARM), but as a quick kludge, just check
1758 for the same type code. */
1759 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1760 return i + 1;
1761 }
1762 if (varargs || t2[i] == NULL)
1763 return 0;
1764 return i + 1;
1765 }
1766
1767 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1768 and *LAST_BOFFSET, and possibly throws an exception if the field
1769 search has yielded ambiguous results. */
1770
1771 static void
1772 update_search_result (struct value **result_ptr, struct value *v,
1773 int *last_boffset, int boffset,
1774 const char *name, struct type *type)
1775 {
1776 if (v != NULL)
1777 {
1778 if (*result_ptr != NULL
1779 /* The result is not ambiguous if all the classes that are
1780 found occupy the same space. */
1781 && *last_boffset != boffset)
1782 error (_("base class '%s' is ambiguous in type '%s'"),
1783 name, TYPE_SAFE_NAME (type));
1784 *result_ptr = v;
1785 *last_boffset = boffset;
1786 }
1787 }
1788
1789 /* A helper for search_struct_field. This does all the work; most
1790 arguments are as passed to search_struct_field. The result is
1791 stored in *RESULT_PTR, which must be initialized to NULL.
1792 OUTERMOST_TYPE is the type of the initial type passed to
1793 search_struct_field; this is used for error reporting when the
1794 lookup is ambiguous. */
1795
1796 static void
1797 do_search_struct_field (const char *name, struct value *arg1, int offset,
1798 struct type *type, int looking_for_baseclass,
1799 struct value **result_ptr,
1800 int *last_boffset,
1801 struct type *outermost_type)
1802 {
1803 int i;
1804 int nbases;
1805
1806 type = check_typedef (type);
1807 nbases = TYPE_N_BASECLASSES (type);
1808
1809 if (!looking_for_baseclass)
1810 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1811 {
1812 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1813
1814 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1815 {
1816 struct value *v;
1817
1818 if (field_is_static (&TYPE_FIELD (type, i)))
1819 v = value_static_field (type, i);
1820 else
1821 v = value_primitive_field (arg1, offset, i, type);
1822 *result_ptr = v;
1823 return;
1824 }
1825
1826 if (t_field_name
1827 && t_field_name[0] == '\0')
1828 {
1829 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1830
1831 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1832 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1833 {
1834 /* Look for a match through the fields of an anonymous
1835 union, or anonymous struct. C++ provides anonymous
1836 unions.
1837
1838 In the GNU Chill (now deleted from GDB)
1839 implementation of variant record types, each
1840 <alternative field> has an (anonymous) union type,
1841 each member of the union represents a <variant
1842 alternative>. Each <variant alternative> is
1843 represented as a struct, with a member for each
1844 <variant field>. */
1845
1846 struct value *v = NULL;
1847 int new_offset = offset;
1848
1849 /* This is pretty gross. In G++, the offset in an
1850 anonymous union is relative to the beginning of the
1851 enclosing struct. In the GNU Chill (now deleted
1852 from GDB) implementation of variant records, the
1853 bitpos is zero in an anonymous union field, so we
1854 have to add the offset of the union here. */
1855 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1856 || (TYPE_NFIELDS (field_type) > 0
1857 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1858 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1859
1860 do_search_struct_field (name, arg1, new_offset,
1861 field_type,
1862 looking_for_baseclass, &v,
1863 last_boffset,
1864 outermost_type);
1865 if (v)
1866 {
1867 *result_ptr = v;
1868 return;
1869 }
1870 }
1871 }
1872 }
1873
1874 for (i = 0; i < nbases; i++)
1875 {
1876 struct value *v = NULL;
1877 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1878 /* If we are looking for baseclasses, this is what we get when
1879 we hit them. But it could happen that the base part's member
1880 name is not yet filled in. */
1881 int found_baseclass = (looking_for_baseclass
1882 && TYPE_BASECLASS_NAME (type, i) != NULL
1883 && (strcmp_iw (name,
1884 TYPE_BASECLASS_NAME (type,
1885 i)) == 0));
1886 int boffset = value_embedded_offset (arg1) + offset;
1887
1888 if (BASETYPE_VIA_VIRTUAL (type, i))
1889 {
1890 struct value *v2;
1891
1892 boffset = baseclass_offset (type, i,
1893 value_contents_for_printing (arg1),
1894 value_embedded_offset (arg1) + offset,
1895 value_address (arg1),
1896 arg1);
1897
1898 /* The virtual base class pointer might have been clobbered
1899 by the user program. Make sure that it still points to a
1900 valid memory location. */
1901
1902 boffset += value_embedded_offset (arg1) + offset;
1903 if (boffset < 0
1904 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1905 {
1906 CORE_ADDR base_addr;
1907
1908 base_addr = value_address (arg1) + boffset;
1909 v2 = value_at_lazy (basetype, base_addr);
1910 if (target_read_memory (base_addr,
1911 value_contents_raw (v2),
1912 TYPE_LENGTH (value_type (v2))) != 0)
1913 error (_("virtual baseclass botch"));
1914 }
1915 else
1916 {
1917 v2 = value_copy (arg1);
1918 deprecated_set_value_type (v2, basetype);
1919 set_value_embedded_offset (v2, boffset);
1920 }
1921
1922 if (found_baseclass)
1923 v = v2;
1924 else
1925 {
1926 do_search_struct_field (name, v2, 0,
1927 TYPE_BASECLASS (type, i),
1928 looking_for_baseclass,
1929 result_ptr, last_boffset,
1930 outermost_type);
1931 }
1932 }
1933 else if (found_baseclass)
1934 v = value_primitive_field (arg1, offset, i, type);
1935 else
1936 {
1937 do_search_struct_field (name, arg1,
1938 offset + TYPE_BASECLASS_BITPOS (type,
1939 i) / 8,
1940 basetype, looking_for_baseclass,
1941 result_ptr, last_boffset,
1942 outermost_type);
1943 }
1944
1945 update_search_result (result_ptr, v, last_boffset,
1946 boffset, name, outermost_type);
1947 }
1948 }
1949
1950 /* Helper function used by value_struct_elt to recurse through
1951 baseclasses. Look for a field NAME in ARG1. Search in it assuming
1952 it has (class) type TYPE. If found, return value, else return NULL.
1953
1954 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1955 fields, look for a baseclass named NAME. */
1956
1957 static struct value *
1958 search_struct_field (const char *name, struct value *arg1,
1959 struct type *type, int looking_for_baseclass)
1960 {
1961 struct value *result = NULL;
1962 int boffset = 0;
1963
1964 do_search_struct_field (name, arg1, 0, type, looking_for_baseclass,
1965 &result, &boffset, type);
1966 return result;
1967 }
1968
1969 /* Helper function used by value_struct_elt to recurse through
1970 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1971 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1972 TYPE.
