Consider addressable memory unit size in various value functions
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "dfp.h"
38 #include "tracepoint.h"
39 #include "observer.h"
40 #include "objfiles.h"
41 #include "extension.h"
42
43 extern unsigned int overload_debug;
44 /* Local functions. */
45
46 static int typecmp (int staticp, int varargs, int nargs,
47 struct field t1[], struct value *t2[]);
48
49 static struct value *search_struct_field (const char *, struct value *,
50 struct type *, int);
51
52 static struct value *search_struct_method (const char *, struct value **,
53 struct value **,
54 int, int *, struct type *);
55
56 static int find_oload_champ_namespace (struct value **, int,
57 const char *, const char *,
58 struct symbol ***,
59 struct badness_vector **,
60 const int no_adl);
61
62 static
63 int find_oload_champ_namespace_loop (struct value **, int,
64 const char *, const char *,
65 int, struct symbol ***,
66 struct badness_vector **, int *,
67 const int no_adl);
68
69 static int find_oload_champ (struct value **, int, int,
70 struct fn_field *, VEC (xmethod_worker_ptr) *,
71 struct symbol **, struct badness_vector **);
72
73 static int oload_method_static_p (struct fn_field *, int);
74
75 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
76
77 static enum
78 oload_classification classify_oload_match (struct badness_vector *,
79 int, int);
80
81 static struct value *value_struct_elt_for_reference (struct type *,
82 int, struct type *,
83 const char *,
84 struct type *,
85 int, enum noside);
86
87 static struct value *value_namespace_elt (const struct type *,
88 const char *, int , enum noside);
89
90 static struct value *value_maybe_namespace_elt (const struct type *,
91 const char *, int,
92 enum noside);
93
94 static CORE_ADDR allocate_space_in_inferior (int);
95
96 static struct value *cast_into_complex (struct type *, struct value *);
97
98 static void find_method_list (struct value **, const char *,
99 int, struct type *, struct fn_field **, int *,
100 VEC (xmethod_worker_ptr) **,
101 struct type **, int *);
102
103 void _initialize_valops (void);
104
105 #if 0
106 /* Flag for whether we want to abandon failed expression evals by
107 default. */
108
109 static int auto_abandon = 0;
110 #endif
111
112 int overload_resolution = 0;
113 static void
114 show_overload_resolution (struct ui_file *file, int from_tty,
115 struct cmd_list_element *c,
116 const char *value)
117 {
118 fprintf_filtered (file, _("Overload resolution in evaluating "
119 "C++ functions is %s.\n"),
120 value);
121 }
122
123 /* Find the address of function name NAME in the inferior. If OBJF_P
124 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
125 is defined. */
126
127 struct value *
128 find_function_in_inferior (const char *name, struct objfile **objf_p)
129 {
130 struct symbol *sym;
131
132 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
133 if (sym != NULL)
134 {
135 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
136 {
137 error (_("\"%s\" exists in this program but is not a function."),
138 name);
139 }
140
141 if (objf_p)
142 *objf_p = symbol_objfile (sym);
143
144 return value_of_variable (sym, NULL);
145 }
146 else
147 {
148 struct bound_minimal_symbol msymbol =
149 lookup_bound_minimal_symbol (name);
150
151 if (msymbol.minsym != NULL)
152 {
153 struct objfile *objfile = msymbol.objfile;
154 struct gdbarch *gdbarch = get_objfile_arch (objfile);
155
156 struct type *type;
157 CORE_ADDR maddr;
158 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
159 type = lookup_function_type (type);
160 type = lookup_pointer_type (type);
161 maddr = BMSYMBOL_VALUE_ADDRESS (msymbol);
162
163 if (objf_p)
164 *objf_p = objfile;
165
166 return value_from_pointer (type, maddr);
167 }
168 else
169 {
170 if (!target_has_execution)
171 error (_("evaluation of this expression "
172 "requires the target program to be active"));
173 else
174 error (_("evaluation of this expression requires the "
175 "program to have a function \"%s\"."),
176 name);
177 }
178 }
179 }
180
181 /* Allocate NBYTES of space in the inferior using the inferior's
182 malloc and return a value that is a pointer to the allocated
183 space. */
184
185 struct value *
186 value_allocate_space_in_inferior (int len)
187 {
188 struct objfile *objf;
189 struct value *val = find_function_in_inferior ("malloc", &objf);
190 struct gdbarch *gdbarch = get_objfile_arch (objf);
191 struct value *blocklen;
192
193 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
194 val = call_function_by_hand (val, 1, &blocklen);
195 if (value_logical_not (val))
196 {
197 if (!target_has_execution)
198 error (_("No memory available to program now: "
199 "you need to start the target first"));
200 else
201 error (_("No memory available to program: call to malloc failed"));
202 }
203 return val;
204 }
205
206 static CORE_ADDR
207 allocate_space_in_inferior (int len)
208 {
209 return value_as_long (value_allocate_space_in_inferior (len));
210 }
211
212 /* Cast struct value VAL to type TYPE and return as a value.
213 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
214 for this to work. Typedef to one of the codes is permitted.
215 Returns NULL if the cast is neither an upcast nor a downcast. */
216
217 static struct value *
218 value_cast_structs (struct type *type, struct value *v2)
219 {
220 struct type *t1;
221 struct type *t2;
222 struct value *v;
223
224 gdb_assert (type != NULL && v2 != NULL);
225
226 t1 = check_typedef (type);
227 t2 = check_typedef (value_type (v2));
228
229 /* Check preconditions. */
230 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
231 || TYPE_CODE (t1) == TYPE_CODE_UNION)
232 && !!"Precondition is that type is of STRUCT or UNION kind.");
233 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
234 || TYPE_CODE (t2) == TYPE_CODE_UNION)
235 && !!"Precondition is that value is of STRUCT or UNION kind");
236
237 if (TYPE_NAME (t1) != NULL
238 && TYPE_NAME (t2) != NULL
239 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
240 return NULL;
241
242 /* Upcasting: look in the type of the source to see if it contains the
243 type of the target as a superclass. If so, we'll need to
244 offset the pointer rather than just change its type. */
245 if (TYPE_NAME (t1) != NULL)
246 {
247 v = search_struct_field (type_name_no_tag (t1),
248 v2, t2, 1);
249 if (v)
250 return v;
251 }
252
253 /* Downcasting: look in the type of the target to see if it contains the
254 type of the source as a superclass. If so, we'll need to
255 offset the pointer rather than just change its type. */
256 if (TYPE_NAME (t2) != NULL)
257 {
258 /* Try downcasting using the run-time type of the value. */
259 int full, top, using_enc;
260 struct type *real_type;
261
262 real_type = value_rtti_type (v2, &full, &top, &using_enc);
263 if (real_type)
264 {
265 v = value_full_object (v2, real_type, full, top, using_enc);
266 v = value_at_lazy (real_type, value_address (v));
267 real_type = value_type (v);
268
269 /* We might be trying to cast to the outermost enclosing
270 type, in which case search_struct_field won't work. */
271 if (TYPE_NAME (real_type) != NULL
272 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
273 return v;
274
275 v = search_struct_field (type_name_no_tag (t2), v, real_type, 1);
276 if (v)
277 return v;
278 }
279
280 /* Try downcasting using information from the destination type
281 T2. This wouldn't work properly for classes with virtual
282 bases, but those were handled above. */
283 v = search_struct_field (type_name_no_tag (t2),
284 value_zero (t1, not_lval), t1, 1);
285 if (v)
286 {
287 /* Downcasting is possible (t1 is superclass of v2). */
288 CORE_ADDR addr2 = value_address (v2);
289
290 addr2 -= value_address (v) + value_embedded_offset (v);
291 return value_at (type, addr2);
292 }
293 }
294
295 return NULL;
296 }
297
298 /* Cast one pointer or reference type to another. Both TYPE and
299 the type of ARG2 should be pointer types, or else both should be
300 reference types. If SUBCLASS_CHECK is non-zero, this will force a
301 check to see whether TYPE is a superclass of ARG2's type. If
302 SUBCLASS_CHECK is zero, then the subclass check is done only when
303 ARG2 is itself non-zero. Returns the new pointer or reference. */
304
305 struct value *
306 value_cast_pointers (struct type *type, struct value *arg2,
307 int subclass_check)
308 {
309 struct type *type1 = check_typedef (type);
310 struct type *type2 = check_typedef (value_type (arg2));
311 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
312 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
313
314 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
315 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
316 && (subclass_check || !value_logical_not (arg2)))
317 {
318 struct value *v2;
319
320 if (TYPE_CODE (type2) == TYPE_CODE_REF)
321 v2 = coerce_ref (arg2);
322 else
323 v2 = value_ind (arg2);
324 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
325 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
326 v2 = value_cast_structs (t1, v2);
327 /* At this point we have what we can have, un-dereference if needed. */
328 if (v2)
329 {
330 struct value *v = value_addr (v2);
331
332 deprecated_set_value_type (v, type);
333 return v;
334 }
335 }
336
337 /* No superclass found, just change the pointer type. */
338 arg2 = value_copy (arg2);
339 deprecated_set_value_type (arg2, type);
340 set_value_enclosing_type (arg2, type);
341 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
342 return arg2;
343 }
344
345 /* Cast value ARG2 to type TYPE and return as a value.
346 More general than a C cast: accepts any two types of the same length,
347 and if ARG2 is an lvalue it can be cast into anything at all. */
348 /* In C++, casts may change pointer or object representations. */
349
350 struct value *
351 value_cast (struct type *type, struct value *arg2)
352 {
353 enum type_code code1;
354 enum type_code code2;
355 int scalar;
356 struct type *type2;
357
358 int convert_to_boolean = 0;
359
360 if (value_type (arg2) == type)
361 return arg2;
362
363 code1 = TYPE_CODE (check_typedef (type));
364
365 /* Check if we are casting struct reference to struct reference. */
366 if (code1 == TYPE_CODE_REF)
367 {
368 /* We dereference type; then we recurse and finally
369 we generate value of the given reference. Nothing wrong with
370 that. */
371 struct type *t1 = check_typedef (type);
372 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
373 struct value *val = value_cast (dereftype, arg2);
374
375 return value_ref (val);
376 }
377
378 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
379
380 if (code2 == TYPE_CODE_REF)
381 /* We deref the value and then do the cast. */
382 return value_cast (type, coerce_ref (arg2));
383
384 type = check_typedef (type);
385 code1 = TYPE_CODE (type);
386 arg2 = coerce_ref (arg2);
387 type2 = check_typedef (value_type (arg2));
388
389 /* You can't cast to a reference type. See value_cast_pointers
390 instead. */
391 gdb_assert (code1 != TYPE_CODE_REF);
392
393 /* A cast to an undetermined-length array_type, such as
394 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
395 where N is sizeof(OBJECT)/sizeof(TYPE). */
396 if (code1 == TYPE_CODE_ARRAY)
397 {
398 struct type *element_type = TYPE_TARGET_TYPE (type);
399 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
400
401 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
402 {
403 struct type *range_type = TYPE_INDEX_TYPE (type);
404 int val_length = TYPE_LENGTH (type2);
405 LONGEST low_bound, high_bound, new_length;
406
407 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
408 low_bound = 0, high_bound = 0;
409 new_length = val_length / element_length;
410 if (val_length % element_length != 0)
411 warning (_("array element type size does not "
412 "divide object size in cast"));
413 /* FIXME-type-allocation: need a way to free this type when
414 we are done with it. */
415 range_type = create_static_range_type ((struct type *) NULL,
416 TYPE_TARGET_TYPE (range_type),
417 low_bound,
418 new_length + low_bound - 1);
419 deprecated_set_value_type (arg2,
420 create_array_type ((struct type *) NULL,
421 element_type,
422 range_type));
423 return arg2;
424 }
425 }
426
427 if (current_language->c_style_arrays
428 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
429 && !TYPE_VECTOR (type2))
430 arg2 = value_coerce_array (arg2);
431
432 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
433 arg2 = value_coerce_function (arg2);
434
435 type2 = check_typedef (value_type (arg2));
436 code2 = TYPE_CODE (type2);
437
438 if (code1 == TYPE_CODE_COMPLEX)
439 return cast_into_complex (type, arg2);
440 if (code1 == TYPE_CODE_BOOL)
441 {
442 code1 = TYPE_CODE_INT;
443 convert_to_boolean = 1;
444 }
445 if (code1 == TYPE_CODE_CHAR)
446 code1 = TYPE_CODE_INT;
447 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
448 code2 = TYPE_CODE_INT;
449
450 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
451 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
452 || code2 == TYPE_CODE_RANGE);
453
454 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
455 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
456 && TYPE_NAME (type) != 0)
457 {
458 struct value *v = value_cast_structs (type, arg2);
459
460 if (v)
461 return v;
462 }
463
464 if (code1 == TYPE_CODE_FLT && scalar)
465 return value_from_double (type, value_as_double (arg2));
466 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
467 {
468 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
469 int dec_len = TYPE_LENGTH (type);
470 gdb_byte dec[16];
471
472 if (code2 == TYPE_CODE_FLT)
473 decimal_from_floating (arg2, dec, dec_len, byte_order);
474 else if (code2 == TYPE_CODE_DECFLOAT)
475 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
476 byte_order, dec, dec_len, byte_order);
477 else
478 /* The only option left is an integral type. */
479 decimal_from_integral (arg2, dec, dec_len, byte_order);
480
481 return value_from_decfloat (type, dec);
482 }
483 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
484 || code1 == TYPE_CODE_RANGE)
485 && (scalar || code2 == TYPE_CODE_PTR
486 || code2 == TYPE_CODE_MEMBERPTR))
487 {
488 LONGEST longest;
489
490 /* When we cast pointers to integers, we mustn't use
491 gdbarch_pointer_to_address to find the address the pointer
492 represents, as value_as_long would. GDB should evaluate
493 expressions just as the compiler would --- and the compiler
494 sees a cast as a simple reinterpretation of the pointer's
495 bits. */
496 if (code2 == TYPE_CODE_PTR)
497 longest = extract_unsigned_integer
498 (value_contents (arg2), TYPE_LENGTH (type2),
499 gdbarch_byte_order (get_type_arch (type2)));
500 else
501 longest = value_as_long (arg2);
502 return value_from_longest (type, convert_to_boolean ?
503 (LONGEST) (longest ? 1 : 0) : longest);
504 }
505 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
506 || code2 == TYPE_CODE_ENUM
507 || code2 == TYPE_CODE_RANGE))
508 {
509 /* TYPE_LENGTH (type) is the length of a pointer, but we really
510 want the length of an address! -- we are really dealing with
511 addresses (i.e., gdb representations) not pointers (i.e.,
512 target representations) here.
