Update comment for struct type's length field, introduce type_length_units
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "dfp.h"
38 #include "tracepoint.h"
39 #include "observer.h"
40 #include "objfiles.h"
41 #include "extension.h"
42
43 extern unsigned int overload_debug;
44 /* Local functions. */
45
46 static int typecmp (int staticp, int varargs, int nargs,
47 struct field t1[], struct value *t2[]);
48
49 static struct value *search_struct_field (const char *, struct value *,
50 struct type *, int);
51
52 static struct value *search_struct_method (const char *, struct value **,
53 struct value **,
54 int, int *, struct type *);
55
56 static int find_oload_champ_namespace (struct value **, int,
57 const char *, const char *,
58 struct symbol ***,
59 struct badness_vector **,
60 const int no_adl);
61
62 static
63 int find_oload_champ_namespace_loop (struct value **, int,
64 const char *, const char *,
65 int, struct symbol ***,
66 struct badness_vector **, int *,
67 const int no_adl);
68
69 static int find_oload_champ (struct value **, int, int,
70 struct fn_field *, VEC (xmethod_worker_ptr) *,
71 struct symbol **, struct badness_vector **);
72
73 static int oload_method_static_p (struct fn_field *, int);
74
75 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
76
77 static enum
78 oload_classification classify_oload_match (struct badness_vector *,
79 int, int);
80
81 static struct value *value_struct_elt_for_reference (struct type *,
82 int, struct type *,
83 const char *,
84 struct type *,
85 int, enum noside);
86
87 static struct value *value_namespace_elt (const struct type *,
88 const char *, int , enum noside);
89
90 static struct value *value_maybe_namespace_elt (const struct type *,
91 const char *, int,
92 enum noside);
93
94 static CORE_ADDR allocate_space_in_inferior (int);
95
96 static struct value *cast_into_complex (struct type *, struct value *);
97
98 static void find_method_list (struct value **, const char *,
99 int, struct type *, struct fn_field **, int *,
100 VEC (xmethod_worker_ptr) **,
101 struct type **, int *);
102
103 void _initialize_valops (void);
104
105 #if 0
106 /* Flag for whether we want to abandon failed expression evals by
107 default. */
108
109 static int auto_abandon = 0;
110 #endif
111
112 int overload_resolution = 0;
113 static void
114 show_overload_resolution (struct ui_file *file, int from_tty,
115 struct cmd_list_element *c,
116 const char *value)
117 {
118 fprintf_filtered (file, _("Overload resolution in evaluating "
119 "C++ functions is %s.\n"),
120 value);
121 }
122
123 /* Find the address of function name NAME in the inferior. If OBJF_P
124 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
125 is defined. */
126
127 struct value *
128 find_function_in_inferior (const char *name, struct objfile **objf_p)
129 {
130 struct symbol *sym;
131
132 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
133 if (sym != NULL)
134 {
135 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
136 {
137 error (_("\"%s\" exists in this program but is not a function."),
138 name);
139 }
140
141 if (objf_p)
142 *objf_p = symbol_objfile (sym);
143
144 return value_of_variable (sym, NULL);
145 }
146 else
147 {
148 struct bound_minimal_symbol msymbol =
149 lookup_bound_minimal_symbol (name);
150
151 if (msymbol.minsym != NULL)
152 {
153 struct objfile *objfile = msymbol.objfile;
154 struct gdbarch *gdbarch = get_objfile_arch (objfile);
155
156 struct type *type;
157 CORE_ADDR maddr;
158 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
159 type = lookup_function_type (type);
160 type = lookup_pointer_type (type);
161 maddr = BMSYMBOL_VALUE_ADDRESS (msymbol);
162
163 if (objf_p)
164 *objf_p = objfile;
165
166 return value_from_pointer (type, maddr);
167 }
168 else
169 {
170 if (!target_has_execution)
171 error (_("evaluation of this expression "
172 "requires the target program to be active"));
173 else
174 error (_("evaluation of this expression requires the "
175 "program to have a function \"%s\"."),
176 name);
177 }
178 }
179 }
180
181 /* Allocate NBYTES of space in the inferior using the inferior's
182 malloc and return a value that is a pointer to the allocated
183 space. */
184
185 struct value *
186 value_allocate_space_in_inferior (int len)
187 {
188 struct objfile *objf;
189 struct value *val = find_function_in_inferior ("malloc", &objf);
190 struct gdbarch *gdbarch = get_objfile_arch (objf);
191 struct value *blocklen;
192
193 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
194 val = call_function_by_hand (val, 1, &blocklen);
195 if (value_logical_not (val))
196 {
197 if (!target_has_execution)
198 error (_("No memory available to program now: "
199 "you need to start the target first"));
200 else
201 error (_("No memory available to program: call to malloc failed"));
202 }
203 return val;
204 }
205
206 static CORE_ADDR
207 allocate_space_in_inferior (int len)
208 {
209 return value_as_long (value_allocate_space_in_inferior (len));
210 }
211
212 /* Cast struct value VAL to type TYPE and return as a value.
213 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
214 for this to work. Typedef to one of the codes is permitted.
215 Returns NULL if the cast is neither an upcast nor a downcast. */
216
217 static struct value *
218 value_cast_structs (struct type *type, struct value *v2)
219 {
220 struct type *t1;
221 struct type *t2;
222 struct value *v;
223
224 gdb_assert (type != NULL && v2 != NULL);
225
226 t1 = check_typedef (type);
227 t2 = check_typedef (value_type (v2));
228
229 /* Check preconditions. */
230 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
231 || TYPE_CODE (t1) == TYPE_CODE_UNION)
232 && !!"Precondition is that type is of STRUCT or UNION kind.");
233 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
234 || TYPE_CODE (t2) == TYPE_CODE_UNION)
235 && !!"Precondition is that value is of STRUCT or UNION kind");
236
237 if (TYPE_NAME (t1) != NULL
238 && TYPE_NAME (t2) != NULL
239 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
240 return NULL;
241
242 /* Upcasting: look in the type of the source to see if it contains the
243 type of the target as a superclass. If so, we'll need to
244 offset the pointer rather than just change its type. */
245 if (TYPE_NAME (t1) != NULL)
246 {
247 v = search_struct_field (type_name_no_tag (t1),
248 v2, t2, 1);
249 if (v)
250 return v;
251 }
252
253 /* Downcasting: look in the type of the target to see if it contains the
254 type of the source as a superclass. If so, we'll need to
255 offset the pointer rather than just change its type. */
256 if (TYPE_NAME (t2) != NULL)
257 {
258 /* Try downcasting using the run-time type of the value. */
259 int full, top, using_enc;
260 struct type *real_type;
261
262 real_type = value_rtti_type (v2, &full, &top, &using_enc);
263 if (real_type)
264 {
265 v = value_full_object (v2, real_type, full, top, using_enc);
266 v = value_at_lazy (real_type, value_address (v));
267 real_type = value_type (v);
268
269 /* We might be trying to cast to the outermost enclosing
270 type, in which case search_struct_field won't work. */
271 if (TYPE_NAME (real_type) != NULL
272 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
273 return v;
274
275 v = search_struct_field (type_name_no_tag (t2), v, real_type, 1);
276 if (v)
277 return v;
278 }
279
280 /* Try downcasting using information from the destination type
281 T2. This wouldn't work properly for classes with virtual
282 bases, but those were handled above. */
283 v = search_struct_field (type_name_no_tag (t2),
284 value_zero (t1, not_lval), t1, 1);
285 if (v)
286 {
287 /* Downcasting is possible (t1 is superclass of v2). */
288 CORE_ADDR addr2 = value_address (v2);
289
290 addr2 -= value_address (v) + value_embedded_offset (v);
291 return value_at (type, addr2);
292 }
293 }
294
295 return NULL;
296 }
297
298 /* Cast one pointer or reference type to another. Both TYPE and
299 the type of ARG2 should be pointer types, or else both should be
300 reference types. If SUBCLASS_CHECK is non-zero, this will force a
301 check to see whether TYPE is a superclass of ARG2's type. If
302 SUBCLASS_CHECK is zero, then the subclass check is done only when
303 ARG2 is itself non-zero. Returns the new pointer or reference. */
304
305 struct value *
306 value_cast_pointers (struct type *type, struct value *arg2,
307 int subclass_check)
308 {
309 struct type *type1 = check_typedef (type);
310 struct type *type2 = check_typedef (value_type (arg2));
311 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
312 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
313
314 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
315 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
316 && (subclass_check || !value_logical_not (arg2)))
317 {
318 struct value *v2;
319
320 if (TYPE_CODE (type2) == TYPE_CODE_REF)
321 v2 = coerce_ref (arg2);
322 else
323 v2 = value_ind (arg2);
324 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
325 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
326 v2 = value_cast_structs (t1, v2);
327 /* At this point we have what we can have, un-dereference if needed. */
328 if (v2)
329 {
330 struct value *v = value_addr (v2);
331
332 deprecated_set_value_type (v, type);
333 return v;
334 }
335 }
336
337 /* No superclass found, just change the pointer type. */
338 arg2 = value_copy (arg2);
339 deprecated_set_value_type (arg2, type);
340 set_value_enclosing_type (arg2, type);
341 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
342 return arg2;
343 }
344
345 /* Cast value ARG2 to type TYPE and return as a value.
346 More general than a C cast: accepts any two types of the same length,
347 and if ARG2 is an lvalue it can be cast into anything at all. */
348 /* In C++, casts may change pointer or object representations. */
349
350 struct value *
351 value_cast (struct type *type, struct value *arg2)
352 {
353 enum type_code code1;
354 enum type_code code2;
355 int scalar;
356 struct type *type2;
357
358 int convert_to_boolean = 0;
359
360 if (value_type (arg2) == type)
361 return arg2;
362
363 code1 = TYPE_CODE (check_typedef (type));
364
365 /* Check if we are casting struct reference to struct reference. */
366 if (code1 == TYPE_CODE_REF)
367 {
368 /* We dereference type; then we recurse and finally
369 we generate value of the given reference. Nothing wrong with
370 that. */
371 struct type *t1 = check_typedef (type);
372 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
373 struct value *val = value_cast (dereftype, arg2);
374
375 return value_ref (val);
376 }
377
378 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
379
380 if (code2 == TYPE_CODE_REF)
381 /* We deref the value and then do the cast. */
382 return value_cast (type, coerce_ref (arg2));
383
384 type = check_typedef (type);
385 code1 = TYPE_CODE (type);
386 arg2 = coerce_ref (arg2);
387 type2 = check_typedef (value_type (arg2));
388
389 /* You can't cast to a reference type. See value_cast_pointers
390 instead. */
391 gdb_assert (code1 != TYPE_CODE_REF);
392
393 /* A cast to an undetermined-length array_type, such as
394 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
395 where N is sizeof(OBJECT)/sizeof(TYPE). */
396 if (code1 == TYPE_CODE_ARRAY)
397 {
398 struct type *element_type = TYPE_TARGET_TYPE (type);
399 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
400
401 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
402 {
403 struct type *range_type = TYPE_INDEX_TYPE (type);
404 int val_length = TYPE_LENGTH (type2);
405 LONGEST low_bound, high_bound, new_length;
406
407 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
408 low_bound = 0, high_bound = 0;
409 new_length = val_length / element_length;
410 if (val_length % element_length != 0)
411 warning (_("array element type size does not "
412 "divide object size in cast"));
413 /* FIXME-type-allocation: need a way to free this type when
414 we are done with it. */
415 range_type = create_static_range_type ((struct type *) NULL,
416 TYPE_TARGET_TYPE (range_type),
417 low_bound,
418 new_length + low_bound - 1);
419 deprecated_set_value_type (arg2,
420 create_array_type ((struct type *) NULL,
421 element_type,
422 range_type));
423 return arg2;
424 }
425 }
426
427 if (current_language->c_style_arrays
428 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
429 && !TYPE_VECTOR (type2))
430 arg2 = value_coerce_array (arg2);
431
432 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
433 arg2 = value_coerce_function (arg2);
434
435 type2 = check_typedef (value_type (arg2));
436 code2 = TYPE_CODE (type2);
437
438 if (code1 == TYPE_CODE_COMPLEX)
439 return cast_into_complex (type, arg2);
440 if (code1 == TYPE_CODE_BOOL)
441 {
442 code1 = TYPE_CODE_INT;
443 convert_to_boolean = 1;
444 }
445 if (code1 == TYPE_CODE_CHAR)
446 code1 = TYPE_CODE_INT;
447 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
448 code2 = TYPE_CODE_INT;
449
450 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
451 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
452 || code2 == TYPE_CODE_RANGE);
453
454 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
455 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
456 && TYPE_NAME (type) != 0)
457 {
458 struct value *v = value_cast_structs (type, arg2);
459
460 if (v)
461 return v;
462 }
463
464 if (code1 == TYPE_CODE_FLT && scalar)
465 return value_from_double (type, value_as_double (arg2));
466 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
467 {
468 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
469 int dec_len = TYPE_LENGTH (type);
470 gdb_byte dec[16];
471
472 if (code2 == TYPE_CODE_FLT)
473 decimal_from_floating (arg2, dec, dec_len, byte_order);
474 else if (code2 == TYPE_CODE_DECFLOAT)
475 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
476 byte_order, dec, dec_len, byte_order);
477 else
478 /* The only option left is an integral type. */
479 decimal_from_integral (arg2, dec, dec_len, byte_order);
480
481 return value_from_decfloat (type, dec);
482 }
483 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
484 || code1 == TYPE_CODE_RANGE)
485 && (scalar || code2 == TYPE_CODE_PTR
486 || code2 == TYPE_CODE_MEMBERPTR))
487 {
488 LONGEST longest;
489
490 /* When we cast pointers to integers, we mustn't use
491 gdbarch_pointer_to_address to find the address the pointer
492 represents, as value_as_long would. GDB should evaluate
493 expressions just as the compiler would --- and the compiler
494 sees a cast as a simple reinterpretation of the pointer's
495 bits. */
496 if (code2 == TYPE_CODE_PTR)
497 longest = extract_unsigned_integer
498 (value_contents (arg2), TYPE_LENGTH (type2),
499 gdbarch_byte_order (get_type_arch (type2)));
500 else
501 longest = value_as_long (arg2);
502 return value_from_longest (type, convert_to_boolean ?
503 (LONGEST) (longest ? 1 : 0) : longest);
504 }
505 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
506 || code2 == TYPE_CODE_ENUM
507 || code2 == TYPE_CODE_RANGE))
508 {
509 /* TYPE_LENGTH (type) is the length of a pointer, but we really
510 want the length of an address! -- we are really dealing with
511 addresses (i.e., gdb representations) not pointers (i.e.,
512 target representations) here.