1973
1974 If found, return value, else if name matched and args not return
1975 (value) -1, else return NULL. */
1976
1977 static struct value *
1978 search_struct_method (const char *name, struct value **arg1p,
1979 struct value **args, int offset,
1980 int *static_memfuncp, struct type *type)
1981 {
1982 int i;
1983 struct value *v;
1984 int name_matched = 0;
1985 char dem_opname[64];
1986
1987 type = check_typedef (type);
1988 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1989 {
1990 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1991
1992 /* FIXME! May need to check for ARM demangling here. */
1993 if (startswith (t_field_name, "__") ||
1994 startswith (t_field_name, "op") ||
1995 startswith (t_field_name, "type"))
1996 {
1997 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
1998 t_field_name = dem_opname;
1999 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2000 t_field_name = dem_opname;
2001 }
2002 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2003 {
2004 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2005 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2006
2007 name_matched = 1;
2008 check_stub_method_group (type, i);
2009 if (j > 0 && args == 0)
2010 error (_("cannot resolve overloaded method "
2011 "`%s': no arguments supplied"), name);
2012 else if (j == 0 && args == 0)
2013 {
2014 v = value_fn_field (arg1p, f, j, type, offset);
2015 if (v != NULL)
2016 return v;
2017 }
2018 else
2019 while (j >= 0)
2020 {
2021 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2022 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2023 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2024 TYPE_FN_FIELD_ARGS (f, j), args))
2025 {
2026 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2027 return value_virtual_fn_field (arg1p, f, j,
2028 type, offset);
2029 if (TYPE_FN_FIELD_STATIC_P (f, j)
2030 && static_memfuncp)
2031 *static_memfuncp = 1;
2032 v = value_fn_field (arg1p, f, j, type, offset);
2033 if (v != NULL)
2034 return v;
2035 }
2036 j--;
2037 }
2038 }
2039 }
2040
2041 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2042 {
2043 int base_offset;
2044 int this_offset;
2045
2046 if (BASETYPE_VIA_VIRTUAL (type, i))
2047 {
2048 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2049 struct value *base_val;
2050 const gdb_byte *base_valaddr;
2051
2052 /* The virtual base class pointer might have been
2053 clobbered by the user program. Make sure that it
2054 still points to a valid memory location. */
2055
2056 if (offset < 0 || offset >= TYPE_LENGTH (type))
2057 {
2058 gdb_byte *tmp;
2059 struct cleanup *back_to;
2060 CORE_ADDR address;
2061
2062 tmp = (gdb_byte *) xmalloc (TYPE_LENGTH (baseclass));
2063 back_to = make_cleanup (xfree, tmp);
2064 address = value_address (*arg1p);
2065
2066 if (target_read_memory (address + offset,
2067 tmp, TYPE_LENGTH (baseclass)) != 0)
2068 error (_("virtual baseclass botch"));
2069
2070 base_val = value_from_contents_and_address (baseclass,
2071 tmp,
2072 address + offset);
2073 base_valaddr = value_contents_for_printing (base_val);
2074 this_offset = 0;
2075 do_cleanups (back_to);
2076 }
2077 else
2078 {
2079 base_val = *arg1p;
2080 base_valaddr = value_contents_for_printing (*arg1p);
2081 this_offset = offset;
2082 }
2083
2084 base_offset = baseclass_offset (type, i, base_valaddr,
2085 this_offset, value_address (base_val),
2086 base_val);
2087 }
2088 else
2089 {
2090 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2091 }
2092 v = search_struct_method (name, arg1p, args, base_offset + offset,
2093 static_memfuncp, TYPE_BASECLASS (type, i));
2094 if (v == (struct value *) - 1)
2095 {
2096 name_matched = 1;
2097 }
2098 else if (v)
2099 {
2100 /* FIXME-bothner: Why is this commented out? Why is it here? */
2101 /* *arg1p = arg1_tmp; */
2102 return v;
2103 }
2104 }
2105 if (name_matched)
2106 return (struct value *) - 1;
2107 else
2108 return NULL;
2109 }
2110
2111 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2112 extract the component named NAME from the ultimate target
2113 structure/union and return it as a value with its appropriate type.
2114 ERR is used in the error message if *ARGP's type is wrong.
2115
2116 C++: ARGS is a list of argument types to aid in the selection of
2117 an appropriate method. Also, handle derived types.
2118
2119 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2120 where the truthvalue of whether the function that was resolved was
2121 a static member function or not is stored.
2122
2123 ERR is an error message to be printed in case the field is not
2124 found. */
2125
2126 struct value *
2127 value_struct_elt (struct value **argp, struct value **args,
2128 const char *name, int *static_memfuncp, const char *err)
2129 {
2130 struct type *t;
2131 struct value *v;
2132
2133 *argp = coerce_array (*argp);
2134
2135 t = check_typedef (value_type (*argp));
2136
2137 /* Follow pointers until we get to a non-pointer. */
2138
2139 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2140 {
2141 *argp = value_ind (*argp);
2142 /* Don't coerce fn pointer to fn and then back again! */
2143 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2144 *argp = coerce_array (*argp);
2145 t = check_typedef (value_type (*argp));
2146 }
2147
2148 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2149 && TYPE_CODE (t) != TYPE_CODE_UNION)
2150 error (_("Attempt to extract a component of a value that is not a %s."),
2151 err);
2152
2153 /* Assume it's not, unless we see that it is. */
2154 if (static_memfuncp)
2155 *static_memfuncp = 0;
2156
2157 if (!args)
2158 {
2159 /* if there are no arguments ...do this... */
2160
2161 /* Try as a field first, because if we succeed, there is less
2162 work to be done. */
2163 v = search_struct_field (name, *argp, t, 0);
2164 if (v)
2165 return v;
2166
2167 /* C++: If it was not found as a data field, then try to
2168 return it as a pointer to a method. */
2169 v = search_struct_method (name, argp, args, 0,
2170 static_memfuncp, t);
2171
2172 if (v == (struct value *) - 1)
2173 error (_("Cannot take address of method %s."), name);
2174 else if (v == 0)
2175 {
2176 if (TYPE_NFN_FIELDS (t))
2177 error (_("There is no member or method named %s."), name);
2178 else
2179 error (_("There is no member named %s."), name);
2180 }
2181 return v;
2182 }
2183
2184 v = search_struct_method (name, argp, args, 0,
2185 static_memfuncp, t);
2186
2187 if (v == (struct value *) - 1)
2188 {
2189 error (_("One of the arguments you tried to pass to %s could not "
2190 "be converted to what the function wants."), name);
2191 }
2192 else if (v == 0)
2193 {
2194 /* See if user tried to invoke data as function. If so, hand it
2195 back. If it's not callable (i.e., a pointer to function),
2196 gdb should give an error. */
2197 v = search_struct_field (name, *argp, t, 0);
2198 /* If we found an ordinary field, then it is not a method call.
2199 So, treat it as if it were a static member function. */
2200 if (v && static_memfuncp)
2201 *static_memfuncp = 1;
2202 }
2203
2204 if (!v)
2205 throw_error (NOT_FOUND_ERROR,
2206 _("Structure has no component named %s."), name);
2207 return v;
2208 }
2209
2210 /* Given *ARGP, a value of type structure or union, or a pointer/reference
2211 to a structure or union, extract and return its component (field) of
2212 type FTYPE at the specified BITPOS.
2213 Throw an exception on error. */
2214
2215 struct value *
2216 value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
2217 const char *err)
2218 {
2219 struct type *t;
2220 struct value *v;
2221 int i;
2222 int nbases;
2223
2224 *argp = coerce_array (*argp);
2225
2226 t = check_typedef (value_type (*argp));
2227
2228 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2229 {
2230 *argp = value_ind (*argp);
2231 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2232 *argp = coerce_array (*argp);
2233 t = check_typedef (value_type (*argp));
2234 }
2235
2236 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2237 && TYPE_CODE (t) != TYPE_CODE_UNION)
2238 error (_("Attempt to extract a component of a value that is not a %s."),
2239 err);
2240
2241 for (i = TYPE_N_BASECLASSES (t); i < TYPE_NFIELDS (t); i++)
2242 {
2243 if (!field_is_static (&TYPE_FIELD (t, i))
2244 && bitpos == TYPE_FIELD_BITPOS (t, i)
2245 && types_equal (ftype, TYPE_FIELD_TYPE (t, i)))
2246 return value_primitive_field (*argp, 0, i, t);
2247 }
2248
2249 error (_("No field with matching bitpos and type."));
2250
2251 /* Never hit. */
2252 return NULL;
2253 }
2254
2255 /* Search through the methods of an object (and its bases) to find a
2256 specified method. Return the pointer to the fn_field list FN_LIST of
2257 overloaded instances defined in the source language. If available
2258 and matching, a vector of matching xmethods defined in extension
2259 languages are also returned in XM_WORKER_VEC
2260
2261 Helper function for value_find_oload_list.
2262 ARGP is a pointer to a pointer to a value (the object).
2263 METHOD is a string containing the method name.
2264 OFFSET is the offset within the value.
2265 TYPE is the assumed type of the object.
2266 FN_LIST is the pointer to matching overloaded instances defined in
2267 source language. Since this is a recursive function, *FN_LIST
2268 should be set to NULL when calling this function.
2269 NUM_FNS is the number of overloaded instances. *NUM_FNS should be set to
2270 0 when calling this function.
2271 XM_WORKER_VEC is the vector of matching xmethod workers. *XM_WORKER_VEC
2272 should also be set to NULL when calling this function.
2273 BASETYPE is set to the actual type of the subobject where the
2274 method is found.
2275 BOFFSET is the offset of the base subobject where the method is found. */
2276
2277 static void
2278 find_method_list (struct value **argp, const char *method,
2279 int offset, struct type *type,
2280 struct fn_field **fn_list, int *num_fns,
2281 VEC (xmethod_worker_ptr) **xm_worker_vec,
2282 struct type **basetype, int *boffset)
2283 {
2284 int i;
2285 struct fn_field *f = NULL;
2286 VEC (xmethod_worker_ptr) *worker_vec = NULL, *new_vec = NULL;
2287
2288 gdb_assert (fn_list != NULL && xm_worker_vec != NULL);
2289 type = check_typedef (type);
2290
2291 /* First check in object itself.
