* infcmd.c (print_return_value): Remove compatibility code calling
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
3 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "gdbcore.h"
30 #include "target.h"
31 #include "demangle.h"
32 #include "language.h"
33 #include "gdbcmd.h"
34 #include "regcache.h"
35 #include "cp-abi.h"
36
37 #include <errno.h>
38 #include "gdb_string.h"
39 #include "gdb_assert.h"
40
41 /* Flag indicating HP compilers were used; needed to correctly handle some
42 value operations with HP aCC code/runtime. */
43 extern int hp_som_som_object_present;
44
45 extern int overload_debug;
46 /* Local functions. */
47
48 static int typecmp (int staticp, int varargs, int nargs,
49 struct field t1[], struct value *t2[]);
50
51 static CORE_ADDR find_function_addr (struct value *, struct type **);
52 static struct value *value_arg_coerce (struct value *, struct type *, int);
53
54
55 static CORE_ADDR value_push (CORE_ADDR, struct value *);
56
57 static struct value *search_struct_field (char *, struct value *, int,
58 struct type *, int);
59
60 static struct value *search_struct_method (char *, struct value **,
61 struct value **,
62 int, int *, struct type *);
63
64 static int check_field_in (struct type *, const char *);
65
66 static CORE_ADDR allocate_space_in_inferior (int);
67
68 static struct value *cast_into_complex (struct type *, struct value *);
69
70 static struct fn_field *find_method_list (struct value ** argp, char *method,
71 int offset,
72 struct type *type, int *num_fns,
73 struct type **basetype,
74 int *boffset);
75
76 void _initialize_valops (void);
77
78 /* Flag for whether we want to abandon failed expression evals by default. */
79
80 #if 0
81 static int auto_abandon = 0;
82 #endif
83
84 int overload_resolution = 0;
85
86 /* This boolean tells what gdb should do if a signal is received while in
87 a function called from gdb (call dummy). If set, gdb unwinds the stack
88 and restore the context to what as it was before the call.
89 The default is to stop in the frame where the signal was received. */
90
91 int unwind_on_signal_p = 0;
92 \f
93
94
95 /* Find the address of function name NAME in the inferior. */
96
97 struct value *
98 find_function_in_inferior (char *name)
99 {
100 register struct symbol *sym;
101 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
102 if (sym != NULL)
103 {
104 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
105 {
106 error ("\"%s\" exists in this program but is not a function.",
107 name);
108 }
109 return value_of_variable (sym, NULL);
110 }
111 else
112 {
113 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
114 if (msymbol != NULL)
115 {
116 struct type *type;
117 CORE_ADDR maddr;
118 type = lookup_pointer_type (builtin_type_char);
119 type = lookup_function_type (type);
120 type = lookup_pointer_type (type);
121 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
122 return value_from_pointer (type, maddr);
123 }
124 else
125 {
126 if (!target_has_execution)
127 error ("evaluation of this expression requires the target program to be active");
128 else
129 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
130 }
131 }
132 }
133
134 /* Allocate NBYTES of space in the inferior using the inferior's malloc
135 and return a value that is a pointer to the allocated space. */
136
137 struct value *
138 value_allocate_space_in_inferior (int len)
139 {
140 struct value *blocklen;
141 struct value *val = find_function_in_inferior ("malloc");
142
143 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
144 val = call_function_by_hand (val, 1, &blocklen);
145 if (value_logical_not (val))
146 {
147 if (!target_has_execution)
148 error ("No memory available to program now: you need to start the target first");
149 else
150 error ("No memory available to program: call to malloc failed");
151 }
152 return val;
153 }
154
155 static CORE_ADDR
156 allocate_space_in_inferior (int len)
157 {
158 return value_as_long (value_allocate_space_in_inferior (len));
159 }
160
161 /* Cast value ARG2 to type TYPE and return as a value.
