gdb/
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33 #include "regcache.h"
34 #include "cp-abi.h"
35 #include "block.h"
36 #include "infcall.h"
37 #include "dictionary.h"
38 #include "cp-support.h"
39 #include "dfp.h"
40 #include "user-regs.h"
41
42 #include <errno.h>
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
46 #include "observer.h"
47 #include "objfiles.h"
48 #include "symtab.h"
49
50 extern int overload_debug;
51 /* Local functions. */
52
53 static int typecmp (int staticp, int varargs, int nargs,
54 struct field t1[], struct value *t2[]);
55
56 static struct value *search_struct_field (char *, struct value *,
57 int, struct type *, int);
58
59 static struct value *search_struct_method (char *, struct value **,
60 struct value **,
61 int, int *, struct type *);
62
63 static int find_oload_champ_namespace (struct type **, int,
64 const char *, const char *,
65 struct symbol ***,
66 struct badness_vector **);
67
68 static
69 int find_oload_champ_namespace_loop (struct type **, int,
70 const char *, const char *,
71 int, struct symbol ***,
72 struct badness_vector **, int *);
73
74 static int find_oload_champ (struct type **, int, int, int,
75 struct fn_field *, struct symbol **,
76 struct badness_vector **);
77
78 static int oload_method_static (int, struct fn_field *, int);
79
80 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
81
82 static enum
83 oload_classification classify_oload_match (struct badness_vector *,
84 int, int);
85
86 static struct value *value_struct_elt_for_reference (struct type *,
87 int, struct type *,
88 char *,
89 struct type *,
90 int, enum noside);
91
92 static struct value *value_namespace_elt (const struct type *,
93 char *, int , enum noside);
94
95 static struct value *value_maybe_namespace_elt (const struct type *,
96 char *, int,
97 enum noside);
98
99 static CORE_ADDR allocate_space_in_inferior (int);
100
101 static struct value *cast_into_complex (struct type *, struct value *);
102
103 static struct fn_field *find_method_list (struct value **, char *,
104 int, struct type *, int *,
105 struct type **, int *);
106
107 void _initialize_valops (void);
108
109 #if 0
110 /* Flag for whether we want to abandon failed expression evals by
111 default. */
112
113 static int auto_abandon = 0;
114 #endif
115
116 int overload_resolution = 0;
117 static void
118 show_overload_resolution (struct ui_file *file, int from_tty,
119 struct cmd_list_element *c,
120 const char *value)
121 {
122 fprintf_filtered (file, _("\
123 Overload resolution in evaluating C++ functions is %s.\n"),
124 value);
125 }
126
127 /* Find the address of function name NAME in the inferior. If OBJF_P
128 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
129 is defined. */
130
131 struct value *
132 find_function_in_inferior (const char *name, struct objfile **objf_p)
133 {
134 struct symbol *sym;
135 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
136 if (sym != NULL)
137 {
138 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
139 {
140 error (_("\"%s\" exists in this program but is not a function."),
141 name);
142 }
143
144 if (objf_p)
145 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
146
147 return value_of_variable (sym, NULL);
148 }
149 else
150 {
151 struct minimal_symbol *msymbol =
152 lookup_minimal_symbol (name, NULL, NULL);
153 if (msymbol != NULL)
154 {
155 struct objfile *objfile = msymbol_objfile (msymbol);
156 struct gdbarch *gdbarch = get_objfile_arch (objfile);
157
158 struct type *type;
159 CORE_ADDR maddr;
160 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
161 type = lookup_function_type (type);
162 type = lookup_pointer_type (type);
163 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
164
165 if (objf_p)
166 *objf_p = objfile;
167
168 return value_from_pointer (type, maddr);
169 }
170 else
171 {
172 if (!target_has_execution)
173 error (_("evaluation of this expression requires the target program to be active"));
174 else
175 error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
176 }
177 }
178 }
179
180 /* Allocate NBYTES of space in the inferior using the inferior's
181 malloc and return a value that is a pointer to the allocated
182 space. */
183
184 struct value *
185 value_allocate_space_in_inferior (int len)
186 {
187 struct objfile *objf;
188 struct value *val = find_function_in_inferior ("malloc", &objf);
189 struct gdbarch *gdbarch = get_objfile_arch (objf);
190 struct value *blocklen;
191
192 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
193 val = call_function_by_hand (val, 1, &blocklen);
194 if (value_logical_not (val))
195 {
196 if (!target_has_execution)
197 error (_("No memory available to program now: you need to start the target first"));
198 else
199 error (_("No memory available to program: call to malloc failed"));
200 }
201 return val;
202 }
203
204 static CORE_ADDR
205 allocate_space_in_inferior (int len)
206 {
207 return value_as_long (value_allocate_space_in_inferior (len));
208 }
209
210 /* Cast struct value VAL to type TYPE and return as a value.
211 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
212 for this to work. Typedef to one of the codes is permitted.
213 Returns NULL if the cast is neither an upcast nor a downcast. */
214
215 static struct value *
216 value_cast_structs (struct type *type, struct value *v2)
217 {
218 struct type *t1;
219 struct type *t2;
220 struct value *v;
221
222 gdb_assert (type != NULL && v2 != NULL);
223
224 t1 = check_typedef (type);
225 t2 = check_typedef (value_type (v2));
226
227 /* Check preconditions. */
228 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
229 || TYPE_CODE (t1) == TYPE_CODE_UNION)
230 && !!"Precondition is that type is of STRUCT or UNION kind.");
231 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
232 || TYPE_CODE (t2) == TYPE_CODE_UNION)
233 && !!"Precondition is that value is of STRUCT or UNION kind");
234
235 /* Upcasting: look in the type of the source to see if it contains the
236 type of the target as a superclass. If so, we'll need to
237 offset the pointer rather than just change its type. */
238 if (TYPE_NAME (t1) != NULL)
239 {
240 v = search_struct_field (type_name_no_tag (t1),
241 v2, 0, t2, 1);
242 if (v)
243 return v;
244 }
245
246 /* Downcasting: look in the type of the target to see if it contains the
247 type of the source as a superclass. If so, we'll need to
248 offset the pointer rather than just change its type.
249 FIXME: This fails silently with virtual inheritance. */
250 if (TYPE_NAME (t2) != NULL)
251 {
252 v = search_struct_field (type_name_no_tag (t2),
253 value_zero (t1, not_lval), 0, t1, 1);
254 if (v)
255 {
256 /* Downcasting is possible (t1 is superclass of v2). */
257 CORE_ADDR addr2 = value_address (v2);
258 addr2 -= value_address (v) + value_embedded_offset (v);
259 return value_at (type, addr2);
260 }
261 }
262
263 return NULL;
264 }
265
266 /* Cast one pointer or reference type to another. Both TYPE and
267 the type of ARG2 should be pointer types, or else both should be
268 reference types. Returns the new pointer or reference. */
269
270 struct value *
271 value_cast_pointers (struct type *type, struct value *arg2)
272 {
273 struct type *type1 = check_typedef (type);
274 struct type *type2 = check_typedef (value_type (arg2));
275 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
276 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
277
278 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
279 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
280 && !value_logical_not (arg2))
281 {
282 struct value *v2;
283
284 if (TYPE_CODE (type2) == TYPE_CODE_REF)
285 v2 = coerce_ref (arg2);
286 else
287 v2 = value_ind (arg2);
288 gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) == TYPE_CODE_STRUCT
289 && !!"Why did coercion fail?");
290 v2 = value_cast_structs (t1, v2);
291 /* At this point we have what we can have, un-dereference if needed. */
292 if (v2)
293 {
294 struct value *v = value_addr (v2);
295 deprecated_set_value_type (v, type);
296 return v;
297 }
298 }
299
300 /* No superclass found, just change the pointer type. */
301 arg2 = value_copy (arg2);
302 deprecated_set_value_type (arg2, type);
303 arg2 = value_change_enclosing_type (arg2, type);
304 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
305 return arg2;
306 }
307
308 /* Cast value ARG2 to type TYPE and return as a value.
309 More general than a C cast: accepts any two types of the same length,
310 and if ARG2 is an lvalue it can be cast into anything at all. */
311 /* In C++, casts may change pointer or object representations. */
312
313 struct value *
314 value_cast (struct type *type, struct value *arg2)
315 {
316 enum type_code code1;
317 enum type_code code2;
318 int scalar;
319 struct type *type2;
320
321 int convert_to_boolean = 0;
322
323 if (value_type (arg2) == type)
324 return arg2;
325
326 code1 = TYPE_CODE (check_typedef (type));
327
328 /* Check if we are casting struct reference to struct reference. */
329 if (code1 == TYPE_CODE_REF)
330 {
331 /* We dereference type; then we recurse and finally
332 we generate value of the given reference. Nothing wrong with
333 that. */
334 struct type *t1 = check_typedef (type);
335 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
336 struct value *val = value_cast (dereftype, arg2);
337 return value_ref (val);
338 }
339
340 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
341
342 if (code2 == TYPE_CODE_REF)
343 /* We deref the value and then do the cast. */
344 return value_cast (type, coerce_ref (arg2));
345
346 CHECK_TYPEDEF (type);
347 code1 = TYPE_CODE (type);
348 arg2 = coerce_ref (arg2);
349 type2 = check_typedef (value_type (arg2));
350
351 /* You can't cast to a reference type. See value_cast_pointers
352 instead. */
353 gdb_assert (code1 != TYPE_CODE_REF);
354
355 /* A cast to an undetermined-length array_type, such as
356 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
357 where N is sizeof(OBJECT)/sizeof(TYPE). */
358 if (code1 == TYPE_CODE_ARRAY)
359 {
360 struct type *element_type = TYPE_TARGET_TYPE (type);
361 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
362 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
363 {
364 struct type *range_type = TYPE_INDEX_TYPE (type);
365 int val_length = TYPE_LENGTH (type2);
366 LONGEST low_bound, high_bound, new_length;
367 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
368 low_bound = 0, high_bound = 0;
369 new_length = val_length / element_length;
370 if (val_length % element_length != 0)
371 warning (_("array element type size does not divide object size in cast"));
372 /* FIXME-type-allocation: need a way to free this type when
373 we are done with it. */
374 range_type = create_range_type ((struct type *) NULL,
375 TYPE_TARGET_TYPE (range_type),
376 low_bound,
377 new_length + low_bound - 1);
378 deprecated_set_value_type (arg2,
379 create_array_type ((struct type *) NULL,
380 element_type,
381 range_type));
382 return arg2;
383 }
384 }
385
386 if (current_language->c_style_arrays
387 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
388 arg2 = value_coerce_array (arg2);
389
390 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
391 arg2 = value_coerce_function (arg2);
392
393 type2 = check_typedef (value_type (arg2));
394 code2 = TYPE_CODE (type2);
395
396 if (code1 == TYPE_CODE_COMPLEX)
397 return cast_into_complex (type, arg2);
398 if (code1 == TYPE_CODE_BOOL)
399 {
400 code1 = TYPE_CODE_INT;
401 convert_to_boolean = 1;
402 }
403 if (code1 == TYPE_CODE_CHAR)
404 code1 = TYPE_CODE_INT;
405 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
406 code2 = TYPE_CODE_INT;
407
408 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
409 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
410 || code2 == TYPE_CODE_RANGE);
411
412 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
413 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
414 && TYPE_NAME (type) != 0)
415 {
416 struct value *v = value_cast_structs (type, arg2);
417 if (v)
418 return v;
419 }
420
421 if (code1 == TYPE_CODE_FLT && scalar)
422 return value_from_double (type, value_as_double (arg2));
423 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
424 {
425 int dec_len = TYPE_LENGTH (type);
426 gdb_byte dec[16];
427
428 if (code2 == TYPE_CODE_FLT)
429 decimal_from_floating (arg2, dec, dec_len);
430 else if (code2 == TYPE_CODE_DECFLOAT)
431 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
432 dec, dec_len);
433 else
434 /* The only option left is an integral type. */
435 decimal_from_integral (arg2, dec, dec_len);
436
437 return value_from_decfloat (type, dec);
438 }
439 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
440 || code1 == TYPE_CODE_RANGE)
441 && (scalar || code2 == TYPE_CODE_PTR
442 || code2 == TYPE_CODE_MEMBERPTR))
443 {
444 LONGEST longest;
445
446 /* When we cast pointers to integers, we mustn't use
447 gdbarch_pointer_to_address to find the address the pointer
448 represents, as value_as_long would. GDB should evaluate
449 expressions just as the compiler would --- and the compiler
450 sees a cast as a simple reinterpretation of the pointer's
451 bits. */
452 if (code2 == TYPE_CODE_PTR)
453 longest = extract_unsigned_integer (value_contents (arg2),
454 TYPE_LENGTH (type2));
455 else
456 longest = value_as_long (arg2);
457 return value_from_longest (type, convert_to_boolean ?
