M68K Linux: Define regset structures.
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "dfp.h"
38 #include "tracepoint.h"
39 #include "observer.h"
40 #include "objfiles.h"
41 #include "exceptions.h"
42 #include "extension.h"
43
44 extern unsigned int overload_debug;
45 /* Local functions. */
46
47 static int typecmp (int staticp, int varargs, int nargs,
48 struct field t1[], struct value *t2[]);
49
50 static struct value *search_struct_field (const char *, struct value *,
51 int, struct type *, int);
52
53 static struct value *search_struct_method (const char *, struct value **,
54 struct value **,
55 int, int *, struct type *);
56
57 static int find_oload_champ_namespace (struct value **, int,
58 const char *, const char *,
59 struct symbol ***,
60 struct badness_vector **,
61 const int no_adl);
62
63 static
64 int find_oload_champ_namespace_loop (struct value **, int,
65 const char *, const char *,
66 int, struct symbol ***,
67 struct badness_vector **, int *,
68 const int no_adl);
69
70 static int find_oload_champ (struct value **, int, int,
71 struct fn_field *, VEC (xmethod_worker_ptr) *,
72 struct symbol **, struct badness_vector **);
73
74 static int oload_method_static_p (struct fn_field *, int);
75
76 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
77
78 static enum
79 oload_classification classify_oload_match (struct badness_vector *,
80 int, int);
81
82 static struct value *value_struct_elt_for_reference (struct type *,
83 int, struct type *,
84 const char *,
85 struct type *,
86 int, enum noside);
87
88 static struct value *value_namespace_elt (const struct type *,
89 const char *, int , enum noside);
90
91 static struct value *value_maybe_namespace_elt (const struct type *,
92 const char *, int,
93 enum noside);
94
95 static CORE_ADDR allocate_space_in_inferior (int);
96
97 static struct value *cast_into_complex (struct type *, struct value *);
98
99 static void find_method_list (struct value **, const char *,
100 int, struct type *, struct fn_field **, int *,
101 VEC (xmethod_worker_ptr) **,
102 struct type **, int *);
103
104 void _initialize_valops (void);
105
106 #if 0
107 /* Flag for whether we want to abandon failed expression evals by
108 default. */
109
110 static int auto_abandon = 0;
111 #endif
112
113 int overload_resolution = 0;
114 static void
115 show_overload_resolution (struct ui_file *file, int from_tty,
116 struct cmd_list_element *c,
117 const char *value)
118 {
119 fprintf_filtered (file, _("Overload resolution in evaluating "
120 "C++ functions is %s.\n"),
121 value);
122 }
123
124 /* Find the address of function name NAME in the inferior. If OBJF_P
125 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
126 is defined. */
127
128 struct value *
129 find_function_in_inferior (const char *name, struct objfile **objf_p)
130 {
131 struct symbol *sym;
132
133 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
134 if (sym != NULL)
135 {
136 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
137 {
138 error (_("\"%s\" exists in this program but is not a function."),
139 name);
140 }
141
142 if (objf_p)
143 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
144
145 return value_of_variable (sym, NULL);
146 }
147 else
148 {
149 struct bound_minimal_symbol msymbol =
150 lookup_bound_minimal_symbol (name);
151
152 if (msymbol.minsym != NULL)
153 {
154 struct objfile *objfile = msymbol.objfile;
155 struct gdbarch *gdbarch = get_objfile_arch (objfile);
156
157 struct type *type;
158 CORE_ADDR maddr;
159 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
160 type = lookup_function_type (type);
161 type = lookup_pointer_type (type);
162 maddr = BMSYMBOL_VALUE_ADDRESS (msymbol);
163
164 if (objf_p)
165 *objf_p = objfile;
166
167 return value_from_pointer (type, maddr);
168 }
169 else
170 {
171 if (!target_has_execution)
172 error (_("evaluation of this expression "
173 "requires the target program to be active"));
174 else
175 error (_("evaluation of this expression requires the "
176 "program to have a function \"%s\"."),
177 name);
178 }
179 }
180 }
181
182 /* Allocate NBYTES of space in the inferior using the inferior's
183 malloc and return a value that is a pointer to the allocated
184 space. */
185
186 struct value *
187 value_allocate_space_in_inferior (int len)
188 {
189 struct objfile *objf;
190 struct value *val = find_function_in_inferior ("malloc", &objf);
191 struct gdbarch *gdbarch = get_objfile_arch (objf);
192 struct value *blocklen;
193
194 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
195 val = call_function_by_hand (val, 1, &blocklen);
196 if (value_logical_not (val))
197 {
198 if (!target_has_execution)
199 error (_("No memory available to program now: "
200 "you need to start the target first"));
201 else
202 error (_("No memory available to program: call to malloc failed"));
203 }
204 return val;
205 }
206
207 static CORE_ADDR
208 allocate_space_in_inferior (int len)
209 {
210 return value_as_long (value_allocate_space_in_inferior (len));
211 }
212
213 /* Cast struct value VAL to type TYPE and return as a value.
214 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
215 for this to work. Typedef to one of the codes is permitted.
216 Returns NULL if the cast is neither an upcast nor a downcast. */
217
218 static struct value *
219 value_cast_structs (struct type *type, struct value *v2)
220 {
221 struct type *t1;
222 struct type *t2;
223 struct value *v;
224
225 gdb_assert (type != NULL && v2 != NULL);
226
227 t1 = check_typedef (type);
228 t2 = check_typedef (value_type (v2));
229
230 /* Check preconditions. */
231 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
232 || TYPE_CODE (t1) == TYPE_CODE_UNION)
233 && !!"Precondition is that type is of STRUCT or UNION kind.");
234 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
235 || TYPE_CODE (t2) == TYPE_CODE_UNION)
236 && !!"Precondition is that value is of STRUCT or UNION kind");
237
238 if (TYPE_NAME (t1) != NULL
239 && TYPE_NAME (t2) != NULL
240 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
241 return NULL;
242
243 /* Upcasting: look in the type of the source to see if it contains the
244 type of the target as a superclass. If so, we'll need to
245 offset the pointer rather than just change its type. */
246 if (TYPE_NAME (t1) != NULL)
247 {
248 v = search_struct_field (type_name_no_tag (t1),
249 v2, 0, t2, 1);
250 if (v)
251 return v;
252 }
253
254 /* Downcasting: look in the type of the target to see if it contains the
255 type of the source as a superclass. If so, we'll need to
256 offset the pointer rather than just change its type. */
257 if (TYPE_NAME (t2) != NULL)
258 {
259 /* Try downcasting using the run-time type of the value. */
260 int full, top, using_enc;
261 struct type *real_type;
262
263 real_type = value_rtti_type (v2, &full, &top, &using_enc);
264 if (real_type)
265 {
266 v = value_full_object (v2, real_type, full, top, using_enc);
267 v = value_at_lazy (real_type, value_address (v));
268 real_type = value_type (v);
269
270 /* We might be trying to cast to the outermost enclosing
271 type, in which case search_struct_field won't work. */
272 if (TYPE_NAME (real_type) != NULL
273 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
274 return v;
275
276 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
277 if (v)
278 return v;
279 }
280
281 /* Try downcasting using information from the destination type
282 T2. This wouldn't work properly for classes with virtual
283 bases, but those were handled above. */
284 v = search_struct_field (type_name_no_tag (t2),
285 value_zero (t1, not_lval), 0, t1, 1);
286 if (v)
287 {
288 /* Downcasting is possible (t1 is superclass of v2). */
289 CORE_ADDR addr2 = value_address (v2);
290
291 addr2 -= value_address (v) + value_embedded_offset (v);
292 return value_at (type, addr2);
293 }
294 }
295
296 return NULL;
297 }
298
299 /* Cast one pointer or reference type to another. Both TYPE and
300 the type of ARG2 should be pointer types, or else both should be
301 reference types. If SUBCLASS_CHECK is non-zero, this will force a
302 check to see whether TYPE is a superclass of ARG2's type. If
303 SUBCLASS_CHECK is zero, then the subclass check is done only when
304 ARG2 is itself non-zero. Returns the new pointer or reference. */
305
306 struct value *
307 value_cast_pointers (struct type *type, struct value *arg2,
308 int subclass_check)
309 {
310 struct type *type1 = check_typedef (type);
311 struct type *type2 = check_typedef (value_type (arg2));
312 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
313 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
314
315 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
316 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
317 && (subclass_check || !value_logical_not (arg2)))
318 {
319 struct value *v2;
320
321 if (TYPE_CODE (type2) == TYPE_CODE_REF)
322 v2 = coerce_ref (arg2);
323 else
324 v2 = value_ind (arg2);
325 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
326 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
327 v2 = value_cast_structs (t1, v2);
328 /* At this point we have what we can have, un-dereference if needed. */
329 if (v2)
330 {
331 struct value *v = value_addr (v2);
332
333 deprecated_set_value_type (v, type);
334 return v;
335 }
336 }
337
338 /* No superclass found, just change the pointer type. */
339 arg2 = value_copy (arg2);
340 deprecated_set_value_type (arg2, type);
341 set_value_enclosing_type (arg2, type);
342 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
343 return arg2;
344 }
345
346 /* Cast value ARG2 to type TYPE and return as a value.
347 More general than a C cast: accepts any two types of the same length,
348 and if ARG2 is an lvalue it can be cast into anything at all. */
349 /* In C++, casts may change pointer or object representations. */
350
351 struct value *
352 value_cast (struct type *type, struct value *arg2)
353 {
354 enum type_code code1;
355 enum type_code code2;
356 int scalar;
357 struct type *type2;
358
359 int convert_to_boolean = 0;
360
361 if (value_type (arg2) == type)
362 return arg2;
363
364 code1 = TYPE_CODE (check_typedef (type));
365
366 /* Check if we are casting struct reference to struct reference. */
367 if (code1 == TYPE_CODE_REF)
368 {
369 /* We dereference type; then we recurse and finally
370 we generate value of the given reference. Nothing wrong with
371 that. */
372 struct type *t1 = check_typedef (type);
373 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
374 struct value *val = value_cast (dereftype, arg2);
375
376 return value_ref (val);
377 }
378
379 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
380
381 if (code2 == TYPE_CODE_REF)
382 /* We deref the value and then do the cast. */
383 return value_cast (type, coerce_ref (arg2));
384
385 CHECK_TYPEDEF (type);
386 code1 = TYPE_CODE (type);
387 arg2 = coerce_ref (arg2);
388 type2 = check_typedef (value_type (arg2));
389
390 /* You can't cast to a reference type. See value_cast_pointers
391 instead. */
392 gdb_assert (code1 != TYPE_CODE_REF);
393
394 /* A cast to an undetermined-length array_type, such as
395 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
396 where N is sizeof(OBJECT)/sizeof(TYPE). */
397 if (code1 == TYPE_CODE_ARRAY)
398 {
399 struct type *element_type = TYPE_TARGET_TYPE (type);
400 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
401
402 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
403 {
404 struct type *range_type = TYPE_INDEX_TYPE (type);
405 int val_length = TYPE_LENGTH (type2);
406 LONGEST low_bound, high_bound, new_length;
407
408 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
409 low_bound = 0, high_bound = 0;
410 new_length = val_length / element_length;
411 if (val_length % element_length != 0)
412 warning (_("array element type size does not "
413 "divide object size in cast"));
414 /* FIXME-type-allocation: need a way to free this type when
415 we are done with it. */
416 range_type = create_static_range_type ((struct type *) NULL,
417 TYPE_TARGET_TYPE (range_type),
418 low_bound,
419 new_length + low_bound - 1);
420 deprecated_set_value_type (arg2,
421 create_array_type ((struct type *) NULL,
422 element_type,
423 range_type));
424 return arg2;
425 }
426 }
427
428 if (current_language->c_style_arrays
429 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
430 && !TYPE_VECTOR (type2))
431 arg2 = value_coerce_array (arg2);
432
433 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
434 arg2 = value_coerce_function (arg2);
435
436 type2 = check_typedef (value_type (arg2));
437 code2 = TYPE_CODE (type2);
438
439 if (code1 == TYPE_CODE_COMPLEX)
440 return cast_into_complex (type, arg2);
441 if (code1 == TYPE_CODE_BOOL)
442 {
443 code1 = TYPE_CODE_INT;
444 convert_to_boolean = 1;
445 }
446 if (code1 == TYPE_CODE_CHAR)
447 code1 = TYPE_CODE_INT;
448 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
449 code2 = TYPE_CODE_INT;
450
451 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
452 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
453 || code2 == TYPE_CODE_RANGE);
454
455 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
456 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
457 && TYPE_NAME (type) != 0)
458 {
459 struct value *v = value_cast_structs (type, arg2);
460
461 if (v)
462 return v;
463 }
464
465 if (code1 == TYPE_CODE_FLT && scalar)
466 return value_from_double (type, value_as_double (arg2));
467 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
468 {
469 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
470 int dec_len = TYPE_LENGTH (type);
471 gdb_byte dec[16];
472
473 if (code2 == TYPE_CODE_FLT)
474 decimal_from_floating (arg2, dec, dec_len, byte_order);
475 else if (code2 == TYPE_CODE_DECFLOAT)
476 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
477 byte_order, dec, dec_len, byte_order);
478 else
479 /* The only option left is an integral type. */
480 decimal_from_integral (arg2, dec, dec_len, byte_order);
481
482 return value_from_decfloat (type, dec);
483 }
484 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
485 || code1 == TYPE_CODE_RANGE)
486 && (scalar || code2 == TYPE_CODE_PTR
487 || code2 == TYPE_CODE_MEMBERPTR))
488 {
489 LONGEST longest;
490
491 /* When we cast pointers to integers, we mustn't use
492 gdbarch_pointer_to_address to find the address the pointer
493 represents, as value_as_long would. GDB should evaluate
494 expressions just as the compiler would --- and the compiler
495 sees a cast as a simple reinterpretation of the pointer's
496 bits. */
497 if (code2 == TYPE_CODE_PTR)
498 longest = extract_unsigned_integer
499 (value_contents (arg2), TYPE_LENGTH (type2),
500 gdbarch_byte_order (get_type_arch (type2)));
501 else
502 longest = value_as_long (arg2);
503 return value_from_longest (type, convert_to_boolean ?
504 (LONGEST) (longest ? 1 : 0) : longest);
505 }
506 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
507 || code2 == TYPE_CODE_ENUM
508 || code2 == TYPE_CODE_RANGE))
509 {
510 /* TYPE_LENGTH (type) is the length of a pointer, but we really
511 want the length of an address! -- we are really dealing with
512 addresses (i.e., gdb representations) not pointers (i.e.,
513 target representations) here.