513
514 This allows things like "print *(int *)0x01000234" to work
515 without printing a misleading message -- which would
516 otherwise occur when dealing with a target having two byte
517 pointers and four byte addresses. */
518
519 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
520 LONGEST longest = value_as_long (arg2);
521
522 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
523 {
524 if (longest >= ((LONGEST) 1 << addr_bit)
525 || longest <= -((LONGEST) 1 << addr_bit))
526 warning (_("value truncated"));
527 }
528 return value_from_longest (type, longest);
529 }
530 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
531 && value_as_long (arg2) == 0)
532 {
533 struct value *result = allocate_value (type);
534
535 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
536 return result;
537 }
538 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
539 && value_as_long (arg2) == 0)
540 {
541 /* The Itanium C++ ABI represents NULL pointers to members as
542 minus one, instead of biasing the normal case. */
543 return value_from_longest (type, -1);
544 }
545 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
546 && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
547 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
548 error (_("Cannot convert between vector values of different sizes"));
549 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
550 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
551 error (_("can only cast scalar to vector of same size"));
552 else if (code1 == TYPE_CODE_VOID)
553 {
554 return value_zero (type, not_lval);
555 }
556 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
557 {
558 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
559 return value_cast_pointers (type, arg2, 0);
560
561 arg2 = value_copy (arg2);
562 deprecated_set_value_type (arg2, type);
563 set_value_enclosing_type (arg2, type);
564 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
565 return arg2;
566 }
567 else if (VALUE_LVAL (arg2) == lval_memory)
568 return value_at_lazy (type, value_address (arg2));
569 else
570 {
571 error (_("Invalid cast."));
572 return 0;
573 }
574 }
575
576 /* The C++ reinterpret_cast operator. */
577
578 struct value *
579 value_reinterpret_cast (struct type *type, struct value *arg)
580 {
581 struct value *result;
582 struct type *real_type = check_typedef (type);
583 struct type *arg_type, *dest_type;
584 int is_ref = 0;
585 enum type_code dest_code, arg_code;
586
587 /* Do reference, function, and array conversion. */
588 arg = coerce_array (arg);
589
590 /* Attempt to preserve the type the user asked for. */
591 dest_type = type;
592
593 /* If we are casting to a reference type, transform
594 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
595 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
596 {
597 is_ref = 1;
598 arg = value_addr (arg);
599 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
600 real_type = lookup_pointer_type (real_type);
601 }
602
603 arg_type = value_type (arg);
604
605 dest_code = TYPE_CODE (real_type);
606 arg_code = TYPE_CODE (arg_type);
607
608 /* We can convert pointer types, or any pointer type to int, or int
609 type to pointer. */
610 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
611 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
612 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
613 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
614 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
615 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
616 || (dest_code == arg_code
617 && (dest_code == TYPE_CODE_PTR
618 || dest_code == TYPE_CODE_METHODPTR
619 || dest_code == TYPE_CODE_MEMBERPTR)))
620 result = value_cast (dest_type, arg);
621 else
622 error (_("Invalid reinterpret_cast"));
623
624 if (is_ref)
625 result = value_cast (type, value_ref (value_ind (result)));
626
627 return result;
628 }
629
630 /* A helper for value_dynamic_cast. This implements the first of two
631 runtime checks: we iterate over all the base classes of the value's
632 class which are equal to the desired class; if only one of these
633 holds the value, then it is the answer. */
634
635 static int
636 dynamic_cast_check_1 (struct type *desired_type,
637 const gdb_byte *valaddr,
638 int embedded_offset,
639 CORE_ADDR address,
640 struct value *val,
641 struct type *search_type,
642 CORE_ADDR arg_addr,
643 struct type *arg_type,
644 struct value **result)
645 {
646 int i, result_count = 0;
647
648 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
649 {
650 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
651 address, val);
652
653 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
654 {
655 if (address + embedded_offset + offset >= arg_addr
656 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
657 {
658 ++result_count;
659 if (!*result)
660 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
661 address + embedded_offset + offset);
662 }
663 }
664 else
665 result_count += dynamic_cast_check_1 (desired_type,
666 valaddr,
667 embedded_offset + offset,
668 address, val,
669 TYPE_BASECLASS (search_type, i),
670 arg_addr,
671 arg_type,
672 result);
673 }
674
675 return result_count;
676 }
677
678 /* A helper for value_dynamic_cast. This implements the second of two
679 runtime checks: we look for a unique public sibling class of the
680 argument's declared class. */
681
682 static int
683 dynamic_cast_check_2 (struct type *desired_type,
684 const gdb_byte *valaddr,
685 int embedded_offset,
686 CORE_ADDR address,
687 struct value *val,
688 struct type *search_type,
689 struct value **result)
690 {
691 int i, result_count = 0;
692
693 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
694 {
695 int offset;
696
697 if (! BASETYPE_VIA_PUBLIC (search_type, i))
698 continue;
699
700 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
701 address, val);
702 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
703 {
704 ++result_count;
705 if (*result == NULL)
706 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
707 address + embedded_offset + offset);
708 }
709 else
710 result_count += dynamic_cast_check_2 (desired_type,
711 valaddr,
712 embedded_offset + offset,
713 address, val,
714 TYPE_BASECLASS (search_type, i),
715 result);
716 }
717
718 return result_count;
719 }
720
721 /* The C++ dynamic_cast operator. */
722
723 struct value *
724 value_dynamic_cast (struct type *type, struct value *arg)
725 {
726 int full, top, using_enc;
727 struct type *resolved_type = check_typedef (type);
728 struct type *arg_type = check_typedef (value_type (arg));
729 struct type *class_type, *rtti_type;
730 struct value *result, *tem, *original_arg = arg;
731 CORE_ADDR addr;
732 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
733
734 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
735 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
736 error (_("Argument to dynamic_cast must be a pointer or reference type"));
737 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
738 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_STRUCT)
739 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
740
741 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
742 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
743 {
744 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
745 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
746 && value_as_long (arg) == 0))
747 error (_("Argument to dynamic_cast does not have pointer type"));
748 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
749 {
750 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
751 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
752 error (_("Argument to dynamic_cast does "
753 "not have pointer to class type"));
754 }
755
756 /* Handle NULL pointers. */
757 if (value_as_long (arg) == 0)
758 return value_zero (type, not_lval);
759
760 arg = value_ind (arg);
761 }
762 else
763 {
764 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
765 error (_("Argument to dynamic_cast does not have class type"));
766 }
767
768 /* If the classes are the same, just return the argument. */
769 if (class_types_same_p (class_type, arg_type))
770 return value_cast (type, arg);
771
772 /* If the target type is a unique base class of the argument's
773 declared type, just cast it. */
774 if (is_ancestor (class_type, arg_type))
775 {
776 if (is_unique_ancestor (class_type, arg))
777 return value_cast (type, original_arg);
778 error (_("Ambiguous dynamic_cast"));
779 }
780
781 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
782 if (! rtti_type)
783 error (_("Couldn't determine value's most derived type for dynamic_cast"));
784
785 /* Compute the most derived object's address. */
786 addr = value_address (arg);
787 if (full)
788 {
789 /* Done. */
790 }
791 else if (using_enc)
792 addr += top;
793 else
794 addr += top + value_embedded_offset (arg);
795
796 /* dynamic_cast<void *> means to return a pointer to the
797 most-derived object. */
798 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
799 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
800 return value_at_lazy (type, addr);
801
802 tem = value_at (type, addr);
803 type = value_type (tem);
804
805 /* The first dynamic check specified in 5.2.7. */
806 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
807 {
808 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
809 return tem;
810 result = NULL;
811 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
812 value_contents_for_printing (tem),
813 value_embedded_offset (tem),
814 value_address (tem), tem,
815 rtti_type, addr,
816 arg_type,
817 &result) == 1)
818 return value_cast (type,
819 is_ref ? value_ref (result) : value_addr (result));
820 }
821
822 /* The second dynamic check specified in 5.2.7. */
823 result = NULL;
824 if (is_public_ancestor (arg_type, rtti_type)
825 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
826 value_contents_for_printing (tem),
827 value_embedded_offset (tem),
828 value_address (tem), tem,
829 rtti_type, &result) == 1)
830 return value_cast (type,
831 is_ref ? value_ref (result) : value_addr (result));
832
833 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
834 return value_zero (type, not_lval);
835
836 error (_("dynamic_cast failed"));
837 }
838
839 /* Create a value of type TYPE that is zero, and return it. */
840
841 struct value *
842 value_zero (struct type *type, enum lval_type lv)
843 {
844 struct value *val = allocate_value (type);
845
846 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
847 return val;
848 }
849
850 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
851
852 struct value *
853 value_one (struct type *type)
854 {
855 struct type *type1 = check_typedef (type);
856 struct value *val;
857
858 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
859 {
860 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
861 gdb_byte v[16];
862
863 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
864 val = value_from_decfloat (type, v);
865 }
866 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
867 {
868 val = value_from_double (type, (DOUBLEST) 1);
869 }
870 else if (is_integral_type (type1))
871 {
872 val = value_from_longest (type, (LONGEST) 1);
873 }
874 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
875 {
876 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
877 int i;
878 LONGEST low_bound, high_bound;
879 struct value *tmp;
880
881 if (!get_array_bounds (type1, &low_bound, &high_bound))
882 error (_("Could not determine the vector bounds"));
883
884 val = allocate_value (type);
885 for (i = 0; i < high_bound - low_bound + 1; i++)
886 {
887 tmp = value_one (eltype);
888 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
889 value_contents_all (tmp), TYPE_LENGTH (eltype));
890 }
891 }
892 else
893 {
894 error (_("Not a numeric type."));
895 }
896
897 /* value_one result is never used for assignments to. */
898 gdb_assert (VALUE_LVAL (val) == not_lval);
899
900 return val;
901 }
902
903 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.
904 The type of the created value may differ from the passed type TYPE.
905 Make sure to retrieve the returned values's new type after this call
906 e.g. in case the type is a variable length array. */
907
908 static struct value *
909 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
910 {
911 struct value *val;
912
913 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
914 error (_("Attempt to dereference a generic pointer."));
915
916 val = value_from_contents_and_address (type, NULL, addr);
917
918 if (!lazy)
919 value_fetch_lazy (val);
920
921 return val;
922 }
923
924 /* Return a value with type TYPE located at ADDR.
925
926 Call value_at only if the data needs to be fetched immediately;
927 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
928 value_at_lazy instead. value_at_lazy simply records the address of
929 the data and sets the lazy-evaluation-required flag. The lazy flag
930 is tested in the value_contents macro, which is used if and when
931 the contents are actually required. The type of the created value
932 may differ from the passed type TYPE. Make sure to retrieve the
933 returned values's new type after this call e.g. in case the type
934 is a variable length array.
935
936 Note: value_at does *NOT* handle embedded offsets; perform such
937 adjustments before or after calling it. */
938
939 struct value *
940 value_at (struct type *type, CORE_ADDR addr)
941 {
942 return get_value_at (type, addr, 0);
943 }
944
945 /* Return a lazy value with type TYPE located at ADDR (cf. value_at).
946 The type of the created value may differ from the passed type TYPE.
947 Make sure to retrieve the returned values's new type after this call
948 e.g. in case the type is a variable length array. */
949
950 struct value *
951 value_at_lazy (struct type *type, CORE_ADDR addr)
952 {
953 return get_value_at (type, addr, 1);
954 }
955
956 void
957 read_value_memory (struct value *val, int embedded_offset,
958 int stack, CORE_ADDR memaddr,
959 gdb_byte *buffer, size_t length)
960 {
961 ULONGEST xfered = 0;
962
963 while (xfered < length)
964 {
965 enum target_xfer_status status;
966 ULONGEST xfered_len;
967
968 status = target_xfer_partial (current_target.beneath,
969 TARGET_OBJECT_MEMORY, NULL,
970 buffer + xfered, NULL,
971 memaddr + xfered, length - xfered,
972 &xfered_len);
973
974 if (status == TARGET_XFER_OK)
975 /* nothing */;
976 else if (status == TARGET_XFER_UNAVAILABLE)
977 mark_value_bytes_unavailable (val, embedded_offset + xfered,
978 xfered_len);
979 else if (status == TARGET_XFER_EOF)
980 memory_error (TARGET_XFER_E_IO, memaddr + xfered);
981 else
982 memory_error (status, memaddr + xfered);
983
984 xfered += xfered_len;
985 QUIT;
986 }
987 }
988
989 /* Store the contents of FROMVAL into the location of TOVAL.
990 Return a new value with the location of TOVAL and contents of FROMVAL. */
991
992 struct value *
993 value_assign (struct value *toval, struct value *fromval)
994 {
995 struct type *type;
996 struct value *val;
997 struct frame_id old_frame;
998
999 if (!deprecated_value_modifiable (toval))
1000 error (_("Left operand of assignment is not a modifiable lvalue."));
1001
1002 toval = coerce_ref (toval);
1003
1004 type = value_type (toval);
1005 if (VALUE_LVAL (toval) != lval_internalvar)
1006 fromval = value_cast (type, fromval);
1007 else
1008 {
1009 /* Coerce arrays and functions to pointers, except for arrays
1010 which only live in GDB's storage. */
1011 if (!value_must_coerce_to_target (fromval))
1012 fromval = coerce_array (fromval);
1013 }
1014
1015 type = check_typedef (type);
1016
1017 /* Since modifying a register can trash the frame chain, and
1018 modifying memory can trash the frame cache, we save the old frame
1019 and then restore the new frame afterwards. */
1020 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1021
1022 switch (VALUE_LVAL (toval))
1023 {
1024 case lval_internalvar:
1025 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1026 return value_of_internalvar (get_type_arch (type),
1027 VALUE_INTERNALVAR (toval));
1028
1029 case lval_internalvar_component:
1030 {
1031 int offset = value_offset (toval);
1032
1033 /* Are we dealing with a bitfield?