458 (LONGEST) (longest ? 1 : 0) : longest);
459 }
460 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
461 || code2 == TYPE_CODE_ENUM
462 || code2 == TYPE_CODE_RANGE))
463 {
464 /* TYPE_LENGTH (type) is the length of a pointer, but we really
465 want the length of an address! -- we are really dealing with
466 addresses (i.e., gdb representations) not pointers (i.e.,
467 target representations) here.
468
469 This allows things like "print *(int *)0x01000234" to work
470 without printing a misleading message -- which would
471 otherwise occur when dealing with a target having two byte
472 pointers and four byte addresses. */
473
474 int addr_bit = gdbarch_addr_bit (current_gdbarch);
475
476 LONGEST longest = value_as_long (arg2);
477 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
478 {
479 if (longest >= ((LONGEST) 1 << addr_bit)
480 || longest <= -((LONGEST) 1 << addr_bit))
481 warning (_("value truncated"));
482 }
483 return value_from_longest (type, longest);
484 }
485 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
486 && value_as_long (arg2) == 0)
487 {
488 struct value *result = allocate_value (type);
489 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
490 return result;
491 }
492 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
493 && value_as_long (arg2) == 0)
494 {
495 /* The Itanium C++ ABI represents NULL pointers to members as
496 minus one, instead of biasing the normal case. */
497 return value_from_longest (type, -1);
498 }
499 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
500 {
501 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
502 return value_cast_pointers (type, arg2);
503
504 arg2 = value_copy (arg2);
505 deprecated_set_value_type (arg2, type);
506 arg2 = value_change_enclosing_type (arg2, type);
507 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
508 return arg2;
509 }
510 else if (VALUE_LVAL (arg2) == lval_memory)
511 return value_at_lazy (type, value_address (arg2));
512 else if (code1 == TYPE_CODE_VOID)
513 {
514 return value_zero (builtin_type_void, not_lval);
515 }
516 else
517 {
518 error (_("Invalid cast."));
519 return 0;
520 }
521 }
522
523 /* Create a value of type TYPE that is zero, and return it. */
524
525 struct value *
526 value_zero (struct type *type, enum lval_type lv)
527 {
528 struct value *val = allocate_value (type);
529 VALUE_LVAL (val) = lv;
530
531 return val;
532 }
533
534 /* Create a value of numeric type TYPE that is one, and return it. */
535
536 struct value *
537 value_one (struct type *type, enum lval_type lv)
538 {
539 struct type *type1 = check_typedef (type);
540 struct value *val;
541
542 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
543 {
544 gdb_byte v[16];
545 decimal_from_string (v, TYPE_LENGTH (type), "1");
546 val = value_from_decfloat (type, v);
547 }
548 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
549 {
550 val = value_from_double (type, (DOUBLEST) 1);
551 }
552 else if (is_integral_type (type1))
553 {
554 val = value_from_longest (type, (LONGEST) 1);
555 }
556 else
557 {
558 error (_("Not a numeric type."));
559 }
560
561 VALUE_LVAL (val) = lv;
562 return val;
563 }
564
565 /* Return a value with type TYPE located at ADDR.
566
567 Call value_at only if the data needs to be fetched immediately;
568 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
569 value_at_lazy instead. value_at_lazy simply records the address of
570 the data and sets the lazy-evaluation-required flag. The lazy flag
571 is tested in the value_contents macro, which is used if and when
572 the contents are actually required.
573
574 Note: value_at does *NOT* handle embedded offsets; perform such
575 adjustments before or after calling it. */
576
577 struct value *
578 value_at (struct type *type, CORE_ADDR addr)
579 {
580 struct value *val;
581
582 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
583 error (_("Attempt to dereference a generic pointer."));
584
585 val = allocate_value (type);
586
587 read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
588
589 VALUE_LVAL (val) = lval_memory;
590 set_value_address (val, addr);
591
592 return val;
593 }
594
595 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
596
597 struct value *
598 value_at_lazy (struct type *type, CORE_ADDR addr)
599 {
600 struct value *val;
601
602 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
603 error (_("Attempt to dereference a generic pointer."));
604
605 val = allocate_value_lazy (type);
606
607 VALUE_LVAL (val) = lval_memory;
608 set_value_address (val, addr);
609
610 return val;
611 }
612
613 /* Called only from the value_contents and value_contents_all()
614 macros, if the current data for a variable needs to be loaded into
615 value_contents(VAL). Fetches the data from the user's process, and
616 clears the lazy flag to indicate that the data in the buffer is
617 valid.
618
619 If the value is zero-length, we avoid calling read_memory, which
620 would abort. We mark the value as fetched anyway -- all 0 bytes of
621 it.
622
623 This function returns a value because it is used in the
624 value_contents macro as part of an expression, where a void would
625 not work. The value is ignored. */
626
627 int
628 value_fetch_lazy (struct value *val)
629 {
630 gdb_assert (value_lazy (val));
631 allocate_value_contents (val);
632 if (VALUE_LVAL (val) == lval_memory)
633 {
634 CORE_ADDR addr = value_address (val);
635 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
636
637 if (length)
638 read_memory (addr, value_contents_all_raw (val), length);
639 }
640 else if (VALUE_LVAL (val) == lval_register)
641 {
642 struct frame_info *frame;
643 int regnum;
644 struct type *type = check_typedef (value_type (val));
645 struct value *new_val = val, *mark = value_mark ();
646
647 /* Offsets are not supported here; lazy register values must
648 refer to the entire register. */
649 gdb_assert (value_offset (val) == 0);
650
651 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
652 {
653 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
654 regnum = VALUE_REGNUM (new_val);
655
656 gdb_assert (frame != NULL);
657
658 /* Convertible register routines are used for multi-register
659 values and for interpretation in different types
660 (e.g. float or int from a double register). Lazy
661 register values should have the register's natural type,
662 so they do not apply. */
663 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
664 regnum, type));
665
666 new_val = get_frame_register_value (frame, regnum);
667 }
668
669 /* If it's still lazy (for instance, a saved register on the
670 stack), fetch it. */
671 if (value_lazy (new_val))
672 value_fetch_lazy (new_val);
673
674 /* If the register was not saved, mark it unavailable. */
675 if (value_optimized_out (new_val))
676 set_value_optimized_out (val, 1);
677 else
678 memcpy (value_contents_raw (val), value_contents (new_val),
679 TYPE_LENGTH (type));
680
681 if (frame_debug)
682 {
683 struct gdbarch *gdbarch;
684 frame = frame_find_by_id (VALUE_FRAME_ID (val));
685 regnum = VALUE_REGNUM (val);
686 gdbarch = get_frame_arch (frame);
687
688 fprintf_unfiltered (gdb_stdlog, "\
689 { value_fetch_lazy (frame=%d,regnum=%d(%s),...) ",
690 frame_relative_level (frame), regnum,
691 user_reg_map_regnum_to_name (gdbarch, regnum));
692
693 fprintf_unfiltered (gdb_stdlog, "->");
694 if (value_optimized_out (new_val))
695 fprintf_unfiltered (gdb_stdlog, " optimized out");
696 else
697 {
698 int i;
699 const gdb_byte *buf = value_contents (new_val);
700
701 if (VALUE_LVAL (new_val) == lval_register)
702 fprintf_unfiltered (gdb_stdlog, " register=%d",
703 VALUE_REGNUM (new_val));
704 else if (VALUE_LVAL (new_val) == lval_memory)
705 fprintf_unfiltered (gdb_stdlog, " address=0x%s",
706 paddr_nz (value_address (new_val)));
707 else
708 fprintf_unfiltered (gdb_stdlog, " computed");
709
710 fprintf_unfiltered (gdb_stdlog, " bytes=");
711 fprintf_unfiltered (gdb_stdlog, "[");
712 for (i = 0; i < register_size (gdbarch, regnum); i++)
713 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
714 fprintf_unfiltered (gdb_stdlog, "]");
715 }
716
717 fprintf_unfiltered (gdb_stdlog, " }\n");
718 }
719
720 /* Dispose of the intermediate values. This prevents
721 watchpoints from trying to watch the saved frame pointer. */
722 value_free_to_mark (mark);
723 }
724 else if (VALUE_LVAL (val) == lval_computed)
725 value_computed_funcs (val)->read (val);
726 else
727 internal_error (__FILE__, __LINE__, "Unexpected lazy value type.");
728
729 set_value_lazy (val, 0);
730 return 0;
731 }
732
733
734 /* Store the contents of FROMVAL into the location of TOVAL.