514
515 This allows things like "print *(int *)0x01000234" to work
516 without printing a misleading message -- which would
517 otherwise occur when dealing with a target having two byte
518 pointers and four byte addresses. */
519
520 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
521 LONGEST longest = value_as_long (arg2);
522
523 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
524 {
525 if (longest >= ((LONGEST) 1 << addr_bit)
526 || longest <= -((LONGEST) 1 << addr_bit))
527 warning (_("value truncated"));
528 }
529 return value_from_longest (type, longest);
530 }
531 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
532 && value_as_long (arg2) == 0)
533 {
534 struct value *result = allocate_value (type);
535
536 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
537 return result;
538 }
539 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
540 && value_as_long (arg2) == 0)
541 {
542 /* The Itanium C++ ABI represents NULL pointers to members as
543 minus one, instead of biasing the normal case. */
544 return value_from_longest (type, -1);
545 }
546 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
547 && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
548 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
549 error (_("Cannot convert between vector values of different sizes"));
550 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
551 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
552 error (_("can only cast scalar to vector of same size"));
553 else if (code1 == TYPE_CODE_VOID)
554 {
555 return value_zero (type, not_lval);
556 }
557 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
558 {
559 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
560 return value_cast_pointers (type, arg2, 0);
561
562 arg2 = value_copy (arg2);
563 deprecated_set_value_type (arg2, type);
564 set_value_enclosing_type (arg2, type);
565 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
566 return arg2;
567 }
568 else if (VALUE_LVAL (arg2) == lval_memory)
569 return value_at_lazy (type, value_address (arg2));
570 else
571 {
572 error (_("Invalid cast."));
573 return 0;
574 }
575 }
576
577 /* The C++ reinterpret_cast operator. */
578
579 struct value *
580 value_reinterpret_cast (struct type *type, struct value *arg)
581 {
582 struct value *result;
583 struct type *real_type = check_typedef (type);
584 struct type *arg_type, *dest_type;
585 int is_ref = 0;
586 enum type_code dest_code, arg_code;
587
588 /* Do reference, function, and array conversion. */
589 arg = coerce_array (arg);
590
591 /* Attempt to preserve the type the user asked for. */
592 dest_type = type;
593
594 /* If we are casting to a reference type, transform
595 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
596 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
597 {
598 is_ref = 1;
599 arg = value_addr (arg);
600 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
601 real_type = lookup_pointer_type (real_type);
602 }
603
604 arg_type = value_type (arg);
605
606 dest_code = TYPE_CODE (real_type);
607 arg_code = TYPE_CODE (arg_type);
608
609 /* We can convert pointer types, or any pointer type to int, or int
610 type to pointer. */
611 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
612 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
613 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
614 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
615 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
616 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
617 || (dest_code == arg_code
618 && (dest_code == TYPE_CODE_PTR
619 || dest_code == TYPE_CODE_METHODPTR
620 || dest_code == TYPE_CODE_MEMBERPTR)))
621 result = value_cast (dest_type, arg);
622 else
623 error (_("Invalid reinterpret_cast"));
624
625 if (is_ref)
626 result = value_cast (type, value_ref (value_ind (result)));
627
628 return result;
629 }
630
631 /* A helper for value_dynamic_cast. This implements the first of two
632 runtime checks: we iterate over all the base classes of the value's
633 class which are equal to the desired class; if only one of these
634 holds the value, then it is the answer. */
635
636 static int
637 dynamic_cast_check_1 (struct type *desired_type,
638 const gdb_byte *valaddr,
639 int embedded_offset,
640 CORE_ADDR address,
641 struct value *val,
642 struct type *search_type,
643 CORE_ADDR arg_addr,
644 struct type *arg_type,
645 struct value **result)
646 {
647 int i, result_count = 0;
648
649 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
650 {
651 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
652 address, val);
653
654 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
655 {
656 if (address + embedded_offset + offset >= arg_addr
657 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
658 {
659 ++result_count;
660 if (!*result)
661 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
662 address + embedded_offset + offset);
663 }
664 }
665 else
666 result_count += dynamic_cast_check_1 (desired_type,
667 valaddr,
668 embedded_offset + offset,
669 address, val,
670 TYPE_BASECLASS (search_type, i),
671 arg_addr,
672 arg_type,
673 result);
674 }
675
676 return result_count;
677 }
678
679 /* A helper for value_dynamic_cast. This implements the second of two
680 runtime checks: we look for a unique public sibling class of the
681 argument's declared class. */
682
683 static int
684 dynamic_cast_check_2 (struct type *desired_type,
685 const gdb_byte *valaddr,
686 int embedded_offset,
687 CORE_ADDR address,
688 struct value *val,
689 struct type *search_type,
690 struct value **result)
691 {
692 int i, result_count = 0;
693
694 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
695 {
696 int offset;
697
698 if (! BASETYPE_VIA_PUBLIC (search_type, i))
699 continue;
700
701 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
702 address, val);
703 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
704 {
705 ++result_count;
706 if (*result == NULL)
707 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
708 address + embedded_offset + offset);
709 }
710 else
711 result_count += dynamic_cast_check_2 (desired_type,
712 valaddr,
713 embedded_offset + offset,
714 address, val,
715 TYPE_BASECLASS (search_type, i),
716 result);
717 }
718
719 return result_count;
720 }
721
722 /* The C++ dynamic_cast operator. */
723
724 struct value *
725 value_dynamic_cast (struct type *type, struct value *arg)
726 {
727 int full, top, using_enc;
728 struct type *resolved_type = check_typedef (type);
729 struct type *arg_type = check_typedef (value_type (arg));
730 struct type *class_type, *rtti_type;
731 struct value *result, *tem, *original_arg = arg;
732 CORE_ADDR addr;
733 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
734
735 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
736 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
737 error (_("Argument to dynamic_cast must be a pointer or reference type"));
738 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
739 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
740 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
741
742 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
743 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
744 {
745 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
746 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
747 && value_as_long (arg) == 0))
748 error (_("Argument to dynamic_cast does not have pointer type"));
749 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
750 {
751 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
752 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
753 error (_("Argument to dynamic_cast does "
754 "not have pointer to class type"));
755 }
756
757 /* Handle NULL pointers. */
758 if (value_as_long (arg) == 0)
759 return value_zero (type, not_lval);
760
761 arg = value_ind (arg);
762 }
763 else
764 {
765 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
766 error (_("Argument to dynamic_cast does not have class type"));
767 }
768
769 /* If the classes are the same, just return the argument. */
770 if (class_types_same_p (class_type, arg_type))
771 return value_cast (type, arg);
772
773 /* If the target type is a unique base class of the argument's
774 declared type, just cast it. */
775 if (is_ancestor (class_type, arg_type))
776 {
777 if (is_unique_ancestor (class_type, arg))
778 return value_cast (type, original_arg);
779 error (_("Ambiguous dynamic_cast"));
780 }
781
782 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
783 if (! rtti_type)
784 error (_("Couldn't determine value's most derived type for dynamic_cast"));
785
786 /* Compute the most derived object's address. */
787 addr = value_address (arg);
788 if (full)
789 {
790 /* Done. */
791 }
792 else if (using_enc)
793 addr += top;
794 else
795 addr += top + value_embedded_offset (arg);
796
797 /* dynamic_cast<void *> means to return a pointer to the
798 most-derived object. */
799 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
800 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
801 return value_at_lazy (type, addr);
802
803 tem = value_at (type, addr);
804 type = value_type (tem);
805
806 /* The first dynamic check specified in 5.2.7. */
807 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
808 {
809 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
810 return tem;
811 result = NULL;
812 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
813 value_contents_for_printing (tem),
814 value_embedded_offset (tem),
815 value_address (tem), tem,
816 rtti_type, addr,
817 arg_type,
818 &result) == 1)
819 return value_cast (type,
820 is_ref ? value_ref (result) : value_addr (result));
821 }
822
823 /* The second dynamic check specified in 5.2.7. */
824 result = NULL;
825 if (is_public_ancestor (arg_type, rtti_type)
826 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
827 value_contents_for_printing (tem),
828 value_embedded_offset (tem),
829 value_address (tem), tem,
830 rtti_type, &result) == 1)
831 return value_cast (type,
832 is_ref ? value_ref (result) : value_addr (result));
833
834 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
835 return value_zero (type, not_lval);
836
837 error (_("dynamic_cast failed"));
838 }
839
840 /* Create a value of type TYPE that is zero, and return it. */
841
842 struct value *
843 value_zero (struct type *type, enum lval_type lv)
844 {
845 struct value *val = allocate_value (type);
846
847 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
848 return val;
849 }
850
851 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
852
853 struct value *
854 value_one (struct type *type)
855 {
856 struct type *type1 = check_typedef (type);
857 struct value *val;
858
859 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
860 {
861 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
862 gdb_byte v[16];
863
864 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
865 val = value_from_decfloat (type, v);
866 }
867 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
868 {
869 val = value_from_double (type, (DOUBLEST) 1);
870 }
871 else if (is_integral_type (type1))
872 {
873 val = value_from_longest (type, (LONGEST) 1);
874 }
875 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
876 {
877 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
878 int i;
879 LONGEST low_bound, high_bound;
880 struct value *tmp;
881
882 if (!get_array_bounds (type1, &low_bound, &high_bound))
883 error (_("Could not determine the vector bounds"));
884
885 val = allocate_value (type);
886 for (i = 0; i < high_bound - low_bound + 1; i++)
887 {
888 tmp = value_one (eltype);
889 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
890 value_contents_all (tmp), TYPE_LENGTH (eltype));
891 }
892 }
893 else
894 {
895 error (_("Not a numeric type."));
896 }
897
898 /* value_one result is never used for assignments to. */
899 gdb_assert (VALUE_LVAL (val) == not_lval);
900
901 return val;
902 }
903
904 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.
905 The type of the created value may differ from the passed type TYPE.
906 Make sure to retrieve the returned values's new type after this call
907 e.g. in case the type is a variable length array. */
908
909 static struct value *
910 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
911 {
912 struct value *val;
913
914 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
915 error (_("Attempt to dereference a generic pointer."));
916
917 val = value_from_contents_and_address (type, NULL, addr);
918
919 if (!lazy)
920 value_fetch_lazy (val);
921
922 return val;
923 }
924
925 /* Return a value with type TYPE located at ADDR.
926
927 Call value_at only if the data needs to be fetched immediately;
928 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
929 value_at_lazy instead. value_at_lazy simply records the address of
930 the data and sets the lazy-evaluation-required flag. The lazy flag
931 is tested in the value_contents macro, which is used if and when
932 the contents are actually required. The type of the created value
933 may differ from the passed type TYPE. Make sure to retrieve the
934 returned values's new type after this call e.g. in case the type
935 is a variable length array.
936
937 Note: value_at does *NOT* handle embedded offsets; perform such
938 adjustments before or after calling it. */
939
940 struct value *
941 value_at (struct type *type, CORE_ADDR addr)
942 {
943 return get_value_at (type, addr, 0);
944 }
945
946 /* Return a lazy value with type TYPE located at ADDR (cf. value_at).
947 The type of the created value may differ from the passed type TYPE.
948 Make sure to retrieve the returned values's new type after this call
949 e.g. in case the type is a variable length array. */
950
951 struct value *
952 value_at_lazy (struct type *type, CORE_ADDR addr)
953 {
954 return get_value_at (type, addr, 1);
955 }
956
957 void
958 read_value_memory (struct value *val, int embedded_offset,
959 int stack, CORE_ADDR memaddr,
960 gdb_byte *buffer, size_t length)
961 {
962 ULONGEST xfered = 0;
963
964 while (xfered < length)
965 {
966 enum target_xfer_status status;
967 ULONGEST xfered_len;
968
969 status = target_xfer_partial (current_target.beneath,
970 TARGET_OBJECT_MEMORY, NULL,
971 buffer + xfered, NULL,
972 memaddr + xfered, length - xfered,
973 &xfered_len);
974
975 if (status == TARGET_XFER_OK)
976 /* nothing */;
977 else if (status == TARGET_XFER_UNAVAILABLE)
978 mark_value_bytes_unavailable (val, embedded_offset + xfered,
979 xfered_len);
980 else if (status == TARGET_XFER_EOF)
981 memory_error (TARGET_XFER_E_IO, memaddr + xfered);
982 else
983 memory_error (status, memaddr + xfered);
984
985 xfered += xfered_len;
986 QUIT;
987 }
988 }
989
990 /* Store the contents of FROMVAL into the location of TOVAL.
991 Return a new value with the location of TOVAL and contents of FROMVAL. */
992
993 struct value *
994 value_assign (struct value *toval, struct value *fromval)
995 {
996 struct type *type;
997 struct value *val;
998 struct frame_id old_frame;
999
1000 if (!deprecated_value_modifiable (toval))
1001 error (_("Left operand of assignment is not a modifiable lvalue."));
1002
1003 toval = coerce_ref (toval);
1004
1005 type = value_type (toval);
1006 if (VALUE_LVAL (toval) != lval_internalvar)
1007 fromval = value_cast (type, fromval);
1008 else
1009 {
1010 /* Coerce arrays and functions to pointers, except for arrays
1011 which only live in GDB's storage. */
1012 if (!value_must_coerce_to_target (fromval))
1013 fromval = coerce_array (fromval);
1014 }
1015
1016 CHECK_TYPEDEF (type);
1017
1018 /* Since modifying a register can trash the frame chain, and
1019 modifying memory can trash the frame cache, we save the old frame
1020 and then restore the new frame afterwards. */
1021 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1022
1023 switch (VALUE_LVAL (toval))
1024 {
1025 case lval_internalvar:
1026 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1027 return value_of_internalvar (get_type_arch (type),
1028 VALUE_INTERNALVAR (toval));
1029
1030 case lval_internalvar_component:
1031 {
1032 int offset = value_offset (toval);
1033
1034 /* Are we dealing with a bitfield?
