1 /* Perform non-arithmetic operations on values, for GDB.
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
39 #include "dictionary.h"
40 #include "cp-support.h"
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
48 extern int overload_debug
;
49 /* Local functions. */
51 static int typecmp (int staticp
, int varargs
, int nargs
,
52 struct field t1
[], struct value
*t2
[]);
54 static struct value
*search_struct_field (char *, struct value
*, int,
57 static struct value
*search_struct_method (char *, struct value
**,
59 int, int *, struct type
*);
61 static int find_oload_champ_namespace (struct type
**arg_types
, int nargs
,
62 const char *func_name
,
63 const char *qualified_name
,
64 struct symbol
***oload_syms
,
65 struct badness_vector
**oload_champ_bv
);
68 int find_oload_champ_namespace_loop (struct type
**arg_types
, int nargs
,
69 const char *func_name
,
70 const char *qualified_name
,
72 struct symbol
***oload_syms
,
73 struct badness_vector
**oload_champ_bv
,
76 static int find_oload_champ (struct type
**arg_types
, int nargs
, int method
,
78 struct fn_field
*fns_ptr
,
79 struct symbol
**oload_syms
,
80 struct badness_vector
**oload_champ_bv
);
82 static int oload_method_static (int method
, struct fn_field
*fns_ptr
,
85 enum oload_classification
{ STANDARD
, NON_STANDARD
, INCOMPATIBLE
};
88 oload_classification
classify_oload_match (struct badness_vector
93 static int check_field_in (struct type
*, const char *);
95 static struct value
*value_struct_elt_for_reference (struct type
*domain
,
103 static struct value
*value_namespace_elt (const struct type
*curtype
,
104 char *name
, int want_address
,
107 static struct value
*value_maybe_namespace_elt (const struct type
*curtype
,
108 char *name
, int want_address
,
111 static CORE_ADDR
allocate_space_in_inferior (int);
113 static struct value
*cast_into_complex (struct type
*, struct value
*);
115 static struct fn_field
*find_method_list (struct value
** argp
, char *method
,
117 struct type
*type
, int *num_fns
,
118 struct type
**basetype
,
121 void _initialize_valops (void);
123 /* Flag for whether we want to abandon failed expression evals by default. */
126 static int auto_abandon
= 0;
129 int overload_resolution
= 0;
131 show_overload_resolution (struct ui_file
*file
, int from_tty
,
132 struct cmd_list_element
*c
, const char *value
)
134 fprintf_filtered (file
, _("\
135 Overload resolution in evaluating C++ functions is %s.\n"),
139 /* Find the address of function name NAME in the inferior. */
142 find_function_in_inferior (const char *name
)
145 sym
= lookup_symbol (name
, 0, VAR_DOMAIN
, 0, NULL
);
148 if (SYMBOL_CLASS (sym
) != LOC_BLOCK
)
150 error (_("\"%s\" exists in this program but is not a function."),
153 return value_of_variable (sym
, NULL
);
157 struct minimal_symbol
*msymbol
= lookup_minimal_symbol (name
, NULL
, NULL
);
162 type
= lookup_pointer_type (builtin_type_char
);
163 type
= lookup_function_type (type
);
164 type
= lookup_pointer_type (type
);
165 maddr
= SYMBOL_VALUE_ADDRESS (msymbol
);
166 return value_from_pointer (type
, maddr
);
170 if (!target_has_execution
)
171 error (_("evaluation of this expression requires the target program to be active"));
173 error (_("evaluation of this expression requires the program to have a function \"%s\"."), name
);
178 /* Allocate NBYTES of space in the inferior using the inferior's malloc
179 and return a value that is a pointer to the allocated space. */
182 value_allocate_space_in_inferior (int len
)
184 struct value
*blocklen
;
185 struct value
*val
= find_function_in_inferior (NAME_OF_MALLOC
);
187 blocklen
= value_from_longest (builtin_type_int
, (LONGEST
) len
);
188 val
= call_function_by_hand (val
, 1, &blocklen
);
189 if (value_logical_not (val
))
191 if (!target_has_execution
)
192 error (_("No memory available to program now: you need to start the target first"));
194 error (_("No memory available to program: call to malloc failed"));
200 allocate_space_in_inferior (int len
)
202 return value_as_long (value_allocate_space_in_inferior (len
));
205 /* Cast one pointer or reference type to another. Both TYPE and
206 the type of ARG2 should be pointer types, or else both should be
207 reference types. Returns the new pointer or reference. */
210 value_cast_pointers (struct type
*type
, struct value
*arg2
)
212 struct type
*type2
= check_typedef (value_type (arg2
));
213 struct type
*t1
= check_typedef (TYPE_TARGET_TYPE (type
));
214 struct type
*t2
= check_typedef (TYPE_TARGET_TYPE (type2
));
216 if (TYPE_CODE (t1
) == TYPE_CODE_STRUCT
217 && TYPE_CODE (t2
) == TYPE_CODE_STRUCT
218 && !value_logical_not (arg2
))
222 /* Look in the type of the source to see if it contains the
223 type of the target as a superclass. If so, we'll need to
224 offset the pointer rather than just change its type. */
225 if (TYPE_NAME (t1
) != NULL
)
229 if (TYPE_CODE (type2
) == TYPE_CODE_REF
)
230 v2
= coerce_ref (arg2
);
232 v2
= value_ind (arg2
);
233 v
= search_struct_field (type_name_no_tag (t1
),
238 deprecated_set_value_type (v
, type
);
243 /* Look in the type of the target to see if it contains the
244 type of the source as a superclass. If so, we'll need to
245 offset the pointer rather than just change its type.
246 FIXME: This fails silently with virtual inheritance. */
247 if (TYPE_NAME (t2
) != NULL
)
249 v
= search_struct_field (type_name_no_tag (t2
),
250 value_zero (t1
, not_lval
), 0, t1
, 1);
253 CORE_ADDR addr2
= value_as_address (arg2
);
254 addr2
-= (VALUE_ADDRESS (v
)
256 + value_embedded_offset (v
));
257 return value_from_pointer (type
, addr2
);
262 /* No superclass found, just change the pointer type. */
263 arg2
= value_copy (arg2
);
264 deprecated_set_value_type (arg2
, type
);
265 arg2
= value_change_enclosing_type (arg2
, type
);
266 set_value_pointed_to_offset (arg2
, 0); /* pai: chk_val */
270 /* Cast value ARG2 to type TYPE and return as a value.
271 More general than a C cast: accepts any two types of the same length,
272 and if ARG2 is an lvalue it can be cast into anything at all. */
273 /* In C++, casts may change pointer or object representations. */
276 value_cast (struct type
*type
, struct value
*arg2
)
278 enum type_code code1
;
279 enum type_code code2
;
283 int convert_to_boolean
= 0;
285 if (value_type (arg2
) == type
)
288 CHECK_TYPEDEF (type
);
289 code1
= TYPE_CODE (type
);
290 arg2
= coerce_ref (arg2
);
291 type2
= check_typedef (value_type (arg2
));
293 /* You can't cast to a reference type. See value_cast_pointers
295 gdb_assert (code1
!= TYPE_CODE_REF
);
297 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
298 is treated like a cast to (TYPE [N])OBJECT,
299 where N is sizeof(OBJECT)/sizeof(TYPE). */
300 if (code1
== TYPE_CODE_ARRAY
)
302 struct type
*element_type
= TYPE_TARGET_TYPE (type
);
303 unsigned element_length
= TYPE_LENGTH (check_typedef (element_type
));
304 if (element_length
> 0
305 && TYPE_ARRAY_UPPER_BOUND_TYPE (type
) == BOUND_CANNOT_BE_DETERMINED
)
307 struct type
*range_type
= TYPE_INDEX_TYPE (type
);
308 int val_length
= TYPE_LENGTH (type2
);
309 LONGEST low_bound
, high_bound
, new_length
;
310 if (get_discrete_bounds (range_type
, &low_bound
, &high_bound
) < 0)
311 low_bound
= 0, high_bound
= 0;
312 new_length
= val_length
/ element_length
;
313 if (val_length
% element_length
!= 0)
314 warning (_("array element type size does not divide object size in cast"));
315 /* FIXME-type-allocation: need a way to free this type when we are
317 range_type
= create_range_type ((struct type
*) NULL
,
318 TYPE_TARGET_TYPE (range_type
),
320 new_length
+ low_bound
- 1);
321 deprecated_set_value_type (arg2
, create_array_type ((struct type
*) NULL
,
322 element_type
, range_type
));
327 if (current_language
->c_style_arrays
328 && TYPE_CODE (type2
) == TYPE_CODE_ARRAY
)
329 arg2
= value_coerce_array (arg2
);
331 if (TYPE_CODE (type2
) == TYPE_CODE_FUNC
)
332 arg2
= value_coerce_function (arg2
);
334 type2
= check_typedef (value_type (arg2
));
335 code2
= TYPE_CODE (type2
);
337 if (code1
== TYPE_CODE_COMPLEX
)
338 return cast_into_complex (type
, arg2
);
339 if (code1
== TYPE_CODE_BOOL
)
341 code1
= TYPE_CODE_INT
;
342 convert_to_boolean
= 1;
344 if (code1
== TYPE_CODE_CHAR
)
345 code1
= TYPE_CODE_INT
;
346 if (code2
== TYPE_CODE_BOOL
|| code2
== TYPE_CODE_CHAR
)
347 code2
= TYPE_CODE_INT
;
349 scalar
= (code2
== TYPE_CODE_INT
|| code2
== TYPE_CODE_FLT
350 || code2
== TYPE_CODE_ENUM
|| code2
== TYPE_CODE_RANGE
);
352 if (code1
== TYPE_CODE_STRUCT
353 && code2
== TYPE_CODE_STRUCT
354 && TYPE_NAME (type
) != 0)
356 /* Look in the type of the source to see if it contains the
357 type of the target as a superclass. If so, we'll need to
358 offset the object in addition to changing its type. */
359 struct value
*v
= search_struct_field (type_name_no_tag (type
),
363 deprecated_set_value_type (v
, type
);
367 if (code1
== TYPE_CODE_FLT
&& scalar
)
368 return value_from_double (type
, value_as_double (arg2
));
369 else if ((code1
== TYPE_CODE_INT
|| code1
== TYPE_CODE_ENUM
370 || code1
== TYPE_CODE_RANGE
)
371 && (scalar
|| code2
== TYPE_CODE_PTR
372 || code2
== TYPE_CODE_MEMBERPTR
))
376 /* If target compiled by HP aCC. */
377 if (deprecated_hp_som_som_object_present
378 && code2
== TYPE_CODE_MEMBERPTR
)
381 struct value
*retvalp
;
383 /* With HP aCC, pointers to data members have a bias. */
384 retvalp
= value_from_longest (type
, value_as_long (arg2
));
385 /* force evaluation */
386 ptr
= (unsigned int *) value_contents (retvalp
);
387 *ptr
&= ~0x20000000; /* zap 29th bit to remove bias */
391 /* When we cast pointers to integers, we mustn't use
392 POINTER_TO_ADDRESS to find the address the pointer
393 represents, as value_as_long would. GDB should evaluate
394 expressions just as the compiler would --- and the compiler
395 sees a cast as a simple reinterpretation of the pointer's
397 if (code2
== TYPE_CODE_PTR
)
398 longest
= extract_unsigned_integer (value_contents (arg2
),
399 TYPE_LENGTH (type2
));
401 longest
= value_as_long (arg2
);
402 return value_from_longest (type
, convert_to_boolean
?