735 Return a new value with the location of TOVAL and contents of FROMVAL. */
736
737 struct value *
738 value_assign (struct value *toval, struct value *fromval)
739 {
740 struct type *type;
741 struct value *val;
742 struct frame_id old_frame;
743
744 if (!deprecated_value_modifiable (toval))
745 error (_("Left operand of assignment is not a modifiable lvalue."));
746
747 toval = coerce_ref (toval);
748
749 type = value_type (toval);
750 if (VALUE_LVAL (toval) != lval_internalvar)
751 {
752 toval = value_coerce_to_target (toval);
753 fromval = value_cast (type, fromval);
754 }
755 else
756 {
757 /* Coerce arrays and functions to pointers, except for arrays
758 which only live in GDB's storage. */
759 if (!value_must_coerce_to_target (fromval))
760 fromval = coerce_array (fromval);
761 }
762
763 CHECK_TYPEDEF (type);
764
765 /* Since modifying a register can trash the frame chain, and
766 modifying memory can trash the frame cache, we save the old frame
767 and then restore the new frame afterwards. */
768 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
769
770 switch (VALUE_LVAL (toval))
771 {
772 case lval_internalvar:
773 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
774 val = value_copy (fromval);
775 val = value_change_enclosing_type (val,
776 value_enclosing_type (fromval));
777 set_value_embedded_offset (val, value_embedded_offset (fromval));
778 set_value_pointed_to_offset (val,
779 value_pointed_to_offset (fromval));
780 return val;
781
782 case lval_internalvar_component:
783 set_internalvar_component (VALUE_INTERNALVAR (toval),
784 value_offset (toval),
785 value_bitpos (toval),
786 value_bitsize (toval),
787 fromval);
788 break;
789
790 case lval_memory:
791 {
792 const gdb_byte *dest_buffer;
793 CORE_ADDR changed_addr;
794 int changed_len;
795 gdb_byte buffer[sizeof (LONGEST)];
796
797 if (value_bitsize (toval))
798 {
799 /* We assume that the argument to read_memory is in units
800 of host chars. FIXME: Is that correct? */
801 changed_len = (value_bitpos (toval)
802 + value_bitsize (toval)
803 + HOST_CHAR_BIT - 1)
804 / HOST_CHAR_BIT;
805
806 if (changed_len > (int) sizeof (LONGEST))
807 error (_("Can't handle bitfields which don't fit in a %d bit word."),
808 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
809
810 read_memory (value_address (toval), buffer, changed_len);
811 modify_field (buffer, value_as_long (fromval),
812 value_bitpos (toval), value_bitsize (toval));
813 changed_addr = value_address (toval);
814 dest_buffer = buffer;
815 }
816 else
817 {
818 changed_addr = value_address (toval);
819 changed_len = TYPE_LENGTH (type);
820 dest_buffer = value_contents (fromval);
821 }
822
823 write_memory (changed_addr, dest_buffer, changed_len);
824 if (deprecated_memory_changed_hook)
825 deprecated_memory_changed_hook (changed_addr, changed_len);
826 }
827 break;
828
829 case lval_register:
830 {
831 struct frame_info *frame;
832 struct gdbarch *gdbarch;
833 int value_reg;
834
835 /* Figure out which frame this is in currently. */
836 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
837 value_reg = VALUE_REGNUM (toval);
838
839 if (!frame)
840 error (_("Value being assigned to is no longer active."));
841
842 gdbarch = get_frame_arch (frame);
843 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
844 {
845 /* If TOVAL is a special machine register requiring
846 conversion of program values to a special raw
847 format. */
848 gdbarch_value_to_register (gdbarch, frame,
849 VALUE_REGNUM (toval), type,
850 value_contents (fromval));
851 }
852 else
853 {
854 if (value_bitsize (toval))
855 {
856 int changed_len;
857 gdb_byte buffer[sizeof (LONGEST)];
858
859 changed_len = (value_bitpos (toval)
860 + value_bitsize (toval)
861 + HOST_CHAR_BIT - 1)
862 / HOST_CHAR_BIT;
863
864 if (changed_len > (int) sizeof (LONGEST))
865 error (_("Can't handle bitfields which don't fit in a %d bit word."),
866 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
867
868 get_frame_register_bytes (frame, value_reg,
869 value_offset (toval),
870 changed_len, buffer);
871
872 modify_field (buffer, value_as_long (fromval),
873 value_bitpos (toval),
874 value_bitsize (toval));
875
876 put_frame_register_bytes (frame, value_reg,
877 value_offset (toval),
878 changed_len, buffer);
879 }
880 else
881 {
882 put_frame_register_bytes (frame, value_reg,
883 value_offset (toval),
884 TYPE_LENGTH (type),
885 value_contents (fromval));
886 }
887 }
888
889 if (deprecated_register_changed_hook)
890 deprecated_register_changed_hook (-1);
891 observer_notify_target_changed (&current_target);
892 break;
893 }
894
895 case lval_computed:
896 {
897 struct lval_funcs *funcs = value_computed_funcs (toval);
898
899 funcs->write (toval, fromval);
900 }
901 break;
902
903 default:
904 error (_("Left operand of assignment is not an lvalue."));
905 }
906
907 /* Assigning to the stack pointer, frame pointer, and other
908 (architecture and calling convention specific) registers may
909 cause the frame cache to be out of date. Assigning to memory
910 also can. We just do this on all assignments to registers or
911 memory, for simplicity's sake; I doubt the slowdown matters. */
912 switch (VALUE_LVAL (toval))
913 {
914 case lval_memory:
915 case lval_register:
916
917 reinit_frame_cache ();
918
919 /* Having destroyed the frame cache, restore the selected
920 frame. */
921
922 /* FIXME: cagney/2002-11-02: There has to be a better way of
923 doing this. Instead of constantly saving/restoring the
924 frame. Why not create a get_selected_frame() function that,
925 having saved the selected frame's ID can automatically
926 re-find the previously selected frame automatically. */
927
928 {
929 struct frame_info *fi = frame_find_by_id (old_frame);
930 if (fi != NULL)
931 select_frame (fi);
932 }
933
934 break;
935 default:
936 break;
937 }
938
939 /* If the field does not entirely fill a LONGEST, then zero the sign
940 bits. If the field is signed, and is negative, then sign
941 extend. */
942 if ((value_bitsize (toval) > 0)
943 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
944 {
945 LONGEST fieldval = value_as_long (fromval);
946 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
947
948 fieldval &= valmask;
949 if (!TYPE_UNSIGNED (type)
950 && (fieldval & (valmask ^ (valmask >> 1))))
951 fieldval |= ~valmask;
952
953 fromval = value_from_longest (type, fieldval);
954 }
955
956 val = value_copy (toval);
957 memcpy (value_contents_raw (val), value_contents (fromval),
958 TYPE_LENGTH (type));
959 deprecated_set_value_type (val, type);
960 val = value_change_enclosing_type (val,
961 value_enclosing_type (fromval));
962 set_value_embedded_offset (val, value_embedded_offset (fromval));
963 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
964
965 return val;
966 }
967
968 /* Extend a value VAL to COUNT repetitions of its type. */
969
970 struct value *
971 value_repeat (struct value *arg1, int count)
972 {
973 struct value *val;
974
975 if (VALUE_LVAL (arg1) != lval_memory)
976 error (_("Only values in memory can be extended with '@'."));
977 if (count < 1)
978 error (_("Invalid number %d of repetitions."), count);
979
980 val = allocate_repeat_value (value_enclosing_type (arg1), count);
981
982 read_memory (value_address (arg1),
983 value_contents_all_raw (val),
984 TYPE_LENGTH (value_enclosing_type (val)));
985 VALUE_LVAL (val) = lval_memory;
986 set_value_address (val, value_address (arg1));
987
988 return val;
989 }
990
991 struct value *
992 value_of_variable (struct symbol *var, struct block *b)
993 {
994 struct value *val;
995 struct frame_info *frame;
996
997 if (!symbol_read_needs_frame (var))
998 frame = NULL;
999 else if (!b)
1000 frame = get_selected_frame (_("No frame selected."));
1001 else
1002 {
1003 frame = block_innermost_frame (b);
1004 if (!frame)
1005 {
1006 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1007 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1008 error (_("No frame is currently executing in block %s."),
1009 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1010 else
1011 error (_("No frame is currently executing in specified block"));
1012 }
1013 }
1014
1015 val = read_var_value (var, frame);
1016 if (!val)
1017 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
1018
1019 return val;
1020 }
1021
1022 struct value *
1023 address_of_variable (struct symbol *var, struct block *b)
1024 {
1025 struct type *type = SYMBOL_TYPE (var);
1026 struct value *val;
1027
1028 /* Evaluate it first; if the result is a memory address, we're fine.
1029 Lazy evaluation pays off here. */
1030
1031 val = value_of_variable (var, b);
1032
1033 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1034 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1035 {
1036 CORE_ADDR addr = value_address (val);
1037 return value_from_pointer (lookup_pointer_type (type), addr);
1038 }
1039
1040 /* Not a memory address; check what the problem was. */
1041 switch (VALUE_LVAL (val))
1042 {
1043 case lval_register:
1044 {
1045 struct frame_info *frame;
1046 const char *regname;
1047
1048 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1049 gdb_assert (frame);
1050
1051 regname = gdbarch_register_name (get_frame_arch (frame),
1052 VALUE_REGNUM (val));
1053 gdb_assert (regname && *regname);
1054
1055 error (_("Address requested for identifier "
1056 "\"%s\" which is in register $%s"),
1057 SYMBOL_PRINT_NAME (var), regname);
1058 break;
1059 }
1060
1061 default:
1062 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1063 SYMBOL_PRINT_NAME (var));
1064 break;
1065 }
1066
1067 return val;
1068 }
1069
1070 /* Return one if VAL does not live in target memory, but should in order
1071 to operate on it. Otherwise return zero. */
1072
1073 int
1074 value_must_coerce_to_target (struct value *val)
1075 {
1076 struct type *valtype;
1077
1078 /* The only lval kinds which do not live in target memory. */
1079 if (VALUE_LVAL (val) != not_lval
1080 && VALUE_LVAL (val) != lval_internalvar)
1081 return 0;
1082
1083 valtype = check_typedef (value_type (val));
1084
1085 switch (TYPE_CODE (valtype))
1086 {
1087 case TYPE_CODE_ARRAY:
1088 case TYPE_CODE_STRING:
1089 return 1;
1090 default:
1091 return 0;
1092 }
1093 }
1094
1095 /* Make sure that VAL lives in target memory if it's supposed to. For instance,
1096 strings are constructed as character arrays in GDB's storage, and this
1097 function copies them to the target. */
1098
1099 struct value *
1100 value_coerce_to_target (struct value *val)
1101 {
1102 LONGEST length;
1103 CORE_ADDR addr;
1104
1105 if (!value_must_coerce_to_target (val))
1106 return val;
1107
1108 length = TYPE_LENGTH (check_typedef (value_type (val)));
1109 addr = allocate_space_in_inferior (length);
1110 write_memory (addr, value_contents (val), length);
1111 return value_at_lazy (value_type (val), addr);
1112 }
1113
1114 /* Given a value which is an array, return a value which is a pointer
1115 to its first element, regardless of whether or not the array has a
1116 nonzero lower bound.
1117
1118 FIXME: A previous comment here indicated that this routine should
1119 be substracting the array's lower bound. It's not clear to me that
1120 this is correct. Given an array subscripting operation, it would
1121 certainly work to do the adjustment here, essentially computing:
1122
1123 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1124
1125 However I believe a more appropriate and logical place to account
1126 for the lower bound is to do so in value_subscript, essentially
1127 computing:
1128
1129 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1130
1131 As further evidence consider what would happen with operations
1132 other than array subscripting, where the caller would get back a
1133 value that had an address somewhere before the actual first element
1134 of the array, and the information about the lower bound would be
1135 lost because of the coercion to pointer type.
1136 */
1137
1138 struct value *
1139 value_coerce_array (struct value *arg1)
1140 {
1141 struct type *type = check_typedef (value_type (arg1));
1142
1143 /* If the user tries to do something requiring a pointer with an
1144 array that has not yet been pushed to the target, then this would
1145 be a good time to do so. */
1146 arg1 = value_coerce_to_target (arg1);
1147
1148 if (VALUE_LVAL (arg1) != lval_memory)
1149 error (_("Attempt to take address of value not located in memory."));
1150
1151 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1152 value_address (arg1));
1153 }
1154
1155 /* Given a value which is a function, return a value which is a pointer
1156 to it. */
1157
1158 struct value *
1159 value_coerce_function (struct value *arg1)
1160 {
1161 struct value *retval;
1162
1163 if (VALUE_LVAL (arg1) != lval_memory)
1164 error (_("Attempt to take address of value not located in memory."));
1165
1166 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1167 value_address (arg1));
1168 return retval;
1169 }
1170
1171 /* Return a pointer value for the object for which ARG1 is the
1172 contents. */
1173
1174 struct value *
1175 value_addr (struct value *arg1)
1176 {
1177 struct value *arg2;
1178
1179 struct type *type = check_typedef (value_type (arg1));
1180 if (TYPE_CODE (type) == TYPE_CODE_REF)
1181 {
1182 /* Copy the value, but change the type from (T&) to (T*). We
1183 keep the same location information, which is efficient, and
1184 allows &(&X) to get the location containing the reference. */
1185 arg2 = value_copy (arg1);
1186 deprecated_set_value_type (arg2,
1187 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1188 return arg2;
1189 }
1190 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1191 return value_coerce_function (arg1);
1192
1193 /* If this is an array that has not yet been pushed to the target,
1194 then this would be a good time to force it to memory. */
1195 arg1 = value_coerce_to_target (arg1);
1196
1197 if (VALUE_LVAL (arg1) != lval_memory)
1198 error (_("Attempt to take address of value not located in memory."));
1199
1200 /* Get target memory address */
1201 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1202 (value_address (arg1)
1203 + value_embedded_offset (arg1)));
1204
1205 /* This may be a pointer to a base subobject; so remember the
1206 full derived object's type ... */
1207 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1)));
1208 /* ... and also the relative position of the subobject in the full
1209 object. */
1210 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1211 return arg2;
1212 }
1213
1214 /* Return a reference value for the object for which ARG1 is the
1215 contents. */
1216
1217 struct value *
1218 value_ref (struct value *arg1)
1219 {
1220 struct value *arg2;
1221
1222 struct type *type = check_typedef (value_type (arg1));
1223 if (TYPE_CODE (type) == TYPE_CODE_REF)
1224 return arg1;
1225
1226 arg2 = value_addr (arg1);
1227 deprecated_set_value_type (arg2, lookup_reference_type (type));
1228 return arg2;
1229 }
1230
1231 /* Given a value of a pointer type, apply the C unary * operator to
1232 it. */
1233
1234 struct value *
1235 value_ind (struct value *arg1)
1236 {
1237 struct type *base_type;
1238 struct value *arg2;
1239
1240 arg1 = coerce_array (arg1);
1241
1242 base_type = check_typedef (value_type (arg1));
1243
1244 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1245 {
1246 struct type *enc_type;
1247 /* We may be pointing to something embedded in a larger object.