1035
1036 It is important to mention that `value_parent (toval)' is
1037 non-NULL iff `value_bitsize (toval)' is non-zero. */
1038 if (value_bitsize (toval))
1039 {
1040 /* VALUE_INTERNALVAR below refers to the parent value, while
1041 the offset is relative to this parent value. */
1042 gdb_assert (value_parent (value_parent (toval)) == NULL);
1043 offset += value_offset (value_parent (toval));
1044 }
1045
1046 set_internalvar_component (VALUE_INTERNALVAR (toval),
1047 offset,
1048 value_bitpos (toval),
1049 value_bitsize (toval),
1050 fromval);
1051 }
1052 break;
1053
1054 case lval_memory:
1055 {
1056 const gdb_byte *dest_buffer;
1057 CORE_ADDR changed_addr;
1058 int changed_len;
1059 gdb_byte buffer[sizeof (LONGEST)];
1060
1061 if (value_bitsize (toval))
1062 {
1063 struct value *parent = value_parent (toval);
1064
1065 changed_addr = value_address (parent) + value_offset (toval);
1066 changed_len = (value_bitpos (toval)
1067 + value_bitsize (toval)
1068 + HOST_CHAR_BIT - 1)
1069 / HOST_CHAR_BIT;
1070
1071 /* If we can read-modify-write exactly the size of the
1072 containing type (e.g. short or int) then do so. This
1073 is safer for volatile bitfields mapped to hardware
1074 registers. */
1075 if (changed_len < TYPE_LENGTH (type)
1076 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1077 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1078 changed_len = TYPE_LENGTH (type);
1079
1080 if (changed_len > (int) sizeof (LONGEST))
1081 error (_("Can't handle bitfields which "
1082 "don't fit in a %d bit word."),
1083 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1084
1085 read_memory (changed_addr, buffer, changed_len);
1086 modify_field (type, buffer, value_as_long (fromval),
1087 value_bitpos (toval), value_bitsize (toval));
1088 dest_buffer = buffer;
1089 }
1090 else
1091 {
1092 changed_addr = value_address (toval);
1093 changed_len = TYPE_LENGTH (type);
1094 dest_buffer = value_contents (fromval);
1095 }
1096
1097 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1098 }
1099 break;
1100
1101 case lval_register:
1102 {
1103 struct frame_info *frame;
1104 struct gdbarch *gdbarch;
1105 int value_reg;
1106
1107 /* Figure out which frame this is in currently. */
1108 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1109 value_reg = VALUE_REGNUM (toval);
1110
1111 if (!frame)
1112 error (_("Value being assigned to is no longer active."));
1113
1114 gdbarch = get_frame_arch (frame);
1115 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1116 {
1117 /* If TOVAL is a special machine register requiring
1118 conversion of program values to a special raw
1119 format. */
1120 gdbarch_value_to_register (gdbarch, frame,
1121 VALUE_REGNUM (toval), type,
1122 value_contents (fromval));
1123 }
1124 else
1125 {
1126 if (value_bitsize (toval))
1127 {
1128 struct value *parent = value_parent (toval);
1129 int offset = value_offset (parent) + value_offset (toval);
1130 int changed_len;
1131 gdb_byte buffer[sizeof (LONGEST)];
1132 int optim, unavail;
1133
1134 changed_len = (value_bitpos (toval)
1135 + value_bitsize (toval)
1136 + HOST_CHAR_BIT - 1)
1137 / HOST_CHAR_BIT;
1138
1139 if (changed_len > (int) sizeof (LONGEST))
1140 error (_("Can't handle bitfields which "
1141 "don't fit in a %d bit word."),
1142 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1143
1144 if (!get_frame_register_bytes (frame, value_reg, offset,
1145 changed_len, buffer,
1146 &optim, &unavail))
1147 {
1148 if (optim)
1149 throw_error (OPTIMIZED_OUT_ERROR,
1150 _("value has been optimized out"));
1151 if (unavail)
1152 throw_error (NOT_AVAILABLE_ERROR,
1153 _("value is not available"));
1154 }
1155
1156 modify_field (type, buffer, value_as_long (fromval),
1157 value_bitpos (toval), value_bitsize (toval));
1158
1159 put_frame_register_bytes (frame, value_reg, offset,
1160 changed_len, buffer);
1161 }
1162 else
1163 {
1164 put_frame_register_bytes (frame, value_reg,
1165 value_offset (toval),
1166 TYPE_LENGTH (type),
1167 value_contents (fromval));
1168 }
1169 }
1170
1171 if (deprecated_register_changed_hook)
1172 deprecated_register_changed_hook (-1);
1173 break;
1174 }
1175
1176 case lval_computed:
1177 {
1178 const struct lval_funcs *funcs = value_computed_funcs (toval);
1179
1180 if (funcs->write != NULL)
1181 {
1182 funcs->write (toval, fromval);
1183 break;
1184 }
1185 }
1186 /* Fall through. */
1187
1188 default:
1189 error (_("Left operand of assignment is not an lvalue."));
1190 }
1191
1192 /* Assigning to the stack pointer, frame pointer, and other
1193 (architecture and calling convention specific) registers may
1194 cause the frame cache and regcache to be out of date. Assigning to memory
1195 also can. We just do this on all assignments to registers or
1196 memory, for simplicity's sake; I doubt the slowdown matters. */
1197 switch (VALUE_LVAL (toval))
1198 {
1199 case lval_memory:
1200 case lval_register:
1201 case lval_computed:
1202
1203 observer_notify_target_changed (&current_target);
1204
1205 /* Having destroyed the frame cache, restore the selected
1206 frame. */
1207
1208 /* FIXME: cagney/2002-11-02: There has to be a better way of
1209 doing this. Instead of constantly saving/restoring the
1210 frame. Why not create a get_selected_frame() function that,
1211 having saved the selected frame's ID can automatically
1212 re-find the previously selected frame automatically. */
1213
1214 {
1215 struct frame_info *fi = frame_find_by_id (old_frame);
1216
1217 if (fi != NULL)
1218 select_frame (fi);
1219 }
1220
1221 break;
1222 default:
1223 break;
1224 }
1225
1226 /* If the field does not entirely fill a LONGEST, then zero the sign
1227 bits. If the field is signed, and is negative, then sign
1228 extend. */
1229 if ((value_bitsize (toval) > 0)
1230 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1231 {
1232 LONGEST fieldval = value_as_long (fromval);
1233 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1234
1235 fieldval &= valmask;
1236 if (!TYPE_UNSIGNED (type)
1237 && (fieldval & (valmask ^ (valmask >> 1))))
1238 fieldval |= ~valmask;
1239
1240 fromval = value_from_longest (type, fieldval);
1241 }
1242
1243 /* The return value is a copy of TOVAL so it shares its location
1244 information, but its contents are updated from FROMVAL. This
1245 implies the returned value is not lazy, even if TOVAL was. */
1246 val = value_copy (toval);
1247 set_value_lazy (val, 0);
1248 memcpy (value_contents_raw (val), value_contents (fromval),
1249 TYPE_LENGTH (type));
1250
1251 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1252 in the case of pointer types. For object types, the enclosing type
1253 and embedded offset must *not* be copied: the target object refered
1254 to by TOVAL retains its original dynamic type after assignment. */
1255 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1256 {
1257 set_value_enclosing_type (val, value_enclosing_type (fromval));
1258 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1259 }
1260
1261 return val;
1262 }
1263
1264 /* Extend a value VAL to COUNT repetitions of its type. */
1265
1266 struct value *
1267 value_repeat (struct value *arg1, int count)
1268 {
1269 struct value *val;
1270
1271 if (VALUE_LVAL (arg1) != lval_memory)
1272 error (_("Only values in memory can be extended with '@'."));
1273 if (count < 1)
1274 error (_("Invalid number %d of repetitions."), count);
1275
1276 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1277
1278 VALUE_LVAL (val) = lval_memory;
1279 set_value_address (val, value_address (arg1));
1280
1281 read_value_memory (val, 0, value_stack (val), value_address (val),
1282 value_contents_all_raw (val),
1283 TYPE_LENGTH (value_enclosing_type (val)));
1284
1285 return val;
1286 }
1287
1288 struct value *
1289 value_of_variable (struct symbol *var, const struct block *b)
1290 {
1291 struct frame_info *frame;
1292
1293 if (!symbol_read_needs_frame (var))
1294 frame = NULL;
1295 else if (!b)
1296 frame = get_selected_frame (_("No frame selected."));
1297 else
1298 {
1299 frame = block_innermost_frame (b);
1300 if (!frame)
1301 {
1302 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1303 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1304 error (_("No frame is currently executing in block %s."),
1305 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1306 else
1307 error (_("No frame is currently executing in specified block"));
1308 }
1309 }
1310
1311 return read_var_value (var, frame);
1312 }
1313
1314 struct value *
1315 address_of_variable (struct symbol *var, const struct block *b)
1316 {
1317 struct type *type = SYMBOL_TYPE (var);
1318 struct value *val;
1319
1320 /* Evaluate it first; if the result is a memory address, we're fine.
1321 Lazy evaluation pays off here. */
1322
1323 val = value_of_variable (var, b);
1324 type = value_type (val);
1325
1326 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1327 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1328 {
1329 CORE_ADDR addr = value_address (val);
1330
1331 return value_from_pointer (lookup_pointer_type (type), addr);
1332 }
1333
1334 /* Not a memory address; check what the problem was. */
1335 switch (VALUE_LVAL (val))
1336 {
1337 case lval_register:
1338 {
1339 struct frame_info *frame;
1340 const char *regname;
1341
1342 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1343 gdb_assert (frame);
1344
1345 regname = gdbarch_register_name (get_frame_arch (frame),
1346 VALUE_REGNUM (val));
1347 gdb_assert (regname && *regname);
1348
1349 error (_("Address requested for identifier "
1350 "\"%s\" which is in register $%s"),
1351 SYMBOL_PRINT_NAME (var), regname);
1352 break;
1353 }
1354
1355 default:
1356 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1357 SYMBOL_PRINT_NAME (var));
1358 break;
1359 }
1360
1361 return val;
1362 }
1363
1364 /* Return one if VAL does not live in target memory, but should in order
1365 to operate on it. Otherwise return zero. */
1366
1367 int
1368 value_must_coerce_to_target (struct value *val)
1369 {
1370 struct type *valtype;
1371
1372 /* The only lval kinds which do not live in target memory. */
1373 if (VALUE_LVAL (val) != not_lval
1374 && VALUE_LVAL (val) != lval_internalvar
1375 && VALUE_LVAL (val) != lval_xcallable)
1376 return 0;
1377
1378 valtype = check_typedef (value_type (val));
1379
1380 switch (TYPE_CODE (valtype))
1381 {
1382 case TYPE_CODE_ARRAY:
1383 return TYPE_VECTOR (valtype) ? 0 : 1;
1384 case TYPE_CODE_STRING:
1385 return 1;
1386 default:
1387 return 0;
1388 }
1389 }
1390
1391 /* Make sure that VAL lives in target memory if it's supposed to. For
1392 instance, strings are constructed as character arrays in GDB's
1393 storage, and this function copies them to the target. */
1394
1395 struct value *
1396 value_coerce_to_target (struct value *val)
1397 {
1398 LONGEST length;
1399 CORE_ADDR addr;
1400
1401 if (!value_must_coerce_to_target (val))
1402 return val;
1403
1404 length = TYPE_LENGTH (check_typedef (value_type (val)));
1405 addr = allocate_space_in_inferior (length);
1406 write_memory (addr, value_contents (val), length);
1407 return value_at_lazy (value_type (val), addr);
1408 }
1409
1410 /* Given a value which is an array, return a value which is a pointer
1411 to its first element, regardless of whether or not the array has a
1412 nonzero lower bound.
1413
1414 FIXME: A previous comment here indicated that this routine should
1415 be substracting the array's lower bound. It's not clear to me that
1416 this is correct. Given an array subscripting operation, it would
1417 certainly work to do the adjustment here, essentially computing:
1418
1419 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1420
1421 However I believe a more appropriate and logical place to account
1422 for the lower bound is to do so in value_subscript, essentially
1423 computing:
1424
1425 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1426
1427 As further evidence consider what would happen with operations
1428 other than array subscripting, where the caller would get back a
1429 value that had an address somewhere before the actual first element
1430 of the array, and the information about the lower bound would be
1431 lost because of the coercion to pointer type. */
1432
1433 struct value *
1434 value_coerce_array (struct value *arg1)
1435 {
1436 struct type *type = check_typedef (value_type (arg1));
1437
1438 /* If the user tries to do something requiring a pointer with an
1439 array that has not yet been pushed to the target, then this would
1440 be a good time to do so. */
1441 arg1 = value_coerce_to_target (arg1);
1442
1443 if (VALUE_LVAL (arg1) != lval_memory)
1444 error (_("Attempt to take address of value not located in memory."));
1445
1446 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1447 value_address (arg1));
1448 }
1449
1450 /* Given a value which is a function, return a value which is a pointer
1451 to it. */
1452
1453 struct value *
1454 value_coerce_function (struct value *arg1)
1455 {
1456 struct value *retval;
1457
1458 if (VALUE_LVAL (arg1) != lval_memory)
1459 error (_("Attempt to take address of value not located in memory."));
1460
1461 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1462 value_address (arg1));
1463 return retval;
1464 }
1465
1466 /* Return a pointer value for the object for which ARG1 is the
1467 contents. */
1468
1469 struct value *
1470 value_addr (struct value *arg1)
1471 {
1472 struct value *arg2;
1473 struct type *type = check_typedef (value_type (arg1));
1474
1475 if (TYPE_CODE (type) == TYPE_CODE_REF)
1476 {
1477 /* Copy the value, but change the type from (T&) to (T*). We
1478 keep the same location information, which is efficient, and
1479 allows &(&X) to get the location containing the reference. */
1480 arg2 = value_copy (arg1);
1481 deprecated_set_value_type (arg2,
1482 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1483 return arg2;
1484 }
1485 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1486 return value_coerce_function (arg1);
1487
1488 /* If this is an array that has not yet been pushed to the target,
1489 then this would be a good time to force it to memory. */
1490 arg1 = value_coerce_to_target (arg1);
1491
1492 if (VALUE_LVAL (arg1) != lval_memory)
1493 error (_("Attempt to take address of value not located in memory."));
1494
1495 /* Get target memory address. */
1496 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1497 (value_address (arg1)
1498 + value_embedded_offset (arg1)));
1499
1500 /* This may be a pointer to a base subobject; so remember the
1501 full derived object's type ... */
1502 set_value_enclosing_type (arg2,
1503 lookup_pointer_type (value_enclosing_type (arg1)));
1504 /* ... and also the relative position of the subobject in the full
1505 object. */
1506 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1507 return arg2;
1508 }
1509
1510 /* Return a reference value for the object for which ARG1 is the
1511 contents. */
1512
1513 struct value *
1514 value_ref (struct value *arg1)
1515 {
1516 struct value *arg2;
1517 struct type *type = check_typedef (value_type (arg1));
1518
1519 if (TYPE_CODE (type) == TYPE_CODE_REF)
1520 return arg1;
1521
1522 arg2 = value_addr (arg1);
1523 deprecated_set_value_type (arg2, lookup_reference_type (type));
1524 return arg2;
1525 }
1526
1527 /* Given a value of a pointer type, apply the C unary * operator to
1528 it. */
1529
1530 struct value *
1531 value_ind (struct value *arg1)
1532 {
1533 struct type *base_type;
1534 struct value *arg2;
1535
1536 arg1 = coerce_array (arg1);
1537
1538 base_type = check_typedef (value_type (arg1));
1539
1540 if (VALUE_LVAL (arg1) == lval_computed)
1541 {
1542 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1543
1544 if (funcs->indirect)
1545 {
1546 struct value *result = funcs->indirect (arg1);
1547
1548 if (result)
1549 return result;
1550 }
1551 }
1552
1553 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1554 {
1555 struct type *enc_type;
1556
1557 /* We may be pointing to something embedded in a larger object.
