Obvious fix: in an entry for 1997-09-10, expand wildcard to explicit
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 87, 89, 91, 92, 93, 94, 95, 96, 97, 1998, 2001 Free
3 Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33 #include "regcache.h"
34
35 #include <errno.h>
36 #include "gdb_string.h"
37
38 /* Flag indicating HP compilers were used; needed to correctly handle some
39 value operations with HP aCC code/runtime. */
40 extern int hp_som_som_object_present;
41
42 extern int overload_debug;
43 /* Local functions. */
44
45 static int typecmp (int staticp, struct type *t1[], value_ptr t2[]);
46
47 static CORE_ADDR find_function_addr (value_ptr, struct type **);
48 static value_ptr value_arg_coerce (value_ptr, struct type *, int);
49
50
51 static CORE_ADDR value_push (CORE_ADDR, value_ptr);
52
53 static value_ptr search_struct_field (char *, value_ptr, int,
54 struct type *, int);
55
56 static value_ptr search_struct_method (char *, value_ptr *,
57 value_ptr *,
58 int, int *, struct type *);
59
60 static int check_field_in (struct type *, const char *);
61
62 static CORE_ADDR allocate_space_in_inferior (int);
63
64 static value_ptr cast_into_complex (struct type *, value_ptr);
65
66 static struct fn_field *find_method_list (value_ptr * argp, char *method,
67 int offset, int *static_memfuncp,
68 struct type *type, int *num_fns,
69 struct type **basetype,
70 int *boffset);
71
72 void _initialize_valops (void);
73
74 /* Flag for whether we want to abandon failed expression evals by default. */
75
76 #if 0
77 static int auto_abandon = 0;
78 #endif
79
80 int overload_resolution = 0;
81
82 /* This boolean tells what gdb should do if a signal is received while in
83 a function called from gdb (call dummy). If set, gdb unwinds the stack
84 and restore the context to what as it was before the call.
85 The default is to stop in the frame where the signal was received. */
86
87 int unwind_on_signal_p = 0;
88 \f
89
90
91 /* Find the address of function name NAME in the inferior. */
92
93 value_ptr
94 find_function_in_inferior (char *name)
95 {
96 register struct symbol *sym;
97 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
98 if (sym != NULL)
99 {
100 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
101 {
102 error ("\"%s\" exists in this program but is not a function.",
103 name);
104 }
105 return value_of_variable (sym, NULL);
106 }
107 else
108 {
109 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
110 if (msymbol != NULL)
111 {
112 struct type *type;
113 CORE_ADDR maddr;
114 type = lookup_pointer_type (builtin_type_char);
115 type = lookup_function_type (type);
116 type = lookup_pointer_type (type);
117 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
118 return value_from_pointer (type, maddr);
119 }
120 else
121 {
122 if (!target_has_execution)
123 error ("evaluation of this expression requires the target program to be active");
124 else
125 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
126 }
127 }
128 }
129
130 /* Allocate NBYTES of space in the inferior using the inferior's malloc
131 and return a value that is a pointer to the allocated space. */
132
133 value_ptr
134 value_allocate_space_in_inferior (int len)
135 {
136 value_ptr blocklen;
137 register value_ptr val = find_function_in_inferior ("malloc");
138
139 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
140 val = call_function_by_hand (val, 1, &blocklen);
141 if (value_logical_not (val))
142 {
143 if (!target_has_execution)
144 error ("No memory available to program now: you need to start the target first");
145 else
146 error ("No memory available to program: call to malloc failed");
147 }
148 return val;
149 }
150
151 static CORE_ADDR
152 allocate_space_in_inferior (int len)
153 {
154 return value_as_long (value_allocate_space_in_inferior (len));
155 }
156
157 /* Cast value ARG2 to type TYPE and return as a value.
158 More general than a C cast: accepts any two types of the same length,
159 and if ARG2 is an lvalue it can be cast into anything at all. */
160 /* In C++, casts may change pointer or object representations. */
161
162 value_ptr
163 value_cast (struct type *type, register value_ptr arg2)
164 {
165 register enum type_code code1;
166 register enum type_code code2;
167 register int scalar;
168 struct type *type2;
169
170 int convert_to_boolean = 0;
171
172 if (VALUE_TYPE (arg2) == type)
173 return arg2;
174
175 CHECK_TYPEDEF (type);
176 code1 = TYPE_CODE (type);
177 COERCE_REF (arg2);
178 type2 = check_typedef (VALUE_TYPE (arg2));
179
180 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
181 is treated like a cast to (TYPE [N])OBJECT,
182 where N is sizeof(OBJECT)/sizeof(TYPE). */
183 if (code1 == TYPE_CODE_ARRAY)
184 {
185 struct type *element_type = TYPE_TARGET_TYPE (type);
186 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
187 if (element_length > 0
188 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
189 {
190 struct type *range_type = TYPE_INDEX_TYPE (type);
191 int val_length = TYPE_LENGTH (type2);
192 LONGEST low_bound, high_bound, new_length;
193 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
194 low_bound = 0, high_bound = 0;
195 new_length = val_length / element_length;
196 if (val_length % element_length != 0)
197 warning ("array element type size does not divide object size in cast");
198 /* FIXME-type-allocation: need a way to free this type when we are
199 done with it. */
200 range_type = create_range_type ((struct type *) NULL,
201 TYPE_TARGET_TYPE (range_type),
202 low_bound,
203 new_length + low_bound - 1);
204 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
205 element_type, range_type);
206 return arg2;
207 }
208 }
209
210 if (current_language->c_style_arrays
211 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
212 arg2 = value_coerce_array (arg2);
213
214 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
215 arg2 = value_coerce_function (arg2);
216
217 type2 = check_typedef (VALUE_TYPE (arg2));
218 COERCE_VARYING_ARRAY (arg2, type2);
219 code2 = TYPE_CODE (type2);
220
221 if (code1 == TYPE_CODE_COMPLEX)
222 return cast_into_complex (type, arg2);
223 if (code1 == TYPE_CODE_BOOL)
224 {
225 code1 = TYPE_CODE_INT;
226 convert_to_boolean = 1;
227 }
228 if (code1 == TYPE_CODE_CHAR)
229 code1 = TYPE_CODE_INT;
230 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
231 code2 = TYPE_CODE_INT;
232
233 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
234 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
235
236 if (code1 == TYPE_CODE_STRUCT
237 && code2 == TYPE_CODE_STRUCT
238 && TYPE_NAME (type) != 0)
239 {
240 /* Look in the type of the source to see if it contains the
241 type of the target as a superclass. If so, we'll need to
242 offset the object in addition to changing its type. */
243 value_ptr v = search_struct_field (type_name_no_tag (type),
244 arg2, 0, type2, 1);
245 if (v)
246 {
247 VALUE_TYPE (v) = type;
248 return v;
249 }
250 }
251 if (code1 == TYPE_CODE_FLT && scalar)
252 return value_from_double (type, value_as_double (arg2));
253 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
254 || code1 == TYPE_CODE_RANGE)
255 && (scalar || code2 == TYPE_CODE_PTR))
256 {
257 LONGEST longest;
258
259 if (hp_som_som_object_present && /* if target compiled by HP aCC */
260 (code2 == TYPE_CODE_PTR))
261 {
262 unsigned int *ptr;
263 value_ptr retvalp;
264
265 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
266 {
267 /* With HP aCC, pointers to data members have a bias */
268 case TYPE_CODE_MEMBER:
269 retvalp = value_from_longest (type, value_as_long (arg2));
270 /* force evaluation */
271 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
272 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
273 return retvalp;
274
275 /* While pointers to methods don't really point to a function */
276 case TYPE_CODE_METHOD:
277 error ("Pointers to methods not supported with HP aCC");
278
279 default:
280 break; /* fall out and go to normal handling */
281 }
282 }
283 longest = value_as_long (arg2);
284 return value_from_longest (type, convert_to_boolean ?
285 (LONGEST) (longest ? 1 : 0) : longest);
286 }
287 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
288 code2 == TYPE_CODE_ENUM ||
289 code2 == TYPE_CODE_RANGE))
290 {
291 /* TYPE_LENGTH (type) is the length of a pointer, but we really
292 want the length of an address! -- we are really dealing with
293 addresses (i.e., gdb representations) not pointers (i.e.,
294 target representations) here.
295
296 This allows things like "print *(int *)0x01000234" to work
297 without printing a misleading message -- which would
298 otherwise occur when dealing with a target having two byte
299 pointers and four byte addresses. */
300
301 int addr_bit = TARGET_ADDR_BIT;
302
303 LONGEST longest = value_as_long (arg2);
304 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
305 {
306 if (longest >= ((LONGEST) 1 << addr_bit)
307 || longest <= -((LONGEST) 1 << addr_bit))
308 warning ("value truncated");
309 }
310 return value_from_longest (type, longest);
311 }
312 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
313 {
314 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
315 {
316 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
317 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
318 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
319 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
320 && !value_logical_not (arg2))
321 {
322 value_ptr v;
323
324 /* Look in the type of the source to see if it contains the
325 type of the target as a superclass. If so, we'll need to
326 offset the pointer rather than just change its type. */
327 if (TYPE_NAME (t1) != NULL)
328 {
329 v = search_struct_field (type_name_no_tag (t1),
330 value_ind (arg2), 0, t2, 1);
331 if (v)
332 {
333 v = value_addr (v);
334 VALUE_TYPE (v) = type;
335 return v;
336 }
337 }
338
339 /* Look in the type of the target to see if it contains the
340 type of the source as a superclass. If so, we'll need to
341 offset the pointer rather than just change its type.
342 FIXME: This fails silently with virtual inheritance. */
343 if (TYPE_NAME (t2) != NULL)
344 {
345 v = search_struct_field (type_name_no_tag (t2),
346 value_zero (t1, not_lval), 0, t1, 1);
347 if (v)
348 {
349 value_ptr v2 = value_ind (arg2);
350 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
351 + VALUE_OFFSET (v);
352
353 /* JYG: adjust the new pointer value and
354 embedded offset. */
355 v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v);
356 VALUE_EMBEDDED_OFFSET (v2) = 0;
357
358 v2 = value_addr (v2);
359 VALUE_TYPE (v2) = type;
360 return v2;
361 }
362 }
363 }
364 /* No superclass found, just fall through to change ptr type. */
365 }
366 VALUE_TYPE (arg2) = type;
367 VALUE_ENCLOSING_TYPE (arg2) = type; /* pai: chk_val */
368 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
369 return arg2;
370 }
371 else if (chill_varying_type (type))
372 {
373 struct type *range1, *range2, *eltype1, *eltype2;
374 value_ptr val;
375 int count1, count2;
376 LONGEST low_bound, high_bound;
377 char *valaddr, *valaddr_data;
378 /* For lint warning about eltype2 possibly uninitialized: */
379 eltype2 = NULL;
380 if (code2 == TYPE_CODE_BITSTRING)
381 error ("not implemented: converting bitstring to varying type");
382 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
383 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
384 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
385 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
386 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
387 error ("Invalid conversion to varying type");
388 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
389 range2 = TYPE_FIELD_TYPE (type2, 0);
390 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
391 count1 = -1;
392 else
393 count1 = high_bound - low_bound + 1;
394 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
395 count1 = -1, count2 = 0; /* To force error before */
396 else
397 count2 = high_bound - low_bound + 1;
398 if (count2 > count1)
399 error ("target varying type is too small");
400 val = allocate_value (type);
401 valaddr = VALUE_CONTENTS_RAW (val);
402 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
403 /* Set val's __var_length field to count2. */
404 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
405 count2);
406 /* Set the __var_data field to count2 elements copied from arg2. */
407 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
408 count2 * TYPE_LENGTH (eltype2));
409 /* Zero the rest of the __var_data field of val. */
410 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
411 (count1 - count2) * TYPE_LENGTH (eltype2));
412 return val;
413 }
414 else if (VALUE_LVAL (arg2) == lval_memory)
415 {
416 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
417 VALUE_BFD_SECTION (arg2));
418 }
419 else if (code1 == TYPE_CODE_VOID)
420 {
421 return value_zero (builtin_type_void, not_lval);
422 }
423 else
424 {
425 error ("Invalid cast.");
426 return 0;
427 }
428 }
429
430 /* Create a value of type TYPE that is zero, and return it. */
431
432 value_ptr
433 value_zero (struct type *type, enum lval_type lv)
434 {
435 register value_ptr val = allocate_value (type);
436
437 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
438 VALUE_LVAL (val) = lv;
439
440 return val;
441 }
442
443 /* Return a value with type TYPE located at ADDR.
444
445 Call value_at only if the data needs to be fetched immediately;
446 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
447 value_at_lazy instead. value_at_lazy simply records the address of
448 the data and sets the lazy-evaluation-required flag. The lazy flag
449 is tested in the VALUE_CONTENTS macro, which is used if and when
450 the contents are actually required.
451
452 Note: value_at does *NOT* handle embedded offsets; perform such
453 adjustments before or after calling it. */
454
455 value_ptr
456 value_at (struct type *type, CORE_ADDR addr, asection *sect)
457 {
458 register value_ptr val;
459
460 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
461 error ("Attempt to dereference a generic pointer.");
462
463 val = allocate_value (type);
464
465 if (GDB_TARGET_IS_D10V
466 && TYPE_CODE (type) == TYPE_CODE_PTR
467 && TYPE_TARGET_TYPE (type)
468 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
469 {
470 /* pointer to function */
471 unsigned long num;
472 unsigned short snum;
473 snum = read_memory_unsigned_integer (addr, 2);
474 num = D10V_MAKE_IADDR (snum);
475 store_address (VALUE_CONTENTS_RAW (val), 4, num);
476 }
477 else if (GDB_TARGET_IS_D10V
478 && TYPE_CODE (type) == TYPE_CODE_PTR)
479 {
480 /* pointer to data */
481 unsigned long num;
482 unsigned short snum;
483 snum = read_memory_unsigned_integer (addr, 2);
484 num = D10V_MAKE_DADDR (snum);
485 store_address (VALUE_CONTENTS_RAW (val), 4, num);
486 }
487 else
488 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
489
490 VALUE_LVAL (val) = lval_memory;
491 VALUE_ADDRESS (val) = addr;
492 VALUE_BFD_SECTION (val) = sect;
493
494 return val;
495 }
496
497 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
498
499 value_ptr
500 value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
501 {
502 register value_ptr val;
503
504 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
505 error ("Attempt to dereference a generic pointer.");
506
507 val = allocate_value (type);
508
509 VALUE_LVAL (val) = lval_memory;
510 VALUE_ADDRESS (val) = addr;
511 VALUE_LAZY (val) = 1;
512 VALUE_BFD_SECTION (val) = sect;
513
514 return val;
515 }
516
517 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
518 if the current data for a variable needs to be loaded into
519 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
520 clears the lazy flag to indicate that the data in the buffer is valid.