1248 Get the real type of the enclosing object. */
1249 enc_type = check_typedef (value_enclosing_type (arg1));
1250 enc_type = TYPE_TARGET_TYPE (enc_type);
1251
1252 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1253 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1254 /* For functions, go through find_function_addr, which knows
1255 how to handle function descriptors. */
1256 arg2 = value_at_lazy (enc_type,
1257 find_function_addr (arg1, NULL));
1258 else
1259 /* Retrieve the enclosing object pointed to */
1260 arg2 = value_at_lazy (enc_type,
1261 (value_as_address (arg1)
1262 - value_pointed_to_offset (arg1)));
1263
1264 /* Re-adjust type. */
1265 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
1266 /* Add embedding info. */
1267 arg2 = value_change_enclosing_type (arg2, enc_type);
1268 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
1269
1270 /* We may be pointing to an object of some derived type. */
1271 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1272 return arg2;
1273 }
1274
1275 error (_("Attempt to take contents of a non-pointer value."));
1276 return 0; /* For lint -- never reached. */
1277 }
1278 \f
1279 /* Create a value for an array by allocating space in GDB, copying
1280 copying the data into that space, and then setting up an array
1281 value.
1282
1283 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1284 is populated from the values passed in ELEMVEC.
1285
1286 The element type of the array is inherited from the type of the
1287 first element, and all elements must have the same size (though we
1288 don't currently enforce any restriction on their types). */
1289
1290 struct value *
1291 value_array (int lowbound, int highbound, struct value **elemvec)
1292 {
1293 int nelem;
1294 int idx;
1295 unsigned int typelength;
1296 struct value *val;
1297 struct type *rangetype;
1298 struct type *arraytype;
1299 CORE_ADDR addr;
1300
1301 /* Validate that the bounds are reasonable and that each of the
1302 elements have the same size. */
1303
1304 nelem = highbound - lowbound + 1;
1305 if (nelem <= 0)
1306 {
1307 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1308 }
1309 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1310 for (idx = 1; idx < nelem; idx++)
1311 {
1312 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1313 {
1314 error (_("array elements must all be the same size"));
1315 }
1316 }
1317
1318 rangetype = create_range_type ((struct type *) NULL,
1319 builtin_type_int32,
1320 lowbound, highbound);
1321 arraytype = create_array_type ((struct type *) NULL,
1322 value_enclosing_type (elemvec[0]),
1323 rangetype);
1324
1325 if (!current_language->c_style_arrays)
1326 {
1327 val = allocate_value (arraytype);
1328 for (idx = 0; idx < nelem; idx++)
1329 {
1330 memcpy (value_contents_all_raw (val) + (idx * typelength),
1331 value_contents_all (elemvec[idx]),
1332 typelength);
1333 }
1334 return val;
1335 }
1336
1337 /* Allocate space to store the array, and then initialize it by
1338 copying in each element. */
1339
1340 val = allocate_value (arraytype);
1341 for (idx = 0; idx < nelem; idx++)
1342 memcpy (value_contents_writeable (val) + (idx * typelength),
1343 value_contents_all (elemvec[idx]),
1344 typelength);
1345 return val;
1346 }
1347
1348 struct value *
1349 value_cstring (char *ptr, int len, struct type *char_type)
1350 {
1351 struct value *val;
1352 int lowbound = current_language->string_lower_bound;
1353 int highbound = len / TYPE_LENGTH (char_type);
1354 struct type *rangetype = create_range_type ((struct type *) NULL,
1355 builtin_type_int32,
1356 lowbound,
1357 highbound + lowbound - 1);
1358 struct type *stringtype
1359 = create_array_type ((struct type *) NULL, char_type, rangetype);
1360
1361 val = allocate_value (stringtype);
1362 memcpy (value_contents_raw (val), ptr, len);
1363 return val;
1364 }
1365
1366 /* Create a value for a string constant by allocating space in the
1367 inferior, copying the data into that space, and returning the
1368 address with type TYPE_CODE_STRING. PTR points to the string
1369 constant data; LEN is number of characters.
1370
1371 Note that string types are like array of char types with a lower
1372 bound of zero and an upper bound of LEN - 1. Also note that the
1373 string may contain embedded null bytes. */
1374
1375 struct value *
1376 value_string (char *ptr, int len, struct type *char_type)
1377 {
1378 struct value *val;
1379 int lowbound = current_language->string_lower_bound;
1380 int highbound = len / TYPE_LENGTH (char_type);
1381 struct type *rangetype = create_range_type ((struct type *) NULL,
1382 builtin_type_int32,
1383 lowbound,
1384 highbound + lowbound - 1);
1385 struct type *stringtype
1386 = create_string_type ((struct type *) NULL, char_type, rangetype);
1387
1388 val = allocate_value (stringtype);
1389 memcpy (value_contents_raw (val), ptr, len);
1390 return val;
1391 }
1392
1393 struct value *
1394 value_bitstring (char *ptr, int len)
1395 {
1396 struct value *val;
1397 struct type *domain_type = create_range_type (NULL,
1398 builtin_type_int32,
1399 0, len - 1);
1400 struct type *type = create_set_type ((struct type *) NULL,
1401 domain_type);
1402 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1403 val = allocate_value (type);
1404 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1405 return val;
1406 }
1407 \f
1408 /* See if we can pass arguments in T2 to a function which takes
1409 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1410 a NULL-terminated vector. If some arguments need coercion of some
1411 sort, then the coerced values are written into T2. Return value is
1412 0 if the arguments could be matched, or the position at which they
1413 differ if not.
1414
1415 STATICP is nonzero if the T1 argument list came from a static
1416 member function. T2 will still include the ``this'' pointer, but
1417 it will be skipped.
1418
1419 For non-static member functions, we ignore the first argument,
1420 which is the type of the instance variable. This is because we
1421 want to handle calls with objects from derived classes. This is
1422 not entirely correct: we should actually check to make sure that a
1423 requested operation is type secure, shouldn't we? FIXME. */
1424
1425 static int
1426 typecmp (int staticp, int varargs, int nargs,
1427 struct field t1[], struct value *t2[])
1428 {
1429 int i;
1430
1431 if (t2 == 0)
1432 internal_error (__FILE__, __LINE__,
1433 _("typecmp: no argument list"));
1434
1435 /* Skip ``this'' argument if applicable. T2 will always include
1436 THIS. */
1437 if (staticp)
1438 t2 ++;
1439
1440 for (i = 0;
1441 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1442 i++)
1443 {
1444 struct type *tt1, *tt2;
1445
1446 if (!t2[i])
1447 return i + 1;
1448
1449 tt1 = check_typedef (t1[i].type);
1450 tt2 = check_typedef (value_type (t2[i]));
1451
1452 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1453 /* We should be doing hairy argument matching, as below. */
1454 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1455 {
1456 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1457 t2[i] = value_coerce_array (t2[i]);
1458 else
1459 t2[i] = value_ref (t2[i]);
1460 continue;
1461 }
1462
1463 /* djb - 20000715 - Until the new type structure is in the
1464 place, and we can attempt things like implicit conversions,
1465 we need to do this so you can take something like a map<const
1466 char *>, and properly access map["hello"], because the
1467 argument to [] will be a reference to a pointer to a char,
1468 and the argument will be a pointer to a char. */
1469 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1470 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1471 {
1472 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1473 }
1474 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1475 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1476 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1477 {
1478 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1479 }
1480 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1481 continue;
1482 /* Array to pointer is a `trivial conversion' according to the
1483 ARM. */
1484
1485 /* We should be doing much hairier argument matching (see
1486 section 13.2 of the ARM), but as a quick kludge, just check
1487 for the same type code. */
1488 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1489 return i + 1;
1490 }
1491 if (varargs || t2[i] == NULL)
1492 return 0;
1493 return i + 1;
1494 }
1495
1496 /* Helper function used by value_struct_elt to recurse through
1497 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1498 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1499 TYPE. If found, return value, else return NULL.
1500
1501 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1502 fields, look for a baseclass named NAME. */
1503
1504 static struct value *
1505 search_struct_field (char *name, struct value *arg1, int offset,
1506 struct type *type, int looking_for_baseclass)
1507 {
1508 int i;
1509 int nbases = TYPE_N_BASECLASSES (type);
1510
1511 CHECK_TYPEDEF (type);
1512
1513 if (!looking_for_baseclass)
1514 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1515 {
1516 char *t_field_name = TYPE_FIELD_NAME (type, i);
1517
1518 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1519 {
1520 struct value *v;
1521 if (field_is_static (&TYPE_FIELD (type, i)))
1522 {
1523 v = value_static_field (type, i);
1524 if (v == 0)
1525 error (_("field %s is nonexistent or has been optimised out"),
1526 name);
1527 }
1528 else
1529 {
1530 v = value_primitive_field (arg1, offset, i, type);
1531 if (v == 0)
1532 error (_("there is no field named %s"), name);
1533 }
1534 return v;
1535 }
1536
1537 if (t_field_name
1538 && (t_field_name[0] == '\0'
1539 || (TYPE_CODE (type) == TYPE_CODE_UNION
1540 && (strcmp_iw (t_field_name, "else") == 0))))
1541 {
1542 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1543 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1544 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1545 {
1546 /* Look for a match through the fields of an anonymous
1547 union, or anonymous struct. C++ provides anonymous
1548 unions.