513
514 This allows things like "print *(int *)0x01000234" to work
515 without printing a misleading message -- which would
516 otherwise occur when dealing with a target having two byte
517 pointers and four byte addresses. */
518
519 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
520 LONGEST longest = value_as_long (arg2);
521
522 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
523 {
524 if (longest >= ((LONGEST) 1 << addr_bit)
525 || longest <= -((LONGEST) 1 << addr_bit))
526 warning (_("value truncated"));
527 }
528 return value_from_longest (type, longest);
529 }
530 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
531 && value_as_long (arg2) == 0)
532 {
533 struct value *result = allocate_value (type);
534
535 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
536 return result;
537 }
538 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
539 && value_as_long (arg2) == 0)
540 {
541 /* The Itanium C++ ABI represents NULL pointers to members as
542 minus one, instead of biasing the normal case. */
543 return value_from_longest (type, -1);
544 }
545 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
546 && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
547 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
548 error (_("Cannot convert between vector values of different sizes"));
549 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
550 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
551 error (_("can only cast scalar to vector of same size"));
552 else if (code1 == TYPE_CODE_VOID)
553 {
554 return value_zero (type, not_lval);
555 }
556 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
557 {
558 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
559 return value_cast_pointers (type, arg2, 0);
560
561 arg2 = value_copy (arg2);
562 deprecated_set_value_type (arg2, type);
563 set_value_enclosing_type (arg2, type);
564 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
565 return arg2;
566 }
567 else if (VALUE_LVAL (arg2) == lval_memory)
568 return value_at_lazy (type, value_address (arg2));
569 else
570 {
571 error (_("Invalid cast."));
572 return 0;
573 }
574 }
575
576 /* The C++ reinterpret_cast operator. */
577
578 struct value *
579 value_reinterpret_cast (struct type *type, struct value *arg)
580 {
581 struct value *result;
582 struct type *real_type = check_typedef (type);
583 struct type *arg_type, *dest_type;
584 int is_ref = 0;
585 enum type_code dest_code, arg_code;
586
587 /* Do reference, function, and array conversion. */
588 arg = coerce_array (arg);
589
590 /* Attempt to preserve the type the user asked for. */
591 dest_type = type;
592
593 /* If we are casting to a reference type, transform
594 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
595 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
596 {
597 is_ref = 1;
598 arg = value_addr (arg);
599 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
600 real_type = lookup_pointer_type (real_type);
601 }
602
603 arg_type = value_type (arg);
604
605 dest_code = TYPE_CODE (real_type);
606 arg_code = TYPE_CODE (arg_type);
607
608 /* We can convert pointer types, or any pointer type to int, or int
609 type to pointer. */
610 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
611 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
612 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
613 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
614 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
615 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
616 || (dest_code == arg_code
617 && (dest_code == TYPE_CODE_PTR
618 || dest_code == TYPE_CODE_METHODPTR
619 || dest_code == TYPE_CODE_MEMBERPTR)))
620 result = value_cast (dest_type, arg);
621 else
622 error (_("Invalid reinterpret_cast"));
623
624 if (is_ref)
625 result = value_cast (type, value_ref (value_ind (result)));
626
627 return result;
628 }
629
630 /* A helper for value_dynamic_cast. This implements the first of two
631 runtime checks: we iterate over all the base classes of the value's
632 class which are equal to the desired class; if only one of these
633 holds the value, then it is the answer. */
634
635 static int
636 dynamic_cast_check_1 (struct type *desired_type,
637 const gdb_byte *valaddr,
638 int embedded_offset,
639 CORE_ADDR address,
640 struct value *val,
641 struct type *search_type,
642 CORE_ADDR arg_addr,
643 struct type *arg_type,
644 struct value **result)
645 {
646 int i, result_count = 0;
647
648 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
649 {
650 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
651 address, val);
652
653 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
654 {
655 if (address + embedded_offset + offset >= arg_addr
656 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
657 {
658 ++result_count;
659 if (!*result)
660 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
661 address + embedded_offset + offset);
662 }
663 }
664 else
665 result_count += dynamic_cast_check_1 (desired_type,
666 valaddr,
667 embedded_offset + offset,
668 address, val,
669 TYPE_BASECLASS (search_type, i),
670 arg_addr,
671 arg_type,
672 result);
673 }
674
675 return result_count;
676 }
677
678 /* A helper for value_dynamic_cast. This implements the second of two
679 runtime checks: we look for a unique public sibling class of the
680 argument's declared class. */
681
682 static int
683 dynamic_cast_check_2 (struct type *desired_type,
684 const gdb_byte *valaddr,
685 int embedded_offset,
686 CORE_ADDR address,
687 struct value *val,
688 struct type *search_type,
689 struct value **result)
690 {
691 int i, result_count = 0;
692
693 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
694 {
695 int offset;
696
697 if (! BASETYPE_VIA_PUBLIC (search_type, i))
698 continue;
699
700 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
701 address, val);
702 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
703 {
704 ++result_count;
705 if (*result == NULL)
706 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
707 address + embedded_offset + offset);
708 }
709 else
710 result_count += dynamic_cast_check_2 (desired_type,
711 valaddr,
712 embedded_offset + offset,
713 address, val,
714 TYPE_BASECLASS (search_type, i),
715 result);
716 }
717
718 return result_count;
719 }
720
721 /* The C++ dynamic_cast operator. */
722
723 struct value *
724 value_dynamic_cast (struct type *type, struct value *arg)
725 {
726 int full, top, using_enc;
727 struct type *resolved_type = check_typedef (type);
728 struct type *arg_type = check_typedef (value_type (arg));
729 struct type *class_type, *rtti_type;
730 struct value *result, *tem, *original_arg = arg;
731 CORE_ADDR addr;
732 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
733
734 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
735 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
736 error (_("Argument to dynamic_cast must be a pointer or reference type"));
737 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
738 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_STRUCT)
739 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
740
741 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
742 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
743 {
744 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
745 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
746 && value_as_long (arg) == 0))
747 error (_("Argument to dynamic_cast does not have pointer type"));
748 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
749 {
750 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
751 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
752 error (_("Argument to dynamic_cast does "
753 "not have pointer to class type"));
754 }
755
756 /* Handle NULL pointers. */
757 if (value_as_long (arg) == 0)
758 return value_zero (type, not_lval);
759
760 arg = value_ind (arg);
761 }
762 else
763 {
764 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
765 error (_("Argument to dynamic_cast does not have class type"));
766 }
767
768 /* If the classes are the same, just return the argument. */
769 if (class_types_same_p (class_type, arg_type))
770 return value_cast (type, arg);
771
772 /* If the target type is a unique base class of the argument's
773 declared type, just cast it. */
774 if (is_ancestor (class_type, arg_type))
775 {
776 if (is_unique_ancestor (class_type, arg))
777 return value_cast (type, original_arg);
778 error (_("Ambiguous dynamic_cast"));
779 }
780
781 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
782 if (! rtti_type)
783 error (_("Couldn't determine value's most derived type for dynamic_cast"));
784
785 /* Compute the most derived object's address. */
786 addr = value_address (arg);
787 if (full)
788 {
789 /* Done. */
790 }
791 else if (using_enc)
792 addr += top;
793 else
794 addr += top + value_embedded_offset (arg);
795
796 /* dynamic_cast<void *> means to return a pointer to the
797 most-derived object. */
798 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
799 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
800 return value_at_lazy (type, addr);
801
802 tem = value_at (type, addr);
803 type = value_type (tem);
804
805 /* The first dynamic check specified in 5.2.7. */
806 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
807 {
808 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
809 return tem;
810 result = NULL;
811 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
812 value_contents_for_printing (tem),
813 value_embedded_offset (tem),
814 value_address (tem), tem,
815 rtti_type, addr,
816 arg_type,
817 &result) == 1)
818 return value_cast (type,
819 is_ref ? value_ref (result) : value_addr (result));
820 }
821
822 /* The second dynamic check specified in 5.2.7. */
823 result = NULL;
824 if (is_public_ancestor (arg_type, rtti_type)
825 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
826 value_contents_for_printing (tem),
827 value_embedded_offset (tem),
828 value_address (tem), tem,
829 rtti_type, &result) == 1)
830 return value_cast (type,
831 is_ref ? value_ref (result) : value_addr (result));
832
833 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
834 return value_zero (type, not_lval);
835
836 error (_("dynamic_cast failed"));
837 }
838
839 /* Create a value of type TYPE that is zero, and return it. */
840
841 struct value *
842 value_zero (struct type *type, enum lval_type lv)
843 {
844 struct value *val = allocate_value (type);
845
846 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
847 return val;
848 }
849
850 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
851
852 struct value *
853 value_one (struct type *type)
854 {
855 struct type *type1 = check_typedef (type);
856 struct value *val;
857
858 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
859 {
860 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
861 gdb_byte v[16];
862
863 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
864 val = value_from_decfloat (type, v);
865 }
866 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
867 {
868 val = value_from_double (type, (DOUBLEST) 1);
869 }
870 else if (is_integral_type (type1))
871 {
872 val = value_from_longest (type, (LONGEST) 1);
873 }
874 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
875 {
876 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
877 int i;
878 LONGEST low_bound, high_bound;
879 struct value *tmp;
880
881 if (!get_array_bounds (type1, &low_bound, &high_bound))
882 error (_("Could not determine the vector bounds"));
883
884 val = allocate_value (type);
885 for (i = 0; i < high_bound - low_bound + 1; i++)
886 {
887 tmp = value_one (eltype);
888 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
889 value_contents_all (tmp), TYPE_LENGTH (eltype));
890 }
891 }
892 else
893 {
894 error (_("Not a numeric type."));
895 }
896
897 /* value_one result is never used for assignments to. */
898 gdb_assert (VALUE_LVAL (val) == not_lval);
899
900 return val;
901 }
902
903 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.
904 The type of the created value may differ from the passed type TYPE.
905 Make sure to retrieve the returned values's new type after this call
906 e.g. in case the type is a variable length array. */
907
908 static struct value *
909 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
910 {
911 struct value *val;
912
913 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
914 error (_("Attempt to dereference a generic pointer."));
915
916 val = value_from_contents_and_address (type, NULL, addr);
917
918 if (!lazy)
919 value_fetch_lazy (val);
920
921 return val;
922 }
923
924 /* Return a value with type TYPE located at ADDR.
925
926 Call value_at only if the data needs to be fetched immediately;
927 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
928 value_at_lazy instead. value_at_lazy simply records the address of
929 the data and sets the lazy-evaluation-required flag. The lazy flag
930 is tested in the value_contents macro, which is used if and when
931 the contents are actually required. The type of the created value
932 may differ from the passed type TYPE. Make sure to retrieve the
933 returned values's new type after this call e.g. in case the type
934 is a variable length array.
935
936 Note: value_at does *NOT* handle embedded offsets; perform such
937 adjustments before or after calling it. */
938
939 struct value *
940 value_at (struct type *type, CORE_ADDR addr)
941 {
942 return get_value_at (type, addr, 0);
943 }
944
945 /* Return a lazy value with type TYPE located at ADDR (cf. value_at).
946 The type of the created value may differ from the passed type TYPE.
947 Make sure to retrieve the returned values's new type after this call
948 e.g. in case the type is a variable length array. */
949
950 struct value *
951 value_at_lazy (struct type *type, CORE_ADDR addr)
952 {
953 return get_value_at (type, addr, 1);
954 }
955
956 void
957 read_value_memory (struct value *val, int embedded_offset,
958 int stack, CORE_ADDR memaddr,
959 gdb_byte *buffer, size_t length)
960 {
961 ULONGEST xfered_total = 0;
962 struct gdbarch *arch = get_value_arch (val);
963 int unit_size = gdbarch_addressable_memory_unit_size (arch);
964
965 while (xfered_total < length)
966 {
967 enum target_xfer_status status;
968 ULONGEST xfered_partial;
969
970 status = target_xfer_partial (current_target.beneath,
971 TARGET_OBJECT_MEMORY, NULL,
972 buffer + xfered_total * unit_size, NULL,
973 memaddr + xfered_total,
974 length - xfered_total,
975 &xfered_partial);
976
977 if (status == TARGET_XFER_OK)
978 /* nothing */;
979 else if (status == TARGET_XFER_UNAVAILABLE)
980 mark_value_bytes_unavailable (val, embedded_offset + xfered_total,
981 xfered_partial);
982 else if (status == TARGET_XFER_EOF)
983 memory_error (TARGET_XFER_E_IO, memaddr + xfered_total);
984 else
985 memory_error (status, memaddr + xfered_total);
986
987 xfered_total += xfered_partial;
988 QUIT;
989 }
990 }
991
992 /* Store the contents of FROMVAL into the location of TOVAL.
993 Return a new value with the location of TOVAL and contents of FROMVAL. */
994
995 struct value *
996 value_assign (struct value *toval, struct value *fromval)
997 {
998 struct type *type;
999 struct value *val;
1000 struct frame_id old_frame;
1001
1002 if (!deprecated_value_modifiable (toval))
1003 error (_("Left operand of assignment is not a modifiable lvalue."));
1004
1005 toval = coerce_ref (toval);
1006
1007 type = value_type (toval);
1008 if (VALUE_LVAL (toval) != lval_internalvar)
1009 fromval = value_cast (type, fromval);
1010 else
1011 {
1012 /* Coerce arrays and functions to pointers, except for arrays
1013 which only live in GDB's storage. */
1014 if (!value_must_coerce_to_target (fromval))
1015 fromval = coerce_array (fromval);
1016 }
1017
1018 type = check_typedef (type);
1019
1020 /* Since modifying a register can trash the frame chain, and
1021 modifying memory can trash the frame cache, we save the old frame
1022 and then restore the new frame afterwards. */
1023 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1024
1025 switch (VALUE_LVAL (toval))
1026 {
1027 case lval_internalvar:
1028 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1029 return value_of_internalvar (get_type_arch (type),
1030 VALUE_INTERNALVAR (toval));
1031
1032 case lval_internalvar_component:
1033 {
1034 int offset = value_offset (toval);
1035
1036 /* Are we dealing with a bitfield?