521
522 If the value is zero-length, we avoid calling read_memory, which would
523 abort. We mark the value as fetched anyway -- all 0 bytes of it.
524
525 This function returns a value because it is used in the VALUE_CONTENTS
526 macro as part of an expression, where a void would not work. The
527 value is ignored. */
528
529 int
530 value_fetch_lazy (register value_ptr val)
531 {
532 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
533 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
534
535 struct type *type = VALUE_TYPE (val);
536 if (GDB_TARGET_IS_D10V
537 && TYPE_CODE (type) == TYPE_CODE_PTR
538 && TYPE_TARGET_TYPE (type)
539 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
540 {
541 /* pointer to function */
542 unsigned long num;
543 unsigned short snum;
544 snum = read_memory_unsigned_integer (addr, 2);
545 num = D10V_MAKE_IADDR (snum);
546 store_address (VALUE_CONTENTS_RAW (val), 4, num);
547 }
548 else if (GDB_TARGET_IS_D10V
549 && TYPE_CODE (type) == TYPE_CODE_PTR)
550 {
551 /* pointer to data */
552 unsigned long num;
553 unsigned short snum;
554 snum = read_memory_unsigned_integer (addr, 2);
555 num = D10V_MAKE_DADDR (snum);
556 store_address (VALUE_CONTENTS_RAW (val), 4, num);
557 }
558 else if (length)
559 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
560
561 VALUE_LAZY (val) = 0;
562 return 0;
563 }
564
565
566 /* Store the contents of FROMVAL into the location of TOVAL.
567 Return a new value with the location of TOVAL and contents of FROMVAL. */
568
569 value_ptr
570 value_assign (register value_ptr toval, register value_ptr fromval)
571 {
572 register struct type *type;
573 register value_ptr val;
574 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
575 int use_buffer = 0;
576
577 if (!toval->modifiable)
578 error ("Left operand of assignment is not a modifiable lvalue.");
579
580 COERCE_REF (toval);
581
582 type = VALUE_TYPE (toval);
583 if (VALUE_LVAL (toval) != lval_internalvar)
584 fromval = value_cast (type, fromval);
585 else
586 COERCE_ARRAY (fromval);
587 CHECK_TYPEDEF (type);
588
589 /* If TOVAL is a special machine register requiring conversion
590 of program values to a special raw format,
591 convert FROMVAL's contents now, with result in `raw_buffer',
592 and set USE_BUFFER to the number of bytes to write. */
593
594 if (VALUE_REGNO (toval) >= 0)
595 {
596 int regno = VALUE_REGNO (toval);
597 if (REGISTER_CONVERTIBLE (regno))
598 {
599 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
600 REGISTER_CONVERT_TO_RAW (fromtype, regno,
601 VALUE_CONTENTS (fromval), raw_buffer);
602 use_buffer = REGISTER_RAW_SIZE (regno);
603 }
604 }
605
606 switch (VALUE_LVAL (toval))
607 {
608 case lval_internalvar:
609 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
610 val = value_copy (VALUE_INTERNALVAR (toval)->value);
611 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
612 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
613 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
614 return val;
615
616 case lval_internalvar_component:
617 set_internalvar_component (VALUE_INTERNALVAR (toval),
618 VALUE_OFFSET (toval),
619 VALUE_BITPOS (toval),
620 VALUE_BITSIZE (toval),
621 fromval);
622 break;
623
624 case lval_memory:
625 {
626 char *dest_buffer;
627 CORE_ADDR changed_addr;
628 int changed_len;
629
630 if (VALUE_BITSIZE (toval))
631 {
632 char buffer[sizeof (LONGEST)];
633 /* We assume that the argument to read_memory is in units of
634 host chars. FIXME: Is that correct? */
635 changed_len = (VALUE_BITPOS (toval)
636 + VALUE_BITSIZE (toval)
637 + HOST_CHAR_BIT - 1)
638 / HOST_CHAR_BIT;
639
640 if (changed_len > (int) sizeof (LONGEST))
641 error ("Can't handle bitfields which don't fit in a %d bit word.",
642 sizeof (LONGEST) * HOST_CHAR_BIT);
643
644 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
645 buffer, changed_len);
646 modify_field (buffer, value_as_long (fromval),
647 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
648 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
649 dest_buffer = buffer;
650 }
651 else if (use_buffer)
652 {
653 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
654 changed_len = use_buffer;
655 dest_buffer = raw_buffer;
656 }
657 else
658 {
659 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
660 changed_len = TYPE_LENGTH (type);
661 dest_buffer = VALUE_CONTENTS (fromval);
662 }
663
664 write_memory (changed_addr, dest_buffer, changed_len);
665 if (memory_changed_hook)
666 memory_changed_hook (changed_addr, changed_len);
667 }
668 break;
669
670 case lval_register:
671 if (VALUE_BITSIZE (toval))
672 {
673 char buffer[sizeof (LONGEST)];
674 int len =
675 REGISTER_RAW_SIZE (VALUE_REGNO (toval)) - VALUE_OFFSET (toval);
676
677 if (len > (int) sizeof (LONGEST))
678 error ("Can't handle bitfields in registers larger than %d bits.",
679 sizeof (LONGEST) * HOST_CHAR_BIT);
680
681 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
682 > len * HOST_CHAR_BIT)
683 /* Getting this right would involve being very careful about
684 byte order. */
685 error ("Can't assign to bitfields that cross register "
686 "boundaries.");
687
688 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
689 buffer, len);
690 modify_field (buffer, value_as_long (fromval),
691 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
692 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
693 buffer, len);
694 }
695 else if (use_buffer)
696 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
697 raw_buffer, use_buffer);
698 else
699 {
700 /* Do any conversion necessary when storing this type to more
701 than one register. */
702 #ifdef REGISTER_CONVERT_FROM_TYPE
703 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
704 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
705 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
706 raw_buffer, TYPE_LENGTH (type));
707 #else
708 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
709 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
710 #endif
711 }
712 /* Assigning to the stack pointer, frame pointer, and other
713 (architecture and calling convention specific) registers may
714 cause the frame cache to be out of date. We just do this
715 on all assignments to registers for simplicity; I doubt the slowdown
716 matters. */
717 reinit_frame_cache ();
718 break;
719
720 case lval_reg_frame_relative:
721 {
722 /* value is stored in a series of registers in the frame
723 specified by the structure. Copy that value out, modify
724 it, and copy it back in. */
725 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
726 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
727 int byte_offset = VALUE_OFFSET (toval) % reg_size;
728 int reg_offset = VALUE_OFFSET (toval) / reg_size;
729 int amount_copied;
730
731 /* Make the buffer large enough in all cases. */
732 char *buffer = (char *) alloca (amount_to_copy
733 + sizeof (LONGEST)
734 + MAX_REGISTER_RAW_SIZE);
735
736 int regno;
737 struct frame_info *frame;
738
739 /* Figure out which frame this is in currently. */
740 for (frame = get_current_frame ();
741 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
742 frame = get_prev_frame (frame))
743 ;
744
745 if (!frame)
746 error ("Value being assigned to is no longer active.");
747
748 amount_to_copy += (reg_size - amount_to_copy % reg_size);
749
750 /* Copy it out. */
751 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
752 amount_copied = 0);
753 amount_copied < amount_to_copy;
754 amount_copied += reg_size, regno++)
755 {
756 get_saved_register (buffer + amount_copied,
757 (int *) NULL, (CORE_ADDR *) NULL,
758 frame, regno, (enum lval_type *) NULL);
759 }
760
761 /* Modify what needs to be modified. */
762 if (VALUE_BITSIZE (toval))
763 modify_field (buffer + byte_offset,
764 value_as_long (fromval),
765 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
766 else if (use_buffer)
767 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
768 else
769 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
770 TYPE_LENGTH (type));
771
772 /* Copy it back. */
773 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
774 amount_copied = 0);
775 amount_copied < amount_to_copy;
776 amount_copied += reg_size, regno++)
777 {
778 enum lval_type lval;
779 CORE_ADDR addr;
780 int optim;
781
782 /* Just find out where to put it. */
783 get_saved_register ((char *) NULL,
784 &optim, &addr, frame, regno, &lval);
785
786 if (optim)
787 error ("Attempt to assign to a value that was optimized out.");
788 if (lval == lval_memory)
789 write_memory (addr, buffer + amount_copied, reg_size);
790 else if (lval == lval_register)
791 write_register_bytes (addr, buffer + amount_copied, reg_size);
792 else
793 error ("Attempt to assign to an unmodifiable value.");
794 }
795
796 if (register_changed_hook)
797 register_changed_hook (-1);
798 }
799 break;
800
801
802 default:
803 error ("Left operand of assignment is not an lvalue.");
804 }
805
806 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
807 If the field is signed, and is negative, then sign extend. */
808 if ((VALUE_BITSIZE (toval) > 0)
809 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
810 {
811 LONGEST fieldval = value_as_long (fromval);
812 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
813
814 fieldval &= valmask;
815 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
816 fieldval |= ~valmask;
817
818 fromval = value_from_longest (type, fieldval);
819 }
820
821 val = value_copy (toval);
822 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
823 TYPE_LENGTH (type));
824 VALUE_TYPE (val) = type;
825 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
826 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
827 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
828
829 return val;
830 }
831
832 /* Extend a value VAL to COUNT repetitions of its type. */
833
834 value_ptr
835 value_repeat (value_ptr arg1, int count)
836 {
837 register value_ptr val;
838
839 if (VALUE_LVAL (arg1) != lval_memory)
840 error ("Only values in memory can be extended with '@'.");
841 if (count < 1)
842 error ("Invalid number %d of repetitions.", count);
843
844 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
845
846 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
847 VALUE_CONTENTS_ALL_RAW (val),
848 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
849 VALUE_LVAL (val) = lval_memory;
850 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
851
852 return val;
853 }
854
855 value_ptr
856 value_of_variable (struct symbol *var, struct block *b)
857 {
858 value_ptr val;
859 struct frame_info *frame = NULL;
860
861 if (!b)
862 frame = NULL; /* Use selected frame. */
863 else if (symbol_read_needs_frame (var))
864 {
865 frame = block_innermost_frame (b);
866 if (!frame)
867 {
868 if (BLOCK_FUNCTION (b)
869 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
870 error ("No frame is currently executing in block %s.",
871 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
872 else
873 error ("No frame is currently executing in specified block");
874 }
875 }
876
877 val = read_var_value (var, frame);
878 if (!val)
879 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
880
881 return val;
882 }
883
884 /* Given a value which is an array, return a value which is a pointer to its
885 first element, regardless of whether or not the array has a nonzero lower
886 bound.
887
888 FIXME: A previous comment here indicated that this routine should be
889 substracting the array's lower bound. It's not clear to me that this
890 is correct. Given an array subscripting operation, it would certainly
891 work to do the adjustment here, essentially computing:
892
893 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
894
895 However I believe a more appropriate and logical place to account for
896 the lower bound is to do so in value_subscript, essentially computing:
897
898 (&array[0] + ((index - lowerbound) * sizeof array[0]))
899
900 As further evidence consider what would happen with operations other
901 than array subscripting, where the caller would get back a value that
902 had an address somewhere before the actual first element of the array,
903 and the information about the lower bound would be lost because of
904 the coercion to pointer type.
905 */
906
907 value_ptr
908 value_coerce_array (value_ptr arg1)
909 {
910 register struct type *type = check_typedef (VALUE_TYPE (arg1));
911
912 if (VALUE_LVAL (arg1) != lval_memory)
913 error ("Attempt to take address of value not located in memory.");
914
915 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
916 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
917 }
918
919 /* Given a value which is a function, return a value which is a pointer
920 to it. */
921
922 value_ptr
923 value_coerce_function (value_ptr arg1)
924 {
925 value_ptr retval;
926
927 if (VALUE_LVAL (arg1) != lval_memory)
928 error ("Attempt to take address of value not located in memory.");
929
930 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
931 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
932 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
933 return retval;
934 }
935
936 /* Return a pointer value for the object for which ARG1 is the contents. */
937
938 value_ptr
939 value_addr (value_ptr arg1)
940 {
941 value_ptr arg2;
942
943 struct type *type = check_typedef (VALUE_TYPE (arg1));
944 if (TYPE_CODE (type) == TYPE_CODE_REF)
945 {
946 /* Copy the value, but change the type from (T&) to (T*).
947 We keep the same location information, which is efficient,
948 and allows &(&X) to get the location containing the reference. */
949 arg2 = value_copy (arg1);
950 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
951 return arg2;
952 }
953 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
954 return value_coerce_function (arg1);
955
956 if (VALUE_LVAL (arg1) != lval_memory)
957 error ("Attempt to take address of value not located in memory.");
958
959 /* Get target memory address */
960 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
961 (VALUE_ADDRESS (arg1)
962 + VALUE_OFFSET (arg1)
963 + VALUE_EMBEDDED_OFFSET (arg1)));
964
965 /* This may be a pointer to a base subobject; so remember the
966 full derived object's type ... */
967 VALUE_ENCLOSING_TYPE (arg2) = lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1));
968 /* ... and also the relative position of the subobject in the full object */
969 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
970 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
971 return arg2;
972 }
973
974 /* Given a value of a pointer type, apply the C unary * operator to it. */
975
976 value_ptr
977 value_ind (value_ptr arg1)
978 {
979 struct type *base_type;
980 value_ptr arg2;
981
982 COERCE_ARRAY (arg1);
983
984 base_type = check_typedef (VALUE_TYPE (arg1));
985
986 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
987 error ("not implemented: member types in value_ind");
988
989 /* Allow * on an integer so we can cast it to whatever we want.