1549
1550 In the GNU Chill (now deleted from GDB)
1551 implementation of variant record types, each
1552 <alternative field> has an (anonymous) union type,
1553 each member of the union represents a <variant
1554 alternative>. Each <variant alternative> is
1555 represented as a struct, with a member for each
1556 <variant field>. */
1557
1558 struct value *v;
1559 int new_offset = offset;
1560
1561 /* This is pretty gross. In G++, the offset in an
1562 anonymous union is relative to the beginning of the
1563 enclosing struct. In the GNU Chill (now deleted
1564 from GDB) implementation of variant records, the
1565 bitpos is zero in an anonymous union field, so we
1566 have to add the offset of the union here. */
1567 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1568 || (TYPE_NFIELDS (field_type) > 0
1569 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1570 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1571
1572 v = search_struct_field (name, arg1, new_offset,
1573 field_type,
1574 looking_for_baseclass);
1575 if (v)
1576 return v;
1577 }
1578 }
1579 }
1580
1581 for (i = 0; i < nbases; i++)
1582 {
1583 struct value *v;
1584 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1585 /* If we are looking for baseclasses, this is what we get when
1586 we hit them. But it could happen that the base part's member
1587 name is not yet filled in. */
1588 int found_baseclass = (looking_for_baseclass
1589 && TYPE_BASECLASS_NAME (type, i) != NULL
1590 && (strcmp_iw (name,
1591 TYPE_BASECLASS_NAME (type,
1592 i)) == 0));
1593
1594 if (BASETYPE_VIA_VIRTUAL (type, i))
1595 {
1596 int boffset;
1597 struct value *v2;
1598
1599 boffset = baseclass_offset (type, i,
1600 value_contents (arg1) + offset,
1601 value_address (arg1) + offset);
1602 if (boffset == -1)
1603 error (_("virtual baseclass botch"));
1604
1605 /* The virtual base class pointer might have been clobbered
1606 by the user program. Make sure that it still points to a
1607 valid memory location. */
1608
1609 boffset += offset;
1610 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
1611 {
1612 CORE_ADDR base_addr;
1613
1614 v2 = allocate_value (basetype);
1615 base_addr = value_address (arg1) + boffset;
1616 if (target_read_memory (base_addr,
1617 value_contents_raw (v2),
1618 TYPE_LENGTH (basetype)) != 0)
1619 error (_("virtual baseclass botch"));
1620 VALUE_LVAL (v2) = lval_memory;
1621 set_value_address (v2, base_addr);
1622 }
1623 else
1624 {
1625 if (VALUE_LVAL (arg1) == lval_memory && value_lazy (arg1))
1626 v2 = allocate_value_lazy (basetype);
1627 else
1628 {
1629 v2 = allocate_value (basetype);
1630 memcpy (value_contents_raw (v2),
1631 value_contents_raw (arg1) + boffset,
1632 TYPE_LENGTH (basetype));
1633 }
1634 set_value_component_location (v2, arg1);
1635 VALUE_FRAME_ID (v2) = VALUE_FRAME_ID (arg1);
1636 set_value_offset (v2, value_offset (arg1) + boffset);
1637 }
1638
1639 if (found_baseclass)
1640 return v2;
1641 v = search_struct_field (name, v2, 0,
1642 TYPE_BASECLASS (type, i),
1643 looking_for_baseclass);
1644 }
1645 else if (found_baseclass)
1646 v = value_primitive_field (arg1, offset, i, type);
1647 else
1648 v = search_struct_field (name, arg1,
1649 offset + TYPE_BASECLASS_BITPOS (type,
1650 i) / 8,
1651 basetype, looking_for_baseclass);
1652 if (v)
1653 return v;
1654 }
1655 return NULL;
1656 }
1657
1658 /* Helper function used by value_struct_elt to recurse through
1659 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1660 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1661 TYPE.
1662
1663 If found, return value, else if name matched and args not return
1664 (value) -1, else return NULL. */
1665
1666 static struct value *
1667 search_struct_method (char *name, struct value **arg1p,
1668 struct value **args, int offset,
1669 int *static_memfuncp, struct type *type)
1670 {
1671 int i;
1672 struct value *v;
1673 int name_matched = 0;
1674 char dem_opname[64];
1675
1676 CHECK_TYPEDEF (type);
1677 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1678 {
1679 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1680 /* FIXME! May need to check for ARM demangling here */
1681 if (strncmp (t_field_name, "__", 2) == 0 ||
1682 strncmp (t_field_name, "op", 2) == 0 ||
1683 strncmp (t_field_name, "type", 4) == 0)
1684 {
1685 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
1686 t_field_name = dem_opname;
1687 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
1688 t_field_name = dem_opname;
1689 }
1690 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1691 {
1692 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1693 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1694 name_matched = 1;
1695
1696 check_stub_method_group (type, i);
1697 if (j > 0 && args == 0)
1698 error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
1699 else if (j == 0 && args == 0)
1700 {
1701 v = value_fn_field (arg1p, f, j, type, offset);
1702 if (v != NULL)
1703 return v;
1704 }
1705 else
1706 while (j >= 0)
1707 {
1708 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1709 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
1710 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
1711 TYPE_FN_FIELD_ARGS (f, j), args))
1712 {
1713 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1714 return value_virtual_fn_field (arg1p, f, j,
1715 type, offset);
1716 if (TYPE_FN_FIELD_STATIC_P (f, j)
1717 && static_memfuncp)
1718 *static_memfuncp = 1;
1719 v = value_fn_field (arg1p, f, j, type, offset);
1720 if (v != NULL)
1721 return v;
1722 }
1723 j--;
1724 }
1725 }
1726 }
1727
1728 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1729 {
1730 int base_offset;
1731
1732 if (BASETYPE_VIA_VIRTUAL (type, i))
1733 {
1734 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1735 const gdb_byte *base_valaddr;
1736
1737 /* The virtual base class pointer might have been
1738 clobbered by the user program. Make sure that it
1739 still points to a valid memory location. */
1740
1741 if (offset < 0 || offset >= TYPE_LENGTH (type))
1742 {
1743 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
1744 if (target_read_memory (value_address (*arg1p) + offset,
1745 tmp, TYPE_LENGTH (baseclass)) != 0)
1746 error (_("virtual baseclass botch"));
1747 base_valaddr = tmp;
1748 }
1749 else
1750 base_valaddr = value_contents (*arg1p) + offset;
1751
1752 base_offset = baseclass_offset (type, i, base_valaddr,
1753 value_address (*arg1p) + offset);
1754 if (base_offset == -1)
1755 error (_("virtual baseclass botch"));
1756 }
1757 else
1758 {
1759 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1760 }
1761 v = search_struct_method (name, arg1p, args, base_offset + offset,
1762 static_memfuncp, TYPE_BASECLASS (type, i));
1763 if (v == (struct value *) - 1)
1764 {
1765 name_matched = 1;
1766 }
1767 else if (v)
1768 {
1769 /* FIXME-bothner: Why is this commented out? Why is it here? */
1770 /* *arg1p = arg1_tmp; */
1771 return v;
1772 }
1773 }
1774 if (name_matched)
1775 return (struct value *) - 1;
1776 else
1777 return NULL;
1778 }
1779
1780 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1781 extract the component named NAME from the ultimate target
1782 structure/union and return it as a value with its appropriate type.
1783 ERR is used in the error message if *ARGP's type is wrong.
1784
1785 C++: ARGS is a list of argument types to aid in the selection of
1786 an appropriate method. Also, handle derived types.
1787
1788 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1789 where the truthvalue of whether the function that was resolved was
1790 a static member function or not is stored.
1791
1792 ERR is an error message to be printed in case the field is not
1793 found. */
1794
1795 struct value *
1796 value_struct_elt (struct value **argp, struct value **args,
1797 char *name, int *static_memfuncp, char *err)
1798 {
1799 struct type *t;
1800 struct value *v;
1801
1802 *argp = coerce_array (*argp);
1803
1804 t = check_typedef (value_type (*argp));
1805
1806 /* Follow pointers until we get to a non-pointer. */
1807
1808 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1809 {
1810 *argp = value_ind (*argp);
1811 /* Don't coerce fn pointer to fn and then back again! */
1812 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1813 *argp = coerce_array (*argp);
1814 t = check_typedef (value_type (*argp));
1815 }
1816
1817 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1818 && TYPE_CODE (t) != TYPE_CODE_UNION)
1819 error (_("Attempt to extract a component of a value that is not a %s."), err);
1820
1821 /* Assume it's not, unless we see that it is. */
1822 if (static_memfuncp)
1823 *static_memfuncp = 0;
1824
1825 if (!args)
1826 {
1827 /* if there are no arguments ...do this... */
1828
1829 /* Try as a field first, because if we succeed, there is less
1830 work to be done. */
1831 v = search_struct_field (name, *argp, 0, t, 0);
1832 if (v)
1833 return v;
1834
1835 /* C++: If it was not found as a data field, then try to
1836 return it as a pointer to a method. */
1837 v = search_struct_method (name, argp, args, 0,
1838 static_memfuncp, t);
1839
1840 if (v == (struct value *) - 1)
1841 error (_("Cannot take address of method %s."), name);
1842 else if (v == 0)
1843 {
1844 if (TYPE_NFN_FIELDS (t))
1845 error (_("There is no member or method named %s."), name);
1846 else
1847 error (_("There is no member named %s."), name);
1848 }
1849 return v;
1850 }
1851
1852 v = search_struct_method (name, argp, args, 0,
1853 static_memfuncp, t);
1854
1855 if (v == (struct value *) - 1)
1856 {
1857 error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
1858 }
1859 else if (v == 0)
1860 {
1861 /* See if user tried to invoke data as function. If so, hand it
1862 back. If it's not callable (i.e., a pointer to function),
1863 gdb should give an error. */
1864 v = search_struct_field (name, *argp, 0, t, 0);
1865 /* If we found an ordinary field, then it is not a method call.
1866 So, treat it as if it were a static member function. */
1867 if (v && static_memfuncp)
1868 *static_memfuncp = 1;
1869 }
1870
1871 if (!v)
1872 error (_("Structure has no component named %s."), name);
1873 return v;
1874 }
1875
1876 /* Search through the methods of an object (and its bases) to find a
1877 specified method. Return the pointer to the fn_field list of
1878 overloaded instances.
1879
1880 Helper function for value_find_oload_list.
1881 ARGP is a pointer to a pointer to a value (the object).
1882 METHOD is a string containing the method name.
1883 OFFSET is the offset within the value.
1884 TYPE is the assumed type of the object.
1885 NUM_FNS is the number of overloaded instances.
1886 BASETYPE is set to the actual type of the subobject where the
1887 method is found.
1888 BOFFSET is the offset of the base subobject where the method is found.
1889 */
1890
1891 static struct fn_field *
1892 find_method_list (struct value **argp, char *method,
1893 int offset, struct type *type, int *num_fns,
1894 struct type **basetype, int *boffset)
1895 {
1896 int i;
1897 struct fn_field *f;
1898 CHECK_TYPEDEF (type);
1899
1900 *num_fns = 0;
1901
1902 /* First check in object itself. */
1903 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1904 {
1905 /* pai: FIXME What about operators and type conversions? */
1906 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1907 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
1908 {
1909 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
1910 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1911
1912 *num_fns = len;
1913 *basetype = type;
1914 *boffset = offset;
1915
1916 /* Resolve any stub methods. */
1917 check_stub_method_group (type, i);
1918
1919 return f;
1920 }
1921 }
1922
1923 /* Not found in object, check in base subobjects. */
1924 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1925 {
1926 int base_offset;
1927 if (BASETYPE_VIA_VIRTUAL (type, i))
1928 {
1929 base_offset = value_offset (*argp) + offset;
1930 base_offset = baseclass_offset (type, i,
1931 value_contents (*argp) + base_offset,
1932 value_address (*argp) + base_offset);
1933 if (base_offset == -1)
1934 error (_("virtual baseclass botch"));
1935 }
1936 else /* Non-virtual base, simply use bit position from debug
1937 info. */
1938 {
1939 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1940 }
1941 f = find_method_list (argp, method, base_offset + offset,
1942 TYPE_BASECLASS (type, i), num_fns,
1943 basetype, boffset);
1944 if (f)
1945 return f;
1946 }
1947 return NULL;
1948 }
1949
1950 /* Return the list of overloaded methods of a specified name.
1951
1952 ARGP is a pointer to a pointer to a value (the object).
1953 METHOD is the method name.
1954 OFFSET is the offset within the value contents.
1955 NUM_FNS is the number of overloaded instances.
1956 BASETYPE is set to the type of the base subobject that defines the
1957 method.