1034
1035 It is important to mention that `value_parent (toval)' is
1036 non-NULL iff `value_bitsize (toval)' is non-zero. */
1037 if (value_bitsize (toval))
1038 {
1039 /* VALUE_INTERNALVAR below refers to the parent value, while
1040 the offset is relative to this parent value. */
1041 gdb_assert (value_parent (value_parent (toval)) == NULL);
1042 offset += value_offset (value_parent (toval));
1043 }
1044
1045 set_internalvar_component (VALUE_INTERNALVAR (toval),
1046 offset,
1047 value_bitpos (toval),
1048 value_bitsize (toval),
1049 fromval);
1050 }
1051 break;
1052
1053 case lval_memory:
1054 {
1055 const gdb_byte *dest_buffer;
1056 CORE_ADDR changed_addr;
1057 int changed_len;
1058 gdb_byte buffer[sizeof (LONGEST)];
1059
1060 if (value_bitsize (toval))
1061 {
1062 struct value *parent = value_parent (toval);
1063
1064 changed_addr = value_address (parent) + value_offset (toval);
1065 changed_len = (value_bitpos (toval)
1066 + value_bitsize (toval)
1067 + HOST_CHAR_BIT - 1)
1068 / HOST_CHAR_BIT;
1069
1070 /* If we can read-modify-write exactly the size of the
1071 containing type (e.g. short or int) then do so. This
1072 is safer for volatile bitfields mapped to hardware
1073 registers. */
1074 if (changed_len < TYPE_LENGTH (type)
1075 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1076 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1077 changed_len = TYPE_LENGTH (type);
1078
1079 if (changed_len > (int) sizeof (LONGEST))
1080 error (_("Can't handle bitfields which "
1081 "don't fit in a %d bit word."),
1082 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1083
1084 read_memory (changed_addr, buffer, changed_len);
1085 modify_field (type, buffer, value_as_long (fromval),
1086 value_bitpos (toval), value_bitsize (toval));
1087 dest_buffer = buffer;
1088 }
1089 else
1090 {
1091 changed_addr = value_address (toval);
1092 changed_len = TYPE_LENGTH (type);
1093 dest_buffer = value_contents (fromval);
1094 }
1095
1096 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1097 }
1098 break;
1099
1100 case lval_register:
1101 {
1102 struct frame_info *frame;
1103 struct gdbarch *gdbarch;
1104 int value_reg;
1105
1106 /* Figure out which frame this is in currently. */
1107 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1108 value_reg = VALUE_REGNUM (toval);
1109
1110 if (!frame)
1111 error (_("Value being assigned to is no longer active."));
1112
1113 gdbarch = get_frame_arch (frame);
1114
1115 if (value_bitsize (toval))
1116 {
1117 struct value *parent = value_parent (toval);
1118 int offset = value_offset (parent) + value_offset (toval);
1119 int changed_len;
1120 gdb_byte buffer[sizeof (LONGEST)];
1121 int optim, unavail;
1122
1123 changed_len = (value_bitpos (toval)
1124 + value_bitsize (toval)
1125 + HOST_CHAR_BIT - 1)
1126 / HOST_CHAR_BIT;
1127
1128 if (changed_len > (int) sizeof (LONGEST))
1129 error (_("Can't handle bitfields which "
1130 "don't fit in a %d bit word."),
1131 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1132
1133 if (!get_frame_register_bytes (frame, value_reg, offset,
1134 changed_len, buffer,
1135 &optim, &unavail))
1136 {
1137 if (optim)
1138 throw_error (OPTIMIZED_OUT_ERROR,
1139 _("value has been optimized out"));
1140 if (unavail)
1141 throw_error (NOT_AVAILABLE_ERROR,
1142 _("value is not available"));
1143 }
1144
1145 modify_field (type, buffer, value_as_long (fromval),
1146 value_bitpos (toval), value_bitsize (toval));
1147
1148 put_frame_register_bytes (frame, value_reg, offset,
1149 changed_len, buffer);
1150 }
1151 else
1152 {
1153 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval),
1154 type))
1155 {
1156 /* If TOVAL is a special machine register requiring
1157 conversion of program values to a special raw
1158 format. */
1159 gdbarch_value_to_register (gdbarch, frame,
1160 VALUE_REGNUM (toval), type,
1161 value_contents (fromval));
1162 }
1163 else
1164 {
1165 put_frame_register_bytes (frame, value_reg,
1166 value_offset (toval),
1167 TYPE_LENGTH (type),
1168 value_contents (fromval));
1169 }
1170 }
1171
1172 observer_notify_register_changed (frame, value_reg);
1173 break;
1174 }
1175
1176 case lval_computed:
1177 {
1178 const struct lval_funcs *funcs = value_computed_funcs (toval);
1179
1180 if (funcs->write != NULL)
1181 {
1182 funcs->write (toval, fromval);
1183 break;
1184 }
1185 }
1186 /* Fall through. */
1187
1188 default:
1189 error (_("Left operand of assignment is not an lvalue."));
1190 }
1191
1192 /* Assigning to the stack pointer, frame pointer, and other
1193 (architecture and calling convention specific) registers may
1194 cause the frame cache and regcache to be out of date. Assigning to memory
1195 also can. We just do this on all assignments to registers or
1196 memory, for simplicity's sake; I doubt the slowdown matters. */
1197 switch (VALUE_LVAL (toval))
1198 {
1199 case lval_memory:
1200 case lval_register:
1201 case lval_computed:
1202
1203 observer_notify_target_changed (&current_target);
1204
1205 /* Having destroyed the frame cache, restore the selected
1206 frame. */
1207
1208 /* FIXME: cagney/2002-11-02: There has to be a better way of
1209 doing this. Instead of constantly saving/restoring the
1210 frame. Why not create a get_selected_frame() function that,
1211 having saved the selected frame's ID can automatically
1212 re-find the previously selected frame automatically. */
1213
1214 {
1215 struct frame_info *fi = frame_find_by_id (old_frame);
1216
1217 if (fi != NULL)
1218 select_frame (fi);
1219 }
1220
1221 break;
1222 default:
1223 break;
1224 }
1225
1226 /* If the field does not entirely fill a LONGEST, then zero the sign
1227 bits. If the field is signed, and is negative, then sign
1228 extend. */
1229 if ((value_bitsize (toval) > 0)
1230 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1231 {
1232 LONGEST fieldval = value_as_long (fromval);
1233 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1234
1235 fieldval &= valmask;
1236 if (!TYPE_UNSIGNED (type)
1237 && (fieldval & (valmask ^ (valmask >> 1))))
1238 fieldval |= ~valmask;
1239
1240 fromval = value_from_longest (type, fieldval);
1241 }
1242
1243 /* The return value is a copy of TOVAL so it shares its location
1244 information, but its contents are updated from FROMVAL. This
1245 implies the returned value is not lazy, even if TOVAL was. */
1246 val = value_copy (toval);
1247 set_value_lazy (val, 0);
1248 memcpy (value_contents_raw (val), value_contents (fromval),
1249 TYPE_LENGTH (type));
1250
1251 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1252 in the case of pointer types. For object types, the enclosing type
1253 and embedded offset must *not* be copied: the target object refered
1254 to by TOVAL retains its original dynamic type after assignment. */
1255 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1256 {
1257 set_value_enclosing_type (val, value_enclosing_type (fromval));
1258 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1259 }
1260
1261 return val;
1262 }
1263
1264 /* Extend a value VAL to COUNT repetitions of its type. */
1265
1266 struct value *
1267 value_repeat (struct value *arg1, int count)
1268 {
1269 struct value *val;
1270
1271 if (VALUE_LVAL (arg1) != lval_memory)
1272 error (_("Only values in memory can be extended with '@'."));
1273 if (count < 1)
1274 error (_("Invalid number %d of repetitions."), count);
1275
1276 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1277
1278 VALUE_LVAL (val) = lval_memory;
1279 set_value_address (val, value_address (arg1));
1280
1281 read_value_memory (val, 0, value_stack (val), value_address (val),
1282 value_contents_all_raw (val),
1283 TYPE_LENGTH (value_enclosing_type (val)));
1284
1285 return val;
1286 }
1287
1288 struct value *
1289 value_of_variable (struct symbol *var, const struct block *b)
1290 {
1291 struct frame_info *frame;
1292
1293 if (!symbol_read_needs_frame (var))
1294 frame = NULL;
1295 else if (!b)
1296 frame = get_selected_frame (_("No frame selected."));
1297 else
1298 {
1299 frame = block_innermost_frame (b);
1300 if (!frame)
1301 {
1302 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1303 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1304 error (_("No frame is currently executing in block %s."),
1305 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1306 else
1307 error (_("No frame is currently executing in specified block"));
1308 }
1309 }
1310
1311 return read_var_value (var, frame);
1312 }
1313
1314 struct value *
1315 address_of_variable (struct symbol *var, const struct block *b)
1316 {
1317 struct type *type = SYMBOL_TYPE (var);
1318 struct value *val;
1319
1320 /* Evaluate it first; if the result is a memory address, we're fine.
1321 Lazy evaluation pays off here. */
1322
1323 val = value_of_variable (var, b);
1324 type = value_type (val);
1325
1326 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1327 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1328 {
1329 CORE_ADDR addr = value_address (val);
1330
1331 return value_from_pointer (lookup_pointer_type (type), addr);
1332 }
1333
1334 /* Not a memory address; check what the problem was. */
1335 switch (VALUE_LVAL (val))
1336 {
1337 case lval_register:
1338 {
1339 struct frame_info *frame;
1340 const char *regname;
1341
1342 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1343 gdb_assert (frame);
1344
1345 regname = gdbarch_register_name (get_frame_arch (frame),
1346 VALUE_REGNUM (val));
1347 gdb_assert (regname && *regname);
1348
1349 error (_("Address requested for identifier "
1350 "\"%s\" which is in register $%s"),
1351 SYMBOL_PRINT_NAME (var), regname);
1352 break;
1353 }
1354
1355 default:
1356 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1357 SYMBOL_PRINT_NAME (var));
1358 break;
1359 }
1360
1361 return val;
1362 }
1363
1364 /* Return one if VAL does not live in target memory, but should in order
1365 to operate on it. Otherwise return zero. */
1366
1367 int
1368 value_must_coerce_to_target (struct value *val)
1369 {
1370 struct type *valtype;
1371
1372 /* The only lval kinds which do not live in target memory. */
1373 if (VALUE_LVAL (val) != not_lval
1374 && VALUE_LVAL (val) != lval_internalvar
1375 && VALUE_LVAL (val) != lval_xcallable)
1376 return 0;
1377
1378 valtype = check_typedef (value_type (val));
1379
1380 switch (TYPE_CODE (valtype))
1381 {
1382 case TYPE_CODE_ARRAY:
1383 return TYPE_VECTOR (valtype) ? 0 : 1;
1384 case TYPE_CODE_STRING:
1385 return 1;
1386 default:
1387 return 0;
1388 }
1389 }
1390
1391 /* Make sure that VAL lives in target memory if it's supposed to. For
1392 instance, strings are constructed as character arrays in GDB's
1393 storage, and this function copies them to the target. */
1394
1395 struct value *
1396 value_coerce_to_target (struct value *val)
1397 {
1398 LONGEST length;
1399 CORE_ADDR addr;
1400
1401 if (!value_must_coerce_to_target (val))
1402 return val;
1403
1404 length = TYPE_LENGTH (check_typedef (value_type (val)));
1405 addr = allocate_space_in_inferior (length);
1406 write_memory (addr, value_contents (val), length);
1407 return value_at_lazy (value_type (val), addr);
1408 }
1409
1410 /* Given a value which is an array, return a value which is a pointer
1411 to its first element, regardless of whether or not the array has a
1412 nonzero lower bound.
1413
1414 FIXME: A previous comment here indicated that this routine should
1415 be substracting the array's lower bound. It's not clear to me that
1416 this is correct. Given an array subscripting operation, it would
1417 certainly work to do the adjustment here, essentially computing:
1418
1419 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1420
1421 However I believe a more appropriate and logical place to account
1422 for the lower bound is to do so in value_subscript, essentially
1423 computing:
1424
1425 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1426
1427 As further evidence consider what would happen with operations
1428 other than array subscripting, where the caller would get back a
1429 value that had an address somewhere before the actual first element
1430 of the array, and the information about the lower bound would be
1431 lost because of the coercion to pointer type. */
1432
1433 struct value *
1434 value_coerce_array (struct value *arg1)
1435 {
1436 struct type *type = check_typedef (value_type (arg1));
1437
1438 /* If the user tries to do something requiring a pointer with an
1439 array that has not yet been pushed to the target, then this would
1440 be a good time to do so. */
1441 arg1 = value_coerce_to_target (arg1);
1442
1443 if (VALUE_LVAL (arg1) != lval_memory)
1444 error (_("Attempt to take address of value not located in memory."));
1445
1446 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1447 value_address (arg1));
1448 }
1449
1450 /* Given a value which is a function, return a value which is a pointer
1451 to it. */
1452
1453 struct value *
1454 value_coerce_function (struct value *arg1)
1455 {
1456 struct value *retval;
1457
1458 if (VALUE_LVAL (arg1) != lval_memory)
1459 error (_("Attempt to take address of value not located in memory."));
1460
1461 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1462 value_address (arg1));
1463 return retval;
1464 }
1465
1466 /* Return a pointer value for the object for which ARG1 is the
1467 contents. */
1468
1469 struct value *
1470 value_addr (struct value *arg1)
1471 {
1472 struct value *arg2;
1473 struct type *type = check_typedef (value_type (arg1));
1474
1475 if (TYPE_CODE (type) == TYPE_CODE_REF)
1476 {
1477 /* Copy the value, but change the type from (T&) to (T*). We
1478 keep the same location information, which is efficient, and
1479 allows &(&X) to get the location containing the reference. */
1480 arg2 = value_copy (arg1);
1481 deprecated_set_value_type (arg2,
1482 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1483 return arg2;
1484 }
1485 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1486 return value_coerce_function (arg1);
1487
1488 /* If this is an array that has not yet been pushed to the target,
1489 then this would be a good time to force it to memory. */
1490 arg1 = value_coerce_to_target (arg1);
1491
1492 if (VALUE_LVAL (arg1) != lval_memory)
1493 error (_("Attempt to take address of value not located in memory."));
1494
1495 /* Get target memory address. */
1496 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1497 (value_address (arg1)
1498 + value_embedded_offset (arg1)));
1499
1500 /* This may be a pointer to a base subobject; so remember the
1501 full derived object's type ... */
1502 set_value_enclosing_type (arg2,
1503 lookup_pointer_type (value_enclosing_type (arg1)));
1504 /* ... and also the relative position of the subobject in the full
1505 object. */
1506 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1507 return arg2;
1508 }
1509
1510 /* Return a reference value for the object for which ARG1 is the
1511 contents. */
1512
1513 struct value *
1514 value_ref (struct value *arg1)
1515 {
1516 struct value *arg2;
1517 struct type *type = check_typedef (value_type (arg1));
1518
1519 if (TYPE_CODE (type) == TYPE_CODE_REF)
1520 return arg1;
1521
1522 arg2 = value_addr (arg1);
1523 deprecated_set_value_type (arg2, lookup_reference_type (type));
1524 return arg2;
1525 }
1526
1527 /* Given a value of a pointer type, apply the C unary * operator to
1528 it. */
1529
1530 struct value *
1531 value_ind (struct value *arg1)
1532 {
1533 struct type *base_type;
1534 struct value *arg2;
1535
1536 arg1 = coerce_array (arg1);
1537
1538 base_type = check_typedef (value_type (arg1));
1539
1540 if (VALUE_LVAL (arg1) == lval_computed)
1541 {
1542 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1543
1544 if (funcs->indirect)
1545 {
1546 struct value *result = funcs->indirect (arg1);
1547
1548 if (result)
1549 return result;
1550 }
1551 }
1552
1553 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1554 {
1555 struct type *enc_type;
1556
1557 /* We may be pointing to something embedded in a larger object.