162 More general than a C cast: accepts any two types of the same length,
163 and if ARG2 is an lvalue it can be cast into anything at all. */
164 /* In C++, casts may change pointer or object representations. */
165
166 struct value *
167 value_cast (struct type *type, struct value *arg2)
168 {
169 register enum type_code code1;
170 register enum type_code code2;
171 register int scalar;
172 struct type *type2;
173
174 int convert_to_boolean = 0;
175
176 if (VALUE_TYPE (arg2) == type)
177 return arg2;
178
179 CHECK_TYPEDEF (type);
180 code1 = TYPE_CODE (type);
181 COERCE_REF (arg2);
182 type2 = check_typedef (VALUE_TYPE (arg2));
183
184 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
185 is treated like a cast to (TYPE [N])OBJECT,
186 where N is sizeof(OBJECT)/sizeof(TYPE). */
187 if (code1 == TYPE_CODE_ARRAY)
188 {
189 struct type *element_type = TYPE_TARGET_TYPE (type);
190 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
191 if (element_length > 0
192 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
193 {
194 struct type *range_type = TYPE_INDEX_TYPE (type);
195 int val_length = TYPE_LENGTH (type2);
196 LONGEST low_bound, high_bound, new_length;
197 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
198 low_bound = 0, high_bound = 0;
199 new_length = val_length / element_length;
200 if (val_length % element_length != 0)
201 warning ("array element type size does not divide object size in cast");
202 /* FIXME-type-allocation: need a way to free this type when we are
203 done with it. */
204 range_type = create_range_type ((struct type *) NULL,
205 TYPE_TARGET_TYPE (range_type),
206 low_bound,
207 new_length + low_bound - 1);
208 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
209 element_type, range_type);
210 return arg2;
211 }
212 }
213
214 if (current_language->c_style_arrays
215 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
216 arg2 = value_coerce_array (arg2);
217
218 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
219 arg2 = value_coerce_function (arg2);
220
221 type2 = check_typedef (VALUE_TYPE (arg2));
222 COERCE_VARYING_ARRAY (arg2, type2);
223 code2 = TYPE_CODE (type2);
224
225 if (code1 == TYPE_CODE_COMPLEX)
226 return cast_into_complex (type, arg2);
227 if (code1 == TYPE_CODE_BOOL)
228 {
229 code1 = TYPE_CODE_INT;
230 convert_to_boolean = 1;
231 }
232 if (code1 == TYPE_CODE_CHAR)
233 code1 = TYPE_CODE_INT;
234 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
235 code2 = TYPE_CODE_INT;
236
237 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
238 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
239
240 if (code1 == TYPE_CODE_STRUCT
241 && code2 == TYPE_CODE_STRUCT
242 && TYPE_NAME (type) != 0)
243 {
244 /* Look in the type of the source to see if it contains the
245 type of the target as a superclass. If so, we'll need to
246 offset the object in addition to changing its type. */
247 struct value *v = search_struct_field (type_name_no_tag (type),
248 arg2, 0, type2, 1);
249 if (v)
250 {
251 VALUE_TYPE (v) = type;
252 return v;
253 }
254 }
255 if (code1 == TYPE_CODE_FLT && scalar)
256 return value_from_double (type, value_as_double (arg2));
257 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
258 || code1 == TYPE_CODE_RANGE)
259 && (scalar || code2 == TYPE_CODE_PTR))
260 {
261 LONGEST longest;
262
263 if (hp_som_som_object_present && /* if target compiled by HP aCC */
264 (code2 == TYPE_CODE_PTR))
265 {
266 unsigned int *ptr;
267 struct value *retvalp;
268
269 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
270 {
271 /* With HP aCC, pointers to data members have a bias */
272 case TYPE_CODE_MEMBER:
273 retvalp = value_from_longest (type, value_as_long (arg2));
274 /* force evaluation */
275 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
276 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
277 return retvalp;
278
279 /* While pointers to methods don't really point to a function */
280 case TYPE_CODE_METHOD:
281 error ("Pointers to methods not supported with HP aCC");
282
283 default:
284 break; /* fall out and go to normal handling */
285 }
286 }
287
288 /* When we cast pointers to integers, we mustn't use
289 POINTER_TO_ADDRESS to find the address the pointer
290 represents, as value_as_long would. GDB should evaluate
291 expressions just as the compiler would --- and the compiler
292 sees a cast as a simple reinterpretation of the pointer's
293 bits. */
294 if (code2 == TYPE_CODE_PTR)
295 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
296 TYPE_LENGTH (type2));
297 else
298 longest = value_as_long (arg2);
299 return value_from_longest (type, convert_to_boolean ?