1037
1038 It is important to mention that `value_parent (toval)' is
1039 non-NULL iff `value_bitsize (toval)' is non-zero. */
1040 if (value_bitsize (toval))
1041 {
1042 /* VALUE_INTERNALVAR below refers to the parent value, while
1043 the offset is relative to this parent value. */
1044 gdb_assert (value_parent (value_parent (toval)) == NULL);
1045 offset += value_offset (value_parent (toval));
1046 }
1047
1048 set_internalvar_component (VALUE_INTERNALVAR (toval),
1049 offset,
1050 value_bitpos (toval),
1051 value_bitsize (toval),
1052 fromval);
1053 }
1054 break;
1055
1056 case lval_memory:
1057 {
1058 const gdb_byte *dest_buffer;
1059 CORE_ADDR changed_addr;
1060 int changed_len;
1061 gdb_byte buffer[sizeof (LONGEST)];
1062
1063 if (value_bitsize (toval))
1064 {
1065 struct value *parent = value_parent (toval);
1066
1067 changed_addr = value_address (parent) + value_offset (toval);
1068 changed_len = (value_bitpos (toval)
1069 + value_bitsize (toval)
1070 + HOST_CHAR_BIT - 1)
1071 / HOST_CHAR_BIT;
1072
1073 /* If we can read-modify-write exactly the size of the
1074 containing type (e.g. short or int) then do so. This
1075 is safer for volatile bitfields mapped to hardware
1076 registers. */
1077 if (changed_len < TYPE_LENGTH (type)
1078 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1079 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1080 changed_len = TYPE_LENGTH (type);
1081
1082 if (changed_len > (int) sizeof (LONGEST))
1083 error (_("Can't handle bitfields which "
1084 "don't fit in a %d bit word."),
1085 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1086
1087 read_memory (changed_addr, buffer, changed_len);
1088 modify_field (type, buffer, value_as_long (fromval),
1089 value_bitpos (toval), value_bitsize (toval));
1090 dest_buffer = buffer;
1091 }
1092 else
1093 {
1094 changed_addr = value_address (toval);
1095 changed_len = type_length_units (type);
1096 dest_buffer = value_contents (fromval);
1097 }
1098
1099 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1100 }
1101 break;
1102
1103 case lval_register:
1104 {
1105 struct frame_info *frame;
1106 struct gdbarch *gdbarch;
1107 int value_reg;
1108
1109 /* Figure out which frame this is in currently. */
1110 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1111 value_reg = VALUE_REGNUM (toval);
1112
1113 if (!frame)
1114 error (_("Value being assigned to is no longer active."));
1115
1116 gdbarch = get_frame_arch (frame);
1117
1118 if (value_bitsize (toval))
1119 {
1120 struct value *parent = value_parent (toval);
1121 int offset = value_offset (parent) + value_offset (toval);
1122 int changed_len;
1123 gdb_byte buffer[sizeof (LONGEST)];
1124 int optim, unavail;
1125
1126 changed_len = (value_bitpos (toval)
1127 + value_bitsize (toval)
1128 + HOST_CHAR_BIT - 1)
1129 / HOST_CHAR_BIT;
1130
1131 if (changed_len > (int) sizeof (LONGEST))
1132 error (_("Can't handle bitfields which "
1133 "don't fit in a %d bit word."),
1134 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1135
1136 if (!get_frame_register_bytes (frame, value_reg, offset,
1137 changed_len, buffer,
1138 &optim, &unavail))
1139 {
1140 if (optim)
1141 throw_error (OPTIMIZED_OUT_ERROR,
1142 _("value has been optimized out"));
1143 if (unavail)
1144 throw_error (NOT_AVAILABLE_ERROR,
1145 _("value is not available"));
1146 }
1147
1148 modify_field (type, buffer, value_as_long (fromval),
1149 value_bitpos (toval), value_bitsize (toval));
1150
1151 put_frame_register_bytes (frame, value_reg, offset,
1152 changed_len, buffer);
1153 }
1154 else
1155 {
1156 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval),
1157 type))
1158 {
1159 /* If TOVAL is a special machine register requiring
1160 conversion of program values to a special raw
1161 format. */
1162 gdbarch_value_to_register (gdbarch, frame,
1163 VALUE_REGNUM (toval), type,
1164 value_contents (fromval));
1165 }
1166 else
1167 {
1168 put_frame_register_bytes (frame, value_reg,
1169 value_offset (toval),
1170 TYPE_LENGTH (type),
1171 value_contents (fromval));
1172 }
1173 }
1174
1175 observer_notify_register_changed (frame, value_reg);
1176 break;
1177 }
1178
1179 case lval_computed:
1180 {
1181 const struct lval_funcs *funcs = value_computed_funcs (toval);
1182
1183 if (funcs->write != NULL)
1184 {
1185 funcs->write (toval, fromval);
1186 break;
1187 }
1188 }
1189 /* Fall through. */
1190
1191 default:
1192 error (_("Left operand of assignment is not an lvalue."));
1193 }
1194
1195 /* Assigning to the stack pointer, frame pointer, and other
1196 (architecture and calling convention specific) registers may
1197 cause the frame cache and regcache to be out of date. Assigning to memory
1198 also can. We just do this on all assignments to registers or
1199 memory, for simplicity's sake; I doubt the slowdown matters. */
1200 switch (VALUE_LVAL (toval))
1201 {
1202 case lval_memory:
1203 case lval_register:
1204 case lval_computed:
1205
1206 observer_notify_target_changed (&current_target);
1207
1208 /* Having destroyed the frame cache, restore the selected
1209 frame. */
1210
1211 /* FIXME: cagney/2002-11-02: There has to be a better way of
1212 doing this. Instead of constantly saving/restoring the
1213 frame. Why not create a get_selected_frame() function that,
1214 having saved the selected frame's ID can automatically
1215 re-find the previously selected frame automatically. */
1216
1217 {
1218 struct frame_info *fi = frame_find_by_id (old_frame);
1219
1220 if (fi != NULL)
1221 select_frame (fi);
1222 }
1223
1224 break;
1225 default:
1226 break;
1227 }
1228
1229 /* If the field does not entirely fill a LONGEST, then zero the sign
1230 bits. If the field is signed, and is negative, then sign
1231 extend. */
1232 if ((value_bitsize (toval) > 0)
1233 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1234 {
1235 LONGEST fieldval = value_as_long (fromval);
1236 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1237
1238 fieldval &= valmask;
1239 if (!TYPE_UNSIGNED (type)
1240 && (fieldval & (valmask ^ (valmask >> 1))))
1241 fieldval |= ~valmask;
1242
1243 fromval = value_from_longest (type, fieldval);
1244 }
1245
1246 /* The return value is a copy of TOVAL so it shares its location
1247 information, but its contents are updated from FROMVAL. This
1248 implies the returned value is not lazy, even if TOVAL was. */
1249 val = value_copy (toval);
1250 set_value_lazy (val, 0);
1251 memcpy (value_contents_raw (val), value_contents (fromval),
1252 TYPE_LENGTH (type));
1253
1254 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1255 in the case of pointer types. For object types, the enclosing type
1256 and embedded offset must *not* be copied: the target object refered
1257 to by TOVAL retains its original dynamic type after assignment. */
1258 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1259 {
1260 set_value_enclosing_type (val, value_enclosing_type (fromval));
1261 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1262 }
1263
1264 return val;
1265 }
1266
1267 /* Extend a value VAL to COUNT repetitions of its type. */
1268
1269 struct value *
1270 value_repeat (struct value *arg1, int count)
1271 {
1272 struct value *val;
1273
1274 if (VALUE_LVAL (arg1) != lval_memory)
1275 error (_("Only values in memory can be extended with '@'."));
1276 if (count < 1)
1277 error (_("Invalid number %d of repetitions."), count);
1278
1279 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1280
1281 VALUE_LVAL (val) = lval_memory;
1282 set_value_address (val, value_address (arg1));
1283
1284 read_value_memory (val, 0, value_stack (val), value_address (val),
1285 value_contents_all_raw (val),
1286 type_length_units (value_enclosing_type (val)));
1287
1288 return val;
1289 }
1290
1291 struct value *
1292 value_of_variable (struct symbol *var, const struct block *b)
1293 {
1294 struct frame_info *frame;
1295
1296 if (!symbol_read_needs_frame (var))
1297 frame = NULL;
1298 else if (!b)
1299 frame = get_selected_frame (_("No frame selected."));
1300 else
1301 {
1302 frame = block_innermost_frame (b);
1303 if (!frame)
1304 {
1305 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1306 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1307 error (_("No frame is currently executing in block %s."),
1308 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1309 else
1310 error (_("No frame is currently executing in specified block"));
1311 }
1312 }
1313
1314 return read_var_value (var, frame);
1315 }
1316
1317 struct value *
1318 address_of_variable (struct symbol *var, const struct block *b)
1319 {
1320 struct type *type = SYMBOL_TYPE (var);
1321 struct value *val;
1322
1323 /* Evaluate it first; if the result is a memory address, we're fine.
1324 Lazy evaluation pays off here. */
1325
1326 val = value_of_variable (var, b);
1327 type = value_type (val);
1328
1329 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1330 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1331 {
1332 CORE_ADDR addr = value_address (val);
1333
1334 return value_from_pointer (lookup_pointer_type (type), addr);
1335 }
1336
1337 /* Not a memory address; check what the problem was. */
1338 switch (VALUE_LVAL (val))
1339 {
1340 case lval_register:
1341 {
1342 struct frame_info *frame;
1343 const char *regname;
1344
1345 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1346 gdb_assert (frame);
1347
1348 regname = gdbarch_register_name (get_frame_arch (frame),
1349 VALUE_REGNUM (val));
1350 gdb_assert (regname && *regname);
1351
1352 error (_("Address requested for identifier "
1353 "\"%s\" which is in register $%s"),
1354 SYMBOL_PRINT_NAME (var), regname);
1355 break;
1356 }
1357
1358 default:
1359 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1360 SYMBOL_PRINT_NAME (var));
1361 break;
1362 }
1363
1364 return val;
1365 }
1366
1367 /* Return one if VAL does not live in target memory, but should in order
1368 to operate on it. Otherwise return zero. */
1369
1370 int
1371 value_must_coerce_to_target (struct value *val)
1372 {
1373 struct type *valtype;
1374
1375 /* The only lval kinds which do not live in target memory. */
1376 if (VALUE_LVAL (val) != not_lval
1377 && VALUE_LVAL (val) != lval_internalvar
1378 && VALUE_LVAL (val) != lval_xcallable)
1379 return 0;
1380
1381 valtype = check_typedef (value_type (val));
1382
1383 switch (TYPE_CODE (valtype))
1384 {
1385 case TYPE_CODE_ARRAY:
1386 return TYPE_VECTOR (valtype) ? 0 : 1;
1387 case TYPE_CODE_STRING:
1388 return 1;
1389 default:
1390 return 0;
1391 }
1392 }
1393
1394 /* Make sure that VAL lives in target memory if it's supposed to. For
1395 instance, strings are constructed as character arrays in GDB's
1396 storage, and this function copies them to the target. */
1397
1398 struct value *
1399 value_coerce_to_target (struct value *val)
1400 {
1401 LONGEST length;
1402 CORE_ADDR addr;
1403
1404 if (!value_must_coerce_to_target (val))
1405 return val;
1406
1407 length = TYPE_LENGTH (check_typedef (value_type (val)));
1408 addr = allocate_space_in_inferior (length);
1409 write_memory (addr, value_contents (val), length);
1410 return value_at_lazy (value_type (val), addr);
1411 }
1412
1413 /* Given a value which is an array, return a value which is a pointer
1414 to its first element, regardless of whether or not the array has a
1415 nonzero lower bound.
1416
1417 FIXME: A previous comment here indicated that this routine should
1418 be substracting the array's lower bound. It's not clear to me that
1419 this is correct. Given an array subscripting operation, it would
1420 certainly work to do the adjustment here, essentially computing:
1421
1422 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1423
1424 However I believe a more appropriate and logical place to account
1425 for the lower bound is to do so in value_subscript, essentially
1426 computing:
1427
1428 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1429
1430 As further evidence consider what would happen with operations
1431 other than array subscripting, where the caller would get back a
1432 value that had an address somewhere before the actual first element
1433 of the array, and the information about the lower bound would be
1434 lost because of the coercion to pointer type. */
1435
1436 struct value *
1437 value_coerce_array (struct value *arg1)
1438 {
1439 struct type *type = check_typedef (value_type (arg1));
1440
1441 /* If the user tries to do something requiring a pointer with an
1442 array that has not yet been pushed to the target, then this would
1443 be a good time to do so. */
1444 arg1 = value_coerce_to_target (arg1);
1445
1446 if (VALUE_LVAL (arg1) != lval_memory)
1447 error (_("Attempt to take address of value not located in memory."));
1448
1449 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1450 value_address (arg1));
1451 }
1452
1453 /* Given a value which is a function, return a value which is a pointer
1454 to it. */
1455
1456 struct value *
1457 value_coerce_function (struct value *arg1)
1458 {
1459 struct value *retval;
1460
1461 if (VALUE_LVAL (arg1) != lval_memory)
1462 error (_("Attempt to take address of value not located in memory."));
1463
1464 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1465 value_address (arg1));
1466 return retval;
1467 }
1468
1469 /* Return a pointer value for the object for which ARG1 is the
1470 contents. */
1471
1472 struct value *
1473 value_addr (struct value *arg1)
1474 {
1475 struct value *arg2;
1476 struct type *type = check_typedef (value_type (arg1));
1477
1478 if (TYPE_CODE (type) == TYPE_CODE_REF)
1479 {
1480 /* Copy the value, but change the type from (T&) to (T*). We
1481 keep the same location information, which is efficient, and
1482 allows &(&X) to get the location containing the reference. */
1483 arg2 = value_copy (arg1);
1484 deprecated_set_value_type (arg2,
1485 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1486 return arg2;
1487 }
1488 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1489 return value_coerce_function (arg1);
1490
1491 /* If this is an array that has not yet been pushed to the target,
1492 then this would be a good time to force it to memory. */
1493 arg1 = value_coerce_to_target (arg1);
1494
1495 if (VALUE_LVAL (arg1) != lval_memory)
1496 error (_("Attempt to take address of value not located in memory."));
1497
1498 /* Get target memory address. */
1499 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1500 (value_address (arg1)
1501 + value_embedded_offset (arg1)));
1502
1503 /* This may be a pointer to a base subobject; so remember the
1504 full derived object's type ... */
1505 set_value_enclosing_type (arg2,
1506 lookup_pointer_type (value_enclosing_type (arg1)));
1507 /* ... and also the relative position of the subobject in the full
1508 object. */
1509 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1510 return arg2;
1511 }
1512
1513 /* Return a reference value for the object for which ARG1 is the
1514 contents. */
1515
1516 struct value *
1517 value_ref (struct value *arg1)
1518 {
1519 struct value *arg2;
1520 struct type *type = check_typedef (value_type (arg1));
1521
1522 if (TYPE_CODE (type) == TYPE_CODE_REF)
1523 return arg1;
1524
1525 arg2 = value_addr (arg1);
1526 deprecated_set_value_type (arg2, lookup_reference_type (type));
1527 return arg2;
1528 }
1529
1530 /* Given a value of a pointer type, apply the C unary * operator to
1531 it. */
1532
1533 struct value *
1534 value_ind (struct value *arg1)
1535 {
1536 struct type *base_type;
1537 struct value *arg2;
1538
1539 arg1 = coerce_array (arg1);
1540
1541 base_type = check_typedef (value_type (arg1));
1542
1543 if (VALUE_LVAL (arg1) == lval_computed)
1544 {
1545 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1546
1547 if (funcs->indirect)
1548 {
1549 struct value *result = funcs->indirect (arg1);
1550
1551 if (result)
1552 return result;
1553 }
1554 }
1555
1556 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1557 {
1558 struct type *enc_type;
1559
1560 /* We may be pointing to something embedded in a larger object.