1558 Get the real type of the enclosing object. */
1559 enc_type = check_typedef (value_enclosing_type (arg1));
1560 enc_type = TYPE_TARGET_TYPE (enc_type);
1561
1562 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1563 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1564 /* For functions, go through find_function_addr, which knows
1565 how to handle function descriptors. */
1566 arg2 = value_at_lazy (enc_type,
1567 find_function_addr (arg1, NULL));
1568 else
1569 /* Retrieve the enclosing object pointed to. */
1570 arg2 = value_at_lazy (enc_type,
1571 (value_as_address (arg1)
1572 - value_pointed_to_offset (arg1)));
1573
1574 enc_type = value_type (arg2);
1575 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1576 }
1577
1578 error (_("Attempt to take contents of a non-pointer value."));
1579 return 0; /* For lint -- never reached. */
1580 }
1581 \f
1582 /* Create a value for an array by allocating space in GDB, copying the
1583 data into that space, and then setting up an array value.
1584
1585 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1586 is populated from the values passed in ELEMVEC.
1587
1588 The element type of the array is inherited from the type of the
1589 first element, and all elements must have the same size (though we
1590 don't currently enforce any restriction on their types). */
1591
1592 struct value *
1593 value_array (int lowbound, int highbound, struct value **elemvec)
1594 {
1595 int nelem;
1596 int idx;
1597 unsigned int typelength;
1598 struct value *val;
1599 struct type *arraytype;
1600
1601 /* Validate that the bounds are reasonable and that each of the
1602 elements have the same size. */
1603
1604 nelem = highbound - lowbound + 1;
1605 if (nelem <= 0)
1606 {
1607 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1608 }
1609 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1610 for (idx = 1; idx < nelem; idx++)
1611 {
1612 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1613 {
1614 error (_("array elements must all be the same size"));
1615 }
1616 }
1617
1618 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1619 lowbound, highbound);
1620
1621 if (!current_language->c_style_arrays)
1622 {
1623 val = allocate_value (arraytype);
1624 for (idx = 0; idx < nelem; idx++)
1625 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1626 typelength);
1627 return val;
1628 }
1629
1630 /* Allocate space to store the array, and then initialize it by
1631 copying in each element. */
1632
1633 val = allocate_value (arraytype);
1634 for (idx = 0; idx < nelem; idx++)
1635 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1636 return val;
1637 }
1638
1639 struct value *
1640 value_cstring (char *ptr, ssize_t len, struct type *char_type)
1641 {
1642 struct value *val;
1643 int lowbound = current_language->string_lower_bound;
1644 ssize_t highbound = len / TYPE_LENGTH (char_type);
1645 struct type *stringtype
1646 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1647
1648 val = allocate_value (stringtype);
1649 memcpy (value_contents_raw (val), ptr, len);
1650 return val;
1651 }
1652
1653 /* Create a value for a string constant by allocating space in the
1654 inferior, copying the data into that space, and returning the
1655 address with type TYPE_CODE_STRING. PTR points to the string
1656 constant data; LEN is number of characters.
1657
1658 Note that string types are like array of char types with a lower
1659 bound of zero and an upper bound of LEN - 1. Also note that the
1660 string may contain embedded null bytes. */
1661
1662 struct value *
1663 value_string (char *ptr, ssize_t len, struct type *char_type)
1664 {
1665 struct value *val;
1666 int lowbound = current_language->string_lower_bound;
1667 ssize_t highbound = len / TYPE_LENGTH (char_type);
1668 struct type *stringtype
1669 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1670
1671 val = allocate_value (stringtype);
1672 memcpy (value_contents_raw (val), ptr, len);
1673 return val;
1674 }
1675
1676 \f
1677 /* See if we can pass arguments in T2 to a function which takes
1678 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1679 a NULL-terminated vector. If some arguments need coercion of some
1680 sort, then the coerced values are written into T2. Return value is
1681 0 if the arguments could be matched, or the position at which they
1682 differ if not.
1683
1684 STATICP is nonzero if the T1 argument list came from a static
1685 member function. T2 will still include the ``this'' pointer, but
1686 it will be skipped.
1687
1688 For non-static member functions, we ignore the first argument,
1689 which is the type of the instance variable. This is because we
1690 want to handle calls with objects from derived classes. This is
1691 not entirely correct: we should actually check to make sure that a
1692 requested operation is type secure, shouldn't we? FIXME. */
1693
1694 static int
1695 typecmp (int staticp, int varargs, int nargs,
1696 struct field t1[], struct value *t2[])
1697 {
1698 int i;
1699
1700 if (t2 == 0)
1701 internal_error (__FILE__, __LINE__,
1702 _("typecmp: no argument list"));
1703
1704 /* Skip ``this'' argument if applicable. T2 will always include
1705 THIS. */
1706 if (staticp)
1707 t2 ++;
1708
1709 for (i = 0;
1710 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1711 i++)
1712 {
1713 struct type *tt1, *tt2;
1714
1715 if (!t2[i])
1716 return i + 1;
1717
1718 tt1 = check_typedef (t1[i].type);
1719 tt2 = check_typedef (value_type (t2[i]));
1720
1721 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1722 /* We should be doing hairy argument matching, as below. */
1723 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1724 == TYPE_CODE (tt2)))
1725 {
1726 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1727 t2[i] = value_coerce_array (t2[i]);
1728 else
1729 t2[i] = value_ref (t2[i]);
1730 continue;
1731 }
1732
1733 /* djb - 20000715 - Until the new type structure is in the
1734 place, and we can attempt things like implicit conversions,
1735 we need to do this so you can take something like a map<const
1736 char *>, and properly access map["hello"], because the
1737 argument to [] will be a reference to a pointer to a char,
1738 and the argument will be a pointer to a char. */
1739 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1740 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1741 {
1742 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1743 }
1744 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1745 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1746 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1747 {
1748 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1749 }
1750 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1751 continue;
1752 /* Array to pointer is a `trivial conversion' according to the
1753 ARM. */
1754
1755 /* We should be doing much hairier argument matching (see
1756 section 13.2 of the ARM), but as a quick kludge, just check
1757 for the same type code. */
1758 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1759 return i + 1;
1760 }
1761 if (varargs || t2[i] == NULL)
1762 return 0;
1763 return i + 1;
1764 }
1765
1766 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1767 and *LAST_BOFFSET, and possibly throws an exception if the field
1768 search has yielded ambiguous results. */
1769
1770 static void
1771 update_search_result (struct value **result_ptr, struct value *v,
1772 int *last_boffset, int boffset,
1773 const char *name, struct type *type)
1774 {
1775 if (v != NULL)
1776 {
1777 if (*result_ptr != NULL
1778 /* The result is not ambiguous if all the classes that are
1779 found occupy the same space. */
1780 && *last_boffset != boffset)
1781 error (_("base class '%s' is ambiguous in type '%s'"),
1782 name, TYPE_SAFE_NAME (type));
1783 *result_ptr = v;
1784 *last_boffset = boffset;
1785 }
1786 }
1787
1788 /* A helper for search_struct_field. This does all the work; most
1789 arguments are as passed to search_struct_field. The result is
1790 stored in *RESULT_PTR, which must be initialized to NULL.
1791 OUTERMOST_TYPE is the type of the initial type passed to
1792 search_struct_field; this is used for error reporting when the
1793 lookup is ambiguous. */
1794
1795 static void
1796 do_search_struct_field (const char *name, struct value *arg1, int offset,
1797 struct type *type, int looking_for_baseclass,
1798 struct value **result_ptr,
1799 int *last_boffset,
1800 struct type *outermost_type)
1801 {
1802 int i;
1803 int nbases;
1804
1805 type = check_typedef (type);
1806 nbases = TYPE_N_BASECLASSES (type);
1807
1808 if (!looking_for_baseclass)
1809 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1810 {
1811 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1812
1813 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1814 {
1815 struct value *v;
1816
1817 if (field_is_static (&TYPE_FIELD (type, i)))
1818 v = value_static_field (type, i);
1819 else
1820 v = value_primitive_field (arg1, offset, i, type);
1821 *result_ptr = v;
1822 return;
1823 }
1824
1825 if (t_field_name
1826 && t_field_name[0] == '\0')
1827 {
1828 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1829
1830 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1831 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1832 {
1833 /* Look for a match through the fields of an anonymous
1834 union, or anonymous struct. C++ provides anonymous
1835 unions.
1836
1837 In the GNU Chill (now deleted from GDB)
1838 implementation of variant record types, each
1839 <alternative field> has an (anonymous) union type,
1840 each member of the union represents a <variant
1841 alternative>. Each <variant alternative> is
1842 represented as a struct, with a member for each
1843 <variant field>. */
1844
1845 struct value *v = NULL;
1846 int new_offset = offset;
1847
1848 /* This is pretty gross. In G++, the offset in an
1849 anonymous union is relative to the beginning of the
1850 enclosing struct. In the GNU Chill (now deleted
1851 from GDB) implementation of variant records, the
1852 bitpos is zero in an anonymous union field, so we
1853 have to add the offset of the union here. */
1854 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1855 || (TYPE_NFIELDS (field_type) > 0
1856 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1857 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1858
1859 do_search_struct_field (name, arg1, new_offset,
1860 field_type,
1861 looking_for_baseclass, &v,
1862 last_boffset,
1863 outermost_type);
1864 if (v)
1865 {
1866 *result_ptr = v;
1867 return;
1868 }
1869 }
1870 }
1871 }
1872
1873 for (i = 0; i < nbases; i++)
1874 {
1875 struct value *v = NULL;
1876 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1877 /* If we are looking for baseclasses, this is what we get when
1878 we hit them. But it could happen that the base part's member
1879 name is not yet filled in. */
1880 int found_baseclass = (looking_for_baseclass
1881 && TYPE_BASECLASS_NAME (type, i) != NULL
1882 && (strcmp_iw (name,
1883 TYPE_BASECLASS_NAME (type,
1884 i)) == 0));
1885 int boffset = value_embedded_offset (arg1) + offset;
1886
1887 if (BASETYPE_VIA_VIRTUAL (type, i))
1888 {
1889 struct value *v2;
1890
1891 boffset = baseclass_offset (type, i,
1892 value_contents_for_printing (arg1),
1893 value_embedded_offset (arg1) + offset,
1894 value_address (arg1),
1895 arg1);
1896
1897 /* The virtual base class pointer might have been clobbered
1898 by the user program. Make sure that it still points to a
1899 valid memory location. */
1900
1901 boffset += value_embedded_offset (arg1) + offset;
1902 if (boffset < 0
1903 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1904 {
1905 CORE_ADDR base_addr;
1906
1907 base_addr = value_address (arg1) + boffset;
1908 v2 = value_at_lazy (basetype, base_addr);
1909 if (target_read_memory (base_addr,
1910 value_contents_raw (v2),
1911 TYPE_LENGTH (value_type (v2))) != 0)
1912 error (_("virtual baseclass botch"));
1913 }
1914 else
1915 {
1916 v2 = value_copy (arg1);
1917 deprecated_set_value_type (v2, basetype);
1918 set_value_embedded_offset (v2, boffset);
1919 }
1920
1921 if (found_baseclass)
1922 v = v2;
1923 else
1924 {
1925 do_search_struct_field (name, v2, 0,
1926 TYPE_BASECLASS (type, i),
1927 looking_for_baseclass,
1928 result_ptr, last_boffset,
1929 outermost_type);
1930 }
1931 }
1932 else if (found_baseclass)
1933 v = value_primitive_field (arg1, offset, i, type);
1934 else
1935 {
1936 do_search_struct_field (name, arg1,
1937 offset + TYPE_BASECLASS_BITPOS (type,
1938 i) / 8,
1939 basetype, looking_for_baseclass,
1940 result_ptr, last_boffset,
1941 outermost_type);
1942 }
1943
1944 update_search_result (result_ptr, v, last_boffset,
1945 boffset, name, outermost_type);
1946 }
1947 }
1948
1949 /* Helper function used by value_struct_elt to recurse through
1950 baseclasses. Look for a field NAME in ARG1. Search in it assuming
1951 it has (class) type TYPE. If found, return value, else return NULL.
1952
1953 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1954 fields, look for a baseclass named NAME. */
1955
1956 static struct value *
1957 search_struct_field (const char *name, struct value *arg1,
1958 struct type *type, int looking_for_baseclass)
1959 {
1960 struct value *result = NULL;
1961 int boffset = 0;
1962
1963 do_search_struct_field (name, arg1, 0, type, looking_for_baseclass,
1964 &result, &boffset, type);
1965 return result;
1966 }
1967
1968 /* Helper function used by value_struct_elt to recurse through
1969 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1970 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1971 TYPE.
1972
1973 If found, return value, else if name matched and args not return
1974 (value) -1, else return NULL. */
1975
1976 static struct value *
1977 search_struct_method (const char *name, struct value **arg1p,
1978 struct value **args, int offset,
1979 int *static_memfuncp, struct type *type)
1980 {
1981 int i;
1982 struct value *v;
1983 int name_matched = 0;
1984 char dem_opname[64];
1985
1986 type = check_typedef (type);
1987 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1988 {
1989 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1990
1991 /* FIXME! May need to check for ARM demangling here. */
1992 if (startswith (t_field_name, "__") ||
1993 startswith (t_field_name, "op") ||
1994 startswith (t_field_name, "type"))
1995 {
1996 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
1997 t_field_name = dem_opname;
1998 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
1999 t_field_name = dem_opname;
2000 }
2001 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2002 {
2003 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2004 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2005
2006 name_matched = 1;
2007 check_stub_method_group (type, i);
2008 if (j > 0 && args == 0)
2009 error (_("cannot resolve overloaded method "
2010 "`%s': no arguments supplied"), name);
2011 else if (j == 0 && args == 0)
2012 {
2013 v = value_fn_field (arg1p, f, j, type, offset);
2014 if (v != NULL)
2015 return v;
2016 }
2017 else
2018 while (j >= 0)
2019 {
2020 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2021 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2022 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2023 TYPE_FN_FIELD_ARGS (f, j), args))
2024 {
2025 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2026 return value_virtual_fn_field (arg1p, f, j,
2027 type, offset);
2028 if (TYPE_FN_FIELD_STATIC_P (f, j)
2029 && static_memfuncp)
2030 *static_memfuncp = 1;
2031 v = value_fn_field (arg1p, f, j, type, offset);
2032 if (v != NULL)
2033 return v;
2034 }
2035 j--;
2036 }
2037 }
2038 }
2039
2040 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2041 {
2042 int base_offset;
2043 int this_offset;
2044
2045 if (BASETYPE_VIA_VIRTUAL (type, i))
2046 {
2047 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2048 struct value *base_val;
2049 const gdb_byte *base_valaddr;
2050
2051 /* The virtual base class pointer might have been
2052 clobbered by the user program. Make sure that it
2053 still points to a valid memory location. */
2054
2055 if (offset < 0 || offset >= TYPE_LENGTH (type))
2056 {
2057 gdb_byte *tmp;
2058 struct cleanup *back_to;
2059 CORE_ADDR address;
2060
2061 tmp = xmalloc (TYPE_LENGTH (baseclass));
2062 back_to = make_cleanup (xfree, tmp);
2063 address = value_address (*arg1p);
2064
2065 if (target_read_memory (address + offset,
2066 tmp, TYPE_LENGTH (baseclass)) != 0)
2067 error (_("virtual baseclass botch"));
2068
2069 base_val = value_from_contents_and_address (baseclass,
2070 tmp,
2071 address + offset);
2072 base_valaddr = value_contents_for_printing (base_val);
2073 this_offset = 0;
2074 do_cleanups (back_to);
2075 }
2076 else
2077 {
2078 base_val = *arg1p;
2079 base_valaddr = value_contents_for_printing (*arg1p);
2080 this_offset = offset;
2081 }
2082
2083 base_offset = baseclass_offset (type, i, base_valaddr,
2084 this_offset, value_address (base_val),
2085 base_val);
2086 }
2087 else
2088 {
2089 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2090 }
2091 v = search_struct_method (name, arg1p, args, base_offset + offset,
2092 static_memfuncp, TYPE_BASECLASS (type, i));
2093 if (v == (struct value *) - 1)
2094 {
2095 name_matched = 1;
2096 }
2097 else if (v)
2098 {
2099 /* FIXME-bothner: Why is this commented out? Why is it here? */
2100 /* *arg1p = arg1_tmp; */
2101 return v;
2102 }
2103 }
2104 if (name_matched)
2105 return (struct value *) - 1;
2106 else
2107 return NULL;
2108 }
2109
2110 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2111 extract the component named NAME from the ultimate target
2112 structure/union and return it as a value with its appropriate type.