1558 Get the real type of the enclosing object. */
1559 enc_type = check_typedef (value_enclosing_type (arg1));
1560 enc_type = TYPE_TARGET_TYPE (enc_type);
1561
1562 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1563 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1564 /* For functions, go through find_function_addr, which knows
1565 how to handle function descriptors. */
1566 arg2 = value_at_lazy (enc_type,
1567 find_function_addr (arg1, NULL));
1568 else
1569 /* Retrieve the enclosing object pointed to. */
1570 arg2 = value_at_lazy (enc_type,
1571 (value_as_address (arg1)
1572 - value_pointed_to_offset (arg1)));
1573
1574 enc_type = value_type (arg2);
1575 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1576 }
1577
1578 error (_("Attempt to take contents of a non-pointer value."));
1579 return 0; /* For lint -- never reached. */
1580 }
1581 \f
1582 /* Create a value for an array by allocating space in GDB, copying the
1583 data into that space, and then setting up an array value.
1584
1585 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1586 is populated from the values passed in ELEMVEC.
1587
1588 The element type of the array is inherited from the type of the
1589 first element, and all elements must have the same size (though we
1590 don't currently enforce any restriction on their types). */
1591
1592 struct value *
1593 value_array (int lowbound, int highbound, struct value **elemvec)
1594 {
1595 int nelem;
1596 int idx;
1597 unsigned int typelength;
1598 struct value *val;
1599 struct type *arraytype;
1600
1601 /* Validate that the bounds are reasonable and that each of the
1602 elements have the same size. */
1603
1604 nelem = highbound - lowbound + 1;
1605 if (nelem <= 0)
1606 {
1607 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1608 }
1609 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1610 for (idx = 1; idx < nelem; idx++)
1611 {
1612 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1613 {
1614 error (_("array elements must all be the same size"));
1615 }
1616 }
1617
1618 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1619 lowbound, highbound);
1620
1621 if (!current_language->c_style_arrays)
1622 {
1623 val = allocate_value (arraytype);
1624 for (idx = 0; idx < nelem; idx++)
1625 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1626 typelength);
1627 return val;
1628 }
1629
1630 /* Allocate space to store the array, and then initialize it by
1631 copying in each element. */
1632
1633 val = allocate_value (arraytype);
1634 for (idx = 0; idx < nelem; idx++)
1635 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1636 return val;
1637 }
1638
1639 struct value *
1640 value_cstring (char *ptr, ssize_t len, struct type *char_type)
1641 {
1642 struct value *val;
1643 int lowbound = current_language->string_lower_bound;
1644 ssize_t highbound = len / TYPE_LENGTH (char_type);
1645 struct type *stringtype
1646 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1647
1648 val = allocate_value (stringtype);
1649 memcpy (value_contents_raw (val), ptr, len);
1650 return val;
1651 }
1652
1653 /* Create a value for a string constant by allocating space in the
1654 inferior, copying the data into that space, and returning the
1655 address with type TYPE_CODE_STRING. PTR points to the string
1656 constant data; LEN is number of characters.
1657
1658 Note that string types are like array of char types with a lower
1659 bound of zero and an upper bound of LEN - 1. Also note that the
1660 string may contain embedded null bytes. */
1661
1662 struct value *
1663 value_string (char *ptr, ssize_t len, struct type *char_type)
1664 {
1665 struct value *val;
1666 int lowbound = current_language->string_lower_bound;
1667 ssize_t highbound = len / TYPE_LENGTH (char_type);
1668 struct type *stringtype
1669 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1670
1671 val = allocate_value (stringtype);
1672 memcpy (value_contents_raw (val), ptr, len);
1673 return val;
1674 }
1675
1676 \f
1677 /* See if we can pass arguments in T2 to a function which takes
1678 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1679 a NULL-terminated vector. If some arguments need coercion of some
1680 sort, then the coerced values are written into T2. Return value is
1681 0 if the arguments could be matched, or the position at which they
1682 differ if not.
1683
1684 STATICP is nonzero if the T1 argument list came from a static
1685 member function. T2 will still include the ``this'' pointer, but
1686 it will be skipped.
1687
1688 For non-static member functions, we ignore the first argument,
1689 which is the type of the instance variable. This is because we
1690 want to handle calls with objects from derived classes. This is
1691 not entirely correct: we should actually check to make sure that a
1692 requested operation is type secure, shouldn't we? FIXME. */
1693
1694 static int
1695 typecmp (int staticp, int varargs, int nargs,
1696 struct field t1[], struct value *t2[])
1697 {
1698 int i;
1699
1700 if (t2 == 0)
1701 internal_error (__FILE__, __LINE__,
1702 _("typecmp: no argument list"));
1703
1704 /* Skip ``this'' argument if applicable. T2 will always include
1705 THIS. */
1706 if (staticp)
1707 t2 ++;
1708
1709 for (i = 0;
1710 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1711 i++)
1712 {
1713 struct type *tt1, *tt2;
1714
1715 if (!t2[i])
1716 return i + 1;
1717
1718 tt1 = check_typedef (t1[i].type);
1719 tt2 = check_typedef (value_type (t2[i]));
1720
1721 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1722 /* We should be doing hairy argument matching, as below. */
1723 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1724 == TYPE_CODE (tt2)))
1725 {
1726 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1727 t2[i] = value_coerce_array (t2[i]);
1728 else
1729 t2[i] = value_ref (t2[i]);
1730 continue;
1731 }
1732
1733 /* djb - 20000715 - Until the new type structure is in the
1734 place, and we can attempt things like implicit conversions,
1735 we need to do this so you can take something like a map<const
1736 char *>, and properly access map["hello"], because the
1737 argument to [] will be a reference to a pointer to a char,
1738 and the argument will be a pointer to a char. */
1739 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1740 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1741 {
1742 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1743 }
1744 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1745 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1746 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1747 {
1748 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1749 }
1750 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1751 continue;
1752 /* Array to pointer is a `trivial conversion' according to the
1753 ARM. */
1754
1755 /* We should be doing much hairier argument matching (see
1756 section 13.2 of the ARM), but as a quick kludge, just check
1757 for the same type code. */
1758 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1759 return i + 1;
1760 }
1761 if (varargs || t2[i] == NULL)
1762 return 0;
1763 return i + 1;
1764 }
1765
1766 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1767 and *LAST_BOFFSET, and possibly throws an exception if the field
1768 search has yielded ambiguous results. */
1769
1770 static void
1771 update_search_result (struct value **result_ptr, struct value *v,
1772 int *last_boffset, int boffset,
1773 const char *name, struct type *type)
1774 {
1775 if (v != NULL)
1776 {
1777 if (*result_ptr != NULL
1778 /* The result is not ambiguous if all the classes that are
1779 found occupy the same space. */
1780 && *last_boffset != boffset)
1781 error (_("base class '%s' is ambiguous in type '%s'"),
1782 name, TYPE_SAFE_NAME (type));
1783 *result_ptr = v;
1784 *last_boffset = boffset;
1785 }
1786 }
1787
1788 /* A helper for search_struct_field. This does all the work; most
1789 arguments are as passed to search_struct_field. The result is
1790 stored in *RESULT_PTR, which must be initialized to NULL.
1791 OUTERMOST_TYPE is the type of the initial type passed to
1792 search_struct_field; this is used for error reporting when the
1793 lookup is ambiguous. */
1794
1795 static void
1796 do_search_struct_field (const char *name, struct value *arg1, int offset,
1797 struct type *type, int looking_for_baseclass,
1798 struct value **result_ptr,
1799 int *last_boffset,
1800 struct type *outermost_type)
1801 {
1802 int i;
1803 int nbases;
1804
1805 CHECK_TYPEDEF (type);
1806 nbases = TYPE_N_BASECLASSES (type);
1807
1808 if (!looking_for_baseclass)
1809 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1810 {
1811 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1812
1813 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1814 {
1815 struct value *v;
1816
1817 if (field_is_static (&TYPE_FIELD (type, i)))
1818 v = value_static_field (type, i);
1819 else
1820 v = value_primitive_field (arg1, offset, i, type);
1821 *result_ptr = v;
1822 return;
1823 }
1824
1825 if (t_field_name
1826 && (t_field_name[0] == '\0'
1827 || (TYPE_CODE (type) == TYPE_CODE_UNION
1828 && (strcmp_iw (t_field_name, "else") == 0))))
1829 {
1830 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1831
1832 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1833 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1834 {
1835 /* Look for a match through the fields of an anonymous
1836 union, or anonymous struct. C++ provides anonymous
1837 unions.
1838
1839 In the GNU Chill (now deleted from GDB)
1840 implementation of variant record types, each
1841 <alternative field> has an (anonymous) union type,
1842 each member of the union represents a <variant
1843 alternative>. Each <variant alternative> is
1844 represented as a struct, with a member for each
1845 <variant field>. */
1846
1847 struct value *v = NULL;
1848 int new_offset = offset;
1849
1850 /* This is pretty gross. In G++, the offset in an
1851 anonymous union is relative to the beginning of the
1852 enclosing struct. In the GNU Chill (now deleted
1853 from GDB) implementation of variant records, the
1854 bitpos is zero in an anonymous union field, so we
1855 have to add the offset of the union here. */
1856 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1857 || (TYPE_NFIELDS (field_type) > 0
1858 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1859 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1860
1861 do_search_struct_field (name, arg1, new_offset,
1862 field_type,
1863 looking_for_baseclass, &v,
1864 last_boffset,
1865 outermost_type);
1866 if (v)
1867 {
1868 *result_ptr = v;
1869 return;
1870 }
1871 }
1872 }
1873 }
1874
1875 for (i = 0; i < nbases; i++)
1876 {
1877 struct value *v = NULL;
1878 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1879 /* If we are looking for baseclasses, this is what we get when
1880 we hit them. But it could happen that the base part's member
1881 name is not yet filled in. */
1882 int found_baseclass = (looking_for_baseclass
1883 && TYPE_BASECLASS_NAME (type, i) != NULL
1884 && (strcmp_iw (name,
1885 TYPE_BASECLASS_NAME (type,
1886 i)) == 0));
1887 int boffset = value_embedded_offset (arg1) + offset;
1888
1889 if (BASETYPE_VIA_VIRTUAL (type, i))
1890 {
1891 struct value *v2;
1892
1893 boffset = baseclass_offset (type, i,
1894 value_contents_for_printing (arg1),
1895 value_embedded_offset (arg1) + offset,
1896 value_address (arg1),
1897 arg1);
1898
1899 /* The virtual base class pointer might have been clobbered
1900 by the user program. Make sure that it still points to a
1901 valid memory location. */
1902
1903 boffset += value_embedded_offset (arg1) + offset;
1904 if (boffset < 0
1905 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1906 {
1907 CORE_ADDR base_addr;
1908
1909 base_addr = value_address (arg1) + boffset;
1910 v2 = value_at_lazy (basetype, base_addr);
1911 if (target_read_memory (base_addr,
1912 value_contents_raw (v2),
1913 TYPE_LENGTH (value_type (v2))) != 0)
1914 error (_("virtual baseclass botch"));
1915 }
1916 else
1917 {
1918 v2 = value_copy (arg1);
1919 deprecated_set_value_type (v2, basetype);
1920 set_value_embedded_offset (v2, boffset);
1921 }
1922
1923 if (found_baseclass)
1924 v = v2;
1925 else
1926 {
1927 do_search_struct_field (name, v2, 0,
1928 TYPE_BASECLASS (type, i),
1929 looking_for_baseclass,
1930 result_ptr, last_boffset,
1931 outermost_type);
1932 }
1933 }
1934 else if (found_baseclass)
1935 v = value_primitive_field (arg1, offset, i, type);
1936 else
1937 {
1938 do_search_struct_field (name, arg1,
1939 offset + TYPE_BASECLASS_BITPOS (type,
1940 i) / 8,
1941 basetype, looking_for_baseclass,
1942 result_ptr, last_boffset,
1943 outermost_type);
1944 }
1945
1946 update_search_result (result_ptr, v, last_boffset,
1947 boffset, name, outermost_type);
1948 }
1949 }
1950
1951 /* Helper function used by value_struct_elt to recurse through
1952 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1953 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1954 TYPE. If found, return value, else return NULL.
1955
1956 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1957 fields, look for a baseclass named NAME. */
1958
1959 static struct value *
1960 search_struct_field (const char *name, struct value *arg1, int offset,
1961 struct type *type, int looking_for_baseclass)
1962 {
1963 struct value *result = NULL;
1964 int boffset = 0;
1965
1966 do_search_struct_field (name, arg1, offset, type, looking_for_baseclass,
1967 &result, &boffset, type);
1968 return result;
1969 }
1970
1971 /* Helper function used by value_struct_elt to recurse through
1972 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1973 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1974 TYPE.
1975
1976 If found, return value, else if name matched and args not return
1977 (value) -1, else return NULL. */
1978
1979 static struct value *
1980 search_struct_method (const char *name, struct value **arg1p,
1981 struct value **args, int offset,
1982 int *static_memfuncp, struct type *type)
1983 {
1984 int i;
1985 struct value *v;
1986 int name_matched = 0;
1987 char dem_opname[64];
1988
1989 CHECK_TYPEDEF (type);
1990 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1991 {
1992 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1993
1994 /* FIXME! May need to check for ARM demangling here. */
1995 if (strncmp (t_field_name, "__", 2) == 0 ||
1996 strncmp (t_field_name, "op", 2) == 0 ||
1997 strncmp (t_field_name, "type", 4) == 0)
1998 {
1999 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2000 t_field_name = dem_opname;
2001 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2002 t_field_name = dem_opname;
2003 }
2004 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2005 {
2006 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2007 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2008
2009 name_matched = 1;
2010 check_stub_method_group (type, i);
2011 if (j > 0 && args == 0)
2012 error (_("cannot resolve overloaded method "
2013 "`%s': no arguments supplied"), name);
2014 else if (j == 0 && args == 0)
2015 {
2016 v = value_fn_field (arg1p, f, j, type, offset);
2017 if (v != NULL)
2018 return v;
2019 }
2020 else
2021 while (j >= 0)
2022 {
2023 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2024 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2025 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2026 TYPE_FN_FIELD_ARGS (f, j), args))
2027 {
2028 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2029 return value_virtual_fn_field (arg1p, f, j,
2030 type, offset);
2031 if (TYPE_FN_FIELD_STATIC_P (f, j)
2032 && static_memfuncp)
2033 *static_memfuncp = 1;
2034 v = value_fn_field (arg1p, f, j, type, offset);
2035 if (v != NULL)
2036 return v;
2037 }
2038 j--;
2039 }
2040 }
2041 }
2042
2043 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2044 {
2045 int base_offset;
2046 int this_offset;
2047
2048 if (BASETYPE_VIA_VIRTUAL (type, i))
2049 {
2050 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2051 struct value *base_val;
2052 const gdb_byte *base_valaddr;
2053
2054 /* The virtual base class pointer might have been
2055 clobbered by the user program. Make sure that it
2056 still points to a valid memory location. */
2057
2058 if (offset < 0 || offset >= TYPE_LENGTH (type))
2059 {
2060 gdb_byte *tmp;
2061 struct cleanup *back_to;
2062 CORE_ADDR address;
2063
2064 tmp = xmalloc (TYPE_LENGTH (baseclass));
2065 back_to = make_cleanup (xfree, tmp);
2066 address = value_address (*arg1p);
2067
2068 if (target_read_memory (address + offset,
2069 tmp, TYPE_LENGTH (baseclass)) != 0)
2070 error (_("virtual baseclass botch"));
2071
2072 base_val = value_from_contents_and_address (baseclass,
2073 tmp,
2074 address + offset);
2075 base_valaddr = value_contents_for_printing (base_val);
2076 this_offset = 0;
2077 do_cleanups (back_to);
2078 }
2079 else
2080 {
2081 base_val = *arg1p;
2082 base_valaddr = value_contents_for_printing (*arg1p);
2083 this_offset = offset;
2084 }
2085
2086 base_offset = baseclass_offset (type, i, base_valaddr,
2087 this_offset, value_address (base_val),
2088 base_val);
2089 }
2090 else
2091 {
2092 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2093 }
2094 v = search_struct_method (name, arg1p, args, base_offset + offset,
2095 static_memfuncp, TYPE_BASECLASS (type, i));
2096 if (v == (struct value *) - 1)
2097 {
2098 name_matched = 1;
2099 }
2100 else if (v)
2101 {
2102 /* FIXME-bothner: Why is this commented out? Why is it here? */
2103 /* *arg1p = arg1_tmp; */
2104 return v;
2105 }
2106 }
2107 if (name_matched)
2108 return (struct value *) - 1;
2109 else
2110 return NULL;
2111 }
2112
2113 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2114 extract the component named NAME from the ultimate target
2115 structure/union and return it as a value with its appropriate type.