1561 Get the real type of the enclosing object. */
1562 enc_type = check_typedef (value_enclosing_type (arg1));
1563 enc_type = TYPE_TARGET_TYPE (enc_type);
1564
1565 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1566 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1567 /* For functions, go through find_function_addr, which knows
1568 how to handle function descriptors. */
1569 arg2 = value_at_lazy (enc_type,
1570 find_function_addr (arg1, NULL));
1571 else
1572 /* Retrieve the enclosing object pointed to. */
1573 arg2 = value_at_lazy (enc_type,
1574 (value_as_address (arg1)
1575 - value_pointed_to_offset (arg1)));
1576
1577 enc_type = value_type (arg2);
1578 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1579 }
1580
1581 error (_("Attempt to take contents of a non-pointer value."));
1582 return 0; /* For lint -- never reached. */
1583 }
1584 \f
1585 /* Create a value for an array by allocating space in GDB, copying the
1586 data into that space, and then setting up an array value.
1587
1588 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1589 is populated from the values passed in ELEMVEC.
1590
1591 The element type of the array is inherited from the type of the
1592 first element, and all elements must have the same size (though we
1593 don't currently enforce any restriction on their types). */
1594
1595 struct value *
1596 value_array (int lowbound, int highbound, struct value **elemvec)
1597 {
1598 int nelem;
1599 int idx;
1600 unsigned int typelength;
1601 struct value *val;
1602 struct type *arraytype;
1603
1604 /* Validate that the bounds are reasonable and that each of the
1605 elements have the same size. */
1606
1607 nelem = highbound - lowbound + 1;
1608 if (nelem <= 0)
1609 {
1610 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1611 }
1612 typelength = type_length_units (value_enclosing_type (elemvec[0]));
1613 for (idx = 1; idx < nelem; idx++)
1614 {
1615 if (type_length_units (value_enclosing_type (elemvec[idx]))
1616 != typelength)
1617 {
1618 error (_("array elements must all be the same size"));
1619 }
1620 }
1621
1622 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1623 lowbound, highbound);
1624
1625 if (!current_language->c_style_arrays)
1626 {
1627 val = allocate_value (arraytype);
1628 for (idx = 0; idx < nelem; idx++)
1629 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1630 typelength);
1631 return val;
1632 }
1633
1634 /* Allocate space to store the array, and then initialize it by
1635 copying in each element. */
1636
1637 val = allocate_value (arraytype);
1638 for (idx = 0; idx < nelem; idx++)
1639 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1640 return val;
1641 }
1642
1643 struct value *
1644 value_cstring (char *ptr, ssize_t len, struct type *char_type)
1645 {
1646 struct value *val;
1647 int lowbound = current_language->string_lower_bound;
1648 ssize_t highbound = len / TYPE_LENGTH (char_type);
1649 struct type *stringtype
1650 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1651
1652 val = allocate_value (stringtype);
1653 memcpy (value_contents_raw (val), ptr, len);
1654 return val;
1655 }
1656
1657 /* Create a value for a string constant by allocating space in the
1658 inferior, copying the data into that space, and returning the
1659 address with type TYPE_CODE_STRING. PTR points to the string
1660 constant data; LEN is number of characters.
1661
1662 Note that string types are like array of char types with a lower
1663 bound of zero and an upper bound of LEN - 1. Also note that the
1664 string may contain embedded null bytes. */
1665
1666 struct value *
1667 value_string (char *ptr, ssize_t len, struct type *char_type)
1668 {
1669 struct value *val;
1670 int lowbound = current_language->string_lower_bound;
1671 ssize_t highbound = len / TYPE_LENGTH (char_type);
1672 struct type *stringtype
1673 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1674
1675 val = allocate_value (stringtype);
1676 memcpy (value_contents_raw (val), ptr, len);
1677 return val;
1678 }
1679
1680 \f
1681 /* See if we can pass arguments in T2 to a function which takes
1682 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1683 a NULL-terminated vector. If some arguments need coercion of some
1684 sort, then the coerced values are written into T2. Return value is
1685 0 if the arguments could be matched, or the position at which they
1686 differ if not.
1687
1688 STATICP is nonzero if the T1 argument list came from a static
1689 member function. T2 will still include the ``this'' pointer, but
1690 it will be skipped.
1691
1692 For non-static member functions, we ignore the first argument,
1693 which is the type of the instance variable. This is because we
1694 want to handle calls with objects from derived classes. This is
1695 not entirely correct: we should actually check to make sure that a
1696 requested operation is type secure, shouldn't we? FIXME. */
1697
1698 static int
1699 typecmp (int staticp, int varargs, int nargs,
1700 struct field t1[], struct value *t2[])
1701 {
1702 int i;
1703
1704 if (t2 == 0)
1705 internal_error (__FILE__, __LINE__,
1706 _("typecmp: no argument list"));
1707
1708 /* Skip ``this'' argument if applicable. T2 will always include
1709 THIS. */
1710 if (staticp)
1711 t2 ++;
1712
1713 for (i = 0;
1714 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1715 i++)
1716 {
1717 struct type *tt1, *tt2;
1718
1719 if (!t2[i])
1720 return i + 1;
1721
1722 tt1 = check_typedef (t1[i].type);
1723 tt2 = check_typedef (value_type (t2[i]));
1724
1725 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1726 /* We should be doing hairy argument matching, as below. */
1727 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1728 == TYPE_CODE (tt2)))
1729 {
1730 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1731 t2[i] = value_coerce_array (t2[i]);
1732 else
1733 t2[i] = value_ref (t2[i]);
1734 continue;
1735 }
1736
1737 /* djb - 20000715 - Until the new type structure is in the
1738 place, and we can attempt things like implicit conversions,
1739 we need to do this so you can take something like a map<const
1740 char *>, and properly access map["hello"], because the
1741 argument to [] will be a reference to a pointer to a char,
1742 and the argument will be a pointer to a char. */
1743 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1744 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1745 {
1746 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1747 }
1748 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1749 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1750 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1751 {
1752 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1753 }
1754 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1755 continue;
1756 /* Array to pointer is a `trivial conversion' according to the
1757 ARM. */
1758
1759 /* We should be doing much hairier argument matching (see
1760 section 13.2 of the ARM), but as a quick kludge, just check
1761 for the same type code. */
1762 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1763 return i + 1;
1764 }
1765 if (varargs || t2[i] == NULL)
1766 return 0;
1767 return i + 1;
1768 }
1769
1770 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1771 and *LAST_BOFFSET, and possibly throws an exception if the field
1772 search has yielded ambiguous results. */
1773
1774 static void
1775 update_search_result (struct value **result_ptr, struct value *v,
1776 int *last_boffset, int boffset,
1777 const char *name, struct type *type)
1778 {
1779 if (v != NULL)
1780 {
1781 if (*result_ptr != NULL
1782 /* The result is not ambiguous if all the classes that are
1783 found occupy the same space. */
1784 && *last_boffset != boffset)
1785 error (_("base class '%s' is ambiguous in type '%s'"),
1786 name, TYPE_SAFE_NAME (type));
1787 *result_ptr = v;
1788 *last_boffset = boffset;
1789 }
1790 }
1791
1792 /* A helper for search_struct_field. This does all the work; most
1793 arguments are as passed to search_struct_field. The result is
1794 stored in *RESULT_PTR, which must be initialized to NULL.
1795 OUTERMOST_TYPE is the type of the initial type passed to
1796 search_struct_field; this is used for error reporting when the
1797 lookup is ambiguous. */
1798
1799 static void
1800 do_search_struct_field (const char *name, struct value *arg1, int offset,
1801 struct type *type, int looking_for_baseclass,
1802 struct value **result_ptr,
1803 int *last_boffset,
1804 struct type *outermost_type)
1805 {
1806 int i;
1807 int nbases;
1808
1809 type = check_typedef (type);
1810 nbases = TYPE_N_BASECLASSES (type);
1811
1812 if (!looking_for_baseclass)
1813 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1814 {
1815 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1816
1817 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1818 {
1819 struct value *v;
1820
1821 if (field_is_static (&TYPE_FIELD (type, i)))
1822 v = value_static_field (type, i);
1823 else
1824 v = value_primitive_field (arg1, offset, i, type);
1825 *result_ptr = v;
1826 return;
1827 }
1828
1829 if (t_field_name
1830 && t_field_name[0] == '\0')
1831 {
1832 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1833
1834 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1835 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1836 {
1837 /* Look for a match through the fields of an anonymous
1838 union, or anonymous struct. C++ provides anonymous
1839 unions.
1840
1841 In the GNU Chill (now deleted from GDB)
1842 implementation of variant record types, each
1843 <alternative field> has an (anonymous) union type,
1844 each member of the union represents a <variant
1845 alternative>. Each <variant alternative> is
1846 represented as a struct, with a member for each
1847 <variant field>. */
1848
1849 struct value *v = NULL;
1850 int new_offset = offset;
1851
1852 /* This is pretty gross. In G++, the offset in an
1853 anonymous union is relative to the beginning of the
1854 enclosing struct. In the GNU Chill (now deleted
1855 from GDB) implementation of variant records, the
1856 bitpos is zero in an anonymous union field, so we
1857 have to add the offset of the union here. */
1858 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1859 || (TYPE_NFIELDS (field_type) > 0
1860 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1861 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1862
1863 do_search_struct_field (name, arg1, new_offset,
1864 field_type,
1865 looking_for_baseclass, &v,
1866 last_boffset,
1867 outermost_type);
1868 if (v)
1869 {
1870 *result_ptr = v;
1871 return;
1872 }
1873 }
1874 }
1875 }
1876
1877 for (i = 0; i < nbases; i++)
1878 {
1879 struct value *v = NULL;
1880 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1881 /* If we are looking for baseclasses, this is what we get when
1882 we hit them. But it could happen that the base part's member
1883 name is not yet filled in. */
1884 int found_baseclass = (looking_for_baseclass
1885 && TYPE_BASECLASS_NAME (type, i) != NULL
1886 && (strcmp_iw (name,
1887 TYPE_BASECLASS_NAME (type,
1888 i)) == 0));
1889 int boffset = value_embedded_offset (arg1) + offset;
1890
1891 if (BASETYPE_VIA_VIRTUAL (type, i))
1892 {
1893 struct value *v2;
1894
1895 boffset = baseclass_offset (type, i,
1896 value_contents_for_printing (arg1),
1897 value_embedded_offset (arg1) + offset,
1898 value_address (arg1),
1899 arg1);
1900
1901 /* The virtual base class pointer might have been clobbered
1902 by the user program. Make sure that it still points to a
1903 valid memory location. */
1904
1905 boffset += value_embedded_offset (arg1) + offset;
1906 if (boffset < 0
1907 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1908 {
1909 CORE_ADDR base_addr;
1910
1911 base_addr = value_address (arg1) + boffset;
1912 v2 = value_at_lazy (basetype, base_addr);
1913 if (target_read_memory (base_addr,
1914 value_contents_raw (v2),
1915 TYPE_LENGTH (value_type (v2))) != 0)
1916 error (_("virtual baseclass botch"));
1917 }
1918 else
1919 {
1920 v2 = value_copy (arg1);
1921 deprecated_set_value_type (v2, basetype);
1922 set_value_embedded_offset (v2, boffset);
1923 }
1924
1925 if (found_baseclass)
1926 v = v2;
1927 else
1928 {
1929 do_search_struct_field (name, v2, 0,
1930 TYPE_BASECLASS (type, i),
1931 looking_for_baseclass,
1932 result_ptr, last_boffset,
1933 outermost_type);
1934 }
1935 }
1936 else if (found_baseclass)
1937 v = value_primitive_field (arg1, offset, i, type);
1938 else
1939 {
1940 do_search_struct_field (name, arg1,
1941 offset + TYPE_BASECLASS_BITPOS (type,
1942 i) / 8,
1943 basetype, looking_for_baseclass,
1944 result_ptr, last_boffset,
1945 outermost_type);
1946 }
1947
1948 update_search_result (result_ptr, v, last_boffset,
1949 boffset, name, outermost_type);
1950 }
1951 }
1952
1953 /* Helper function used by value_struct_elt to recurse through
1954 baseclasses. Look for a field NAME in ARG1. Search in it assuming
1955 it has (class) type TYPE. If found, return value, else return NULL.
1956
1957 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1958 fields, look for a baseclass named NAME. */
1959
1960 static struct value *
1961 search_struct_field (const char *name, struct value *arg1,
1962 struct type *type, int looking_for_baseclass)
1963 {
1964 struct value *result = NULL;
1965 int boffset = 0;
1966
1967 do_search_struct_field (name, arg1, 0, type, looking_for_baseclass,
1968 &result, &boffset, type);
1969 return result;
1970 }
1971
1972 /* Helper function used by value_struct_elt to recurse through
1973 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1974 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1975 TYPE.
1976
1977 If found, return value, else if name matched and args not return
1978 (value) -1, else return NULL. */
1979
1980 static struct value *
1981 search_struct_method (const char *name, struct value **arg1p,
1982 struct value **args, int offset,
1983 int *static_memfuncp, struct type *type)
1984 {
1985 int i;
1986 struct value *v;
1987 int name_matched = 0;
1988 char dem_opname[64];
1989
1990 type = check_typedef (type);
1991 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1992 {
1993 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1994
1995 /* FIXME! May need to check for ARM demangling here. */
1996 if (startswith (t_field_name, "__") ||
1997 startswith (t_field_name, "op") ||
1998 startswith (t_field_name, "type"))
1999 {
2000 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2001 t_field_name = dem_opname;
2002 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2003 t_field_name = dem_opname;
2004 }
2005 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2006 {
2007 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2008 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2009
2010 name_matched = 1;
2011 check_stub_method_group (type, i);
2012 if (j > 0 && args == 0)
2013 error (_("cannot resolve overloaded method "
2014 "`%s': no arguments supplied"), name);
2015 else if (j == 0 && args == 0)
2016 {
2017 v = value_fn_field (arg1p, f, j, type, offset);
2018 if (v != NULL)
2019 return v;
2020 }
2021 else
2022 while (j >= 0)
2023 {
2024 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2025 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2026 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2027 TYPE_FN_FIELD_ARGS (f, j), args))
2028 {
2029 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2030 return value_virtual_fn_field (arg1p, f, j,
2031 type, offset);
2032 if (TYPE_FN_FIELD_STATIC_P (f, j)
2033 && static_memfuncp)
2034 *static_memfuncp = 1;
2035 v = value_fn_field (arg1p, f, j, type, offset);
2036 if (v != NULL)
2037 return v;
2038 }
2039 j--;
2040 }
2041 }
2042 }
2043
2044 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2045 {
2046 int base_offset;
2047 int this_offset;
2048
2049 if (BASETYPE_VIA_VIRTUAL (type, i))
2050 {
2051 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2052 struct value *base_val;
2053 const gdb_byte *base_valaddr;
2054
2055 /* The virtual base class pointer might have been
2056 clobbered by the user program. Make sure that it
2057 still points to a valid memory location. */
2058
2059 if (offset < 0 || offset >= TYPE_LENGTH (type))
2060 {
2061 gdb_byte *tmp;
2062 struct cleanup *back_to;
2063 CORE_ADDR address;
2064
2065 tmp = xmalloc (TYPE_LENGTH (baseclass));
2066 back_to = make_cleanup (xfree, tmp);
2067 address = value_address (*arg1p);
2068
2069 if (target_read_memory (address + offset,
2070 tmp, TYPE_LENGTH (baseclass)) != 0)
2071 error (_("virtual baseclass botch"));
2072
2073 base_val = value_from_contents_and_address (baseclass,
2074 tmp,
2075 address + offset);
2076 base_valaddr = value_contents_for_printing (base_val);
2077 this_offset = 0;
2078 do_cleanups (back_to);
2079 }
2080 else
2081 {
2082 base_val = *arg1p;
2083 base_valaddr = value_contents_for_printing (*arg1p);
2084 this_offset = offset;
2085 }
2086
2087 base_offset = baseclass_offset (type, i, base_valaddr,
2088 this_offset, value_address (base_val),
2089 base_val);
2090 }
2091 else
2092 {
2093 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2094 }
2095 v = search_struct_method (name, arg1p, args, base_offset + offset,
2096 static_memfuncp, TYPE_BASECLASS (type, i));
2097 if (v == (struct value *) - 1)
2098 {
2099 name_matched = 1;
2100 }
2101 else if (v)
2102 {
2103 /* FIXME-bothner: Why is this commented out? Why is it here? */
2104 /* *arg1p = arg1_tmp; */
2105 return v;
2106 }
2107 }
2108 if (name_matched)
2109 return (struct value *) - 1;
2110 else
2111 return NULL;
2112 }
2113
2114 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2115 extract the component named NAME from the ultimate target
2116 structure/union and return it as a value with its appropriate type.