403 (LONGEST
) (longest
? 1 : 0) : longest
);
405 else if (code1
== TYPE_CODE_PTR
&& (code2
== TYPE_CODE_INT
||
406 code2
== TYPE_CODE_ENUM
||
407 code2
== TYPE_CODE_RANGE
))
409 /* TYPE_LENGTH (type) is the length of a pointer, but we really
410 want the length of an address! -- we are really dealing with
411 addresses (i.e., gdb representations) not pointers (i.e.,
412 target representations) here.
414 This allows things like "print *(int *)0x01000234" to work
415 without printing a misleading message -- which would
416 otherwise occur when dealing with a target having two byte
417 pointers and four byte addresses. */
419 int addr_bit
= TARGET_ADDR_BIT
;
421 LONGEST longest
= value_as_long (arg2
);
422 if (addr_bit
< sizeof (LONGEST
) * HOST_CHAR_BIT
)
424 if (longest
>= ((LONGEST
) 1 << addr_bit
)
425 || longest
<= -((LONGEST
) 1 << addr_bit
))
426 warning (_("value truncated"));
428 return value_from_longest (type
, longest
);
430 else if (code1
== TYPE_CODE_METHODPTR
&& code2
== TYPE_CODE_INT
431 && value_as_long (arg2
) == 0)
433 struct value
*result
= allocate_value (type
);
434 cplus_make_method_ptr (value_contents_writeable (result
), 0, 0);
437 else if (code1
== TYPE_CODE_MEMBERPTR
&& code2
== TYPE_CODE_INT
438 && value_as_long (arg2
) == 0)
440 /* The Itanium C++ ABI represents NULL pointers to members as
441 minus one, instead of biasing the normal case. */
442 return value_from_longest (type
, -1);
444 else if (TYPE_LENGTH (type
) == TYPE_LENGTH (type2
))
446 if (code1
== TYPE_CODE_PTR
&& code2
== TYPE_CODE_PTR
)
447 return value_cast_pointers (type
, arg2
);
449 arg2
= value_copy (arg2
);
450 deprecated_set_value_type (arg2
, type
);
451 arg2
= value_change_enclosing_type (arg2
, type
);
452 set_value_pointed_to_offset (arg2
, 0); /* pai: chk_val */
455 else if (VALUE_LVAL (arg2
) == lval_memory
)
456 return value_at_lazy (type
, VALUE_ADDRESS (arg2
) + value_offset (arg2
));
457 else if (code1
== TYPE_CODE_VOID
)
459 return value_zero (builtin_type_void
, not_lval
);
463 error (_("Invalid cast."));
468 /* Create a value of type TYPE that is zero, and return it. */
471 value_zero (struct type
*type
, enum lval_type lv
)
473 struct value
*val
= allocate_value (type
);
474 VALUE_LVAL (val
) = lv
;
479 /* Return a value with type TYPE located at ADDR.
481 Call value_at only if the data needs to be fetched immediately;
482 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
483 value_at_lazy instead. value_at_lazy simply records the address of
484 the data and sets the lazy-evaluation-required flag. The lazy flag
485 is tested in the value_contents macro, which is used if and when
486 the contents are actually required.
488 Note: value_at does *NOT* handle embedded offsets; perform such
489 adjustments before or after calling it. */
492 value_at (struct type
*type
, CORE_ADDR addr
)
496 if (TYPE_CODE (check_typedef (type
)) == TYPE_CODE_VOID
)
497 error (_("Attempt to dereference a generic pointer."));
499 val
= allocate_value (type
);
501 read_memory (addr
, value_contents_all_raw (val
), TYPE_LENGTH (type
));
503 VALUE_LVAL (val
) = lval_memory
;
504 VALUE_ADDRESS (val
) = addr
;
509 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
512 value_at_lazy (struct type
*type
, CORE_ADDR addr
)
516 if (TYPE_CODE (check_typedef (type
)) == TYPE_CODE_VOID
)
517 error (_("Attempt to dereference a generic pointer."));
519 val
= allocate_value (type
);
521 VALUE_LVAL (val
) = lval_memory
;
522 VALUE_ADDRESS (val
) = addr
;
523 set_value_lazy (val
, 1);
528 /* Called only from the value_contents and value_contents_all()
529 macros, if the current data for a variable needs to be loaded into
530 value_contents(VAL). Fetches the data from the user's process, and
531 clears the lazy flag to indicate that the data in the buffer is
534 If the value is zero-length, we avoid calling read_memory, which would
535 abort. We mark the value as fetched anyway -- all 0 bytes of it.
537 This function returns a value because it is used in the value_contents
538 macro as part of an expression, where a void would not work. The
542 value_fetch_lazy (struct value
*val
)
544 CORE_ADDR addr
= VALUE_ADDRESS (val
) + value_offset (val
);
545 int length
= TYPE_LENGTH (value_enclosing_type (val
));
547 struct type
*type
= value_type (val
);
549 read_memory (addr
, value_contents_all_raw (val
), length
);
551 set_value_lazy (val
, 0);
556 /* Store the contents of FROMVAL into the location of TOVAL.
557 Return a new value with the location of TOVAL and contents of FROMVAL. */
560 value_assign (struct value
*toval
, struct value
*fromval
)
564 struct frame_id old_frame
;
566 if (!deprecated_value_modifiable (toval
))
567 error (_("Left operand of assignment is not a modifiable lvalue."));
569 toval
= coerce_ref (toval
);
571 type
= value_type (toval
);
572 if (VALUE_LVAL (toval
) != lval_internalvar
)
573 fromval
= value_cast (type
, fromval
);
575 fromval
= coerce_array (fromval
);
576 CHECK_TYPEDEF (type
);
578 /* Since modifying a register can trash the frame chain, and modifying memory
579 can trash the frame cache, we save the old frame and then restore the new
581 old_frame
= get_frame_id (deprecated_safe_get_selected_frame ());
583 switch (VALUE_LVAL (toval
))
585 case lval_internalvar
:
586 set_internalvar (VALUE_INTERNALVAR (toval
), fromval
);
587 val
= value_copy (VALUE_INTERNALVAR (toval
)->value
);
588 val
= value_change_enclosing_type (val
, value_enclosing_type (fromval
));
589 set_value_embedded_offset (val
, value_embedded_offset (fromval
));
590 set_value_pointed_to_offset (val
, value_pointed_to_offset (fromval
));
593 case lval_internalvar_component
:
594 set_internalvar_component (VALUE_INTERNALVAR (toval
),
595 value_offset (toval
),
596 value_bitpos (toval
),
597 value_bitsize (toval
),
603 const gdb_byte
*dest_buffer
;
604 CORE_ADDR changed_addr
;
606 gdb_byte buffer
[sizeof (LONGEST
)];
608 if (value_bitsize (toval
))
610 /* We assume that the argument to read_memory is in units of
611 host chars. FIXME: Is that correct? */
612 changed_len
= (value_bitpos (toval
)
613 + value_bitsize (toval
)
617 if (changed_len
> (int) sizeof (LONGEST
))
618 error (_("Can't handle bitfields which don't fit in a %d bit word."),
619 (int) sizeof (LONGEST
) * HOST_CHAR_BIT
);
621 read_memory (VALUE_ADDRESS (toval
) + value_offset (toval
),
622 buffer
, changed_len
);
623 modify_field (buffer
, value_as_long (fromval
),
624 value_bitpos (toval
), value_bitsize (toval
));
625 changed_addr
= VALUE_ADDRESS (toval
) + value_offset (toval
);
626 dest_buffer
= buffer
;
630 changed_addr
= VALUE_ADDRESS (toval
) + value_offset (toval
);
631 changed_len
= TYPE_LENGTH (type
);
632 dest_buffer
= value_contents (fromval
);
635 write_memory (changed_addr
, dest_buffer
, changed_len
);
636 if (deprecated_memory_changed_hook
)
637 deprecated_memory_changed_hook (changed_addr
, changed_len
);
643 struct frame_info
*frame
;
646 /* Figure out which frame this is in currently. */
647 frame
= frame_find_by_id (VALUE_FRAME_ID (toval
));
648 value_reg
= VALUE_REGNUM (toval
);
651 error (_("Value being assigned to is no longer active."));
653 if (CONVERT_REGISTER_P (VALUE_REGNUM (toval
), type
))
655 /* If TOVAL is a special machine register requiring
656 conversion of program values to a special raw format. */
657 VALUE_TO_REGISTER (frame
, VALUE_REGNUM (toval
),
658 type
, value_contents (fromval
));
662 if (value_bitsize (toval
))
665 gdb_byte buffer
[sizeof (LONGEST
)];
667 changed_len
= (value_bitpos (toval
)
668 + value_bitsize (toval
)
672 if (changed_len
> (int) sizeof (LONGEST
))
673 error (_("Can't handle bitfields which don't fit in a %d bit word."),
674 (int) sizeof (LONGEST
) * HOST_CHAR_BIT
);
676 get_frame_register_bytes (frame
, value_reg
,
677 value_offset (toval
),
678 changed_len
, buffer
);
680 modify_field (buffer
, value_as_long (fromval
),
681 value_bitpos (toval
), value_bitsize (toval
));
683 put_frame_register_bytes (frame
, value_reg
,
684 value_offset (toval
),
685 changed_len
, buffer
);
689 put_frame_register_bytes (frame
, value_reg
,
690 value_offset (toval
),
692 value_contents (fromval
));
696 if (deprecated_register_changed_hook
)
697 deprecated_register_changed_hook (-1);
698 observer_notify_target_changed (¤t_target
);
703 error (_("Left operand of assignment is not an lvalue."));
706 /* Assigning to the stack pointer, frame pointer, and other
707 (architecture and calling convention specific) registers may
708 cause the frame cache to be out of date. Assigning to memory
709 also can. We just do this on all assignments to registers or
710 memory, for simplicity's sake; I doubt the slowdown matters. */
711 switch (VALUE_LVAL (toval
))
716 reinit_frame_cache ();
718 /* Having destoroyed the frame cache, restore the selected frame. */
720 /* FIXME: cagney/2002-11-02: There has to be a better way of
721 doing this. Instead of constantly saving/restoring the
722 frame. Why not create a get_selected_frame() function that,
723 having saved the selected frame's ID can automatically
724 re-find the previously selected frame automatically. */
727 struct frame_info
*fi
= frame_find_by_id (old_frame
);
737 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
738 If the field is signed, and is negative, then sign extend. */
739 if ((value_bitsize (toval
) > 0)
740 && (value_bitsize (toval
) < 8 * (int) sizeof (LONGEST
)))
742 LONGEST fieldval
= value_as_long (fromval
);
743 LONGEST valmask
= (((ULONGEST
) 1) << value_bitsize (toval
)) - 1;
746 if (!TYPE_UNSIGNED (type
) && (fieldval
& (valmask
^ (valmask
>> 1))))
747 fieldval
|= ~valmask
;
749 fromval
= value_from_longest (type
, fieldval
);
752 val
= value_copy (toval
);
753 memcpy (value_contents_raw (val
), value_contents (fromval
),
755 deprecated_set_value_type (val
, type
);
756 val
= value_change_enclosing_type (val
, value_enclosing_type (fromval
));
757 set_value_embedded_offset (val
, value_embedded_offset (fromval
));
758 set_value_pointed_to_offset (val
, value_pointed_to_offset (fromval
));
763 /* Extend a value VAL to COUNT repetitions of its type. */
766 value_repeat (struct value
*arg1
, int count
)
770 if (VALUE_LVAL (arg1
) != lval_memory
)
771 error (_("Only values in memory can be extended with '@'."));
773 error (_("Invalid number %d of repetitions."), count
);
775 val
= allocate_repeat_value (value_enclosing_type (arg1
), count
);
777 read_memory (VALUE_ADDRESS (arg1
) + value_offset (arg1
),
778 value_contents_all_raw (val
),
779 TYPE_LENGTH (value_enclosing_type (val
)));
780 VALUE_LVAL (val
) = lval_memory
;
781 VALUE_ADDRESS (val
) = VALUE_ADDRESS (arg1
) + value_offset (arg1
);
787 value_of_variable (struct symbol
*var
, struct block
*b
)
790 struct frame_info
*frame
= NULL
;
793 frame
= NULL
; /* Use selected frame. */
794 else if (symbol_read_needs_frame (var
))
796 frame
= block_innermost_frame (b
);
799 if (BLOCK_FUNCTION (b
)
800 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b
)))
801 error (_("No frame is currently executing in block %s."),
802 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b
)));
804 error (_("No frame is currently executing in specified block"));
808 val
= read_var_value (var
, frame
);
810 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var
));
815 /* Given a value which is an array, return a value which is a pointer to its
816 first element, regardless of whether or not the array has a nonzero lower
819 FIXME: A previous comment here indicated that this routine should be
820 substracting the array's lower bound. It's not clear to me that this
821 is correct. Given an array subscripting operation, it would certainly
822 work to do the adjustment here, essentially computing:
824 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
826 However I believe a more appropriate and logical place to account for
827 the lower bound is to do so in value_subscript, essentially computing:
829 (&array[0] + ((index - lowerbound) * sizeof array[0]))
831 As further evidence consider what would happen with operations other
832 than array subscripting, where the caller would get back a value that
833 had an address somewhere before the actual first element of the array,
834 and the information about the lower bound would be lost because of
835 the coercion to pointer type.