990 This returns an int, which seems like the most C-like thing
991 to do. "long long" variables are rare enough that
992 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
993 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
994 return value_at (builtin_type_int,
995 (CORE_ADDR) value_as_long (arg1),
996 VALUE_BFD_SECTION (arg1));
997 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
998 {
999 struct type *enc_type;
1000 /* We may be pointing to something embedded in a larger object */
1001 /* Get the real type of the enclosing object */
1002 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
1003 enc_type = TYPE_TARGET_TYPE (enc_type);
1004 /* Retrieve the enclosing object pointed to */
1005 arg2 = value_at_lazy (enc_type,
1006 value_as_pointer (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
1007 VALUE_BFD_SECTION (arg1));
1008 /* Re-adjust type */
1009 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
1010 /* Add embedding info */
1011 VALUE_ENCLOSING_TYPE (arg2) = enc_type;
1012 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
1013
1014 /* We may be pointing to an object of some derived type */
1015 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1016 return arg2;
1017 }
1018
1019 error ("Attempt to take contents of a non-pointer value.");
1020 return 0; /* For lint -- never reached */
1021 }
1022 \f
1023 /* Pushing small parts of stack frames. */
1024
1025 /* Push one word (the size of object that a register holds). */
1026
1027 CORE_ADDR
1028 push_word (CORE_ADDR sp, ULONGEST word)
1029 {
1030 register int len = REGISTER_SIZE;
1031 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
1032
1033 store_unsigned_integer (buffer, len, word);
1034 if (INNER_THAN (1, 2))
1035 {
1036 /* stack grows downward */
1037 sp -= len;
1038 write_memory (sp, buffer, len);
1039 }
1040 else
1041 {
1042 /* stack grows upward */
1043 write_memory (sp, buffer, len);
1044 sp += len;
1045 }
1046
1047 return sp;
1048 }
1049
1050 /* Push LEN bytes with data at BUFFER. */
1051
1052 CORE_ADDR
1053 push_bytes (CORE_ADDR sp, char *buffer, int len)
1054 {
1055 if (INNER_THAN (1, 2))
1056 {
1057 /* stack grows downward */
1058 sp -= len;
1059 write_memory (sp, buffer, len);
1060 }
1061 else
1062 {
1063 /* stack grows upward */
1064 write_memory (sp, buffer, len);
1065 sp += len;
1066 }
1067
1068 return sp;
1069 }
1070
1071 #ifndef PARM_BOUNDARY
1072 #define PARM_BOUNDARY (0)
1073 #endif
1074
1075 /* Push onto the stack the specified value VALUE. Pad it correctly for
1076 it to be an argument to a function. */
1077
1078 static CORE_ADDR
1079 value_push (register CORE_ADDR sp, value_ptr arg)
1080 {
1081 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1082 register int container_len = len;
1083 register int offset;
1084
1085 /* How big is the container we're going to put this value in? */
1086 if (PARM_BOUNDARY)
1087 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1088 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1089
1090 /* Are we going to put it at the high or low end of the container? */
1091 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1092 offset = container_len - len;
1093 else
1094 offset = 0;
1095
1096 if (INNER_THAN (1, 2))
1097 {
1098 /* stack grows downward */
1099 sp -= container_len;
1100 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1101 }
1102 else
1103 {
1104 /* stack grows upward */
1105 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1106 sp += container_len;
1107 }
1108
1109 return sp;
1110 }
1111
1112 #ifndef PUSH_ARGUMENTS
1113 #define PUSH_ARGUMENTS default_push_arguments
1114 #endif
1115
1116 CORE_ADDR
1117 default_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
1118 int struct_return, CORE_ADDR struct_addr)
1119 {
1120 /* ASSERT ( !struct_return); */
1121 int i;
1122 for (i = nargs - 1; i >= 0; i--)
1123 sp = value_push (sp, args[i]);
1124 return sp;
1125 }
1126
1127
1128 /* A default function for COERCE_FLOAT_TO_DOUBLE: do the coercion only
1129 when we don't have any type for the argument at hand. This occurs
1130 when we have no debug info, or when passing varargs.
1131
1132 This is an annoying default: the rule the compiler follows is to do
1133 the standard promotions whenever there is no prototype in scope,
1134 and almost all targets want this behavior. But there are some old
1135 architectures which want this odd behavior. If you want to go
1136 through them all and fix them, please do. Modern gdbarch-style
1137 targets may find it convenient to use standard_coerce_float_to_double. */
1138 int
1139 default_coerce_float_to_double (struct type *formal, struct type *actual)
1140 {
1141 return formal == NULL;
1142 }
1143
1144
1145 /* Always coerce floats to doubles when there is no prototype in scope.
1146 If your architecture follows the standard type promotion rules for
1147 calling unprototyped functions, your gdbarch init function can pass
1148 this function to set_gdbarch_coerce_float_to_double to use its logic. */
1149 int
1150 standard_coerce_float_to_double (struct type *formal, struct type *actual)
1151 {
1152 return 1;
1153 }
1154
1155
1156 /* Perform the standard coercions that are specified
1157 for arguments to be passed to C functions.
1158
1159 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1160 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1161
1162 static value_ptr
1163 value_arg_coerce (value_ptr arg, struct type *param_type, int is_prototyped)
1164 {
1165 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1166 register struct type *type
1167 = param_type ? check_typedef (param_type) : arg_type;
1168
1169 switch (TYPE_CODE (type))
1170 {
1171 case TYPE_CODE_REF:
1172 if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
1173 {
1174 arg = value_addr (arg);
1175 VALUE_TYPE (arg) = param_type;
1176 return arg;
1177 }
1178 break;
1179 case TYPE_CODE_INT:
1180 case TYPE_CODE_CHAR:
1181 case TYPE_CODE_BOOL:
1182 case TYPE_CODE_ENUM:
1183 /* If we don't have a prototype, coerce to integer type if necessary. */
1184 if (!is_prototyped)
1185 {
1186 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1187 type = builtin_type_int;
1188 }
1189 /* Currently all target ABIs require at least the width of an integer
1190 type for an argument. We may have to conditionalize the following
1191 type coercion for future targets. */
1192 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1193 type = builtin_type_int;
1194 break;
1195 case TYPE_CODE_FLT:
1196 /* FIXME: We should always convert floats to doubles in the
1197 non-prototyped case. As many debugging formats include
1198 no information about prototyping, we have to live with
1199 COERCE_FLOAT_TO_DOUBLE for now. */
1200 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
1201 {
1202 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1203 type = builtin_type_double;
1204 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1205 type = builtin_type_long_double;
1206 }
1207 break;
1208 case TYPE_CODE_FUNC:
1209 type = lookup_pointer_type (type);
1210 break;
1211 case TYPE_CODE_ARRAY:
1212 if (current_language->c_style_arrays)
1213 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1214 break;
1215 case TYPE_CODE_UNDEF:
1216 case TYPE_CODE_PTR:
1217 case TYPE_CODE_STRUCT:
1218 case TYPE_CODE_UNION:
1219 case TYPE_CODE_VOID:
1220 case TYPE_CODE_SET:
1221 case TYPE_CODE_RANGE:
1222 case TYPE_CODE_STRING:
1223 case TYPE_CODE_BITSTRING:
1224 case TYPE_CODE_ERROR:
1225 case TYPE_CODE_MEMBER:
1226 case TYPE_CODE_METHOD:
1227 case TYPE_CODE_COMPLEX:
1228 default:
1229 break;
1230 }
1231
1232 return value_cast (type, arg);
1233 }
1234
1235 /* Determine a function's address and its return type from its value.
1236 Calls error() if the function is not valid for calling. */
1237
1238 static CORE_ADDR
1239 find_function_addr (value_ptr function, struct type **retval_type)
1240 {
1241 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1242 register enum type_code code = TYPE_CODE (ftype);
1243 struct type *value_type;
1244 CORE_ADDR funaddr;
1245
1246 /* If it's a member function, just look at the function
1247 part of it. */
1248
1249 /* Determine address to call. */
1250 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1251 {
1252 funaddr = VALUE_ADDRESS (function);
1253 value_type = TYPE_TARGET_TYPE (ftype);
1254 }
1255 else if (code == TYPE_CODE_PTR)
1256 {
1257 funaddr = value_as_pointer (function);
1258 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1259 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1260 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1261 {
1262 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1263 value_type = TYPE_TARGET_TYPE (ftype);
1264 }
1265 else
1266 value_type = builtin_type_int;
1267 }
1268 else if (code == TYPE_CODE_INT)
1269 {
1270 /* Handle the case of functions lacking debugging info.
1271 Their values are characters since their addresses are char */
1272 if (TYPE_LENGTH (ftype) == 1)
1273 funaddr = value_as_pointer (value_addr (function));
1274 else
1275 /* Handle integer used as address of a function. */
1276 funaddr = (CORE_ADDR) value_as_long (function);
1277
1278 value_type = builtin_type_int;
1279 }
1280 else
1281 error ("Invalid data type for function to be called.");
1282
1283 *retval_type = value_type;
1284 return funaddr;
1285 }
1286
1287 /* All this stuff with a dummy frame may seem unnecessarily complicated
1288 (why not just save registers in GDB?). The purpose of pushing a dummy
1289 frame which looks just like a real frame is so that if you call a
1290 function and then hit a breakpoint (get a signal, etc), "backtrace"
1291 will look right. Whether the backtrace needs to actually show the
1292 stack at the time the inferior function was called is debatable, but
1293 it certainly needs to not display garbage. So if you are contemplating
1294 making dummy frames be different from normal frames, consider that. */
1295
1296 /* Perform a function call in the inferior.
1297 ARGS is a vector of values of arguments (NARGS of them).
1298 FUNCTION is a value, the function to be called.
1299 Returns a value representing what the function returned.
1300 May fail to return, if a breakpoint or signal is hit
1301 during the execution of the function.
1302
1303 ARGS is modified to contain coerced values. */
1304
1305 static value_ptr hand_function_call (value_ptr function, int nargs,
1306 value_ptr * args);
1307 static value_ptr
1308 hand_function_call (value_ptr function, int nargs, value_ptr *args)
1309 {
1310 register CORE_ADDR sp;
1311 register int i;
1312 int rc;
1313 CORE_ADDR start_sp;
1314 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1315 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1316 and remove any extra bytes which might exist because ULONGEST is
1317 bigger than REGISTER_SIZE.
1318
1319 NOTE: This is pretty wierd, as the call dummy is actually a
1320 sequence of instructions. But CISC machines will have
1321 to pack the instructions into REGISTER_SIZE units (and
1322 so will RISC machines for which INSTRUCTION_SIZE is not
1323 REGISTER_SIZE).
1324
1325 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1326 target byte order. */
1327
1328 static ULONGEST *dummy;
1329 int sizeof_dummy1;
1330 char *dummy1;
1331 CORE_ADDR old_sp;
1332 struct type *value_type;
1333 unsigned char struct_return;
1334 CORE_ADDR struct_addr = 0;
1335 struct inferior_status *inf_status;
1336 struct cleanup *old_chain;
1337 CORE_ADDR funaddr;
1338 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1339 CORE_ADDR real_pc;
1340 struct type *param_type = NULL;
1341 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1342
1343 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1344 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1345 dummy1 = alloca (sizeof_dummy1);
1346 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1347
1348 if (!target_has_execution)
1349 noprocess ();
1350
1351 inf_status = save_inferior_status (1);
1352 old_chain = make_cleanup_restore_inferior_status (inf_status);
1353
1354 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1355 (and POP_FRAME for restoring them). (At least on most machines)
1356 they are saved on the stack in the inferior. */
1357 PUSH_DUMMY_FRAME;
1358
1359 old_sp = sp = read_sp ();
1360
1361 if (INNER_THAN (1, 2))
1362 {
1363 /* Stack grows down */
1364 sp -= sizeof_dummy1;
1365 start_sp = sp;
1366 }
1367 else
1368 {
1369 /* Stack grows up */
1370 start_sp = sp;
1371 sp += sizeof_dummy1;
1372 }
1373
1374 funaddr = find_function_addr (function, &value_type);
1375 CHECK_TYPEDEF (value_type);
1376
1377 {
1378 struct block *b = block_for_pc (funaddr);
1379 /* If compiled without -g, assume GCC 2. */
1380 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1381 }
1382
1383 /* Are we returning a value using a structure return or a normal
1384 value return? */
1385
1386 struct_return = using_struct_return (function, funaddr, value_type,
1387 using_gcc);
1388
1389 /* Create a call sequence customized for this function
1390 and the number of arguments for it. */
1391 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1392 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1393 REGISTER_SIZE,
1394 (ULONGEST) dummy[i]);
1395
1396 #ifdef GDB_TARGET_IS_HPPA
1397 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1398 value_type, using_gcc);
1399 #else
1400 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1401 value_type, using_gcc);
1402 real_pc = start_sp;
1403 #endif
1404
1405 if (CALL_DUMMY_LOCATION == ON_STACK)
1406 {
1407 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1408 }
1409
1410 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1411 {
1412 /* Convex Unix prohibits executing in the stack segment. */
1413 /* Hope there is empty room at the top of the text segment. */
1414 extern CORE_ADDR text_end;
1415 static int checked = 0;
1416 if (!checked)
1417 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1418 if (read_memory_integer (start_sp, 1) != 0)
1419 error ("text segment full -- no place to put call");
1420 checked = 1;
1421 sp = old_sp;
1422 real_pc = text_end - sizeof_dummy1;
1423 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1424 }
1425
1426 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1427 {
1428 extern CORE_ADDR text_end;
1429 int errcode;
1430 sp = old_sp;
1431 real_pc = text_end;
1432 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1433 if (errcode != 0)
1434 error ("Cannot write text segment -- call_function failed");
1435 }
1436
1437 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1438 {
1439 real_pc = funaddr;
1440 }
1441
1442 #ifdef lint
1443 sp = old_sp; /* It really is used, for some ifdef's... */
1444 #endif
1445
1446 if (nargs < TYPE_NFIELDS (ftype))
1447 error ("too few arguments in function call");
1448
1449 for (i = nargs - 1; i >= 0; i--)
1450 {
1451 /* If we're off the end of the known arguments, do the standard
1452 promotions. FIXME: if we had a prototype, this should only
1453 be allowed if ... were present. */
1454 if (i >= TYPE_NFIELDS (ftype))
1455 args[i] = value_arg_coerce (args[i], NULL, 0);
1456
1457 else
1458 {
1459 int is_prototyped = TYPE_FLAGS (ftype) & TYPE_FLAG_PROTOTYPED;
1460 param_type = TYPE_FIELD_TYPE (ftype, i);
1461
1462 args[i] = value_arg_coerce (args[i], param_type, is_prototyped);
1463 }
1464
1465 /*elz: this code is to handle the case in which the function to be called
1466 has a pointer to function as parameter and the corresponding actual argument
1467 is the address of a function and not a pointer to function variable.