2292 This function is called recursively to search through base classes.
2293 If there is a source method match found at some stage, then we need not
2294 look for source methods in consequent recursive calls. */
2295 if ((*fn_list) == NULL)
2296 {
2297 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2298 {
2299 /* pai: FIXME What about operators and type conversions? */
2300 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2301
2302 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2303 {
2304 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2305 f = TYPE_FN_FIELDLIST1 (type, i);
2306 *fn_list = f;
2307
2308 *num_fns = len;
2309 *basetype = type;
2310 *boffset = offset;
2311
2312 /* Resolve any stub methods. */
2313 check_stub_method_group (type, i);
2314
2315 break;
2316 }
2317 }
2318 }
2319
2320 /* Unlike source methods, xmethods can be accumulated over successive
2321 recursive calls. In other words, an xmethod named 'm' in a class
2322 will not hide an xmethod named 'm' in its base class(es). We want
2323 it to be this way because xmethods are after all convenience functions
2324 and hence there is no point restricting them with something like method
2325 hiding. Moreover, if hiding is done for xmethods as well, then we will
2326 have to provide a mechanism to un-hide (like the 'using' construct). */
2327 worker_vec = get_matching_xmethod_workers (type, method);
2328 new_vec = VEC_merge (xmethod_worker_ptr, *xm_worker_vec, worker_vec);
2329
2330 VEC_free (xmethod_worker_ptr, *xm_worker_vec);
2331 VEC_free (xmethod_worker_ptr, worker_vec);
2332 *xm_worker_vec = new_vec;
2333
2334 /* If source methods are not found in current class, look for them in the
2335 base classes. We also have to go through the base classes to gather
2336 extension methods. */
2337 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2338 {
2339 int base_offset;
2340
2341 if (BASETYPE_VIA_VIRTUAL (type, i))
2342 {
2343 base_offset = baseclass_offset (type, i,
2344 value_contents_for_printing (*argp),
2345 value_offset (*argp) + offset,
2346 value_address (*argp), *argp);
2347 }
2348 else /* Non-virtual base, simply use bit position from debug
2349 info. */
2350 {
2351 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2352 }
2353
2354 find_method_list (argp, method, base_offset + offset,
2355 TYPE_BASECLASS (type, i), fn_list, num_fns,
2356 xm_worker_vec, basetype, boffset);
2357 }
2358 }
2359
2360 /* Return the list of overloaded methods of a specified name. The methods
2361 could be those GDB finds in the binary, or xmethod. Methods found in
2362 the binary are returned in FN_LIST, and xmethods are returned in
2363 XM_WORKER_VEC.
2364
2365 ARGP is a pointer to a pointer to a value (the object).
2366 METHOD is the method name.
2367 OFFSET is the offset within the value contents.
2368 FN_LIST is the pointer to matching overloaded instances defined in
2369 source language.
2370 NUM_FNS is the number of overloaded instances.
2371 XM_WORKER_VEC is the vector of matching xmethod workers defined in
2372 extension languages.
2373 BASETYPE is set to the type of the base subobject that defines the
2374 method.
2375 BOFFSET is the offset of the base subobject which defines the method. */
2376
2377 static void
2378 value_find_oload_method_list (struct value **argp, const char *method,
2379 int offset, struct fn_field **fn_list,
2380 int *num_fns,
2381 VEC (xmethod_worker_ptr) **xm_worker_vec,
2382 struct type **basetype, int *boffset)
2383 {
2384 struct type *t;
2385
2386 t = check_typedef (value_type (*argp));
2387
2388 /* Code snarfed from value_struct_elt. */
2389 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2390 {
2391 *argp = value_ind (*argp);
2392 /* Don't coerce fn pointer to fn and then back again! */
2393 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2394 *argp = coerce_array (*argp);
2395 t = check_typedef (value_type (*argp));
2396 }
2397
2398 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2399 && TYPE_CODE (t) != TYPE_CODE_UNION)
2400 error (_("Attempt to extract a component of a "
2401 "value that is not a struct or union"));
2402
2403 gdb_assert (fn_list != NULL && xm_worker_vec != NULL);
2404
2405 /* Clear the lists. */
2406 *fn_list = NULL;
2407 *num_fns = 0;
2408 *xm_worker_vec = NULL;
2409
2410 find_method_list (argp, method, 0, t, fn_list, num_fns, xm_worker_vec,
2411 basetype, boffset);
2412 }
2413
2414 /* Given an array of arguments (ARGS) (which includes an
2415 entry for "this" in the case of C++ methods), the number of
2416 arguments NARGS, the NAME of a function, and whether it's a method or
2417 not (METHOD), find the best function that matches on the argument types
2418 according to the overload resolution rules.
2419
2420 METHOD can be one of three values:
2421 NON_METHOD for non-member functions.
2422 METHOD: for member functions.
2423 BOTH: used for overload resolution of operators where the
2424 candidates are expected to be either member or non member
2425 functions. In this case the first argument ARGTYPES
2426 (representing 'this') is expected to be a reference to the
2427 target object, and will be dereferenced when attempting the
2428 non-member search.
2429
2430 In the case of class methods, the parameter OBJ is an object value
2431 in which to search for overloaded methods.
2432
2433 In the case of non-method functions, the parameter FSYM is a symbol
2434 corresponding to one of the overloaded functions.
2435
2436 Return value is an integer: 0 -> good match, 10 -> debugger applied
2437 non-standard coercions, 100 -> incompatible.
2438
2439 If a method is being searched for, VALP will hold the value.
2440 If a non-method is being searched for, SYMP will hold the symbol
2441 for it.
2442
2443 If a method is being searched for, and it is a static method,
2444 then STATICP will point to a non-zero value.
2445
2446 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2447 ADL overload candidates when performing overload resolution for a fully
2448 qualified name.
2449
2450 If NOSIDE is EVAL_AVOID_SIDE_EFFECTS, then OBJP's memory cannot be
2451 read while picking the best overload match (it may be all zeroes and thus
2452 not have a vtable pointer), in which case skip virtual function lookup.
2453 This is ok as typically EVAL_AVOID_SIDE_EFFECTS is only used to determine
2454 the result type.
2455
2456 Note: This function does *not* check the value of
2457 overload_resolution. Caller must check it to see whether overload
2458 resolution is permitted. */
2459
2460 int
2461 find_overload_match (struct value **args, int nargs,
2462 const char *name, enum oload_search_type method,
2463 struct value **objp, struct symbol *fsym,
2464 struct value **valp, struct symbol **symp,
2465 int *staticp, const int no_adl,
2466 const enum noside noside)
2467 {
2468 struct value *obj = (objp ? *objp : NULL);
2469 struct type *obj_type = obj ? value_type (obj) : NULL;
2470 /* Index of best overloaded function. */
2471 int func_oload_champ = -1;
2472 int method_oload_champ = -1;
2473 int src_method_oload_champ = -1;
2474 int ext_method_oload_champ = -1;
2475 int src_and_ext_equal = 0;
2476
2477 /* The measure for the current best match. */
2478 struct badness_vector *method_badness = NULL;
2479 struct badness_vector *func_badness = NULL;
2480 struct badness_vector *ext_method_badness = NULL;
2481 struct badness_vector *src_method_badness = NULL;
2482
2483 struct value *temp = obj;