1958 BOFFSET is the offset of the base subobject which defines the method.
1959 */
1960
1961 struct fn_field *
1962 value_find_oload_method_list (struct value **argp, char *method,
1963 int offset, int *num_fns,
1964 struct type **basetype, int *boffset)
1965 {
1966 struct type *t;
1967
1968 t = check_typedef (value_type (*argp));
1969
1970 /* Code snarfed from value_struct_elt. */
1971 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1972 {
1973 *argp = value_ind (*argp);
1974 /* Don't coerce fn pointer to fn and then back again! */
1975 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1976 *argp = coerce_array (*argp);
1977 t = check_typedef (value_type (*argp));
1978 }
1979
1980 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1981 && TYPE_CODE (t) != TYPE_CODE_UNION)
1982 error (_("Attempt to extract a component of a value that is not a struct or union"));
1983
1984 return find_method_list (argp, method, 0, t, num_fns,
1985 basetype, boffset);
1986 }
1987
1988 /* Given an array of argument types (ARGTYPES) (which includes an
1989 entry for "this" in the case of C++ methods), the number of
1990 arguments NARGS, the NAME of a function whether it's a method or
1991 not (METHOD), and the degree of laxness (LAX) in conforming to
1992 overload resolution rules in ANSI C++, find the best function that
1993 matches on the argument types according to the overload resolution
1994 rules.
1995
1996 In the case of class methods, the parameter OBJ is an object value
1997 in which to search for overloaded methods.
1998
1999 In the case of non-method functions, the parameter FSYM is a symbol
2000 corresponding to one of the overloaded functions.
2001
2002 Return value is an integer: 0 -> good match, 10 -> debugger applied
2003 non-standard coercions, 100 -> incompatible.
2004
2005 If a method is being searched for, VALP will hold the value.
2006 If a non-method is being searched for, SYMP will hold the symbol
2007 for it.
2008
2009 If a method is being searched for, and it is a static method,
2010 then STATICP will point to a non-zero value.
2011
2012 Note: This function does *not* check the value of
2013 overload_resolution. Caller must check it to see whether overload
2014 resolution is permitted.
2015 */
2016
2017 int
2018 find_overload_match (struct type **arg_types, int nargs,
2019 char *name, int method, int lax,
2020 struct value **objp, struct symbol *fsym,
2021 struct value **valp, struct symbol **symp,
2022 int *staticp)
2023 {
2024 struct value *obj = (objp ? *objp : NULL);
2025 /* Index of best overloaded function. */
2026 int oload_champ;
2027 /* The measure for the current best match. */
2028 struct badness_vector *oload_champ_bv = NULL;
2029 struct value *temp = obj;
2030 /* For methods, the list of overloaded methods. */
2031 struct fn_field *fns_ptr = NULL;
2032 /* For non-methods, the list of overloaded function symbols. */
2033 struct symbol **oload_syms = NULL;
2034 /* Number of overloaded instances being considered. */
2035 int num_fns = 0;
2036 struct type *basetype = NULL;
2037 int boffset;
2038 int ix;
2039 int static_offset;
2040 struct cleanup *old_cleanups = NULL;
2041
2042 const char *obj_type_name = NULL;
2043 char *func_name = NULL;
2044 enum oload_classification match_quality;
2045
2046 /* Get the list of overloaded methods or functions. */
2047 if (method)
2048 {
2049 gdb_assert (obj);
2050 obj_type_name = TYPE_NAME (value_type (obj));
2051 /* Hack: evaluate_subexp_standard often passes in a pointer
2052 value rather than the object itself, so try again. */
2053 if ((!obj_type_name || !*obj_type_name)
2054 && (TYPE_CODE (value_type (obj)) == TYPE_CODE_PTR))
2055 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj)));
2056
2057 fns_ptr = value_find_oload_method_list (&temp, name,
2058 0, &num_fns,
2059 &basetype, &boffset);
2060 if (!fns_ptr || !num_fns)
2061 error (_("Couldn't find method %s%s%s"),
2062 obj_type_name,
2063 (obj_type_name && *obj_type_name) ? "::" : "",
2064 name);
2065 /* If we are dealing with stub method types, they should have
2066 been resolved by find_method_list via
2067 value_find_oload_method_list above. */
2068 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2069 oload_champ = find_oload_champ (arg_types, nargs, method,
2070 num_fns, fns_ptr,
2071 oload_syms, &oload_champ_bv);
2072 }
2073 else
2074 {
2075 const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym);
2076
2077 /* If we have a C++ name, try to extract just the function
2078 part. */
2079 if (qualified_name)
2080 func_name = cp_func_name (qualified_name);
2081
2082 /* If there was no C++ name, this must be a C-style function.
2083 Just return the same symbol. Do the same if cp_func_name
2084 fails for some reason. */
2085 if (func_name == NULL)
2086 {
2087 *symp = fsym;
2088 return 0;
2089 }
2090
2091 old_cleanups = make_cleanup (xfree, func_name);
2092 make_cleanup (xfree, oload_syms);
2093 make_cleanup (xfree, oload_champ_bv);
2094
2095 oload_champ = find_oload_champ_namespace (arg_types, nargs,
2096 func_name,
2097 qualified_name,
2098 &oload_syms,
2099 &oload_champ_bv);
2100 }
2101
2102 /* Check how bad the best match is. */
2103
2104 match_quality =
2105 classify_oload_match (oload_champ_bv, nargs,
2106 oload_method_static (method, fns_ptr,
2107 oload_champ));
2108
2109 if (match_quality == INCOMPATIBLE)
2110 {
2111 if (method)
2112 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2113 obj_type_name,
2114 (obj_type_name && *obj_type_name) ? "::" : "",
2115 name);
2116 else
2117 error (_("Cannot resolve function %s to any overloaded instance"),
2118 func_name);
2119 }
2120 else if (match_quality == NON_STANDARD)
2121 {
2122 if (method)
2123 warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
2124 obj_type_name,
2125 (obj_type_name && *obj_type_name) ? "::" : "",
2126 name);
2127 else
2128 warning (_("Using non-standard conversion to match function %s to supplied arguments"),
2129 func_name);
2130 }
2131
2132 if (method)
2133 {
2134 if (staticp != NULL)
2135 *staticp = oload_method_static (method, fns_ptr, oload_champ);
2136 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2137 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ,
2138 basetype, boffset);
2139 else
2140 *valp = value_fn_field (&temp, fns_ptr, oload_champ,
2141 basetype, boffset);
2142 }
2143 else
2144 {
2145 *symp = oload_syms[oload_champ];
2146 }
2147
2148 if (objp)
2149 {
2150 struct type *temp_type = check_typedef (value_type (temp));
2151 struct type *obj_type = check_typedef (value_type (*objp));
2152 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2153 && (TYPE_CODE (obj_type) == TYPE_CODE_PTR
2154 || TYPE_CODE (obj_type) == TYPE_CODE_REF))
2155 {
2156 temp = value_addr (temp);
2157 }
2158 *objp = temp;
2159 }
2160 if (old_cleanups != NULL)
2161 do_cleanups (old_cleanups);
2162
2163 switch (match_quality)
2164 {
2165 case INCOMPATIBLE:
2166 return 100;
2167 case NON_STANDARD:
2168 return 10;
2169 default: /* STANDARD */
2170 return 0;
2171 }
2172 }
2173
2174 /* Find the best overload match, searching for FUNC_NAME in namespaces
2175 contained in QUALIFIED_NAME until it either finds a good match or
2176 runs out of namespaces. It stores the overloaded functions in
2177 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2178 calling function is responsible for freeing *OLOAD_SYMS and
2179 *OLOAD_CHAMP_BV. */
2180
2181 static int
2182 find_oload_champ_namespace (struct type **arg_types, int nargs,
2183 const char *func_name,
2184 const char *qualified_name,
2185 struct symbol ***oload_syms,
2186 struct badness_vector **oload_champ_bv)
2187 {
2188 int oload_champ;
2189
2190 find_oload_champ_namespace_loop (arg_types, nargs,
2191 func_name,
2192 qualified_name, 0,
2193 oload_syms, oload_champ_bv,
2194 &oload_champ);
2195
2196 return oload_champ;
2197 }
2198
2199 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2200 how deep we've looked for namespaces, and the champ is stored in
2201 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2202 if it isn't.
2203
2204 It is the caller's responsibility to free *OLOAD_SYMS and
2205 *OLOAD_CHAMP_BV. */
2206
2207 static int
2208 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2209 const char *func_name,
2210 const char *qualified_name,
2211 int namespace_len,
2212 struct symbol ***oload_syms,
2213 struct badness_vector **oload_champ_bv,
2214 int *oload_champ)
2215 {
2216 int next_namespace_len = namespace_len;
2217 int searched_deeper = 0;
2218 int num_fns = 0;
2219 struct cleanup *old_cleanups;
2220 int new_oload_champ;
2221 struct symbol **new_oload_syms;
2222 struct badness_vector *new_oload_champ_bv;
2223 char *new_namespace;
2224
2225 if (next_namespace_len != 0)
2226 {
2227 gdb_assert (qualified_name[next_namespace_len] == ':');
2228 next_namespace_len += 2;
2229 }
2230 next_namespace_len +=
2231 cp_find_first_component (qualified_name + next_namespace_len);
2232
2233 /* Initialize these to values that can safely be xfree'd. */
2234 *oload_syms = NULL;
2235 *oload_champ_bv = NULL;
2236
2237 /* First, see if we have a deeper namespace we can search in.
2238 If we get a good match there, use it. */
2239
2240 if (qualified_name[next_namespace_len] == ':')
2241 {
2242 searched_deeper = 1;
2243
2244 if (find_oload_champ_namespace_loop (arg_types, nargs,
2245 func_name, qualified_name,
2246 next_namespace_len,
2247 oload_syms, oload_champ_bv,
2248 oload_champ))
2249 {
2250 return 1;
2251 }
2252 };
2253
2254 /* If we reach here, either we're in the deepest namespace or we
2255 didn't find a good match in a deeper namespace. But, in the
2256 latter case, we still have a bad match in a deeper namespace;
2257 note that we might not find any match at all in the current
2258 namespace. (There's always a match in the deepest namespace,
2259 because this overload mechanism only gets called if there's a
2260 function symbol to start off with.) */
2261
2262 old_cleanups = make_cleanup (xfree, *oload_syms);
2263 old_cleanups = make_cleanup (xfree, *oload_champ_bv);
2264 new_namespace = alloca (namespace_len + 1);
2265 strncpy (new_namespace, qualified_name, namespace_len);
2266 new_namespace[namespace_len] = '\0';
2267 new_oload_syms = make_symbol_overload_list (func_name,
2268 new_namespace);
2269 while (new_oload_syms[num_fns])
2270 ++num_fns;
2271
2272 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2273 NULL, new_oload_syms,
2274 &new_oload_champ_bv);
2275
2276 /* Case 1: We found a good match. Free earlier matches (if any),
2277 and return it. Case 2: We didn't find a good match, but we're
2278 not the deepest function. Then go with the bad match that the
2279 deeper function found. Case 3: We found a bad match, and we're
2280 the deepest function. Then return what we found, even though
2281 it's a bad match. */
2282
2283 if (new_oload_champ != -1
2284 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2285 {
2286 *oload_syms = new_oload_syms;
2287 *oload_champ = new_oload_champ;
2288 *oload_champ_bv = new_oload_champ_bv;
2289 do_cleanups (old_cleanups);
2290 return 1;
2291 }
2292 else if (searched_deeper)
2293 {
2294 xfree (new_oload_syms);
2295 xfree (new_oload_champ_bv);
2296 discard_cleanups (old_cleanups);
2297 return 0;
2298 }
2299 else
2300 {
2301 gdb_assert (new_oload_champ != -1);
2302 *oload_syms = new_oload_syms;
2303 *oload_champ = new_oload_champ;
2304 *oload_champ_bv = new_oload_champ_bv;
2305 discard_cleanups (old_cleanups);
2306 return 0;
2307 }
2308 }
2309
2310 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2311 the best match from among the overloaded methods or functions
2312 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2313 The number of methods/functions in the list is given by NUM_FNS.