2116 ERR is used in the error message if *ARGP's type is wrong.
2117
2118 C++: ARGS is a list of argument types to aid in the selection of
2119 an appropriate method. Also, handle derived types.
2120
2121 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2122 where the truthvalue of whether the function that was resolved was
2123 a static member function or not is stored.
2124
2125 ERR is an error message to be printed in case the field is not
2126 found. */
2127
2128 struct value *
2129 value_struct_elt (struct value **argp, struct value **args,
2130 const char *name, int *static_memfuncp, const char *err)
2131 {
2132 struct type *t;
2133 struct value *v;
2134
2135 *argp = coerce_array (*argp);
2136
2137 t = check_typedef (value_type (*argp));
2138
2139 /* Follow pointers until we get to a non-pointer. */
2140
2141 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2142 {
2143 *argp = value_ind (*argp);
2144 /* Don't coerce fn pointer to fn and then back again! */
2145 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2146 *argp = coerce_array (*argp);
2147 t = check_typedef (value_type (*argp));
2148 }
2149
2150 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2151 && TYPE_CODE (t) != TYPE_CODE_UNION)
2152 error (_("Attempt to extract a component of a value that is not a %s."),
2153 err);
2154
2155 /* Assume it's not, unless we see that it is. */
2156 if (static_memfuncp)
2157 *static_memfuncp = 0;
2158
2159 if (!args)
2160 {
2161 /* if there are no arguments ...do this... */
2162
2163 /* Try as a field first, because if we succeed, there is less
2164 work to be done. */
2165 v = search_struct_field (name, *argp, 0, t, 0);
2166 if (v)
2167 return v;
2168
2169 /* C++: If it was not found as a data field, then try to
2170 return it as a pointer to a method. */
2171 v = search_struct_method (name, argp, args, 0,
2172 static_memfuncp, t);
2173
2174 if (v == (struct value *) - 1)
2175 error (_("Cannot take address of method %s."), name);
2176 else if (v == 0)
2177 {
2178 if (TYPE_NFN_FIELDS (t))
2179 error (_("There is no member or method named %s."), name);
2180 else
2181 error (_("There is no member named %s."), name);
2182 }
2183 return v;
2184 }
2185
2186 v = search_struct_method (name, argp, args, 0,
2187 static_memfuncp, t);
2188
2189 if (v == (struct value *) - 1)
2190 {
2191 error (_("One of the arguments you tried to pass to %s could not "
2192 "be converted to what the function wants."), name);
2193 }
2194 else if (v == 0)
2195 {
2196 /* See if user tried to invoke data as function. If so, hand it
2197 back. If it's not callable (i.e., a pointer to function),
2198 gdb should give an error. */
2199 v = search_struct_field (name, *argp, 0, t, 0);
2200 /* If we found an ordinary field, then it is not a method call.
2201 So, treat it as if it were a static member function. */
2202 if (v && static_memfuncp)
2203 *static_memfuncp = 1;
2204 }
2205
2206 if (!v)
2207 throw_error (NOT_FOUND_ERROR,
2208 _("Structure has no component named %s."), name);
2209 return v;
2210 }
2211
2212 /* Given *ARGP, a value of type structure or union, or a pointer/reference
2213 to a structure or union, extract and return its component (field) of
2214 type FTYPE at the specified BITPOS.
2215 Throw an exception on error. */
2216
2217 struct value *
2218 value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
2219 const char *err)
2220 {
2221 struct type *t;
2222 struct value *v;
2223 int i;
2224 int nbases;
2225
2226 *argp = coerce_array (*argp);
2227
2228 t = check_typedef (value_type (*argp));
2229
2230 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2231 {
2232 *argp = value_ind (*argp);
2233 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2234 *argp = coerce_array (*argp);
2235 t = check_typedef (value_type (*argp));
2236 }
2237
2238 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2239 && TYPE_CODE (t) != TYPE_CODE_UNION)
2240 error (_("Attempt to extract a component of a value that is not a %s."),
2241 err);
2242
2243 for (i = TYPE_N_BASECLASSES (t); i < TYPE_NFIELDS (t); i++)
2244 {
2245 if (!field_is_static (&TYPE_FIELD (t, i))
2246 && bitpos == TYPE_FIELD_BITPOS (t, i)
2247 && types_equal (ftype, TYPE_FIELD_TYPE (t, i)))
2248 return value_primitive_field (*argp, 0, i, t);
2249 }
2250
2251 error (_("No field with matching bitpos and type."));
2252
2253 /* Never hit. */
2254 return NULL;
2255 }
2256
2257 /* Search through the methods of an object (and its bases) to find a
2258 specified method. Return the pointer to the fn_field list FN_LIST of
2259 overloaded instances defined in the source language. If available
2260 and matching, a vector of matching xmethods defined in extension
2261 languages are also returned in XM_WORKER_VEC
2262
2263 Helper function for value_find_oload_list.
2264 ARGP is a pointer to a pointer to a value (the object).
2265 METHOD is a string containing the method name.
2266 OFFSET is the offset within the value.
2267 TYPE is the assumed type of the object.
2268 FN_LIST is the pointer to matching overloaded instances defined in
2269 source language. Since this is a recursive function, *FN_LIST
2270 should be set to NULL when calling this function.
2271 NUM_FNS is the number of overloaded instances. *NUM_FNS should be set to
2272 0 when calling this function.
2273 XM_WORKER_VEC is the vector of matching xmethod workers. *XM_WORKER_VEC
2274 should also be set to NULL when calling this function.
2275 BASETYPE is set to the actual type of the subobject where the
2276 method is found.
2277 BOFFSET is the offset of the base subobject where the method is found. */
2278
2279 static void
2280 find_method_list (struct value **argp, const char *method,
2281 int offset, struct type *type,
2282 struct fn_field **fn_list, int *num_fns,
2283 VEC (xmethod_worker_ptr) **xm_worker_vec,
2284 struct type **basetype, int *boffset)
2285 {
2286 int i;
2287 struct fn_field *f = NULL;
2288 VEC (xmethod_worker_ptr) *worker_vec = NULL, *new_vec = NULL;
2289
2290 gdb_assert (fn_list != NULL && xm_worker_vec != NULL);
2291 CHECK_TYPEDEF (type);
2292
2293 /* First check in object itself.
2294 This function is called recursively to search through base classes.
2295 If there is a source method match found at some stage, then we need not
2296 look for source methods in consequent recursive calls. */
2297 if ((*fn_list) == NULL)
2298 {
2299 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2300 {
2301 /* pai: FIXME What about operators and type conversions? */
2302 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2303
2304 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2305 {
2306 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2307 f = TYPE_FN_FIELDLIST1 (type, i);
2308 *fn_list = f;
2309
2310 *num_fns = len;
2311 *basetype = type;
2312 *boffset = offset;
2313
2314 /* Resolve any stub methods. */
2315 check_stub_method_group (type, i);
2316
2317 break;
2318 }
2319 }
2320 }
2321
2322 /* Unlike source methods, xmethods can be accumulated over successive
2323 recursive calls. In other words, an xmethod named 'm' in a class
2324 will not hide an xmethod named 'm' in its base class(es). We want
2325 it to be this way because xmethods are after all convenience functions
2326 and hence there is no point restricting them with something like method
2327 hiding. Moreover, if hiding is done for xmethods as well, then we will
2328 have to provide a mechanism to un-hide (like the 'using' construct). */
2329 worker_vec = get_matching_xmethod_workers (type, method);
2330 new_vec = VEC_merge (xmethod_worker_ptr, *xm_worker_vec, worker_vec);
2331
2332 VEC_free (xmethod_worker_ptr, *xm_worker_vec);
2333 VEC_free (xmethod_worker_ptr, worker_vec);
2334 *xm_worker_vec = new_vec;
2335
2336 /* If source methods are not found in current class, look for them in the
2337 base classes. We also have to go through the base classes to gather
2338 extension methods. */
2339 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2340 {
2341 int base_offset;
2342
2343 if (BASETYPE_VIA_VIRTUAL (type, i))
2344 {
2345 base_offset = baseclass_offset (type, i,
2346 value_contents_for_printing (*argp),
2347 value_offset (*argp) + offset,
2348 value_address (*argp), *argp);
2349 }
2350 else /* Non-virtual base, simply use bit position from debug
2351 info. */
2352 {
2353 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2354 }
2355
2356 find_method_list (argp, method, base_offset + offset,
2357 TYPE_BASECLASS (type, i), fn_list, num_fns,
2358 xm_worker_vec, basetype, boffset);
2359 }
2360 }
2361
2362 /* Return the list of overloaded methods of a specified name. The methods
2363 could be those GDB finds in the binary, or xmethod. Methods found in
2364 the binary are returned in FN_LIST, and xmethods are returned in
2365 XM_WORKER_VEC.
2366
2367 ARGP is a pointer to a pointer to a value (the object).
2368 METHOD is the method name.
2369 OFFSET is the offset within the value contents.
2370 FN_LIST is the pointer to matching overloaded instances defined in
2371 source language.
2372 NUM_FNS is the number of overloaded instances.
2373 XM_WORKER_VEC is the vector of matching xmethod workers defined in
2374 extension languages.
2375 BASETYPE is set to the type of the base subobject that defines the
2376 method.
2377 BOFFSET is the offset of the base subobject which defines the method. */
2378
2379 static void
2380 value_find_oload_method_list (struct value **argp, const char *method,
2381 int offset, struct fn_field **fn_list,
2382 int *num_fns,
2383 VEC (xmethod_worker_ptr) **xm_worker_vec,
2384 struct type **basetype, int *boffset)
2385 {
2386 struct type *t;
2387
2388 t = check_typedef (value_type (*argp));
2389
2390 /* Code snarfed from value_struct_elt. */
2391 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2392 {
2393 *argp = value_ind (*argp);
2394 /* Don't coerce fn pointer to fn and then back again! */
2395 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2396 *argp = coerce_array (*argp);
2397 t = check_typedef (value_type (*argp));
2398 }
2399
2400 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2401 && TYPE_CODE (t) != TYPE_CODE_UNION)
2402 error (_("Attempt to extract a component of a "
2403 "value that is not a struct or union"));
2404
2405 gdb_assert (fn_list != NULL && xm_worker_vec != NULL);
2406
2407 /* Clear the lists. */
2408 *fn_list = NULL;
2409 *num_fns = 0;
2410 *xm_worker_vec = NULL;
2411
2412 find_method_list (argp, method, 0, t, fn_list, num_fns, xm_worker_vec,
2413 basetype, boffset);
2414 }
2415
2416 /* Given an array of arguments (ARGS) (which includes an
2417 entry for "this" in the case of C++ methods), the number of
2418 arguments NARGS, the NAME of a function, and whether it's a method or
2419 not (METHOD), find the best function that matches on the argument types
2420 according to the overload resolution rules.
2421
2422 METHOD can be one of three values:
2423 NON_METHOD for non-member functions.
2424 METHOD: for member functions.
2425 BOTH: used for overload resolution of operators where the
2426 candidates are expected to be either member or non member
2427 functions. In this case the first argument ARGTYPES
2428 (representing 'this') is expected to be a reference to the
2429 target object, and will be dereferenced when attempting the
2430 non-member search.
2431
2432 In the case of class methods, the parameter OBJ is an object value
2433 in which to search for overloaded methods.
2434
2435 In the case of non-method functions, the parameter FSYM is a symbol
2436 corresponding to one of the overloaded functions.
2437
2438 Return value is an integer: 0 -> good match, 10 -> debugger applied
2439 non-standard coercions, 100 -> incompatible.
2440
2441 If a method is being searched for, VALP will hold the value.
2442 If a non-method is being searched for, SYMP will hold the symbol
2443 for it.
2444
2445 If a method is being searched for, and it is a static method,
2446 then STATICP will point to a non-zero value.
2447
2448 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2449 ADL overload candidates when performing overload resolution for a fully
2450 qualified name.
