bbbf66e797916315872c0d62deebf4267ac7262b
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009, 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33 #include "regcache.h"
34 #include "cp-abi.h"
35 #include "block.h"
36 #include "infcall.h"
37 #include "dictionary.h"
38 #include "cp-support.h"
39 #include "dfp.h"
40 #include "user-regs.h"
41
42 #include <errno.h>
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
46 #include "observer.h"
47 #include "objfiles.h"
48 #include "symtab.h"
49
50 extern int overload_debug;
51 /* Local functions. */
52
53 static int typecmp (int staticp, int varargs, int nargs,
54 struct field t1[], struct value *t2[]);
55
56 static struct value *search_struct_field (const char *, struct value *,
57 int, struct type *, int);
58
59 static struct value *search_struct_method (const char *, struct value **,
60 struct value **,
61 int, int *, struct type *);
62
63 static int find_oload_champ_namespace (struct type **, int,
64 const char *, const char *,
65 struct symbol ***,
66 struct badness_vector **,
67 const int no_adl);
68
69 static
70 int find_oload_champ_namespace_loop (struct type **, int,
71 const char *, const char *,
72 int, struct symbol ***,
73 struct badness_vector **, int *,
74 const int no_adl);
75
76 static int find_oload_champ (struct type **, int, int, int,
77 struct fn_field *, struct symbol **,
78 struct badness_vector **);
79
80 static int oload_method_static (int, struct fn_field *, int);
81
82 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
83
84 static enum
85 oload_classification classify_oload_match (struct badness_vector *,
86 int, int);
87
88 static struct value *value_struct_elt_for_reference (struct type *,
89 int, struct type *,
90 char *,
91 struct type *,
92 int, enum noside);
93
94 static struct value *value_namespace_elt (const struct type *,
95 char *, int , enum noside);
96
97 static struct value *value_maybe_namespace_elt (const struct type *,
98 char *, int,
99 enum noside);
100
101 static CORE_ADDR allocate_space_in_inferior (int);
102
103 static struct value *cast_into_complex (struct type *, struct value *);
104
105 static struct fn_field *find_method_list (struct value **, const char *,
106 int, struct type *, int *,
107 struct type **, int *);
108
109 void _initialize_valops (void);
110
111 #if 0
112 /* Flag for whether we want to abandon failed expression evals by
113 default. */
114
115 static int auto_abandon = 0;
116 #endif
117
118 int overload_resolution = 0;
119 static void
120 show_overload_resolution (struct ui_file *file, int from_tty,
121 struct cmd_list_element *c,
122 const char *value)
123 {
124 fprintf_filtered (file, _("\
125 Overload resolution in evaluating C++ functions is %s.\n"),
126 value);
127 }
128
129 /* Find the address of function name NAME in the inferior. If OBJF_P
130 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
131 is defined. */
132
133 struct value *
134 find_function_in_inferior (const char *name, struct objfile **objf_p)
135 {
136 struct symbol *sym;
137
138 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
139 if (sym != NULL)
140 {
141 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
142 {
143 error (_("\"%s\" exists in this program but is not a function."),
144 name);
145 }
146
147 if (objf_p)
148 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
149
150 return value_of_variable (sym, NULL);
151 }
152 else
153 {
154 struct minimal_symbol *msymbol =
155 lookup_minimal_symbol (name, NULL, NULL);
156
157 if (msymbol != NULL)
158 {
159 struct objfile *objfile = msymbol_objfile (msymbol);
160 struct gdbarch *gdbarch = get_objfile_arch (objfile);
161
162 struct type *type;
163 CORE_ADDR maddr;
164 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
165 type = lookup_function_type (type);
166 type = lookup_pointer_type (type);
167 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
168
169 if (objf_p)
170 *objf_p = objfile;
171
172 return value_from_pointer (type, maddr);
173 }
174 else
175 {
176 if (!target_has_execution)
177 error (_("evaluation of this expression requires the target program to be active"));
178 else
179 error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
180 }
181 }
182 }
183
184 /* Allocate NBYTES of space in the inferior using the inferior's
185 malloc and return a value that is a pointer to the allocated
186 space. */
187
188 struct value *
189 value_allocate_space_in_inferior (int len)
190 {
191 struct objfile *objf;
192 struct value *val = find_function_in_inferior ("malloc", &objf);
193 struct gdbarch *gdbarch = get_objfile_arch (objf);
194 struct value *blocklen;
195
196 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
197 val = call_function_by_hand (val, 1, &blocklen);
198 if (value_logical_not (val))
199 {
200 if (!target_has_execution)
201 error (_("No memory available to program now: you need to start the target first"));
202 else
203 error (_("No memory available to program: call to malloc failed"));
204 }
205 return val;
206 }
207
208 static CORE_ADDR
209 allocate_space_in_inferior (int len)
210 {
211 return value_as_long (value_allocate_space_in_inferior (len));
212 }
213
214 /* Cast struct value VAL to type TYPE and return as a value.
215 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
216 for this to work. Typedef to one of the codes is permitted.
217 Returns NULL if the cast is neither an upcast nor a downcast. */
218
219 static struct value *
220 value_cast_structs (struct type *type, struct value *v2)
221 {
222 struct type *t1;
223 struct type *t2;
224 struct value *v;
225
226 gdb_assert (type != NULL && v2 != NULL);
227
228 t1 = check_typedef (type);
229 t2 = check_typedef (value_type (v2));
230
231 /* Check preconditions. */
232 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
233 || TYPE_CODE (t1) == TYPE_CODE_UNION)
234 && !!"Precondition is that type is of STRUCT or UNION kind.");
235 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
236 || TYPE_CODE (t2) == TYPE_CODE_UNION)
237 && !!"Precondition is that value is of STRUCT or UNION kind");
238
239 if (TYPE_NAME (t1) != NULL
240 && TYPE_NAME (t2) != NULL
241 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
242 return NULL;
243
244 /* Upcasting: look in the type of the source to see if it contains the
245 type of the target as a superclass. If so, we'll need to
246 offset the pointer rather than just change its type. */
247 if (TYPE_NAME (t1) != NULL)
248 {
249 v = search_struct_field (type_name_no_tag (t1),
250 v2, 0, t2, 1);
251 if (v)
252 return v;
253 }
254
255 /* Downcasting: look in the type of the target to see if it contains the
256 type of the source as a superclass. If so, we'll need to
257 offset the pointer rather than just change its type. */
258 if (TYPE_NAME (t2) != NULL)
259 {
260 /* Try downcasting using the run-time type of the value. */
261 int full, top, using_enc;
262 struct type *real_type;
263
264 real_type = value_rtti_type (v2, &full, &top, &using_enc);
265 if (real_type)
266 {
267 v = value_full_object (v2, real_type, full, top, using_enc);
268 v = value_at_lazy (real_type, value_address (v));
269
270 /* We might be trying to cast to the outermost enclosing
271 type, in which case search_struct_field won't work. */
272 if (TYPE_NAME (real_type) != NULL
273 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
274 return v;
275
276 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
277 if (v)
278 return v;
279 }
280
281 /* Try downcasting using information from the destination type
282 T2. This wouldn't work properly for classes with virtual
283 bases, but those were handled above. */
284 v = search_struct_field (type_name_no_tag (t2),
285 value_zero (t1, not_lval), 0, t1, 1);
286 if (v)
287 {
288 /* Downcasting is possible (t1 is superclass of v2). */
289 CORE_ADDR addr2 = value_address (v2);
290
291 addr2 -= value_address (v) + value_embedded_offset (v);
292 return value_at (type, addr2);
293 }
294 }
295
296 return NULL;
297 }
298
299 /* Cast one pointer or reference type to another. Both TYPE and
300 the type of ARG2 should be pointer types, or else both should be
301 reference types. Returns the new pointer or reference. */
302
303 struct value *
304 value_cast_pointers (struct type *type, struct value *arg2)
305 {
306 struct type *type1 = check_typedef (type);
307 struct type *type2 = check_typedef (value_type (arg2));
308 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
309 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
310
311 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
312 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
313 && !value_logical_not (arg2))
314 {
315 struct value *v2;
316
317 if (TYPE_CODE (type2) == TYPE_CODE_REF)
318 v2 = coerce_ref (arg2);
319 else
320 v2 = value_ind (arg2);
321 gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) == TYPE_CODE_STRUCT
322 && !!"Why did coercion fail?");
323 v2 = value_cast_structs (t1, v2);
324 /* At this point we have what we can have, un-dereference if needed. */
325 if (v2)
326 {
327 struct value *v = value_addr (v2);
328
329 deprecated_set_value_type (v, type);
330 return v;
331 }
332 }
333
334 /* No superclass found, just change the pointer type. */
335 arg2 = value_copy (arg2);
336 deprecated_set_value_type (arg2, type);
337 arg2 = value_change_enclosing_type (arg2, type);
338 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
339 return arg2;
340 }
341
342 /* Cast value ARG2 to type TYPE and return as a value.
343 More general than a C cast: accepts any two types of the same length,
344 and if ARG2 is an lvalue it can be cast into anything at all. */
345 /* In C++, casts may change pointer or object representations. */
346
347 struct value *
348 value_cast (struct type *type, struct value *arg2)
349 {
350 enum type_code code1;
351 enum type_code code2;
352 int scalar;
353 struct type *type2;
354
355 int convert_to_boolean = 0;
356
357 if (value_type (arg2) == type)
358 return arg2;
359
360 code1 = TYPE_CODE (check_typedef (type));
361
362 /* Check if we are casting struct reference to struct reference. */
363 if (code1 == TYPE_CODE_REF)
364 {
365 /* We dereference type; then we recurse and finally
366 we generate value of the given reference. Nothing wrong with
367 that. */
368 struct type *t1 = check_typedef (type);
369 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
370 struct value *val = value_cast (dereftype, arg2);
371
372 return value_ref (val);
373 }
374
375 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
376
377 if (code2 == TYPE_CODE_REF)
378 /* We deref the value and then do the cast. */
379 return value_cast (type, coerce_ref (arg2));
380
381 CHECK_TYPEDEF (type);
382 code1 = TYPE_CODE (type);
383 arg2 = coerce_ref (arg2);
384 type2 = check_typedef (value_type (arg2));
385
386 /* You can't cast to a reference type. See value_cast_pointers
387 instead. */
388 gdb_assert (code1 != TYPE_CODE_REF);
389
390 /* A cast to an undetermined-length array_type, such as
391 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
392 where N is sizeof(OBJECT)/sizeof(TYPE). */
393 if (code1 == TYPE_CODE_ARRAY)
394 {
395 struct type *element_type = TYPE_TARGET_TYPE (type);
396 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
397
398 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
399 {
400 struct type *range_type = TYPE_INDEX_TYPE (type);
401 int val_length = TYPE_LENGTH (type2);
402 LONGEST low_bound, high_bound, new_length;
403
404 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
405 low_bound = 0, high_bound = 0;
406 new_length = val_length / element_length;
407 if (val_length % element_length != 0)
408 warning (_("array element type size does not divide object size in cast"));
409 /* FIXME-type-allocation: need a way to free this type when
410 we are done with it. */
411 range_type = create_range_type ((struct type *) NULL,
412 TYPE_TARGET_TYPE (range_type),
413 low_bound,
414 new_length + low_bound - 1);
415 deprecated_set_value_type (arg2,
416 create_array_type ((struct type *) NULL,
417 element_type,
418 range_type));
419 return arg2;
420 }
421 }
422
423 if (current_language->c_style_arrays
424 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
425 arg2 = value_coerce_array (arg2);
426
427 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
428 arg2 = value_coerce_function (arg2);
429
430 type2 = check_typedef (value_type (arg2));
431 code2 = TYPE_CODE (type2);
432
433 if (code1 == TYPE_CODE_COMPLEX)
434 return cast_into_complex (type, arg2);
435 if (code1 == TYPE_CODE_BOOL)
436 {
437 code1 = TYPE_CODE_INT;
438 convert_to_boolean = 1;
439 }
440 if (code1 == TYPE_CODE_CHAR)
441 code1 = TYPE_CODE_INT;
442 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
443 code2 = TYPE_CODE_INT;
444
445 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
446 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
447 || code2 == TYPE_CODE_RANGE);
448
449 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
450 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
451 && TYPE_NAME (type) != 0)
452 {
453 struct value *v = value_cast_structs (type, arg2);
454
455 if (v)
456 return v;
457 }
458
459 if (code1 == TYPE_CODE_FLT && scalar)
460 return value_from_double (type, value_as_double (arg2));
461 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
462 {
463 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
464 int dec_len = TYPE_LENGTH (type);
465 gdb_byte dec[16];
466
467 if (code2 == TYPE_CODE_FLT)
468 decimal_from_floating (arg2, dec, dec_len, byte_order);
469 else if (code2 == TYPE_CODE_DECFLOAT)
470 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
471 byte_order, dec, dec_len, byte_order);
472 else
473 /* The only option left is an integral type. */
474 decimal_from_integral (arg2, dec, dec_len, byte_order);
475
476 return value_from_decfloat (type, dec);
477 }
478 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
479 || code1 == TYPE_CODE_RANGE)
480 && (scalar || code2 == TYPE_CODE_PTR
481 || code2 == TYPE_CODE_MEMBERPTR))
482 {
483 LONGEST longest;
484
485 /* When we cast pointers to integers, we mustn't use
486 gdbarch_pointer_to_address to find the address the pointer
487 represents, as value_as_long would. GDB should evaluate
488 expressions just as the compiler would --- and the compiler
489 sees a cast as a simple reinterpretation of the pointer's
490 bits. */
491 if (code2 == TYPE_CODE_PTR)
492 longest = extract_unsigned_integer
493 (value_contents (arg2), TYPE_LENGTH (type2),
494 gdbarch_byte_order (get_type_arch (type2)));
495 else
496 longest = value_as_long (arg2);
497 return value_from_longest (type, convert_to_boolean ?