2113 ERR is used in the error message if *ARGP's type is wrong.
2114
2115 C++: ARGS is a list of argument types to aid in the selection of
2116 an appropriate method. Also, handle derived types.
2117
2118 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2119 where the truthvalue of whether the function that was resolved was
2120 a static member function or not is stored.
2121
2122 ERR is an error message to be printed in case the field is not
2123 found. */
2124
2125 struct value *
2126 value_struct_elt (struct value **argp, struct value **args,
2127 const char *name, int *static_memfuncp, const char *err)
2128 {
2129 struct type *t;
2130 struct value *v;
2131
2132 *argp = coerce_array (*argp);
2133
2134 t = check_typedef (value_type (*argp));
2135
2136 /* Follow pointers until we get to a non-pointer. */
2137
2138 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2139 {
2140 *argp = value_ind (*argp);
2141 /* Don't coerce fn pointer to fn and then back again! */
2142 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2143 *argp = coerce_array (*argp);
2144 t = check_typedef (value_type (*argp));
2145 }
2146
2147 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2148 && TYPE_CODE (t) != TYPE_CODE_UNION)
2149 error (_("Attempt to extract a component of a value that is not a %s."),
2150 err);
2151
2152 /* Assume it's not, unless we see that it is. */
2153 if (static_memfuncp)
2154 *static_memfuncp = 0;
2155
2156 if (!args)
2157 {
2158 /* if there are no arguments ...do this... */
2159
2160 /* Try as a field first, because if we succeed, there is less
2161 work to be done. */
2162 v = search_struct_field (name, *argp, t, 0);
2163 if (v)
2164 return v;
2165
2166 /* C++: If it was not found as a data field, then try to
2167 return it as a pointer to a method. */
2168 v = search_struct_method (name, argp, args, 0,
2169 static_memfuncp, t);
2170
2171 if (v == (struct value *) - 1)
2172 error (_("Cannot take address of method %s."), name);
2173 else if (v == 0)
2174 {
2175 if (TYPE_NFN_FIELDS (t))
2176 error (_("There is no member or method named %s."), name);
2177 else
2178 error (_("There is no member named %s."), name);
2179 }
2180 return v;
2181 }
2182
2183 v = search_struct_method (name, argp, args, 0,
2184 static_memfuncp, t);
2185
2186 if (v == (struct value *) - 1)
2187 {
2188 error (_("One of the arguments you tried to pass to %s could not "
2189 "be converted to what the function wants."), name);
2190 }
2191 else if (v == 0)
2192 {
2193 /* See if user tried to invoke data as function. If so, hand it
2194 back. If it's not callable (i.e., a pointer to function),
2195 gdb should give an error. */
2196 v = search_struct_field (name, *argp, t, 0);
2197 /* If we found an ordinary field, then it is not a method call.
2198 So, treat it as if it were a static member function. */
2199 if (v && static_memfuncp)
2200 *static_memfuncp = 1;
2201 }
2202
2203 if (!v)
2204 throw_error (NOT_FOUND_ERROR,
2205 _("Structure has no component named %s."), name);
2206 return v;
2207 }
2208
2209 /* Given *ARGP, a value of type structure or union, or a pointer/reference
2210 to a structure or union, extract and return its component (field) of
2211 type FTYPE at the specified BITPOS.
2212 Throw an exception on error. */
2213
2214 struct value *
2215 value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
2216 const char *err)
2217 {
2218 struct type *t;
2219 struct value *v;
2220 int i;
2221 int nbases;
2222
2223 *argp = coerce_array (*argp);
2224
2225 t = check_typedef (value_type (*argp));
2226
2227 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2228 {
2229 *argp = value_ind (*argp);
2230 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2231 *argp = coerce_array (*argp);
2232 t = check_typedef (value_type (*argp));
2233 }
2234
2235 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2236 && TYPE_CODE (t) != TYPE_CODE_UNION)
2237 error (_("Attempt to extract a component of a value that is not a %s."),
2238 err);
2239
2240 for (i = TYPE_N_BASECLASSES (t); i < TYPE_NFIELDS (t); i++)
2241 {
2242 if (!field_is_static (&TYPE_FIELD (t, i))
2243 && bitpos == TYPE_FIELD_BITPOS (t, i)
2244 && types_equal (ftype, TYPE_FIELD_TYPE (t, i)))
2245 return value_primitive_field (*argp, 0, i, t);
2246 }
2247
2248 error (_("No field with matching bitpos and type."));
2249
2250 /* Never hit. */
2251 return NULL;
2252 }
2253
2254 /* Search through the methods of an object (and its bases) to find a
2255 specified method. Return the pointer to the fn_field list FN_LIST of
2256 overloaded instances defined in the source language. If available
2257 and matching, a vector of matching xmethods defined in extension
2258 languages are also returned in XM_WORKER_VEC
2259
2260 Helper function for value_find_oload_list.
2261 ARGP is a pointer to a pointer to a value (the object).
2262 METHOD is a string containing the method name.
2263 OFFSET is the offset within the value.
2264 TYPE is the assumed type of the object.
2265 FN_LIST is the pointer to matching overloaded instances defined in
2266 source language. Since this is a recursive function, *FN_LIST
2267 should be set to NULL when calling this function.
2268 NUM_FNS is the number of overloaded instances. *NUM_FNS should be set to
2269 0 when calling this function.
2270 XM_WORKER_VEC is the vector of matching xmethod workers. *XM_WORKER_VEC
2271 should also be set to NULL when calling this function.
2272 BASETYPE is set to the actual type of the subobject where the
2273 method is found.
2274 BOFFSET is the offset of the base subobject where the method is found. */
2275
2276 static void
2277 find_method_list (struct value **argp, const char *method,
2278 int offset, struct type *type,
2279 struct fn_field **fn_list, int *num_fns,
2280 VEC (xmethod_worker_ptr) **xm_worker_vec,
2281 struct type **basetype, int *boffset)
2282 {
2283 int i;
2284 struct fn_field *f = NULL;
2285 VEC (xmethod_worker_ptr) *worker_vec = NULL, *new_vec = NULL;
2286
2287 gdb_assert (fn_list != NULL && xm_worker_vec != NULL);
2288 type = check_typedef (type);
2289
2290 /* First check in object itself.
2291 This function is called recursively to search through base classes.
2292 If there is a source method match found at some stage, then we need not
2293 look for source methods in consequent recursive calls. */
2294 if ((*fn_list) == NULL)
2295 {
2296 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2297 {
2298 /* pai: FIXME What about operators and type conversions? */
2299 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2300
2301 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2302 {
2303 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2304 f = TYPE_FN_FIELDLIST1 (type, i);
2305 *fn_list = f;
2306
2307 *num_fns = len;
2308 *basetype = type;
2309 *boffset = offset;
2310
2311 /* Resolve any stub methods. */
2312 check_stub_method_group (type, i);
2313
2314 break;
2315 }
2316 }
2317 }
2318
2319 /* Unlike source methods, xmethods can be accumulated over successive
2320 recursive calls. In other words, an xmethod named 'm' in a class
2321 will not hide an xmethod named 'm' in its base class(es). We want
2322 it to be this way because xmethods are after all convenience functions
2323 and hence there is no point restricting them with something like method
2324 hiding. Moreover, if hiding is done for xmethods as well, then we will
2325 have to provide a mechanism to un-hide (like the 'using' construct). */
2326 worker_vec = get_matching_xmethod_workers (type, method);
2327 new_vec = VEC_merge (xmethod_worker_ptr, *xm_worker_vec, worker_vec);
2328
2329 VEC_free (xmethod_worker_ptr, *xm_worker_vec);
2330 VEC_free (xmethod_worker_ptr, worker_vec);
2331 *xm_worker_vec = new_vec;
2332
2333 /* If source methods are not found in current class, look for them in the
2334 base classes. We also have to go through the base classes to gather
2335 extension methods. */
2336 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2337 {
2338 int base_offset;
2339
2340 if (BASETYPE_VIA_VIRTUAL (type, i))
2341 {
2342 base_offset = baseclass_offset (type, i,
2343 value_contents_for_printing (*argp),
2344 value_offset (*argp) + offset,
2345 value_address (*argp), *argp);
2346 }
2347 else /* Non-virtual base, simply use bit position from debug
2348 info. */
2349 {
2350 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2351 }
2352
2353 find_method_list (argp, method, base_offset + offset,
2354 TYPE_BASECLASS (type, i), fn_list, num_fns,
2355 xm_worker_vec, basetype, boffset);
2356 }
2357 }
2358
2359 /* Return the list of overloaded methods of a specified name. The methods
2360 could be those GDB finds in the binary, or xmethod. Methods found in
2361 the binary are returned in FN_LIST, and xmethods are returned in
2362 XM_WORKER_VEC.
2363
2364 ARGP is a pointer to a pointer to a value (the object).
2365 METHOD is the method name.
2366 OFFSET is the offset within the value contents.
2367 FN_LIST is the pointer to matching overloaded instances defined in
2368 source language.
2369 NUM_FNS is the number of overloaded instances.
2370 XM_WORKER_VEC is the vector of matching xmethod workers defined in
2371 extension languages.
2372 BASETYPE is set to the type of the base subobject that defines the
2373 method.
2374 BOFFSET is the offset of the base subobject which defines the method. */
2375
2376 static void
2377 value_find_oload_method_list (struct value **argp, const char *method,
2378 int offset, struct fn_field **fn_list,
2379 int *num_fns,
2380 VEC (xmethod_worker_ptr) **xm_worker_vec,
2381 struct type **basetype, int *boffset)
2382 {
2383 struct type *t;
2384
2385 t = check_typedef (value_type (*argp));
2386
2387 /* Code snarfed from value_struct_elt. */
2388 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2389 {
2390 *argp = value_ind (*argp);
2391 /* Don't coerce fn pointer to fn and then back again! */
2392 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2393 *argp = coerce_array (*argp);
2394 t = check_typedef (value_type (*argp));
2395 }
2396
2397 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2398 && TYPE_CODE (t) != TYPE_CODE_UNION)
2399 error (_("Attempt to extract a component of a "
2400 "value that is not a struct or union"));
2401
2402 gdb_assert (fn_list != NULL && xm_worker_vec != NULL);
2403
2404 /* Clear the lists. */
2405 *fn_list = NULL;
2406 *num_fns = 0;
2407 *xm_worker_vec = NULL;
2408
2409 find_method_list (argp, method, 0, t, fn_list, num_fns, xm_worker_vec,
2410 basetype, boffset);
2411 }
2412
2413 /* Given an array of arguments (ARGS) (which includes an
2414 entry for "this" in the case of C++ methods), the number of
2415 arguments NARGS, the NAME of a function, and whether it's a method or
2416 not (METHOD), find the best function that matches on the argument types
2417 according to the overload resolution rules.
2418
2419 METHOD can be one of three values:
2420 NON_METHOD for non-member functions.
2421 METHOD: for member functions.
2422 BOTH: used for overload resolution of operators where the
2423 candidates are expected to be either member or non member
2424 functions. In this case the first argument ARGTYPES
2425 (representing 'this') is expected to be a reference to the
2426 target object, and will be dereferenced when attempting the
2427 non-member search.
2428
2429 In the case of class methods, the parameter OBJ is an object value
2430 in which to search for overloaded methods.
2431
2432 In the case of non-method functions, the parameter FSYM is a symbol
2433 corresponding to one of the overloaded functions.
2434
2435 Return value is an integer: 0 -> good match, 10 -> debugger applied
2436 non-standard coercions, 100 -> incompatible.
2437
2438 If a method is being searched for, VALP will hold the value.
2439 If a non-method is being searched for, SYMP will hold the symbol
2440 for it.
2441
2442 If a method is being searched for, and it is a static method,
2443 then STATICP will point to a non-zero value.
2444
2445 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2446 ADL overload candidates when performing overload resolution for a fully
2447 qualified name.
2448
2449 If NOSIDE is EVAL_AVOID_SIDE_EFFECTS, then OBJP's memory cannot be
2450 read while picking the best overload match (it may be all zeroes and thus
2451 not have a vtable pointer), in which case skip virtual function lookup.
2452 This is ok as typically EVAL_AVOID_SIDE_EFFECTS is only used to determine
2453 the result type.