2117 ERR is used in the error message if *ARGP's type is wrong.
2118
2119 C++: ARGS is a list of argument types to aid in the selection of
2120 an appropriate method. Also, handle derived types.
2121
2122 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2123 where the truthvalue of whether the function that was resolved was
2124 a static member function or not is stored.
2125
2126 ERR is an error message to be printed in case the field is not
2127 found. */
2128
2129 struct value *
2130 value_struct_elt (struct value **argp, struct value **args,
2131 const char *name, int *static_memfuncp, const char *err)
2132 {
2133 struct type *t;
2134 struct value *v;
2135
2136 *argp = coerce_array (*argp);
2137
2138 t = check_typedef (value_type (*argp));
2139
2140 /* Follow pointers until we get to a non-pointer. */
2141
2142 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2143 {
2144 *argp = value_ind (*argp);
2145 /* Don't coerce fn pointer to fn and then back again! */
2146 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2147 *argp = coerce_array (*argp);
2148 t = check_typedef (value_type (*argp));
2149 }
2150
2151 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2152 && TYPE_CODE (t) != TYPE_CODE_UNION)
2153 error (_("Attempt to extract a component of a value that is not a %s."),
2154 err);
2155
2156 /* Assume it's not, unless we see that it is. */
2157 if (static_memfuncp)
2158 *static_memfuncp = 0;
2159
2160 if (!args)
2161 {
2162 /* if there are no arguments ...do this... */
2163
2164 /* Try as a field first, because if we succeed, there is less
2165 work to be done. */
2166 v = search_struct_field (name, *argp, t, 0);
2167 if (v)
2168 return v;
2169
2170 /* C++: If it was not found as a data field, then try to
2171 return it as a pointer to a method. */
2172 v = search_struct_method (name, argp, args, 0,
2173 static_memfuncp, t);
2174
2175 if (v == (struct value *) - 1)
2176 error (_("Cannot take address of method %s."), name);
2177 else if (v == 0)
2178 {
2179 if (TYPE_NFN_FIELDS (t))
2180 error (_("There is no member or method named %s."), name);
2181 else
2182 error (_("There is no member named %s."), name);
2183 }
2184 return v;
2185 }
2186
2187 v = search_struct_method (name, argp, args, 0,
2188 static_memfuncp, t);
2189
2190 if (v == (struct value *) - 1)
2191 {
2192 error (_("One of the arguments you tried to pass to %s could not "
2193 "be converted to what the function wants."), name);
2194 }
2195 else if (v == 0)
2196 {
2197 /* See if user tried to invoke data as function. If so, hand it
2198 back. If it's not callable (i.e., a pointer to function),
2199 gdb should give an error. */
2200 v = search_struct_field (name, *argp, t, 0);
2201 /* If we found an ordinary field, then it is not a method call.
2202 So, treat it as if it were a static member function. */
2203 if (v && static_memfuncp)
2204 *static_memfuncp = 1;
2205 }
2206
2207 if (!v)
2208 throw_error (NOT_FOUND_ERROR,
2209 _("Structure has no component named %s."), name);
2210 return v;
2211 }
2212
2213 /* Given *ARGP, a value of type structure or union, or a pointer/reference
2214 to a structure or union, extract and return its component (field) of
2215 type FTYPE at the specified BITPOS.
2216 Throw an exception on error. */
2217
2218 struct value *
2219 value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
2220 const char *err)
2221 {
2222 struct type *t;
2223 struct value *v;
2224 int i;
2225 int nbases;
2226
2227 *argp = coerce_array (*argp);
2228
2229 t = check_typedef (value_type (*argp));
2230
2231 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2232 {
2233 *argp = value_ind (*argp);
2234 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2235 *argp = coerce_array (*argp);
2236 t = check_typedef (value_type (*argp));
2237 }
2238
2239 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2240 && TYPE_CODE (t) != TYPE_CODE_UNION)
2241 error (_("Attempt to extract a component of a value that is not a %s."),
2242 err);
2243
2244 for (i = TYPE_N_BASECLASSES (t); i < TYPE_NFIELDS (t); i++)
2245 {
2246 if (!field_is_static (&TYPE_FIELD (t, i))
2247 && bitpos == TYPE_FIELD_BITPOS (t, i)
2248 && types_equal (ftype, TYPE_FIELD_TYPE (t, i)))
2249 return value_primitive_field (*argp, 0, i, t);
2250 }
2251
2252 error (_("No field with matching bitpos and type."));
2253
2254 /* Never hit. */
2255 return NULL;
2256 }
2257
2258 /* Search through the methods of an object (and its bases) to find a
2259 specified method. Return the pointer to the fn_field list FN_LIST of
2260 overloaded instances defined in the source language. If available
2261 and matching, a vector of matching xmethods defined in extension
2262 languages are also returned in XM_WORKER_VEC
2263
2264 Helper function for value_find_oload_list.
2265 ARGP is a pointer to a pointer to a value (the object).
2266 METHOD is a string containing the method name.
2267 OFFSET is the offset within the value.
2268 TYPE is the assumed type of the object.
2269 FN_LIST is the pointer to matching overloaded instances defined in
2270 source language. Since this is a recursive function, *FN_LIST
2271 should be set to NULL when calling this function.
2272 NUM_FNS is the number of overloaded instances. *NUM_FNS should be set to
2273 0 when calling this function.
2274 XM_WORKER_VEC is the vector of matching xmethod workers. *XM_WORKER_VEC
2275 should also be set to NULL when calling this function.
2276 BASETYPE is set to the actual type of the subobject where the
2277 method is found.
2278 BOFFSET is the offset of the base subobject where the method is found. */
2279
2280 static void
2281 find_method_list (struct value **argp, const char *method,
2282 int offset, struct type *type,
2283 struct fn_field **fn_list, int *num_fns,
2284 VEC (xmethod_worker_ptr) **xm_worker_vec,
2285 struct type **basetype, int *boffset)
2286 {
2287 int i;
2288 struct fn_field *f = NULL;
2289 VEC (xmethod_worker_ptr) *worker_vec = NULL, *new_vec = NULL;
2290
2291 gdb_assert (fn_list != NULL && xm_worker_vec != NULL);
2292 type = check_typedef (type);
2293
2294 /* First check in object itself.
2295 This function is called recursively to search through base classes.
2296 If there is a source method match found at some stage, then we need not
2297 look for source methods in consequent recursive calls. */
2298 if ((*fn_list) == NULL)
2299 {
2300 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2301 {
2302 /* pai: FIXME What about operators and type conversions? */
2303 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2304
2305 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2306 {
2307 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2308 f = TYPE_FN_FIELDLIST1 (type, i);
2309 *fn_list = f;
2310
2311 *num_fns = len;
2312 *basetype = type;
2313 *boffset = offset;
2314
2315 /* Resolve any stub methods. */
2316 check_stub_method_group (type, i);
2317
2318 break;
2319 }
2320 }
2321 }
2322
2323 /* Unlike source methods, xmethods can be accumulated over successive
2324 recursive calls. In other words, an xmethod named 'm' in a class
2325 will not hide an xmethod named 'm' in its base class(es). We want
2326 it to be this way because xmethods are after all convenience functions
2327 and hence there is no point restricting them with something like method
2328 hiding. Moreover, if hiding is done for xmethods as well, then we will
2329 have to provide a mechanism to un-hide (like the 'using' construct). */
2330 worker_vec = get_matching_xmethod_workers (type, method);
2331 new_vec = VEC_merge (xmethod_worker_ptr, *xm_worker_vec, worker_vec);
2332
2333 VEC_free (xmethod_worker_ptr, *xm_worker_vec);
2334 VEC_free (xmethod_worker_ptr, worker_vec);
2335 *xm_worker_vec = new_vec;
2336
2337 /* If source methods are not found in current class, look for them in the
2338 base classes. We also have to go through the base classes to gather
2339 extension methods. */
2340 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2341 {
2342 int base_offset;
2343
2344 if (BASETYPE_VIA_VIRTUAL (type, i))
2345 {
2346 base_offset = baseclass_offset (type, i,
2347 value_contents_for_printing (*argp),
2348 value_offset (*argp) + offset,
2349 value_address (*argp), *argp);
2350 }
2351 else /* Non-virtual base, simply use bit position from debug
2352 info. */
2353 {
2354 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2355 }
2356
2357 find_method_list (argp, method, base_offset + offset,
2358 TYPE_BASECLASS (type, i), fn_list, num_fns,
2359 xm_worker_vec, basetype, boffset);
2360 }
2361 }
2362
2363 /* Return the list of overloaded methods of a specified name. The methods
2364 could be those GDB finds in the binary, or xmethod. Methods found in
2365 the binary are returned in FN_LIST, and xmethods are returned in
2366 XM_WORKER_VEC.
2367
2368 ARGP is a pointer to a pointer to a value (the object).
2369 METHOD is the method name.
2370 OFFSET is the offset within the value contents.
2371 FN_LIST is the pointer to matching overloaded instances defined in
2372 source language.
2373 NUM_FNS is the number of overloaded instances.
2374 XM_WORKER_VEC is the vector of matching xmethod workers defined in
2375 extension languages.
2376 BASETYPE is set to the type of the base subobject that defines the
2377 method.
2378 BOFFSET is the offset of the base subobject which defines the method. */
2379
2380 static void
2381 value_find_oload_method_list (struct value **argp, const char *method,
2382 int offset, struct fn_field **fn_list,
2383 int *num_fns,
2384 VEC (xmethod_worker_ptr) **xm_worker_vec,
2385 struct type **basetype, int *boffset)
2386 {
2387 struct type *t;
2388
2389 t = check_typedef (value_type (*argp));
2390
2391 /* Code snarfed from value_struct_elt. */
2392 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2393 {
2394 *argp = value_ind (*argp);
2395 /* Don't coerce fn pointer to fn and then back again! */
2396 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2397 *argp = coerce_array (*argp);
2398 t = check_typedef (value_type (*argp));
2399 }
2400
2401 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2402 && TYPE_CODE (t) != TYPE_CODE_UNION)
2403 error (_("Attempt to extract a component of a "
2404 "value that is not a struct or union"));
2405
2406 gdb_assert (fn_list != NULL && xm_worker_vec != NULL);
2407
2408 /* Clear the lists. */
2409 *fn_list = NULL;
2410 *num_fns = 0;
2411 *xm_worker_vec = NULL;
2412
2413 find_method_list (argp, method, 0, t, fn_list, num_fns, xm_worker_vec,
2414 basetype, boffset);
2415 }
2416
2417 /* Given an array of arguments (ARGS) (which includes an
2418 entry for "this" in the case of C++ methods), the number of
2419 arguments NARGS, the NAME of a function, and whether it's a method or
2420 not (METHOD), find the best function that matches on the argument types
2421 according to the overload resolution rules.
2422
2423 METHOD can be one of three values:
2424 NON_METHOD for non-member functions.
2425 METHOD: for member functions.
2426 BOTH: used for overload resolution of operators where the
2427 candidates are expected to be either member or non member
2428 functions. In this case the first argument ARGTYPES
2429 (representing 'this') is expected to be a reference to the
2430 target object, and will be dereferenced when attempting the
2431 non-member search.
2432
2433 In the case of class methods, the parameter OBJ is an object value
2434 in which to search for overloaded methods.
2435
2436 In the case of non-method functions, the parameter FSYM is a symbol
2437 corresponding to one of the overloaded functions.
2438
2439 Return value is an integer: 0 -> good match, 10 -> debugger applied
2440 non-standard coercions, 100 -> incompatible.
2441
2442 If a method is being searched for, VALP will hold the value.
2443 If a non-method is being searched for, SYMP will hold the symbol
2444 for it.
2445
2446 If a method is being searched for, and it is a static method,
2447 then STATICP will point to a non-zero value.
2448
2449 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2450 ADL overload candidates when performing overload resolution for a fully
2451 qualified name.
2452
2453 If NOSIDE is EVAL_AVOID_SIDE_EFFECTS, then OBJP's memory cannot be
2454 read while picking the best overload match (it may be all zeroes and thus
2455 not have a vtable pointer), in which case skip virtual function lookup.
2456 This is ok as typically EVAL_AVOID_SIDE_EFFECTS is only used to determine
2457 the result type.