1468 In aCC compiled code, the calls through pointers to functions (in the body
1469 of the function called by hand) are made via $$dyncall_external which
1470 requires some registers setting, this is taken care of if we call
1471 via a function pointer variable, but not via a function address.
1472 In cc this is not a problem. */
1473
1474 if (using_gcc == 0)
1475 if (param_type)
1476 /* if this parameter is a pointer to function */
1477 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1478 if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
1479 /* elz: FIXME here should go the test about the compiler used
1480 to compile the target. We want to issue the error
1481 message only if the compiler used was HP's aCC.
1482 If we used HP's cc, then there is no problem and no need
1483 to return at this point */
1484 if (using_gcc == 0) /* && compiler == aCC */
1485 /* go see if the actual parameter is a variable of type
1486 pointer to function or just a function */
1487 if (args[i]->lval == not_lval)
1488 {
1489 char *arg_name;
1490 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1491 error ("\
1492 You cannot use function <%s> as argument. \n\
1493 You must use a pointer to function type variable. Command ignored.", arg_name);
1494 }
1495 }
1496
1497 if (REG_STRUCT_HAS_ADDR_P ())
1498 {
1499 /* This is a machine like the sparc, where we may need to pass a
1500 pointer to the structure, not the structure itself. */
1501 for (i = nargs - 1; i >= 0; i--)
1502 {
1503 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1504 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1505 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1506 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1507 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1508 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1509 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1510 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1511 && TYPE_LENGTH (arg_type) > 8)
1512 )
1513 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1514 {
1515 CORE_ADDR addr;
1516 int len; /* = TYPE_LENGTH (arg_type); */
1517 int aligned_len;
1518 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1519 len = TYPE_LENGTH (arg_type);
1520
1521 if (STACK_ALIGN_P ())
1522 /* MVS 11/22/96: I think at least some of this
1523 stack_align code is really broken. Better to let
1524 PUSH_ARGUMENTS adjust the stack in a target-defined
1525 manner. */
1526 aligned_len = STACK_ALIGN (len);
1527 else
1528 aligned_len = len;
1529 if (INNER_THAN (1, 2))
1530 {
1531 /* stack grows downward */
1532 sp -= aligned_len;
1533 }
1534 else
1535 {
1536 /* The stack grows up, so the address of the thing
1537 we push is the stack pointer before we push it. */
1538 addr = sp;
1539 }
1540 /* Push the structure. */
1541 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1542 if (INNER_THAN (1, 2))
1543 {
1544 /* The stack grows down, so the address of the thing
1545 we push is the stack pointer after we push it. */
1546 addr = sp;
1547 }
1548 else
1549 {
1550 /* stack grows upward */
1551 sp += aligned_len;
1552 }
1553 /* The value we're going to pass is the address of the
1554 thing we just pushed. */
1555 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1556 (LONGEST) addr); */
1557 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1558 addr);
1559 }
1560 }
1561 }
1562
1563
1564 /* Reserve space for the return structure to be written on the
1565 stack, if necessary */
1566
1567 if (struct_return)
1568 {
1569 int len = TYPE_LENGTH (value_type);
1570 if (STACK_ALIGN_P ())
1571 /* MVS 11/22/96: I think at least some of this stack_align
1572 code is really broken. Better to let PUSH_ARGUMENTS adjust
1573 the stack in a target-defined manner. */
1574 len = STACK_ALIGN (len);
1575 if (INNER_THAN (1, 2))
1576 {
1577 /* stack grows downward */
1578 sp -= len;
1579 struct_addr = sp;
1580 }
1581 else
1582 {
1583 /* stack grows upward */
1584 struct_addr = sp;
1585 sp += len;
1586 }
1587 }
1588
1589 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1590 on other architectures. This is because all the alignment is
1591 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1592 in hppa_push_arguments */
1593 if (EXTRA_STACK_ALIGNMENT_NEEDED)
1594 {
1595 /* MVS 11/22/96: I think at least some of this stack_align code
1596 is really broken. Better to let PUSH_ARGUMENTS adjust the
1597 stack in a target-defined manner. */
1598 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1599 {
1600 /* If stack grows down, we must leave a hole at the top. */
1601 int len = 0;
1602
1603 for (i = nargs - 1; i >= 0; i--)
1604 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1605 if (CALL_DUMMY_STACK_ADJUST_P)
1606 len += CALL_DUMMY_STACK_ADJUST;
1607 sp -= STACK_ALIGN (len) - len;
1608 }
1609 }
1610
1611 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1612
1613 #ifdef PUSH_RETURN_ADDRESS /* for targets that use no CALL_DUMMY */
1614 /* There are a number of targets now which actually don't write any
1615 CALL_DUMMY instructions into the target, but instead just save the
1616 machine state, push the arguments, and jump directly to the callee
1617 function. Since this doesn't actually involve executing a JSR/BSR
1618 instruction, the return address must be set up by hand, either by
1619 pushing onto the stack or copying into a return-address register
1620 as appropriate. Formerly this has been done in PUSH_ARGUMENTS,
1621 but that's overloading its functionality a bit, so I'm making it
1622 explicit to do it here. */
1623 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1624 #endif /* PUSH_RETURN_ADDRESS */
1625
1626 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
1627 {
1628 /* If stack grows up, we must leave a hole at the bottom, note
1629 that sp already has been advanced for the arguments! */
1630 if (CALL_DUMMY_STACK_ADJUST_P)
1631 sp += CALL_DUMMY_STACK_ADJUST;
1632 sp = STACK_ALIGN (sp);
1633 }
1634
1635 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1636 anything here! */
1637 /* MVS 11/22/96: I think at least some of this stack_align code is
1638 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1639 a target-defined manner. */
1640 if (CALL_DUMMY_STACK_ADJUST_P)
1641 if (INNER_THAN (1, 2))
1642 {
1643 /* stack grows downward */
1644 sp -= CALL_DUMMY_STACK_ADJUST;
1645 }
1646
1647 /* Store the address at which the structure is supposed to be
1648 written. Note that this (and the code which reserved the space
1649 above) assumes that gcc was used to compile this function. Since
1650 it doesn't cost us anything but space and if the function is pcc
1651 it will ignore this value, we will make that assumption.
1652
1653 Also note that on some machines (like the sparc) pcc uses a
1654 convention like gcc's. */
1655
1656 if (struct_return)
1657 STORE_STRUCT_RETURN (struct_addr, sp);
1658
1659 /* Write the stack pointer. This is here because the statements above
1660 might fool with it. On SPARC, this write also stores the register
1661 window into the right place in the new stack frame, which otherwise
1662 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1663 write_sp (sp);
1664
1665 if (SAVE_DUMMY_FRAME_TOS_P ())
1666 SAVE_DUMMY_FRAME_TOS (sp);
1667
1668 {
1669 char *retbuf = (char*) alloca (REGISTER_BYTES);
1670 char *name;
1671 struct symbol *symbol;
1672
1673 name = NULL;
1674 symbol = find_pc_function (funaddr);
1675 if (symbol)
1676 {
1677 name = SYMBOL_SOURCE_NAME (symbol);
1678 }
1679 else
1680 {
1681 /* Try the minimal symbols. */
1682 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1683
1684 if (msymbol)
1685 {
1686 name = SYMBOL_SOURCE_NAME (msymbol);
1687 }
1688 }
1689 if (name == NULL)
1690 {
1691 char format[80];
1692 sprintf (format, "at %s", local_hex_format ());
1693 name = alloca (80);
1694 /* FIXME-32x64: assumes funaddr fits in a long. */
1695 sprintf (name, format, (unsigned long) funaddr);
1696 }
1697
1698 /* Execute the stack dummy routine, calling FUNCTION.
1699 When it is done, discard the empty frame
1700 after storing the contents of all regs into retbuf. */
1701 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1702
1703 if (rc == 1)
1704 {
1705 /* We stopped inside the FUNCTION because of a random signal.
1706 Further execution of the FUNCTION is not allowed. */
1707
1708 if (unwind_on_signal_p)
1709 {
1710 /* The user wants the context restored. */
1711
1712 /* We must get back to the frame we were before the dummy call. */
1713 POP_FRAME;
1714
1715 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1716 a C++ name with arguments and stuff. */
1717 error ("\
1718 The program being debugged was signaled while in a function called from GDB.\n\
1719 GDB has restored the context to what it was before the call.\n\
1720 To change this behavior use \"set unwindonsignal off\"\n\
1721 Evaluation of the expression containing the function (%s) will be abandoned.",
1722 name);
1723 }
1724 else
1725 {
1726 /* The user wants to stay in the frame where we stopped (default).*/
1727
1728 /* If we did the cleanups, we would print a spurious error
1729 message (Unable to restore previously selected frame),
1730 would write the registers from the inf_status (which is
1731 wrong), and would do other wrong things. */
1732 discard_cleanups (old_chain);
1733 discard_inferior_status (inf_status);
1734
1735 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1736 a C++ name with arguments and stuff. */
1737 error ("\
1738 The program being debugged was signaled while in a function called from GDB.\n\
1739 GDB remains in the frame where the signal was received.\n\
1740 To change this behavior use \"set unwindonsignal on\"\n\
1741 Evaluation of the expression containing the function (%s) will be abandoned.",
1742 name);
1743 }
1744 }
1745
1746 if (rc == 2)
1747 {
1748 /* We hit a breakpoint inside the FUNCTION. */
1749
1750 /* If we did the cleanups, we would print a spurious error
1751 message (Unable to restore previously selected frame),
1752 would write the registers from the inf_status (which is
1753 wrong), and would do other wrong things. */
1754 discard_cleanups (old_chain);
1755 discard_inferior_status (inf_status);
1756
1757 /* The following error message used to say "The expression
1758 which contained the function call has been discarded." It
1759 is a hard concept to explain in a few words. Ideally, GDB
1760 would be able to resume evaluation of the expression when
1761 the function finally is done executing. Perhaps someday
1762 this will be implemented (it would not be easy). */
1763
1764 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1765 a C++ name with arguments and stuff. */
1766 error ("\
1767 The program being debugged stopped while in a function called from GDB.\n\
1768 When the function (%s) is done executing, GDB will silently\n\
1769 stop (instead of continuing to evaluate the expression containing\n\
1770 the function call).", name);
1771 }
1772
1773 /* If we get here the called FUNCTION run to completion. */
1774 do_cleanups (old_chain);
1775
1776 /* Figure out the value returned by the function. */
1777 /* elz: I defined this new macro for the hppa architecture only.
1778 this gives us a way to get the value returned by the function from the stack,
1779 at the same address we told the function to put it.
1780 We cannot assume on the pa that r28 still contains the address of the returned
1781 structure. Usually this will be overwritten by the callee.
1782 I don't know about other architectures, so I defined this macro
1783 */
1784
1785 #ifdef VALUE_RETURNED_FROM_STACK
1786 if (struct_return)
1787 return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1788 #endif
1789
1790 return value_being_returned (value_type, retbuf, struct_return);
1791 }
1792 }
1793
1794 value_ptr
1795 call_function_by_hand (value_ptr function, int nargs, value_ptr *args)
1796 {
1797 if (CALL_DUMMY_P)
1798 {
1799 return hand_function_call (function, nargs, args);
1800 }
1801 else
1802 {
1803 error ("Cannot invoke functions on this machine.");
1804 }
1805 }
1806 \f
1807
1808
1809 /* Create a value for an array by allocating space in the inferior, copying
1810 the data into that space, and then setting up an array value.
1811
1812 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1813 populated from the values passed in ELEMVEC.