498 (LONGEST) (longest ? 1 : 0) : longest);
499 }
500 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
501 || code2 == TYPE_CODE_ENUM
502 || code2 == TYPE_CODE_RANGE))
503 {
504 /* TYPE_LENGTH (type) is the length of a pointer, but we really
505 want the length of an address! -- we are really dealing with
506 addresses (i.e., gdb representations) not pointers (i.e.,
507 target representations) here.
508
509 This allows things like "print *(int *)0x01000234" to work
510 without printing a misleading message -- which would
511 otherwise occur when dealing with a target having two byte
512 pointers and four byte addresses. */
513
514 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
515 LONGEST longest = value_as_long (arg2);
516
517 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
518 {
519 if (longest >= ((LONGEST) 1 << addr_bit)
520 || longest <= -((LONGEST) 1 << addr_bit))
521 warning (_("value truncated"));
522 }
523 return value_from_longest (type, longest);
524 }
525 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
526 && value_as_long (arg2) == 0)
527 {
528 struct value *result = allocate_value (type);
529
530 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
531 return result;
532 }
533 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
534 && value_as_long (arg2) == 0)
535 {
536 /* The Itanium C++ ABI represents NULL pointers to members as
537 minus one, instead of biasing the normal case. */
538 return value_from_longest (type, -1);
539 }
540 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
541 {
542 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
543 return value_cast_pointers (type, arg2);
544
545 arg2 = value_copy (arg2);
546 deprecated_set_value_type (arg2, type);
547 arg2 = value_change_enclosing_type (arg2, type);
548 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
549 return arg2;
550 }
551 else if (VALUE_LVAL (arg2) == lval_memory)
552 return value_at_lazy (type, value_address (arg2));
553 else if (code1 == TYPE_CODE_VOID)
554 {
555 return value_zero (type, not_lval);
556 }
557 else
558 {
559 error (_("Invalid cast."));
560 return 0;
561 }
562 }
563
564 /* The C++ reinterpret_cast operator. */
565
566 struct value *
567 value_reinterpret_cast (struct type *type, struct value *arg)
568 {
569 struct value *result;
570 struct type *real_type = check_typedef (type);
571 struct type *arg_type, *dest_type;
572 int is_ref = 0;
573 enum type_code dest_code, arg_code;
574
575 /* Do reference, function, and array conversion. */
576 arg = coerce_array (arg);
577
578 /* Attempt to preserve the type the user asked for. */
579 dest_type = type;
580
581 /* If we are casting to a reference type, transform
582 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
583 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
584 {
585 is_ref = 1;
586 arg = value_addr (arg);
587 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
588 real_type = lookup_pointer_type (real_type);
589 }
590
591 arg_type = value_type (arg);
592
593 dest_code = TYPE_CODE (real_type);
594 arg_code = TYPE_CODE (arg_type);
595
596 /* We can convert pointer types, or any pointer type to int, or int
597 type to pointer. */
598 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
599 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
600 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
601 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
602 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
603 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
604 || (dest_code == arg_code
605 && (dest_code == TYPE_CODE_PTR
606 || dest_code == TYPE_CODE_METHODPTR
607 || dest_code == TYPE_CODE_MEMBERPTR)))
608 result = value_cast (dest_type, arg);
609 else
610 error (_("Invalid reinterpret_cast"));
611
612 if (is_ref)
613 result = value_cast (type, value_ref (value_ind (result)));
614
615 return result;
616 }
617
618 /* A helper for value_dynamic_cast. This implements the first of two
619 runtime checks: we iterate over all the base classes of the value's
620 class which are equal to the desired class; if only one of these
621 holds the value, then it is the answer. */
622
623 static int
624 dynamic_cast_check_1 (struct type *desired_type,
625 const bfd_byte *contents,
626 CORE_ADDR address,
627 struct type *search_type,
628 CORE_ADDR arg_addr,
629 struct type *arg_type,
630 struct value **result)
631 {
632 int i, result_count = 0;
633
634 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
635 {
636 int offset = baseclass_offset (search_type, i, contents, address);
637
638 if (offset == -1)
639 error (_("virtual baseclass botch"));
640 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
641 {
642 if (address + offset >= arg_addr
643 && address + offset < arg_addr + TYPE_LENGTH (arg_type))
644 {
645 ++result_count;
646 if (!*result)
647 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
648 address + offset);
649 }
650 }
651 else
652 result_count += dynamic_cast_check_1 (desired_type,
653 contents + offset,
654 address + offset,
655 TYPE_BASECLASS (search_type, i),
656 arg_addr,
657 arg_type,
658 result);
659 }
660
661 return result_count;
662 }
663
664 /* A helper for value_dynamic_cast. This implements the second of two
665 runtime checks: we look for a unique public sibling class of the
666 argument's declared class. */
667
668 static int
669 dynamic_cast_check_2 (struct type *desired_type,
670 const bfd_byte *contents,
671 CORE_ADDR address,
672 struct type *search_type,
673 struct value **result)
674 {
675 int i, result_count = 0;
676
677 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
678 {
679 int offset;
680
681 if (! BASETYPE_VIA_PUBLIC (search_type, i))
682 continue;
683
684 offset = baseclass_offset (search_type, i, contents, address);
685 if (offset == -1)
686 error (_("virtual baseclass botch"));
687 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
688 {
689 ++result_count;
690 if (*result == NULL)
691 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
692 address + offset);
693 }
694 else
695 result_count += dynamic_cast_check_2 (desired_type,
696 contents + offset,
697 address + offset,
698 TYPE_BASECLASS (search_type, i),
699 result);
700 }
701
702 return result_count;
703 }
704
705 /* The C++ dynamic_cast operator. */
706
707 struct value *
708 value_dynamic_cast (struct type *type, struct value *arg)
709 {
710 int full, top, using_enc;
711 struct type *resolved_type = check_typedef (type);
712 struct type *arg_type = check_typedef (value_type (arg));
713 struct type *class_type, *rtti_type;
714 struct value *result, *tem, *original_arg = arg;
715 CORE_ADDR addr;
716 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
717
718 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
719 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
720 error (_("Argument to dynamic_cast must be a pointer or reference type"));
721 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
722 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
723 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
724
725 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
726 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
727 {
728 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
729 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
730 && value_as_long (arg) == 0))
731 error (_("Argument to dynamic_cast does not have pointer type"));
732 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
733 {
734 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
735 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
736 error (_("Argument to dynamic_cast does not have pointer to class type"));
737 }
738
739 /* Handle NULL pointers. */
740 if (value_as_long (arg) == 0)
741 return value_zero (type, not_lval);
742
743 arg = value_ind (arg);
744 }
745 else
746 {
747 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
748 error (_("Argument to dynamic_cast does not have class type"));
749 }
750
751 /* If the classes are the same, just return the argument. */
752 if (class_types_same_p (class_type, arg_type))
753 return value_cast (type, arg);
754
755 /* If the target type is a unique base class of the argument's
756 declared type, just cast it. */
757 if (is_ancestor (class_type, arg_type))
758 {
759 if (is_unique_ancestor (class_type, arg))
760 return value_cast (type, original_arg);
761 error (_("Ambiguous dynamic_cast"));
762 }
763
764 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
765 if (! rtti_type)
766 error (_("Couldn't determine value's most derived type for dynamic_cast"));
767
768 /* Compute the most derived object's address. */
769 addr = value_address (arg);
770 if (full)
771 {
772 /* Done. */
773 }
774 else if (using_enc)
775 addr += top;
776 else
777 addr += top + value_embedded_offset (arg);
778
779 /* dynamic_cast<void *> means to return a pointer to the
780 most-derived object. */
781 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
782 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
783 return value_at_lazy (type, addr);
784
785 tem = value_at (type, addr);
786
787 /* The first dynamic check specified in 5.2.7. */
788 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
789 {
790 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
791 return tem;
792 result = NULL;
793 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
794 value_contents (tem), value_address (tem),
795 rtti_type, addr,
796 arg_type,
797 &result) == 1)
798 return value_cast (type,
799 is_ref ? value_ref (result) : value_addr (result));
800 }
801
802 /* The second dynamic check specified in 5.2.7. */
803 result = NULL;
804 if (is_public_ancestor (arg_type, rtti_type)
805 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
806 value_contents (tem), value_address (tem),
807 rtti_type, &result) == 1)
808 return value_cast (type,
809 is_ref ? value_ref (result) : value_addr (result));
810
811 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
812 return value_zero (type, not_lval);
813
814 error (_("dynamic_cast failed"));
815 }
816
817 /* Create a value of type TYPE that is zero, and return it. */
818
819 struct value *
820 value_zero (struct type *type, enum lval_type lv)
821 {
822 struct value *val = allocate_value (type);
823
824 VALUE_LVAL (val) = lv;
825 return val;
826 }
827
828 /* Create a value of numeric type TYPE that is one, and return it. */
829
830 struct value *
831 value_one (struct type *type, enum lval_type lv)
832 {
833 struct type *type1 = check_typedef (type);
834 struct value *val;
835
836 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
837 {
838 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
839 gdb_byte v[16];
840
841 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
842 val = value_from_decfloat (type, v);
843 }
844 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
845 {
846 val = value_from_double (type, (DOUBLEST) 1);
847 }
848 else if (is_integral_type (type1))
849 {
850 val = value_from_longest (type, (LONGEST) 1);
851 }
852 else
853 {
854 error (_("Not a numeric type."));
855 }
856
857 VALUE_LVAL (val) = lv;
858 return val;
859 }
860
861 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
862
863 static struct value *
864 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
865 {
866 struct value *val;
867
868 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
869 error (_("Attempt to dereference a generic pointer."));
870
871 if (lazy)
872 {
873 val = allocate_value_lazy (type);
874 }
875 else
876 {
877 val = allocate_value (type);
878 read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
879 }
880
881 VALUE_LVAL (val) = lval_memory;
882 set_value_address (val, addr);
883
884 return val;
885 }
886
887 /* Return a value with type TYPE located at ADDR.
888
889 Call value_at only if the data needs to be fetched immediately;
890 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
891 value_at_lazy instead. value_at_lazy simply records the address of
892 the data and sets the lazy-evaluation-required flag. The lazy flag
893 is tested in the value_contents macro, which is used if and when
894 the contents are actually required.
895
896 Note: value_at does *NOT* handle embedded offsets; perform such
897 adjustments before or after calling it. */
898
899 struct value *
900 value_at (struct type *type, CORE_ADDR addr)
901 {
902 return get_value_at (type, addr, 0);
903 }
904
905 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
906
907 struct value *
908 value_at_lazy (struct type *type, CORE_ADDR addr)
909 {
910 return get_value_at (type, addr, 1);
911 }
912
913 /* Called only from the value_contents and value_contents_all()
914 macros, if the current data for a variable needs to be loaded into
915 value_contents(VAL). Fetches the data from the user's process, and
916 clears the lazy flag to indicate that the data in the buffer is
917 valid.
918
919 If the value is zero-length, we avoid calling read_memory, which
920 would abort. We mark the value as fetched anyway -- all 0 bytes of
921 it.