2458
2459 Note: This function does *not* check the value of
2460 overload_resolution. Caller must check it to see whether overload
2461 resolution is permitted. */
2462
2463 int
2464 find_overload_match (struct value **args, int nargs,
2465 const char *name, enum oload_search_type method,
2466 struct value **objp, struct symbol *fsym,
2467 struct value **valp, struct symbol **symp,
2468 int *staticp, const int no_adl,
2469 const enum noside noside)
2470 {
2471 struct value *obj = (objp ? *objp : NULL);
2472 struct type *obj_type = obj ? value_type (obj) : NULL;
2473 /* Index of best overloaded function. */
2474 int func_oload_champ = -1;
2475 int method_oload_champ = -1;
2476 int src_method_oload_champ = -1;
2477 int ext_method_oload_champ = -1;
2478 int src_and_ext_equal = 0;
2479
2480 /* The measure for the current best match. */
2481 struct badness_vector *method_badness = NULL;
2482 struct badness_vector *func_badness = NULL;
2483 struct badness_vector *ext_method_badness = NULL;
2484 struct badness_vector *src_method_badness = NULL;
2485
2486 struct value *temp = obj;
2487 /* For methods, the list of overloaded methods. */
2488 struct fn_field *fns_ptr = NULL;
2489 /* For non-methods, the list of overloaded function symbols. */
2490 struct symbol **oload_syms = NULL;
2491 /* For xmethods, the VEC of xmethod workers. */
2492 VEC (xmethod_worker_ptr) *xm_worker_vec = NULL;
2493 /* Number of overloaded instances being considered. */
2494 int num_fns = 0;
2495 struct type *basetype = NULL;
2496 int boffset;
2497
2498 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2499
2500 const char *obj_type_name = NULL;
2501 const char *func_name = NULL;
2502 enum oload_classification match_quality;
2503 enum oload_classification method_match_quality = INCOMPATIBLE;
2504 enum oload_classification src_method_match_quality = INCOMPATIBLE;
2505 enum oload_classification ext_method_match_quality = INCOMPATIBLE;
2506 enum oload_classification func_match_quality = INCOMPATIBLE;
2507
2508 /* Get the list of overloaded methods or functions. */
2509 if (method == METHOD || method == BOTH)
2510 {
2511 gdb_assert (obj);
2512
2513 /* OBJ may be a pointer value rather than the object itself. */
2514 obj = coerce_ref (obj);
2515 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2516 obj = coerce_ref (value_ind (obj));
2517 obj_type_name = TYPE_NAME (value_type (obj));
2518
2519 /* First check whether this is a data member, e.g. a pointer to
2520 a function. */
2521 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2522 {
2523 *valp = search_struct_field (name, obj,
2524 check_typedef (value_type (obj)), 0);
2525 if (*valp)
2526 {
2527 *staticp = 1;
2528 do_cleanups (all_cleanups);
2529 return 0;
2530 }
2531 }
2532
2533 /* Retrieve the list of methods with the name NAME. */
2534 value_find_oload_method_list (&temp, name, 0, &fns_ptr, &num_fns,
2535 &xm_worker_vec, &basetype, &boffset);
2536 /* If this is a method only search, and no methods were found
2537 the search has faild. */
2538 if (method == METHOD && (!fns_ptr || !num_fns) && !xm_worker_vec)
2539 error (_("Couldn't find method %s%s%s"),
2540 obj_type_name,
2541 (obj_type_name && *obj_type_name) ? "::" : "",
2542 name);
2543 /* If we are dealing with stub method types, they should have
2544 been resolved by find_method_list via
2545 value_find_oload_method_list above. */
2546 if (fns_ptr)
2547 {
2548 gdb_assert (TYPE_SELF_TYPE (fns_ptr[0].type) != NULL);
2549
2550 src_method_oload_champ = find_oload_champ (args, nargs,
2551 num_fns, fns_ptr, NULL,
2552 NULL, &src_method_badness);
2553
2554 src_method_match_quality = classify_oload_match
2555 (src_method_badness, nargs,
2556 oload_method_static_p (fns_ptr, src_method_oload_champ));
2557
2558 make_cleanup (xfree, src_method_badness);
2559 }
2560
2561 if (VEC_length (xmethod_worker_ptr, xm_worker_vec) > 0)
2562 {
2563 ext_method_oload_champ = find_oload_champ (args, nargs,
2564 0, NULL, xm_worker_vec,
2565 NULL, &ext_method_badness);
2566 ext_method_match_quality = classify_oload_match (ext_method_badness,
2567 nargs, 0);
2568 make_cleanup (xfree, ext_method_badness);
2569 make_cleanup (free_xmethod_worker_vec, xm_worker_vec);
2570 }
2571
2572 if (src_method_oload_champ >= 0 && ext_method_oload_champ >= 0)
2573 {
2574 switch (compare_badness (ext_method_badness, src_method_badness))
2575 {
2576 case 0: /* Src method and xmethod are equally good. */
2577 src_and_ext_equal = 1;
2578 /* If src method and xmethod are equally good, then
2579 xmethod should be the winner. Hence, fall through to the
2580 case where a xmethod is better than the source
2581 method, except when the xmethod match quality is
2582 non-standard. */
2583 /* FALLTHROUGH */
2584 case 1: /* Src method and ext method are incompatible. */
2585 /* If ext method match is not standard, then let source method
2586 win. Otherwise, fallthrough to let xmethod win. */
2587 if (ext_method_match_quality != STANDARD)
2588 {
2589 method_oload_champ = src_method_oload_champ;
2590 method_badness = src_method_badness;
2591 ext_method_oload_champ = -1;
2592 method_match_quality = src_method_match_quality;
2593 break;
2594 }
2595 /* FALLTHROUGH */
2596 case 2: /* Ext method is champion. */
2597 method_oload_champ = ext_method_oload_champ;
2598 method_badness = ext_method_badness;
2599 src_method_oload_champ = -1;
2600 method_match_quality = ext_method_match_quality;
2601 break;
2602 case 3: /* Src method is champion. */
2603 method_oload_champ = src_method_oload_champ;
2604 method_badness = src_method_badness;
2605 ext_method_oload_champ = -1;
2606 method_match_quality = src_method_match_quality;
2607 break;
2608 default:
2609 gdb_assert_not_reached ("Unexpected overload comparison "
2610 "result");
2611 break;
2612 }
2613 }
2614 else if (src_method_oload_champ >= 0)
2615 {
2616 method_oload_champ = src_method_oload_champ;
2617 method_badness = src_method_badness;
2618 method_match_quality = src_method_match_quality;
2619 }
2620 else if (ext_method_oload_champ >= 0)
2621 {
2622 method_oload_champ = ext_method_oload_champ;
2623 method_badness = ext_method_badness;
2624 method_match_quality = ext_method_match_quality;
2625 }
2626 }
2627
2628 if (method == NON_METHOD || method == BOTH)
2629 {
2630 const char *qualified_name = NULL;
2631
2632 /* If the overload match is being search for both as a method
2633 and non member function, the first argument must now be
2634 dereferenced. */
2635 if (method == BOTH)
2636 args[0] = value_ind (args[0]);
2637
2638 if (fsym)
2639 {
2640 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2641
2642 /* If we have a function with a C++ name, try to extract just
2643 the function part. Do not try this for non-functions (e.g.
2644 function pointers). */
2645 if (qualified_name
2646 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2647 == TYPE_CODE_FUNC)
2648 {
2649 char *temp;
2650
2651 temp = cp_func_name (qualified_name);
2652
2653 /* If cp_func_name did not remove anything, the name of the
2654 symbol did not include scope or argument types - it was
2655 probably a C-style function. */
2656 if (temp)
2657 {
2658 make_cleanup (xfree, temp);
2659 if (strcmp (temp, qualified_name) == 0)
2660 func_name = NULL;
2661 else
2662 func_name = temp;
2663 }
2664 }
2665 }
2666 else
2667 {
2668 func_name = name;
2669 qualified_name = name;
2670 }
2671
2672 /* If there was no C++ name, this must be a C-style function or
2673 not a function at all. Just return the same symbol. Do the
2674 same if cp_func_name fails for some reason. */
2675 if (func_name == NULL)
2676 {
2677 *symp = fsym;
2678 do_cleanups (all_cleanups);
2679 return 0;
2680 }
2681
2682 func_oload_champ = find_oload_champ_namespace (args, nargs,
2683 func_name,
2684 qualified_name,
2685 &oload_syms,
2686 &func_badness,
2687 no_adl);
2688
2689 if (func_oload_champ >= 0)
2690 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2691
2692 make_cleanup (xfree, oload_syms);
2693 make_cleanup (xfree, func_badness);
2694 }
2695
2696 /* Did we find a match ? */
2697 if (method_oload_champ == -1 && func_oload_champ == -1)
2698 throw_error (NOT_FOUND_ERROR,
2699 _("No symbol \"%s\" in current context."),
2700 name);
2701
2702 /* If we have found both a method match and a function
2703 match, find out which one is better, and calculate match
2704 quality. */
2705 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2706 {
2707 switch (compare_badness (func_badness, method_badness))
2708 {
2709 case 0: /* Top two contenders are equally good. */
2710 /* FIXME: GDB does not support the general ambiguous case.
2711 All candidates should be collected and presented the
2712 user. */
2713 error (_("Ambiguous overload resolution"));
2714 break;
2715 case 1: /* Incomparable top contenders. */
2716 /* This is an error incompatible candidates
2717 should not have been proposed. */
2718 error (_("Internal error: incompatible "
2719 "overload candidates proposed"));
2720 break;
2721 case 2: /* Function champion. */
2722 method_oload_champ = -1;
2723 match_quality = func_match_quality;
2724 break;
2725 case 3: /* Method champion. */
2726 func_oload_champ = -1;
2727 match_quality = method_match_quality;
2728 break;
2729 default:
2730 error (_("Internal error: unexpected overload comparison result"));
2731 break;
2732 }
2733 }
2734 else
2735 {
2736 /* We have either a method match or a function match. */
2737 if (method_oload_champ >= 0)
2738 match_quality = method_match_quality;
2739 else
2740 match_quality = func_match_quality;
2741 }
2742
2743 if (match_quality == INCOMPATIBLE)
2744 {
2745 if (method == METHOD)
2746 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2747 obj_type_name,
2748 (obj_type_name && *obj_type_name) ? "::" : "",
2749 name);
2750 else
2751 error (_("Cannot resolve function %s to any overloaded instance"),
2752 func_name);
2753 }
2754 else if (match_quality == NON_STANDARD)
2755 {
2756 if (method == METHOD)
2757 warning (_("Using non-standard conversion to match "
2758 "method %s%s%s to supplied arguments"),
2759 obj_type_name,
2760 (obj_type_name && *obj_type_name) ? "::" : "",
2761 name);
2762 else
2763 warning (_("Using non-standard conversion to match "
2764 "function %s to supplied arguments"),
2765 func_name);
2766 }
2767
2768 if (staticp != NULL)
2769 *staticp = oload_method_static_p (fns_ptr, method_oload_champ);
2770
2771 if (method_oload_champ >= 0)
2772 {
2773 if (src_method_oload_champ >= 0)
2774 {
2775 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ)
2776 && noside != EVAL_AVOID_SIDE_EFFECTS)
2777 {
2778 *valp = value_virtual_fn_field (&temp, fns_ptr,
2779 method_oload_champ, basetype,
2780 boffset);
2781 }
2782 else
2783 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2784 basetype, boffset);
2785 }
2786 else
2787 {
2788 *valp = value_of_xmethod (clone_xmethod_worker
2789 (VEC_index (xmethod_worker_ptr, xm_worker_vec,
2790 ext_method_oload_champ)));
2791 }
2792 }
2793 else
2794 *symp = oload_syms[func_oload_champ];
2795
2796 if (objp)
2797 {
2798 struct type *temp_type = check_typedef (value_type (temp));
2799 struct type *objtype = check_typedef (obj_type);
2800
2801 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2802 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2803 || TYPE_CODE (objtype) == TYPE_CODE_REF))
2804 {
2805 temp = value_addr (temp);
2806 }
2807 *objp = temp;
2808 }
2809
2810 do_cleanups (all_cleanups);
2811
2812 switch (match_quality)
2813 {
2814 case INCOMPATIBLE:
2815 return 100;
2816 case NON_STANDARD:
2817 return 10;
2818 default: /* STANDARD */
2819 return 0;
2820 }
2821 }
2822
2823 /* Find the best overload match, searching for FUNC_NAME in namespaces
2824 contained in QUALIFIED_NAME until it either finds a good match or
2825 runs out of namespaces. It stores the overloaded functions in
2826 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2827 calling function is responsible for freeing *OLOAD_SYMS and
2828 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2829 performned. */
2830
2831 static int
2832 find_oload_champ_namespace (struct value **args, int nargs,
2833 const char *func_name,
2834 const char *qualified_name,
2835 struct symbol ***oload_syms,
2836 struct badness_vector **oload_champ_bv,
2837 const int no_adl)
2838 {
2839 int oload_champ;
2840
2841 find_oload_champ_namespace_loop (args, nargs,
2842 func_name,
2843 qualified_name, 0,
2844 oload_syms, oload_champ_bv,
2845 &oload_champ,
2846 no_adl);
2847
2848 return oload_champ;
2849 }
2850
2851 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2852 how deep we've looked for namespaces, and the champ is stored in
2853 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2854 if it isn't. Other arguments are the same as in
2855 find_oload_champ_namespace
2856
2857 It is the caller's responsibility to free *OLOAD_SYMS and
2858 *OLOAD_CHAMP_BV. */
2859
2860 static int
2861 find_oload_champ_namespace_loop (struct value **args, int nargs,
2862 const char *func_name,
2863 const char *qualified_name,
2864 int namespace_len,
2865 struct symbol ***oload_syms,
2866 struct badness_vector **oload_champ_bv,
2867 int *oload_champ,
2868 const int no_adl)
2869 {
2870 int next_namespace_len = namespace_len;
2871 int searched_deeper = 0;
2872 int num_fns = 0;
2873 struct cleanup *old_cleanups;
2874 int new_oload_champ;
2875 struct symbol **new_oload_syms;
2876 struct badness_vector *new_oload_champ_bv;
2877 char *new_namespace;
2878
2879 if (next_namespace_len != 0)
2880 {
2881 gdb_assert (qualified_name[next_namespace_len] == ':');
2882 next_namespace_len += 2;
2883 }
2884 next_namespace_len +=
2885 cp_find_first_component (qualified_name + next_namespace_len);
2886
2887 /* Initialize these to values that can safely be xfree'd. */
2888 *oload_syms = NULL;
2889 *oload_champ_bv = NULL;
2890
2891 /* First, see if we have a deeper namespace we can search in.