839 value_coerce_array (struct value
*arg1
)
841 struct type
*type
= check_typedef (value_type (arg1
));
843 if (VALUE_LVAL (arg1
) != lval_memory
)
844 error (_("Attempt to take address of value not located in memory."));
846 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type
)),
847 (VALUE_ADDRESS (arg1
) + value_offset (arg1
)));
850 /* Given a value which is a function, return a value which is a pointer
854 value_coerce_function (struct value
*arg1
)
856 struct value
*retval
;
858 if (VALUE_LVAL (arg1
) != lval_memory
)
859 error (_("Attempt to take address of value not located in memory."));
861 retval
= value_from_pointer (lookup_pointer_type (value_type (arg1
)),
862 (VALUE_ADDRESS (arg1
) + value_offset (arg1
)));
866 /* Return a pointer value for the object for which ARG1 is the contents. */
869 value_addr (struct value
*arg1
)
873 struct type
*type
= check_typedef (value_type (arg1
));
874 if (TYPE_CODE (type
) == TYPE_CODE_REF
)
876 /* Copy the value, but change the type from (T&) to (T*).
877 We keep the same location information, which is efficient,
878 and allows &(&X) to get the location containing the reference. */
879 arg2
= value_copy (arg1
);
880 deprecated_set_value_type (arg2
, lookup_pointer_type (TYPE_TARGET_TYPE (type
)));
883 if (TYPE_CODE (type
) == TYPE_CODE_FUNC
)
884 return value_coerce_function (arg1
);
886 if (VALUE_LVAL (arg1
) != lval_memory
)
887 error (_("Attempt to take address of value not located in memory."));
889 /* Get target memory address */
890 arg2
= value_from_pointer (lookup_pointer_type (value_type (arg1
)),
891 (VALUE_ADDRESS (arg1
)
892 + value_offset (arg1
)
893 + value_embedded_offset (arg1
)));
895 /* This may be a pointer to a base subobject; so remember the
896 full derived object's type ... */
897 arg2
= value_change_enclosing_type (arg2
, lookup_pointer_type (value_enclosing_type (arg1
)));
898 /* ... and also the relative position of the subobject in the full object */
899 set_value_pointed_to_offset (arg2
, value_embedded_offset (arg1
));
903 /* Return a reference value for the object for which ARG1 is the contents. */
906 value_ref (struct value
*arg1
)
910 struct type
*type
= check_typedef (value_type (arg1
));
911 if (TYPE_CODE (type
) == TYPE_CODE_REF
)
914 arg2
= value_addr (arg1
);
915 deprecated_set_value_type (arg2
, lookup_reference_type (type
));
919 /* Given a value of a pointer type, apply the C unary * operator to it. */
922 value_ind (struct value
*arg1
)
924 struct type
*base_type
;
927 arg1
= coerce_array (arg1
);
929 base_type
= check_typedef (value_type (arg1
));
931 /* Allow * on an integer so we can cast it to whatever we want.
932 This returns an int, which seems like the most C-like thing
933 to do. "long long" variables are rare enough that
934 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
935 if (TYPE_CODE (base_type
) == TYPE_CODE_INT
)
936 return value_at_lazy (builtin_type_int
,
937 (CORE_ADDR
) value_as_address (arg1
));
938 else if (TYPE_CODE (base_type
) == TYPE_CODE_PTR
)
940 struct type
*enc_type
;
941 /* We may be pointing to something embedded in a larger object */
942 /* Get the real type of the enclosing object */
943 enc_type
= check_typedef (value_enclosing_type (arg1
));
944 enc_type
= TYPE_TARGET_TYPE (enc_type
);
946 if (TYPE_CODE (check_typedef (enc_type
)) == TYPE_CODE_FUNC
947 || TYPE_CODE (check_typedef (enc_type
)) == TYPE_CODE_METHOD
)
948 /* For functions, go through find_function_addr, which knows
949 how to handle function descriptors. */
950 arg2
= value_at_lazy (enc_type
, find_function_addr (arg1
, NULL
));
952 /* Retrieve the enclosing object pointed to */
953 arg2
= value_at_lazy (enc_type
, (value_as_address (arg1
)
954 - value_pointed_to_offset (arg1
)));
957 deprecated_set_value_type (arg2
, TYPE_TARGET_TYPE (base_type
));
958 /* Add embedding info */
959 arg2
= value_change_enclosing_type (arg2
, enc_type
);
960 set_value_embedded_offset (arg2
, value_pointed_to_offset (arg1
));
962 /* We may be pointing to an object of some derived type */
963 arg2
= value_full_object (arg2
, NULL
, 0, 0, 0);
967 error (_("Attempt to take contents of a non-pointer value."));
968 return 0; /* For lint -- never reached */
971 /* Create a value for an array by allocating space in the inferior, copying
972 the data into that space, and then setting up an array value.
974 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
975 populated from the values passed in ELEMVEC.
977 The element type of the array is inherited from the type of the
978 first element, and all elements must have the same size (though we
979 don't currently enforce any restriction on their types). */
982 value_array (int lowbound
, int highbound
, struct value
**elemvec
)
986 unsigned int typelength
;
988 struct type
*rangetype
;
989 struct type
*arraytype
;
992 /* Validate that the bounds are reasonable and that each of the elements
993 have the same size. */
995 nelem
= highbound
- lowbound
+ 1;
998 error (_("bad array bounds (%d, %d)"), lowbound
, highbound
);
1000 typelength
= TYPE_LENGTH (value_enclosing_type (elemvec
[0]));
1001 for (idx
= 1; idx
< nelem
; idx
++)
1003 if (TYPE_LENGTH (value_enclosing_type (elemvec
[idx
])) != typelength
)
1005 error (_("array elements must all be the same size"));
1009 rangetype
= create_range_type ((struct type
*) NULL
, builtin_type_int
,
1010 lowbound
, highbound
);
1011 arraytype
= create_array_type ((struct type
*) NULL
,
1012 value_enclosing_type (elemvec
[0]), rangetype
);
1014 if (!current_language
->c_style_arrays
)
1016 val
= allocate_value (arraytype
);
1017 for (idx
= 0; idx
< nelem
; idx
++)
1019 memcpy (value_contents_all_raw (val
) + (idx
* typelength
),
1020 value_contents_all (elemvec
[idx
]),
1026 /* Allocate space to store the array in the inferior, and then initialize
1027 it by copying in each element. FIXME: Is it worth it to create a
1028 local buffer in which to collect each value and then write all the
1029 bytes in one operation? */
1031 addr
= allocate_space_in_inferior (nelem
* typelength
);
1032 for (idx
= 0; idx
< nelem
; idx
++)
1034 write_memory (addr
+ (idx
* typelength
),
1035 value_contents_all (elemvec
[idx
]),
1039 /* Create the array type and set up an array value to be evaluated lazily. */
1041 val
= value_at_lazy (arraytype
, addr
);
1045 /* Create a value for a string constant by allocating space in the inferior,
1046 copying the data into that space, and returning the address with type
1047 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1049 Note that string types are like array of char types with a lower bound of
1050 zero and an upper bound of LEN - 1. Also note that the string may contain
1051 embedded null bytes. */
1054 value_string (char *ptr
, int len
)
1057 int lowbound
= current_language
->string_lower_bound
;
1058 struct type
*rangetype
= create_range_type ((struct type
*) NULL
,
1060 lowbound
, len
+ lowbound
- 1);
1061 struct type
*stringtype
1062 = create_string_type ((struct type
*) NULL
, rangetype
);
1065 if (current_language
->c_style_arrays
== 0)
1067 val
= allocate_value (stringtype
);
1068 memcpy (value_contents_raw (val
), ptr
, len
);
1073 /* Allocate space to store the string in the inferior, and then
1074 copy LEN bytes from PTR in gdb to that address in the inferior. */
1076 addr
= allocate_space_in_inferior (len
);
1077 write_memory (addr
, (gdb_byte
*) ptr
, len
);
1079 val
= value_at_lazy (stringtype
, addr
);
1084 value_bitstring (char *ptr
, int len
)
1087 struct type
*domain_type
= create_range_type (NULL
, builtin_type_int
,
1089 struct type
*type
= create_set_type ((struct type
*) NULL
, domain_type
);
1090 TYPE_CODE (type
) = TYPE_CODE_BITSTRING
;
1091 val
= allocate_value (type
);
1092 memcpy (value_contents_raw (val
), ptr
, TYPE_LENGTH (type
));
1096 /* See if we can pass arguments in T2 to a function which takes arguments
1097 of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
1098 vector. If some arguments need coercion of some sort, then the coerced
1099 values are written into T2. Return value is 0 if the arguments could be
1100 matched, or the position at which they differ if not.