922
923 This function returns a value because it is used in the
924 value_contents macro as part of an expression, where a void would
925 not work. The value is ignored. */
926
927 int
928 value_fetch_lazy (struct value *val)
929 {
930 gdb_assert (value_lazy (val));
931 allocate_value_contents (val);
932 if (value_bitsize (val))
933 {
934 /* To read a lazy bitfield, read the entire enclosing value. This
935 prevents reading the same block of (possibly volatile) memory once
936 per bitfield. It would be even better to read only the containing
937 word, but we have no way to record that just specific bits of a
938 value have been fetched. */
939 struct type *type = check_typedef (value_type (val));
940 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
941 struct value *parent = value_parent (val);
942 LONGEST offset = value_offset (val);
943 LONGEST num = unpack_bits_as_long (value_type (val),
944 (value_contents_for_printing (parent)
945 + offset),
946 value_bitpos (val),
947 value_bitsize (val));
948 int length = TYPE_LENGTH (type);
949
950 if (!value_bits_valid (val,
951 TARGET_CHAR_BIT * offset + value_bitpos (val),
952 value_bitsize (val)))
953 error (_("value has been optimized out"));
954
955 store_signed_integer (value_contents_raw (val), length, byte_order, num);
956 }
957 else if (VALUE_LVAL (val) == lval_memory)
958 {
959 CORE_ADDR addr = value_address (val);
960 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
961
962 if (length)
963 {
964 if (value_stack (val))
965 read_stack (addr, value_contents_all_raw (val), length);
966 else
967 read_memory (addr, value_contents_all_raw (val), length);
968 }
969 }
970 else if (VALUE_LVAL (val) == lval_register)
971 {
972 struct frame_info *frame;
973 int regnum;
974 struct type *type = check_typedef (value_type (val));
975 struct value *new_val = val, *mark = value_mark ();
976
977 /* Offsets are not supported here; lazy register values must
978 refer to the entire register. */
979 gdb_assert (value_offset (val) == 0);
980
981 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
982 {
983 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
984 regnum = VALUE_REGNUM (new_val);
985
986 gdb_assert (frame != NULL);
987
988 /* Convertible register routines are used for multi-register
989 values and for interpretation in different types
990 (e.g. float or int from a double register). Lazy
991 register values should have the register's natural type,
992 so they do not apply. */
993 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
994 regnum, type));
995
996 new_val = get_frame_register_value (frame, regnum);
997 }
998
999 /* If it's still lazy (for instance, a saved register on the
1000 stack), fetch it. */
1001 if (value_lazy (new_val))
1002 value_fetch_lazy (new_val);
1003
1004 /* If the register was not saved, mark it unavailable. */
1005 if (value_optimized_out (new_val))
1006 set_value_optimized_out (val, 1);
1007 else
1008 memcpy (value_contents_raw (val), value_contents (new_val),
1009 TYPE_LENGTH (type));
1010
1011 if (frame_debug)
1012 {
1013 struct gdbarch *gdbarch;
1014 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1015 regnum = VALUE_REGNUM (val);
1016 gdbarch = get_frame_arch (frame);
1017
1018 fprintf_unfiltered (gdb_stdlog, "\
1019 { value_fetch_lazy (frame=%d,regnum=%d(%s),...) ",
1020 frame_relative_level (frame), regnum,
1021 user_reg_map_regnum_to_name (gdbarch, regnum));
1022
1023 fprintf_unfiltered (gdb_stdlog, "->");
1024 if (value_optimized_out (new_val))
1025 fprintf_unfiltered (gdb_stdlog, " optimized out");
1026 else
1027 {
1028 int i;
1029 const gdb_byte *buf = value_contents (new_val);
1030
1031 if (VALUE_LVAL (new_val) == lval_register)
1032 fprintf_unfiltered (gdb_stdlog, " register=%d",
1033 VALUE_REGNUM (new_val));
1034 else if (VALUE_LVAL (new_val) == lval_memory)
1035 fprintf_unfiltered (gdb_stdlog, " address=%s",
1036 paddress (gdbarch,
1037 value_address (new_val)));
1038 else
1039 fprintf_unfiltered (gdb_stdlog, " computed");
1040
1041 fprintf_unfiltered (gdb_stdlog, " bytes=");
1042 fprintf_unfiltered (gdb_stdlog, "[");
1043 for (i = 0; i < register_size (gdbarch, regnum); i++)
1044 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1045 fprintf_unfiltered (gdb_stdlog, "]");
1046 }
1047
1048 fprintf_unfiltered (gdb_stdlog, " }\n");
1049 }
1050
1051 /* Dispose of the intermediate values. This prevents
1052 watchpoints from trying to watch the saved frame pointer. */
1053 value_free_to_mark (mark);
1054 }
1055 else if (VALUE_LVAL (val) == lval_computed)
1056 value_computed_funcs (val)->read (val);
1057 else
1058 internal_error (__FILE__, __LINE__, "Unexpected lazy value type.");
1059
1060 set_value_lazy (val, 0);
1061 return 0;
1062 }
1063
1064
1065 /* Store the contents of FROMVAL into the location of TOVAL.
1066 Return a new value with the location of TOVAL and contents of FROMVAL. */
1067
1068 struct value *
1069 value_assign (struct value *toval, struct value *fromval)
1070 {
1071 struct type *type;
1072 struct value *val;
1073 struct frame_id old_frame;
1074
1075 if (!deprecated_value_modifiable (toval))
1076 error (_("Left operand of assignment is not a modifiable lvalue."));
1077
1078 toval = coerce_ref (toval);
1079
1080 type = value_type (toval);
1081 if (VALUE_LVAL (toval) != lval_internalvar)
1082 fromval = value_cast (type, fromval);
1083 else
1084 {
1085 /* Coerce arrays and functions to pointers, except for arrays
1086 which only live in GDB's storage. */
1087 if (!value_must_coerce_to_target (fromval))
1088 fromval = coerce_array (fromval);
1089 }
1090
1091 CHECK_TYPEDEF (type);
1092
1093 /* Since modifying a register can trash the frame chain, and
1094 modifying memory can trash the frame cache, we save the old frame
1095 and then restore the new frame afterwards. */
1096 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1097
1098 switch (VALUE_LVAL (toval))
1099 {
1100 case lval_internalvar:
1101 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1102 val = value_copy (fromval);
1103 val = value_change_enclosing_type (val,
1104 value_enclosing_type (fromval));
1105 set_value_embedded_offset (val, value_embedded_offset (fromval));
1106 set_value_pointed_to_offset (val,
1107 value_pointed_to_offset (fromval));
1108 return val;
1109
1110 case lval_internalvar_component:
1111 set_internalvar_component (VALUE_INTERNALVAR (toval),
1112 value_offset (toval),
1113 value_bitpos (toval),
1114 value_bitsize (toval),
1115 fromval);
1116 break;
1117
1118 case lval_memory:
1119 {
1120 const gdb_byte *dest_buffer;
1121 CORE_ADDR changed_addr;
1122 int changed_len;
1123 gdb_byte buffer[sizeof (LONGEST)];
1124
1125 if (value_bitsize (toval))
1126 {
1127 struct value *parent = value_parent (toval);
1128
1129 changed_addr = value_address (parent) + value_offset (toval);
1130 changed_len = (value_bitpos (toval)
1131 + value_bitsize (toval)
1132 + HOST_CHAR_BIT - 1)
1133 / HOST_CHAR_BIT;
1134
1135 /* If we can read-modify-write exactly the size of the
1136 containing type (e.g. short or int) then do so. This
1137 is safer for volatile bitfields mapped to hardware
1138 registers. */
1139 if (changed_len < TYPE_LENGTH (type)
1140 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1141 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1142 changed_len = TYPE_LENGTH (type);
1143
1144 if (changed_len > (int) sizeof (LONGEST))
1145 error (_("Can't handle bitfields which don't fit in a %d bit word."),
1146 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1147
1148 read_memory (changed_addr, buffer, changed_len);
1149 modify_field (type, buffer, value_as_long (fromval),
1150 value_bitpos (toval), value_bitsize (toval));
1151 dest_buffer = buffer;
1152 }
1153 else
1154 {
1155 changed_addr = value_address (toval);
1156 changed_len = TYPE_LENGTH (type);
1157 dest_buffer = value_contents (fromval);
1158 }
1159
1160 write_memory (changed_addr, dest_buffer, changed_len);
1161 observer_notify_memory_changed (changed_addr, changed_len,
1162 dest_buffer);
1163 }
1164 break;
1165
1166 case lval_register:
1167 {
1168 struct frame_info *frame;
1169 struct gdbarch *gdbarch;
1170 int value_reg;
1171
1172 /* Figure out which frame this is in currently. */
1173 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1174 value_reg = VALUE_REGNUM (toval);
1175
1176 if (!frame)
1177 error (_("Value being assigned to is no longer active."));
1178
1179 gdbarch = get_frame_arch (frame);
1180 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1181 {
1182 /* If TOVAL is a special machine register requiring
1183 conversion of program values to a special raw
1184 format. */
1185 gdbarch_value_to_register (gdbarch, frame,
1186 VALUE_REGNUM (toval), type,
1187 value_contents (fromval));
1188 }
1189 else
1190 {
1191 if (value_bitsize (toval))
1192 {
1193 struct value *parent = value_parent (toval);
1194 int offset = value_offset (parent) + value_offset (toval);
1195 int changed_len;
1196 gdb_byte buffer[sizeof (LONGEST)];
1197
1198 changed_len = (value_bitpos (toval)
1199 + value_bitsize (toval)
1200 + HOST_CHAR_BIT - 1)
1201 / HOST_CHAR_BIT;
1202
1203 if (changed_len > (int) sizeof (LONGEST))
1204 error (_("Can't handle bitfields which don't fit in a %d bit word."),
1205 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1206
1207 get_frame_register_bytes (frame, value_reg, offset,
1208 changed_len, buffer);
1209
1210 modify_field (type, buffer, value_as_long (fromval),
1211 value_bitpos (toval), value_bitsize (toval));
1212
1213 put_frame_register_bytes (frame, value_reg, offset,
1214 changed_len, buffer);
1215 }
1216 else
1217 {
1218 put_frame_register_bytes (frame, value_reg,
1219 value_offset (toval),
1220 TYPE_LENGTH (type),
1221 value_contents (fromval));
1222 }
1223 }
1224
1225 if (deprecated_register_changed_hook)
1226 deprecated_register_changed_hook (-1);
1227 observer_notify_target_changed (&current_target);
1228 break;
1229 }
1230
1231 case lval_computed:
1232 {
1233 struct lval_funcs *funcs = value_computed_funcs (toval);
1234
1235 funcs->write (toval, fromval);
1236 }
1237 break;
1238
1239 default:
1240 error (_("Left operand of assignment is not an lvalue."));
1241 }
1242
1243 /* Assigning to the stack pointer, frame pointer, and other
1244 (architecture and calling convention specific) registers may
1245 cause the frame cache to be out of date. Assigning to memory
1246 also can. We just do this on all assignments to registers or
1247 memory, for simplicity's sake; I doubt the slowdown matters. */
1248 switch (VALUE_LVAL (toval))
1249 {
1250 case lval_memory:
1251 case lval_register:
1252 case lval_computed:
1253
1254 reinit_frame_cache ();
1255
1256 /* Having destroyed the frame cache, restore the selected
1257 frame. */
1258
1259 /* FIXME: cagney/2002-11-02: There has to be a better way of
1260 doing this. Instead of constantly saving/restoring the
1261 frame. Why not create a get_selected_frame() function that,
1262 having saved the selected frame's ID can automatically
1263 re-find the previously selected frame automatically. */
1264
1265 {
1266 struct frame_info *fi = frame_find_by_id (old_frame);
1267
1268 if (fi != NULL)
1269 select_frame (fi);
1270 }
1271
1272 break;
1273 default:
1274 break;
1275 }
1276
1277 /* If the field does not entirely fill a LONGEST, then zero the sign
1278 bits. If the field is signed, and is negative, then sign
1279 extend. */
1280 if ((value_bitsize (toval) > 0)
1281 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1282 {
1283 LONGEST fieldval = value_as_long (fromval);
1284 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1285
1286 fieldval &= valmask;
1287 if (!TYPE_UNSIGNED (type)
1288 && (fieldval & (valmask ^ (valmask >> 1))))
1289 fieldval |= ~valmask;
1290
1291 fromval = value_from_longest (type, fieldval);
1292 }
1293
1294 val = value_copy (toval);
1295 memcpy (value_contents_raw (val), value_contents (fromval),
1296 TYPE_LENGTH (type));
1297 deprecated_set_value_type (val, type);
1298 val = value_change_enclosing_type (val,
1299 value_enclosing_type (fromval));
1300 set_value_embedded_offset (val, value_embedded_offset (fromval));
1301 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1302
1303 return val;
1304 }
1305
1306 /* Extend a value VAL to COUNT repetitions of its type. */
1307
1308 struct value *
1309 value_repeat (struct value *arg1, int count)
1310 {
1311 struct value *val;
1312
1313 if (VALUE_LVAL (arg1) != lval_memory)
1314 error (_("Only values in memory can be extended with '@'."));
1315 if (count < 1)
1316 error (_("Invalid number %d of repetitions."), count);
1317
1318 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1319
1320 read_memory (value_address (arg1),
1321 value_contents_all_raw (val),
1322 TYPE_LENGTH (value_enclosing_type (val)));
1323 VALUE_LVAL (val) = lval_memory;
1324 set_value_address (val, value_address (arg1));
1325
1326 return val;
1327 }
1328
1329 struct value *
1330 value_of_variable (struct symbol *var, struct block *b)
1331 {
1332 struct value *val;
1333 struct frame_info *frame;
1334
1335 if (!symbol_read_needs_frame (var))
1336 frame = NULL;
1337 else if (!b)
1338 frame = get_selected_frame (_("No frame selected."));
1339 else
1340 {
1341 frame = block_innermost_frame (b);
1342 if (!frame)
1343 {
1344 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1345 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1346 error (_("No frame is currently executing in block %s."),
1347 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1348 else
1349 error (_("No frame is currently executing in specified block"));
1350 }
1351 }
1352
1353 val = read_var_value (var, frame);
1354 if (!val)
1355 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
1356
1357 return val;
1358 }
1359
1360 struct value *
1361 address_of_variable (struct symbol *var, struct block *b)
1362 {
1363 struct type *type = SYMBOL_TYPE (var);
1364 struct value *val;
1365
1366 /* Evaluate it first; if the result is a memory address, we're fine.