2454
2455 Note: This function does *not* check the value of
2456 overload_resolution. Caller must check it to see whether overload
2457 resolution is permitted. */
2458
2459 int
2460 find_overload_match (struct value **args, int nargs,
2461 const char *name, enum oload_search_type method,
2462 struct value **objp, struct symbol *fsym,
2463 struct value **valp, struct symbol **symp,
2464 int *staticp, const int no_adl,
2465 const enum noside noside)
2466 {
2467 struct value *obj = (objp ? *objp : NULL);
2468 struct type *obj_type = obj ? value_type (obj) : NULL;
2469 /* Index of best overloaded function. */
2470 int func_oload_champ = -1;
2471 int method_oload_champ = -1;
2472 int src_method_oload_champ = -1;
2473 int ext_method_oload_champ = -1;
2474 int src_and_ext_equal = 0;
2475
2476 /* The measure for the current best match. */
2477 struct badness_vector *method_badness = NULL;
2478 struct badness_vector *func_badness = NULL;
2479 struct badness_vector *ext_method_badness = NULL;
2480 struct badness_vector *src_method_badness = NULL;
2481
2482 struct value *temp = obj;
2483 /* For methods, the list of overloaded methods. */
2484 struct fn_field *fns_ptr = NULL;
2485 /* For non-methods, the list of overloaded function symbols. */
2486 struct symbol **oload_syms = NULL;
2487 /* For xmethods, the VEC of xmethod workers. */
2488 VEC (xmethod_worker_ptr) *xm_worker_vec = NULL;
2489 /* Number of overloaded instances being considered. */
2490 int num_fns = 0;
2491 struct type *basetype = NULL;
2492 int boffset;
2493
2494 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2495
2496 const char *obj_type_name = NULL;
2497 const char *func_name = NULL;
2498 enum oload_classification match_quality;
2499 enum oload_classification method_match_quality = INCOMPATIBLE;
2500 enum oload_classification src_method_match_quality = INCOMPATIBLE;
2501 enum oload_classification ext_method_match_quality = INCOMPATIBLE;
2502 enum oload_classification func_match_quality = INCOMPATIBLE;
2503
2504 /* Get the list of overloaded methods or functions. */
2505 if (method == METHOD || method == BOTH)
2506 {
2507 gdb_assert (obj);
2508
2509 /* OBJ may be a pointer value rather than the object itself. */
2510 obj = coerce_ref (obj);
2511 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2512 obj = coerce_ref (value_ind (obj));
2513 obj_type_name = TYPE_NAME (value_type (obj));
2514
2515 /* First check whether this is a data member, e.g. a pointer to
2516 a function. */
2517 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2518 {
2519 *valp = search_struct_field (name, obj,
2520 check_typedef (value_type (obj)), 0);
2521 if (*valp)
2522 {
2523 *staticp = 1;
2524 do_cleanups (all_cleanups);
2525 return 0;
2526 }
2527 }
2528
2529 /* Retrieve the list of methods with the name NAME. */
2530 value_find_oload_method_list (&temp, name, 0, &fns_ptr, &num_fns,
2531 &xm_worker_vec, &basetype, &boffset);
2532 /* If this is a method only search, and no methods were found
2533 the search has faild. */
2534 if (method == METHOD && (!fns_ptr || !num_fns) && !xm_worker_vec)
2535 error (_("Couldn't find method %s%s%s"),
2536 obj_type_name,
2537 (obj_type_name && *obj_type_name) ? "::" : "",
2538 name);
2539 /* If we are dealing with stub method types, they should have
2540 been resolved by find_method_list via
2541 value_find_oload_method_list above. */
2542 if (fns_ptr)
2543 {
2544 gdb_assert (TYPE_SELF_TYPE (fns_ptr[0].type) != NULL);
2545
2546 src_method_oload_champ = find_oload_champ (args, nargs,
2547 num_fns, fns_ptr, NULL,
2548 NULL, &src_method_badness);
2549
2550 src_method_match_quality = classify_oload_match
2551 (src_method_badness, nargs,
2552 oload_method_static_p (fns_ptr, src_method_oload_champ));
2553
2554 make_cleanup (xfree, src_method_badness);
2555 }
2556
2557 if (VEC_length (xmethod_worker_ptr, xm_worker_vec) > 0)
2558 {
2559 ext_method_oload_champ = find_oload_champ (args, nargs,
2560 0, NULL, xm_worker_vec,
2561 NULL, &ext_method_badness);
2562 ext_method_match_quality = classify_oload_match (ext_method_badness,
2563 nargs, 0);
2564 make_cleanup (xfree, ext_method_badness);
2565 make_cleanup (free_xmethod_worker_vec, xm_worker_vec);
2566 }
2567
2568 if (src_method_oload_champ >= 0 && ext_method_oload_champ >= 0)
2569 {
2570 switch (compare_badness (ext_method_badness, src_method_badness))
2571 {
2572 case 0: /* Src method and xmethod are equally good. */
2573 src_and_ext_equal = 1;
2574 /* If src method and xmethod are equally good, then
2575 xmethod should be the winner. Hence, fall through to the
2576 case where a xmethod is better than the source
2577 method, except when the xmethod match quality is
2578 non-standard. */
2579 /* FALLTHROUGH */
2580 case 1: /* Src method and ext method are incompatible. */
2581 /* If ext method match is not standard, then let source method
2582 win. Otherwise, fallthrough to let xmethod win. */
2583 if (ext_method_match_quality != STANDARD)
2584 {
2585 method_oload_champ = src_method_oload_champ;
2586 method_badness = src_method_badness;
2587 ext_method_oload_champ = -1;
2588 method_match_quality = src_method_match_quality;
2589 break;
2590 }
2591 /* FALLTHROUGH */
2592 case 2: /* Ext method is champion. */
2593 method_oload_champ = ext_method_oload_champ;
2594 method_badness = ext_method_badness;
2595 src_method_oload_champ = -1;
2596 method_match_quality = ext_method_match_quality;
2597 break;
2598 case 3: /* Src method is champion. */
2599 method_oload_champ = src_method_oload_champ;
2600 method_badness = src_method_badness;
2601 ext_method_oload_champ = -1;
2602 method_match_quality = src_method_match_quality;
2603 break;
2604 default:
2605 gdb_assert_not_reached ("Unexpected overload comparison "
2606 "result");
2607 break;
2608 }
2609 }
2610 else if (src_method_oload_champ >= 0)
2611 {
2612 method_oload_champ = src_method_oload_champ;
2613 method_badness = src_method_badness;
2614 method_match_quality = src_method_match_quality;
2615 }
2616 else if (ext_method_oload_champ >= 0)
2617 {
2618 method_oload_champ = ext_method_oload_champ;
2619 method_badness = ext_method_badness;
2620 method_match_quality = ext_method_match_quality;
2621 }
2622 }
2623
2624 if (method == NON_METHOD || method == BOTH)
2625 {
2626 const char *qualified_name = NULL;
2627
2628 /* If the overload match is being search for both as a method
2629 and non member function, the first argument must now be
2630 dereferenced. */
2631 if (method == BOTH)
2632 args[0] = value_ind (args[0]);
2633
2634 if (fsym)
2635 {
2636 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2637
2638 /* If we have a function with a C++ name, try to extract just
2639 the function part. Do not try this for non-functions (e.g.
2640 function pointers). */
2641 if (qualified_name
2642 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2643 == TYPE_CODE_FUNC)
2644 {
2645 char *temp;
2646
2647 temp = cp_func_name (qualified_name);
2648
2649 /* If cp_func_name did not remove anything, the name of the
2650 symbol did not include scope or argument types - it was
2651 probably a C-style function. */
2652 if (temp)
2653 {
2654 make_cleanup (xfree, temp);
2655 if (strcmp (temp, qualified_name) == 0)
2656 func_name = NULL;
2657 else
2658 func_name = temp;
2659 }
2660 }
2661 }
2662 else
2663 {
2664 func_name = name;
2665 qualified_name = name;
2666 }
2667
2668 /* If there was no C++ name, this must be a C-style function or
2669 not a function at all. Just return the same symbol. Do the
2670 same if cp_func_name fails for some reason. */
2671 if (func_name == NULL)
2672 {
2673 *symp = fsym;
2674 do_cleanups (all_cleanups);
2675 return 0;
2676 }
2677
2678 func_oload_champ = find_oload_champ_namespace (args, nargs,
2679 func_name,
2680 qualified_name,
2681 &oload_syms,
2682 &func_badness,
2683 no_adl);
2684
2685 if (func_oload_champ >= 0)
2686 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2687
2688 make_cleanup (xfree, oload_syms);
2689 make_cleanup (xfree, func_badness);
2690 }
2691
2692 /* Did we find a match ? */
2693 if (method_oload_champ == -1 && func_oload_champ == -1)
2694 throw_error (NOT_FOUND_ERROR,
2695 _("No symbol \"%s\" in current context."),
2696 name);
2697
2698 /* If we have found both a method match and a function
2699 match, find out which one is better, and calculate match
2700 quality. */
2701 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2702 {
2703 switch (compare_badness (func_badness, method_badness))
2704 {
2705 case 0: /* Top two contenders are equally good. */
2706 /* FIXME: GDB does not support the general ambiguous case.
2707 All candidates should be collected and presented the
2708 user. */
2709 error (_("Ambiguous overload resolution"));
2710 break;
2711 case 1: /* Incomparable top contenders. */
2712 /* This is an error incompatible candidates
2713 should not have been proposed. */
2714 error (_("Internal error: incompatible "
2715 "overload candidates proposed"));
2716 break;
2717 case 2: /* Function champion. */
2718 method_oload_champ = -1;
2719 match_quality = func_match_quality;
2720 break;
2721 case 3: /* Method champion. */
2722 func_oload_champ = -1;
2723 match_quality = method_match_quality;
2724 break;
2725 default:
2726 error (_("Internal error: unexpected overload comparison result"));
2727 break;
2728 }
2729 }
2730 else
2731 {
2732 /* We have either a method match or a function match. */
2733 if (method_oload_champ >= 0)
2734 match_quality = method_match_quality;
2735 else
2736 match_quality = func_match_quality;
2737 }
2738
2739 if (match_quality == INCOMPATIBLE)
2740 {
2741 if (method == METHOD)
2742 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2743 obj_type_name,
2744 (obj_type_name && *obj_type_name) ? "::" : "",
2745 name);
2746 else
2747 error (_("Cannot resolve function %s to any overloaded instance"),
2748 func_name);
2749 }
2750 else if (match_quality == NON_STANDARD)
2751 {
2752 if (method == METHOD)
2753 warning (_("Using non-standard conversion to match "
2754 "method %s%s%s to supplied arguments"),
2755 obj_type_name,
2756 (obj_type_name && *obj_type_name) ? "::" : "",
2757 name);
2758 else
2759 warning (_("Using non-standard conversion to match "
2760 "function %s to supplied arguments"),
2761 func_name);
2762 }
2763
2764 if (staticp != NULL)
2765 *staticp = oload_method_static_p (fns_ptr, method_oload_champ);
2766
2767 if (method_oload_champ >= 0)
2768 {
2769 if (src_method_oload_champ >= 0)
2770 {
2771 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ)
2772 && noside != EVAL_AVOID_SIDE_EFFECTS)
2773 {
2774 *valp = value_virtual_fn_field (&temp, fns_ptr,
2775 method_oload_champ, basetype,
2776 boffset);
2777 }
2778 else
2779 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2780 basetype, boffset);
2781 }
2782 else
2783 {
2784 *valp = value_of_xmethod (clone_xmethod_worker
2785 (VEC_index (xmethod_worker_ptr, xm_worker_vec,
2786 ext_method_oload_champ)));
2787 }
2788 }
2789 else
2790 *symp = oload_syms[func_oload_champ];
2791
2792 if (objp)
2793 {
2794 struct type *temp_type = check_typedef (value_type (temp));
2795 struct type *objtype = check_typedef (obj_type);
2796
2797 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2798 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2799 || TYPE_CODE (objtype) == TYPE_CODE_REF))
2800 {
2801 temp = value_addr (temp);
2802 }
2803 *objp = temp;
2804 }
2805
2806 do_cleanups (all_cleanups);
2807
2808 switch (match_quality)
2809 {
2810 case INCOMPATIBLE:
2811 return 100;
2812 case NON_STANDARD:
2813 return 10;
2814 default: /* STANDARD */
2815 return 0;
2816 }
2817 }
2818
2819 /* Find the best overload match, searching for FUNC_NAME in namespaces
2820 contained in QUALIFIED_NAME until it either finds a good match or
2821 runs out of namespaces. It stores the overloaded functions in
2822 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2823 calling function is responsible for freeing *OLOAD_SYMS and
2824 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2825 performned. */
2826
2827 static int
2828 find_oload_champ_namespace (struct value **args, int nargs,
2829 const char *func_name,
2830 const char *qualified_name,
2831 struct symbol ***oload_syms,
2832 struct badness_vector **oload_champ_bv,
2833 const int no_adl)
2834 {
2835 int oload_champ;
2836
2837 find_oload_champ_namespace_loop (args, nargs,
2838 func_name,
2839 qualified_name, 0,
2840 oload_syms, oload_champ_bv,
2841 &oload_champ,
2842 no_adl);
2843
2844 return oload_champ;
2845 }
2846
2847 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2848 how deep we've looked for namespaces, and the champ is stored in
2849 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2850 if it isn't. Other arguments are the same as in
2851 find_oload_champ_namespace
2852
2853 It is the caller's responsibility to free *OLOAD_SYMS and
2854 *OLOAD_CHAMP_BV. */
2855
2856 static int
2857 find_oload_champ_namespace_loop (struct value **args, int nargs,
2858 const char *func_name,
2859 const char *qualified_name,
2860 int namespace_len,
2861 struct symbol ***oload_syms,
2862 struct badness_vector **oload_champ_bv,
2863 int *oload_champ,
2864 const int no_adl)
2865 {
2866 int next_namespace_len = namespace_len;
2867 int searched_deeper = 0;
2868 int num_fns = 0;
2869 struct cleanup *old_cleanups;
2870 int new_oload_champ;
2871 struct symbol **new_oload_syms;
2872 struct badness_vector *new_oload_champ_bv;
2873 char *new_namespace;
2874
2875 if (next_namespace_len != 0)
2876 {
2877 gdb_assert (qualified_name[next_namespace_len] == ':');
2878 next_namespace_len += 2;
2879 }
2880 next_namespace_len +=
2881 cp_find_first_component (qualified_name + next_namespace_len);
2882
2883 /* Initialize these to values that can safely be xfree'd. */
2884 *oload_syms = NULL;
2885 *oload_champ_bv = NULL;
2886
2887 /* First, see if we have a deeper namespace we can search in.