2484 /* For methods, the list of overloaded methods. */
2485 struct fn_field *fns_ptr = NULL;
2486 /* For non-methods, the list of overloaded function symbols. */
2487 struct symbol **oload_syms = NULL;
2488 /* For xmethods, the VEC of xmethod workers. */
2489 VEC (xmethod_worker_ptr) *xm_worker_vec = NULL;
2490 /* Number of overloaded instances being considered. */
2491 int num_fns = 0;
2492 struct type *basetype = NULL;
2493 int boffset;
2494
2495 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2496
2497 const char *obj_type_name = NULL;
2498 const char *func_name = NULL;
2499 enum oload_classification match_quality;
2500 enum oload_classification method_match_quality = INCOMPATIBLE;
2501 enum oload_classification src_method_match_quality = INCOMPATIBLE;
2502 enum oload_classification ext_method_match_quality = INCOMPATIBLE;
2503 enum oload_classification func_match_quality = INCOMPATIBLE;
2504
2505 /* Get the list of overloaded methods or functions. */
2506 if (method == METHOD || method == BOTH)
2507 {
2508 gdb_assert (obj);
2509
2510 /* OBJ may be a pointer value rather than the object itself. */
2511 obj = coerce_ref (obj);
2512 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2513 obj = coerce_ref (value_ind (obj));
2514 obj_type_name = TYPE_NAME (value_type (obj));
2515
2516 /* First check whether this is a data member, e.g. a pointer to
2517 a function. */
2518 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2519 {
2520 *valp = search_struct_field (name, obj,
2521 check_typedef (value_type (obj)), 0);
2522 if (*valp)
2523 {
2524 *staticp = 1;
2525 do_cleanups (all_cleanups);
2526 return 0;
2527 }
2528 }
2529
2530 /* Retrieve the list of methods with the name NAME. */
2531 value_find_oload_method_list (&temp, name, 0, &fns_ptr, &num_fns,
2532 &xm_worker_vec, &basetype, &boffset);
2533 /* If this is a method only search, and no methods were found
2534 the search has faild. */
2535 if (method == METHOD && (!fns_ptr || !num_fns) && !xm_worker_vec)
2536 error (_("Couldn't find method %s%s%s"),
2537 obj_type_name,
2538 (obj_type_name && *obj_type_name) ? "::" : "",
2539 name);
2540 /* If we are dealing with stub method types, they should have
2541 been resolved by find_method_list via
2542 value_find_oload_method_list above. */
2543 if (fns_ptr)
2544 {
2545 gdb_assert (TYPE_SELF_TYPE (fns_ptr[0].type) != NULL);
2546
2547 src_method_oload_champ = find_oload_champ (args, nargs,
2548 num_fns, fns_ptr, NULL,
2549 NULL, &src_method_badness);
2550
2551 src_method_match_quality = classify_oload_match
2552 (src_method_badness, nargs,
2553 oload_method_static_p (fns_ptr, src_method_oload_champ));
2554
2555 make_cleanup (xfree, src_method_badness);
2556 }
2557
2558 if (VEC_length (xmethod_worker_ptr, xm_worker_vec) > 0)
2559 {
2560 ext_method_oload_champ = find_oload_champ (args, nargs,
2561 0, NULL, xm_worker_vec,
2562 NULL, &ext_method_badness);
2563 ext_method_match_quality = classify_oload_match (ext_method_badness,
2564 nargs, 0);
2565 make_cleanup (xfree, ext_method_badness);
2566 make_cleanup (free_xmethod_worker_vec, xm_worker_vec);
2567 }
2568
2569 if (src_method_oload_champ >= 0 && ext_method_oload_champ >= 0)
2570 {
2571 switch (compare_badness (ext_method_badness, src_method_badness))
2572 {
2573 case 0: /* Src method and xmethod are equally good. */
2574 src_and_ext_equal = 1;
2575 /* If src method and xmethod are equally good, then
2576 xmethod should be the winner. Hence, fall through to the
2577 case where a xmethod is better than the source
2578 method, except when the xmethod match quality is
2579 non-standard. */
2580 /* FALLTHROUGH */
2581 case 1: /* Src method and ext method are incompatible. */
2582 /* If ext method match is not standard, then let source method
2583 win. Otherwise, fallthrough to let xmethod win. */
2584 if (ext_method_match_quality != STANDARD)
2585 {
2586 method_oload_champ = src_method_oload_champ;
2587 method_badness = src_method_badness;
2588 ext_method_oload_champ = -1;
2589 method_match_quality = src_method_match_quality;
2590 break;
2591 }
2592 /* FALLTHROUGH */
2593 case 2: /* Ext method is champion. */
2594 method_oload_champ = ext_method_oload_champ;
2595 method_badness = ext_method_badness;
2596 src_method_oload_champ = -1;
2597 method_match_quality = ext_method_match_quality;
2598 break;
2599 case 3: /* Src method is champion. */
2600 method_oload_champ = src_method_oload_champ;
2601 method_badness = src_method_badness;
2602 ext_method_oload_champ = -1;
2603 method_match_quality = src_method_match_quality;
2604 break;
2605 default:
2606 gdb_assert_not_reached ("Unexpected overload comparison "
2607 "result");
2608 break;
2609 }
2610 }
2611 else if (src_method_oload_champ >= 0)
2612 {
2613 method_oload_champ = src_method_oload_champ;
2614 method_badness = src_method_badness;
2615 method_match_quality = src_method_match_quality;
2616 }
2617 else if (ext_method_oload_champ >= 0)
2618 {
2619 method_oload_champ = ext_method_oload_champ;
2620 method_badness = ext_method_badness;
2621 method_match_quality = ext_method_match_quality;
2622 }
2623 }
2624
2625 if (method == NON_METHOD || method == BOTH)
2626 {
2627 const char *qualified_name = NULL;
2628
2629 /* If the overload match is being search for both as a method
2630 and non member function, the first argument must now be
2631 dereferenced. */
2632 if (method == BOTH)
2633 args[0] = value_ind (args[0]);
2634
2635 if (fsym)
2636 {
2637 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2638
2639 /* If we have a function with a C++ name, try to extract just
2640 the function part. Do not try this for non-functions (e.g.
2641 function pointers). */
2642 if (qualified_name
2643 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2644 == TYPE_CODE_FUNC)
2645 {
2646 char *temp;
2647
2648 temp = cp_func_name (qualified_name);
2649
2650 /* If cp_func_name did not remove anything, the name of the
2651 symbol did not include scope or argument types - it was
2652 probably a C-style function. */
2653 if (temp)
2654 {
2655 make_cleanup (xfree, temp);
2656 if (strcmp (temp, qualified_name) == 0)
2657 func_name = NULL;
2658 else
2659 func_name = temp;
2660 }
2661 }
2662 }
2663 else
2664 {
2665 func_name = name;
2666 qualified_name = name;
2667 }
2668
2669 /* If there was no C++ name, this must be a C-style function or
2670 not a function at all. Just return the same symbol. Do the
2671 same if cp_func_name fails for some reason. */
2672 if (func_name == NULL)
2673 {
2674 *symp = fsym;
2675 do_cleanups (all_cleanups);
2676 return 0;
2677 }
2678
2679 func_oload_champ = find_oload_champ_namespace (args, nargs,
2680 func_name,
2681 qualified_name,
2682 &oload_syms,
2683 &func_badness,
2684 no_adl);
2685
2686 if (func_oload_champ >= 0)
2687 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2688
2689 make_cleanup (xfree, oload_syms);
2690 make_cleanup (xfree, func_badness);
2691 }
2692
2693 /* Did we find a match ? */
2694 if (method_oload_champ == -1 && func_oload_champ == -1)
2695 throw_error (NOT_FOUND_ERROR,
2696 _("No symbol \"%s\" in current context."),
2697 name);
2698
2699 /* If we have found both a method match and a function
2700 match, find out which one is better, and calculate match
2701 quality. */
2702 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2703 {
2704 switch (compare_badness (func_badness, method_badness))
2705 {
2706 case 0: /* Top two contenders are equally good. */
2707 /* FIXME: GDB does not support the general ambiguous case.