1367 Lazy evaluation pays off here. */
1368
1369 val = value_of_variable (var, b);
1370
1371 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1372 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1373 {
1374 CORE_ADDR addr = value_address (val);
1375
1376 return value_from_pointer (lookup_pointer_type (type), addr);
1377 }
1378
1379 /* Not a memory address; check what the problem was. */
1380 switch (VALUE_LVAL (val))
1381 {
1382 case lval_register:
1383 {
1384 struct frame_info *frame;
1385 const char *regname;
1386
1387 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1388 gdb_assert (frame);
1389
1390 regname = gdbarch_register_name (get_frame_arch (frame),
1391 VALUE_REGNUM (val));
1392 gdb_assert (regname && *regname);
1393
1394 error (_("Address requested for identifier "
1395 "\"%s\" which is in register $%s"),
1396 SYMBOL_PRINT_NAME (var), regname);
1397 break;
1398 }
1399
1400 default:
1401 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1402 SYMBOL_PRINT_NAME (var));
1403 break;
1404 }
1405
1406 return val;
1407 }
1408
1409 /* Return one if VAL does not live in target memory, but should in order
1410 to operate on it. Otherwise return zero. */
1411
1412 int
1413 value_must_coerce_to_target (struct value *val)
1414 {
1415 struct type *valtype;
1416
1417 /* The only lval kinds which do not live in target memory. */
1418 if (VALUE_LVAL (val) != not_lval
1419 && VALUE_LVAL (val) != lval_internalvar)
1420 return 0;
1421
1422 valtype = check_typedef (value_type (val));
1423
1424 switch (TYPE_CODE (valtype))
1425 {
1426 case TYPE_CODE_ARRAY:
1427 return TYPE_VECTOR (valtype) ? 0 : 1;
1428 case TYPE_CODE_STRING:
1429 return 1;
1430 default:
1431 return 0;
1432 }
1433 }
1434
1435 /* Make sure that VAL lives in target memory if it's supposed to. For instance,
1436 strings are constructed as character arrays in GDB's storage, and this
1437 function copies them to the target. */
1438
1439 struct value *
1440 value_coerce_to_target (struct value *val)
1441 {
1442 LONGEST length;
1443 CORE_ADDR addr;
1444
1445 if (!value_must_coerce_to_target (val))
1446 return val;
1447
1448 length = TYPE_LENGTH (check_typedef (value_type (val)));
1449 addr = allocate_space_in_inferior (length);
1450 write_memory (addr, value_contents (val), length);
1451 return value_at_lazy (value_type (val), addr);
1452 }
1453
1454 /* Given a value which is an array, return a value which is a pointer
1455 to its first element, regardless of whether or not the array has a
1456 nonzero lower bound.
1457
1458 FIXME: A previous comment here indicated that this routine should
1459 be substracting the array's lower bound. It's not clear to me that
1460 this is correct. Given an array subscripting operation, it would
1461 certainly work to do the adjustment here, essentially computing:
1462
1463 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1464
1465 However I believe a more appropriate and logical place to account
1466 for the lower bound is to do so in value_subscript, essentially
1467 computing:
1468
1469 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1470
1471 As further evidence consider what would happen with operations
1472 other than array subscripting, where the caller would get back a
1473 value that had an address somewhere before the actual first element
1474 of the array, and the information about the lower bound would be
1475 lost because of the coercion to pointer type.
1476 */
1477
1478 struct value *
1479 value_coerce_array (struct value *arg1)
1480 {
1481 struct type *type = check_typedef (value_type (arg1));
1482
1483 /* If the user tries to do something requiring a pointer with an
1484 array that has not yet been pushed to the target, then this would
1485 be a good time to do so. */
1486 arg1 = value_coerce_to_target (arg1);
1487
1488 if (VALUE_LVAL (arg1) != lval_memory)
1489 error (_("Attempt to take address of value not located in memory."));
1490
1491 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1492 value_address (arg1));
1493 }
1494
1495 /* Given a value which is a function, return a value which is a pointer
1496 to it. */
1497
1498 struct value *
1499 value_coerce_function (struct value *arg1)
1500 {
1501 struct value *retval;
1502
1503 if (VALUE_LVAL (arg1) != lval_memory)
1504 error (_("Attempt to take address of value not located in memory."));
1505
1506 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1507 value_address (arg1));
1508 return retval;
1509 }
1510
1511 /* Return a pointer value for the object for which ARG1 is the
1512 contents. */
1513
1514 struct value *
1515 value_addr (struct value *arg1)
1516 {
1517 struct value *arg2;
1518 struct type *type = check_typedef (value_type (arg1));
1519
1520 if (TYPE_CODE (type) == TYPE_CODE_REF)
1521 {
1522 /* Copy the value, but change the type from (T&) to (T*). We
1523 keep the same location information, which is efficient, and
1524 allows &(&X) to get the location containing the reference. */
1525 arg2 = value_copy (arg1);
1526 deprecated_set_value_type (arg2,
1527 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1528 return arg2;
1529 }
1530 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1531 return value_coerce_function (arg1);
1532
1533 /* If this is an array that has not yet been pushed to the target,
1534 then this would be a good time to force it to memory. */
1535 arg1 = value_coerce_to_target (arg1);
1536
1537 if (VALUE_LVAL (arg1) != lval_memory)
1538 error (_("Attempt to take address of value not located in memory."));
1539
1540 /* Get target memory address */
1541 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1542 (value_address (arg1)
1543 + value_embedded_offset (arg1)));
1544
1545 /* This may be a pointer to a base subobject; so remember the
1546 full derived object's type ... */
1547 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1)));
1548 /* ... and also the relative position of the subobject in the full
1549 object. */
1550 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1551 return arg2;
1552 }
1553
1554 /* Return a reference value for the object for which ARG1 is the
1555 contents. */
1556
1557 struct value *
1558 value_ref (struct value *arg1)
1559 {
1560 struct value *arg2;
1561 struct type *type = check_typedef (value_type (arg1));
1562
1563 if (TYPE_CODE (type) == TYPE_CODE_REF)
1564 return arg1;
1565
1566 arg2 = value_addr (arg1);
1567 deprecated_set_value_type (arg2, lookup_reference_type (type));
1568 return arg2;
1569 }
1570
1571 /* Given a value of a pointer type, apply the C unary * operator to
1572 it. */
1573
1574 struct value *
1575 value_ind (struct value *arg1)
1576 {
1577 struct type *base_type;
1578 struct value *arg2;
1579
1580 arg1 = coerce_array (arg1);
1581
1582 base_type = check_typedef (value_type (arg1));
1583
1584 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1585 {
1586 struct type *enc_type;
1587
1588 /* We may be pointing to something embedded in a larger object.
1589 Get the real type of the enclosing object. */
1590 enc_type = check_typedef (value_enclosing_type (arg1));
1591 enc_type = TYPE_TARGET_TYPE (enc_type);
1592
1593 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1594 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1595 /* For functions, go through find_function_addr, which knows
1596 how to handle function descriptors. */
1597 arg2 = value_at_lazy (enc_type,
1598 find_function_addr (arg1, NULL));
1599 else
1600 /* Retrieve the enclosing object pointed to */
1601 arg2 = value_at_lazy (enc_type,
1602 (value_as_address (arg1)
1603 - value_pointed_to_offset (arg1)));
1604
1605 /* Re-adjust type. */
1606 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
1607 /* Add embedding info. */
1608 arg2 = value_change_enclosing_type (arg2, enc_type);
1609 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
1610
1611 /* We may be pointing to an object of some derived type. */
1612 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1613 return arg2;
1614 }
1615
1616 error (_("Attempt to take contents of a non-pointer value."));
1617 return 0; /* For lint -- never reached. */
1618 }
1619 \f
1620 /* Create a value for an array by allocating space in GDB, copying
1621 copying the data into that space, and then setting up an array
1622 value.
1623
1624 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1625 is populated from the values passed in ELEMVEC.
1626
1627 The element type of the array is inherited from the type of the
1628 first element, and all elements must have the same size (though we
1629 don't currently enforce any restriction on their types). */
1630
1631 struct value *
1632 value_array (int lowbound, int highbound, struct value **elemvec)
1633 {
1634 int nelem;
1635 int idx;
1636 unsigned int typelength;
1637 struct value *val;
1638 struct type *arraytype;
1639
1640 /* Validate that the bounds are reasonable and that each of the
1641 elements have the same size. */
1642
1643 nelem = highbound - lowbound + 1;
1644 if (nelem <= 0)
1645 {
1646 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1647 }
1648 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1649 for (idx = 1; idx < nelem; idx++)
1650 {
1651 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1652 {
1653 error (_("array elements must all be the same size"));
1654 }
1655 }
1656
1657 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1658 lowbound, highbound);
1659
1660 if (!current_language->c_style_arrays)
1661 {
1662 val = allocate_value (arraytype);
1663 for (idx = 0; idx < nelem; idx++)
1664 {
1665 memcpy (value_contents_all_raw (val) + (idx * typelength),
1666 value_contents_all (elemvec[idx]),
1667 typelength);
1668 }
1669 return val;
1670 }
1671
1672 /* Allocate space to store the array, and then initialize it by
1673 copying in each element. */
1674
1675 val = allocate_value (arraytype);
1676 for (idx = 0; idx < nelem; idx++)
1677 memcpy (value_contents_writeable (val) + (idx * typelength),
1678 value_contents_all (elemvec[idx]),
1679 typelength);
1680 return val;
1681 }
1682
1683 struct value *
1684 value_cstring (char *ptr, int len, struct type *char_type)
1685 {
1686 struct value *val;
1687 int lowbound = current_language->string_lower_bound;
1688 int highbound = len / TYPE_LENGTH (char_type);
1689 struct type *stringtype
1690 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1691
1692 val = allocate_value (stringtype);
1693 memcpy (value_contents_raw (val), ptr, len);
1694 return val;
1695 }
1696
1697 /* Create a value for a string constant by allocating space in the
1698 inferior, copying the data into that space, and returning the
1699 address with type TYPE_CODE_STRING. PTR points to the string
1700 constant data; LEN is number of characters.
1701
1702 Note that string types are like array of char types with a lower
1703 bound of zero and an upper bound of LEN - 1. Also note that the
1704 string may contain embedded null bytes. */
1705
1706 struct value *
1707 value_string (char *ptr, int len, struct type *char_type)
1708 {
1709 struct value *val;
1710 int lowbound = current_language->string_lower_bound;
1711 int highbound = len / TYPE_LENGTH (char_type);
1712 struct type *stringtype
1713 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1714
1715 val = allocate_value (stringtype);
1716 memcpy (value_contents_raw (val), ptr, len);
1717 return val;
1718 }
1719
1720 struct value *
1721 value_bitstring (char *ptr, int len, struct type *index_type)
1722 {
1723 struct value *val;
1724 struct type *domain_type
1725 = create_range_type (NULL, index_type, 0, len - 1);
1726 struct type *type = create_set_type (NULL, domain_type);
1727
1728 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1729 val = allocate_value (type);
1730 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1731 return val;
1732 }
1733 \f
1734 /* See if we can pass arguments in T2 to a function which takes
1735 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1736 a NULL-terminated vector. If some arguments need coercion of some
1737 sort, then the coerced values are written into T2. Return value is
1738 0 if the arguments could be matched, or the position at which they
1739 differ if not.
1740
1741 STATICP is nonzero if the T1 argument list came from a static
1742 member function. T2 will still include the ``this'' pointer, but
1743 it will be skipped.
1744
1745 For non-static member functions, we ignore the first argument,
1746 which is the type of the instance variable. This is because we
1747 want to handle calls with objects from derived classes. This is
1748 not entirely correct: we should actually check to make sure that a
1749 requested operation is type secure, shouldn't we? FIXME. */
1750
1751 static int
1752 typecmp (int staticp, int varargs, int nargs,
1753 struct field t1[], struct value *t2[])
1754 {
1755 int i;
1756
1757 if (t2 == 0)
1758 internal_error (__FILE__, __LINE__,
1759 _("typecmp: no argument list"));
1760
1761 /* Skip ``this'' argument if applicable. T2 will always include
1762 THIS. */
1763 if (staticp)
1764 t2 ++;
1765
1766 for (i = 0;
1767 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1768 i++)
1769 {
1770 struct type *tt1, *tt2;
1771
1772 if (!t2[i])
1773 return i + 1;
1774
1775 tt1 = check_typedef (t1[i].type);
1776 tt2 = check_typedef (value_type (t2[i]));
1777
1778 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1779 /* We should be doing hairy argument matching, as below. */
1780 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1781 {
1782 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1783 t2[i] = value_coerce_array (t2[i]);
1784 else
1785 t2[i] = value_ref (t2[i]);
1786 continue;
1787 }
1788
1789 /* djb - 20000715 - Until the new type structure is in the
1790 place, and we can attempt things like implicit conversions,
1791 we need to do this so you can take something like a map<const
1792 char *>, and properly access map["hello"], because the
1793 argument to [] will be a reference to a pointer to a char,
1794 and the argument will be a pointer to a char. */
1795 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1796 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1797 {
1798 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1799 }
1800 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1801 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1802 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1803 {
1804 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1805 }
1806 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1807 continue;
1808 /* Array to pointer is a `trivial conversion' according to the
1809 ARM. */
1810
1811 /* We should be doing much hairier argument matching (see
1812 section 13.2 of the ARM), but as a quick kludge, just check
1813 for the same type code. */
1814 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1815 return i + 1;
1816 }
1817 if (varargs || t2[i] == NULL)
1818 return 0;
1819 return i + 1;
1820 }
1821
1822 /* Helper function used by value_struct_elt to recurse through
1823 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1824 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1825 TYPE. If found, return value, else return NULL.