2888 If we get a good match there, use it. */
2889
2890 if (qualified_name[next_namespace_len] == ':')
2891 {
2892 searched_deeper = 1;
2893
2894 if (find_oload_champ_namespace_loop (args, nargs,
2895 func_name, qualified_name,
2896 next_namespace_len,
2897 oload_syms, oload_champ_bv,
2898 oload_champ, no_adl))
2899 {
2900 return 1;
2901 }
2902 };
2903
2904 /* If we reach here, either we're in the deepest namespace or we
2905 didn't find a good match in a deeper namespace. But, in the
2906 latter case, we still have a bad match in a deeper namespace;
2907 note that we might not find any match at all in the current
2908 namespace. (There's always a match in the deepest namespace,
2909 because this overload mechanism only gets called if there's a
2910 function symbol to start off with.) */
2911
2912 old_cleanups = make_cleanup (xfree, *oload_syms);
2913 make_cleanup (xfree, *oload_champ_bv);
2914 new_namespace = alloca (namespace_len + 1);
2915 strncpy (new_namespace, qualified_name, namespace_len);
2916 new_namespace[namespace_len] = '\0';
2917 new_oload_syms = make_symbol_overload_list (func_name,
2918 new_namespace);
2919
2920 /* If we have reached the deepest level perform argument
2921 determined lookup. */
2922 if (!searched_deeper && !no_adl)
2923 {
2924 int ix;
2925 struct type **arg_types;
2926
2927 /* Prepare list of argument types for overload resolution. */
2928 arg_types = (struct type **)
2929 alloca (nargs * (sizeof (struct type *)));
2930 for (ix = 0; ix < nargs; ix++)
2931 arg_types[ix] = value_type (args[ix]);
2932 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2933 }
2934
2935 while (new_oload_syms[num_fns])
2936 ++num_fns;
2937
2938 new_oload_champ = find_oload_champ (args, nargs, num_fns,
2939 NULL, NULL, new_oload_syms,
2940 &new_oload_champ_bv);
2941
2942 /* Case 1: We found a good match. Free earlier matches (if any),
2943 and return it. Case 2: We didn't find a good match, but we're
2944 not the deepest function. Then go with the bad match that the
2945 deeper function found. Case 3: We found a bad match, and we're
2946 the deepest function. Then return what we found, even though
2947 it's a bad match. */
2948
2949 if (new_oload_champ != -1
2950 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2951 {
2952 *oload_syms = new_oload_syms;
2953 *oload_champ = new_oload_champ;
2954 *oload_champ_bv = new_oload_champ_bv;
2955 do_cleanups (old_cleanups);
2956 return 1;
2957 }
2958 else if (searched_deeper)
2959 {
2960 xfree (new_oload_syms);
2961 xfree (new_oload_champ_bv);
2962 discard_cleanups (old_cleanups);
2963 return 0;
2964 }
2965 else
2966 {
2967 *oload_syms = new_oload_syms;
2968 *oload_champ = new_oload_champ;
2969 *oload_champ_bv = new_oload_champ_bv;
2970 do_cleanups (old_cleanups);
2971 return 0;
2972 }
2973 }
2974
2975 /* Look for a function to take NARGS args of ARGS. Find
2976 the best match from among the overloaded methods or functions
2977 given by FNS_PTR or OLOAD_SYMS or XM_WORKER_VEC, respectively.
2978 One, and only one of FNS_PTR, OLOAD_SYMS and XM_WORKER_VEC can be
2979 non-NULL.
2980
2981 If XM_WORKER_VEC is NULL, then the length of the arrays FNS_PTR
2982 or OLOAD_SYMS (whichever is non-NULL) is specified in NUM_FNS.
2983
2984 Return the index of the best match; store an indication of the
2985 quality of the match in OLOAD_CHAMP_BV.
2986
2987 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2988
2989 static int
2990 find_oload_champ (struct value **args, int nargs,
2991 int num_fns, struct fn_field *fns_ptr,
2992 VEC (xmethod_worker_ptr) *xm_worker_vec,
2993 struct symbol **oload_syms,
2994 struct badness_vector **oload_champ_bv)
2995 {
2996 int ix;
2997 int fn_count;
2998 int xm_worker_vec_n = VEC_length (xmethod_worker_ptr, xm_worker_vec);
2999 /* A measure of how good an overloaded instance is. */
3000 struct badness_vector *bv;
3001 /* Index of best overloaded function. */
3002 int oload_champ = -1;
3003 /* Current ambiguity state for overload resolution. */
3004 int oload_ambiguous = 0;
3005 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
3006
3007 /* A champion can be found among methods alone, or among functions
3008 alone, or in xmethods alone, but not in more than one of these
3009 groups. */
3010 gdb_assert ((fns_ptr != NULL) + (oload_syms != NULL) + (xm_worker_vec != NULL)
3011 == 1);
3012
3013 *oload_champ_bv = NULL;
3014
3015 fn_count = (xm_worker_vec != NULL
3016 ? VEC_length (xmethod_worker_ptr, xm_worker_vec)
3017 : num_fns);
3018 /* Consider each candidate in turn. */
3019 for (ix = 0; ix < fn_count; ix++)
3020 {
3021 int jj;
3022 int static_offset = 0;
3023 int nparms;
3024 struct type **parm_types;
3025 struct xmethod_worker *worker = NULL;
3026
3027 if (xm_worker_vec != NULL)
3028 {
3029 worker = VEC_index (xmethod_worker_ptr, xm_worker_vec, ix);
3030 parm_types = get_xmethod_arg_types (worker, &nparms);
3031 }
3032 else
3033 {
3034 if (fns_ptr != NULL)
3035 {
3036 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
3037 static_offset = oload_method_static_p (fns_ptr, ix);
3038 }
3039 else
3040 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
3041
3042 parm_types = (struct type **)
3043 xmalloc (nparms * (sizeof (struct type *)));
3044 for (jj = 0; jj < nparms; jj++)
3045 parm_types[jj] = (fns_ptr != NULL
3046 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
3047 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
3048 jj));
3049 }
3050
3051 /* Compare parameter types to supplied argument types. Skip
3052 THIS for static methods. */
3053 bv = rank_function (parm_types, nparms,
3054 args + static_offset,
3055 nargs - static_offset);
3056
3057 if (!*oload_champ_bv)
3058 {
3059 *oload_champ_bv = bv;
3060 oload_champ = 0;
3061 }
3062 else /* See whether current candidate is better or worse than
3063 previous best. */
3064 switch (compare_badness (bv, *oload_champ_bv))
3065 {
3066 case 0: /* Top two contenders are equally good. */
3067 oload_ambiguous = 1;
3068 break;
3069 case 1: /* Incomparable top contenders. */
3070 oload_ambiguous = 2;
3071 break;
3072 case 2: /* New champion, record details. */
3073 *oload_champ_bv = bv;
3074 oload_ambiguous = 0;
3075 oload_champ = ix;
3076 break;
3077 case 3:
3078 default:
3079 break;
3080 }
3081 xfree (parm_types);
3082 if (overload_debug)
3083 {
3084 if (fns_ptr != NULL)
3085 fprintf_filtered (gdb_stderr,
3086 "Overloaded method instance %s, # of parms %d\n",
3087 fns_ptr[ix].physname, nparms);
3088 else if (xm_worker_vec != NULL)
3089 fprintf_filtered (gdb_stderr,
3090 "Xmethod worker, # of parms %d\n",
3091 nparms);
3092 else
3093 fprintf_filtered (gdb_stderr,
3094 "Overloaded function instance "
3095 "%s # of parms %d\n",
3096 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
3097 nparms);
3098 for (jj = 0; jj < nargs - static_offset; jj++)
3099 fprintf_filtered (gdb_stderr,
3100 "...Badness @ %d : %d\n",
3101 jj, bv->rank[jj].rank);
3102 fprintf_filtered (gdb_stderr, "Overload resolution "
3103 "champion is %d, ambiguous? %d\n",
3104 oload_champ, oload_ambiguous);
3105 }
3106 }
3107
3108 return oload_champ;
3109 }
3110
3111 /* Return 1 if we're looking at a static method, 0 if we're looking at
3112 a non-static method or a function that isn't a method. */
3113
3114 static int
3115 oload_method_static_p (struct fn_field *fns_ptr, int index)
3116 {
3117 if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3118 return 1;
3119 else
3120 return 0;
3121 }
3122
3123 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3124
3125 static enum oload_classification
3126 classify_oload_match (struct badness_vector *oload_champ_bv,
3127 int nargs,
3128 int static_offset)
3129 {
3130 int ix;
3131 enum oload_classification worst = STANDARD;
3132
3133 for (ix = 1; ix <= nargs - static_offset; ix++)
3134 {
3135 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3136 or worse return INCOMPATIBLE. */
3137 if (compare_ranks (oload_champ_bv->rank[ix],
3138 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3139 return INCOMPATIBLE; /* Truly mismatched types. */
3140 /* Otherwise If this conversion is as bad as
3141 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3142 else if (compare_ranks (oload_champ_bv->rank[ix],
3143 NS_POINTER_CONVERSION_BADNESS) <= 0)
3144 worst = NON_STANDARD; /* Non-standard type conversions
3145 needed. */
3146 }
3147
3148 /* If no INCOMPATIBLE classification was found, return the worst one
3149 that was found (if any). */
3150 return worst;
3151 }
3152
3153 /* C++: return 1 is NAME is a legitimate name for the destructor of
3154 type TYPE. If TYPE does not have a destructor, or if NAME is
3155 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3156 have CHECK_TYPEDEF applied, this function will apply it itself. */
3157
3158 int
3159 destructor_name_p (const char *name, struct type *type)
3160 {
3161 if (name[0] == '~')
3162 {
3163 const char *dname = type_name_no_tag_or_error (type);
3164 const char *cp = strchr (dname, '<');
3165 unsigned int len;
3166
3167 /* Do not compare the template part for template classes. */
3168 if (cp == NULL)
3169 len = strlen (dname);
3170 else
3171 len = cp - dname;
3172 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3173 error (_("name of destructor must equal name of class"));
3174 else
3175 return 1;
3176 }
3177 return 0;
3178 }
3179
3180 /* Find an enum constant named NAME in TYPE. TYPE must be an "enum
3181 class". If the name is found, return a value representing it;
3182 otherwise throw an exception. */
3183
3184 static struct value *
3185 enum_constant_from_type (struct type *type, const char *name)
3186 {
3187 int i;
3188 int name_len = strlen (name);
3189
3190 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ENUM
3191 && TYPE_DECLARED_CLASS (type));
3192
3193 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); ++i)
3194 {
3195 const char *fname = TYPE_FIELD_NAME (type, i);
3196 int len;
3197
3198 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_ENUMVAL
3199 || fname == NULL)
3200 continue;
3201
3202 /* Look for the trailing "::NAME", since enum class constant
3203 names are qualified here. */
3204 len = strlen (fname);
3205 if (len + 2 >= name_len
3206 && fname[len - name_len - 2] == ':'
3207 && fname[len - name_len - 1] == ':'
3208 && strcmp (&fname[len - name_len], name) == 0)
3209 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, i));
3210 }
3211
3212 error (_("no constant named \"%s\" in enum \"%s\""),
3213 name, TYPE_TAG_NAME (type));
3214 }
3215
3216 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3217 return the appropriate member (or the address of the member, if
3218 WANT_ADDRESS). This function is used to resolve user expressions
3219 of the form "DOMAIN::NAME". For more details on what happens, see
3220 the comment before value_struct_elt_for_reference. */
3221
3222 struct value *
3223 value_aggregate_elt (struct type *curtype, const char *name,
3224 struct type *expect_type, int want_address,
3225 enum noside noside)
3226 {
3227 switch (TYPE_CODE (curtype))
3228 {
3229 case TYPE_CODE_STRUCT:
3230 case TYPE_CODE_UNION:
3231 return value_struct_elt_for_reference (curtype, 0, curtype,
3232 name, expect_type,
3233 want_address, noside);
3234 case TYPE_CODE_NAMESPACE:
3235 return value_namespace_elt (curtype, name,
3236 want_address, noside);
3237
3238 case TYPE_CODE_ENUM:
3239 return enum_constant_from_type (curtype, name);
3240
3241 default:
3242 internal_error (__FILE__, __LINE__,
3243 _("non-aggregate type in value_aggregate_elt"));
3244 }
3245 }
3246
3247 /* Compares the two method/function types T1 and T2 for "equality"
3248 with respect to the methods' parameters. If the types of the
3249 two parameter lists are the same, returns 1; 0 otherwise. This
3250 comparison may ignore any artificial parameters in T1 if
3251 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3252 the first artificial parameter in T1, assumed to be a 'this' pointer.
3253
3254 The type T2 is expected to have come from make_params (in eval.c). */
3255
3256 static int
3257 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3258 {
3259 int start = 0;
3260
3261 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3262 ++start;
3263
3264 /* If skipping artificial fields, find the first real field
3265 in T1. */
3266 if (skip_artificial)
3267 {
3268 while (start < TYPE_NFIELDS (t1)
3269 && TYPE_FIELD_ARTIFICIAL (t1, start))
3270 ++start;
3271 }
3272
3273 /* Now compare parameters. */
3274
3275 /* Special case: a method taking void. T1 will contain no
3276 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3277 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3278 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3279 return 1;
3280
3281 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3282 {
3283 int i;
3284
3285 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3286 {
3287 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3288 TYPE_FIELD_TYPE (t2, i), NULL),
3289 EXACT_MATCH_BADNESS) != 0)
3290 return 0;
3291 }
3292
3293 return 1;
3294 }
3295
3296 return 0;
3297 }
3298
3299 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3300 return the address of this member as a "pointer to member" type.
3301 If INTYPE is non-null, then it will be the type of the member we
3302 are looking for. This will help us resolve "pointers to member
3303 functions". This function is used to resolve user expressions of
3304 the form "DOMAIN::NAME". */
3305
3306 static struct value *
3307 value_struct_elt_for_reference (struct type *domain, int offset,
3308 struct type *curtype, const char *name,
3309 struct type *intype,
3310 int want_address,
3311 enum noside noside)
3312 {
3313 struct type *t = curtype;
3314 int i;
3315 struct value *v, *result;
3316
3317 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3318 && TYPE_CODE (t) != TYPE_CODE_UNION)
3319 error (_("Internal error: non-aggregate type "
3320 "to value_struct_elt_for_reference"));
3321
3322 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3323 {
3324 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3325
3326 if (t_field_name && strcmp (t_field_name, name) == 0)
3327 {
3328 if (field_is_static (&TYPE_FIELD (t, i)))
3329 {
3330 v = value_static_field (t, i);
3331 if (want_address)
3332 v = value_addr (v);
3333 return v;
3334 }
3335 if (TYPE_FIELD_PACKED (t, i))
3336 error (_("pointers to bitfield members not allowed"));
3337
3338 if (want_address)
3339 return value_from_longest
3340 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3341 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3342 else if (noside != EVAL_NORMAL)
3343 return allocate_value (TYPE_FIELD_TYPE (t, i));
3344 else
3345 {
3346 /* Try to evaluate NAME as a qualified name with implicit
3347 this pointer. In this case, attempt to return the
3348 equivalent to `this->*(&TYPE::NAME)'. */
3349 v = value_of_this_silent (current_language);
3350 if (v != NULL)
3351 {
3352 struct value *ptr;
3353 long mem_offset;
3354 struct type *type, *tmp;
3355
3356 ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
3357 type = check_typedef (value_type (ptr));
3358 gdb_assert (type != NULL
3359 && TYPE_CODE (type) == TYPE_CODE_MEMBERPTR);
3360 tmp = lookup_pointer_type (TYPE_SELF_TYPE (type));
3361 v = value_cast_pointers (tmp, v, 1);
3362 mem_offset = value_as_long (ptr);
3363 tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type));
3364 result = value_from_pointer (tmp,
3365 value_as_long (v) + mem_offset);
3366 return value_ind (result);
3367 }
3368
3369 error (_("Cannot reference non-static field \"%s\""), name);
3370 }
3371 }
3372 }
3373
3374 /* C++: If it was not found as a data field, then try to return it
3375 as a pointer to a method. */
3376
3377 /* Perform all necessary dereferencing. */
3378 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3379 intype = TYPE_TARGET_TYPE (intype);
3380
3381 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3382 {
3383 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3384 char dem_opname[64];
3385
3386 if (startswith (t_field_name, "__")
3387 || startswith (t_field_name, "op")
3388 || startswith (t_field_name, "type"))
3389 {
3390 if (cplus_demangle_opname (t_field_name,
3391 dem_opname, DMGL_ANSI))
3392 t_field_name = dem_opname;
3393 else if (cplus_demangle_opname (t_field_name,
3394 dem_opname, 0))
3395 t_field_name = dem_opname;
3396 }
3397 if (t_field_name && strcmp (t_field_name, name) == 0)
3398 {
3399 int j;
3400 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3401 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3402
3403 check_stub_method_group (t, i);
3404
3405 if (intype)
3406 {
3407 for (j = 0; j < len; ++j)
3408 {
3409 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3410 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3411 intype, 1))
3412 break;
3413 }
3414
3415 if (j == len)
3416 error (_("no member function matches "
3417 "that type instantiation"));
3418 }
3419 else
3420 {
3421 int ii;
3422
3423 j = -1;
3424 for (ii = 0; ii < len; ++ii)
3425 {
3426 /* Skip artificial methods. This is necessary if,
3427 for example, the user wants to "print
3428 subclass::subclass" with only one user-defined
3429 constructor. There is no ambiguity in this case.