2708 All candidates should be collected and presented the
2709 user. */
2710 error (_("Ambiguous overload resolution"));
2711 break;
2712 case 1: /* Incomparable top contenders. */
2713 /* This is an error incompatible candidates
2714 should not have been proposed. */
2715 error (_("Internal error: incompatible "
2716 "overload candidates proposed"));
2717 break;
2718 case 2: /* Function champion. */
2719 method_oload_champ = -1;
2720 match_quality = func_match_quality;
2721 break;
2722 case 3: /* Method champion. */
2723 func_oload_champ = -1;
2724 match_quality = method_match_quality;
2725 break;
2726 default:
2727 error (_("Internal error: unexpected overload comparison result"));
2728 break;
2729 }
2730 }
2731 else
2732 {
2733 /* We have either a method match or a function match. */
2734 if (method_oload_champ >= 0)
2735 match_quality = method_match_quality;
2736 else
2737 match_quality = func_match_quality;
2738 }
2739
2740 if (match_quality == INCOMPATIBLE)
2741 {
2742 if (method == METHOD)
2743 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2744 obj_type_name,
2745 (obj_type_name && *obj_type_name) ? "::" : "",
2746 name);
2747 else
2748 error (_("Cannot resolve function %s to any overloaded instance"),
2749 func_name);
2750 }
2751 else if (match_quality == NON_STANDARD)
2752 {
2753 if (method == METHOD)
2754 warning (_("Using non-standard conversion to match "
2755 "method %s%s%s to supplied arguments"),
2756 obj_type_name,
2757 (obj_type_name && *obj_type_name) ? "::" : "",
2758 name);
2759 else
2760 warning (_("Using non-standard conversion to match "
2761 "function %s to supplied arguments"),
2762 func_name);
2763 }
2764
2765 if (staticp != NULL)
2766 *staticp = oload_method_static_p (fns_ptr, method_oload_champ);
2767
2768 if (method_oload_champ >= 0)
2769 {
2770 if (src_method_oload_champ >= 0)
2771 {
2772 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ)
2773 && noside != EVAL_AVOID_SIDE_EFFECTS)
2774 {
2775 *valp = value_virtual_fn_field (&temp, fns_ptr,
2776 method_oload_champ, basetype,
2777 boffset);
2778 }
2779 else
2780 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2781 basetype, boffset);
2782 }
2783 else
2784 {
2785 *valp = value_of_xmethod (clone_xmethod_worker
2786 (VEC_index (xmethod_worker_ptr, xm_worker_vec,
2787 ext_method_oload_champ)));
2788 }
2789 }
2790 else
2791 *symp = oload_syms[func_oload_champ];
2792
2793 if (objp)
2794 {
2795 struct type *temp_type = check_typedef (value_type (temp));
2796 struct type *objtype = check_typedef (obj_type);
2797
2798 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2799 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2800 || TYPE_CODE (objtype) == TYPE_CODE_REF))
2801 {
2802 temp = value_addr (temp);
2803 }
2804 *objp = temp;
2805 }
2806
2807 do_cleanups (all_cleanups);
2808
2809 switch (match_quality)
2810 {
2811 case INCOMPATIBLE:
2812 return 100;
2813 case NON_STANDARD:
2814 return 10;
2815 default: /* STANDARD */
2816 return 0;
2817 }
2818 }
2819
2820 /* Find the best overload match, searching for FUNC_NAME in namespaces
2821 contained in QUALIFIED_NAME until it either finds a good match or
2822 runs out of namespaces. It stores the overloaded functions in
2823 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2824 calling function is responsible for freeing *OLOAD_SYMS and
2825 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2826 performned. */
2827
2828 static int
2829 find_oload_champ_namespace (struct value **args, int nargs,
2830 const char *func_name,
2831 const char *qualified_name,
2832 struct symbol ***oload_syms,
2833 struct badness_vector **oload_champ_bv,
2834 const int no_adl)
2835 {
2836 int oload_champ;
2837
2838 find_oload_champ_namespace_loop (args, nargs,
2839 func_name,
2840 qualified_name, 0,
2841 oload_syms, oload_champ_bv,
2842 &oload_champ,
2843 no_adl);
2844
2845 return oload_champ;
2846 }
2847
2848 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2849 how deep we've looked for namespaces, and the champ is stored in
2850 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2851 if it isn't. Other arguments are the same as in
2852 find_oload_champ_namespace
2853
2854 It is the caller's responsibility to free *OLOAD_SYMS and
2855 *OLOAD_CHAMP_BV. */
2856
2857 static int
2858 find_oload_champ_namespace_loop (struct value **args, int nargs,
2859 const char *func_name,
2860 const char *qualified_name,
2861 int namespace_len,
2862 struct symbol ***oload_syms,
2863 struct badness_vector **oload_champ_bv,
2864 int *oload_champ,
2865 const int no_adl)
2866 {
2867 int next_namespace_len = namespace_len;
2868 int searched_deeper = 0;
2869 int num_fns = 0;
2870 struct cleanup *old_cleanups;
2871 int new_oload_champ;
2872 struct symbol **new_oload_syms;
2873 struct badness_vector *new_oload_champ_bv;
2874 char *new_namespace;
2875
2876 if (next_namespace_len != 0)
2877 {
2878 gdb_assert (qualified_name[next_namespace_len] == ':');
2879 next_namespace_len += 2;
2880 }
2881 next_namespace_len +=
2882 cp_find_first_component (qualified_name + next_namespace_len);
2883
2884 /* Initialize these to values that can safely be xfree'd. */
2885 *oload_syms = NULL;
2886 *oload_champ_bv = NULL;
2887
2888 /* First, see if we have a deeper namespace we can search in.
2889 If we get a good match there, use it. */
2890
2891 if (qualified_name[next_namespace_len] == ':')
2892 {
2893 searched_deeper = 1;
2894
2895 if (find_oload_champ_namespace_loop (args, nargs,
2896 func_name, qualified_name,
2897 next_namespace_len,
2898 oload_syms, oload_champ_bv,
2899 oload_champ, no_adl))
2900 {
2901 return 1;
2902 }
2903 };
2904
2905 /* If we reach here, either we're in the deepest namespace or we
2906 didn't find a good match in a deeper namespace. But, in the
2907 latter case, we still have a bad match in a deeper namespace;
2908 note that we might not find any match at all in the current
2909 namespace. (There's always a match in the deepest namespace,
2910 because this overload mechanism only gets called if there's a
2911 function symbol to start off with.) */
2912
2913 old_cleanups = make_cleanup (xfree, *oload_syms);
2914 make_cleanup (xfree, *oload_champ_bv);
2915 new_namespace = (char *) alloca (namespace_len + 1);
2916 strncpy (new_namespace, qualified_name, namespace_len);
2917 new_namespace[namespace_len] = '\0';
2918 new_oload_syms = make_symbol_overload_list (func_name,
2919 new_namespace);
2920
2921 /* If we have reached the deepest level perform argument
2922 determined lookup. */
2923 if (!searched_deeper && !no_adl)
2924 {
2925 int ix;
2926 struct type **arg_types;
2927
2928 /* Prepare list of argument types for overload resolution. */
2929 arg_types = (struct type **)
2930 alloca (nargs * (sizeof (struct type *)));
2931 for (ix = 0; ix < nargs; ix++)
2932 arg_types[ix] = value_type (args[ix]);
2933 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2934 }
2935
2936 while (new_oload_syms[num_fns])
2937 ++num_fns;
2938
2939 new_oload_champ = find_oload_champ (args, nargs, num_fns,
2940 NULL, NULL, new_oload_syms,
2941 &new_oload_champ_bv);
2942
2943 /* Case 1: We found a good match. Free earlier matches (if any),
2944 and return it. Case 2: We didn't find a good match, but we're
2945 not the deepest function. Then go with the bad match that the
2946 deeper function found. Case 3: We found a bad match, and we're
2947 the deepest function. Then return what we found, even though
2948 it's a bad match. */
2949
2950 if (new_oload_champ != -1
2951 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2952 {
2953 *oload_syms = new_oload_syms;
2954 *oload_champ = new_oload_champ;
2955 *oload_champ_bv = new_oload_champ_bv;
2956 do_cleanups (old_cleanups);
2957 return 1;
2958 }
2959 else if (searched_deeper)
2960 {
2961 xfree (new_oload_syms);
2962 xfree (new_oload_champ_bv);
2963 discard_cleanups (old_cleanups);
2964 return 0;
2965 }
2966 else
2967 {
2968 *oload_syms = new_oload_syms;
2969 *oload_champ = new_oload_champ;
2970 *oload_champ_bv = new_oload_champ_bv;
2971 do_cleanups (old_cleanups);
2972 return 0;
2973 }
2974 }
2975
2976 /* Look for a function to take NARGS args of ARGS. Find
2977 the best match from among the overloaded methods or functions
2978 given by FNS_PTR or OLOAD_SYMS or XM_WORKER_VEC, respectively.
2979 One, and only one of FNS_PTR, OLOAD_SYMS and XM_WORKER_VEC can be
2980 non-NULL.
2981
2982 If XM_WORKER_VEC is NULL, then the length of the arrays FNS_PTR
2983 or OLOAD_SYMS (whichever is non-NULL) is specified in NUM_FNS.
2984
2985 Return the index of the best match; store an indication of the
2986 quality of the match in OLOAD_CHAMP_BV.