1826
1827 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1828 fields, look for a baseclass named NAME. */
1829
1830 static struct value *
1831 search_struct_field (const char *name, struct value *arg1, int offset,
1832 struct type *type, int looking_for_baseclass)
1833 {
1834 int i;
1835 int nbases;
1836
1837 CHECK_TYPEDEF (type);
1838 nbases = TYPE_N_BASECLASSES (type);
1839
1840 if (!looking_for_baseclass)
1841 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1842 {
1843 char *t_field_name = TYPE_FIELD_NAME (type, i);
1844
1845 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1846 {
1847 struct value *v;
1848
1849 if (field_is_static (&TYPE_FIELD (type, i)))
1850 {
1851 v = value_static_field (type, i);
1852 if (v == 0)
1853 error (_("field %s is nonexistent or has been optimized out"),
1854 name);
1855 }
1856 else
1857 {
1858 v = value_primitive_field (arg1, offset, i, type);
1859 if (v == 0)
1860 error (_("there is no field named %s"), name);
1861 }
1862 return v;
1863 }
1864
1865 if (t_field_name
1866 && (t_field_name[0] == '\0'
1867 || (TYPE_CODE (type) == TYPE_CODE_UNION
1868 && (strcmp_iw (t_field_name, "else") == 0))))
1869 {
1870 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1871
1872 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1873 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1874 {
1875 /* Look for a match through the fields of an anonymous
1876 union, or anonymous struct. C++ provides anonymous
1877 unions.
1878
1879 In the GNU Chill (now deleted from GDB)
1880 implementation of variant record types, each
1881 <alternative field> has an (anonymous) union type,
1882 each member of the union represents a <variant
1883 alternative>. Each <variant alternative> is
1884 represented as a struct, with a member for each
1885 <variant field>. */
1886
1887 struct value *v;
1888 int new_offset = offset;
1889
1890 /* This is pretty gross. In G++, the offset in an
1891 anonymous union is relative to the beginning of the
1892 enclosing struct. In the GNU Chill (now deleted
1893 from GDB) implementation of variant records, the
1894 bitpos is zero in an anonymous union field, so we
1895 have to add the offset of the union here. */
1896 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1897 || (TYPE_NFIELDS (field_type) > 0
1898 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1899 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1900
1901 v = search_struct_field (name, arg1, new_offset,
1902 field_type,
1903 looking_for_baseclass);
1904 if (v)
1905 return v;
1906 }
1907 }
1908 }
1909
1910 for (i = 0; i < nbases; i++)
1911 {
1912 struct value *v;
1913 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1914 /* If we are looking for baseclasses, this is what we get when
1915 we hit them. But it could happen that the base part's member
1916 name is not yet filled in. */
1917 int found_baseclass = (looking_for_baseclass
1918 && TYPE_BASECLASS_NAME (type, i) != NULL
1919 && (strcmp_iw (name,
1920 TYPE_BASECLASS_NAME (type,
1921 i)) == 0));
1922
1923 if (BASETYPE_VIA_VIRTUAL (type, i))
1924 {
1925 int boffset;
1926 struct value *v2;
1927
1928 boffset = baseclass_offset (type, i,
1929 value_contents (arg1) + offset,
1930 value_address (arg1)
1931 + value_embedded_offset (arg1)
1932 + offset);
1933 if (boffset == -1)
1934 error (_("virtual baseclass botch"));
1935
1936 /* The virtual base class pointer might have been clobbered
1937 by the user program. Make sure that it still points to a
1938 valid memory location. */
1939
1940 boffset += value_embedded_offset (arg1) + offset;
1941 if (boffset < 0
1942 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1943 {
1944 CORE_ADDR base_addr;
1945
1946 v2 = allocate_value (basetype);
1947 base_addr = value_address (arg1) + boffset;
1948 if (target_read_memory (base_addr,
1949 value_contents_raw (v2),
1950 TYPE_LENGTH (basetype)) != 0)
1951 error (_("virtual baseclass botch"));
1952 VALUE_LVAL (v2) = lval_memory;
1953 set_value_address (v2, base_addr);
1954 }
1955 else
1956 {
1957 v2 = value_copy (arg1);
1958 deprecated_set_value_type (v2, basetype);
1959 set_value_embedded_offset (v2, boffset);
1960 }
1961
1962 if (found_baseclass)
1963 return v2;
1964 v = search_struct_field (name, v2, 0,
1965 TYPE_BASECLASS (type, i),
1966 looking_for_baseclass);
1967 }
1968 else if (found_baseclass)
1969 v = value_primitive_field (arg1, offset, i, type);
1970 else
1971 v = search_struct_field (name, arg1,
1972 offset + TYPE_BASECLASS_BITPOS (type,
1973 i) / 8,
1974 basetype, looking_for_baseclass);
1975 if (v)
1976 return v;
1977 }
1978 return NULL;
1979 }
1980
1981 /* Helper function used by value_struct_elt to recurse through
1982 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1983 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1984 TYPE.
1985
1986 If found, return value, else if name matched and args not return
1987 (value) -1, else return NULL. */
1988
1989 static struct value *
1990 search_struct_method (const char *name, struct value **arg1p,
1991 struct value **args, int offset,
1992 int *static_memfuncp, struct type *type)
1993 {
1994 int i;
1995 struct value *v;
1996 int name_matched = 0;
1997 char dem_opname[64];
1998
1999 CHECK_TYPEDEF (type);
2000 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2001 {
2002 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2003
2004 /* FIXME! May need to check for ARM demangling here */
2005 if (strncmp (t_field_name, "__", 2) == 0 ||
2006 strncmp (t_field_name, "op", 2) == 0 ||
2007 strncmp (t_field_name, "type", 4) == 0)
2008 {
2009 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2010 t_field_name = dem_opname;
2011 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2012 t_field_name = dem_opname;
2013 }
2014 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2015 {
2016 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2017 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2018
2019 name_matched = 1;
2020 check_stub_method_group (type, i);
2021 if (j > 0 && args == 0)
2022 error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
2023 else if (j == 0 && args == 0)
2024 {
2025 v = value_fn_field (arg1p, f, j, type, offset);
2026 if (v != NULL)
2027 return v;
2028 }
2029 else
2030 while (j >= 0)
2031 {
2032 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2033 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2034 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2035 TYPE_FN_FIELD_ARGS (f, j), args))
2036 {
2037 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2038 return value_virtual_fn_field (arg1p, f, j,
2039 type, offset);
2040 if (TYPE_FN_FIELD_STATIC_P (f, j)
2041 && static_memfuncp)
2042 *static_memfuncp = 1;
2043 v = value_fn_field (arg1p, f, j, type, offset);
2044 if (v != NULL)
2045 return v;
2046 }
2047 j--;
2048 }
2049 }
2050 }
2051
2052 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2053 {
2054 int base_offset;
2055
2056 if (BASETYPE_VIA_VIRTUAL (type, i))
2057 {
2058 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2059 const gdb_byte *base_valaddr;
2060
2061 /* The virtual base class pointer might have been
2062 clobbered by the user program. Make sure that it
2063 still points to a valid memory location. */
2064
2065 if (offset < 0 || offset >= TYPE_LENGTH (type))
2066 {
2067 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
2068
2069 if (target_read_memory (value_address (*arg1p) + offset,
2070 tmp, TYPE_LENGTH (baseclass)) != 0)
2071 error (_("virtual baseclass botch"));
2072 base_valaddr = tmp;
2073 }
2074 else
2075 base_valaddr = value_contents (*arg1p) + offset;
2076
2077 base_offset = baseclass_offset (type, i, base_valaddr,
2078 value_address (*arg1p) + offset);
2079 if (base_offset == -1)
2080 error (_("virtual baseclass botch"));
2081 }
2082 else
2083 {
2084 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2085 }
2086 v = search_struct_method (name, arg1p, args, base_offset + offset,
2087 static_memfuncp, TYPE_BASECLASS (type, i));
2088 if (v == (struct value *) - 1)
2089 {
2090 name_matched = 1;
2091 }
2092 else if (v)
2093 {
2094 /* FIXME-bothner: Why is this commented out? Why is it here? */
2095 /* *arg1p = arg1_tmp; */
2096 return v;
2097 }
2098 }
2099 if (name_matched)
2100 return (struct value *) - 1;
2101 else
2102 return NULL;
2103 }
2104
2105 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2106 extract the component named NAME from the ultimate target
2107 structure/union and return it as a value with its appropriate type.
2108 ERR is used in the error message if *ARGP's type is wrong.
2109
2110 C++: ARGS is a list of argument types to aid in the selection of
2111 an appropriate method. Also, handle derived types.
2112
2113 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2114 where the truthvalue of whether the function that was resolved was
2115 a static member function or not is stored.
2116
2117 ERR is an error message to be printed in case the field is not
2118 found. */
2119
2120 struct value *
2121 value_struct_elt (struct value **argp, struct value **args,
2122 const char *name, int *static_memfuncp, const char *err)
2123 {
2124 struct type *t;
2125 struct value *v;
2126
2127 *argp = coerce_array (*argp);
2128
2129 t = check_typedef (value_type (*argp));
2130
2131 /* Follow pointers until we get to a non-pointer. */
2132
2133 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2134 {
2135 *argp = value_ind (*argp);
2136 /* Don't coerce fn pointer to fn and then back again! */
2137 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2138 *argp = coerce_array (*argp);
2139 t = check_typedef (value_type (*argp));
2140 }
2141
2142 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2143 && TYPE_CODE (t) != TYPE_CODE_UNION)
2144 error (_("Attempt to extract a component of a value that is not a %s."), err);
2145
2146 /* Assume it's not, unless we see that it is. */
2147 if (static_memfuncp)
2148 *static_memfuncp = 0;
2149
2150 if (!args)
2151 {
2152 /* if there are no arguments ...do this... */
2153
2154 /* Try as a field first, because if we succeed, there is less
2155 work to be done. */
2156 v = search_struct_field (name, *argp, 0, t, 0);
2157 if (v)
2158 return v;
2159
2160 /* C++: If it was not found as a data field, then try to
2161 return it as a pointer to a method. */
2162 v = search_struct_method (name, argp, args, 0,
2163 static_memfuncp, t);
2164
2165 if (v == (struct value *) - 1)
2166 error (_("Cannot take address of method %s."), name);
2167 else if (v == 0)
2168 {
2169 if (TYPE_NFN_FIELDS (t))
2170 error (_("There is no member or method named %s."), name);
2171 else
2172 error (_("There is no member named %s."), name);
2173 }
2174 return v;
2175 }
2176
2177 v = search_struct_method (name, argp, args, 0,
2178 static_memfuncp, t);
2179
2180 if (v == (struct value *) - 1)
2181 {
2182 error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
2183 }
2184 else if (v == 0)
2185 {
2186 /* See if user tried to invoke data as function. If so, hand it
2187 back. If it's not callable (i.e., a pointer to function),
2188 gdb should give an error. */
2189 v = search_struct_field (name, *argp, 0, t, 0);
2190 /* If we found an ordinary field, then it is not a method call.
2191 So, treat it as if it were a static member function. */
2192 if (v && static_memfuncp)
2193 *static_memfuncp = 1;
2194 }
2195
2196 if (!v)
2197 error (_("Structure has no component named %s."), name);
2198 return v;
2199 }
2200
2201 /* Search through the methods of an object (and its bases) to find a
2202 specified method. Return the pointer to the fn_field list of
2203 overloaded instances.
2204
2205 Helper function for value_find_oload_list.
2206 ARGP is a pointer to a pointer to a value (the object).
2207 METHOD is a string containing the method name.
2208 OFFSET is the offset within the value.
2209 TYPE is the assumed type of the object.
2210 NUM_FNS is the number of overloaded instances.
2211 BASETYPE is set to the actual type of the subobject where the
2212 method is found.
2213 BOFFSET is the offset of the base subobject where the method is found.
2214 */
2215
2216 static struct fn_field *
2217 find_method_list (struct value **argp, const char *method,
2218 int offset, struct type *type, int *num_fns,
2219 struct type **basetype, int *boffset)
2220 {
2221 int i;
2222 struct fn_field *f;
2223 CHECK_TYPEDEF (type);
2224
2225 *num_fns = 0;
2226
2227 /* First check in object itself. */
2228 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2229 {
2230 /* pai: FIXME What about operators and type conversions? */
2231 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2232
2233 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2234 {
2235 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2236 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2237
2238 *num_fns = len;
2239 *basetype = type;
2240 *boffset = offset;
2241
2242 /* Resolve any stub methods. */
2243 check_stub_method_group (type, i);
2244
2245 return f;
2246 }
2247 }
2248
2249 /* Not found in object, check in base subobjects. */
2250 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2251 {
2252 int base_offset;
2253
2254 if (BASETYPE_VIA_VIRTUAL (type, i))
2255 {
2256 base_offset = value_offset (*argp) + offset;
2257 base_offset = baseclass_offset (type, i,
2258 value_contents (*argp) + base_offset,
2259 value_address (*argp) + base_offset);
2260 if (base_offset == -1)
2261 error (_("virtual baseclass botch"));
2262 }
2263 else /* Non-virtual base, simply use bit position from debug
2264 info. */
2265 {
2266 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2267 }
2268 f = find_method_list (argp, method, base_offset + offset,
2269 TYPE_BASECLASS (type, i), num_fns,
2270 basetype, boffset);
2271 if (f)
2272 return f;
2273 }
2274 return NULL;
2275 }
2276
2277 /* Return the list of overloaded methods of a specified name.
2278
2279 ARGP is a pointer to a pointer to a value (the object).
2280 METHOD is the method name.
2281 OFFSET is the offset within the value contents.
2282 NUM_FNS is the number of overloaded instances.
2283 BASETYPE is set to the type of the base subobject that defines the
2284 method.