2314 Return the index of the best match; store an indication of the
2315 quality of the match in OLOAD_CHAMP_BV.
2316
2317 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2318
2319 static int
2320 find_oload_champ (struct type **arg_types, int nargs, int method,
2321 int num_fns, struct fn_field *fns_ptr,
2322 struct symbol **oload_syms,
2323 struct badness_vector **oload_champ_bv)
2324 {
2325 int ix;
2326 /* A measure of how good an overloaded instance is. */
2327 struct badness_vector *bv;
2328 /* Index of best overloaded function. */
2329 int oload_champ = -1;
2330 /* Current ambiguity state for overload resolution. */
2331 int oload_ambiguous = 0;
2332 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2333
2334 *oload_champ_bv = NULL;
2335
2336 /* Consider each candidate in turn. */
2337 for (ix = 0; ix < num_fns; ix++)
2338 {
2339 int jj;
2340 int static_offset = oload_method_static (method, fns_ptr, ix);
2341 int nparms;
2342 struct type **parm_types;
2343
2344 if (method)
2345 {
2346 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2347 }
2348 else
2349 {
2350 /* If it's not a method, this is the proper place. */
2351 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2352 }
2353
2354 /* Prepare array of parameter types. */
2355 parm_types = (struct type **)
2356 xmalloc (nparms * (sizeof (struct type *)));
2357 for (jj = 0; jj < nparms; jj++)
2358 parm_types[jj] = (method
2359 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2360 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2361 jj));
2362
2363 /* Compare parameter types to supplied argument types. Skip
2364 THIS for static methods. */
2365 bv = rank_function (parm_types, nparms,
2366 arg_types + static_offset,
2367 nargs - static_offset);
2368
2369 if (!*oload_champ_bv)
2370 {
2371 *oload_champ_bv = bv;
2372 oload_champ = 0;
2373 }
2374 else /* See whether current candidate is better or worse than
2375 previous best. */
2376 switch (compare_badness (bv, *oload_champ_bv))
2377 {
2378 case 0: /* Top two contenders are equally good. */
2379 oload_ambiguous = 1;
2380 break;
2381 case 1: /* Incomparable top contenders. */
2382 oload_ambiguous = 2;
2383 break;
2384 case 2: /* New champion, record details. */
2385 *oload_champ_bv = bv;
2386 oload_ambiguous = 0;
2387 oload_champ = ix;
2388 break;
2389 case 3:
2390 default:
2391 break;
2392 }
2393 xfree (parm_types);
2394 if (overload_debug)
2395 {
2396 if (method)
2397 fprintf_filtered (gdb_stderr,
2398 "Overloaded method instance %s, # of parms %d\n",
2399 fns_ptr[ix].physname, nparms);
2400 else
2401 fprintf_filtered (gdb_stderr,
2402 "Overloaded function instance %s # of parms %d\n",
2403 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2404 nparms);
2405 for (jj = 0; jj < nargs - static_offset; jj++)
2406 fprintf_filtered (gdb_stderr,
2407 "...Badness @ %d : %d\n",
2408 jj, bv->rank[jj]);
2409 fprintf_filtered (gdb_stderr,
2410 "Overload resolution champion is %d, ambiguous? %d\n",
2411 oload_champ, oload_ambiguous);
2412 }
2413 }
2414
2415 return oload_champ;
2416 }
2417
2418 /* Return 1 if we're looking at a static method, 0 if we're looking at
2419 a non-static method or a function that isn't a method. */
2420
2421 static int
2422 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2423 {
2424 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2425 return 1;
2426 else
2427 return 0;
2428 }
2429
2430 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2431
2432 static enum oload_classification
2433 classify_oload_match (struct badness_vector *oload_champ_bv,
2434 int nargs,
2435 int static_offset)
2436 {
2437 int ix;
2438
2439 for (ix = 1; ix <= nargs - static_offset; ix++)
2440 {
2441 if (oload_champ_bv->rank[ix] >= 100)
2442 return INCOMPATIBLE; /* Truly mismatched types. */
2443 else if (oload_champ_bv->rank[ix] >= 10)
2444 return NON_STANDARD; /* Non-standard type conversions
2445 needed. */
2446 }
2447
2448 return STANDARD; /* Only standard conversions needed. */
2449 }
2450
2451 /* C++: return 1 is NAME is a legitimate name for the destructor of
2452 type TYPE. If TYPE does not have a destructor, or if NAME is
2453 inappropriate for TYPE, an error is signaled. */
2454 int
2455 destructor_name_p (const char *name, const struct type *type)
2456 {
2457 if (name[0] == '~')
2458 {
2459 char *dname = type_name_no_tag (type);
2460 char *cp = strchr (dname, '<');
2461 unsigned int len;
2462
2463 /* Do not compare the template part for template classes. */
2464 if (cp == NULL)
2465 len = strlen (dname);
2466 else
2467 len = cp - dname;
2468 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2469 error (_("name of destructor must equal name of class"));
2470 else
2471 return 1;
2472 }
2473 return 0;
2474 }
2475
2476 /* Given TYPE, a structure/union,
2477 return 1 if the component named NAME from the ultimate target
2478 structure/union is defined, otherwise, return 0. */
2479
2480 int
2481 check_field (struct type *type, const char *name)
2482 {
2483 int i;
2484
2485 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2486 {
2487 char *t_field_name = TYPE_FIELD_NAME (type, i);
2488 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2489 return 1;
2490 }
2491
2492 /* C++: If it was not found as a data field, then try to return it
2493 as a pointer to a method. */
2494
2495 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2496 {
2497 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2498 return 1;
2499 }
2500
2501 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2502 if (check_field (TYPE_BASECLASS (type, i), name))
2503 return 1;
2504
2505 return 0;
2506 }
2507
2508 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2509 return the appropriate member (or the address of the member, if
2510 WANT_ADDRESS). This function is used to resolve user expressions
2511 of the form "DOMAIN::NAME". For more details on what happens, see
2512 the comment before value_struct_elt_for_reference. */
2513
2514 struct value *
2515 value_aggregate_elt (struct type *curtype,
2516 char *name, int want_address,
2517 enum noside noside)
2518 {
2519 switch (TYPE_CODE (curtype))
2520 {
2521 case TYPE_CODE_STRUCT:
2522 case TYPE_CODE_UNION:
2523 return value_struct_elt_for_reference (curtype, 0, curtype,
2524 name, NULL,
2525 want_address, noside);
2526 case TYPE_CODE_NAMESPACE:
2527 return value_namespace_elt (curtype, name,
2528 want_address, noside);
2529 default:
2530 internal_error (__FILE__, __LINE__,
2531 _("non-aggregate type in value_aggregate_elt"));
2532 }
2533 }
2534
2535 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2536 return the address of this member as a "pointer to member" type.
2537 If INTYPE is non-null, then it will be the type of the member we
2538 are looking for. This will help us resolve "pointers to member
2539 functions". This function is used to resolve user expressions of
2540 the form "DOMAIN::NAME". */
2541
2542 static struct value *
2543 value_struct_elt_for_reference (struct type *domain, int offset,
2544 struct type *curtype, char *name,
2545 struct type *intype,
2546 int want_address,
2547 enum noside noside)
2548 {
2549 struct type *t = curtype;
2550 int i;
2551 struct value *v, *result;
2552
2553 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2554 && TYPE_CODE (t) != TYPE_CODE_UNION)
2555 error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
2556
2557 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2558 {
2559 char *t_field_name = TYPE_FIELD_NAME (t, i);
2560
2561 if (t_field_name && strcmp (t_field_name, name) == 0)
2562 {
2563 if (field_is_static (&TYPE_FIELD (t, i)))
2564 {
2565 v = value_static_field (t, i);
2566 if (v == NULL)
2567 error (_("static field %s has been optimized out"),
2568 name);
2569 if (want_address)
2570 v = value_addr (v);
2571 return v;
2572 }
2573 if (TYPE_FIELD_PACKED (t, i))
2574 error (_("pointers to bitfield members not allowed"));
2575
2576 if (want_address)
2577 return value_from_longest
2578 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
2579 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2580 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2581 return allocate_value (TYPE_FIELD_TYPE (t, i));
2582 else
2583 error (_("Cannot reference non-static field \"%s\""), name);
2584 }
2585 }
2586
2587 /* C++: If it was not found as a data field, then try to return it
2588 as a pointer to a method. */
2589
2590 /* Perform all necessary dereferencing. */
2591 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2592 intype = TYPE_TARGET_TYPE (intype);
2593
2594 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2595 {
2596 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2597 char dem_opname[64];
2598
2599 if (strncmp (t_field_name, "__", 2) == 0
2600 || strncmp (t_field_name, "op", 2) == 0
2601 || strncmp (t_field_name, "type", 4) == 0)
2602 {
2603 if (cplus_demangle_opname (t_field_name,
2604 dem_opname, DMGL_ANSI))
2605 t_field_name = dem_opname;
2606 else if (cplus_demangle_opname (t_field_name,
2607 dem_opname, 0))
2608 t_field_name = dem_opname;
2609 }
2610 if (t_field_name && strcmp (t_field_name, name) == 0)
2611 {
2612 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
2613 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
2614
2615 check_stub_method_group (t, i);
2616
2617 if (intype == 0 && j > 1)
2618 error (_("non-unique member `%s' requires type instantiation"), name);
2619 if (intype)
2620 {
2621 while (j--)
2622 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
2623 break;
2624 if (j < 0)
2625 error (_("no member function matches that type instantiation"));
2626 }
2627 else
2628 j = 0;
2629
2630 if (TYPE_FN_FIELD_STATIC_P (f, j))
2631 {
2632 struct symbol *s =
2633 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2634 0, VAR_DOMAIN, 0);
2635 if (s == NULL)
2636 return NULL;
2637
2638 if (want_address)
2639 return value_addr (read_var_value (s, 0));
2640 else
2641 return read_var_value (s, 0);
2642 }
2643
2644 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2645 {
2646 if (want_address)
2647 {
2648 result = allocate_value
2649 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2650 cplus_make_method_ptr (value_type (result),
2651 value_contents_writeable (result),
2652 TYPE_FN_FIELD_VOFFSET (f, j), 1);
2653 }
2654 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2655 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
2656 else
2657 error (_("Cannot reference virtual member function \"%s\""),
2658 name);
2659 }
2660 else
2661 {
2662 struct symbol *s =
2663 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2664 0, VAR_DOMAIN, 0);
2665 if (s == NULL)
2666 return NULL;
2667
2668 v = read_var_value (s, 0);
2669 if (!want_address)
2670 result = v;
2671 else
2672 {
2673 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2674 cplus_make_method_ptr (value_type (result),
2675 value_contents_writeable (result),
2676 value_address (v), 0);
2677 }
2678 }
2679 return result;
2680 }
2681 }
2682 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
2683 {
2684 struct value *v;
2685 int base_offset;
2686
2687 if (BASETYPE_VIA_VIRTUAL (t, i))
2688 base_offset = 0;
2689 else
2690 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
2691 v = value_struct_elt_for_reference (domain,
2692 offset + base_offset,
2693 TYPE_BASECLASS (t, i),
2694 name, intype,
2695 want_address, noside);
2696 if (v)
2697 return v;
2698 }
2699
2700 /* As a last chance, pretend that CURTYPE is a namespace, and look
2701 it up that way; this (frequently) works for types nested inside
2702 classes. */
2703
2704 return value_maybe_namespace_elt (curtype, name,
2705 want_address, noside);
2706 }
2707
2708 /* C++: Return the member NAME of the namespace given by the type
2709 CURTYPE. */
2710
2711 static struct value *
2712 value_namespace_elt (const struct type *curtype,
2713 char *name, int want_address,
2714 enum noside noside)
2715 {
2716 struct value *retval = value_maybe_namespace_elt (curtype, name,
2717 want_address,
2718 noside);
2719
2720 if (retval == NULL)
2721 error (_("No symbol \"%s\" in namespace \"%s\"."),
2722 name, TYPE_TAG_NAME (curtype));
2723
2724 return retval;
2725 }
2726
2727 /* A helper function used by value_namespace_elt and
2728 value_struct_elt_for_reference. It looks up NAME inside the
2729 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
2730 is a class and NAME refers to a type in CURTYPE itself (as opposed
2731 to, say, some base class of CURTYPE). */
2732
2733 static struct value *
2734 value_maybe_namespace_elt (const struct type *curtype,
2735 char *name, int want_address,
2736 enum noside noside)
2737 {
2738 const char *namespace_name = TYPE_TAG_NAME (curtype);
2739 struct symbol *sym;
2740 struct value *result;
2741
2742 sym = cp_lookup_symbol_namespace (namespace_name, name, NULL,
2743 get_selected_block (0),
2744 VAR_DOMAIN);
2745
2746 if (sym == NULL)
2747 return NULL;
2748 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
2749 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
2750 result = allocate_value (SYMBOL_TYPE (sym));
2751 else
2752 result = value_of_variable (sym, get_selected_block (0));
2753
2754 if (result && want_address)
2755 result = value_addr (result);
2756
2757 return result;
2758 }
2759
2760 /* Given a pointer value V, find the real (RTTI) type of the object it
2761 points to.