2451
2452 Note: This function does *not* check the value of
2453 overload_resolution. Caller must check it to see whether overload
2454 resolution is permitted. */
2455
2456 int
2457 find_overload_match (struct value **args, int nargs,
2458 const char *name, enum oload_search_type method,
2459 struct value **objp, struct symbol *fsym,
2460 struct value **valp, struct symbol **symp,
2461 int *staticp, const int no_adl)
2462 {
2463 struct value *obj = (objp ? *objp : NULL);
2464 struct type *obj_type = obj ? value_type (obj) : NULL;
2465 /* Index of best overloaded function. */
2466 int func_oload_champ = -1;
2467 int method_oload_champ = -1;
2468 int src_method_oload_champ = -1;
2469 int ext_method_oload_champ = -1;
2470 int src_and_ext_equal = 0;
2471
2472 /* The measure for the current best match. */
2473 struct badness_vector *method_badness = NULL;
2474 struct badness_vector *func_badness = NULL;
2475 struct badness_vector *ext_method_badness = NULL;
2476 struct badness_vector *src_method_badness = NULL;
2477
2478 struct value *temp = obj;
2479 /* For methods, the list of overloaded methods. */
2480 struct fn_field *fns_ptr = NULL;
2481 /* For non-methods, the list of overloaded function symbols. */
2482 struct symbol **oload_syms = NULL;
2483 /* For xmethods, the VEC of xmethod workers. */
2484 VEC (xmethod_worker_ptr) *xm_worker_vec = NULL;
2485 /* Number of overloaded instances being considered. */
2486 int num_fns = 0;
2487 struct type *basetype = NULL;
2488 int boffset;
2489
2490 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2491
2492 const char *obj_type_name = NULL;
2493 const char *func_name = NULL;
2494 enum oload_classification match_quality;
2495 enum oload_classification method_match_quality = INCOMPATIBLE;
2496 enum oload_classification src_method_match_quality = INCOMPATIBLE;
2497 enum oload_classification ext_method_match_quality = INCOMPATIBLE;
2498 enum oload_classification func_match_quality = INCOMPATIBLE;
2499
2500 /* Get the list of overloaded methods or functions. */
2501 if (method == METHOD || method == BOTH)
2502 {
2503 gdb_assert (obj);
2504
2505 /* OBJ may be a pointer value rather than the object itself. */
2506 obj = coerce_ref (obj);
2507 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2508 obj = coerce_ref (value_ind (obj));
2509 obj_type_name = TYPE_NAME (value_type (obj));
2510
2511 /* First check whether this is a data member, e.g. a pointer to
2512 a function. */
2513 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2514 {
2515 *valp = search_struct_field (name, obj, 0,
2516 check_typedef (value_type (obj)), 0);
2517 if (*valp)
2518 {
2519 *staticp = 1;
2520 do_cleanups (all_cleanups);
2521 return 0;
2522 }
2523 }
2524
2525 /* Retrieve the list of methods with the name NAME. */
2526 value_find_oload_method_list (&temp, name, 0, &fns_ptr, &num_fns,
2527 &xm_worker_vec, &basetype, &boffset);
2528 /* If this is a method only search, and no methods were found
2529 the search has faild. */
2530 if (method == METHOD && (!fns_ptr || !num_fns) && !xm_worker_vec)
2531 error (_("Couldn't find method %s%s%s"),
2532 obj_type_name,
2533 (obj_type_name && *obj_type_name) ? "::" : "",
2534 name);
2535 /* If we are dealing with stub method types, they should have
2536 been resolved by find_method_list via
2537 value_find_oload_method_list above. */
2538 if (fns_ptr)
2539 {
2540 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2541
2542 src_method_oload_champ = find_oload_champ (args, nargs,
2543 num_fns, fns_ptr, NULL,
2544 NULL, &src_method_badness);
2545
2546 src_method_match_quality = classify_oload_match
2547 (src_method_badness, nargs,
2548 oload_method_static_p (fns_ptr, src_method_oload_champ));
2549
2550 make_cleanup (xfree, src_method_badness);
2551 }
2552
2553 if (VEC_length (xmethod_worker_ptr, xm_worker_vec) > 0)
2554 {
2555 ext_method_oload_champ = find_oload_champ (args, nargs,
2556 0, NULL, xm_worker_vec,
2557 NULL, &ext_method_badness);
2558 ext_method_match_quality = classify_oload_match (ext_method_badness,
2559 nargs, 0);
2560 make_cleanup (xfree, ext_method_badness);
2561 make_cleanup (free_xmethod_worker_vec, xm_worker_vec);
2562 }
2563
2564 if (src_method_oload_champ >= 0 && ext_method_oload_champ >= 0)
2565 {
2566 switch (compare_badness (ext_method_badness, src_method_badness))
2567 {
2568 case 0: /* Src method and xmethod are equally good. */
2569 src_and_ext_equal = 1;
2570 /* If src method and xmethod are equally good, then
2571 xmethod should be the winner. Hence, fall through to the
2572 case where a xmethod is better than the source
2573 method, except when the xmethod match quality is
2574 non-standard. */
2575 /* FALLTHROUGH */
2576 case 1: /* Src method and ext method are incompatible. */
2577 /* If ext method match is not standard, then let source method
2578 win. Otherwise, fallthrough to let xmethod win. */
2579 if (ext_method_match_quality != STANDARD)
2580 {
2581 method_oload_champ = src_method_oload_champ;
2582 method_badness = src_method_badness;
2583 ext_method_oload_champ = -1;
2584 method_match_quality = src_method_match_quality;
2585 break;
2586 }
2587 /* FALLTHROUGH */
2588 case 2: /* Ext method is champion. */
2589 method_oload_champ = ext_method_oload_champ;
2590 method_badness = ext_method_badness;
2591 src_method_oload_champ = -1;
2592 method_match_quality = ext_method_match_quality;
2593 break;
2594 case 3: /* Src method is champion. */
2595 method_oload_champ = src_method_oload_champ;
2596 method_badness = src_method_badness;
2597 ext_method_oload_champ = -1;
2598 method_match_quality = src_method_match_quality;
2599 break;
2600 default:
2601 gdb_assert_not_reached ("Unexpected overload comparison "
2602 "result");
2603 break;
2604 }
2605 }
2606 else if (src_method_oload_champ >= 0)
2607 {
2608 method_oload_champ = src_method_oload_champ;
2609 method_badness = src_method_badness;
2610 method_match_quality = src_method_match_quality;
2611 }
2612 else if (ext_method_oload_champ >= 0)
2613 {
2614 method_oload_champ = ext_method_oload_champ;
2615 method_badness = ext_method_badness;
2616 method_match_quality = ext_method_match_quality;
2617 }
2618 }
2619
2620 if (method == NON_METHOD || method == BOTH)
2621 {
2622 const char *qualified_name = NULL;
2623
2624 /* If the overload match is being search for both as a method
2625 and non member function, the first argument must now be
2626 dereferenced. */
2627 if (method == BOTH)
2628 args[0] = value_ind (args[0]);
2629
2630 if (fsym)
2631 {
2632 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2633
2634 /* If we have a function with a C++ name, try to extract just
2635 the function part. Do not try this for non-functions (e.g.
2636 function pointers). */
2637 if (qualified_name
2638 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2639 == TYPE_CODE_FUNC)
2640 {
2641 char *temp;
2642
2643 temp = cp_func_name (qualified_name);
2644
2645 /* If cp_func_name did not remove anything, the name of the
2646 symbol did not include scope or argument types - it was
2647 probably a C-style function. */
2648 if (temp)
2649 {
2650 make_cleanup (xfree, temp);
2651 if (strcmp (temp, qualified_name) == 0)
2652 func_name = NULL;
2653 else
2654 func_name = temp;
2655 }
2656 }
2657 }
2658 else
2659 {
2660 func_name = name;
2661 qualified_name = name;
2662 }
2663
2664 /* If there was no C++ name, this must be a C-style function or
2665 not a function at all. Just return the same symbol. Do the
2666 same if cp_func_name fails for some reason. */
2667 if (func_name == NULL)
2668 {
2669 *symp = fsym;
2670 do_cleanups (all_cleanups);
2671 return 0;
2672 }
2673
2674 func_oload_champ = find_oload_champ_namespace (args, nargs,
2675 func_name,
2676 qualified_name,
2677 &oload_syms,
2678 &func_badness,
2679 no_adl);
2680
2681 if (func_oload_champ >= 0)
2682 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2683
2684 make_cleanup (xfree, oload_syms);
2685 make_cleanup (xfree, func_badness);
2686 }
2687
2688 /* Did we find a match ? */
2689 if (method_oload_champ == -1 && func_oload_champ == -1)
2690 throw_error (NOT_FOUND_ERROR,
2691 _("No symbol \"%s\" in current context."),
2692 name);
2693
2694 /* If we have found both a method match and a function
2695 match, find out which one is better, and calculate match
2696 quality. */
2697 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2698 {
2699 switch (compare_badness (func_badness, method_badness))
2700 {
2701 case 0: /* Top two contenders are equally good. */
2702 /* FIXME: GDB does not support the general ambiguous case.
2703 All candidates should be collected and presented the
2704 user. */
2705 error (_("Ambiguous overload resolution"));
2706 break;
2707 case 1: /* Incomparable top contenders. */
2708 /* This is an error incompatible candidates
2709 should not have been proposed. */
2710 error (_("Internal error: incompatible "
2711 "overload candidates proposed"));
2712 break;
2713 case 2: /* Function champion. */
2714 method_oload_champ = -1;
2715 match_quality = func_match_quality;
2716 break;
2717 case 3: /* Method champion. */
2718 func_oload_champ = -1;
2719 match_quality = method_match_quality;
2720 break;
2721 default:
2722 error (_("Internal error: unexpected overload comparison result"));
2723 break;
2724 }
2725 }
2726 else
2727 {
2728 /* We have either a method match or a function match. */
2729 if (method_oload_champ >= 0)
2730 match_quality = method_match_quality;
2731 else
2732 match_quality = func_match_quality;
2733 }
2734
2735 if (match_quality == INCOMPATIBLE)
2736 {
2737 if (method == METHOD)
2738 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2739 obj_type_name,
2740 (obj_type_name && *obj_type_name) ? "::" : "",
2741 name);
2742 else
2743 error (_("Cannot resolve function %s to any overloaded instance"),
2744 func_name);
2745 }
2746 else if (match_quality == NON_STANDARD)
2747 {
2748 if (method == METHOD)
2749 warning (_("Using non-standard conversion to match "
2750 "method %s%s%s to supplied arguments"),
2751 obj_type_name,
2752 (obj_type_name && *obj_type_name) ? "::" : "",
2753 name);
2754 else
2755 warning (_("Using non-standard conversion to match "
2756 "function %s to supplied arguments"),
2757 func_name);
2758 }
2759
2760 if (staticp != NULL)
2761 *staticp = oload_method_static_p (fns_ptr, method_oload_champ);
2762
2763 if (method_oload_champ >= 0)
2764 {
2765 if (src_method_oload_champ >= 0)
2766 {
2767 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2768 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2769 basetype, boffset);
2770 else
2771 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2772 basetype, boffset);
2773 }
2774 else
2775 {
2776 *valp = value_of_xmethod (clone_xmethod_worker
2777 (VEC_index (xmethod_worker_ptr, xm_worker_vec,
2778 ext_method_oload_champ)));
2779 }
2780 }
2781 else
2782 *symp = oload_syms[func_oload_champ];
2783
2784 if (objp)
2785 {
2786 struct type *temp_type = check_typedef (value_type (temp));
2787 struct type *objtype = check_typedef (obj_type);
2788
2789 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2790 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2791 || TYPE_CODE (objtype) == TYPE_CODE_REF))
2792 {
2793 temp = value_addr (temp);
2794 }
2795 *objp = temp;
2796 }
2797
2798 do_cleanups (all_cleanups);
2799
2800 switch (match_quality)
2801 {
2802 case INCOMPATIBLE:
2803 return 100;
2804 case NON_STANDARD:
2805 return 10;
2806 default: /* STANDARD */
2807 return 0;
2808 }
2809 }
2810
2811 /* Find the best overload match, searching for FUNC_NAME in namespaces
2812 contained in QUALIFIED_NAME until it either finds a good match or
2813 runs out of namespaces. It stores the overloaded functions in
2814 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2815 calling function is responsible for freeing *OLOAD_SYMS and
2816 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2817 performned. */
2818
2819 static int
2820 find_oload_champ_namespace (struct value **args, int nargs,
2821 const char *func_name,
2822 const char *qualified_name,
2823 struct symbol ***oload_syms,
2824 struct badness_vector **oload_champ_bv,
2825 const int no_adl)
2826 {
2827 int oload_champ;
2828
2829 find_oload_champ_namespace_loop (args, nargs,
2830 func_name,
2831 qualified_name, 0,
2832 oload_syms, oload_champ_bv,
2833 &oload_champ,
2834 no_adl);
2835
2836 return oload_champ;
2837 }
2838
2839 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2840 how deep we've looked for namespaces, and the champ is stored in
2841 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2842 if it isn't. Other arguments are the same as in
2843 find_oload_champ_namespace
2844
2845 It is the caller's responsibility to free *OLOAD_SYMS and
2846 *OLOAD_CHAMP_BV. */
2847
2848 static int
2849 find_oload_champ_namespace_loop (struct value **args, int nargs,
2850 const char *func_name,
2851 const char *qualified_name,
2852 int namespace_len,
2853 struct symbol ***oload_syms,
2854 struct badness_vector **oload_champ_bv,
2855 int *oload_champ,
2856 const int no_adl)
2857 {
2858 int next_namespace_len = namespace_len;
2859 int searched_deeper = 0;
2860 int num_fns = 0;
2861 struct cleanup *old_cleanups;
2862 int new_oload_champ;
2863 struct symbol **new_oload_syms;
2864 struct badness_vector *new_oload_champ_bv;
2865 char *new_namespace;
2866
2867 if (next_namespace_len != 0)
2868 {
2869 gdb_assert (qualified_name[next_namespace_len] == ':');
2870 next_namespace_len += 2;
2871 }
2872 next_namespace_len +=
2873 cp_find_first_component (qualified_name + next_namespace_len);
2874
2875 /* Initialize these to values that can safely be xfree'd. */
2876 *oload_syms = NULL;
2877 *oload_champ_bv = NULL;
2878
2879 /* First, see if we have a deeper namespace we can search in.