2285 BOFFSET is the offset of the base subobject which defines the method.
2286 */
2287
2288 struct fn_field *
2289 value_find_oload_method_list (struct value **argp, const char *method,
2290 int offset, int *num_fns,
2291 struct type **basetype, int *boffset)
2292 {
2293 struct type *t;
2294
2295 t = check_typedef (value_type (*argp));
2296
2297 /* Code snarfed from value_struct_elt. */
2298 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2299 {
2300 *argp = value_ind (*argp);
2301 /* Don't coerce fn pointer to fn and then back again! */
2302 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2303 *argp = coerce_array (*argp);
2304 t = check_typedef (value_type (*argp));
2305 }
2306
2307 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2308 && TYPE_CODE (t) != TYPE_CODE_UNION)
2309 error (_("Attempt to extract a component of a value that is not a struct or union"));
2310
2311 return find_method_list (argp, method, 0, t, num_fns,
2312 basetype, boffset);
2313 }
2314
2315 /* Given an array of argument types (ARGTYPES) (which includes an
2316 entry for "this" in the case of C++ methods), the number of
2317 arguments NARGS, the NAME of a function whether it's a method or
2318 not (METHOD), and the degree of laxness (LAX) in conforming to
2319 overload resolution rules in ANSI C++, find the best function that
2320 matches on the argument types according to the overload resolution
2321 rules.
2322
2323 METHOD can be one of three values:
2324 NON_METHOD for non-member functions.
2325 METHOD: for member functions.
2326 BOTH: used for overload resolution of operators where the
2327 candidates are expected to be either member or non member
2328 functions. In this case the first argument ARGTYPES
2329 (representing 'this') is expected to be a reference to the
2330 target object, and will be dereferenced when attempting the
2331 non-member search.
2332
2333 In the case of class methods, the parameter OBJ is an object value
2334 in which to search for overloaded methods.
2335
2336 In the case of non-method functions, the parameter FSYM is a symbol
2337 corresponding to one of the overloaded functions.
2338
2339 Return value is an integer: 0 -> good match, 10 -> debugger applied
2340 non-standard coercions, 100 -> incompatible.
2341
2342 If a method is being searched for, VALP will hold the value.
2343 If a non-method is being searched for, SYMP will hold the symbol
2344 for it.
2345
2346 If a method is being searched for, and it is a static method,
2347 then STATICP will point to a non-zero value.
2348
2349 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2350 ADL overload candidates when performing overload resolution for a fully
2351 qualified name.
2352
2353 Note: This function does *not* check the value of
2354 overload_resolution. Caller must check it to see whether overload
2355 resolution is permitted.
2356 */
2357
2358 int
2359 find_overload_match (struct type **arg_types, int nargs,
2360 const char *name, enum oload_search_type method,
2361 int lax, struct value **objp, struct symbol *fsym,
2362 struct value **valp, struct symbol **symp,
2363 int *staticp, const int no_adl)
2364 {
2365 struct value *obj = (objp ? *objp : NULL);
2366 /* Index of best overloaded function. */
2367 int func_oload_champ = -1;
2368 int method_oload_champ = -1;
2369
2370 /* The measure for the current best match. */
2371 struct badness_vector *method_badness = NULL;
2372 struct badness_vector *func_badness = NULL;
2373
2374 struct value *temp = obj;
2375 /* For methods, the list of overloaded methods. */
2376 struct fn_field *fns_ptr = NULL;
2377 /* For non-methods, the list of overloaded function symbols. */
2378 struct symbol **oload_syms = NULL;
2379 /* Number of overloaded instances being considered. */
2380 int num_fns = 0;
2381 struct type *basetype = NULL;
2382 int boffset;
2383
2384 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2385
2386 const char *obj_type_name = NULL;
2387 const char *func_name = NULL;
2388 enum oload_classification match_quality;
2389 enum oload_classification method_match_quality = INCOMPATIBLE;
2390 enum oload_classification func_match_quality = INCOMPATIBLE;
2391
2392 /* Get the list of overloaded methods or functions. */
2393 if (method == METHOD || method == BOTH)
2394 {
2395 gdb_assert (obj);
2396
2397 /* OBJ may be a pointer value rather than the object itself. */
2398 obj = coerce_ref (obj);
2399 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2400 obj = coerce_ref (value_ind (obj));
2401 obj_type_name = TYPE_NAME (value_type (obj));
2402
2403 /* First check whether this is a data member, e.g. a pointer to
2404 a function. */
2405 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2406 {
2407 *valp = search_struct_field (name, obj, 0,
2408 check_typedef (value_type (obj)), 0);
2409 if (*valp)
2410 {
2411 *staticp = 1;
2412 return 0;
2413 }
2414 }
2415
2416 /* Retrieve the list of methods with the name NAME. */
2417 fns_ptr = value_find_oload_method_list (&temp, name,
2418 0, &num_fns,
2419 &basetype, &boffset);
2420 /* If this is a method only search, and no methods were found
2421 the search has faild. */
2422 if (method == METHOD && (!fns_ptr || !num_fns))
2423 error (_("Couldn't find method %s%s%s"),
2424 obj_type_name,
2425 (obj_type_name && *obj_type_name) ? "::" : "",
2426 name);
2427 /* If we are dealing with stub method types, they should have
2428 been resolved by find_method_list via
2429 value_find_oload_method_list above. */
2430 if (fns_ptr)
2431 {
2432 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2433 method_oload_champ = find_oload_champ (arg_types, nargs, method,
2434 num_fns, fns_ptr,
2435 oload_syms, &method_badness);
2436
2437 method_match_quality =
2438 classify_oload_match (method_badness, nargs,
2439 oload_method_static (method, fns_ptr,
2440 method_oload_champ));
2441
2442 make_cleanup (xfree, method_badness);
2443 }
2444
2445 }
2446
2447 if (method == NON_METHOD || method == BOTH)
2448 {
2449 const char *qualified_name = NULL;
2450
2451 /* If the the overload match is being search for both
2452 as a method and non member function, the first argument
2453 must now be dereferenced. */
2454 if (method == BOTH)
2455 arg_types[0] = TYPE_TARGET_TYPE (arg_types[0]);
2456
2457 if (fsym)
2458 {
2459 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2460
2461 /* If we have a function with a C++ name, try to extract just
2462 the function part. Do not try this for non-functions (e.g.
2463 function pointers). */
2464 if (qualified_name
2465 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym))) == TYPE_CODE_FUNC)
2466 {
2467 char *temp;
2468
2469 temp = cp_func_name (qualified_name);
2470
2471 /* If cp_func_name did not remove anything, the name of the
2472 symbol did not include scope or argument types - it was
2473 probably a C-style function. */
2474 if (temp)
2475 {
2476 make_cleanup (xfree, temp);
2477 if (strcmp (temp, qualified_name) == 0)
2478 func_name = NULL;
2479 else
2480 func_name = temp;
2481 }
2482 }
2483 }
2484 else
2485 {
2486 func_name = name;
2487 qualified_name = name;
2488 }
2489
2490 /* If there was no C++ name, this must be a C-style function or
2491 not a function at all. Just return the same symbol. Do the
2492 same if cp_func_name fails for some reason. */
2493 if (func_name == NULL)
2494 {
2495 *symp = fsym;
2496 return 0;
2497 }
2498
2499 func_oload_champ = find_oload_champ_namespace (arg_types, nargs,
2500 func_name,
2501 qualified_name,
2502 &oload_syms,
2503 &func_badness,
2504 no_adl);
2505
2506 if (func_oload_champ >= 0)
2507 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2508
2509 make_cleanup (xfree, oload_syms);
2510 make_cleanup (xfree, func_badness);
2511 }
2512
2513 /* Did we find a match ? */
2514 if (method_oload_champ == -1 && func_oload_champ == -1)
2515 error (_("No symbol \"%s\" in current context."), name);
2516
2517 /* If we have found both a method match and a function
2518 match, find out which one is better, and calculate match
2519 quality. */
2520 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2521 {
2522 switch (compare_badness (func_badness, method_badness))
2523 {
2524 case 0: /* Top two contenders are equally good. */
2525 /* FIXME: GDB does not support the general ambiguous
2526 case. All candidates should be collected and presented
2527 the the user. */
2528 error (_("Ambiguous overload resolution"));
2529 break;
2530 case 1: /* Incomparable top contenders. */
2531 /* This is an error incompatible candidates
2532 should not have been proposed. */
2533 error (_("Internal error: incompatible overload candidates proposed"));
2534 break;
2535 case 2: /* Function champion. */
2536 method_oload_champ = -1;
2537 match_quality = func_match_quality;
2538 break;
2539 case 3: /* Method champion. */
2540 func_oload_champ = -1;
2541 match_quality = method_match_quality;
2542 break;
2543 default:
2544 error (_("Internal error: unexpected overload comparison result"));
2545 break;
2546 }
2547 }
2548 else
2549 {
2550 /* We have either a method match or a function match. */
2551 if (method_oload_champ >= 0)
2552 match_quality = method_match_quality;
2553 else
2554 match_quality = func_match_quality;
2555 }
2556
2557 if (match_quality == INCOMPATIBLE)
2558 {
2559 if (method == METHOD)
2560 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2561 obj_type_name,
2562 (obj_type_name && *obj_type_name) ? "::" : "",
2563 name);
2564 else
2565 error (_("Cannot resolve function %s to any overloaded instance"),
2566 func_name);
2567 }
2568 else if (match_quality == NON_STANDARD)
2569 {
2570 if (method == METHOD)
2571 warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
2572 obj_type_name,
2573 (obj_type_name && *obj_type_name) ? "::" : "",
2574 name);
2575 else
2576 warning (_("Using non-standard conversion to match function %s to supplied arguments"),
2577 func_name);
2578 }
2579
2580 if (staticp != NULL)
2581 *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2582
2583 if (method_oload_champ >= 0)
2584 {
2585 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2586 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2587 basetype, boffset);
2588 else
2589 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2590 basetype, boffset);
2591 }
2592 else
2593 *symp = oload_syms[func_oload_champ];
2594
2595 if (objp)
2596 {
2597 struct type *temp_type = check_typedef (value_type (temp));
2598 struct type *obj_type = check_typedef (value_type (*objp));
2599
2600 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2601 && (TYPE_CODE (obj_type) == TYPE_CODE_PTR
2602 || TYPE_CODE (obj_type) == TYPE_CODE_REF))
2603 {
2604 temp = value_addr (temp);
2605 }
2606 *objp = temp;
2607 }
2608
2609 do_cleanups (all_cleanups);
2610
2611 switch (match_quality)
2612 {
2613 case INCOMPATIBLE:
2614 return 100;
2615 case NON_STANDARD:
2616 return 10;
2617 default: /* STANDARD */
2618 return 0;
2619 }
2620 }
2621
2622 /* Find the best overload match, searching for FUNC_NAME in namespaces
2623 contained in QUALIFIED_NAME until it either finds a good match or
2624 runs out of namespaces. It stores the overloaded functions in
2625 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2626 calling function is responsible for freeing *OLOAD_SYMS and
2627 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2628 performned. */
2629
2630 static int
2631 find_oload_champ_namespace (struct type **arg_types, int nargs,
2632 const char *func_name,
2633 const char *qualified_name,
2634 struct symbol ***oload_syms,
2635 struct badness_vector **oload_champ_bv,
2636 const int no_adl)
2637 {
2638 int oload_champ;
2639
2640 find_oload_champ_namespace_loop (arg_types, nargs,
2641 func_name,
2642 qualified_name, 0,
2643 oload_syms, oload_champ_bv,
2644 &oload_champ,
2645 no_adl);
2646
2647 return oload_champ;
2648 }
2649
2650 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2651 how deep we've looked for namespaces, and the champ is stored in
2652 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2653 if it isn't. Other arguments are the same as in
2654 find_oload_champ_namespace
2655
2656 It is the caller's responsibility to free *OLOAD_SYMS and
2657 *OLOAD_CHAMP_BV. */
2658
2659 static int
2660 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2661 const char *func_name,
2662 const char *qualified_name,
2663 int namespace_len,
2664 struct symbol ***oload_syms,
2665 struct badness_vector **oload_champ_bv,
2666 int *oload_champ,
2667 const int no_adl)
2668 {
2669 int next_namespace_len = namespace_len;
2670 int searched_deeper = 0;
2671 int num_fns = 0;
2672 struct cleanup *old_cleanups;
2673 int new_oload_champ;
2674 struct symbol **new_oload_syms;
2675 struct badness_vector *new_oload_champ_bv;
2676 char *new_namespace;
2677
2678 if (next_namespace_len != 0)
2679 {
2680 gdb_assert (qualified_name[next_namespace_len] == ':');
2681 next_namespace_len += 2;
2682 }
2683 next_namespace_len +=
2684 cp_find_first_component (qualified_name + next_namespace_len);
2685
2686 /* Initialize these to values that can safely be xfree'd. */
2687 *oload_syms = NULL;
2688 *oload_champ_bv = NULL;
2689
2690 /* First, see if we have a deeper namespace we can search in.