2987
2988 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2989
2990 static int
2991 find_oload_champ (struct value **args, int nargs,
2992 int num_fns, struct fn_field *fns_ptr,
2993 VEC (xmethod_worker_ptr) *xm_worker_vec,
2994 struct symbol **oload_syms,
2995 struct badness_vector **oload_champ_bv)
2996 {
2997 int ix;
2998 int fn_count;
2999 int xm_worker_vec_n = VEC_length (xmethod_worker_ptr, xm_worker_vec);
3000 /* A measure of how good an overloaded instance is. */
3001 struct badness_vector *bv;
3002 /* Index of best overloaded function. */
3003 int oload_champ = -1;
3004 /* Current ambiguity state for overload resolution. */
3005 int oload_ambiguous = 0;
3006 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
3007
3008 /* A champion can be found among methods alone, or among functions
3009 alone, or in xmethods alone, but not in more than one of these
3010 groups. */
3011 gdb_assert ((fns_ptr != NULL) + (oload_syms != NULL) + (xm_worker_vec != NULL)
3012 == 1);
3013
3014 *oload_champ_bv = NULL;
3015
3016 fn_count = (xm_worker_vec != NULL
3017 ? VEC_length (xmethod_worker_ptr, xm_worker_vec)
3018 : num_fns);
3019 /* Consider each candidate in turn. */
3020 for (ix = 0; ix < fn_count; ix++)
3021 {
3022 int jj;
3023 int static_offset = 0;
3024 int nparms;
3025 struct type **parm_types;
3026 struct xmethod_worker *worker = NULL;
3027
3028 if (xm_worker_vec != NULL)
3029 {
3030 worker = VEC_index (xmethod_worker_ptr, xm_worker_vec, ix);
3031 parm_types = get_xmethod_arg_types (worker, &nparms);
3032 }
3033 else
3034 {
3035 if (fns_ptr != NULL)
3036 {
3037 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
3038 static_offset = oload_method_static_p (fns_ptr, ix);
3039 }
3040 else
3041 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
3042
3043 parm_types = XNEWVEC (struct type *, nparms);
3044 for (jj = 0; jj < nparms; jj++)
3045 parm_types[jj] = (fns_ptr != NULL
3046 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
3047 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
3048 jj));
3049 }
3050
3051 /* Compare parameter types to supplied argument types. Skip
3052 THIS for static methods. */
3053 bv = rank_function (parm_types, nparms,
3054 args + static_offset,
3055 nargs - static_offset);
3056
3057 if (!*oload_champ_bv)
3058 {
3059 *oload_champ_bv = bv;
3060 oload_champ = 0;
3061 }
3062 else /* See whether current candidate is better or worse than
3063 previous best. */
3064 switch (compare_badness (bv, *oload_champ_bv))
3065 {
3066 case 0: /* Top two contenders are equally good. */
3067 oload_ambiguous = 1;
3068 break;
3069 case 1: /* Incomparable top contenders. */
3070 oload_ambiguous = 2;
3071 break;
3072 case 2: /* New champion, record details. */
3073 *oload_champ_bv = bv;
3074 oload_ambiguous = 0;
3075 oload_champ = ix;
3076 break;
3077 case 3:
3078 default:
3079 break;
3080 }
3081 xfree (parm_types);
3082 if (overload_debug)
3083 {
3084 if (fns_ptr != NULL)
3085 fprintf_filtered (gdb_stderr,
3086 "Overloaded method instance %s, # of parms %d\n",
3087 fns_ptr[ix].physname, nparms);
3088 else if (xm_worker_vec != NULL)
3089 fprintf_filtered (gdb_stderr,
3090 "Xmethod worker, # of parms %d\n",
3091 nparms);
3092 else
3093 fprintf_filtered (gdb_stderr,
3094 "Overloaded function instance "
3095 "%s # of parms %d\n",
3096 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
3097 nparms);
3098 for (jj = 0; jj < nargs - static_offset; jj++)
3099 fprintf_filtered (gdb_stderr,
3100 "...Badness @ %d : %d\n",
3101 jj, bv->rank[jj].rank);
3102 fprintf_filtered (gdb_stderr, "Overload resolution "
3103 "champion is %d, ambiguous? %d\n",
3104 oload_champ, oload_ambiguous);
3105 }
3106 }
3107
3108 return oload_champ;
3109 }
3110
3111 /* Return 1 if we're looking at a static method, 0 if we're looking at
3112 a non-static method or a function that isn't a method. */
3113
3114 static int
3115 oload_method_static_p (struct fn_field *fns_ptr, int index)
3116 {
3117 if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3118 return 1;
3119 else
3120 return 0;
3121 }
3122
3123 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3124
3125 static enum oload_classification
3126 classify_oload_match (struct badness_vector *oload_champ_bv,
3127 int nargs,
3128 int static_offset)
3129 {
3130 int ix;
3131 enum oload_classification worst = STANDARD;
3132
3133 for (ix = 1; ix <= nargs - static_offset; ix++)
3134 {
3135 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3136 or worse return INCOMPATIBLE. */
3137 if (compare_ranks (oload_champ_bv->rank[ix],
3138 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3139 return INCOMPATIBLE; /* Truly mismatched types. */
3140 /* Otherwise If this conversion is as bad as
3141 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3142 else if (compare_ranks (oload_champ_bv->rank[ix],
3143 NS_POINTER_CONVERSION_BADNESS) <= 0)
3144 worst = NON_STANDARD; /* Non-standard type conversions
3145 needed. */
3146 }
3147
3148 /* If no INCOMPATIBLE classification was found, return the worst one
3149 that was found (if any). */
3150 return worst;
3151 }
3152
3153 /* C++: return 1 is NAME is a legitimate name for the destructor of
3154 type TYPE. If TYPE does not have a destructor, or if NAME is
3155 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3156 have CHECK_TYPEDEF applied, this function will apply it itself. */
3157
3158 int
3159 destructor_name_p (const char *name, struct type *type)
3160 {
3161 if (name[0] == '~')
3162 {
3163 const char *dname = type_name_no_tag_or_error (type);
3164 const char *cp = strchr (dname, '<');
3165 unsigned int len;
3166
3167 /* Do not compare the template part for template classes. */
3168 if (cp == NULL)
3169 len = strlen (dname);
3170 else
3171 len = cp - dname;
3172 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3173 error (_("name of destructor must equal name of class"));
3174 else
3175 return 1;
3176 }
3177 return 0;
3178 }
3179
3180 /* Find an enum constant named NAME in TYPE. TYPE must be an "enum
3181 class". If the name is found, return a value representing it;
3182 otherwise throw an exception. */
3183
3184 static struct value *
3185 enum_constant_from_type (struct type *type, const char *name)
3186 {
3187 int i;
3188 int name_len = strlen (name);
3189
3190 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ENUM
3191 && TYPE_DECLARED_CLASS (type));
3192
3193 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); ++i)
3194 {
3195 const char *fname = TYPE_FIELD_NAME (type, i);
3196 int len;
3197
3198 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_ENUMVAL
3199 || fname == NULL)
3200 continue;
3201
3202 /* Look for the trailing "::NAME", since enum class constant
3203 names are qualified here. */
3204 len = strlen (fname);
3205 if (len + 2 >= name_len
3206 && fname[len - name_len - 2] == ':'
3207 && fname[len - name_len - 1] == ':'
3208 && strcmp (&fname[len - name_len], name) == 0)
3209 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, i));
3210 }
3211
3212 error (_("no constant named \"%s\" in enum \"%s\""),
3213 name, TYPE_TAG_NAME (type));
3214 }
3215
3216 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3217 return the appropriate member (or the address of the member, if
3218 WANT_ADDRESS). This function is used to resolve user expressions
3219 of the form "DOMAIN::NAME". For more details on what happens, see
3220 the comment before value_struct_elt_for_reference. */
3221
3222 struct value *
3223 value_aggregate_elt (struct type *curtype, const char *name,
3224 struct type *expect_type, int want_address,
3225 enum noside noside)
3226 {
3227 switch (TYPE_CODE (curtype))
3228 {
3229 case TYPE_CODE_STRUCT:
3230 case TYPE_CODE_UNION:
3231 return value_struct_elt_for_reference (curtype, 0, curtype,
3232 name, expect_type,
3233 want_address, noside);
3234 case TYPE_CODE_NAMESPACE:
3235 return value_namespace_elt (curtype, name,
3236 want_address, noside);
3237
3238 case TYPE_CODE_ENUM:
3239 return enum_constant_from_type (curtype, name);
3240
3241 default:
3242 internal_error (__FILE__, __LINE__,
3243 _("non-aggregate type in value_aggregate_elt"));
3244 }
3245 }
3246
3247 /* Compares the two method/function types T1 and T2 for "equality"
3248 with respect to the methods' parameters. If the types of the
3249 two parameter lists are the same, returns 1; 0 otherwise. This
3250 comparison may ignore any artificial parameters in T1 if
3251 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3252 the first artificial parameter in T1, assumed to be a 'this' pointer.
3253
3254 The type T2 is expected to have come from make_params (in eval.c). */
3255
3256 static int
3257 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3258 {
3259 int start = 0;
3260
3261 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3262 ++start;
3263
3264 /* If skipping artificial fields, find the first real field
3265 in T1. */
3266 if (skip_artificial)
3267 {
3268 while (start < TYPE_NFIELDS (t1)
3269 && TYPE_FIELD_ARTIFICIAL (t1, start))
3270 ++start;
3271 }
3272
3273 /* Now compare parameters. */
3274
3275 /* Special case: a method taking void. T1 will contain no
3276 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3277 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3278 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3279 return 1;
3280
3281 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3282 {
3283 int i;
3284
3285 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3286 {
3287 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3288 TYPE_FIELD_TYPE (t2, i), NULL),
3289 EXACT_MATCH_BADNESS) != 0)
3290 return 0;
3291 }
3292
3293 return 1;
3294 }
3295
3296 return 0;
3297 }
3298
3299 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3300 return the address of this member as a "pointer to member" type.