2892 If we get a good match there, use it. */
2893
2894 if (qualified_name[next_namespace_len] == ':')
2895 {
2896 searched_deeper = 1;
2897
2898 if (find_oload_champ_namespace_loop (args, nargs,
2899 func_name, qualified_name,
2900 next_namespace_len,
2901 oload_syms, oload_champ_bv,
2902 oload_champ, no_adl))
2903 {
2904 return 1;
2905 }
2906 };
2907
2908 /* If we reach here, either we're in the deepest namespace or we
2909 didn't find a good match in a deeper namespace. But, in the
2910 latter case, we still have a bad match in a deeper namespace;
2911 note that we might not find any match at all in the current
2912 namespace. (There's always a match in the deepest namespace,
2913 because this overload mechanism only gets called if there's a
2914 function symbol to start off with.) */
2915
2916 old_cleanups = make_cleanup (xfree, *oload_syms);
2917 make_cleanup (xfree, *oload_champ_bv);
2918 new_namespace = alloca (namespace_len + 1);
2919 strncpy (new_namespace, qualified_name, namespace_len);
2920 new_namespace[namespace_len] = '\0';
2921 new_oload_syms = make_symbol_overload_list (func_name,
2922 new_namespace);
2923
2924 /* If we have reached the deepest level perform argument
2925 determined lookup. */
2926 if (!searched_deeper && !no_adl)
2927 {
2928 int ix;
2929 struct type **arg_types;
2930
2931 /* Prepare list of argument types for overload resolution. */
2932 arg_types = (struct type **)
2933 alloca (nargs * (sizeof (struct type *)));
2934 for (ix = 0; ix < nargs; ix++)
2935 arg_types[ix] = value_type (args[ix]);
2936 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2937 }
2938
2939 while (new_oload_syms[num_fns])
2940 ++num_fns;
2941
2942 new_oload_champ = find_oload_champ (args, nargs, num_fns,
2943 NULL, NULL, new_oload_syms,
2944 &new_oload_champ_bv);
2945
2946 /* Case 1: We found a good match. Free earlier matches (if any),
2947 and return it. Case 2: We didn't find a good match, but we're
2948 not the deepest function. Then go with the bad match that the
2949 deeper function found. Case 3: We found a bad match, and we're
2950 the deepest function. Then return what we found, even though
2951 it's a bad match. */
2952
2953 if (new_oload_champ != -1
2954 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2955 {
2956 *oload_syms = new_oload_syms;
2957 *oload_champ = new_oload_champ;
2958 *oload_champ_bv = new_oload_champ_bv;
2959 do_cleanups (old_cleanups);
2960 return 1;
2961 }
2962 else if (searched_deeper)
2963 {
2964 xfree (new_oload_syms);
2965 xfree (new_oload_champ_bv);
2966 discard_cleanups (old_cleanups);
2967 return 0;
2968 }
2969 else
2970 {
2971 *oload_syms = new_oload_syms;
2972 *oload_champ = new_oload_champ;
2973 *oload_champ_bv = new_oload_champ_bv;
2974 do_cleanups (old_cleanups);
2975 return 0;
2976 }
2977 }
2978
2979 /* Look for a function to take NARGS args of ARGS. Find
2980 the best match from among the overloaded methods or functions
2981 given by FNS_PTR or OLOAD_SYMS or XM_WORKER_VEC, respectively.
2982 One, and only one of FNS_PTR, OLOAD_SYMS and XM_WORKER_VEC can be
2983 non-NULL.
2984
2985 If XM_WORKER_VEC is NULL, then the length of the arrays FNS_PTR
2986 or OLOAD_SYMS (whichever is non-NULL) is specified in NUM_FNS.
2987
2988 Return the index of the best match; store an indication of the
2989 quality of the match in OLOAD_CHAMP_BV.
2990
2991 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2992
2993 static int
2994 find_oload_champ (struct value **args, int nargs,
2995 int num_fns, struct fn_field *fns_ptr,
2996 VEC (xmethod_worker_ptr) *xm_worker_vec,
2997 struct symbol **oload_syms,
2998 struct badness_vector **oload_champ_bv)
2999 {
3000 int ix;
3001 int fn_count;
3002 int xm_worker_vec_n = VEC_length (xmethod_worker_ptr, xm_worker_vec);
3003 /* A measure of how good an overloaded instance is. */
3004 struct badness_vector *bv;
3005 /* Index of best overloaded function. */
3006 int oload_champ = -1;
3007 /* Current ambiguity state for overload resolution. */
3008 int oload_ambiguous = 0;
3009 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
3010
3011 /* A champion can be found among methods alone, or among functions
3012 alone, or in xmethods alone, but not in more than one of these
3013 groups. */
3014 gdb_assert ((fns_ptr != NULL) + (oload_syms != NULL) + (xm_worker_vec != NULL)
3015 == 1);
3016
3017 *oload_champ_bv = NULL;
3018
3019 fn_count = (xm_worker_vec != NULL
3020 ? VEC_length (xmethod_worker_ptr, xm_worker_vec)
3021 : num_fns);
3022 /* Consider each candidate in turn. */
3023 for (ix = 0; ix < fn_count; ix++)
3024 {
3025 int jj;
3026 int static_offset = 0;
3027 int nparms;
3028 struct type **parm_types;
3029 struct xmethod_worker *worker = NULL;
3030
3031 if (xm_worker_vec != NULL)
3032 {
3033 worker = VEC_index (xmethod_worker_ptr, xm_worker_vec, ix);
3034 parm_types = get_xmethod_arg_types (worker, &nparms);
3035 }
3036 else
3037 {
3038 if (fns_ptr != NULL)
3039 {
3040 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
3041 static_offset = oload_method_static_p (fns_ptr, ix);
3042 }
3043 else
3044 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
3045
3046 parm_types = (struct type **)
3047 xmalloc (nparms * (sizeof (struct type *)));
3048 for (jj = 0; jj < nparms; jj++)
3049 parm_types[jj] = (fns_ptr != NULL
3050 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
3051 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
3052 jj));
3053 }
3054
3055 /* Compare parameter types to supplied argument types. Skip
3056 THIS for static methods. */
3057 bv = rank_function (parm_types, nparms,
3058 args + static_offset,
3059 nargs - static_offset);
3060
3061 if (!*oload_champ_bv)
3062 {
3063 *oload_champ_bv = bv;
3064 oload_champ = 0;
3065 }
3066 else /* See whether current candidate is better or worse than
3067 previous best. */
3068 switch (compare_badness (bv, *oload_champ_bv))
3069 {
3070 case 0: /* Top two contenders are equally good. */
3071 oload_ambiguous = 1;
3072 break;
3073 case 1: /* Incomparable top contenders. */
3074 oload_ambiguous = 2;
3075 break;
3076 case 2: /* New champion, record details. */
3077 *oload_champ_bv = bv;
3078 oload_ambiguous = 0;
3079 oload_champ = ix;
3080 break;
3081 case 3:
3082 default:
3083 break;
3084 }
3085 xfree (parm_types);
3086 if (overload_debug)
3087 {
3088 if (fns_ptr != NULL)
3089 fprintf_filtered (gdb_stderr,
3090 "Overloaded method instance %s, # of parms %d\n",
3091 fns_ptr[ix].physname, nparms);
3092 else if (xm_worker_vec != NULL)
3093 fprintf_filtered (gdb_stderr,
3094 "Xmethod worker, # of parms %d\n",
3095 nparms);
3096 else
3097 fprintf_filtered (gdb_stderr,
3098 "Overloaded function instance "
3099 "%s # of parms %d\n",
3100 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
3101 nparms);
3102 for (jj = 0; jj < nargs - static_offset; jj++)
3103 fprintf_filtered (gdb_stderr,
3104 "...Badness @ %d : %d\n",
3105 jj, bv->rank[jj].rank);
3106 fprintf_filtered (gdb_stderr, "Overload resolution "
3107 "champion is %d, ambiguous? %d\n",
3108 oload_champ, oload_ambiguous);
3109 }
3110 }
3111
3112 return oload_champ;
3113 }
3114
3115 /* Return 1 if we're looking at a static method, 0 if we're looking at
3116 a non-static method or a function that isn't a method. */
3117
3118 static int
3119 oload_method_static_p (struct fn_field *fns_ptr, int index)
3120 {
3121 if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3122 return 1;
3123 else
3124 return 0;
3125 }
3126
3127 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3128
3129 static enum oload_classification
3130 classify_oload_match (struct badness_vector *oload_champ_bv,
3131 int nargs,
3132 int static_offset)
3133 {
3134 int ix;
3135 enum oload_classification worst = STANDARD;
3136
3137 for (ix = 1; ix <= nargs - static_offset; ix++)
3138 {
3139 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3140 or worse return INCOMPATIBLE. */
3141 if (compare_ranks (oload_champ_bv->rank[ix],
3142 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3143 return INCOMPATIBLE; /* Truly mismatched types. */
3144 /* Otherwise If this conversion is as bad as
3145 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3146 else if (compare_ranks (oload_champ_bv->rank[ix],
3147 NS_POINTER_CONVERSION_BADNESS) <= 0)
3148 worst = NON_STANDARD; /* Non-standard type conversions
3149 needed. */
3150 }
3151
3152 /* If no INCOMPATIBLE classification was found, return the worst one
3153 that was found (if any). */
3154 return worst;
3155 }
3156
3157 /* C++: return 1 is NAME is a legitimate name for the destructor of
3158 type TYPE. If TYPE does not have a destructor, or if NAME is
3159 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3160 have CHECK_TYPEDEF applied, this function will apply it itself. */
3161
3162 int
3163 destructor_name_p (const char *name, struct type *type)
3164 {
3165 if (name[0] == '~')
3166 {
3167 const char *dname = type_name_no_tag_or_error (type);
3168 const char *cp = strchr (dname, '<');
3169 unsigned int len;
3170
3171 /* Do not compare the template part for template classes. */
3172 if (cp == NULL)
3173 len = strlen (dname);
3174 else
3175 len = cp - dname;
3176 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3177 error (_("name of destructor must equal name of class"));
3178 else
3179 return 1;
3180 }
3181 return 0;
3182 }
3183
3184 /* Find an enum constant named NAME in TYPE. TYPE must be an "enum
3185 class". If the name is found, return a value representing it;
3186 otherwise throw an exception. */
3187
3188 static struct value *
3189 enum_constant_from_type (struct type *type, const char *name)
3190 {
3191 int i;
3192 int name_len = strlen (name);
3193
3194 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ENUM
3195 && TYPE_DECLARED_CLASS (type));
3196
3197 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); ++i)
3198 {
3199 const char *fname = TYPE_FIELD_NAME (type, i);
3200 int len;
3201
3202 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_ENUMVAL
3203 || fname == NULL)
3204 continue;
3205
3206 /* Look for the trailing "::NAME", since enum class constant
3207 names are qualified here. */
3208 len = strlen (fname);
3209 if (len + 2 >= name_len
3210 && fname[len - name_len - 2] == ':'
3211 && fname[len - name_len - 1] == ':'
3212 && strcmp (&fname[len - name_len], name) == 0)
3213 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, i));
3214 }
3215
3216 error (_("no constant named \"%s\" in enum \"%s\""),
3217 name, TYPE_TAG_NAME (type));
3218 }
3219
3220 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3221 return the appropriate member (or the address of the member, if
3222 WANT_ADDRESS). This function is used to resolve user expressions
3223 of the form "DOMAIN::NAME". For more details on what happens, see
3224 the comment before value_struct_elt_for_reference. */
3225
3226 struct value *
3227 value_aggregate_elt (struct type *curtype, const char *name,
3228 struct type *expect_type, int want_address,
3229 enum noside noside)
3230 {
3231 switch (TYPE_CODE (curtype))
3232 {
3233 case TYPE_CODE_STRUCT:
3234 case TYPE_CODE_UNION:
3235 return value_struct_elt_for_reference (curtype, 0, curtype,
3236 name, expect_type,
3237 want_address, noside);
3238 case TYPE_CODE_NAMESPACE:
3239 return value_namespace_elt (curtype, name,
3240 want_address, noside);
3241
3242 case TYPE_CODE_ENUM:
3243 return enum_constant_from_type (curtype, name);
3244
3245 default:
3246 internal_error (__FILE__, __LINE__,
3247 _("non-aggregate type in value_aggregate_elt"));
3248 }
3249 }
3250
3251 /* Compares the two method/function types T1 and T2 for "equality"
3252 with respect to the methods' parameters. If the types of the
3253 two parameter lists are the same, returns 1; 0 otherwise. This
3254 comparison may ignore any artificial parameters in T1 if
3255 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3256 the first artificial parameter in T1, assumed to be a 'this' pointer.
3257
3258 The type T2 is expected to have come from make_params (in eval.c). */
3259
3260 static int
3261 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3262 {
3263 int start = 0;
3264
3265 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3266 ++start;
3267
3268 /* If skipping artificial fields, find the first real field
3269 in T1. */
3270 if (skip_artificial)
3271 {
3272 while (start < TYPE_NFIELDS (t1)
3273 && TYPE_FIELD_ARTIFICIAL (t1, start))
3274 ++start;
3275 }
3276
3277 /* Now compare parameters. */
3278
3279 /* Special case: a method taking void. T1 will contain no
3280 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3281 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3282 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3283 return 1;
3284
3285 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3286 {
3287 int i;
3288
3289 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3290 {
3291 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3292 TYPE_FIELD_TYPE (t2, i), NULL),
3293 EXACT_MATCH_BADNESS) != 0)
3294 return 0;
3295 }
3296
3297 return 1;
3298 }
3299
3300 return 0;
3301 }
3302
3303 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3304 return the address of this member as a "pointer to member" type.
3305 If INTYPE is non-null, then it will be the type of the member we
3306 are looking for. This will help us resolve "pointers to member
3307 functions". This function is used to resolve user expressions of
3308 the form "DOMAIN::NAME". */
3309
3310 static struct value *
3311 value_struct_elt_for_reference (struct type *domain, int offset,
3312 struct type *curtype, const char *name,
3313 struct type *intype,
3314 int want_address,
3315 enum noside noside)
3316 {
3317 struct type *t = curtype;
3318 int i;
3319 struct value *v, *result;
3320
3321 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3322 && TYPE_CODE (t) != TYPE_CODE_UNION)
3323 error (_("Internal error: non-aggregate type "
3324 "to value_struct_elt_for_reference"));
3325
3326 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3327 {
3328 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3329
3330 if (t_field_name && strcmp (t_field_name, name) == 0)
3331 {
3332 if (field_is_static (&TYPE_FIELD (t, i)))
3333 {
3334 v = value_static_field (t, i);
3335 if (want_address)
3336 v = value_addr (v);
3337 return v;
3338 }
3339 if (TYPE_FIELD_PACKED (t, i))
3340 error (_("pointers to bitfield members not allowed"));
3341
3342 if (want_address)
3343 return value_from_longest
3344 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3345 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3346 else if (noside != EVAL_NORMAL)
3347 return allocate_value (TYPE_FIELD_TYPE (t, i));
3348 else
3349 {
3350 /* Try to evaluate NAME as a qualified name with implicit
3351 this pointer. In this case, attempt to return the
3352 equivalent to `this->*(&TYPE::NAME)'. */
3353 v = value_of_this_silent (current_language);
3354 if (v != NULL)
3355 {
3356 struct value *ptr;
3357 long mem_offset;
3358 struct type *type, *tmp;
3359
3360 ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
3361 type = check_typedef (value_type (ptr));
3362 gdb_assert (type != NULL
3363 && TYPE_CODE (type) == TYPE_CODE_MEMBERPTR);
3364 tmp = lookup_pointer_type (TYPE_SELF_TYPE (type));
3365 v = value_cast_pointers (tmp, v, 1);
3366 mem_offset = value_as_long (ptr);
3367 tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type));
3368 result = value_from_pointer (tmp,
3369 value_as_long (v) + mem_offset);
3370 return value_ind (result);
3371 }
3372
3373 error (_("Cannot reference non-static field \"%s\""), name);
3374 }
3375 }
3376 }
3377
3378 /* C++: If it was not found as a data field, then try to return it
3379 as a pointer to a method. */
3380
3381 /* Perform all necessary dereferencing. */
3382 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3383 intype = TYPE_TARGET_TYPE (intype);
3384
3385 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3386 {
3387 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3388 char dem_opname[64];
3389
3390 if (startswith (t_field_name, "__")
3391 || startswith (t_field_name, "op")
3392 || startswith (t_field_name, "type"))
3393 {
3394 if (cplus_demangle_opname (t_field_name,
3395 dem_opname, DMGL_ANSI))
3396 t_field_name = dem_opname;
3397 else if (cplus_demangle_opname (t_field_name,
3398 dem_opname, 0))
3399 t_field_name = dem_opname;
3400 }
3401 if (t_field_name && strcmp (t_field_name, name) == 0)
3402 {
3403 int j;
3404 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3405 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3406
3407 check_stub_method_group (t, i);
3408
3409 if (intype)
3410 {
3411 for (j = 0; j < len; ++j)
3412 {
3413 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3414 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3415 intype, 1))
3416 break;
3417 }
3418
3419 if (j == len)
3420 error (_("no member function matches "
3421 "that type instantiation"));
3422 }
3423 else
3424 {
3425 int ii;
3426
3427 j = -1;
3428 for (ii = 0; ii < len; ++ii)
3429 {
3430 /* Skip artificial methods. This is necessary if,
3431 for example, the user wants to "print
3432 subclass::subclass" with only one user-defined
3433 constructor. There is no ambiguity in this case.