2691 If we get a good match there, use it. */
2692
2693 if (qualified_name[next_namespace_len] == ':')
2694 {
2695 searched_deeper = 1;
2696
2697 if (find_oload_champ_namespace_loop (arg_types, nargs,
2698 func_name, qualified_name,
2699 next_namespace_len,
2700 oload_syms, oload_champ_bv,
2701 oload_champ, no_adl))
2702 {
2703 return 1;
2704 }
2705 };
2706
2707 /* If we reach here, either we're in the deepest namespace or we
2708 didn't find a good match in a deeper namespace. But, in the
2709 latter case, we still have a bad match in a deeper namespace;
2710 note that we might not find any match at all in the current
2711 namespace. (There's always a match in the deepest namespace,
2712 because this overload mechanism only gets called if there's a
2713 function symbol to start off with.) */
2714
2715 old_cleanups = make_cleanup (xfree, *oload_syms);
2716 make_cleanup (xfree, *oload_champ_bv);
2717 new_namespace = alloca (namespace_len + 1);
2718 strncpy (new_namespace, qualified_name, namespace_len);
2719 new_namespace[namespace_len] = '\0';
2720 new_oload_syms = make_symbol_overload_list (func_name,
2721 new_namespace);
2722
2723 /* If we have reached the deepest level perform argument
2724 determined lookup. */
2725 if (!searched_deeper && !no_adl)
2726 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2727
2728 while (new_oload_syms[num_fns])
2729 ++num_fns;
2730
2731 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2732 NULL, new_oload_syms,
2733 &new_oload_champ_bv);
2734
2735 /* Case 1: We found a good match. Free earlier matches (if any),
2736 and return it. Case 2: We didn't find a good match, but we're
2737 not the deepest function. Then go with the bad match that the
2738 deeper function found. Case 3: We found a bad match, and we're
2739 the deepest function. Then return what we found, even though
2740 it's a bad match. */
2741
2742 if (new_oload_champ != -1
2743 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2744 {
2745 *oload_syms = new_oload_syms;
2746 *oload_champ = new_oload_champ;
2747 *oload_champ_bv = new_oload_champ_bv;
2748 do_cleanups (old_cleanups);
2749 return 1;
2750 }
2751 else if (searched_deeper)
2752 {
2753 xfree (new_oload_syms);
2754 xfree (new_oload_champ_bv);
2755 discard_cleanups (old_cleanups);
2756 return 0;
2757 }
2758 else
2759 {
2760 *oload_syms = new_oload_syms;
2761 *oload_champ = new_oload_champ;
2762 *oload_champ_bv = new_oload_champ_bv;
2763 discard_cleanups (old_cleanups);
2764 return 0;
2765 }
2766 }
2767
2768 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2769 the best match from among the overloaded methods or functions
2770 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2771 The number of methods/functions in the list is given by NUM_FNS.
2772 Return the index of the best match; store an indication of the
2773 quality of the match in OLOAD_CHAMP_BV.
2774
2775 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2776
2777 static int
2778 find_oload_champ (struct type **arg_types, int nargs, int method,
2779 int num_fns, struct fn_field *fns_ptr,
2780 struct symbol **oload_syms,
2781 struct badness_vector **oload_champ_bv)
2782 {
2783 int ix;
2784 /* A measure of how good an overloaded instance is. */
2785 struct badness_vector *bv;
2786 /* Index of best overloaded function. */
2787 int oload_champ = -1;
2788 /* Current ambiguity state for overload resolution. */
2789 int oload_ambiguous = 0;
2790 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2791
2792 *oload_champ_bv = NULL;
2793
2794 /* Consider each candidate in turn. */
2795 for (ix = 0; ix < num_fns; ix++)
2796 {
2797 int jj;
2798 int static_offset = oload_method_static (method, fns_ptr, ix);
2799 int nparms;
2800 struct type **parm_types;
2801
2802 if (method)
2803 {
2804 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2805 }
2806 else
2807 {
2808 /* If it's not a method, this is the proper place. */
2809 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2810 }
2811
2812 /* Prepare array of parameter types. */
2813 parm_types = (struct type **)
2814 xmalloc (nparms * (sizeof (struct type *)));
2815 for (jj = 0; jj < nparms; jj++)
2816 parm_types[jj] = (method
2817 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2818 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2819 jj));
2820
2821 /* Compare parameter types to supplied argument types. Skip
2822 THIS for static methods. */
2823 bv = rank_function (parm_types, nparms,
2824 arg_types + static_offset,
2825 nargs - static_offset);
2826
2827 if (!*oload_champ_bv)
2828 {
2829 *oload_champ_bv = bv;
2830 oload_champ = 0;
2831 }
2832 else /* See whether current candidate is better or worse than
2833 previous best. */
2834 switch (compare_badness (bv, *oload_champ_bv))
2835 {
2836 case 0: /* Top two contenders are equally good. */
2837 oload_ambiguous = 1;
2838 break;
2839 case 1: /* Incomparable top contenders. */
2840 oload_ambiguous = 2;
2841 break;
2842 case 2: /* New champion, record details. */
2843 *oload_champ_bv = bv;
2844 oload_ambiguous = 0;
2845 oload_champ = ix;
2846 break;
2847 case 3:
2848 default:
2849 break;
2850 }
2851 xfree (parm_types);
2852 if (overload_debug)
2853 {
2854 if (method)
2855 fprintf_filtered (gdb_stderr,
2856 "Overloaded method instance %s, # of parms %d\n",
2857 fns_ptr[ix].physname, nparms);
2858 else
2859 fprintf_filtered (gdb_stderr,
2860 "Overloaded function instance %s # of parms %d\n",
2861 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2862 nparms);
2863 for (jj = 0; jj < nargs - static_offset; jj++)
2864 fprintf_filtered (gdb_stderr,
2865 "...Badness @ %d : %d\n",
2866 jj, bv->rank[jj]);
2867 fprintf_filtered (gdb_stderr,
2868 "Overload resolution champion is %d, ambiguous? %d\n",
2869 oload_champ, oload_ambiguous);
2870 }
2871 }
2872
2873 return oload_champ;
2874 }
2875
2876 /* Return 1 if we're looking at a static method, 0 if we're looking at
2877 a non-static method or a function that isn't a method. */
2878
2879 static int
2880 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2881 {
2882 if (method && fns_ptr && index >= 0
2883 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2884 return 1;
2885 else
2886 return 0;
2887 }
2888
2889 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2890
2891 static enum oload_classification
2892 classify_oload_match (struct badness_vector *oload_champ_bv,
2893 int nargs,
2894 int static_offset)
2895 {
2896 int ix;
2897
2898 for (ix = 1; ix <= nargs - static_offset; ix++)
2899 {
2900 if (oload_champ_bv->rank[ix] >= 100)
2901 return INCOMPATIBLE; /* Truly mismatched types. */
2902 else if (oload_champ_bv->rank[ix] >= 10)
2903 return NON_STANDARD; /* Non-standard type conversions
2904 needed. */
2905 }
2906
2907 return STANDARD; /* Only standard conversions needed. */
2908 }
2909
2910 /* C++: return 1 is NAME is a legitimate name for the destructor of
2911 type TYPE. If TYPE does not have a destructor, or if NAME is
2912 inappropriate for TYPE, an error is signaled. */
2913 int
2914 destructor_name_p (const char *name, const struct type *type)
2915 {
2916 if (name[0] == '~')
2917 {
2918 char *dname = type_name_no_tag (type);
2919 char *cp = strchr (dname, '<');
2920 unsigned int len;
2921
2922 /* Do not compare the template part for template classes. */
2923 if (cp == NULL)
2924 len = strlen (dname);
2925 else
2926 len = cp - dname;
2927 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2928 error (_("name of destructor must equal name of class"));
2929 else
2930 return 1;
2931 }
2932 return 0;
2933 }
2934
2935 /* Given TYPE, a structure/union,
2936 return 1 if the component named NAME from the ultimate target
2937 structure/union is defined, otherwise, return 0. */
2938
2939 int
2940 check_field (struct type *type, const char *name)
2941 {
2942 int i;
2943
2944 /* The type may be a stub. */
2945 CHECK_TYPEDEF (type);
2946
2947 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2948 {
2949 char *t_field_name = TYPE_FIELD_NAME (type, i);
2950
2951 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2952 return 1;
2953 }
2954
2955 /* C++: If it was not found as a data field, then try to return it
2956 as a pointer to a method. */
2957
2958 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2959 {
2960 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2961 return 1;
2962 }
2963
2964 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2965 if (check_field (TYPE_BASECLASS (type, i), name))
2966 return 1;
2967
2968 return 0;
2969 }
2970
2971 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2972 return the appropriate member (or the address of the member, if
2973 WANT_ADDRESS). This function is used to resolve user expressions
2974 of the form "DOMAIN::NAME". For more details on what happens, see
2975 the comment before value_struct_elt_for_reference. */
2976
2977 struct value *
2978 value_aggregate_elt (struct type *curtype, char *name,
2979 struct type *expect_type, int want_address,
2980 enum noside noside)
2981 {
2982 switch (TYPE_CODE (curtype))
2983 {
2984 case TYPE_CODE_STRUCT:
2985 case TYPE_CODE_UNION:
2986 return value_struct_elt_for_reference (curtype, 0, curtype,
2987 name, expect_type,
2988 want_address, noside);
2989 case TYPE_CODE_NAMESPACE:
2990 return value_namespace_elt (curtype, name,
2991 want_address, noside);
2992 default:
2993 internal_error (__FILE__, __LINE__,
2994 _("non-aggregate type in value_aggregate_elt"));
2995 }
2996 }
2997
2998 /* Compares the two method/function types T1 and T2 for "equality"
2999 with respect to the the methods' parameters. If the types of the
3000 two parameter lists are the same, returns 1; 0 otherwise. This
3001 comparison may ignore any artificial parameters in T1 if
3002 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3003 the first artificial parameter in T1, assumed to be a 'this' pointer.
3004
3005 The type T2 is expected to have come from make_params (in eval.c). */
3006
3007 static int
3008 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3009 {
3010 int start = 0;
3011
3012 if (TYPE_FIELD_ARTIFICIAL (t1, 0))
3013 ++start;
3014
3015 /* If skipping artificial fields, find the first real field
3016 in T1. */
3017 if (skip_artificial)
3018 {
3019 while (start < TYPE_NFIELDS (t1)
3020 && TYPE_FIELD_ARTIFICIAL (t1, start))
3021 ++start;
3022 }
3023
3024 /* Now compare parameters */
3025
3026 /* Special case: a method taking void. T1 will contain no
3027 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3028 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3029 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3030 return 1;
3031
3032 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3033 {
3034 int i;
3035
3036 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3037 {
3038 if (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3039 TYPE_FIELD_TYPE (t2, i))
3040 != 0)
3041 return 0;
3042 }
3043
3044 return 1;
3045 }
3046
3047 return 0;
3048 }
3049
3050 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3051 return the address of this member as a "pointer to member" type.