1814
1815 The element type of the array is inherited from the type of the
1816 first element, and all elements must have the same size (though we
1817 don't currently enforce any restriction on their types). */
1818
1819 value_ptr
1820 value_array (int lowbound, int highbound, value_ptr *elemvec)
1821 {
1822 int nelem;
1823 int idx;
1824 unsigned int typelength;
1825 value_ptr val;
1826 struct type *rangetype;
1827 struct type *arraytype;
1828 CORE_ADDR addr;
1829
1830 /* Validate that the bounds are reasonable and that each of the elements
1831 have the same size. */
1832
1833 nelem = highbound - lowbound + 1;
1834 if (nelem <= 0)
1835 {
1836 error ("bad array bounds (%d, %d)", lowbound, highbound);
1837 }
1838 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1839 for (idx = 1; idx < nelem; idx++)
1840 {
1841 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1842 {
1843 error ("array elements must all be the same size");
1844 }
1845 }
1846
1847 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1848 lowbound, highbound);
1849 arraytype = create_array_type ((struct type *) NULL,
1850 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1851
1852 if (!current_language->c_style_arrays)
1853 {
1854 val = allocate_value (arraytype);
1855 for (idx = 0; idx < nelem; idx++)
1856 {
1857 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1858 VALUE_CONTENTS_ALL (elemvec[idx]),
1859 typelength);
1860 }
1861 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1862 return val;
1863 }
1864
1865 /* Allocate space to store the array in the inferior, and then initialize
1866 it by copying in each element. FIXME: Is it worth it to create a
1867 local buffer in which to collect each value and then write all the
1868 bytes in one operation? */
1869
1870 addr = allocate_space_in_inferior (nelem * typelength);
1871 for (idx = 0; idx < nelem; idx++)
1872 {
1873 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1874 typelength);
1875 }
1876
1877 /* Create the array type and set up an array value to be evaluated lazily. */
1878
1879 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1880 return (val);
1881 }
1882
1883 /* Create a value for a string constant by allocating space in the inferior,
1884 copying the data into that space, and returning the address with type
1885 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1886 of characters.
1887 Note that string types are like array of char types with a lower bound of
1888 zero and an upper bound of LEN - 1. Also note that the string may contain
1889 embedded null bytes. */
1890
1891 value_ptr
1892 value_string (char *ptr, int len)
1893 {
1894 value_ptr val;
1895 int lowbound = current_language->string_lower_bound;
1896 struct type *rangetype = create_range_type ((struct type *) NULL,
1897 builtin_type_int,
1898 lowbound, len + lowbound - 1);
1899 struct type *stringtype
1900 = create_string_type ((struct type *) NULL, rangetype);
1901 CORE_ADDR addr;
1902
1903 if (current_language->c_style_arrays == 0)
1904 {
1905 val = allocate_value (stringtype);
1906 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1907 return val;
1908 }
1909
1910
1911 /* Allocate space to store the string in the inferior, and then
1912 copy LEN bytes from PTR in gdb to that address in the inferior. */
1913
1914 addr = allocate_space_in_inferior (len);
1915 write_memory (addr, ptr, len);
1916
1917 val = value_at_lazy (stringtype, addr, NULL);
1918 return (val);
1919 }
1920
1921 value_ptr
1922 value_bitstring (char *ptr, int len)
1923 {
1924 value_ptr val;
1925 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1926 0, len - 1);
1927 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1928 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1929 val = allocate_value (type);
1930 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1931 return val;
1932 }
1933 \f
1934 /* See if we can pass arguments in T2 to a function which takes arguments
1935 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1936 arguments need coercion of some sort, then the coerced values are written
1937 into T2. Return value is 0 if the arguments could be matched, or the
1938 position at which they differ if not.
1939
1940 STATICP is nonzero if the T1 argument list came from a
1941 static member function.
1942
1943 For non-static member functions, we ignore the first argument,
1944 which is the type of the instance variable. This is because we want
1945 to handle calls with objects from derived classes. This is not
1946 entirely correct: we should actually check to make sure that a
1947 requested operation is type secure, shouldn't we? FIXME. */
1948
1949 static int
1950 typecmp (int staticp, struct type *t1[], value_ptr t2[])
1951 {
1952 int i;
1953
1954 if (t2 == 0)
1955 return 1;
1956 if (staticp && t1 == 0)
1957 return t2[1] != 0;
1958 if (t1 == 0)
1959 return 1;
1960 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID)
1961 return 0;
1962 if (t1[!staticp] == 0)
1963 return 0;
1964 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1965 {
1966 struct type *tt1, *tt2;
1967 if (!t2[i])
1968 return i + 1;
1969 tt1 = check_typedef (t1[i]);
1970 tt2 = check_typedef (VALUE_TYPE (t2[i]));
1971 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1972 /* We should be doing hairy argument matching, as below. */
1973 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1974 {
1975 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1976 t2[i] = value_coerce_array (t2[i]);
1977 else
1978 t2[i] = value_addr (t2[i]);
1979 continue;
1980 }
1981
1982 /* djb - 20000715 - Until the new type structure is in the
1983 place, and we can attempt things like implicit conversions,
1984 we need to do this so you can take something like a map<const
1985 char *>, and properly access map["hello"], because the
1986 argument to [] will be a reference to a pointer to a char,
1987 and the argument will be a pointer to a char. */
1988 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
1989 TYPE_CODE (tt1) == TYPE_CODE_PTR)
1990 {
1991 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1992 }
1993 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
1994 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
1995 TYPE_CODE(tt2) == TYPE_CODE_REF)
1996 {
1997 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
1998 }
1999 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
2000 continue;
2001 /* Array to pointer is a `trivial conversion' according to the ARM. */
2002
2003 /* We should be doing much hairier argument matching (see section 13.2
2004 of the ARM), but as a quick kludge, just check for the same type
2005 code. */
2006 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
2007 return i + 1;
2008 }
2009 if (!t1[i])
2010 return 0;
2011 return t2[i] ? i + 1 : 0;
2012 }
2013
2014 /* Helper function used by value_struct_elt to recurse through baseclasses.
2015 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2016 and search in it assuming it has (class) type TYPE.
2017 If found, return value, else return NULL.
2018
2019 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2020 look for a baseclass named NAME. */
2021
2022 static value_ptr
2023 search_struct_field (char *name, register value_ptr arg1, int offset,
2024 register struct type *type, int looking_for_baseclass)
2025 {
2026 int i;
2027 int nbases = TYPE_N_BASECLASSES (type);
2028
2029 CHECK_TYPEDEF (type);
2030
2031 if (!looking_for_baseclass)
2032 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2033 {
2034 char *t_field_name = TYPE_FIELD_NAME (type, i);
2035
2036 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2037 {
2038 value_ptr v;
2039 if (TYPE_FIELD_STATIC (type, i))
2040 v = value_static_field (type, i);
2041 else
2042 v = value_primitive_field (arg1, offset, i, type);
2043 if (v == 0)
2044 error ("there is no field named %s", name);
2045 return v;
2046 }
2047
2048 if (t_field_name
2049 && (t_field_name[0] == '\0'
2050 || (TYPE_CODE (type) == TYPE_CODE_UNION
2051 && (strcmp_iw (t_field_name, "else") == 0))))
2052 {
2053 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2054 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2055 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2056 {
2057 /* Look for a match through the fields of an anonymous union,
2058 or anonymous struct. C++ provides anonymous unions.
2059
2060 In the GNU Chill implementation of variant record types,
2061 each <alternative field> has an (anonymous) union type,
2062 each member of the union represents a <variant alternative>.
2063 Each <variant alternative> is represented as a struct,
2064 with a member for each <variant field>. */
2065
2066 value_ptr v;
2067 int new_offset = offset;
2068
2069 /* This is pretty gross. In G++, the offset in an anonymous
2070 union is relative to the beginning of the enclosing struct.
2071 In the GNU Chill implementation of variant records,
2072 the bitpos is zero in an anonymous union field, so we
2073 have to add the offset of the union here. */
2074 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2075 || (TYPE_NFIELDS (field_type) > 0
2076 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2077 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2078
2079 v = search_struct_field (name, arg1, new_offset, field_type,
2080 looking_for_baseclass);
2081 if (v)
2082 return v;
2083 }
2084 }
2085 }
2086
2087 for (i = 0; i < nbases; i++)
2088 {
2089 value_ptr v;
2090 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2091 /* If we are looking for baseclasses, this is what we get when we
2092 hit them. But it could happen that the base part's member name
2093 is not yet filled in. */
2094 int found_baseclass = (looking_for_baseclass
2095 && TYPE_BASECLASS_NAME (type, i) != NULL
2096 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2097
2098 if (BASETYPE_VIA_VIRTUAL (type, i))
2099 {
2100 int boffset;
2101 value_ptr v2 = allocate_value (basetype);
2102
2103 boffset = baseclass_offset (type, i,
2104 VALUE_CONTENTS (arg1) + offset,
2105 VALUE_ADDRESS (arg1)
2106 + VALUE_OFFSET (arg1) + offset);
2107 if (boffset == -1)
2108 error ("virtual baseclass botch");
2109
2110 /* The virtual base class pointer might have been clobbered by the
2111 user program. Make sure that it still points to a valid memory
2112 location. */
2113
2114 boffset += offset;
2115 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2116 {
2117 CORE_ADDR base_addr;
2118
2119 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2120 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2121 TYPE_LENGTH (basetype)) != 0)
2122 error ("virtual baseclass botch");
2123 VALUE_LVAL (v2) = lval_memory;
2124 VALUE_ADDRESS (v2) = base_addr;
2125 }
2126 else
2127 {
2128 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2129 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2130 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2131 if (VALUE_LAZY (arg1))
2132 VALUE_LAZY (v2) = 1;
2133 else
2134 memcpy (VALUE_CONTENTS_RAW (v2),
2135 VALUE_CONTENTS_RAW (arg1) + boffset,
2136 TYPE_LENGTH (basetype));
2137 }
2138
2139 if (found_baseclass)
2140 return v2;
2141 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2142 looking_for_baseclass);
2143 }
2144 else if (found_baseclass)
2145 v = value_primitive_field (arg1, offset, i, type);
2146 else
2147 v = search_struct_field (name, arg1,
2148 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2149 basetype, looking_for_baseclass);
2150 if (v)
2151 return v;
2152 }
2153 return NULL;
2154 }
2155
2156
2157 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2158 * in an object pointed to by VALADDR (on the host), assumed to be of
2159 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2160 * looking (in case VALADDR is the contents of an enclosing object).
2161 *
2162 * This routine recurses on the primary base of the derived class because
2163 * the virtual base entries of the primary base appear before the other
2164 * virtual base entries.
2165 *
2166 * If the virtual base is not found, a negative integer is returned.
2167 * The magnitude of the negative integer is the number of entries in
2168 * the virtual table to skip over (entries corresponding to various
2169 * ancestral classes in the chain of primary bases).
2170 *
2171 * Important: This assumes the HP / Taligent C++ runtime
2172 * conventions. Use baseclass_offset() instead to deal with g++
2173 * conventions. */
2174
2175 void
2176 find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2177 int offset, int *boffset_p, int *skip_p)
2178 {
2179 int boffset; /* offset of virtual base */
2180 int index; /* displacement to use in virtual table */
2181 int skip;
2182
2183 value_ptr vp;
2184 CORE_ADDR vtbl; /* the virtual table pointer */
2185 struct type *pbc; /* the primary base class */
2186
2187 /* Look for the virtual base recursively in the primary base, first.
2188 * This is because the derived class object and its primary base
2189 * subobject share the primary virtual table. */
2190
2191 boffset = 0;
2192 pbc = TYPE_PRIMARY_BASE (type);
2193 if (pbc)
2194 {
2195 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2196 if (skip < 0)
2197 {
2198 *boffset_p = boffset;
2199 *skip_p = -1;
2200 return;
2201 }
2202 }
2203 else
2204 skip = 0;
2205
2206
2207 /* Find the index of the virtual base according to HP/Taligent
2208 runtime spec. (Depth-first, left-to-right.) */
2209 index = virtual_base_index_skip_primaries (basetype, type);
2210
2211 if (index < 0)
2212 {
2213 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2214 *boffset_p = 0;
2215 return;
2216 }
2217
2218 /* pai: FIXME -- 32x64 possible problem */
2219 /* First word (4 bytes) in object layout is the vtable pointer */
2220 vtbl = *(CORE_ADDR *) (valaddr + offset);
2221
2222 /* Before the constructor is invoked, things are usually zero'd out. */
2223 if (vtbl == 0)
2224 error ("Couldn't find virtual table -- object may not be constructed yet.");
2225
2226
2227 /* Find virtual base's offset -- jump over entries for primary base
2228 * ancestors, then use the index computed above. But also adjust by
2229 * HP_ACC_VBASE_START for the vtable slots before the start of the
2230 * virtual base entries. Offset is negative -- virtual base entries
2231 * appear _before_ the address point of the virtual table. */
2232
2233 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2234 & use long type */
2235
2236 /* epstein : FIXME -- added param for overlay section. May not be correct */
2237 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2238 boffset = value_as_long (vp);
2239 *skip_p = -1;
2240 *boffset_p = boffset;
2241 return;
2242 }
2243
2244
2245 /* Helper function used by value_struct_elt to recurse through baseclasses.
2246 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2247 and search in it assuming it has (class) type TYPE.