1102 STATICP is nonzero if the T1 argument list came from a
1103 static member function. T2 will still include the ``this'' pointer,
1104 but it will be skipped.
1106 For non-static member functions, we ignore the first argument,
1107 which is the type of the instance variable. This is because we want
1108 to handle calls with objects from derived classes. This is not
1109 entirely correct: we should actually check to make sure that a
1110 requested operation is type secure, shouldn't we? FIXME. */
1113 typecmp (int staticp
, int varargs
, int nargs
,
1114 struct field t1
[], struct value
*t2
[])
1119 internal_error (__FILE__
, __LINE__
, _("typecmp: no argument list"));
1121 /* Skip ``this'' argument if applicable. T2 will always include THIS. */
1126 (i
< nargs
) && TYPE_CODE (t1
[i
].type
) != TYPE_CODE_VOID
;
1129 struct type
*tt1
, *tt2
;
1134 tt1
= check_typedef (t1
[i
].type
);
1135 tt2
= check_typedef (value_type (t2
[i
]));
1137 if (TYPE_CODE (tt1
) == TYPE_CODE_REF
1138 /* We should be doing hairy argument matching, as below. */
1139 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1
))) == TYPE_CODE (tt2
)))
1141 if (TYPE_CODE (tt2
) == TYPE_CODE_ARRAY
)
1142 t2
[i
] = value_coerce_array (t2
[i
]);
1144 t2
[i
] = value_ref (t2
[i
]);
1148 /* djb - 20000715 - Until the new type structure is in the
1149 place, and we can attempt things like implicit conversions,
1150 we need to do this so you can take something like a map<const
1151 char *>, and properly access map["hello"], because the
1152 argument to [] will be a reference to a pointer to a char,
1153 and the argument will be a pointer to a char. */
1154 while ( TYPE_CODE(tt1
) == TYPE_CODE_REF
||
1155 TYPE_CODE (tt1
) == TYPE_CODE_PTR
)
1157 tt1
= check_typedef( TYPE_TARGET_TYPE(tt1
) );
1159 while ( TYPE_CODE(tt2
) == TYPE_CODE_ARRAY
||
1160 TYPE_CODE(tt2
) == TYPE_CODE_PTR
||
1161 TYPE_CODE(tt2
) == TYPE_CODE_REF
)
1163 tt2
= check_typedef( TYPE_TARGET_TYPE(tt2
) );
1165 if (TYPE_CODE (tt1
) == TYPE_CODE (tt2
))
1167 /* Array to pointer is a `trivial conversion' according to the ARM. */
1169 /* We should be doing much hairier argument matching (see section 13.2
1170 of the ARM), but as a quick kludge, just check for the same type
1172 if (TYPE_CODE (t1
[i
].type
) != TYPE_CODE (value_type (t2
[i
])))
1175 if (varargs
|| t2
[i
] == NULL
)
1180 /* Helper function used by value_struct_elt to recurse through baseclasses.
1181 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1182 and search in it assuming it has (class) type TYPE.
1183 If found, return value, else return NULL.
1185 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
1186 look for a baseclass named NAME. */
1188 static struct value
*
1189 search_struct_field (char *name
, struct value
*arg1
, int offset
,
1190 struct type
*type
, int looking_for_baseclass
)
1193 int nbases
= TYPE_N_BASECLASSES (type
);
1195 CHECK_TYPEDEF (type
);
1197 if (!looking_for_baseclass
)
1198 for (i
= TYPE_NFIELDS (type
) - 1; i
>= nbases
; i
--)
1200 char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
1202 if (t_field_name
&& (strcmp_iw (t_field_name
, name
) == 0))
1205 if (TYPE_FIELD_STATIC (type
, i
))
1207 v
= value_static_field (type
, i
);
1209 error (_("field %s is nonexistent or has been optimised out"),
1214 v
= value_primitive_field (arg1
, offset
, i
, type
);
1216 error (_("there is no field named %s"), name
);
1222 && (t_field_name
[0] == '\0'
1223 || (TYPE_CODE (type
) == TYPE_CODE_UNION
1224 && (strcmp_iw (t_field_name
, "else") == 0))))
1226 struct type
*field_type
= TYPE_FIELD_TYPE (type
, i
);
1227 if (TYPE_CODE (field_type
) == TYPE_CODE_UNION
1228 || TYPE_CODE (field_type
) == TYPE_CODE_STRUCT
)
1230 /* Look for a match through the fields of an anonymous union,
1231 or anonymous struct. C++ provides anonymous unions.
1233 In the GNU Chill (now deleted from GDB)
1234 implementation of variant record types, each
1235 <alternative field> has an (anonymous) union type,
1236 each member of the union represents a <variant
1237 alternative>. Each <variant alternative> is
1238 represented as a struct, with a member for each
1242 int new_offset
= offset
;
1244 /* This is pretty gross. In G++, the offset in an
1245 anonymous union is relative to the beginning of the
1246 enclosing struct. In the GNU Chill (now deleted
1247 from GDB) implementation of variant records, the
1248 bitpos is zero in an anonymous union field, so we
1249 have to add the offset of the union here. */
1250 if (TYPE_CODE (field_type
) == TYPE_CODE_STRUCT
1251 || (TYPE_NFIELDS (field_type
) > 0
1252 && TYPE_FIELD_BITPOS (field_type
, 0) == 0))
1253 new_offset
+= TYPE_FIELD_BITPOS (type
, i
) / 8;
1255 v
= search_struct_field (name
, arg1
, new_offset
, field_type
,
1256 looking_for_baseclass
);
1263 for (i
= 0; i
< nbases
; i
++)
1266 struct type
*basetype
= check_typedef (TYPE_BASECLASS (type
, i
));
1267 /* If we are looking for baseclasses, this is what we get when we
1268 hit them. But it could happen that the base part's member name
1269 is not yet filled in. */
1270 int found_baseclass
= (looking_for_baseclass
1271 && TYPE_BASECLASS_NAME (type
, i
) != NULL
1272 && (strcmp_iw (name
, TYPE_BASECLASS_NAME (type
, i
)) == 0));
1274 if (BASETYPE_VIA_VIRTUAL (type
, i
))
1277 struct value
*v2
= allocate_value (basetype
);
1279 boffset
= baseclass_offset (type
, i
,
1280 value_contents (arg1
) + offset
,
1281 VALUE_ADDRESS (arg1
)
1282 + value_offset (arg1
) + offset
);
1284 error (_("virtual baseclass botch"));
1286 /* The virtual base class pointer might have been clobbered by the
1287 user program. Make sure that it still points to a valid memory
1291 if (boffset
< 0 || boffset
>= TYPE_LENGTH (type
))
1293 CORE_ADDR base_addr
;
1295 base_addr
= VALUE_ADDRESS (arg1
) + value_offset (arg1
) + boffset
;
1296 if (target_read_memory (base_addr
, value_contents_raw (v2
),
1297 TYPE_LENGTH (basetype
)) != 0)
1298 error (_("virtual baseclass botch"));
1299 VALUE_LVAL (v2
) = lval_memory
;
1300 VALUE_ADDRESS (v2
) = base_addr
;
1304 VALUE_LVAL (v2
) = VALUE_LVAL (arg1
);
1305 VALUE_ADDRESS (v2
) = VALUE_ADDRESS (arg1
);
1306 VALUE_FRAME_ID (v2
) = VALUE_FRAME_ID (arg1
);
1307 set_value_offset (v2
, value_offset (arg1
) + boffset
);
1308 if (value_lazy (arg1
))
1309 set_value_lazy (v2
, 1);
1311 memcpy (value_contents_raw (v2
),
1312 value_contents_raw (arg1
) + boffset
,
1313 TYPE_LENGTH (basetype
));
1316 if (found_baseclass
)
1318 v
= search_struct_field (name
, v2
, 0, TYPE_BASECLASS (type
, i
),
1319 looking_for_baseclass
);
1321 else if (found_baseclass
)
1322 v
= value_primitive_field (arg1
, offset
, i
, type
);
1324 v
= search_struct_field (name
, arg1
,
1325 offset
+ TYPE_BASECLASS_BITPOS (type
, i
) / 8,
1326 basetype
, looking_for_baseclass
);
1334 /* Return the offset (in bytes) of the virtual base of type BASETYPE
1335 * in an object pointed to by VALADDR (on the host), assumed to be of
1336 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
1337 * looking (in case VALADDR is the contents of an enclosing object).
1339 * This routine recurses on the primary base of the derived class because
1340 * the virtual base entries of the primary base appear before the other
1341 * virtual base entries.
1343 * If the virtual base is not found, a negative integer is returned.
1344 * The magnitude of the negative integer is the number of entries in
1345 * the virtual table to skip over (entries corresponding to various
1346 * ancestral classes in the chain of primary bases).
1348 * Important: This assumes the HP / Taligent C++ runtime
1349 * conventions. Use baseclass_offset() instead to deal with g++
1353 find_rt_vbase_offset (struct type
*type
, struct type
*basetype
,
1354 const gdb_byte
*valaddr
, int offset
, int *boffset_p
,
1357 int boffset
; /* offset of virtual base */
1358 int index
; /* displacement to use in virtual table */
1362 CORE_ADDR vtbl
; /* the virtual table pointer */
1363 struct type
*pbc
; /* the primary base class */
1365 /* Look for the virtual base recursively in the primary base, first.
1366 * This is because the derived class object and its primary base
1367 * subobject share the primary virtual table. */
1370 pbc
= TYPE_PRIMARY_BASE (type
);
1373 find_rt_vbase_offset (pbc
, basetype
, valaddr
, offset
, &boffset
, &skip
);
1376 *boffset_p
= boffset
;
1385 /* Find the index of the virtual base according to HP/Taligent
1386 runtime spec. (Depth-first, left-to-right.) */
1387 index
= virtual_base_index_skip_primaries (basetype
, type
);
1391 *skip_p
= skip
+ virtual_base_list_length_skip_primaries (type
);
1396 /* pai: FIXME -- 32x64 possible problem */
1397 /* First word (4 bytes) in object layout is the vtable pointer */
1398 vtbl
= *(CORE_ADDR
*) (valaddr
+ offset
);
1400 /* Before the constructor is invoked, things are usually zero'd out. */
1402 error (_("Couldn't find virtual table -- object may not be constructed yet."));
1405 /* Find virtual base's offset -- jump over entries for primary base
1406 * ancestors, then use the index computed above. But also adjust by
1407 * HP_ACC_VBASE_START for the vtable slots before the start of the
1408 * virtual base entries. Offset is negative -- virtual base entries
1409 * appear _before_ the address point of the virtual table. */
1411 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
1414 /* epstein : FIXME -- added param for overlay section. May not be correct */
1415 vp
= value_at (builtin_type_int
, vtbl
+ 4 * (-skip
- index
- HP_ACC_VBASE_START
));
1416 boffset
= value_as_long (vp
);
1418 *boffset_p
= boffset
;
1423 /* Helper function used by value_struct_elt to recurse through baseclasses.
1424 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1425 and search in it assuming it has (class) type TYPE.