3052 If INTYPE is non-null, then it will be the type of the member we
3053 are looking for. This will help us resolve "pointers to member
3054 functions". This function is used to resolve user expressions of
3055 the form "DOMAIN::NAME". */
3056
3057 static struct value *
3058 value_struct_elt_for_reference (struct type *domain, int offset,
3059 struct type *curtype, char *name,
3060 struct type *intype,
3061 int want_address,
3062 enum noside noside)
3063 {
3064 struct type *t = curtype;
3065 int i;
3066 struct value *v, *result;
3067
3068 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3069 && TYPE_CODE (t) != TYPE_CODE_UNION)
3070 error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
3071
3072 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3073 {
3074 char *t_field_name = TYPE_FIELD_NAME (t, i);
3075
3076 if (t_field_name && strcmp (t_field_name, name) == 0)
3077 {
3078 if (field_is_static (&TYPE_FIELD (t, i)))
3079 {
3080 v = value_static_field (t, i);
3081 if (v == NULL)
3082 error (_("static field %s has been optimized out"),
3083 name);
3084 if (want_address)
3085 v = value_addr (v);
3086 return v;
3087 }
3088 if (TYPE_FIELD_PACKED (t, i))
3089 error (_("pointers to bitfield members not allowed"));
3090
3091 if (want_address)
3092 return value_from_longest
3093 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3094 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3095 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3096 return allocate_value (TYPE_FIELD_TYPE (t, i));
3097 else
3098 error (_("Cannot reference non-static field \"%s\""), name);
3099 }
3100 }
3101
3102 /* C++: If it was not found as a data field, then try to return it
3103 as a pointer to a method. */
3104
3105 /* Perform all necessary dereferencing. */
3106 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3107 intype = TYPE_TARGET_TYPE (intype);
3108
3109 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3110 {
3111 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3112 char dem_opname[64];
3113
3114 if (strncmp (t_field_name, "__", 2) == 0
3115 || strncmp (t_field_name, "op", 2) == 0
3116 || strncmp (t_field_name, "type", 4) == 0)
3117 {
3118 if (cplus_demangle_opname (t_field_name,
3119 dem_opname, DMGL_ANSI))
3120 t_field_name = dem_opname;
3121 else if (cplus_demangle_opname (t_field_name,
3122 dem_opname, 0))
3123 t_field_name = dem_opname;
3124 }
3125 if (t_field_name && strcmp (t_field_name, name) == 0)
3126 {
3127 int j;
3128 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3129 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3130
3131 check_stub_method_group (t, i);
3132
3133 if (intype)
3134 {
3135 for (j = 0; j < len; ++j)
3136 {
3137 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3138 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 1))
3139 break;
3140 }
3141
3142 if (j == len)
3143 error (_("no member function matches that type instantiation"));
3144 }
3145 else
3146 {
3147 int ii;
3148
3149 j = -1;
3150 for (ii = 0; ii < TYPE_FN_FIELDLIST_LENGTH (t, i);
3151 ++ii)
3152 {
3153 /* Skip artificial methods. This is necessary if,
3154 for example, the user wants to "print
3155 subclass::subclass" with only one user-defined
3156 constructor. There is no ambiguity in this
3157 case. */
3158 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3159 continue;
3160
3161 /* Desired method is ambiguous if more than one
3162 method is defined. */
3163 if (j != -1)
3164 error (_("non-unique member `%s' requires type instantiation"), name);
3165
3166 j = ii;
3167 }
3168 }
3169
3170 if (TYPE_FN_FIELD_STATIC_P (f, j))
3171 {
3172 struct symbol *s =
3173 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3174 0, VAR_DOMAIN, 0);
3175
3176 if (s == NULL)
3177 return NULL;
3178
3179 if (want_address)
3180 return value_addr (read_var_value (s, 0));
3181 else
3182 return read_var_value (s, 0);
3183 }
3184
3185 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3186 {
3187 if (want_address)
3188 {
3189 result = allocate_value
3190 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3191 cplus_make_method_ptr (value_type (result),
3192 value_contents_writeable (result),
3193 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3194 }
3195 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3196 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3197 else
3198 error (_("Cannot reference virtual member function \"%s\""),
3199 name);
3200 }
3201 else
3202 {
3203 struct symbol *s =
3204 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3205 0, VAR_DOMAIN, 0);
3206
3207 if (s == NULL)
3208 return NULL;
3209
3210 v = read_var_value (s, 0);
3211 if (!want_address)
3212 result = v;
3213 else
3214 {
3215 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3216 cplus_make_method_ptr (value_type (result),
3217 value_contents_writeable (result),
3218 value_address (v), 0);
3219 }
3220 }
3221 return result;
3222 }
3223 }
3224 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3225 {
3226 struct value *v;
3227 int base_offset;
3228
3229 if (BASETYPE_VIA_VIRTUAL (t, i))
3230 base_offset = 0;
3231 else
3232 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3233 v = value_struct_elt_for_reference (domain,
3234 offset + base_offset,
3235 TYPE_BASECLASS (t, i),
3236 name, intype,
3237 want_address, noside);
3238 if (v)
3239 return v;
3240 }
3241
3242 /* As a last chance, pretend that CURTYPE is a namespace, and look
3243 it up that way; this (frequently) works for types nested inside
3244 classes. */
3245
3246 return value_maybe_namespace_elt (curtype, name,
3247 want_address, noside);
3248 }
3249
3250 /* C++: Return the member NAME of the namespace given by the type
3251 CURTYPE. */
3252
3253 static struct value *
3254 value_namespace_elt (const struct type *curtype,
3255 char *name, int want_address,
3256 enum noside noside)
3257 {
3258 struct value *retval = value_maybe_namespace_elt (curtype, name,
3259 want_address,
3260 noside);
3261
3262 if (retval == NULL)
3263 error (_("No symbol \"%s\" in namespace \"%s\"."),
3264 name, TYPE_TAG_NAME (curtype));
3265
3266 return retval;
3267 }
3268
3269 /* A helper function used by value_namespace_elt and
3270 value_struct_elt_for_reference. It looks up NAME inside the
3271 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3272 is a class and NAME refers to a type in CURTYPE itself (as opposed
3273 to, say, some base class of CURTYPE). */
3274
3275 static struct value *
3276 value_maybe_namespace_elt (const struct type *curtype,
3277 char *name, int want_address,
3278 enum noside noside)
3279 {
3280 const char *namespace_name = TYPE_TAG_NAME (curtype);
3281 struct symbol *sym;
3282 struct value *result;
3283
3284 sym = cp_lookup_symbol_namespace (namespace_name, name,
3285 get_selected_block (0), VAR_DOMAIN);
3286
3287 if (sym == NULL)
3288 {
3289 char *concatenated_name = alloca (strlen (namespace_name) + 2
3290 + strlen (name) + 1);
3291
3292 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3293 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3294 }
3295
3296 if (sym == NULL)
3297 return NULL;
3298 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3299 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3300 result = allocate_value (SYMBOL_TYPE (sym));
3301 else
3302 result = value_of_variable (sym, get_selected_block (0));
3303
3304 if (result && want_address)
3305 result = value_addr (result);
3306
3307 return result;
3308 }
3309
3310 /* Given a pointer value V, find the real (RTTI) type of the object it
3311 points to.
3312
3313 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3314 and refer to the values computed for the object pointed to. */
3315
3316 struct type *
3317 value_rtti_target_type (struct value *v, int *full,
3318 int *top, int *using_enc)
3319 {
3320 struct value *target;
3321
3322 target = value_ind (v);
3323
3324 return value_rtti_type (target, full, top, using_enc);
3325 }
3326
3327 /* Given a value pointed to by ARGP, check its real run-time type, and
3328 if that is different from the enclosing type, create a new value
3329 using the real run-time type as the enclosing type (and of the same
3330 type as ARGP) and return it, with the embedded offset adjusted to
3331 be the correct offset to the enclosed object. RTYPE is the type,
3332 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3333 by value_rtti_type(). If these are available, they can be supplied
3334 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3335 NULL if they're not available. */
3336
3337 struct value *
3338 value_full_object (struct value *argp,
3339 struct type *rtype,
3340 int xfull, int xtop,
3341 int xusing_enc)
3342 {
3343 struct type *real_type;
3344 int full = 0;
3345 int top = -1;
3346 int using_enc = 0;
3347 struct value *new_val;
3348
3349 if (rtype)
3350 {
3351 real_type = rtype;
3352 full = xfull;
3353 top = xtop;
3354 using_enc = xusing_enc;
3355 }
3356 else
3357 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3358
3359 /* If no RTTI data, or if object is already complete, do nothing. */
3360 if (!real_type || real_type == value_enclosing_type (argp))
3361 return argp;
3362
3363 /* If we have the full object, but for some reason the enclosing
3364 type is wrong, set it. */
3365 /* pai: FIXME -- sounds iffy */
3366 if (full)
3367 {
3368 argp = value_change_enclosing_type (argp, real_type);
3369 return argp;
3370 }
3371
3372 /* Check if object is in memory */
3373 if (VALUE_LVAL (argp) != lval_memory)
3374 {
3375 warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."),
3376 TYPE_NAME (real_type));
3377
3378 return argp;
3379 }
3380
3381 /* All other cases -- retrieve the complete object. */
3382 /* Go back by the computed top_offset from the beginning of the
3383 object, adjusting for the embedded offset of argp if that's what
3384 value_rtti_type used for its computation. */
3385 new_val = value_at_lazy (real_type, value_address (argp) - top +
3386 (using_enc ? 0 : value_embedded_offset (argp)));
3387 deprecated_set_value_type (new_val, value_type (argp));
3388 set_value_embedded_offset (new_val, (using_enc
3389 ? top + value_embedded_offset (argp)
3390 : top));
3391 return new_val;
3392 }
3393
3394
3395 /* Return the value of the local variable, if one exists.
3396 Flag COMPLAIN signals an error if the request is made in an
3397 inappropriate context. */
3398
3399 struct value *
3400 value_of_local (const char *name, int complain)
3401 {
3402 struct symbol *func, *sym;
3403 struct block *b;
3404 struct value * ret;
3405 struct frame_info *frame;
3406
3407 if (complain)
3408 frame = get_selected_frame (_("no frame selected"));
3409 else
3410 {
3411 frame = deprecated_safe_get_selected_frame ();
3412 if (frame == 0)
3413 return 0;
3414 }
3415
3416 func = get_frame_function (frame);
3417 if (!func)
3418 {
3419 if (complain)
3420 error (_("no `%s' in nameless context"), name);
3421 else
3422 return 0;
3423 }
3424
3425 b = SYMBOL_BLOCK_VALUE (func);
3426 if (dict_empty (BLOCK_DICT (b)))
3427 {
3428 if (complain)
3429 error (_("no args, no `%s'"), name);
3430 else
3431 return 0;
3432 }
3433
3434 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3435 symbol instead of the LOC_ARG one (if both exist). */
3436 sym = lookup_block_symbol (b, name, VAR_DOMAIN);
3437 if (sym == NULL)
3438 {
3439 if (complain)
3440 error (_("current stack frame does not contain a variable named `%s'"),
3441 name);
3442 else
3443 return NULL;
3444 }
3445
3446 ret = read_var_value (sym, frame);
3447 if (ret == 0 && complain)
3448 error (_("`%s' argument unreadable"), name);
3449 return ret;
3450 }
3451
3452 /* C++/Objective-C: return the value of the class instance variable,
3453 if one exists. Flag COMPLAIN signals an error if the request is
3454 made in an inappropriate context. */
3455
3456 struct value *
3457 value_of_this (int complain)
3458 {
3459 if (!current_language->la_name_of_this)
3460 return 0;
3461 return value_of_local (current_language->la_name_of_this, complain);
3462 }
3463
3464 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3465 elements long, starting at LOWBOUND. The result has the same lower
3466 bound as the original ARRAY. */
3467
3468 struct value *
3469 value_slice (struct value *array, int lowbound, int length)
3470 {
3471 struct type *slice_range_type, *slice_type, *range_type;
3472 LONGEST lowerbound, upperbound;
3473 struct value *slice;
3474 struct type *array_type;
3475
3476 array_type = check_typedef (value_type (array));
3477 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3478 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3479 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3480 error (_("cannot take slice of non-array"));
3481
3482 range_type = TYPE_INDEX_TYPE (array_type);
3483 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3484 error (_("slice from bad array or bitstring"));
3485
3486 if (lowbound < lowerbound || length < 0
3487 || lowbound + length - 1 > upperbound)
3488 error (_("slice out of range"));
3489
3490 /* FIXME-type-allocation: need a way to free this type when we are
3491 done with it. */
3492 slice_range_type = create_range_type ((struct type *) NULL,
3493 TYPE_TARGET_TYPE (range_type),
3494 lowbound,
3495 lowbound + length - 1);
3496 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3497 {
3498 int i;
3499
3500 slice_type = create_set_type ((struct type *) NULL,
3501 slice_range_type);
3502 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3503 slice = value_zero (slice_type, not_lval);
3504
3505 for (i = 0; i < length; i++)
3506 {
3507 int element = value_bit_index (array_type,
3508 value_contents (array),
3509 lowbound + i);
3510
3511 if (element < 0)
3512 error (_("internal error accessing bitstring"));
3513 else if (element > 0)
3514 {
3515 int j = i % TARGET_CHAR_BIT;
3516
3517 if (gdbarch_bits_big_endian (get_type_arch (array_type)))
3518 j = TARGET_CHAR_BIT - 1 - j;
3519 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3520 }
3521 }
3522 /* We should set the address, bitssize, and bitspos, so the
3523 slice can be used on the LHS, but that may require extensions
3524 to value_assign. For now, just leave as a non_lval.
3525 FIXME. */
3526 }
3527 else
3528 {
3529 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3530 LONGEST offset =
3531 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3532
3533 slice_type = create_array_type ((struct type *) NULL,
3534 element_type,
3535 slice_range_type);
3536 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3537
3538 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3539 slice = allocate_value_lazy (slice_type);
3540 else
3541 {
3542 slice = allocate_value (slice_type);
3543 memcpy (value_contents_writeable (slice),
3544 value_contents (array) + offset,
3545 TYPE_LENGTH (slice_type));
3546 }
3547
3548 set_value_component_location (slice, array);
3549 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3550 set_value_offset (slice, value_offset (array) + offset);
3551 }
3552 return slice;
3553 }
3554
3555 /* Create a value for a FORTRAN complex number. Currently most of the
3556 time values are coerced to COMPLEX*16 (i.e. a complex number
3557 composed of 2 doubles. This really should be a smarter routine
3558 that figures out precision inteligently as opposed to assuming
3559 doubles. FIXME: fmb */
3560
3561 struct value *
3562 value_literal_complex (struct value *arg1,
3563 struct value *arg2,
3564 struct type *type)
3565 {
3566 struct value *val;
3567 struct type *real_type = TYPE_TARGET_TYPE (type);
3568
3569 val = allocate_value (type);
3570 arg1 = value_cast (real_type, arg1);
3571 arg2 = value_cast (real_type, arg2);
3572
3573 memcpy (value_contents_raw (val),
3574 value_contents (arg1), TYPE_LENGTH (real_type));
3575 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3576 value_contents (arg2), TYPE_LENGTH (real_type));
3577 return val;
3578 }
3579
3580 /* Cast a value into the appropriate complex data type. */
3581
3582 static struct value *
3583 cast_into_complex (struct type *type, struct value *val)
3584 {
3585 struct type *real_type = TYPE_TARGET_TYPE (type);
3586
3587 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3588 {
3589 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3590 struct value *re_val = allocate_value (val_real_type);
3591 struct value *im_val = allocate_value (val_real_type);
3592
3593 memcpy (value_contents_raw (re_val),
3594 value_contents (val), TYPE_LENGTH (val_real_type));
3595 memcpy (value_contents_raw (im_val),
3596 value_contents (val) + TYPE_LENGTH (val_real_type),
3597 TYPE_LENGTH (val_real_type));
3598
3599 return value_literal_complex (re_val, im_val, type);
3600 }
3601 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3602 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3603 return value_literal_complex (val,
3604 value_zero (real_type, not_lval),
3605 type);
3606 else
3607 error (_("cannot cast non-number to complex"));
3608 }
3609
3610 void
3611 _initialize_valops (void)
3612 {
3613 add_setshow_boolean_cmd ("overload-resolution", class_support,
3614 &overload_resolution, _("\
3615 Set overload resolution in evaluating C++ functions."), _("\
3616 Show overload resolution in evaluating C++ functions."),
3617 NULL, NULL,
3618 show_overload_resolution,
3619 &setlist, &showlist);
3620 overload_resolution = 1;
3621 }
This page took 0.107462 seconds and 4 git commands to generate.