2248 If found, return value, else if name matched and args not return (value)-1,
2249 else return NULL. */
2250
2251 static value_ptr
2252 search_struct_method (char *name, register value_ptr *arg1p,
2253 register value_ptr *args, int offset,
2254 int *static_memfuncp, register struct type *type)
2255 {
2256 int i;
2257 value_ptr v;
2258 int name_matched = 0;
2259 char dem_opname[64];
2260
2261 CHECK_TYPEDEF (type);
2262 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2263 {
2264 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2265 /* FIXME! May need to check for ARM demangling here */
2266 if (strncmp (t_field_name, "__", 2) == 0 ||
2267 strncmp (t_field_name, "op", 2) == 0 ||
2268 strncmp (t_field_name, "type", 4) == 0)
2269 {
2270 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2271 t_field_name = dem_opname;
2272 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2273 t_field_name = dem_opname;
2274 }
2275 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2276 {
2277 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2278 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2279 name_matched = 1;
2280
2281 if (j > 0 && args == 0)
2282 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2283 while (j >= 0)
2284 {
2285 if (TYPE_FN_FIELD_STUB (f, j))
2286 check_stub_method (type, i, j);
2287 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2288 TYPE_FN_FIELD_ARGS (f, j), args))
2289 {
2290 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2291 return value_virtual_fn_field (arg1p, f, j, type, offset);
2292 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2293 *static_memfuncp = 1;
2294 v = value_fn_field (arg1p, f, j, type, offset);
2295 if (v != NULL)
2296 return v;
2297 }
2298 j--;
2299 }
2300 }
2301 }
2302
2303 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2304 {
2305 int base_offset;
2306
2307 if (BASETYPE_VIA_VIRTUAL (type, i))
2308 {
2309 if (TYPE_HAS_VTABLE (type))
2310 {
2311 /* HP aCC compiled type, search for virtual base offset
2312 according to HP/Taligent runtime spec. */
2313 int skip;
2314 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2315 VALUE_CONTENTS_ALL (*arg1p),
2316 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2317 &base_offset, &skip);
2318 if (skip >= 0)
2319 error ("Virtual base class offset not found in vtable");
2320 }
2321 else
2322 {
2323 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2324 char *base_valaddr;
2325
2326 /* The virtual base class pointer might have been clobbered by the
2327 user program. Make sure that it still points to a valid memory
2328 location. */
2329
2330 if (offset < 0 || offset >= TYPE_LENGTH (type))
2331 {
2332 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2333 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2334 + VALUE_OFFSET (*arg1p) + offset,
2335 base_valaddr,
2336 TYPE_LENGTH (baseclass)) != 0)
2337 error ("virtual baseclass botch");
2338 }
2339 else
2340 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2341
2342 base_offset =
2343 baseclass_offset (type, i, base_valaddr,
2344 VALUE_ADDRESS (*arg1p)
2345 + VALUE_OFFSET (*arg1p) + offset);
2346 if (base_offset == -1)
2347 error ("virtual baseclass botch");
2348 }
2349 }
2350 else
2351 {
2352 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2353 }
2354 v = search_struct_method (name, arg1p, args, base_offset + offset,
2355 static_memfuncp, TYPE_BASECLASS (type, i));
2356 if (v == (value_ptr) - 1)
2357 {
2358 name_matched = 1;
2359 }
2360 else if (v)
2361 {
2362 /* FIXME-bothner: Why is this commented out? Why is it here? */
2363 /* *arg1p = arg1_tmp; */
2364 return v;
2365 }
2366 }
2367 if (name_matched)
2368 return (value_ptr) - 1;
2369 else
2370 return NULL;
2371 }
2372
2373 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2374 extract the component named NAME from the ultimate target structure/union
2375 and return it as a value with its appropriate type.
2376 ERR is used in the error message if *ARGP's type is wrong.
2377
2378 C++: ARGS is a list of argument types to aid in the selection of
2379 an appropriate method. Also, handle derived types.
2380
2381 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2382 where the truthvalue of whether the function that was resolved was
2383 a static member function or not is stored.
2384
2385 ERR is an error message to be printed in case the field is not found. */
2386
2387 value_ptr
2388 value_struct_elt (register value_ptr *argp, register value_ptr *args,
2389 char *name, int *static_memfuncp, char *err)
2390 {
2391 register struct type *t;
2392 value_ptr v;
2393
2394 COERCE_ARRAY (*argp);
2395
2396 t = check_typedef (VALUE_TYPE (*argp));
2397
2398 /* Follow pointers until we get to a non-pointer. */
2399
2400 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2401 {
2402 *argp = value_ind (*argp);
2403 /* Don't coerce fn pointer to fn and then back again! */
2404 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2405 COERCE_ARRAY (*argp);
2406 t = check_typedef (VALUE_TYPE (*argp));
2407 }
2408
2409 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2410 error ("not implemented: member type in value_struct_elt");
2411
2412 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2413 && TYPE_CODE (t) != TYPE_CODE_UNION)
2414 error ("Attempt to extract a component of a value that is not a %s.", err);
2415
2416 /* Assume it's not, unless we see that it is. */
2417 if (static_memfuncp)
2418 *static_memfuncp = 0;
2419
2420 if (!args)
2421 {
2422 /* if there are no arguments ...do this... */
2423
2424 /* Try as a field first, because if we succeed, there
2425 is less work to be done. */
2426 v = search_struct_field (name, *argp, 0, t, 0);
2427 if (v)
2428 return v;
2429
2430 /* C++: If it was not found as a data field, then try to
2431 return it as a pointer to a method. */
2432
2433 if (destructor_name_p (name, t))
2434 error ("Cannot get value of destructor");
2435
2436 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2437
2438 if (v == (value_ptr) - 1)
2439 error ("Cannot take address of a method");
2440 else if (v == 0)
2441 {
2442 if (TYPE_NFN_FIELDS (t))
2443 error ("There is no member or method named %s.", name);
2444 else
2445 error ("There is no member named %s.", name);
2446 }
2447 return v;
2448 }
2449
2450 if (destructor_name_p (name, t))
2451 {
2452 if (!args[1])
2453 {
2454 /* Destructors are a special case. */
2455 int m_index, f_index;
2456
2457 v = NULL;
2458 if (get_destructor_fn_field (t, &m_index, &f_index))
2459 {
2460 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2461 f_index, NULL, 0);
2462 }
2463 if (v == NULL)
2464 error ("could not find destructor function named %s.", name);
2465 else
2466 return v;
2467 }
2468 else
2469 {
2470 error ("destructor should not have any argument");
2471 }
2472 }
2473 else
2474 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2475
2476 if (v == (value_ptr) - 1)
2477 {
2478 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
2479 }
2480 else if (v == 0)
2481 {
2482 /* See if user tried to invoke data as function. If so,
2483 hand it back. If it's not callable (i.e., a pointer to function),
2484 gdb should give an error. */
2485 v = search_struct_field (name, *argp, 0, t, 0);
2486 }
2487
2488 if (!v)
2489 error ("Structure has no component named %s.", name);
2490 return v;
2491 }
2492
2493 /* Search through the methods of an object (and its bases)
2494 * to find a specified method. Return the pointer to the
2495 * fn_field list of overloaded instances.
2496 * Helper function for value_find_oload_list.
2497 * ARGP is a pointer to a pointer to a value (the object)
2498 * METHOD is a string containing the method name
2499 * OFFSET is the offset within the value
2500 * STATIC_MEMFUNCP is set if the method is static
2501 * TYPE is the assumed type of the object
2502 * NUM_FNS is the number of overloaded instances
2503 * BASETYPE is set to the actual type of the subobject where the method is found
2504 * BOFFSET is the offset of the base subobject where the method is found */
2505
2506 static struct fn_field *
2507 find_method_list (value_ptr *argp, char *method, int offset,
2508 int *static_memfuncp, struct type *type, int *num_fns,
2509 struct type **basetype, int *boffset)
2510 {
2511 int i;
2512 struct fn_field *f;
2513 CHECK_TYPEDEF (type);
2514
2515 *num_fns = 0;
2516
2517 /* First check in object itself */
2518 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2519 {
2520 /* pai: FIXME What about operators and type conversions? */
2521 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2522 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2523 {
2524 *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
2525 *basetype = type;
2526 *boffset = offset;
2527 return TYPE_FN_FIELDLIST1 (type, i);
2528 }
2529 }
2530
2531 /* Not found in object, check in base subobjects */
2532 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2533 {
2534 int base_offset;
2535 if (BASETYPE_VIA_VIRTUAL (type, i))
2536 {
2537 if (TYPE_HAS_VTABLE (type))
2538 {
2539 /* HP aCC compiled type, search for virtual base offset
2540 * according to HP/Taligent runtime spec. */
2541 int skip;
2542 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2543 VALUE_CONTENTS_ALL (*argp),
2544 offset + VALUE_EMBEDDED_OFFSET (*argp),
2545 &base_offset, &skip);
2546 if (skip >= 0)
2547 error ("Virtual base class offset not found in vtable");
2548 }
2549 else
2550 {
2551 /* probably g++ runtime model */
2552 base_offset = VALUE_OFFSET (*argp) + offset;
2553 base_offset =
2554 baseclass_offset (type, i,
2555 VALUE_CONTENTS (*argp) + base_offset,
2556 VALUE_ADDRESS (*argp) + base_offset);
2557 if (base_offset == -1)
2558 error ("virtual baseclass botch");
2559 }
2560 }
2561 else
2562 /* non-virtual base, simply use bit position from debug info */
2563 {
2564 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2565 }
2566 f = find_method_list (argp, method, base_offset + offset,
2567 static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
2568 if (f)
2569 return f;
2570 }
2571 return NULL;
2572 }
2573
2574 /* Return the list of overloaded methods of a specified name.
2575 * ARGP is a pointer to a pointer to a value (the object)
2576 * METHOD is the method name
2577 * OFFSET is the offset within the value contents
2578 * STATIC_MEMFUNCP is set if the method is static
2579 * NUM_FNS is the number of overloaded instances
2580 * BASETYPE is set to the type of the base subobject that defines the method
2581 * BOFFSET is the offset of the base subobject which defines the method */
2582
2583 struct fn_field *
2584 value_find_oload_method_list (value_ptr *argp, char *method, int offset,
2585 int *static_memfuncp, int *num_fns,
2586 struct type **basetype, int *boffset)
2587 {
2588 struct type *t;
2589
2590 t = check_typedef (VALUE_TYPE (*argp));
2591
2592 /* code snarfed from value_struct_elt */
2593 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2594 {
2595 *argp = value_ind (*argp);
2596 /* Don't coerce fn pointer to fn and then back again! */
2597 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2598 COERCE_ARRAY (*argp);
2599 t = check_typedef (VALUE_TYPE (*argp));
2600 }
2601
2602 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2603 error ("Not implemented: member type in value_find_oload_lis");
2604
2605 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2606 && TYPE_CODE (t) != TYPE_CODE_UNION)
2607 error ("Attempt to extract a component of a value that is not a struct or union");
2608
2609 /* Assume it's not static, unless we see that it is. */
2610 if (static_memfuncp)
2611 *static_memfuncp = 0;
2612
2613 return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
2614
2615 }
2616
2617 /* Given an array of argument types (ARGTYPES) (which includes an
2618 entry for "this" in the case of C++ methods), the number of
2619 arguments NARGS, the NAME of a function whether it's a method or
2620 not (METHOD), and the degree of laxness (LAX) in conforming to
2621 overload resolution rules in ANSI C++, find the best function that
2622 matches on the argument types according to the overload resolution
2623 rules.
2624
2625 In the case of class methods, the parameter OBJ is an object value
2626 in which to search for overloaded methods.
2627
2628 In the case of non-method functions, the parameter FSYM is a symbol
2629 corresponding to one of the overloaded functions.
2630
2631 Return value is an integer: 0 -> good match, 10 -> debugger applied
2632 non-standard coercions, 100 -> incompatible.
2633
2634 If a method is being searched for, VALP will hold the value.
2635 If a non-method is being searched for, SYMP will hold the symbol for it.
2636
2637 If a method is being searched for, and it is a static method,
2638 then STATICP will point to a non-zero value.
2639
2640 Note: This function does *not* check the value of
2641 overload_resolution. Caller must check it to see whether overload
2642 resolution is permitted.
2643 */
2644
2645 int
2646 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
2647 int lax, value_ptr obj, struct symbol *fsym,
2648 value_ptr *valp, struct symbol **symp, int *staticp)
2649 {
2650 int nparms;
2651 struct type **parm_types;
2652 int champ_nparms = 0;
2653
2654 short oload_champ = -1; /* Index of best overloaded function */
2655 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2656 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2657 short oload_ambig_champ = -1; /* 2nd contender for best match */
2658 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2659 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2660
2661 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2662 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2663
2664 value_ptr temp = obj;
2665 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2666 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2667 int num_fns = 0; /* Number of overloaded instances being considered */
2668 struct type *basetype = NULL;
2669 int boffset;
2670 register int jj;
2671 register int ix;
2672
2673 char *obj_type_name = NULL;
2674 char *func_name = NULL;
2675
2676 /* Get the list of overloaded methods or functions */
2677 if (method)
2678 {
2679 int i;
2680 int len;
2681 struct type *domain;
2682 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2683 /* Hack: evaluate_subexp_standard often passes in a pointer
2684 value rather than the object itself, so try again */
2685 if ((!obj_type_name || !*obj_type_name) &&
2686 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2687 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2688
2689 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2690 staticp,
2691 &num_fns,
2692 &basetype, &boffset);
2693 if (!fns_ptr || !num_fns)
2694 error ("Couldn't find method %s%s%s",
2695 obj_type_name,
2696 (obj_type_name && *obj_type_name) ? "::" : "",
2697 name);
2698 domain = TYPE_DOMAIN_TYPE (fns_ptr[0].type);
2699 len = TYPE_NFN_FIELDS (domain);
2700 /* NOTE: dan/2000-03-10: This stuff is for STABS, which won't
2701 give us the info we need directly in the types. We have to
2702 use the method stub conversion to get it. Be aware that this
2703 is by no means perfect, and if you use STABS, please move to
2704 DWARF-2, or something like it, because trying to improve
2705 overloading using STABS is really a waste of time. */
2706 for (i = 0; i < len; i++)
2707 {
2708 int j;
2709 struct fn_field *f = TYPE_FN_FIELDLIST1 (domain, i);
2710 int len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
2711
2712 for (j = 0; j < len2; j++)
2713 {
2714 if (TYPE_FN_FIELD_STUB (f, j) && (!strcmp_iw (TYPE_FN_FIELDLIST_NAME (domain,i),name)))
2715 check_stub_method (domain, i, j);
2716 }
2717 }
2718 }
2719 else
2720 {
2721 int i = -1;
2722 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2723
2724 /* If the name is NULL this must be a C-style function.