2880 If we get a good match there, use it. */
2881
2882 if (qualified_name[next_namespace_len] == ':')
2883 {
2884 searched_deeper = 1;
2885
2886 if (find_oload_champ_namespace_loop (args, nargs,
2887 func_name, qualified_name,
2888 next_namespace_len,
2889 oload_syms, oload_champ_bv,
2890 oload_champ, no_adl))
2891 {
2892 return 1;
2893 }
2894 };
2895
2896 /* If we reach here, either we're in the deepest namespace or we
2897 didn't find a good match in a deeper namespace. But, in the
2898 latter case, we still have a bad match in a deeper namespace;
2899 note that we might not find any match at all in the current
2900 namespace. (There's always a match in the deepest namespace,
2901 because this overload mechanism only gets called if there's a
2902 function symbol to start off with.) */
2903
2904 old_cleanups = make_cleanup (xfree, *oload_syms);
2905 make_cleanup (xfree, *oload_champ_bv);
2906 new_namespace = alloca (namespace_len + 1);
2907 strncpy (new_namespace, qualified_name, namespace_len);
2908 new_namespace[namespace_len] = '\0';
2909 new_oload_syms = make_symbol_overload_list (func_name,
2910 new_namespace);
2911
2912 /* If we have reached the deepest level perform argument
2913 determined lookup. */
2914 if (!searched_deeper && !no_adl)
2915 {
2916 int ix;
2917 struct type **arg_types;
2918
2919 /* Prepare list of argument types for overload resolution. */
2920 arg_types = (struct type **)
2921 alloca (nargs * (sizeof (struct type *)));
2922 for (ix = 0; ix < nargs; ix++)
2923 arg_types[ix] = value_type (args[ix]);
2924 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2925 }
2926
2927 while (new_oload_syms[num_fns])
2928 ++num_fns;
2929
2930 new_oload_champ = find_oload_champ (args, nargs, num_fns,
2931 NULL, NULL, new_oload_syms,
2932 &new_oload_champ_bv);
2933
2934 /* Case 1: We found a good match. Free earlier matches (if any),
2935 and return it. Case 2: We didn't find a good match, but we're
2936 not the deepest function. Then go with the bad match that the
2937 deeper function found. Case 3: We found a bad match, and we're
2938 the deepest function. Then return what we found, even though
2939 it's a bad match. */
2940
2941 if (new_oload_champ != -1
2942 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2943 {
2944 *oload_syms = new_oload_syms;
2945 *oload_champ = new_oload_champ;
2946 *oload_champ_bv = new_oload_champ_bv;
2947 do_cleanups (old_cleanups);
2948 return 1;
2949 }
2950 else if (searched_deeper)
2951 {
2952 xfree (new_oload_syms);
2953 xfree (new_oload_champ_bv);
2954 discard_cleanups (old_cleanups);
2955 return 0;
2956 }
2957 else
2958 {
2959 *oload_syms = new_oload_syms;
2960 *oload_champ = new_oload_champ;
2961 *oload_champ_bv = new_oload_champ_bv;
2962 do_cleanups (old_cleanups);
2963 return 0;
2964 }
2965 }
2966
2967 /* Look for a function to take NARGS args of ARGS. Find
2968 the best match from among the overloaded methods or functions
2969 given by FNS_PTR or OLOAD_SYMS or XM_WORKER_VEC, respectively.
2970 One, and only one of FNS_PTR, OLOAD_SYMS and XM_WORKER_VEC can be
2971 non-NULL.
2972
2973 If XM_WORKER_VEC is NULL, then the length of the arrays FNS_PTR
2974 or OLOAD_SYMS (whichever is non-NULL) is specified in NUM_FNS.
2975
2976 Return the index of the best match; store an indication of the
2977 quality of the match in OLOAD_CHAMP_BV.
2978
2979 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2980
2981 static int
2982 find_oload_champ (struct value **args, int nargs,
2983 int num_fns, struct fn_field *fns_ptr,
2984 VEC (xmethod_worker_ptr) *xm_worker_vec,
2985 struct symbol **oload_syms,
2986 struct badness_vector **oload_champ_bv)
2987 {
2988 int ix;
2989 int fn_count;
2990 int xm_worker_vec_n = VEC_length (xmethod_worker_ptr, xm_worker_vec);
2991 /* A measure of how good an overloaded instance is. */
2992 struct badness_vector *bv;
2993 /* Index of best overloaded function. */
2994 int oload_champ = -1;
2995 /* Current ambiguity state for overload resolution. */
2996 int oload_ambiguous = 0;
2997 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2998
2999 /* A champion can be found among methods alone, or among functions
3000 alone, or in xmethods alone, but not in more than one of these
3001 groups. */
3002 gdb_assert ((fns_ptr != NULL) + (oload_syms != NULL) + (xm_worker_vec != NULL)
3003 == 1);
3004
3005 *oload_champ_bv = NULL;
3006
3007 fn_count = (xm_worker_vec != NULL
3008 ? VEC_length (xmethod_worker_ptr, xm_worker_vec)
3009 : num_fns);
3010 /* Consider each candidate in turn. */
3011 for (ix = 0; ix < fn_count; ix++)
3012 {
3013 int jj;
3014 int static_offset = 0;
3015 int nparms;
3016 struct type **parm_types;
3017 struct xmethod_worker *worker = NULL;
3018
3019 if (xm_worker_vec != NULL)
3020 {
3021 worker = VEC_index (xmethod_worker_ptr, xm_worker_vec, ix);
3022 parm_types = get_xmethod_arg_types (worker, &nparms);
3023 }
3024 else
3025 {
3026 if (fns_ptr != NULL)
3027 {
3028 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
3029 static_offset = oload_method_static_p (fns_ptr, ix);
3030 }
3031 else
3032 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
3033
3034 parm_types = (struct type **)
3035 xmalloc (nparms * (sizeof (struct type *)));
3036 for (jj = 0; jj < nparms; jj++)
3037 parm_types[jj] = (fns_ptr != NULL
3038 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
3039 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
3040 jj));
3041 }
3042
3043 /* Compare parameter types to supplied argument types. Skip
3044 THIS for static methods. */
3045 bv = rank_function (parm_types, nparms,
3046 args + static_offset,
3047 nargs - static_offset);
3048
3049 if (!*oload_champ_bv)
3050 {
3051 *oload_champ_bv = bv;
3052 oload_champ = 0;
3053 }
3054 else /* See whether current candidate is better or worse than
3055 previous best. */
3056 switch (compare_badness (bv, *oload_champ_bv))
3057 {
3058 case 0: /* Top two contenders are equally good. */
3059 oload_ambiguous = 1;
3060 break;
3061 case 1: /* Incomparable top contenders. */
3062 oload_ambiguous = 2;
3063 break;
3064 case 2: /* New champion, record details. */
3065 *oload_champ_bv = bv;
3066 oload_ambiguous = 0;
3067 oload_champ = ix;
3068 break;
3069 case 3:
3070 default:
3071 break;
3072 }
3073 xfree (parm_types);
3074 if (overload_debug)
3075 {
3076 if (fns_ptr != NULL)
3077 fprintf_filtered (gdb_stderr,
3078 "Overloaded method instance %s, # of parms %d\n",
3079 fns_ptr[ix].physname, nparms);
3080 else if (xm_worker_vec != NULL)
3081 fprintf_filtered (gdb_stderr,
3082 "Xmethod worker, # of parms %d\n",
3083 nparms);
3084 else
3085 fprintf_filtered (gdb_stderr,
3086 "Overloaded function instance "
3087 "%s # of parms %d\n",
3088 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
3089 nparms);
3090 for (jj = 0; jj < nargs - static_offset; jj++)
3091 fprintf_filtered (gdb_stderr,
3092 "...Badness @ %d : %d\n",
3093 jj, bv->rank[jj].rank);
3094 fprintf_filtered (gdb_stderr, "Overload resolution "
3095 "champion is %d, ambiguous? %d\n",
3096 oload_champ, oload_ambiguous);
3097 }
3098 }
3099
3100 return oload_champ;
3101 }
3102
3103 /* Return 1 if we're looking at a static method, 0 if we're looking at
3104 a non-static method or a function that isn't a method. */
3105
3106 static int
3107 oload_method_static_p (struct fn_field *fns_ptr, int index)
3108 {
3109 if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3110 return 1;
3111 else
3112 return 0;
3113 }
3114
3115 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3116
3117 static enum oload_classification
3118 classify_oload_match (struct badness_vector *oload_champ_bv,
3119 int nargs,
3120 int static_offset)
3121 {
3122 int ix;
3123 enum oload_classification worst = STANDARD;
3124
3125 for (ix = 1; ix <= nargs - static_offset; ix++)
3126 {
3127 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3128 or worse return INCOMPATIBLE. */
3129 if (compare_ranks (oload_champ_bv->rank[ix],
3130 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3131 return INCOMPATIBLE; /* Truly mismatched types. */
3132 /* Otherwise If this conversion is as bad as
3133 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3134 else if (compare_ranks (oload_champ_bv->rank[ix],
3135 NS_POINTER_CONVERSION_BADNESS) <= 0)
3136 worst = NON_STANDARD; /* Non-standard type conversions
3137 needed. */
3138 }
3139
3140 /* If no INCOMPATIBLE classification was found, return the worst one
3141 that was found (if any). */
3142 return worst;
3143 }
3144
3145 /* C++: return 1 is NAME is a legitimate name for the destructor of
3146 type TYPE. If TYPE does not have a destructor, or if NAME is
3147 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3148 have CHECK_TYPEDEF applied, this function will apply it itself. */
3149
3150 int
3151 destructor_name_p (const char *name, struct type *type)
3152 {
3153 if (name[0] == '~')
3154 {
3155 const char *dname = type_name_no_tag_or_error (type);
3156 const char *cp = strchr (dname, '<');
3157 unsigned int len;
3158
3159 /* Do not compare the template part for template classes. */
3160 if (cp == NULL)
3161 len = strlen (dname);
3162 else
3163 len = cp - dname;
3164 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3165 error (_("name of destructor must equal name of class"));
3166 else
3167 return 1;
3168 }
3169 return 0;
3170 }
3171
3172 /* Find an enum constant named NAME in TYPE. TYPE must be an "enum
3173 class". If the name is found, return a value representing it;
3174 otherwise throw an exception. */
3175
3176 static struct value *
3177 enum_constant_from_type (struct type *type, const char *name)
3178 {
3179 int i;
3180 int name_len = strlen (name);
3181
3182 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ENUM
3183 && TYPE_DECLARED_CLASS (type));
3184
3185 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); ++i)
3186 {
3187 const char *fname = TYPE_FIELD_NAME (type, i);
3188 int len;
3189
3190 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_ENUMVAL
3191 || fname == NULL)
3192 continue;
3193
3194 /* Look for the trailing "::NAME", since enum class constant
3195 names are qualified here. */
3196 len = strlen (fname);
3197 if (len + 2 >= name_len
3198 && fname[len - name_len - 2] == ':'
3199 && fname[len - name_len - 1] == ':'
3200 && strcmp (&fname[len - name_len], name) == 0)
3201 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, i));
3202 }
3203
3204 error (_("no constant named \"%s\" in enum \"%s\""),
3205 name, TYPE_TAG_NAME (type));
3206 }
3207
3208 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3209 return the appropriate member (or the address of the member, if
3210 WANT_ADDRESS). This function is used to resolve user expressions
3211 of the form "DOMAIN::NAME". For more details on what happens, see
3212 the comment before value_struct_elt_for_reference. */
3213
3214 struct value *
3215 value_aggregate_elt (struct type *curtype, const char *name,
3216 struct type *expect_type, int want_address,
3217 enum noside noside)
3218 {
3219 switch (TYPE_CODE (curtype))
3220 {
3221 case TYPE_CODE_STRUCT:
3222 case TYPE_CODE_UNION:
3223 return value_struct_elt_for_reference (curtype, 0, curtype,
3224 name, expect_type,
3225 want_address, noside);
3226 case TYPE_CODE_NAMESPACE:
3227 return value_namespace_elt (curtype, name,
3228 want_address, noside);
3229
3230 case TYPE_CODE_ENUM:
3231 return enum_constant_from_type (curtype, name);
3232
3233 default:
3234 internal_error (__FILE__, __LINE__,
3235 _("non-aggregate type in value_aggregate_elt"));
3236 }
3237 }
3238
3239 /* Compares the two method/function types T1 and T2 for "equality"
3240 with respect to the methods' parameters. If the types of the
3241 two parameter lists are the same, returns 1; 0 otherwise. This
3242 comparison may ignore any artificial parameters in T1 if
3243 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3244 the first artificial parameter in T1, assumed to be a 'this' pointer.
3245
3246 The type T2 is expected to have come from make_params (in eval.c). */
3247
3248 static int
3249 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3250 {
3251 int start = 0;
3252
3253 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3254 ++start;
3255
3256 /* If skipping artificial fields, find the first real field
3257 in T1. */
3258 if (skip_artificial)
3259 {
3260 while (start < TYPE_NFIELDS (t1)
3261 && TYPE_FIELD_ARTIFICIAL (t1, start))
3262 ++start;
3263 }
3264
3265 /* Now compare parameters. */
3266
3267 /* Special case: a method taking void. T1 will contain no
3268 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3269 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3270 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3271 return 1;
3272
3273 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3274 {
3275 int i;
3276
3277 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3278 {
3279 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3280 TYPE_FIELD_TYPE (t2, i), NULL),
3281 EXACT_MATCH_BADNESS) != 0)
3282 return 0;
3283 }
3284
3285 return 1;
3286 }
3287
3288 return 0;
3289 }
3290
3291 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3292 return the address of this member as a "pointer to member" type.
3293 If INTYPE is non-null, then it will be the type of the member we
3294 are looking for. This will help us resolve "pointers to member
3295 functions". This function is used to resolve user expressions of
3296 the form "DOMAIN::NAME". */
3297
3298 static struct value *
3299 value_struct_elt_for_reference (struct type *domain, int offset,
3300 struct type *curtype, const char *name,
3301 struct type *intype,
3302 int want_address,
3303 enum noside noside)
3304 {
3305 struct type *t = curtype;
3306 int i;
3307 struct value *v, *result;
3308
3309 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3310 && TYPE_CODE (t) != TYPE_CODE_UNION)
3311 error (_("Internal error: non-aggregate type "
3312 "to value_struct_elt_for_reference"));
3313
3314 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3315 {
3316 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3317
3318 if (t_field_name && strcmp (t_field_name, name) == 0)
3319 {
3320 if (field_is_static (&TYPE_FIELD (t, i)))
3321 {
3322 v = value_static_field (t, i);
3323 if (want_address)
3324 v = value_addr (v);
3325 return v;
3326 }
3327 if (TYPE_FIELD_PACKED (t, i))
3328 error (_("pointers to bitfield members not allowed"));
3329
3330 if (want_address)
3331 return value_from_longest
3332 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3333 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3334 else if (noside != EVAL_NORMAL)
3335 return allocate_value (TYPE_FIELD_TYPE (t, i));
3336 else
3337 {
3338 /* Try to evaluate NAME as a qualified name with implicit
3339 this pointer. In this case, attempt to return the
3340 equivalent to `this->*(&TYPE::NAME)'. */
3341 v = value_of_this_silent (current_language);
3342 if (v != NULL)
3343 {
3344 struct value *ptr;
3345 long mem_offset;
3346 struct type *type, *tmp;
3347
3348 ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
3349 type = check_typedef (value_type (ptr));
3350 gdb_assert (type != NULL
3351 && TYPE_CODE (type) == TYPE_CODE_MEMBERPTR);
3352 tmp = lookup_pointer_type (TYPE_DOMAIN_TYPE (type));
3353 v = value_cast_pointers (tmp, v, 1);
3354 mem_offset = value_as_long (ptr);
3355 tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type));
3356 result = value_from_pointer (tmp,
3357 value_as_long (v) + mem_offset);
3358 return value_ind (result);
3359 }
3360
3361 error (_("Cannot reference non-static field \"%s\""), name);
3362 }
3363 }
3364 }
3365
3366 /* C++: If it was not found as a data field, then try to return it
3367 as a pointer to a method. */
3368
3369 /* Perform all necessary dereferencing. */
3370 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3371 intype = TYPE_TARGET_TYPE (intype);
3372
3373 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3374 {
3375 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3376 char dem_opname[64];
3377
3378 if (strncmp (t_field_name, "__", 2) == 0
3379 || strncmp (t_field_name, "op", 2) == 0
3380 || strncmp (t_field_name, "type", 4) == 0)
3381 {
3382 if (cplus_demangle_opname (t_field_name,
3383 dem_opname, DMGL_ANSI))
3384 t_field_name = dem_opname;
3385 else if (cplus_demangle_opname (t_field_name,
3386 dem_opname, 0))
3387 t_field_name = dem_opname;
3388 }
3389 if (t_field_name && strcmp (t_field_name, name) == 0)
3390 {
3391 int j;
3392 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3393 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3394
3395 check_stub_method_group (t, i);
3396
3397 if (intype)
3398 {
3399 for (j = 0; j < len; ++j)
3400 {
3401 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3402 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3403 intype, 1))
3404 break;
3405 }
3406
3407 if (j == len)
3408 error (_("no member function matches "
3409 "that type instantiation"));
3410 }
3411 else
3412 {
3413 int ii;
3414
3415 j = -1;
3416 for (ii = 0; ii < len; ++ii)
3417 {
3418 /* Skip artificial methods. This is necessary if,
3419 for example, the user wants to "print
3420 subclass::subclass" with only one user-defined
3421 constructor. There is no ambiguity in this case.