1426 If found, return value, else if name matched and args not return (value)-1,
1427 else return NULL. */
1429 static struct value
*
1430 search_struct_method (char *name
, struct value
**arg1p
,
1431 struct value
**args
, int offset
,
1432 int *static_memfuncp
, struct type
*type
)
1436 int name_matched
= 0;
1437 char dem_opname
[64];
1439 CHECK_TYPEDEF (type
);
1440 for (i
= TYPE_NFN_FIELDS (type
) - 1; i
>= 0; i
--)
1442 char *t_field_name
= TYPE_FN_FIELDLIST_NAME (type
, i
);
1443 /* FIXME! May need to check for ARM demangling here */
1444 if (strncmp (t_field_name
, "__", 2) == 0 ||
1445 strncmp (t_field_name
, "op", 2) == 0 ||
1446 strncmp (t_field_name
, "type", 4) == 0)
1448 if (cplus_demangle_opname (t_field_name
, dem_opname
, DMGL_ANSI
))
1449 t_field_name
= dem_opname
;
1450 else if (cplus_demangle_opname (t_field_name
, dem_opname
, 0))
1451 t_field_name
= dem_opname
;
1453 if (t_field_name
&& (strcmp_iw (t_field_name
, name
) == 0))
1455 int j
= TYPE_FN_FIELDLIST_LENGTH (type
, i
) - 1;
1456 struct fn_field
*f
= TYPE_FN_FIELDLIST1 (type
, i
);
1459 check_stub_method_group (type
, i
);
1460 if (j
> 0 && args
== 0)
1461 error (_("cannot resolve overloaded method `%s': no arguments supplied"), name
);
1462 else if (j
== 0 && args
== 0)
1464 v
= value_fn_field (arg1p
, f
, j
, type
, offset
);
1471 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f
, j
),
1472 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f
, j
)),
1473 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f
, j
)),
1474 TYPE_FN_FIELD_ARGS (f
, j
), args
))
1476 if (TYPE_FN_FIELD_VIRTUAL_P (f
, j
))
1477 return value_virtual_fn_field (arg1p
, f
, j
, type
, offset
);
1478 if (TYPE_FN_FIELD_STATIC_P (f
, j
) && static_memfuncp
)
1479 *static_memfuncp
= 1;
1480 v
= value_fn_field (arg1p
, f
, j
, type
, offset
);
1489 for (i
= TYPE_N_BASECLASSES (type
) - 1; i
>= 0; i
--)
1493 if (BASETYPE_VIA_VIRTUAL (type
, i
))
1495 if (TYPE_HAS_VTABLE (type
))
1497 /* HP aCC compiled type, search for virtual base offset
1498 according to HP/Taligent runtime spec. */
1500 find_rt_vbase_offset (type
, TYPE_BASECLASS (type
, i
),
1501 value_contents_all (*arg1p
),
1502 offset
+ value_embedded_offset (*arg1p
),
1503 &base_offset
, &skip
);
1505 error (_("Virtual base class offset not found in vtable"));
1509 struct type
*baseclass
= check_typedef (TYPE_BASECLASS (type
, i
));
1510 const gdb_byte
*base_valaddr
;
1512 /* The virtual base class pointer might have been clobbered by the
1513 user program. Make sure that it still points to a valid memory
1516 if (offset
< 0 || offset
>= TYPE_LENGTH (type
))
1518 gdb_byte
*tmp
= alloca (TYPE_LENGTH (baseclass
));
1519 if (target_read_memory (VALUE_ADDRESS (*arg1p
)
1520 + value_offset (*arg1p
) + offset
,
1521 tmp
, TYPE_LENGTH (baseclass
)) != 0)
1522 error (_("virtual baseclass botch"));
1526 base_valaddr
= value_contents (*arg1p
) + offset
;
1529 baseclass_offset (type
, i
, base_valaddr
,
1530 VALUE_ADDRESS (*arg1p
)
1531 + value_offset (*arg1p
) + offset
);
1532 if (base_offset
== -1)
1533 error (_("virtual baseclass botch"));
1538 base_offset
= TYPE_BASECLASS_BITPOS (type
, i
) / 8;
1540 v
= search_struct_method (name
, arg1p
, args
, base_offset
+ offset
,
1541 static_memfuncp
, TYPE_BASECLASS (type
, i
));
1542 if (v
== (struct value
*) - 1)
1548 /* FIXME-bothner: Why is this commented out? Why is it here? */
1549 /* *arg1p = arg1_tmp; */
1554 return (struct value
*) - 1;
1559 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1560 extract the component named NAME from the ultimate target structure/union
1561 and return it as a value with its appropriate type.
1562 ERR is used in the error message if *ARGP's type is wrong.
1564 C++: ARGS is a list of argument types to aid in the selection of
1565 an appropriate method. Also, handle derived types.
1567 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1568 where the truthvalue of whether the function that was resolved was
1569 a static member function or not is stored.
1571 ERR is an error message to be printed in case the field is not found. */
1574 value_struct_elt (struct value
**argp
, struct value
**args
,
1575 char *name
, int *static_memfuncp
, char *err
)
1580 *argp
= coerce_array (*argp
);
1582 t
= check_typedef (value_type (*argp
));
1584 /* Follow pointers until we get to a non-pointer. */
1586 while (TYPE_CODE (t
) == TYPE_CODE_PTR
|| TYPE_CODE (t
) == TYPE_CODE_REF
)
1588 *argp
= value_ind (*argp
);
1589 /* Don't coerce fn pointer to fn and then back again! */
1590 if (TYPE_CODE (value_type (*argp
)) != TYPE_CODE_FUNC
)
1591 *argp
= coerce_array (*argp
);
1592 t
= check_typedef (value_type (*argp
));
1595 if (TYPE_CODE (t
) != TYPE_CODE_STRUCT
1596 && TYPE_CODE (t
) != TYPE_CODE_UNION
)
1597 error (_("Attempt to extract a component of a value that is not a %s."), err
);
1599 /* Assume it's not, unless we see that it is. */
1600 if (static_memfuncp
)
1601 *static_memfuncp
= 0;
1605 /* if there are no arguments ...do this... */
1607 /* Try as a field first, because if we succeed, there
1608 is less work to be done. */
1609 v
= search_struct_field (name
, *argp
, 0, t
, 0);
1613 /* C++: If it was not found as a data field, then try to
1614 return it as a pointer to a method. */
1616 if (destructor_name_p (name
, t
))
1617 error (_("Cannot get value of destructor"));
1619 v
= search_struct_method (name
, argp
, args
, 0, static_memfuncp
, t
);
1621 if (v
== (struct value
*) - 1)
1622 error (_("Cannot take address of method %s."), name
);
1625 if (TYPE_NFN_FIELDS (t
))
1626 error (_("There is no member or method named %s."), name
);
1628 error (_("There is no member named %s."), name
);
1633 if (destructor_name_p (name
, t
))
1637 /* Destructors are a special case. */
1638 int m_index
, f_index
;
1641 if (get_destructor_fn_field (t
, &m_index
, &f_index
))
1643 v
= value_fn_field (NULL
, TYPE_FN_FIELDLIST1 (t
, m_index
),
1647 error (_("could not find destructor function named %s."), name
);
1653 error (_("destructor should not have any argument"));
1657 v
= search_struct_method (name
, argp
, args
, 0, static_memfuncp
, t
);
1659 if (v
== (struct value
*) - 1)
1661 error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name
);
1665 /* See if user tried to invoke data as function. If so,
1666 hand it back. If it's not callable (i.e., a pointer to function),
1667 gdb should give an error. */
1668 v
= search_struct_field (name
, *argp
, 0, t
, 0);
1672 error (_("Structure has no component named %s."), name
);
1676 /* Search through the methods of an object (and its bases)
1677 * to find a specified method. Return the pointer to the
1678 * fn_field list of overloaded instances.
1679 * Helper function for value_find_oload_list.
1680 * ARGP is a pointer to a pointer to a value (the object)
1681 * METHOD is a string containing the method name
1682 * OFFSET is the offset within the value
1683 * TYPE is the assumed type of the object
1684 * NUM_FNS is the number of overloaded instances
1685 * BASETYPE is set to the actual type of the subobject where the method is found
1686 * BOFFSET is the offset of the base subobject where the method is found */
1688 static struct fn_field
*
1689 find_method_list (struct value
**argp
, char *method
, int offset
,
1690 struct type
*type
, int *num_fns
,
1691 struct type
**basetype
, int *boffset
)
1695 CHECK_TYPEDEF (type
);
1699 /* First check in object itself */
1700 for (i
= TYPE_NFN_FIELDS (type
) - 1; i
>= 0; i
--)
1702 /* pai: FIXME What about operators and type conversions? */
1703 char *fn_field_name
= TYPE_FN_FIELDLIST_NAME (type
, i
);
1704 if (fn_field_name
&& (strcmp_iw (fn_field_name
, method
) == 0))
1706 int len
= TYPE_FN_FIELDLIST_LENGTH (type
, i
);
1707 struct fn_field
*f
= TYPE_FN_FIELDLIST1 (type
, i
);
1713 /* Resolve any stub methods. */
1714 check_stub_method_group (type
, i
);
1720 /* Not found in object, check in base subobjects */
1721 for (i
= TYPE_N_BASECLASSES (type
) - 1; i
>= 0; i
--)
1724 if (BASETYPE_VIA_VIRTUAL (type
, i
))
1726 if (TYPE_HAS_VTABLE (type
))
1728 /* HP aCC compiled type, search for virtual base offset
1729 * according to HP/Taligent runtime spec. */
1731 find_rt_vbase_offset (type
, TYPE_BASECLASS (type
, i
),
1732 value_contents_all (*argp
),
1733 offset
+ value_embedded_offset (*argp
),
1734 &base_offset
, &skip
);
1736 error (_("Virtual base class offset not found in vtable"));
1740 /* probably g++ runtime model */
1741 base_offset
= value_offset (*argp
) + offset
;
1743 baseclass_offset (type
, i
,
1744 value_contents (*argp
) + base_offset
,
1745 VALUE_ADDRESS (*argp
) + base_offset
);
1746 if (base_offset
== -1)
1747 error (_("virtual baseclass botch"));
1751 /* non-virtual base, simply use bit position from debug info */
1753 base_offset
= TYPE_BASECLASS_BITPOS (type
, i
) / 8;
1755 f
= find_method_list (argp
, method
, base_offset
+ offset
,
1756 TYPE_BASECLASS (type
, i
), num_fns
, basetype
,
1764 /* Return the list of overloaded methods of a specified name.