2725 Just return the same symbol. */
2726 if (!func_name)
2727 {
2728 *symp = fsym;
2729 return 0;
2730 }
2731
2732 oload_syms = make_symbol_overload_list (fsym);
2733 while (oload_syms[++i])
2734 num_fns++;
2735 if (!num_fns)
2736 error ("Couldn't find function %s", func_name);
2737 }
2738
2739 oload_champ_bv = NULL;
2740
2741 /* Consider each candidate in turn */
2742 for (ix = 0; ix < num_fns; ix++)
2743 {
2744 if (method)
2745 {
2746 /* For static member functions, we won't have a this pointer, but nothing
2747 else seems to handle them right now, so we just pretend ourselves */
2748 nparms=0;
2749
2750 if (TYPE_FN_FIELD_ARGS(fns_ptr,ix))
2751 {
2752 while (TYPE_CODE(TYPE_FN_FIELD_ARGS(fns_ptr,ix)[nparms]) != TYPE_CODE_VOID)
2753 nparms++;
2754 }
2755 }
2756 else
2757 {
2758 /* If it's not a method, this is the proper place */
2759 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2760 }
2761
2762 /* Prepare array of parameter types */
2763 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2764 for (jj = 0; jj < nparms; jj++)
2765 parm_types[jj] = (method
2766 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj])
2767 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2768
2769 /* Compare parameter types to supplied argument types */
2770 bv = rank_function (parm_types, nparms, arg_types, nargs);
2771
2772 if (!oload_champ_bv)
2773 {
2774 oload_champ_bv = bv;
2775 oload_champ = 0;
2776 champ_nparms = nparms;
2777 }
2778 else
2779 /* See whether current candidate is better or worse than previous best */
2780 switch (compare_badness (bv, oload_champ_bv))
2781 {
2782 case 0:
2783 oload_ambiguous = 1; /* top two contenders are equally good */
2784 oload_ambig_champ = ix;
2785 break;
2786 case 1:
2787 oload_ambiguous = 2; /* incomparable top contenders */
2788 oload_ambig_champ = ix;
2789 break;
2790 case 2:
2791 oload_champ_bv = bv; /* new champion, record details */
2792 oload_ambiguous = 0;
2793 oload_champ = ix;
2794 oload_ambig_champ = -1;
2795 champ_nparms = nparms;
2796 break;
2797 case 3:
2798 default:
2799 break;
2800 }
2801 xfree (parm_types);
2802 if (overload_debug)
2803 {
2804 if (method)
2805 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2806 else
2807 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2808 for (jj = 0; jj < nargs; jj++)
2809 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2810 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2811 }
2812 } /* end loop over all candidates */
2813 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2814 if they have the exact same goodness. This is because there is no
2815 way to differentiate based on return type, which we need to in
2816 cases like overloads of .begin() <It's both const and non-const> */
2817 #if 0
2818 if (oload_ambiguous)
2819 {
2820 if (method)
2821 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2822 obj_type_name,
2823 (obj_type_name && *obj_type_name) ? "::" : "",
2824 name);
2825 else
2826 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2827 func_name);
2828 }
2829 #endif
2830
2831 /* Check how bad the best match is */
2832 for (ix = 1; ix <= nargs; ix++)
2833 {
2834 if (oload_champ_bv->rank[ix] >= 100)
2835 oload_incompatible = 1; /* truly mismatched types */
2836
2837 else if (oload_champ_bv->rank[ix] >= 10)
2838 oload_non_standard = 1; /* non-standard type conversions needed */
2839 }
2840 if (oload_incompatible)
2841 {
2842 if (method)
2843 error ("Cannot resolve method %s%s%s to any overloaded instance",
2844 obj_type_name,
2845 (obj_type_name && *obj_type_name) ? "::" : "",
2846 name);
2847 else
2848 error ("Cannot resolve function %s to any overloaded instance",
2849 func_name);
2850 }
2851 else if (oload_non_standard)
2852 {
2853 if (method)
2854 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2855 obj_type_name,
2856 (obj_type_name && *obj_type_name) ? "::" : "",
2857 name);
2858 else
2859 warning ("Using non-standard conversion to match function %s to supplied arguments",
2860 func_name);
2861 }
2862
2863 if (method)
2864 {
2865 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2866 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2867 else
2868 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2869 }
2870 else
2871 {
2872 *symp = oload_syms[oload_champ];
2873 xfree (func_name);
2874 }
2875
2876 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2877 }
2878
2879 /* C++: return 1 is NAME is a legitimate name for the destructor
2880 of type TYPE. If TYPE does not have a destructor, or
2881 if NAME is inappropriate for TYPE, an error is signaled. */
2882 int
2883 destructor_name_p (const char *name, const struct type *type)
2884 {
2885 /* destructors are a special case. */
2886
2887 if (name[0] == '~')
2888 {
2889 char *dname = type_name_no_tag (type);
2890 char *cp = strchr (dname, '<');
2891 unsigned int len;
2892
2893 /* Do not compare the template part for template classes. */
2894 if (cp == NULL)
2895 len = strlen (dname);
2896 else
2897 len = cp - dname;
2898 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2899 error ("name of destructor must equal name of class");
2900 else
2901 return 1;
2902 }
2903 return 0;
2904 }
2905
2906 /* Helper function for check_field: Given TYPE, a structure/union,
2907 return 1 if the component named NAME from the ultimate
2908 target structure/union is defined, otherwise, return 0. */
2909
2910 static int
2911 check_field_in (register struct type *type, const char *name)
2912 {
2913 register int i;
2914
2915 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2916 {
2917 char *t_field_name = TYPE_FIELD_NAME (type, i);
2918 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2919 return 1;
2920 }
2921
2922 /* C++: If it was not found as a data field, then try to
2923 return it as a pointer to a method. */
2924
2925 /* Destructors are a special case. */
2926 if (destructor_name_p (name, type))
2927 {
2928 int m_index, f_index;
2929
2930 return get_destructor_fn_field (type, &m_index, &f_index);
2931 }
2932
2933 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2934 {
2935 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2936 return 1;
2937 }
2938
2939 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2940 if (check_field_in (TYPE_BASECLASS (type, i), name))
2941 return 1;
2942
2943 return 0;
2944 }
2945
2946
2947 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2948 return 1 if the component named NAME from the ultimate
2949 target structure/union is defined, otherwise, return 0. */
2950
2951 int
2952 check_field (register value_ptr arg1, const char *name)
2953 {
2954 register struct type *t;
2955
2956 COERCE_ARRAY (arg1);
2957
2958 t = VALUE_TYPE (arg1);
2959
2960 /* Follow pointers until we get to a non-pointer. */
2961
2962 for (;;)
2963 {
2964 CHECK_TYPEDEF (t);
2965 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2966 break;
2967 t = TYPE_TARGET_TYPE (t);
2968 }
2969
2970 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2971 error ("not implemented: member type in check_field");
2972
2973 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2974 && TYPE_CODE (t) != TYPE_CODE_UNION)
2975 error ("Internal error: `this' is not an aggregate");
2976
2977 return check_field_in (t, name);
2978 }
2979
2980 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2981 return the address of this member as a "pointer to member"
2982 type. If INTYPE is non-null, then it will be the type
2983 of the member we are looking for. This will help us resolve
2984 "pointers to member functions". This function is used
2985 to resolve user expressions of the form "DOMAIN::NAME". */
2986
2987 value_ptr
2988 value_struct_elt_for_reference (struct type *domain, int offset,
2989 struct type *curtype, char *name,
2990 struct type *intype)
2991 {
2992 register struct type *t = curtype;
2993 register int i;
2994 value_ptr v;
2995
2996 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2997 && TYPE_CODE (t) != TYPE_CODE_UNION)
2998 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
2999
3000 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3001 {
3002 char *t_field_name = TYPE_FIELD_NAME (t, i);
3003
3004 if (t_field_name && STREQ (t_field_name, name))
3005 {
3006 if (TYPE_FIELD_STATIC (t, i))
3007 {
3008 v = value_static_field (t, i);
3009 if (v == NULL)
3010 error ("Internal error: could not find static variable %s",
3011 name);
3012 return v;
3013 }
3014 if (TYPE_FIELD_PACKED (t, i))
3015 error ("pointers to bitfield members not allowed");
3016
3017 return value_from_longest
3018 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3019 domain)),
3020 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3021 }
3022 }
3023
3024 /* C++: If it was not found as a data field, then try to
3025 return it as a pointer to a method. */
3026
3027 /* Destructors are a special case. */
3028 if (destructor_name_p (name, t))
3029 {
3030 error ("member pointers to destructors not implemented yet");
3031 }
3032
3033 /* Perform all necessary dereferencing. */
3034 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3035 intype = TYPE_TARGET_TYPE (intype);
3036
3037 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3038 {
3039 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3040 char dem_opname[64];
3041
3042 if (strncmp (t_field_name, "__", 2) == 0 ||
3043 strncmp (t_field_name, "op", 2) == 0 ||
3044 strncmp (t_field_name, "type", 4) == 0)
3045 {
3046 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3047 t_field_name = dem_opname;
3048 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3049 t_field_name = dem_opname;
3050 }
3051 if (t_field_name && STREQ (t_field_name, name))
3052 {
3053 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3054 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3055
3056 if (intype == 0 && j > 1)
3057 error ("non-unique member `%s' requires type instantiation", name);
3058 if (intype)
3059 {
3060 while (j--)
3061 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3062 break;
3063 if (j < 0)
3064 error ("no member function matches that type instantiation");
3065 }
3066 else
3067 j = 0;
3068
3069 if (TYPE_FN_FIELD_STUB (f, j))
3070 check_stub_method (t, i, j);
3071 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3072 {
3073 return value_from_longest
3074 (lookup_reference_type
3075 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3076 domain)),
3077 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3078 }
3079 else
3080 {
3081 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3082 0, VAR_NAMESPACE, 0, NULL);
3083 if (s == NULL)
3084 {
3085 v = 0;
3086 }
3087 else
3088 {
3089 v = read_var_value (s, 0);
3090 #if 0
3091 VALUE_TYPE (v) = lookup_reference_type
3092 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3093 domain));
3094 #endif
3095 }
3096 return v;
3097 }
3098 }
3099 }
3100 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3101 {
3102 value_ptr v;
3103 int base_offset;
3104
3105 if (BASETYPE_VIA_VIRTUAL (t, i))
3106 base_offset = 0;
3107 else
3108 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3109 v = value_struct_elt_for_reference (domain,
3110 offset + base_offset,
3111 TYPE_BASECLASS (t, i),
3112 name,
3113 intype);
3114 if (v)
3115 return v;
3116 }
3117 return 0;
3118 }
3119
3120
3121 /* Find the real run-time type of a value using RTTI.
3122 * V is a pointer to the value.
3123 * A pointer to the struct type entry of the run-time type
3124 * is returneed.
3125 * FULL is a flag that is set only if the value V includes
3126 * the entire contents of an object of the RTTI type.
3127 * TOP is the offset to the top of the enclosing object of
3128 * the real run-time type. This offset may be for the embedded
3129 * object, or for the enclosing object of V.
3130 * USING_ENC is the flag that distinguishes the two cases.
3131 * If it is 1, then the offset is for the enclosing object,
3132 * otherwise for the embedded object.
3133 *
3134 */
3135
3136 struct type *
3137 value_rtti_type (value_ptr v, int *full, int *top, int *using_enc)
3138 {
3139 struct type *known_type;
3140 struct type *rtti_type;
3141 CORE_ADDR coreptr;
3142 value_ptr vp;
3143 int using_enclosing = 0;
3144 long top_offset = 0;
3145 char rtti_type_name[256];
3146
3147 if (full)
3148 *full = 0;
3149 if (top)
3150 *top = -1;
3151 if (using_enc)
3152 *using_enc = 0;
3153
3154 /* Get declared type */
3155 known_type = VALUE_TYPE (v);
3156 CHECK_TYPEDEF (known_type);
3157 /* RTTI works only or class objects */
3158 if (TYPE_CODE (known_type) != TYPE_CODE_CLASS)
3159 return NULL;
3160 if (TYPE_HAS_VTABLE(known_type))
3161 {
3162 /* If neither the declared type nor the enclosing type of the
3163 * value structure has a HP ANSI C++ style virtual table,
3164 * we can't do anything. */
3165 if (!TYPE_HAS_VTABLE (known_type))
3166 {
3167 known_type = VALUE_ENCLOSING_TYPE (v);
3168 CHECK_TYPEDEF (known_type);
3169 if ((TYPE_CODE (known_type) != TYPE_CODE_CLASS) ||
3170 !TYPE_HAS_VTABLE (known_type))
3171 return NULL; /* No RTTI, or not HP-compiled types */
3172 CHECK_TYPEDEF (known_type);
3173 using_enclosing = 1;
3174 }
3175
3176 if (using_enclosing && using_enc)
3177 *using_enc = 1;
3178
3179 /* First get the virtual table address */
3180 coreptr = *(CORE_ADDR *) ((VALUE_CONTENTS_ALL (v))
3181 + VALUE_OFFSET (v)
3182 + (using_enclosing ? 0 : VALUE_EMBEDDED_OFFSET (v)));
3183 if (coreptr == 0)
3184 return NULL; /* return silently -- maybe called on gdb-generated value */
3185
3186 /* Fetch the top offset of the object */
3187 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3188 vp = value_at (builtin_type_int,
3189 coreptr + 4 * HP_ACC_TOP_OFFSET_OFFSET,
3190 VALUE_BFD_SECTION (v));
3191 top_offset = value_as_long (vp);
3192 if (top)
3193 *top = top_offset;
3194
3195 /* Fetch the typeinfo pointer */
3196 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3197 vp = value_at (builtin_type_int, coreptr + 4 * HP_ACC_TYPEINFO_OFFSET, VALUE_BFD_SECTION (v));
3198 /* Indirect through the typeinfo pointer and retrieve the pointer
3199 * to the string name */
3200 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
3201 if (!coreptr)
3202 error ("Retrieved null typeinfo pointer in trying to determine run-time type");
3203 vp = value_at (builtin_type_int, coreptr + 4, VALUE_BFD_SECTION (v)); /* 4 -> offset of name field */
3204 /* FIXME possible 32x64 problem */
3205
3206 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
3207
3208 read_memory_string (coreptr, rtti_type_name, 256);
3209
3210 if (strlen (rtti_type_name) == 0)
3211 error ("Retrieved null type name from typeinfo");
3212
3213 /* search for type */
3214 rtti_type = lookup_typename (rtti_type_name, (struct block *) 0, 1);
3215
3216 if (!rtti_type)
3217 error ("Could not find run-time type: invalid type name %s in typeinfo??", rtti_type_name);
3218 CHECK_TYPEDEF (rtti_type);
3219 #if 0
3220 printf ("RTTI type name %s, tag %s, full? %d\n", TYPE_NAME (rtti_type), TYPE_TAG_NAME (rtti_type), full ? *full : -1);
3221 #endif
3222 /* Check whether we have the entire object */
3223 if (full /* Non-null pointer passed */
3224 &&
3225 /* Either we checked on the whole object in hand and found the
3226 top offset to be zero */
3227 (((top_offset == 0) &&
3228 using_enclosing &&
3229 TYPE_LENGTH (known_type) == TYPE_LENGTH (rtti_type))
3230 ||
3231 /* Or we checked on the embedded object and top offset was the
3232 same as the embedded offset */
3233 ((top_offset == VALUE_EMBEDDED_OFFSET (v)) &&
3234 !using_enclosing &&
3235 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (v)) == TYPE_LENGTH (rtti_type))))
3236
3237 *full = 1;
3238 }
3239 else
3240 /*
3241 Right now this is G++ RTTI. Plan on this changing in the
3242 future as i get around to setting the vtables properly for G++
3243 compiled stuff. Also, i'll be using the type info functions,
3244 which are always right. Deal with it until then.