3301 If INTYPE is non-null, then it will be the type of the member we
3302 are looking for. This will help us resolve "pointers to member
3303 functions". This function is used to resolve user expressions of
3304 the form "DOMAIN::NAME". */
3305
3306 static struct value *
3307 value_struct_elt_for_reference (struct type *domain, int offset,
3308 struct type *curtype, const char *name,
3309 struct type *intype,
3310 int want_address,
3311 enum noside noside)
3312 {
3313 struct type *t = curtype;
3314 int i;
3315 struct value *v, *result;
3316
3317 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3318 && TYPE_CODE (t) != TYPE_CODE_UNION)
3319 error (_("Internal error: non-aggregate type "
3320 "to value_struct_elt_for_reference"));
3321
3322 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3323 {
3324 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3325
3326 if (t_field_name && strcmp (t_field_name, name) == 0)
3327 {
3328 if (field_is_static (&TYPE_FIELD (t, i)))
3329 {
3330 v = value_static_field (t, i);
3331 if (want_address)
3332 v = value_addr (v);
3333 return v;
3334 }
3335 if (TYPE_FIELD_PACKED (t, i))
3336 error (_("pointers to bitfield members not allowed"));
3337
3338 if (want_address)
3339 return value_from_longest
3340 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3341 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3342 else if (noside != EVAL_NORMAL)
3343 return allocate_value (TYPE_FIELD_TYPE (t, i));
3344 else
3345 {
3346 /* Try to evaluate NAME as a qualified name with implicit
3347 this pointer. In this case, attempt to return the
3348 equivalent to `this->*(&TYPE::NAME)'. */
3349 v = value_of_this_silent (current_language);
3350 if (v != NULL)
3351 {
3352 struct value *ptr;
3353 long mem_offset;
3354 struct type *type, *tmp;
3355
3356 ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
3357 type = check_typedef (value_type (ptr));
3358 gdb_assert (type != NULL
3359 && TYPE_CODE (type) == TYPE_CODE_MEMBERPTR);
3360 tmp = lookup_pointer_type (TYPE_SELF_TYPE (type));
3361 v = value_cast_pointers (tmp, v, 1);
3362 mem_offset = value_as_long (ptr);
3363 tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type));
3364 result = value_from_pointer (tmp,
3365 value_as_long (v) + mem_offset);
3366 return value_ind (result);
3367 }
3368
3369 error (_("Cannot reference non-static field \"%s\""), name);
3370 }
3371 }
3372 }
3373
3374 /* C++: If it was not found as a data field, then try to return it
3375 as a pointer to a method. */
3376
3377 /* Perform all necessary dereferencing. */
3378 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3379 intype = TYPE_TARGET_TYPE (intype);
3380
3381 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3382 {
3383 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3384 char dem_opname[64];
3385
3386 if (startswith (t_field_name, "__")
3387 || startswith (t_field_name, "op")
3388 || startswith (t_field_name, "type"))
3389 {
3390 if (cplus_demangle_opname (t_field_name,
3391 dem_opname, DMGL_ANSI))
3392 t_field_name = dem_opname;
3393 else if (cplus_demangle_opname (t_field_name,
3394 dem_opname, 0))
3395 t_field_name = dem_opname;
3396 }
3397 if (t_field_name && strcmp (t_field_name, name) == 0)
3398 {
3399 int j;
3400 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3401 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3402
3403 check_stub_method_group (t, i);
3404
3405 if (intype)
3406 {
3407 for (j = 0; j < len; ++j)
3408 {
3409 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3410 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3411 intype, 1))
3412 break;
3413 }
3414
3415 if (j == len)
3416 error (_("no member function matches "
3417 "that type instantiation"));
3418 }
3419 else
3420 {
3421 int ii;
3422
3423 j = -1;
3424 for (ii = 0; ii < len; ++ii)
3425 {
3426 /* Skip artificial methods. This is necessary if,
3427 for example, the user wants to "print
3428 subclass::subclass" with only one user-defined
3429 constructor. There is no ambiguity in this case.
3430 We are careful here to allow artificial methods
3431 if they are the unique result. */
3432 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3433 {
3434 if (j == -1)
3435 j = ii;
3436 continue;
3437 }
3438
3439 /* Desired method is ambiguous if more than one
3440 method is defined. */
3441 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3442 error (_("non-unique member `%s' requires "
3443 "type instantiation"), name);
3444
3445 j = ii;
3446 }
3447
3448 if (j == -1)
3449 error (_("no matching member function"));
3450 }
3451
3452 if (TYPE_FN_FIELD_STATIC_P (f, j))
3453 {
3454 struct symbol *s =
3455 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3456 0, VAR_DOMAIN, 0).symbol;
3457
3458 if (s == NULL)
3459 return NULL;
3460
3461 if (want_address)
3462 return value_addr (read_var_value (s, 0, 0));
3463 else
3464 return read_var_value (s, 0, 0);
3465 }
3466
3467 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3468 {
3469 if (want_address)
3470 {
3471 result = allocate_value
3472 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3473 cplus_make_method_ptr (value_type (result),
3474 value_contents_writeable (result),
3475 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3476 }
3477 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3478 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3479 else
3480 error (_("Cannot reference virtual member function \"%s\""),
3481 name);
3482 }
3483 else
3484 {
3485 struct symbol *s =
3486 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3487 0, VAR_DOMAIN, 0).symbol;
3488
3489 if (s == NULL)
3490 return NULL;
3491
3492 v = read_var_value (s, 0, 0);
3493 if (!want_address)
3494 result = v;
3495 else
3496 {
3497 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3498 cplus_make_method_ptr (value_type (result),
3499 value_contents_writeable (result),
3500 value_address (v), 0);
3501 }
3502 }
3503 return result;
3504 }
3505 }
3506 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3507 {
3508 struct value *v;
3509 int base_offset;
3510
3511 if (BASETYPE_VIA_VIRTUAL (t, i))
3512 base_offset = 0;
3513 else
3514 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3515 v = value_struct_elt_for_reference (domain,
3516 offset + base_offset,
3517 TYPE_BASECLASS (t, i),
3518 name, intype,
3519 want_address, noside);
3520 if (v)
3521 return v;
3522 }
3523
3524 /* As a last chance, pretend that CURTYPE is a namespace, and look
3525 it up that way; this (frequently) works for types nested inside
3526 classes. */
3527
3528 return value_maybe_namespace_elt (curtype, name,
3529 want_address, noside);
3530 }
3531
3532 /* C++: Return the member NAME of the namespace given by the type
3533 CURTYPE. */
3534
3535 static struct value *
3536 value_namespace_elt (const struct type *curtype,
3537 const char *name, int want_address,
3538 enum noside noside)
3539 {
3540 struct value *retval = value_maybe_namespace_elt (curtype, name,
3541 want_address,
3542 noside);
3543
3544 if (retval == NULL)
3545 error (_("No symbol \"%s\" in namespace \"%s\"."),
3546 name, TYPE_TAG_NAME (curtype));
3547
3548 return retval;
3549 }
3550
3551 /* A helper function used by value_namespace_elt and
3552 value_struct_elt_for_reference. It looks up NAME inside the
3553 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3554 is a class and NAME refers to a type in CURTYPE itself (as opposed
3555 to, say, some base class of CURTYPE). */
3556
3557 static struct value *
3558 value_maybe_namespace_elt (const struct type *curtype,
3559 const char *name, int want_address,
3560 enum noside noside)
3561 {
3562 const char *namespace_name = TYPE_TAG_NAME (curtype);
3563 struct block_symbol sym;
3564 struct value *result;
3565
3566 sym = cp_lookup_symbol_namespace (namespace_name, name,
3567 get_selected_block (0), VAR_DOMAIN);
3568
3569 if (sym.symbol == NULL)
3570 return NULL;
3571 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3572 && (SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF))
3573 result = allocate_value (SYMBOL_TYPE (sym.symbol));
3574 else
3575 result = value_of_variable (sym.symbol, sym.block);
3576
3577 if (want_address)
3578 result = value_addr (result);
3579
3580 return result;
3581 }
3582
3583 /* Given a pointer or a reference value V, find its real (RTTI) type.