3430 We are careful here to allow artificial methods
3431 if they are the unique result. */
3432 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3433 {
3434 if (j == -1)
3435 j = ii;
3436 continue;
3437 }
3438
3439 /* Desired method is ambiguous if more than one
3440 method is defined. */
3441 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3442 error (_("non-unique member `%s' requires "
3443 "type instantiation"), name);
3444
3445 j = ii;
3446 }
3447
3448 if (j == -1)
3449 error (_("no matching member function"));
3450 }
3451
3452 if (TYPE_FN_FIELD_STATIC_P (f, j))
3453 {
3454 struct symbol *s =
3455 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3456 0, VAR_DOMAIN, 0);
3457
3458 if (s == NULL)
3459 return NULL;
3460
3461 if (want_address)
3462 return value_addr (read_var_value (s, 0));
3463 else
3464 return read_var_value (s, 0);
3465 }
3466
3467 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3468 {
3469 if (want_address)
3470 {
3471 result = allocate_value
3472 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3473 cplus_make_method_ptr (value_type (result),
3474 value_contents_writeable (result),
3475 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3476 }
3477 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3478 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3479 else
3480 error (_("Cannot reference virtual member function \"%s\""),
3481 name);
3482 }
3483 else
3484 {
3485 struct symbol *s =
3486 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3487 0, VAR_DOMAIN, 0);
3488
3489 if (s == NULL)
3490 return NULL;
3491
3492 v = read_var_value (s, 0);
3493 if (!want_address)
3494 result = v;
3495 else
3496 {
3497 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3498 cplus_make_method_ptr (value_type (result),
3499 value_contents_writeable (result),
3500 value_address (v), 0);
3501 }
3502 }
3503 return result;
3504 }
3505 }
3506 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3507 {
3508 struct value *v;
3509 int base_offset;
3510
3511 if (BASETYPE_VIA_VIRTUAL (t, i))
3512 base_offset = 0;
3513 else
3514 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3515 v = value_struct_elt_for_reference (domain,
3516 offset + base_offset,
3517 TYPE_BASECLASS (t, i),
3518 name, intype,
3519 want_address, noside);
3520 if (v)
3521 return v;
3522 }
3523
3524 /* As a last chance, pretend that CURTYPE is a namespace, and look
3525 it up that way; this (frequently) works for types nested inside
3526 classes. */
3527
3528 return value_maybe_namespace_elt (curtype, name,
3529 want_address, noside);
3530 }
3531
3532 /* C++: Return the member NAME of the namespace given by the type
3533 CURTYPE. */
3534
3535 static struct value *
3536 value_namespace_elt (const struct type *curtype,
3537 const char *name, int want_address,
3538 enum noside noside)
3539 {
3540 struct value *retval = value_maybe_namespace_elt (curtype, name,
3541 want_address,
3542 noside);
3543
3544 if (retval == NULL)
3545 error (_("No symbol \"%s\" in namespace \"%s\"."),
3546 name, TYPE_TAG_NAME (curtype));
3547
3548 return retval;
3549 }
3550
3551 /* A helper function used by value_namespace_elt and
3552 value_struct_elt_for_reference. It looks up NAME inside the
3553 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3554 is a class and NAME refers to a type in CURTYPE itself (as opposed
3555 to, say, some base class of CURTYPE). */
3556
3557 static struct value *
3558 value_maybe_namespace_elt (const struct type *curtype,
3559 const char *name, int want_address,
3560 enum noside noside)
3561 {
3562 const char *namespace_name = TYPE_TAG_NAME (curtype);
3563 struct symbol *sym;
3564 struct value *result;
3565
3566 sym = cp_lookup_symbol_namespace (namespace_name, name,
3567 get_selected_block (0), VAR_DOMAIN);
3568
3569 if (sym == NULL)
3570 return NULL;
3571 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3572 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3573 result = allocate_value (SYMBOL_TYPE (sym));
3574 else
3575 result = value_of_variable (sym, get_selected_block (0));
3576
3577 if (want_address)
3578 result = value_addr (result);
3579
3580 return result;
3581 }
3582
3583 /* Given a pointer or a reference value V, find its real (RTTI) type.
3584
3585 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3586 and refer to the values computed for the object pointed to. */
3587
3588 struct type *
3589 value_rtti_indirect_type (struct value *v, int *full,
3590 int *top, int *using_enc)
3591 {
3592 struct value *target = NULL;
3593 struct type *type, *real_type, *target_type;
3594
3595 type = value_type (v);
3596 type = check_typedef (type);
3597 if (TYPE_CODE (type) == TYPE_CODE_REF)
3598 target = coerce_ref (v);
3599 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3600 {
3601
3602 TRY
3603 {
3604 target = value_ind (v);
3605 }
3606 CATCH (except, RETURN_MASK_ERROR)
3607 {
3608 if (except.error == MEMORY_ERROR)
3609 {
3610 /* value_ind threw a memory error. The pointer is NULL or
3611 contains an uninitialized value: we can't determine any
3612 type. */
3613 return NULL;
3614 }
3615 throw_exception (except);
3616 }
3617 END_CATCH
3618 }
3619 else
3620 return NULL;
3621
3622 real_type = value_rtti_type (target, full, top, using_enc);
3623
3624 if (real_type)
3625 {
3626 /* Copy qualifiers to the referenced object. */
3627 target_type = value_type (target);
3628 real_type = make_cv_type (TYPE_CONST (target_type),
3629 TYPE_VOLATILE (target_type), real_type, NULL);
3630 if (TYPE_CODE (type) == TYPE_CODE_REF)
3631 real_type = lookup_reference_type (real_type);
3632 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3633 real_type = lookup_pointer_type (real_type);
3634 else
3635 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3636
3637 /* Copy qualifiers to the pointer/reference. */
3638 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3639 real_type, NULL);
3640 }
3641
3642 return real_type;
3643 }
3644
3645 /* Given a value pointed to by ARGP, check its real run-time type, and
3646 if that is different from the enclosing type, create a new value
3647 using the real run-time type as the enclosing type (and of the same
3648 type as ARGP) and return it, with the embedded offset adjusted to
3649 be the correct offset to the enclosed object. RTYPE is the type,
3650 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3651 by value_rtti_type(). If these are available, they can be supplied
3652 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3653 NULL if they're not available. */
3654
3655 struct value *
3656 value_full_object (struct value *argp,
3657 struct type *rtype,
3658 int xfull, int xtop,
3659 int xusing_enc)
3660 {
3661 struct type *real_type;
3662 int full = 0;
3663 int top = -1;
3664 int using_enc = 0;
3665 struct value *new_val;
3666
3667 if (rtype)
3668 {
3669 real_type = rtype;
3670 full = xfull;
3671 top = xtop;
3672 using_enc = xusing_enc;
3673 }
3674 else
3675 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3676
3677 /* If no RTTI data, or if object is already complete, do nothing. */
3678 if (!real_type || real_type == value_enclosing_type (argp))
3679 return argp;
3680
3681 /* In a destructor we might see a real type that is a superclass of
3682 the object's type. In this case it is better to leave the object
3683 as-is. */
3684 if (full
3685 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3686 return argp;
3687
3688 /* If we have the full object, but for some reason the enclosing
3689 type is wrong, set it. */
3690 /* pai: FIXME -- sounds iffy */
3691 if (full)
3692 {
3693 argp = value_copy (argp);
3694 set_value_enclosing_type (argp, real_type);
3695 return argp;
3696 }
3697
3698 /* Check if object is in memory. */
3699 if (VALUE_LVAL (argp) != lval_memory)
3700 {
3701 warning (_("Couldn't retrieve complete object of RTTI "
3702 "type %s; object may be in register(s)."),
3703 TYPE_NAME (real_type));
3704
3705 return argp;
3706 }
3707
3708 /* All other cases -- retrieve the complete object. */
3709 /* Go back by the computed top_offset from the beginning of the
3710 object, adjusting for the embedded offset of argp if that's what
3711 value_rtti_type used for its computation. */
3712 new_val = value_at_lazy (real_type, value_address (argp) - top +
3713 (using_enc ? 0 : value_embedded_offset (argp)));
3714 deprecated_set_value_type (new_val, value_type (argp));
3715 set_value_embedded_offset (new_val, (using_enc
3716 ? top + value_embedded_offset (argp)
3717 : top));
3718 return new_val;
3719 }
3720
3721
3722 /* Return the value of the local variable, if one exists. Throw error
3723 otherwise, such as if the request is made in an inappropriate context. */
3724
3725 struct value *
3726 value_of_this (const struct language_defn *lang)
3727 {
3728 struct symbol *sym;
3729 const struct block *b;
3730 struct frame_info *frame;
3731
3732 if (!lang->la_name_of_this)
3733 error (_("no `this' in current language"));
3734
3735 frame = get_selected_frame (_("no frame selected"));
3736
3737 b = get_frame_block (frame, NULL);
3738
3739 sym = lookup_language_this (lang, b);
3740 if (sym == NULL)
3741 error (_("current stack frame does not contain a variable named `%s'"),
3742 lang->la_name_of_this);
3743
3744 return read_var_value (sym, frame);
3745 }
3746
3747 /* Return the value of the local variable, if one exists. Return NULL
3748 otherwise. Never throw error. */
3749
3750 struct value *
3751 value_of_this_silent (const struct language_defn *lang)
3752 {
3753 struct value *ret = NULL;
3754
3755 TRY
3756 {
3757 ret = value_of_this (lang);
3758 }
3759 CATCH (except, RETURN_MASK_ERROR)
3760 {
3761 }
3762 END_CATCH
3763
3764 return ret;
3765 }
3766
3767 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3768 elements long, starting at LOWBOUND. The result has the same lower
3769 bound as the original ARRAY. */
3770
3771 struct value *
3772 value_slice (struct value *array, int lowbound, int length)
3773 {
3774 struct type *slice_range_type, *slice_type, *range_type;
3775 LONGEST lowerbound, upperbound;
3776 struct value *slice;
3777 struct type *array_type;
3778
3779 array_type = check_typedef (value_type (array));
3780 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3781 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
3782 error (_("cannot take slice of non-array"));
3783
3784 range_type = TYPE_INDEX_TYPE (array_type);
3785 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3786 error (_("slice from bad array or bitstring"));
3787
3788 if (lowbound < lowerbound || length < 0
3789 || lowbound + length - 1 > upperbound)
3790 error (_("slice out of range"));
3791
3792 /* FIXME-type-allocation: need a way to free this type when we are
3793 done with it. */
3794 slice_range_type = create_static_range_type ((struct type *) NULL,
3795 TYPE_TARGET_TYPE (range_type),
3796 lowbound,
3797 lowbound + length - 1);
3798
3799 {
3800 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3801 LONGEST offset
3802 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3803
3804 slice_type = create_array_type ((struct type *) NULL,
3805 element_type,
3806 slice_range_type);
3807 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3808
3809 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3810 slice = allocate_value_lazy (slice_type);
3811 else
3812 {
3813 slice = allocate_value (slice_type);
3814 value_contents_copy (slice, 0, array, offset,
3815 TYPE_LENGTH (slice_type));
3816 }
3817
3818 set_value_component_location (slice, array);
3819 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3820 set_value_offset (slice, value_offset (array) + offset);
3821 }
3822
3823 return slice;
3824 }
3825
3826 /* Create a value for a FORTRAN complex number. Currently most of the
3827 time values are coerced to COMPLEX*16 (i.e. a complex number
3828 composed of 2 doubles. This really should be a smarter routine
3829 that figures out precision inteligently as opposed to assuming
3830 doubles. FIXME: fmb */
3831
3832 struct value *
3833 value_literal_complex (struct value *arg1,
3834 struct value *arg2,
3835 struct type *type)
3836 {
3837 struct value *val;
3838 struct type *real_type = TYPE_TARGET_TYPE (type);
3839
3840 val = allocate_value (type);
3841 arg1 = value_cast (real_type, arg1);
3842 arg2 = value_cast (real_type, arg2);
3843
3844 memcpy (value_contents_raw (val),
3845 value_contents (arg1), TYPE_LENGTH (real_type));
3846 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3847 value_contents (arg2), TYPE_LENGTH (real_type));
3848 return val;
3849 }
3850
3851 /* Cast a value into the appropriate complex data type. */
3852
3853 static struct value *
3854 cast_into_complex (struct type *type, struct value *val)
3855 {
3856 struct type *real_type = TYPE_TARGET_TYPE (type);
3857
3858 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3859 {
3860 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3861 struct value *re_val = allocate_value (val_real_type);
3862 struct value *im_val = allocate_value (val_real_type);
3863
3864 memcpy (value_contents_raw (re_val),
3865 value_contents (val), TYPE_LENGTH (val_real_type));
3866 memcpy (value_contents_raw (im_val),
3867 value_contents (val) + TYPE_LENGTH (val_real_type),
3868 TYPE_LENGTH (val_real_type));
3869
3870 return value_literal_complex (re_val, im_val, type);
3871 }
3872 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3873 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3874 return value_literal_complex (val,
3875 value_zero (real_type, not_lval),
3876 type);
3877 else
3878 error (_("cannot cast non-number to complex"));
3879 }
3880
3881 void
3882 _initialize_valops (void)
3883 {
3884 add_setshow_boolean_cmd ("overload-resolution", class_support,
3885 &overload_resolution, _("\
3886 Set overload resolution in evaluating C++ functions."), _("\
3887 Show overload resolution in evaluating C++ functions."),
3888 NULL, NULL,
3889 show_overload_resolution,
3890 &setlist, &showlist);
3891 overload_resolution = 1;
3892 }
This page took 0.114724 seconds and 4 git commands to generate.