1765 * ARGP is a pointer to a pointer to a value (the object)
1766 * METHOD is the method name
1767 * OFFSET is the offset within the value contents
1768 * NUM_FNS is the number of overloaded instances
1769 * BASETYPE is set to the type of the base subobject that defines the method
1770 * BOFFSET is the offset of the base subobject which defines the method */
1773 value_find_oload_method_list (struct value
**argp
, char *method
, int offset
,
1774 int *num_fns
, struct type
**basetype
,
1779 t
= check_typedef (value_type (*argp
));
1781 /* code snarfed from value_struct_elt */
1782 while (TYPE_CODE (t
) == TYPE_CODE_PTR
|| TYPE_CODE (t
) == TYPE_CODE_REF
)
1784 *argp
= value_ind (*argp
);
1785 /* Don't coerce fn pointer to fn and then back again! */
1786 if (TYPE_CODE (value_type (*argp
)) != TYPE_CODE_FUNC
)
1787 *argp
= coerce_array (*argp
);
1788 t
= check_typedef (value_type (*argp
));
1791 if (TYPE_CODE (t
) != TYPE_CODE_STRUCT
1792 && TYPE_CODE (t
) != TYPE_CODE_UNION
)
1793 error (_("Attempt to extract a component of a value that is not a struct or union"));
1795 return find_method_list (argp
, method
, 0, t
, num_fns
, basetype
, boffset
);
1798 /* Given an array of argument types (ARGTYPES) (which includes an
1799 entry for "this" in the case of C++ methods), the number of
1800 arguments NARGS, the NAME of a function whether it's a method or
1801 not (METHOD), and the degree of laxness (LAX) in conforming to
1802 overload resolution rules in ANSI C++, find the best function that
1803 matches on the argument types according to the overload resolution
1806 In the case of class methods, the parameter OBJ is an object value
1807 in which to search for overloaded methods.
1809 In the case of non-method functions, the parameter FSYM is a symbol
1810 corresponding to one of the overloaded functions.
1812 Return value is an integer: 0 -> good match, 10 -> debugger applied
1813 non-standard coercions, 100 -> incompatible.
1815 If a method is being searched for, VALP will hold the value.
1816 If a non-method is being searched for, SYMP will hold the symbol for it.
1818 If a method is being searched for, and it is a static method,
1819 then STATICP will point to a non-zero value.
1821 Note: This function does *not* check the value of
1822 overload_resolution. Caller must check it to see whether overload
1823 resolution is permitted.
1827 find_overload_match (struct type
**arg_types
, int nargs
, char *name
, int method
,
1828 int lax
, struct value
**objp
, struct symbol
*fsym
,
1829 struct value
**valp
, struct symbol
**symp
, int *staticp
)
1831 struct value
*obj
= (objp
? *objp
: NULL
);
1833 int oload_champ
; /* Index of best overloaded function */
1835 struct badness_vector
*oload_champ_bv
= NULL
; /* The measure for the current best match */
1837 struct value
*temp
= obj
;
1838 struct fn_field
*fns_ptr
= NULL
; /* For methods, the list of overloaded methods */
1839 struct symbol
**oload_syms
= NULL
; /* For non-methods, the list of overloaded function symbols */
1840 int num_fns
= 0; /* Number of overloaded instances being considered */
1841 struct type
*basetype
= NULL
;
1845 struct cleanup
*old_cleanups
= NULL
;
1847 const char *obj_type_name
= NULL
;
1848 char *func_name
= NULL
;
1849 enum oload_classification match_quality
;
1851 /* Get the list of overloaded methods or functions */
1854 obj_type_name
= TYPE_NAME (value_type (obj
));
1855 /* Hack: evaluate_subexp_standard often passes in a pointer
1856 value rather than the object itself, so try again */
1857 if ((!obj_type_name
|| !*obj_type_name
) &&
1858 (TYPE_CODE (value_type (obj
)) == TYPE_CODE_PTR
))
1859 obj_type_name
= TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj
)));
1861 fns_ptr
= value_find_oload_method_list (&temp
, name
, 0,
1863 &basetype
, &boffset
);
1864 if (!fns_ptr
|| !num_fns
)
1865 error (_("Couldn't find method %s%s%s"),
1867 (obj_type_name
&& *obj_type_name
) ? "::" : "",
1869 /* If we are dealing with stub method types, they should have
1870 been resolved by find_method_list via value_find_oload_method_list
1872 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr
[0].type
) != NULL
);
1873 oload_champ
= find_oload_champ (arg_types
, nargs
, method
, num_fns
,
1874 fns_ptr
, oload_syms
, &oload_champ_bv
);
1878 const char *qualified_name
= SYMBOL_CPLUS_DEMANGLED_NAME (fsym
);
1880 /* If we have a C++ name, try to extract just the function
1883 func_name
= cp_func_name (qualified_name
);
1885 /* If there was no C++ name, this must be a C-style function.
1886 Just return the same symbol. Do the same if cp_func_name
1887 fails for some reason. */
1888 if (func_name
== NULL
)
1894 old_cleanups
= make_cleanup (xfree
, func_name
);
1895 make_cleanup (xfree
, oload_syms
);
1896 make_cleanup (xfree
, oload_champ_bv
);
1898 oload_champ
= find_oload_champ_namespace (arg_types
, nargs
,
1905 /* Check how bad the best match is. */
1908 = classify_oload_match (oload_champ_bv
, nargs
,
1909 oload_method_static (method
, fns_ptr
,
1912 if (match_quality
== INCOMPATIBLE
)
1915 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
1917 (obj_type_name
&& *obj_type_name
) ? "::" : "",
1920 error (_("Cannot resolve function %s to any overloaded instance"),
1923 else if (match_quality
== NON_STANDARD
)
1926 warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
1928 (obj_type_name
&& *obj_type_name
) ? "::" : "",
1931 warning (_("Using non-standard conversion to match function %s to supplied arguments"),
1937 if (staticp
!= NULL
)
1938 *staticp
= oload_method_static (method
, fns_ptr
, oload_champ
);
1939 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr
, oload_champ
))
1940 *valp
= value_virtual_fn_field (&temp
, fns_ptr
, oload_champ
, basetype
, boffset
);
1942 *valp
= value_fn_field (&temp
, fns_ptr
, oload_champ
, basetype
, boffset
);
1946 *symp
= oload_syms
[oload_champ
];
1951 if (TYPE_CODE (value_type (temp
)) != TYPE_CODE_PTR
1952 && TYPE_CODE (value_type (*objp
)) == TYPE_CODE_PTR
)
1954 temp
= value_addr (temp
);
1958 if (old_cleanups
!= NULL
)
1959 do_cleanups (old_cleanups
);
1961 switch (match_quality
)
1967 default: /* STANDARD */
1972 /* Find the best overload match, searching for FUNC_NAME in namespaces
1973 contained in QUALIFIED_NAME until it either finds a good match or
1974 runs out of namespaces. It stores the overloaded functions in
1975 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
1976 calling function is responsible for freeing *OLOAD_SYMS and
1980 find_oload_champ_namespace (struct type
**arg_types
, int nargs
,
1981 const char *func_name
,
1982 const char *qualified_name
,
1983 struct symbol
***oload_syms
,
1984 struct badness_vector
**oload_champ_bv
)
1988 find_oload_champ_namespace_loop (arg_types
, nargs
,
1991 oload_syms
, oload_champ_bv
,
1997 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
1998 how deep we've looked for namespaces, and the champ is stored in
1999 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2002 It is the caller's responsibility to free *OLOAD_SYMS and
2006 find_oload_champ_namespace_loop (struct type
**arg_types
, int nargs
,
2007 const char *func_name
,
2008 const char *qualified_name
,
2010 struct symbol
***oload_syms
,
2011 struct badness_vector
**oload_champ_bv
,
2014 int next_namespace_len
= namespace_len
;
2015 int searched_deeper
= 0;
2017 struct cleanup
*old_cleanups
;
2018 int new_oload_champ
;
2019 struct symbol
**new_oload_syms
;
2020 struct badness_vector
*new_oload_champ_bv
;
2021 char *new_namespace
;
2023 if (next_namespace_len
!= 0)
2025 gdb_assert (qualified_name
[next_namespace_len
] == ':');
2026 next_namespace_len
+= 2;
2029 += cp_find_first_component (qualified_name
+ next_namespace_len
);
2031 /* Initialize these to values that can safely be xfree'd. */
2033 *oload_champ_bv
= NULL
;
2035 /* First, see if we have a deeper namespace we can search in. If we
2036 get a good match there, use it. */
2038 if (qualified_name
[next_namespace_len
] == ':')
2040 searched_deeper
= 1;
2042 if (find_oload_champ_namespace_loop (arg_types
, nargs
,
2043 func_name
, qualified_name
,
2045 oload_syms
, oload_champ_bv
,
2052 /* If we reach here, either we're in the deepest namespace or we
2053 didn't find a good match in a deeper namespace. But, in the
2054 latter case, we still have a bad match in a deeper namespace;
2055 note that we might not find any match at all in the current
2056 namespace. (There's always a match in the deepest namespace,
2057 because this overload mechanism only gets called if there's a
2058 function symbol to start off with.) */
2060 old_cleanups
= make_cleanup (xfree
, *oload_syms
);
2061 old_cleanups
= make_cleanup (xfree
, *oload_champ_bv
);
2062 new_namespace
= alloca (namespace_len
+ 1);
2063 strncpy (new_namespace
, qualified_name
, namespace_len
);
2064 new_namespace
[namespace_len
] = '\0';
2065 new_oload_syms
= make_symbol_overload_list (func_name
,
2067 while (new_oload_syms
[num_fns
])
2070 new_oload_champ
= find_oload_champ (arg_types
, nargs
, 0, num_fns
,
2071 NULL
, new_oload_syms
,
2072 &new_oload_champ_bv
);
2074 /* Case 1: We found a good match. Free earlier matches (if any),
2075 and return it. Case 2: We didn't find a good match, but we're
2076 not the deepest function. Then go with the bad match that the
2077 deeper function found. Case 3: We found a bad match, and we're
2078 the deepest function. Then return what we found, even though
2079 it's a bad match. */
2081 if (new_oload_champ
!= -1
2082 && classify_oload_match (new_oload_champ_bv
, nargs
, 0) == STANDARD
)
2084 *oload_syms
= new_oload_syms
;
2085 *oload_champ
= new_oload_champ
;
2086 *oload_champ_bv
= new_oload_champ_bv
;
2087 do_cleanups (old_cleanups
);
2090 else if (searched_deeper
)
2092 xfree (new_oload_syms
);
2093 xfree (new_oload_champ_bv
);
2094 discard_cleanups (old_cleanups
);
2099 gdb_assert (new_oload_champ
!= -1);
2100 *oload_syms
= new_oload_syms
;
2101 *oload_champ
= new_oload_champ
;
2102 *oload_champ_bv
= new_oload_champ_bv
;
2103 discard_cleanups (old_cleanups
);
2108 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2109 the best match from among the overloaded methods or functions
2110 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2111 The number of methods/functions in the list is given by NUM_FNS.
2112 Return the index of the best match; store an indication of the
2113 quality of the match in OLOAD_CHAMP_BV.