300 (LONGEST) (longest ? 1 : 0) : longest);
301 }
302 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
303 code2 == TYPE_CODE_ENUM ||
304 code2 == TYPE_CODE_RANGE))
305 {
306 /* TYPE_LENGTH (type) is the length of a pointer, but we really
307 want the length of an address! -- we are really dealing with
308 addresses (i.e., gdb representations) not pointers (i.e.,
309 target representations) here.
310
311 This allows things like "print *(int *)0x01000234" to work
312 without printing a misleading message -- which would
313 otherwise occur when dealing with a target having two byte
314 pointers and four byte addresses. */
315
316 int addr_bit = TARGET_ADDR_BIT;
317
318 LONGEST longest = value_as_long (arg2);
319 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
320 {
321 if (longest >= ((LONGEST) 1 << addr_bit)
322 || longest <= -((LONGEST) 1 << addr_bit))
323 warning ("value truncated");
324 }
325 return value_from_longest (type, longest);
326 }
327 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
328 {
329 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
330 {
331 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
332 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
333 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
334 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
335 && !value_logical_not (arg2))
336 {
337 struct value *v;
338
339 /* Look in the type of the source to see if it contains the
340 type of the target as a superclass. If so, we'll need to
341 offset the pointer rather than just change its type. */
342 if (TYPE_NAME (t1) != NULL)
343 {
344 v = search_struct_field (type_name_no_tag (t1),
345 value_ind (arg2), 0, t2, 1);
346 if (v)
347 {
348 v = value_addr (v);
349 VALUE_TYPE (v) = type;
350 return v;
351 }
352 }
353
354 /* Look in the type of the target to see if it contains the
355 type of the source as a superclass. If so, we'll need to
356 offset the pointer rather than just change its type.
357 FIXME: This fails silently with virtual inheritance. */
358 if (TYPE_NAME (t2) != NULL)
359 {
360 v = search_struct_field (type_name_no_tag (t2),
361 value_zero (t1, not_lval), 0, t1, 1);
362 if (v)
363 {
364 struct value *v2 = value_ind (arg2);
365 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
366 + VALUE_OFFSET (v);
367
368 /* JYG: adjust the new pointer value and
369 embedded offset. */
370 v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v);
371 VALUE_EMBEDDED_OFFSET (v2) = 0;
372
373 v2 = value_addr (v2);
374 VALUE_TYPE (v2) = type;
375 return v2;
376 }
377 }
378 }
379 /* No superclass found, just fall through to change ptr type. */
380 }
381 VALUE_TYPE (arg2) = type;
382 arg2 = value_change_enclosing_type (arg2, type);
383 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
384 return arg2;
385 }
386 else if (chill_varying_type (type))
387 {
388 struct type *range1, *range2, *eltype1, *eltype2;
389 struct value *val;
390 int count1, count2;
391 LONGEST low_bound, high_bound;
392 char *valaddr, *valaddr_data;
393 /* For lint warning about eltype2 possibly uninitialized: */
394 eltype2 = NULL;
395 if (code2 == TYPE_CODE_BITSTRING)
396 error ("not implemented: converting bitstring to varying type");
397 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
398 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
399 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
400 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
401 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
402 error ("Invalid conversion to varying type");
403 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
404 range2 = TYPE_FIELD_TYPE (type2, 0);
405 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
406 count1 = -1;
407 else
408 count1 = high_bound - low_bound + 1;
409 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
410 count1 = -1, count2 = 0; /* To force error before */
411 else
412 count2 = high_bound - low_bound + 1;
413 if (count2 > count1)
414 error ("target varying type is too small");
415 val = allocate_value (type);
416 valaddr = VALUE_CONTENTS_RAW (val);
417 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
418 /* Set val's __var_length field to count2. */
419 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
420 count2);
421 /* Set the __var_data field to count2 elements copied from arg2. */
422 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
423 count2 * TYPE_LENGTH (eltype2));
424 /* Zero the rest of the __var_data field of val. */
425 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
426 (count1 - count2) * TYPE_LENGTH (eltype2));
427 return val;
428 }
429 else if (VALUE_LVAL (arg2) == lval_memory)
430 {
431 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
432 VALUE_BFD_SECTION (arg2));
433 }
434 else if (code1 == TYPE_CODE_VOID)
435 {
436 return value_zero (builtin_type_void, not_lval);
437 }
438 else
439 {
440 error ("Invalid cast.");
441 return 0;
442 }
443 }
444
445 /* Create a value of type TYPE that is zero, and return it. */
446
447 struct value *
448 value_zero (struct type *type, enum lval_type lv)
449 {
450 struct value *val = allocate_value (type);
451
452 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
453 VALUE_LVAL (val) = lv;
454
455 return val;
456 }
457
458 /* Return a value with type TYPE located at ADDR.