3584
3585 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3586 and refer to the values computed for the object pointed to. */
3587
3588 struct type *
3589 value_rtti_indirect_type (struct value *v, int *full,
3590 int *top, int *using_enc)
3591 {
3592 struct value *target = NULL;
3593 struct type *type, *real_type, *target_type;
3594
3595 type = value_type (v);
3596 type = check_typedef (type);
3597 if (TYPE_CODE (type) == TYPE_CODE_REF)
3598 target = coerce_ref (v);
3599 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3600 {
3601
3602 TRY
3603 {
3604 target = value_ind (v);
3605 }
3606 CATCH (except, RETURN_MASK_ERROR)
3607 {
3608 if (except.error == MEMORY_ERROR)
3609 {
3610 /* value_ind threw a memory error. The pointer is NULL or
3611 contains an uninitialized value: we can't determine any
3612 type. */
3613 return NULL;
3614 }
3615 throw_exception (except);
3616 }
3617 END_CATCH
3618 }
3619 else
3620 return NULL;
3621
3622 real_type = value_rtti_type (target, full, top, using_enc);
3623
3624 if (real_type)
3625 {
3626 /* Copy qualifiers to the referenced object. */
3627 target_type = value_type (target);
3628 real_type = make_cv_type (TYPE_CONST (target_type),
3629 TYPE_VOLATILE (target_type), real_type, NULL);
3630 if (TYPE_CODE (type) == TYPE_CODE_REF)
3631 real_type = lookup_reference_type (real_type);
3632 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3633 real_type = lookup_pointer_type (real_type);
3634 else
3635 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3636
3637 /* Copy qualifiers to the pointer/reference. */
3638 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3639 real_type, NULL);
3640 }
3641
3642 return real_type;
3643 }
3644
3645 /* Given a value pointed to by ARGP, check its real run-time type, and
3646 if that is different from the enclosing type, create a new value
3647 using the real run-time type as the enclosing type (and of the same
3648 type as ARGP) and return it, with the embedded offset adjusted to
3649 be the correct offset to the enclosed object. RTYPE is the type,
3650 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3651 by value_rtti_type(). If these are available, they can be supplied
3652 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3653 NULL if they're not available. */
3654
3655 struct value *
3656 value_full_object (struct value *argp,
3657 struct type *rtype,
3658 int xfull, int xtop,
3659 int xusing_enc)
3660 {
3661 struct type *real_type;
3662 int full = 0;
3663 int top = -1;
3664 int using_enc = 0;
3665 struct value *new_val;
3666
3667 if (rtype)
3668 {
3669 real_type = rtype;
3670 full = xfull;
3671 top = xtop;
3672 using_enc = xusing_enc;
3673 }
3674 else
3675 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3676
3677 /* If no RTTI data, or if object is already complete, do nothing. */
3678 if (!real_type || real_type == value_enclosing_type (argp))
3679 return argp;
3680
3681 /* In a destructor we might see a real type that is a superclass of
3682 the object's type. In this case it is better to leave the object
3683 as-is. */
3684 if (full
3685 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3686 return argp;
3687
3688 /* If we have the full object, but for some reason the enclosing
3689 type is wrong, set it. */
3690 /* pai: FIXME -- sounds iffy */
3691 if (full)
3692 {
3693 argp = value_copy (argp);
3694 set_value_enclosing_type (argp, real_type);
3695 return argp;
3696 }
3697
3698 /* Check if object is in memory. */
3699 if (VALUE_LVAL (argp) != lval_memory)
3700 {
3701 warning (_("Couldn't retrieve complete object of RTTI "
3702 "type %s; object may be in register(s)."),
3703 TYPE_NAME (real_type));
3704
3705 return argp;
3706 }
3707
3708 /* All other cases -- retrieve the complete object. */
3709 /* Go back by the computed top_offset from the beginning of the
3710 object, adjusting for the embedded offset of argp if that's what
3711 value_rtti_type used for its computation. */
3712 new_val = value_at_lazy (real_type, value_address (argp) - top +
3713 (using_enc ? 0 : value_embedded_offset (argp)));
3714 deprecated_set_value_type (new_val, value_type (argp));
3715 set_value_embedded_offset (new_val, (using_enc
3716 ? top + value_embedded_offset (argp)
3717 : top));
3718 return new_val;
3719 }
3720
3721
3722 /* Return the value of the local variable, if one exists. Throw error
3723 otherwise, such as if the request is made in an inappropriate context. */
3724
3725 struct value *
3726 value_of_this (const struct language_defn *lang)
3727 {
3728 struct block_symbol sym;
3729 const struct block *b;
3730 struct frame_info *frame;
3731
3732 if (!lang->la_name_of_this)
3733 error (_("no `this' in current language"));
3734
3735 frame = get_selected_frame (_("no frame selected"));
3736
3737 b = get_frame_block (frame, NULL);
3738
3739 sym = lookup_language_this (lang, b);
3740 if (sym.symbol == NULL)
3741 error (_("current stack frame does not contain a variable named `%s'"),
3742 lang->la_name_of_this);
3743
3744 return read_var_value (sym.symbol, sym.block, frame);
3745 }
3746
3747 /* Return the value of the local variable, if one exists. Return NULL
3748 otherwise. Never throw error. */
3749
3750 struct value *
3751 value_of_this_silent (const struct language_defn *lang)
3752 {
3753 struct value *ret = NULL;
3754
3755 TRY
3756 {
3757 ret = value_of_this (lang);
3758 }
3759 CATCH (except, RETURN_MASK_ERROR)
3760 {
3761 }
3762 END_CATCH
3763
3764 return ret;
3765 }
3766
3767 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3768 elements long, starting at LOWBOUND. The result has the same lower
3769 bound as the original ARRAY. */
3770
3771 struct value *
3772 value_slice (struct value *array, int lowbound, int length)
3773 {
3774 struct type *slice_range_type, *slice_type, *range_type;
3775 LONGEST lowerbound, upperbound;
3776 struct value *slice;
3777 struct type *array_type;
3778
3779 array_type = check_typedef (value_type (array));
3780 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3781 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
3782 error (_("cannot take slice of non-array"));
3783
3784 range_type = TYPE_INDEX_TYPE (array_type);
3785 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3786 error (_("slice from bad array or bitstring"));
3787
3788 if (lowbound < lowerbound || length < 0
3789 || lowbound + length - 1 > upperbound)
3790 error (_("slice out of range"));
3791
3792 /* FIXME-type-allocation: need a way to free this type when we are
3793 done with it. */
3794 slice_range_type = create_static_range_type ((struct type *) NULL,
3795 TYPE_TARGET_TYPE (range_type),
3796 lowbound,
3797 lowbound + length - 1);
3798
3799 {
3800 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3801 LONGEST offset
3802 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3803
3804 slice_type = create_array_type ((struct type *) NULL,
3805 element_type,
3806 slice_range_type);
3807 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3808
3809 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3810 slice = allocate_value_lazy (slice_type);
3811 else
3812 {
3813 slice = allocate_value (slice_type);
3814 value_contents_copy (slice, 0, array, offset,
3815 type_length_units (slice_type));
3816 }
3817
3818 set_value_component_location (slice, array);
3819 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3820 set_value_offset (slice, value_offset (array) + offset);
3821 }
3822
3823 return slice;
3824 }
3825
3826 /* Create a value for a FORTRAN complex number. Currently most of the
3827 time values are coerced to COMPLEX*16 (i.e. a complex number
3828 composed of 2 doubles. This really should be a smarter routine
3829 that figures out precision inteligently as opposed to assuming
3830 doubles. FIXME: fmb */
3831
3832 struct value *
3833 value_literal_complex (struct value *arg1,
3834 struct value *arg2,
3835 struct type *type)
3836 {
3837 struct value *val;
3838 struct type *real_type = TYPE_TARGET_TYPE (type);
3839
3840 val = allocate_value (type);
3841 arg1 = value_cast (real_type, arg1);
3842 arg2 = value_cast (real_type, arg2);
3843
3844 memcpy (value_contents_raw (val),
3845 value_contents (arg1), TYPE_LENGTH (real_type));
3846 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3847 value_contents (arg2), TYPE_LENGTH (real_type));
3848 return val;
3849 }
3850
3851 /* Cast a value into the appropriate complex data type. */
3852
3853 static struct value *
3854 cast_into_complex (struct type *type, struct value *val)
3855 {
3856 struct type *real_type = TYPE_TARGET_TYPE (type);
3857
3858 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3859 {
3860 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3861 struct value *re_val = allocate_value (val_real_type);
3862 struct value *im_val = allocate_value (val_real_type);
3863
3864 memcpy (value_contents_raw (re_val),
3865 value_contents (val), TYPE_LENGTH (val_real_type));
3866 memcpy (value_contents_raw (im_val),
3867 value_contents (val) + TYPE_LENGTH (val_real_type),
3868 TYPE_LENGTH (val_real_type));
3869
3870 return value_literal_complex (re_val, im_val, type);
3871 }
3872 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3873 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3874 return value_literal_complex (val,
3875 value_zero (real_type, not_lval),
3876 type);
3877 else
3878 error (_("cannot cast non-number to complex"));
3879 }
3880
3881 void
3882 _initialize_valops (void)
3883 {
3884 add_setshow_boolean_cmd ("overload-resolution", class_support,
3885 &overload_resolution, _("\
3886 Set overload resolution in evaluating C++ functions."), _("\
3887 Show overload resolution in evaluating C++ functions."),
3888 NULL, NULL,
3889 show_overload_resolution,
3890 &setlist, &showlist);
3891 overload_resolution = 1;
3892 }
This page took 0.111342 seconds and 4 git commands to generate.