3422 We are careful here to allow artificial methods
3423 if they are the unique result. */
3424 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3425 {
3426 if (j == -1)
3427 j = ii;
3428 continue;
3429 }
3430
3431 /* Desired method is ambiguous if more than one
3432 method is defined. */
3433 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3434 error (_("non-unique member `%s' requires "
3435 "type instantiation"), name);
3436
3437 j = ii;
3438 }
3439
3440 if (j == -1)
3441 error (_("no matching member function"));
3442 }
3443
3444 if (TYPE_FN_FIELD_STATIC_P (f, j))
3445 {
3446 struct symbol *s =
3447 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3448 0, VAR_DOMAIN, 0);
3449
3450 if (s == NULL)
3451 return NULL;
3452
3453 if (want_address)
3454 return value_addr (read_var_value (s, 0));
3455 else
3456 return read_var_value (s, 0);
3457 }
3458
3459 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3460 {
3461 if (want_address)
3462 {
3463 result = allocate_value
3464 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3465 cplus_make_method_ptr (value_type (result),
3466 value_contents_writeable (result),
3467 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3468 }
3469 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3470 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3471 else
3472 error (_("Cannot reference virtual member function \"%s\""),
3473 name);
3474 }
3475 else
3476 {
3477 struct symbol *s =
3478 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3479 0, VAR_DOMAIN, 0);
3480
3481 if (s == NULL)
3482 return NULL;
3483
3484 v = read_var_value (s, 0);
3485 if (!want_address)
3486 result = v;
3487 else
3488 {
3489 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3490 cplus_make_method_ptr (value_type (result),
3491 value_contents_writeable (result),
3492 value_address (v), 0);
3493 }
3494 }
3495 return result;
3496 }
3497 }
3498 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3499 {
3500 struct value *v;
3501 int base_offset;
3502
3503 if (BASETYPE_VIA_VIRTUAL (t, i))
3504 base_offset = 0;
3505 else
3506 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3507 v = value_struct_elt_for_reference (domain,
3508 offset + base_offset,
3509 TYPE_BASECLASS (t, i),
3510 name, intype,
3511 want_address, noside);
3512 if (v)
3513 return v;
3514 }
3515
3516 /* As a last chance, pretend that CURTYPE is a namespace, and look
3517 it up that way; this (frequently) works for types nested inside
3518 classes. */
3519
3520 return value_maybe_namespace_elt (curtype, name,
3521 want_address, noside);
3522 }
3523
3524 /* C++: Return the member NAME of the namespace given by the type
3525 CURTYPE. */
3526
3527 static struct value *
3528 value_namespace_elt (const struct type *curtype,
3529 const char *name, int want_address,
3530 enum noside noside)
3531 {
3532 struct value *retval = value_maybe_namespace_elt (curtype, name,
3533 want_address,
3534 noside);
3535
3536 if (retval == NULL)
3537 error (_("No symbol \"%s\" in namespace \"%s\"."),
3538 name, TYPE_TAG_NAME (curtype));
3539
3540 return retval;
3541 }
3542
3543 /* A helper function used by value_namespace_elt and
3544 value_struct_elt_for_reference. It looks up NAME inside the
3545 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3546 is a class and NAME refers to a type in CURTYPE itself (as opposed
3547 to, say, some base class of CURTYPE). */
3548
3549 static struct value *
3550 value_maybe_namespace_elt (const struct type *curtype,
3551 const char *name, int want_address,
3552 enum noside noside)
3553 {
3554 const char *namespace_name = TYPE_TAG_NAME (curtype);
3555 struct symbol *sym;
3556 struct value *result;
3557
3558 sym = cp_lookup_symbol_namespace (namespace_name, name,
3559 get_selected_block (0), VAR_DOMAIN);
3560
3561 if (sym == NULL)
3562 {
3563 char *concatenated_name = alloca (strlen (namespace_name) + 2
3564 + strlen (name) + 1);
3565
3566 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3567 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3568 }
3569
3570 if (sym == NULL)
3571 return NULL;
3572 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3573 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3574 result = allocate_value (SYMBOL_TYPE (sym));
3575 else
3576 result = value_of_variable (sym, get_selected_block (0));
3577
3578 if (result && want_address)
3579 result = value_addr (result);
3580
3581 return result;
3582 }
3583
3584 /* Given a pointer or a reference value V, find its real (RTTI) type.
3585
3586 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3587 and refer to the values computed for the object pointed to. */
3588
3589 struct type *
3590 value_rtti_indirect_type (struct value *v, int *full,
3591 int *top, int *using_enc)
3592 {
3593 struct value *target;
3594 struct type *type, *real_type, *target_type;
3595
3596 type = value_type (v);
3597 type = check_typedef (type);
3598 if (TYPE_CODE (type) == TYPE_CODE_REF)
3599 target = coerce_ref (v);
3600 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3601 target = value_ind (v);
3602 else
3603 return NULL;
3604
3605 real_type = value_rtti_type (target, full, top, using_enc);
3606
3607 if (real_type)
3608 {
3609 /* Copy qualifiers to the referenced object. */
3610 target_type = value_type (target);
3611 real_type = make_cv_type (TYPE_CONST (target_type),
3612 TYPE_VOLATILE (target_type), real_type, NULL);
3613 if (TYPE_CODE (type) == TYPE_CODE_REF)
3614 real_type = lookup_reference_type (real_type);
3615 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3616 real_type = lookup_pointer_type (real_type);
3617 else
3618 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3619
3620 /* Copy qualifiers to the pointer/reference. */
3621 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3622 real_type, NULL);
3623 }
3624
3625 return real_type;
3626 }
3627
3628 /* Given a value pointed to by ARGP, check its real run-time type, and
3629 if that is different from the enclosing type, create a new value
3630 using the real run-time type as the enclosing type (and of the same
3631 type as ARGP) and return it, with the embedded offset adjusted to
3632 be the correct offset to the enclosed object. RTYPE is the type,
3633 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3634 by value_rtti_type(). If these are available, they can be supplied
3635 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3636 NULL if they're not available. */
3637
3638 struct value *
3639 value_full_object (struct value *argp,
3640 struct type *rtype,
3641 int xfull, int xtop,
3642 int xusing_enc)
3643 {
3644 struct type *real_type;
3645 int full = 0;
3646 int top = -1;
3647 int using_enc = 0;
3648 struct value *new_val;
3649
3650 if (rtype)
3651 {
3652 real_type = rtype;
3653 full = xfull;
3654 top = xtop;
3655 using_enc = xusing_enc;
3656 }
3657 else
3658 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3659
3660 /* If no RTTI data, or if object is already complete, do nothing. */
3661 if (!real_type || real_type == value_enclosing_type (argp))
3662 return argp;
3663
3664 /* In a destructor we might see a real type that is a superclass of
3665 the object's type. In this case it is better to leave the object
3666 as-is. */
3667 if (full
3668 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3669 return argp;
3670
3671 /* If we have the full object, but for some reason the enclosing
3672 type is wrong, set it. */
3673 /* pai: FIXME -- sounds iffy */
3674 if (full)
3675 {
3676 argp = value_copy (argp);
3677 set_value_enclosing_type (argp, real_type);
3678 return argp;
3679 }
3680
3681 /* Check if object is in memory. */
3682 if (VALUE_LVAL (argp) != lval_memory)
3683 {
3684 warning (_("Couldn't retrieve complete object of RTTI "
3685 "type %s; object may be in register(s)."),
3686 TYPE_NAME (real_type));
3687
3688 return argp;
3689 }
3690
3691 /* All other cases -- retrieve the complete object. */
3692 /* Go back by the computed top_offset from the beginning of the
3693 object, adjusting for the embedded offset of argp if that's what
3694 value_rtti_type used for its computation. */
3695 new_val = value_at_lazy (real_type, value_address (argp) - top +
3696 (using_enc ? 0 : value_embedded_offset (argp)));
3697 deprecated_set_value_type (new_val, value_type (argp));
3698 set_value_embedded_offset (new_val, (using_enc
3699 ? top + value_embedded_offset (argp)
3700 : top));
3701 return new_val;
3702 }
3703
3704
3705 /* Return the value of the local variable, if one exists. Throw error
3706 otherwise, such as if the request is made in an inappropriate context. */
3707
3708 struct value *
3709 value_of_this (const struct language_defn *lang)
3710 {
3711 struct symbol *sym;
3712 const struct block *b;
3713 struct frame_info *frame;
3714
3715 if (!lang->la_name_of_this)
3716 error (_("no `this' in current language"));
3717
3718 frame = get_selected_frame (_("no frame selected"));
3719
3720 b = get_frame_block (frame, NULL);
3721
3722 sym = lookup_language_this (lang, b);
3723 if (sym == NULL)
3724 error (_("current stack frame does not contain a variable named `%s'"),
3725 lang->la_name_of_this);
3726
3727 return read_var_value (sym, frame);
3728 }
3729
3730 /* Return the value of the local variable, if one exists. Return NULL
3731 otherwise. Never throw error. */
3732
3733 struct value *
3734 value_of_this_silent (const struct language_defn *lang)
3735 {
3736 struct value *ret = NULL;
3737 volatile struct gdb_exception except;
3738
3739 TRY_CATCH (except, RETURN_MASK_ERROR)
3740 {
3741 ret = value_of_this (lang);
3742 }
3743
3744 return ret;
3745 }
3746
3747 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3748 elements long, starting at LOWBOUND. The result has the same lower
3749 bound as the original ARRAY. */
3750
3751 struct value *
3752 value_slice (struct value *array, int lowbound, int length)
3753 {
3754 struct type *slice_range_type, *slice_type, *range_type;
3755 LONGEST lowerbound, upperbound;
3756 struct value *slice;
3757 struct type *array_type;
3758
3759 array_type = check_typedef (value_type (array));
3760 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3761 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
3762 error (_("cannot take slice of non-array"));
3763
3764 range_type = TYPE_INDEX_TYPE (array_type);
3765 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3766 error (_("slice from bad array or bitstring"));
3767
3768 if (lowbound < lowerbound || length < 0
3769 || lowbound + length - 1 > upperbound)
3770 error (_("slice out of range"));
3771
3772 /* FIXME-type-allocation: need a way to free this type when we are
3773 done with it. */
3774 slice_range_type = create_static_range_type ((struct type *) NULL,
3775 TYPE_TARGET_TYPE (range_type),
3776 lowbound,
3777 lowbound + length - 1);
3778
3779 {
3780 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3781 LONGEST offset
3782 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3783
3784 slice_type = create_array_type ((struct type *) NULL,
3785 element_type,
3786 slice_range_type);
3787 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3788
3789 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3790 slice = allocate_value_lazy (slice_type);
3791 else
3792 {
3793 slice = allocate_value (slice_type);
3794 value_contents_copy (slice, 0, array, offset,
3795 TYPE_LENGTH (slice_type));
3796 }
3797
3798 set_value_component_location (slice, array);
3799 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3800 set_value_offset (slice, value_offset (array) + offset);
3801 }
3802
3803 return slice;
3804 }
3805
3806 /* Create a value for a FORTRAN complex number. Currently most of the
3807 time values are coerced to COMPLEX*16 (i.e. a complex number
3808 composed of 2 doubles. This really should be a smarter routine
3809 that figures out precision inteligently as opposed to assuming
3810 doubles. FIXME: fmb */
3811
3812 struct value *
3813 value_literal_complex (struct value *arg1,
3814 struct value *arg2,
3815 struct type *type)
3816 {
3817 struct value *val;
3818 struct type *real_type = TYPE_TARGET_TYPE (type);
3819
3820 val = allocate_value (type);
3821 arg1 = value_cast (real_type, arg1);
3822 arg2 = value_cast (real_type, arg2);
3823
3824 memcpy (value_contents_raw (val),
3825 value_contents (arg1), TYPE_LENGTH (real_type));
3826 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3827 value_contents (arg2), TYPE_LENGTH (real_type));
3828 return val;
3829 }
3830
3831 /* Cast a value into the appropriate complex data type. */
3832
3833 static struct value *
3834 cast_into_complex (struct type *type, struct value *val)
3835 {
3836 struct type *real_type = TYPE_TARGET_TYPE (type);
3837
3838 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3839 {
3840 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3841 struct value *re_val = allocate_value (val_real_type);
3842 struct value *im_val = allocate_value (val_real_type);
3843
3844 memcpy (value_contents_raw (re_val),
3845 value_contents (val), TYPE_LENGTH (val_real_type));
3846 memcpy (value_contents_raw (im_val),
3847 value_contents (val) + TYPE_LENGTH (val_real_type),
3848 TYPE_LENGTH (val_real_type));
3849
3850 return value_literal_complex (re_val, im_val, type);
3851 }
3852 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3853 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3854 return value_literal_complex (val,
3855 value_zero (real_type, not_lval),
3856 type);
3857 else
3858 error (_("cannot cast non-number to complex"));
3859 }
3860
3861 void
3862 _initialize_valops (void)
3863 {
3864 add_setshow_boolean_cmd ("overload-resolution", class_support,
3865 &overload_resolution, _("\
3866 Set overload resolution in evaluating C++ functions."), _("\
3867 Show overload resolution in evaluating C++ functions."),
3868 NULL, NULL,
3869 show_overload_resolution,
3870 &setlist, &showlist);
3871 overload_resolution = 1;
3872 }
This page took 0.169002 seconds and 4 git commands to generate.