3245 */
3246 {
3247 CORE_ADDR vtbl;
3248 struct minimal_symbol *minsym;
3249 struct symbol *sym;
3250 char *demangled_name;
3251 struct type *btype;
3252 /* If the type has no vptr fieldno, try to get it filled in */
3253 if (TYPE_VPTR_FIELDNO(known_type) < 0)
3254 fill_in_vptr_fieldno(known_type);
3255
3256 /* If we still can't find one, give up */
3257 if (TYPE_VPTR_FIELDNO(known_type) < 0)
3258 return NULL;
3259
3260 /* Make sure our basetype and known type match, otherwise, cast
3261 so we can get at the vtable properly.
3262 */
3263 btype = TYPE_VPTR_BASETYPE (known_type);
3264 CHECK_TYPEDEF (btype);
3265 if (btype != known_type )
3266 {
3267 v = value_cast (btype, v);
3268 if (using_enc)
3269 *using_enc=1;
3270 }
3271 /*
3272 We can't use value_ind here, because it would want to use RTTI, and
3273 we'd waste a bunch of time figuring out we already know the type.
3274 Besides, we don't care about the type, just the actual pointer
3275 */
3276 if (VALUE_ADDRESS (value_field (v, TYPE_VPTR_FIELDNO (known_type))) == 0)
3277 return NULL;
3278
3279 /*
3280 If we are enclosed by something that isn't us, adjust the
3281 address properly and set using_enclosing.
3282 */
3283 if (VALUE_ENCLOSING_TYPE(v) != VALUE_TYPE(v))
3284 {
3285 value_ptr tempval;
3286 tempval=value_field(v,TYPE_VPTR_FIELDNO(known_type));
3287 VALUE_ADDRESS(tempval)+=(TYPE_BASECLASS_BITPOS(known_type,TYPE_VPTR_FIELDNO(known_type))/8);
3288 vtbl=value_as_pointer(tempval);
3289 using_enclosing=1;
3290 }
3291 else
3292 {
3293 vtbl=value_as_pointer(value_field(v,TYPE_VPTR_FIELDNO(known_type)));
3294 using_enclosing=0;
3295 }
3296
3297 /* Try to find a symbol that is the vtable */
3298 minsym=lookup_minimal_symbol_by_pc(vtbl);
3299 if (minsym==NULL || (demangled_name=SYMBOL_NAME(minsym))==NULL || !VTBL_PREFIX_P(demangled_name))
3300 return NULL;
3301
3302 /* If we just skip the prefix, we get screwed by namespaces */
3303 demangled_name=cplus_demangle(demangled_name,DMGL_PARAMS|DMGL_ANSI);
3304 *(strchr(demangled_name,' '))=0;
3305
3306 /* Lookup the type for the name */
3307 rtti_type=lookup_typename(demangled_name, (struct block *)0,1);
3308
3309 if (rtti_type==NULL)
3310 return NULL;
3311
3312 if (TYPE_N_BASECLASSES(rtti_type) > 1 && full && (*full) != 1)
3313 {
3314 if (top)
3315 *top=TYPE_BASECLASS_BITPOS(rtti_type,TYPE_VPTR_FIELDNO(rtti_type))/8;
3316 if (top && ((*top) >0))
3317 {
3318 if (TYPE_LENGTH(rtti_type) > TYPE_LENGTH(known_type))
3319 {
3320 if (full)
3321 *full=0;
3322 }
3323 else
3324 {
3325 if (full)
3326 *full=1;
3327 }
3328 }
3329 }
3330 else
3331 {
3332 if (full)
3333 *full=1;
3334 }
3335 if (using_enc)
3336 *using_enc=using_enclosing;
3337 }
3338 return rtti_type;
3339 }
3340
3341 /* Given a pointer value V, find the real (RTTI) type
3342 of the object it points to.
3343 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3344 and refer to the values computed for the object pointed to. */
3345
3346 struct type *
3347 value_rtti_target_type (value_ptr v, int *full, int *top, int *using_enc)
3348 {
3349 value_ptr target;
3350
3351 target = value_ind (v);
3352
3353 return value_rtti_type (target, full, top, using_enc);
3354 }
3355
3356 /* Given a value pointed to by ARGP, check its real run-time type, and
3357 if that is different from the enclosing type, create a new value
3358 using the real run-time type as the enclosing type (and of the same
3359 type as ARGP) and return it, with the embedded offset adjusted to
3360 be the correct offset to the enclosed object
3361 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3362 parameters, computed by value_rtti_type(). If these are available,
3363 they can be supplied and a second call to value_rtti_type() is avoided.
3364 (Pass RTYPE == NULL if they're not available */
3365
3366 value_ptr
3367 value_full_object (value_ptr argp, struct type *rtype, int xfull, int xtop,
3368 int xusing_enc)
3369 {
3370 struct type *real_type;
3371 int full = 0;
3372 int top = -1;
3373 int using_enc = 0;
3374 value_ptr new_val;
3375
3376 if (rtype)
3377 {
3378 real_type = rtype;
3379 full = xfull;
3380 top = xtop;
3381 using_enc = xusing_enc;
3382 }
3383 else
3384 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3385
3386 /* If no RTTI data, or if object is already complete, do nothing */
3387 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3388 return argp;
3389
3390 /* If we have the full object, but for some reason the enclosing
3391 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3392 if (full)
3393 {
3394 VALUE_ENCLOSING_TYPE (argp) = real_type;
3395 return argp;
3396 }
3397
3398 /* Check if object is in memory */
3399 if (VALUE_LVAL (argp) != lval_memory)
3400 {
3401 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3402
3403 return argp;
3404 }
3405
3406 /* All other cases -- retrieve the complete object */
3407 /* Go back by the computed top_offset from the beginning of the object,
3408 adjusting for the embedded offset of argp if that's what value_rtti_type
3409 used for its computation. */
3410 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3411 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3412 VALUE_BFD_SECTION (argp));
3413 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3414 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3415 return new_val;
3416 }
3417
3418
3419
3420
3421 /* C++: return the value of the class instance variable, if one exists.
3422 Flag COMPLAIN signals an error if the request is made in an
3423 inappropriate context. */
3424
3425 value_ptr
3426 value_of_this (int complain)
3427 {
3428 struct symbol *func, *sym;
3429 struct block *b;
3430 int i;
3431 static const char funny_this[] = "this";
3432 value_ptr this;
3433
3434 if (selected_frame == 0)
3435 {
3436 if (complain)
3437 error ("no frame selected");
3438 else
3439 return 0;
3440 }
3441
3442 func = get_frame_function (selected_frame);
3443 if (!func)
3444 {
3445 if (complain)
3446 error ("no `this' in nameless context");
3447 else
3448 return 0;
3449 }
3450
3451 b = SYMBOL_BLOCK_VALUE (func);
3452 i = BLOCK_NSYMS (b);
3453 if (i <= 0)
3454 {
3455 if (complain)
3456 error ("no args, no `this'");
3457 else
3458 return 0;
3459 }
3460
3461 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3462 symbol instead of the LOC_ARG one (if both exist). */
3463 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
3464 if (sym == NULL)
3465 {
3466 if (complain)
3467 error ("current stack frame not in method");
3468 else
3469 return NULL;
3470 }
3471
3472 this = read_var_value (sym, selected_frame);
3473 if (this == 0 && complain)
3474 error ("`this' argument at unknown address");
3475 return this;
3476 }
3477
3478 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3479 long, starting at LOWBOUND. The result has the same lower bound as
3480 the original ARRAY. */
3481
3482 value_ptr
3483 value_slice (value_ptr array, int lowbound, int length)
3484 {
3485 struct type *slice_range_type, *slice_type, *range_type;
3486 LONGEST lowerbound, upperbound, offset;
3487 value_ptr slice;
3488 struct type *array_type;
3489 array_type = check_typedef (VALUE_TYPE (array));
3490 COERCE_VARYING_ARRAY (array, array_type);
3491 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3492 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3493 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3494 error ("cannot take slice of non-array");
3495 range_type = TYPE_INDEX_TYPE (array_type);
3496 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3497 error ("slice from bad array or bitstring");
3498 if (lowbound < lowerbound || length < 0
3499 || lowbound + length - 1 > upperbound
3500 /* Chill allows zero-length strings but not arrays. */
3501 || (current_language->la_language == language_chill
3502 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3503 error ("slice out of range");
3504 /* FIXME-type-allocation: need a way to free this type when we are
3505 done with it. */
3506 slice_range_type = create_range_type ((struct type *) NULL,
3507 TYPE_TARGET_TYPE (range_type),
3508 lowbound, lowbound + length - 1);
3509 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3510 {
3511 int i;
3512 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3513 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3514 slice = value_zero (slice_type, not_lval);
3515 for (i = 0; i < length; i++)
3516 {
3517 int element = value_bit_index (array_type,
3518 VALUE_CONTENTS (array),
3519 lowbound + i);
3520 if (element < 0)
3521 error ("internal error accessing bitstring");
3522 else if (element > 0)
3523 {
3524 int j = i % TARGET_CHAR_BIT;
3525 if (BITS_BIG_ENDIAN)
3526 j = TARGET_CHAR_BIT - 1 - j;
3527 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3528 }
3529 }
3530 /* We should set the address, bitssize, and bitspos, so the clice
3531 can be used on the LHS, but that may require extensions to
3532 value_assign. For now, just leave as a non_lval. FIXME. */
3533 }
3534 else
3535 {
3536 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3537 offset
3538 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3539 slice_type = create_array_type ((struct type *) NULL, element_type,
3540 slice_range_type);
3541 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3542 slice = allocate_value (slice_type);
3543 if (VALUE_LAZY (array))
3544 VALUE_LAZY (slice) = 1;
3545 else
3546 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3547 TYPE_LENGTH (slice_type));
3548 if (VALUE_LVAL (array) == lval_internalvar)
3549 VALUE_LVAL (slice) = lval_internalvar_component;
3550 else
3551 VALUE_LVAL (slice) = VALUE_LVAL (array);
3552 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3553 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3554 }
3555 return slice;
3556 }
3557
3558 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3559 value as a fixed-length array. */
3560
3561 value_ptr
3562 varying_to_slice (value_ptr varray)
3563 {
3564 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3565 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3566 VALUE_CONTENTS (varray)
3567 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3568 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3569 }
3570
3571 /* Create a value for a FORTRAN complex number. Currently most of
3572 the time values are coerced to COMPLEX*16 (i.e. a complex number
3573 composed of 2 doubles. This really should be a smarter routine
3574 that figures out precision inteligently as opposed to assuming
3575 doubles. FIXME: fmb */
3576
3577 value_ptr
3578 value_literal_complex (value_ptr arg1, value_ptr arg2, struct type *type)
3579 {
3580 register value_ptr val;
3581 struct type *real_type = TYPE_TARGET_TYPE (type);
3582
3583 val = allocate_value (type);
3584 arg1 = value_cast (real_type, arg1);
3585 arg2 = value_cast (real_type, arg2);
3586
3587 memcpy (VALUE_CONTENTS_RAW (val),
3588 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3589 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3590 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3591 return val;
3592 }
3593
3594 /* Cast a value into the appropriate complex data type. */
3595
3596 static value_ptr
3597 cast_into_complex (struct type *type, register value_ptr val)
3598 {
3599 struct type *real_type = TYPE_TARGET_TYPE (type);
3600 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3601 {
3602 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3603 value_ptr re_val = allocate_value (val_real_type);
3604 value_ptr im_val = allocate_value (val_real_type);
3605
3606 memcpy (VALUE_CONTENTS_RAW (re_val),
3607 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3608 memcpy (VALUE_CONTENTS_RAW (im_val),
3609 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3610 TYPE_LENGTH (val_real_type));
3611
3612 return value_literal_complex (re_val, im_val, type);
3613 }
3614 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3615 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3616 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3617 else
3618 error ("cannot cast non-number to complex");
3619 }
3620
3621 void
3622 _initialize_valops (void)
3623 {
3624 #if 0
3625 add_show_from_set
3626 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3627 "Set automatic abandonment of expressions upon failure.",
3628 &setlist),
3629 &showlist);
3630 #endif
3631
3632 add_show_from_set
3633 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3634 "Set overload resolution in evaluating C++ functions.",
3635 &setlist),
3636 &showlist);
3637 overload_resolution = 1;
3638
3639 add_show_from_set (
3640 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3641 (char *) &unwind_on_signal_p,
3642 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3643 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3644 is received while in a function called from gdb (call dummy). If set, gdb\n\
3645 unwinds the stack and restore the context to what as it was before the call.\n\
3646 The default is to stop in the frame where the signal was received.", &setlist),
3647 &showlist);
3648 }
This page took 0.112856 seconds and 4 git commands to generate.