3434 We are careful here to allow artificial methods
3435 if they are the unique result. */
3436 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3437 {
3438 if (j == -1)
3439 j = ii;
3440 continue;
3441 }
3442
3443 /* Desired method is ambiguous if more than one
3444 method is defined. */
3445 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3446 error (_("non-unique member `%s' requires "
3447 "type instantiation"), name);
3448
3449 j = ii;
3450 }
3451
3452 if (j == -1)
3453 error (_("no matching member function"));
3454 }
3455
3456 if (TYPE_FN_FIELD_STATIC_P (f, j))
3457 {
3458 struct symbol *s =
3459 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3460 0, VAR_DOMAIN, 0);
3461
3462 if (s == NULL)
3463 return NULL;
3464
3465 if (want_address)
3466 return value_addr (read_var_value (s, 0));
3467 else
3468 return read_var_value (s, 0);
3469 }
3470
3471 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3472 {
3473 if (want_address)
3474 {
3475 result = allocate_value
3476 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3477 cplus_make_method_ptr (value_type (result),
3478 value_contents_writeable (result),
3479 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3480 }
3481 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3482 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3483 else
3484 error (_("Cannot reference virtual member function \"%s\""),
3485 name);
3486 }
3487 else
3488 {
3489 struct symbol *s =
3490 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3491 0, VAR_DOMAIN, 0);
3492
3493 if (s == NULL)
3494 return NULL;
3495
3496 v = read_var_value (s, 0);
3497 if (!want_address)
3498 result = v;
3499 else
3500 {
3501 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3502 cplus_make_method_ptr (value_type (result),
3503 value_contents_writeable (result),
3504 value_address (v), 0);
3505 }
3506 }
3507 return result;
3508 }
3509 }
3510 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3511 {
3512 struct value *v;
3513 int base_offset;
3514
3515 if (BASETYPE_VIA_VIRTUAL (t, i))
3516 base_offset = 0;
3517 else
3518 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3519 v = value_struct_elt_for_reference (domain,
3520 offset + base_offset,
3521 TYPE_BASECLASS (t, i),
3522 name, intype,
3523 want_address, noside);
3524 if (v)
3525 return v;
3526 }
3527
3528 /* As a last chance, pretend that CURTYPE is a namespace, and look
3529 it up that way; this (frequently) works for types nested inside
3530 classes. */
3531
3532 return value_maybe_namespace_elt (curtype, name,
3533 want_address, noside);
3534 }
3535
3536 /* C++: Return the member NAME of the namespace given by the type
3537 CURTYPE. */
3538
3539 static struct value *
3540 value_namespace_elt (const struct type *curtype,
3541 const char *name, int want_address,
3542 enum noside noside)
3543 {
3544 struct value *retval = value_maybe_namespace_elt (curtype, name,
3545 want_address,
3546 noside);
3547
3548 if (retval == NULL)
3549 error (_("No symbol \"%s\" in namespace \"%s\"."),
3550 name, TYPE_TAG_NAME (curtype));
3551
3552 return retval;
3553 }
3554
3555 /* A helper function used by value_namespace_elt and
3556 value_struct_elt_for_reference. It looks up NAME inside the
3557 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3558 is a class and NAME refers to a type in CURTYPE itself (as opposed
3559 to, say, some base class of CURTYPE). */
3560
3561 static struct value *
3562 value_maybe_namespace_elt (const struct type *curtype,
3563 const char *name, int want_address,
3564 enum noside noside)
3565 {
3566 const char *namespace_name = TYPE_TAG_NAME (curtype);
3567 struct symbol *sym;
3568 struct value *result;
3569
3570 sym = cp_lookup_symbol_namespace (namespace_name, name,
3571 get_selected_block (0), VAR_DOMAIN);
3572
3573 if (sym == NULL)
3574 return NULL;
3575 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3576 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3577 result = allocate_value (SYMBOL_TYPE (sym));
3578 else
3579 result = value_of_variable (sym, get_selected_block (0));
3580
3581 if (want_address)
3582 result = value_addr (result);
3583
3584 return result;
3585 }
3586
3587 /* Given a pointer or a reference value V, find its real (RTTI) type.
3588
3589 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3590 and refer to the values computed for the object pointed to. */
3591
3592 struct type *
3593 value_rtti_indirect_type (struct value *v, int *full,
3594 int *top, int *using_enc)
3595 {
3596 struct value *target = NULL;
3597 struct type *type, *real_type, *target_type;
3598
3599 type = value_type (v);
3600 type = check_typedef (type);
3601 if (TYPE_CODE (type) == TYPE_CODE_REF)
3602 target = coerce_ref (v);
3603 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3604 {
3605
3606 TRY
3607 {
3608 target = value_ind (v);
3609 }
3610 CATCH (except, RETURN_MASK_ERROR)
3611 {
3612 if (except.error == MEMORY_ERROR)
3613 {
3614 /* value_ind threw a memory error. The pointer is NULL or
3615 contains an uninitialized value: we can't determine any
3616 type. */
3617 return NULL;
3618 }
3619 throw_exception (except);
3620 }
3621 END_CATCH
3622 }
3623 else
3624 return NULL;
3625
3626 real_type = value_rtti_type (target, full, top, using_enc);
3627
3628 if (real_type)
3629 {
3630 /* Copy qualifiers to the referenced object. */
3631 target_type = value_type (target);
3632 real_type = make_cv_type (TYPE_CONST (target_type),
3633 TYPE_VOLATILE (target_type), real_type, NULL);
3634 if (TYPE_CODE (type) == TYPE_CODE_REF)
3635 real_type = lookup_reference_type (real_type);
3636 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3637 real_type = lookup_pointer_type (real_type);
3638 else
3639 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3640
3641 /* Copy qualifiers to the pointer/reference. */
3642 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3643 real_type, NULL);
3644 }
3645
3646 return real_type;
3647 }
3648
3649 /* Given a value pointed to by ARGP, check its real run-time type, and
3650 if that is different from the enclosing type, create a new value
3651 using the real run-time type as the enclosing type (and of the same
3652 type as ARGP) and return it, with the embedded offset adjusted to
3653 be the correct offset to the enclosed object. RTYPE is the type,
3654 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3655 by value_rtti_type(). If these are available, they can be supplied
3656 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3657 NULL if they're not available. */
3658
3659 struct value *
3660 value_full_object (struct value *argp,
3661 struct type *rtype,
3662 int xfull, int xtop,
3663 int xusing_enc)
3664 {
3665 struct type *real_type;
3666 int full = 0;
3667 int top = -1;
3668 int using_enc = 0;
3669 struct value *new_val;
3670
3671 if (rtype)
3672 {
3673 real_type = rtype;
3674 full = xfull;
3675 top = xtop;
3676 using_enc = xusing_enc;
3677 }
3678 else
3679 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3680
3681 /* If no RTTI data, or if object is already complete, do nothing. */
3682 if (!real_type || real_type == value_enclosing_type (argp))
3683 return argp;
3684
3685 /* In a destructor we might see a real type that is a superclass of
3686 the object's type. In this case it is better to leave the object
3687 as-is. */
3688 if (full
3689 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3690 return argp;
3691
3692 /* If we have the full object, but for some reason the enclosing
3693 type is wrong, set it. */
3694 /* pai: FIXME -- sounds iffy */
3695 if (full)
3696 {
3697 argp = value_copy (argp);
3698 set_value_enclosing_type (argp, real_type);
3699 return argp;
3700 }
3701
3702 /* Check if object is in memory. */
3703 if (VALUE_LVAL (argp) != lval_memory)
3704 {
3705 warning (_("Couldn't retrieve complete object of RTTI "
3706 "type %s; object may be in register(s)."),
3707 TYPE_NAME (real_type));
3708
3709 return argp;
3710 }
3711
3712 /* All other cases -- retrieve the complete object. */
3713 /* Go back by the computed top_offset from the beginning of the
3714 object, adjusting for the embedded offset of argp if that's what
3715 value_rtti_type used for its computation. */
3716 new_val = value_at_lazy (real_type, value_address (argp) - top +
3717 (using_enc ? 0 : value_embedded_offset (argp)));
3718 deprecated_set_value_type (new_val, value_type (argp));
3719 set_value_embedded_offset (new_val, (using_enc
3720 ? top + value_embedded_offset (argp)
3721 : top));
3722 return new_val;
3723 }
3724
3725
3726 /* Return the value of the local variable, if one exists. Throw error
3727 otherwise, such as if the request is made in an inappropriate context. */
3728
3729 struct value *
3730 value_of_this (const struct language_defn *lang)
3731 {
3732 struct symbol *sym;
3733 const struct block *b;
3734 struct frame_info *frame;
3735
3736 if (!lang->la_name_of_this)
3737 error (_("no `this' in current language"));
3738
3739 frame = get_selected_frame (_("no frame selected"));
3740
3741 b = get_frame_block (frame, NULL);
3742
3743 sym = lookup_language_this (lang, b);
3744 if (sym == NULL)
3745 error (_("current stack frame does not contain a variable named `%s'"),
3746 lang->la_name_of_this);
3747
3748 return read_var_value (sym, frame);
3749 }
3750
3751 /* Return the value of the local variable, if one exists. Return NULL
3752 otherwise. Never throw error. */
3753
3754 struct value *
3755 value_of_this_silent (const struct language_defn *lang)
3756 {
3757 struct value *ret = NULL;
3758
3759 TRY
3760 {
3761 ret = value_of_this (lang);
3762 }
3763 CATCH (except, RETURN_MASK_ERROR)
3764 {
3765 }
3766 END_CATCH
3767
3768 return ret;
3769 }
3770
3771 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3772 elements long, starting at LOWBOUND. The result has the same lower
3773 bound as the original ARRAY. */
3774
3775 struct value *
3776 value_slice (struct value *array, int lowbound, int length)
3777 {
3778 struct type *slice_range_type, *slice_type, *range_type;
3779 LONGEST lowerbound, upperbound;
3780 struct value *slice;
3781 struct type *array_type;
3782
3783 array_type = check_typedef (value_type (array));
3784 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3785 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
3786 error (_("cannot take slice of non-array"));
3787
3788 range_type = TYPE_INDEX_TYPE (array_type);
3789 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3790 error (_("slice from bad array or bitstring"));
3791
3792 if (lowbound < lowerbound || length < 0
3793 || lowbound + length - 1 > upperbound)
3794 error (_("slice out of range"));
3795
3796 /* FIXME-type-allocation: need a way to free this type when we are
3797 done with it. */
3798 slice_range_type = create_static_range_type ((struct type *) NULL,
3799 TYPE_TARGET_TYPE (range_type),
3800 lowbound,
3801 lowbound + length - 1);
3802
3803 {
3804 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3805 LONGEST offset
3806 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3807
3808 slice_type = create_array_type ((struct type *) NULL,
3809 element_type,
3810 slice_range_type);
3811 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3812
3813 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3814 slice = allocate_value_lazy (slice_type);
3815 else
3816 {
3817 slice = allocate_value (slice_type);
3818 value_contents_copy (slice, 0, array, offset,
3819 type_length_units (slice_type));
3820 }
3821
3822 set_value_component_location (slice, array);
3823 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3824 set_value_offset (slice, value_offset (array) + offset);
3825 }
3826
3827 return slice;
3828 }
3829
3830 /* Create a value for a FORTRAN complex number. Currently most of the
3831 time values are coerced to COMPLEX*16 (i.e. a complex number
3832 composed of 2 doubles. This really should be a smarter routine
3833 that figures out precision inteligently as opposed to assuming
3834 doubles. FIXME: fmb */
3835
3836 struct value *
3837 value_literal_complex (struct value *arg1,
3838 struct value *arg2,
3839 struct type *type)
3840 {
3841 struct value *val;
3842 struct type *real_type = TYPE_TARGET_TYPE (type);
3843
3844 val = allocate_value (type);
3845 arg1 = value_cast (real_type, arg1);
3846 arg2 = value_cast (real_type, arg2);
3847
3848 memcpy (value_contents_raw (val),
3849 value_contents (arg1), TYPE_LENGTH (real_type));
3850 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3851 value_contents (arg2), TYPE_LENGTH (real_type));
3852 return val;
3853 }
3854
3855 /* Cast a value into the appropriate complex data type. */
3856
3857 static struct value *
3858 cast_into_complex (struct type *type, struct value *val)
3859 {
3860 struct type *real_type = TYPE_TARGET_TYPE (type);
3861
3862 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3863 {
3864 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3865 struct value *re_val = allocate_value (val_real_type);
3866 struct value *im_val = allocate_value (val_real_type);
3867
3868 memcpy (value_contents_raw (re_val),
3869 value_contents (val), TYPE_LENGTH (val_real_type));
3870 memcpy (value_contents_raw (im_val),
3871 value_contents (val) + TYPE_LENGTH (val_real_type),
3872 TYPE_LENGTH (val_real_type));
3873
3874 return value_literal_complex (re_val, im_val, type);
3875 }
3876 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3877 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3878 return value_literal_complex (val,
3879 value_zero (real_type, not_lval),
3880 type);
3881 else
3882 error (_("cannot cast non-number to complex"));
3883 }
3884
3885 void
3886 _initialize_valops (void)
3887 {
3888 add_setshow_boolean_cmd ("overload-resolution", class_support,
3889 &overload_resolution, _("\
3890 Set overload resolution in evaluating C++ functions."), _("\
3891 Show overload resolution in evaluating C++ functions."),
3892 NULL, NULL,
3893 show_overload_resolution,
3894 &setlist, &showlist);
3895 overload_resolution = 1;
3896 }
This page took 0.161792 seconds and 4 git commands to generate.