2115 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2118 find_oload_champ (struct type
**arg_types
, int nargs
, int method
,
2119 int num_fns
, struct fn_field
*fns_ptr
,
2120 struct symbol
**oload_syms
,
2121 struct badness_vector
**oload_champ_bv
)
2124 struct badness_vector
*bv
; /* A measure of how good an overloaded instance is */
2125 int oload_champ
= -1; /* Index of best overloaded function */
2126 int oload_ambiguous
= 0; /* Current ambiguity state for overload resolution */
2127 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2129 *oload_champ_bv
= NULL
;
2131 /* Consider each candidate in turn */
2132 for (ix
= 0; ix
< num_fns
; ix
++)
2135 int static_offset
= oload_method_static (method
, fns_ptr
, ix
);
2137 struct type
**parm_types
;
2141 nparms
= TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr
, ix
));
2145 /* If it's not a method, this is the proper place */
2146 nparms
=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms
[ix
]));
2149 /* Prepare array of parameter types */
2150 parm_types
= (struct type
**) xmalloc (nparms
* (sizeof (struct type
*)));
2151 for (jj
= 0; jj
< nparms
; jj
++)
2152 parm_types
[jj
] = (method
2153 ? (TYPE_FN_FIELD_ARGS (fns_ptr
, ix
)[jj
].type
)
2154 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms
[ix
]), jj
));
2156 /* Compare parameter types to supplied argument types. Skip THIS for
2158 bv
= rank_function (parm_types
, nparms
, arg_types
+ static_offset
,
2159 nargs
- static_offset
);
2161 if (!*oload_champ_bv
)
2163 *oload_champ_bv
= bv
;
2167 /* See whether current candidate is better or worse than previous best */
2168 switch (compare_badness (bv
, *oload_champ_bv
))
2171 oload_ambiguous
= 1; /* top two contenders are equally good */
2174 oload_ambiguous
= 2; /* incomparable top contenders */
2177 *oload_champ_bv
= bv
; /* new champion, record details */
2178 oload_ambiguous
= 0;
2189 fprintf_filtered (gdb_stderr
,"Overloaded method instance %s, # of parms %d\n", fns_ptr
[ix
].physname
, nparms
);
2191 fprintf_filtered (gdb_stderr
,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms
[ix
]), nparms
);
2192 for (jj
= 0; jj
< nargs
- static_offset
; jj
++)
2193 fprintf_filtered (gdb_stderr
,"...Badness @ %d : %d\n", jj
, bv
->rank
[jj
]);
2194 fprintf_filtered (gdb_stderr
,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ
, oload_ambiguous
);
2201 /* Return 1 if we're looking at a static method, 0 if we're looking at
2202 a non-static method or a function that isn't a method. */
2205 oload_method_static (int method
, struct fn_field
*fns_ptr
, int index
)
2207 if (method
&& TYPE_FN_FIELD_STATIC_P (fns_ptr
, index
))
2213 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2215 static enum oload_classification
2216 classify_oload_match (struct badness_vector
*oload_champ_bv
,
2222 for (ix
= 1; ix
<= nargs
- static_offset
; ix
++)
2224 if (oload_champ_bv
->rank
[ix
] >= 100)
2225 return INCOMPATIBLE
; /* truly mismatched types */
2226 else if (oload_champ_bv
->rank
[ix
] >= 10)
2227 return NON_STANDARD
; /* non-standard type conversions needed */
2230 return STANDARD
; /* Only standard conversions needed. */
2233 /* C++: return 1 is NAME is a legitimate name for the destructor
2234 of type TYPE. If TYPE does not have a destructor, or
2235 if NAME is inappropriate for TYPE, an error is signaled. */
2237 destructor_name_p (const char *name
, const struct type
*type
)
2239 /* destructors are a special case. */
2243 char *dname
= type_name_no_tag (type
);
2244 char *cp
= strchr (dname
, '<');
2247 /* Do not compare the template part for template classes. */
2249 len
= strlen (dname
);
2252 if (strlen (name
+ 1) != len
|| strncmp (dname
, name
+ 1, len
) != 0)
2253 error (_("name of destructor must equal name of class"));
2260 /* Helper function for check_field: Given TYPE, a structure/union,
2261 return 1 if the component named NAME from the ultimate
2262 target structure/union is defined, otherwise, return 0. */
2265 check_field_in (struct type
*type
, const char *name
)
2269 for (i
= TYPE_NFIELDS (type
) - 1; i
>= TYPE_N_BASECLASSES (type
); i
--)
2271 char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
2272 if (t_field_name
&& (strcmp_iw (t_field_name
, name
) == 0))
2276 /* C++: If it was not found as a data field, then try to
2277 return it as a pointer to a method. */
2279 /* Destructors are a special case. */
2280 if (destructor_name_p (name
, type
))
2282 int m_index
, f_index
;
2284 return get_destructor_fn_field (type
, &m_index
, &f_index
);
2287 for (i
= TYPE_NFN_FIELDS (type
) - 1; i
>= 0; --i
)
2289 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type
, i
), name
) == 0)
2293 for (i
= TYPE_N_BASECLASSES (type
) - 1; i
>= 0; i
--)
2294 if (check_field_in (TYPE_BASECLASS (type
, i
), name
))
2301 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2302 return 1 if the component named NAME from the ultimate
2303 target structure/union is defined, otherwise, return 0. */
2306 check_field (struct value
*arg1
, const char *name
)
2310 arg1
= coerce_array (arg1
);
2312 t
= value_type (arg1
);
2314 /* Follow pointers until we get to a non-pointer. */
2319 if (TYPE_CODE (t
) != TYPE_CODE_PTR
&& TYPE_CODE (t
) != TYPE_CODE_REF
)
2321 t
= TYPE_TARGET_TYPE (t
);
2324 if (TYPE_CODE (t
) != TYPE_CODE_STRUCT
2325 && TYPE_CODE (t
) != TYPE_CODE_UNION
)
2326 error (_("Internal error: `this' is not an aggregate"));
2328 return check_field_in (t
, name
);
2331 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2332 return the appropriate member (or the address of the member, if
2333 WANT_ADDRESS). This function is used to resolve user expressions
2334 of the form "DOMAIN::NAME". For more details on what happens, see
2335 the comment before value_struct_elt_for_reference. */
2338 value_aggregate_elt (struct type
*curtype
,
2339 char *name
, int want_address
,
2342 switch (TYPE_CODE (curtype
))
2344 case TYPE_CODE_STRUCT
:
2345 case TYPE_CODE_UNION
:
2346 return value_struct_elt_for_reference (curtype
, 0, curtype
, name
, NULL
,
2347 want_address
, noside
);
2348 case TYPE_CODE_NAMESPACE
:
2349 return value_namespace_elt (curtype
, name
, want_address
, noside
);
2351 internal_error (__FILE__
, __LINE__
,
2352 _("non-aggregate type in value_aggregate_elt"));
2356 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2357 return the address of this member as a "pointer to member"
2358 type. If INTYPE is non-null, then it will be the type
2359 of the member we are looking for. This will help us resolve
2360 "pointers to member functions". This function is used
2361 to resolve user expressions of the form "DOMAIN::NAME". */
2363 static struct value
*
2364 value_struct_elt_for_reference (struct type
*domain
, int offset
,
2365 struct type
*curtype
, char *name
,
2366 struct type
*intype
, int want_address
,
2369 struct type
*t
= curtype
;
2371 struct value
*v
, *result
;
2373 if (TYPE_CODE (t
) != TYPE_CODE_STRUCT
2374 && TYPE_CODE (t
) != TYPE_CODE_UNION
)
2375 error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
2377 for (i
= TYPE_NFIELDS (t
) - 1; i
>= TYPE_N_BASECLASSES (t
); i
--)
2379 char *t_field_name
= TYPE_FIELD_NAME (t
, i
);
2381 if (t_field_name
&& strcmp (t_field_name
, name
) == 0)
2383 if (TYPE_FIELD_STATIC (t
, i
))
2385 v
= value_static_field (t
, i
);
2387 error (_("static field %s has been optimized out"),
2393 if (TYPE_FIELD_PACKED (t
, i
))
2394 error (_("pointers to bitfield members not allowed"));
2397 return value_from_longest
2398 (lookup_memberptr_type (TYPE_FIELD_TYPE (t
, i
), domain
),
2399 offset
+ (LONGEST
) (TYPE_FIELD_BITPOS (t
, i
) >> 3));
2400 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
2401 return allocate_value (TYPE_FIELD_TYPE (t
, i
));
2403 error (_("Cannot reference non-static field \"%s\""), name
);
2407 /* C++: If it was not found as a data field, then try to
2408 return it as a pointer to a method. */
2410 /* Destructors are a special case. */
2411 if (destructor_name_p (name
, t
))
2413 error (_("member pointers to destructors not implemented yet"));
2416 /* Perform all necessary dereferencing. */
2417 while (intype
&& TYPE_CODE (intype
) == TYPE_CODE_PTR
)
2418 intype
= TYPE_TARGET_TYPE (intype
);
2420 for (i
= TYPE_NFN_FIELDS (t
) - 1; i
>= 0; --i
)
2422 char *t_field_name
= TYPE_FN_FIELDLIST_NAME (t
, i
);
2423 char dem_opname
[64];
2425 if (strncmp (t_field_name
, "__", 2) == 0 ||
2426 strncmp (t_field_name
, "op", 2) == 0 ||
2427 strncmp (t_field_name
, "type", 4) == 0)
2429 if (cplus_demangle_opname (t_field_name
, dem_opname
, DMGL_ANSI
))
2430 t_field_name
= dem_opname
;
2431 else if (cplus_demangle_opname (t_field_name
, dem_opname
, 0))
2432 t_field_name
= dem_opname
;
2434 if (t_field_name
&& strcmp (t_field_name
, name
) == 0)
2436 int j
= TYPE_FN_FIELDLIST_LENGTH (t
, i
);
2437 struct fn_field
*f
= TYPE_FN_FIELDLIST1 (t
, i
);
2439 check_stub_method_group (t
, i
);
2441 if (intype
== 0 && j
> 1)
2442 error (_("non-unique member `%s' requires type instantiation"), name
);
2446 if (TYPE_FN_FIELD_TYPE (f
, j
) == intype
)
2449 error (_("no member function matches that type instantiation"));
2454 if (TYPE_FN_FIELD_STATIC_P (f
, j
))
2456 struct symbol
*s
= lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f
, j
),
2457 0, VAR_DOMAIN
, 0, NULL
);
2462 return value_addr (read_var_value (s
, 0));
2464 return read_var_value (s
, 0);
2467 if (TYPE_FN_FIELD_VIRTUAL_P (f
, j
))
2471 result
= allocate_value
2472 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f
, j
)));
2473 cplus_make_method_ptr (value_contents_writeable (result
),
2474 TYPE_FN_FIELD_VOFFSET (f
, j
), 1);
2476 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
2477 return allocate_value (TYPE_FN_FIELD_TYPE (f
, j
));
2479 error (_("Cannot reference virtual member function \"%s\""),
2484 struct symbol
*s
= lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f
, j
),
2485 0, VAR_DOMAIN
, 0, NULL
);
2489 v
= read_var_value (s
, 0);
2494 result
= allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f
, j
)));
2495 cplus_make_method_ptr (value_contents_writeable (result
),
2496 VALUE_ADDRESS (v
), 0);
2502 for (i
= TYPE_N_BASECLASSES (t
) - 1; i
>= 0; i
--)
2507 if (BASETYPE_VIA_VIRTUAL (t
, i
))
2510 base_offset
= TYPE_BASECLASS_BITPOS (t
, i
) / 8;
2511 v
= value_struct_elt_for_reference (domain
,
2512 offset
+ base_offset
,
2513 TYPE_BASECLASS (t
, i
),
2515 intype
, want_address
,
2521 /* As a last chance, pretend that CURTYPE is a namespace, and look
2522 it up that way; this (frequently) works for types nested inside
2525 return value_maybe_namespace_elt (curtype
, name
, want_address
, noside
);
2528 /* C++: Return the member NAME of the namespace given by the type
2531 static struct value
*
2532 value_namespace_elt (const struct type
*curtype
,
2533 char *name
, int want_address
,
2536 struct value
*retval
= value_maybe_namespace_elt (curtype
, name
,
2537 want_address
, noside
);
2540 error (_("No symbol \"%s\" in namespace \"%s\"."), name
,
2541 TYPE_TAG_NAME (curtype
));
2546 /* A helper function used by value_namespace_elt and
2547 value_struct_elt_for_reference. It looks up NAME inside the
2548 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
2549 is a class and NAME refers to a type in CURTYPE itself (as opposed
2550 to, say, some base class of CURTYPE). */
2552 static struct value
*
2553 value_maybe_namespace_elt (const struct type
*curtype
,
2554 char *name
, int want_address
,
2557 const char *namespace_name
= TYPE_TAG_NAME (curtype
);
2559 struct value
*result
;
2561 sym
= cp_lookup_symbol_namespace (namespace_name
, name
, NULL
,
2562 get_selected_block (0), VAR_DOMAIN
,
2567 else if ((noside
== EVAL_AVOID_SIDE_EFFECTS
)
2568 && (SYMBOL_CLASS (sym
) == LOC_TYPEDEF
))
2569 result
= allocate_value (SYMBOL_TYPE (sym
));
2571 result
= value_of_variable (sym
, get_selected_block (0));
2573 if (result
&& want_address
)
2574 result
= value_addr (result
);
2579 /* Given a pointer value V, find the real (RTTI) type
2580 of the object it points to.