2762
2763 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
2764 and refer to the values computed for the object pointed to. */
2765
2766 struct type *
2767 value_rtti_target_type (struct value *v, int *full,
2768 int *top, int *using_enc)
2769 {
2770 struct value *target;
2771
2772 target = value_ind (v);
2773
2774 return value_rtti_type (target, full, top, using_enc);
2775 }
2776
2777 /* Given a value pointed to by ARGP, check its real run-time type, and
2778 if that is different from the enclosing type, create a new value
2779 using the real run-time type as the enclosing type (and of the same
2780 type as ARGP) and return it, with the embedded offset adjusted to
2781 be the correct offset to the enclosed object. RTYPE is the type,
2782 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
2783 by value_rtti_type(). If these are available, they can be supplied
2784 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
2785 NULL if they're not available. */
2786
2787 struct value *
2788 value_full_object (struct value *argp,
2789 struct type *rtype,
2790 int xfull, int xtop,
2791 int xusing_enc)
2792 {
2793 struct type *real_type;
2794 int full = 0;
2795 int top = -1;
2796 int using_enc = 0;
2797 struct value *new_val;
2798
2799 if (rtype)
2800 {
2801 real_type = rtype;
2802 full = xfull;
2803 top = xtop;
2804 using_enc = xusing_enc;
2805 }
2806 else
2807 real_type = value_rtti_type (argp, &full, &top, &using_enc);
2808
2809 /* If no RTTI data, or if object is already complete, do nothing. */
2810 if (!real_type || real_type == value_enclosing_type (argp))
2811 return argp;
2812
2813 /* If we have the full object, but for some reason the enclosing
2814 type is wrong, set it. */
2815 /* pai: FIXME -- sounds iffy */
2816 if (full)
2817 {
2818 argp = value_change_enclosing_type (argp, real_type);
2819 return argp;
2820 }
2821
2822 /* Check if object is in memory */
2823 if (VALUE_LVAL (argp) != lval_memory)
2824 {
2825 warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."),
2826 TYPE_NAME (real_type));
2827
2828 return argp;
2829 }
2830
2831 /* All other cases -- retrieve the complete object. */
2832 /* Go back by the computed top_offset from the beginning of the
2833 object, adjusting for the embedded offset of argp if that's what
2834 value_rtti_type used for its computation. */
2835 new_val = value_at_lazy (real_type, value_address (argp) - top +
2836 (using_enc ? 0 : value_embedded_offset (argp)));
2837 deprecated_set_value_type (new_val, value_type (argp));
2838 set_value_embedded_offset (new_val, (using_enc
2839 ? top + value_embedded_offset (argp)
2840 : top));
2841 return new_val;
2842 }
2843
2844
2845 /* Return the value of the local variable, if one exists.
2846 Flag COMPLAIN signals an error if the request is made in an
2847 inappropriate context. */
2848
2849 struct value *
2850 value_of_local (const char *name, int complain)
2851 {
2852 struct symbol *func, *sym;
2853 struct block *b;
2854 struct value * ret;
2855 struct frame_info *frame;
2856
2857 if (complain)
2858 frame = get_selected_frame (_("no frame selected"));
2859 else
2860 {
2861 frame = deprecated_safe_get_selected_frame ();
2862 if (frame == 0)
2863 return 0;
2864 }
2865
2866 func = get_frame_function (frame);
2867 if (!func)
2868 {
2869 if (complain)
2870 error (_("no `%s' in nameless context"), name);
2871 else
2872 return 0;
2873 }
2874
2875 b = SYMBOL_BLOCK_VALUE (func);
2876 if (dict_empty (BLOCK_DICT (b)))
2877 {
2878 if (complain)
2879 error (_("no args, no `%s'"), name);
2880 else
2881 return 0;
2882 }
2883
2884 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2885 symbol instead of the LOC_ARG one (if both exist). */
2886 sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN);
2887 if (sym == NULL)
2888 {
2889 if (complain)
2890 error (_("current stack frame does not contain a variable named `%s'"),
2891 name);
2892 else
2893 return NULL;
2894 }
2895
2896 ret = read_var_value (sym, frame);
2897 if (ret == 0 && complain)
2898 error (_("`%s' argument unreadable"), name);
2899 return ret;
2900 }
2901
2902 /* C++/Objective-C: return the value of the class instance variable,
2903 if one exists. Flag COMPLAIN signals an error if the request is
2904 made in an inappropriate context. */
2905
2906 struct value *
2907 value_of_this (int complain)
2908 {
2909 if (!current_language->la_name_of_this)
2910 return 0;
2911 return value_of_local (current_language->la_name_of_this, complain);
2912 }
2913
2914 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
2915 elements long, starting at LOWBOUND. The result has the same lower
2916 bound as the original ARRAY. */
2917
2918 struct value *
2919 value_slice (struct value *array, int lowbound, int length)
2920 {
2921 struct type *slice_range_type, *slice_type, *range_type;
2922 LONGEST lowerbound, upperbound;
2923 struct value *slice;
2924 struct type *array_type;
2925
2926 array_type = check_typedef (value_type (array));
2927 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
2928 && TYPE_CODE (array_type) != TYPE_CODE_STRING
2929 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
2930 error (_("cannot take slice of non-array"));
2931
2932 range_type = TYPE_INDEX_TYPE (array_type);
2933 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2934 error (_("slice from bad array or bitstring"));
2935
2936 if (lowbound < lowerbound || length < 0
2937 || lowbound + length - 1 > upperbound)
2938 error (_("slice out of range"));
2939
2940 /* FIXME-type-allocation: need a way to free this type when we are
2941 done with it. */
2942 slice_range_type = create_range_type ((struct type *) NULL,
2943 TYPE_TARGET_TYPE (range_type),
2944 lowbound,
2945 lowbound + length - 1);
2946 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
2947 {
2948 int i;
2949
2950 slice_type = create_set_type ((struct type *) NULL,
2951 slice_range_type);
2952 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
2953 slice = value_zero (slice_type, not_lval);
2954
2955 for (i = 0; i < length; i++)
2956 {
2957 int element = value_bit_index (array_type,
2958 value_contents (array),
2959 lowbound + i);
2960 if (element < 0)
2961 error (_("internal error accessing bitstring"));
2962 else if (element > 0)
2963 {
2964 int j = i % TARGET_CHAR_BIT;
2965 if (gdbarch_bits_big_endian (current_gdbarch))
2966 j = TARGET_CHAR_BIT - 1 - j;
2967 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
2968 }
2969 }
2970 /* We should set the address, bitssize, and bitspos, so the
2971 slice can be used on the LHS, but that may require extensions
2972 to value_assign. For now, just leave as a non_lval.
2973 FIXME. */
2974 }
2975 else
2976 {
2977 struct type *element_type = TYPE_TARGET_TYPE (array_type);
2978 LONGEST offset =
2979 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
2980
2981 slice_type = create_array_type ((struct type *) NULL,
2982 element_type,
2983 slice_range_type);
2984 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
2985
2986 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
2987 slice = allocate_value_lazy (slice_type);
2988 else
2989 {
2990 slice = allocate_value (slice_type);
2991 memcpy (value_contents_writeable (slice),
2992 value_contents (array) + offset,
2993 TYPE_LENGTH (slice_type));
2994 }
2995
2996 set_value_component_location (slice, array);
2997 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
2998 set_value_offset (slice, value_offset (array) + offset);
2999 }
3000 return slice;
3001 }
3002
3003 /* Create a value for a FORTRAN complex number. Currently most of the
3004 time values are coerced to COMPLEX*16 (i.e. a complex number
3005 composed of 2 doubles. This really should be a smarter routine
3006 that figures out precision inteligently as opposed to assuming
3007 doubles. FIXME: fmb */
3008
3009 struct value *
3010 value_literal_complex (struct value *arg1,
3011 struct value *arg2,
3012 struct type *type)
3013 {
3014 struct value *val;
3015 struct type *real_type = TYPE_TARGET_TYPE (type);
3016
3017 val = allocate_value (type);
3018 arg1 = value_cast (real_type, arg1);
3019 arg2 = value_cast (real_type, arg2);
3020
3021 memcpy (value_contents_raw (val),
3022 value_contents (arg1), TYPE_LENGTH (real_type));
3023 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3024 value_contents (arg2), TYPE_LENGTH (real_type));
3025 return val;
3026 }
3027
3028 /* Cast a value into the appropriate complex data type. */
3029
3030 static struct value *
3031 cast_into_complex (struct type *type, struct value *val)
3032 {
3033 struct type *real_type = TYPE_TARGET_TYPE (type);
3034
3035 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3036 {
3037 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3038 struct value *re_val = allocate_value (val_real_type);
3039 struct value *im_val = allocate_value (val_real_type);
3040
3041 memcpy (value_contents_raw (re_val),
3042 value_contents (val), TYPE_LENGTH (val_real_type));
3043 memcpy (value_contents_raw (im_val),
3044 value_contents (val) + TYPE_LENGTH (val_real_type),
3045 TYPE_LENGTH (val_real_type));
3046
3047 return value_literal_complex (re_val, im_val, type);
3048 }
3049 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3050 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3051 return value_literal_complex (val,
3052 value_zero (real_type, not_lval),
3053 type);
3054 else
3055 error (_("cannot cast non-number to complex"));
3056 }
3057
3058 void
3059 _initialize_valops (void)
3060 {
3061 add_setshow_boolean_cmd ("overload-resolution", class_support,
3062 &overload_resolution, _("\
3063 Set overload resolution in evaluating C++ functions."), _("\
3064 Show overload resolution in evaluating C++ functions."),
3065 NULL, NULL,
3066 show_overload_resolution,
3067 &setlist, &showlist);
3068 overload_resolution = 1;
3069 }
This page took 0.093544 seconds and 4 git commands to generate.