2581 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
2582 and refer to the values computed for the object pointed to. */
2585 value_rtti_target_type (struct value
*v
, int *full
, int *top
, int *using_enc
)
2587 struct value
*target
;
2589 target
= value_ind (v
);
2591 return value_rtti_type (target
, full
, top
, using_enc
);
2594 /* Given a value pointed to by ARGP, check its real run-time type, and
2595 if that is different from the enclosing type, create a new value
2596 using the real run-time type as the enclosing type (and of the same
2597 type as ARGP) and return it, with the embedded offset adjusted to
2598 be the correct offset to the enclosed object
2599 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
2600 parameters, computed by value_rtti_type(). If these are available,
2601 they can be supplied and a second call to value_rtti_type() is avoided.
2602 (Pass RTYPE == NULL if they're not available */
2605 value_full_object (struct value
*argp
, struct type
*rtype
, int xfull
, int xtop
,
2608 struct type
*real_type
;
2612 struct value
*new_val
;
2619 using_enc
= xusing_enc
;
2622 real_type
= value_rtti_type (argp
, &full
, &top
, &using_enc
);
2624 /* If no RTTI data, or if object is already complete, do nothing */
2625 if (!real_type
|| real_type
== value_enclosing_type (argp
))
2628 /* If we have the full object, but for some reason the enclosing
2629 type is wrong, set it *//* pai: FIXME -- sounds iffy */
2632 argp
= value_change_enclosing_type (argp
, real_type
);
2636 /* Check if object is in memory */
2637 if (VALUE_LVAL (argp
) != lval_memory
)
2639 warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."), TYPE_NAME (real_type
));
2644 /* All other cases -- retrieve the complete object */
2645 /* Go back by the computed top_offset from the beginning of the object,
2646 adjusting for the embedded offset of argp if that's what value_rtti_type
2647 used for its computation. */
2648 new_val
= value_at_lazy (real_type
, VALUE_ADDRESS (argp
) - top
+
2649 (using_enc
? 0 : value_embedded_offset (argp
)));
2650 deprecated_set_value_type (new_val
, value_type (argp
));
2651 set_value_embedded_offset (new_val
, (using_enc
2652 ? top
+ value_embedded_offset (argp
)
2660 /* Return the value of the local variable, if one exists.
2661 Flag COMPLAIN signals an error if the request is made in an
2662 inappropriate context. */
2665 value_of_local (const char *name
, int complain
)
2667 struct symbol
*func
, *sym
;
2670 struct frame_info
*frame
;
2673 frame
= get_selected_frame (_("no frame selected"));
2676 frame
= deprecated_safe_get_selected_frame ();
2681 func
= get_frame_function (frame
);
2685 error (_("no `%s' in nameless context"), name
);
2690 b
= SYMBOL_BLOCK_VALUE (func
);
2691 if (dict_empty (BLOCK_DICT (b
)))
2694 error (_("no args, no `%s'"), name
);
2699 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2700 symbol instead of the LOC_ARG one (if both exist). */
2701 sym
= lookup_block_symbol (b
, name
, NULL
, VAR_DOMAIN
);
2705 error (_("current stack frame does not contain a variable named `%s'"), name
);
2710 ret
= read_var_value (sym
, frame
);
2711 if (ret
== 0 && complain
)
2712 error (_("`%s' argument unreadable"), name
);
2716 /* C++/Objective-C: return the value of the class instance variable,
2717 if one exists. Flag COMPLAIN signals an error if the request is
2718 made in an inappropriate context. */
2721 value_of_this (int complain
)
2723 if (current_language
->la_language
== language_objc
)
2724 return value_of_local ("self", complain
);
2726 return value_of_local ("this", complain
);
2729 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
2730 long, starting at LOWBOUND. The result has the same lower bound as
2731 the original ARRAY. */
2734 value_slice (struct value
*array
, int lowbound
, int length
)
2736 struct type
*slice_range_type
, *slice_type
, *range_type
;
2737 LONGEST lowerbound
, upperbound
;
2738 struct value
*slice
;
2739 struct type
*array_type
;
2740 array_type
= check_typedef (value_type (array
));
2741 if (TYPE_CODE (array_type
) != TYPE_CODE_ARRAY
2742 && TYPE_CODE (array_type
) != TYPE_CODE_STRING
2743 && TYPE_CODE (array_type
) != TYPE_CODE_BITSTRING
)
2744 error (_("cannot take slice of non-array"));
2745 range_type
= TYPE_INDEX_TYPE (array_type
);
2746 if (get_discrete_bounds (range_type
, &lowerbound
, &upperbound
) < 0)
2747 error (_("slice from bad array or bitstring"));
2748 if (lowbound
< lowerbound
|| length
< 0
2749 || lowbound
+ length
- 1 > upperbound
)
2750 error (_("slice out of range"));
2751 /* FIXME-type-allocation: need a way to free this type when we are
2753 slice_range_type
= create_range_type ((struct type
*) NULL
,
2754 TYPE_TARGET_TYPE (range_type
),
2755 lowbound
, lowbound
+ length
- 1);
2756 if (TYPE_CODE (array_type
) == TYPE_CODE_BITSTRING
)
2759 slice_type
= create_set_type ((struct type
*) NULL
, slice_range_type
);
2760 TYPE_CODE (slice_type
) = TYPE_CODE_BITSTRING
;
2761 slice
= value_zero (slice_type
, not_lval
);
2762 for (i
= 0; i
< length
; i
++)
2764 int element
= value_bit_index (array_type
,
2765 value_contents (array
),
2768 error (_("internal error accessing bitstring"));
2769 else if (element
> 0)
2771 int j
= i
% TARGET_CHAR_BIT
;
2772 if (BITS_BIG_ENDIAN
)
2773 j
= TARGET_CHAR_BIT
- 1 - j
;
2774 value_contents_raw (slice
)[i
/ TARGET_CHAR_BIT
] |= (1 << j
);
2777 /* We should set the address, bitssize, and bitspos, so the clice
2778 can be used on the LHS, but that may require extensions to
2779 value_assign. For now, just leave as a non_lval. FIXME. */
2783 struct type
*element_type
= TYPE_TARGET_TYPE (array_type
);
2785 = (lowbound
- lowerbound
) * TYPE_LENGTH (check_typedef (element_type
));
2786 slice_type
= create_array_type ((struct type
*) NULL
, element_type
,
2788 TYPE_CODE (slice_type
) = TYPE_CODE (array_type
);
2789 slice
= allocate_value (slice_type
);
2790 if (value_lazy (array
))
2791 set_value_lazy (slice
, 1);
2793 memcpy (value_contents_writeable (slice
),
2794 value_contents (array
) + offset
,
2795 TYPE_LENGTH (slice_type
));
2796 if (VALUE_LVAL (array
) == lval_internalvar
)
2797 VALUE_LVAL (slice
) = lval_internalvar_component
;
2799 VALUE_LVAL (slice
) = VALUE_LVAL (array
);
2800 VALUE_ADDRESS (slice
) = VALUE_ADDRESS (array
);
2801 VALUE_FRAME_ID (slice
) = VALUE_FRAME_ID (array
);
2802 set_value_offset (slice
, value_offset (array
) + offset
);
2807 /* Create a value for a FORTRAN complex number. Currently most of
2808 the time values are coerced to COMPLEX*16 (i.e. a complex number
2809 composed of 2 doubles. This really should be a smarter routine
2810 that figures out precision inteligently as opposed to assuming
2811 doubles. FIXME: fmb */
2814 value_literal_complex (struct value
*arg1
, struct value
*arg2
, struct type
*type
)
2817 struct type
*real_type
= TYPE_TARGET_TYPE (type
);
2819 val
= allocate_value (type
);
2820 arg1
= value_cast (real_type
, arg1
);
2821 arg2
= value_cast (real_type
, arg2
);
2823 memcpy (value_contents_raw (val
),
2824 value_contents (arg1
), TYPE_LENGTH (real_type
));
2825 memcpy (value_contents_raw (val
) + TYPE_LENGTH (real_type
),
2826 value_contents (arg2
), TYPE_LENGTH (real_type
));
2830 /* Cast a value into the appropriate complex data type. */
2832 static struct value
*
2833 cast_into_complex (struct type
*type
, struct value
*val
)
2835 struct type
*real_type
= TYPE_TARGET_TYPE (type
);
2836 if (TYPE_CODE (value_type (val
)) == TYPE_CODE_COMPLEX
)
2838 struct type
*val_real_type
= TYPE_TARGET_TYPE (value_type (val
));
2839 struct value
*re_val
= allocate_value (val_real_type
);
2840 struct value
*im_val
= allocate_value (val_real_type
);
2842 memcpy (value_contents_raw (re_val
),
2843 value_contents (val
), TYPE_LENGTH (val_real_type
));
2844 memcpy (value_contents_raw (im_val
),
2845 value_contents (val
) + TYPE_LENGTH (val_real_type
),
2846 TYPE_LENGTH (val_real_type
));
2848 return value_literal_complex (re_val
, im_val
, type
);
2850 else if (TYPE_CODE (value_type (val
)) == TYPE_CODE_FLT
2851 || TYPE_CODE (value_type (val
)) == TYPE_CODE_INT
)
2852 return value_literal_complex (val
, value_zero (real_type
, not_lval
), type
);
2854 error (_("cannot cast non-number to complex"));
2858 _initialize_valops (void)
2860 add_setshow_boolean_cmd ("overload-resolution", class_support
,
2861 &overload_resolution
, _("\
2862 Set overload resolution in evaluating C++ functions."), _("\
2863 Show overload resolution in evaluating C++ functions."), NULL
,
2865 show_overload_resolution
,
2866 &setlist
, &showlist
);
2867 overload_resolution
= 1;