459
460 Call value_at only if the data needs to be fetched immediately;
461 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
462 value_at_lazy instead. value_at_lazy simply records the address of
463 the data and sets the lazy-evaluation-required flag. The lazy flag
464 is tested in the VALUE_CONTENTS macro, which is used if and when
465 the contents are actually required.
466
467 Note: value_at does *NOT* handle embedded offsets; perform such
468 adjustments before or after calling it. */
469
470 struct value *
471 value_at (struct type *type, CORE_ADDR addr, asection *sect)
472 {
473 struct value *val;
474
475 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
476 error ("Attempt to dereference a generic pointer.");
477
478 val = allocate_value (type);
479
480 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
481
482 VALUE_LVAL (val) = lval_memory;
483 VALUE_ADDRESS (val) = addr;
484 VALUE_BFD_SECTION (val) = sect;
485
486 return val;
487 }
488
489 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
490
491 struct value *
492 value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
493 {
494 struct value *val;
495
496 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
497 error ("Attempt to dereference a generic pointer.");
498
499 val = allocate_value (type);
500
501 VALUE_LVAL (val) = lval_memory;
502 VALUE_ADDRESS (val) = addr;
503 VALUE_LAZY (val) = 1;
504 VALUE_BFD_SECTION (val) = sect;
505
506 return val;
507 }
508
509 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
510 if the current data for a variable needs to be loaded into
511 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
512 clears the lazy flag to indicate that the data in the buffer is valid.
513
514 If the value is zero-length, we avoid calling read_memory, which would
515 abort. We mark the value as fetched anyway -- all 0 bytes of it.
516
517 This function returns a value because it is used in the VALUE_CONTENTS
518 macro as part of an expression, where a void would not work. The
519 value is ignored. */
520
521 int
522 value_fetch_lazy (struct value *val)
523 {
524 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
525 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
526
527 struct type *type = VALUE_TYPE (val);
528 if (length)
529 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
530
531 VALUE_LAZY (val) = 0;
532 return 0;
533 }
534
535
536 /* Store the contents of FROMVAL into the location of TOVAL.
537 Return a new value with the location of TOVAL and contents of FROMVAL. */
538
539 struct value *
540 value_assign (struct value *toval, struct value *fromval)
541 {
542 register struct type *type;
543 struct value *val;
544 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
545 int use_buffer = 0;
546
547 if (!toval->modifiable)
548 error ("Left operand of assignment is not a modifiable lvalue.");
549
550 COERCE_REF (toval);
551
552 type = VALUE_TYPE (toval);
553 if (VALUE_LVAL (toval) != lval_internalvar)
554 fromval = value_cast (type, fromval);
555 else
556 COERCE_ARRAY (fromval);
557 CHECK_TYPEDEF (type);
558
559 /* If TOVAL is a special machine register requiring conversion
560 of program values to a special raw format,
561 convert FROMVAL's contents now, with result in `raw_buffer',
562 and set USE_BUFFER to the number of bytes to write. */
563
564 if (VALUE_REGNO (toval) >= 0)
565 {
566 int regno = VALUE_REGNO (toval);
567 if (CONVERT_REGISTER_P (regno))
568 {
569 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
570 VALUE_TO_REGISTER (fromtype, regno, VALUE_CONTENTS (fromval), raw_buffer);
571 use_buffer = REGISTER_RAW_SIZE (regno);
572 }
573 }
574
575 switch (VALUE_LVAL (toval))
576 {
577 case lval_internalvar:
578 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
579 val = value_copy (VALUE_INTERNALVAR (toval)->value);
580 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
581 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
582 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
583 return val;
584
585 case lval_internalvar_component:
586 set_internalvar_component (VALUE_INTERNALVAR (toval),
587 VALUE_OFFSET (toval),
588 VALUE_BITPOS (toval),
589 VALUE_BITSIZE (toval),
590 fromval);
591 break;
592
593 case lval_memory:
594 {
595 char *dest_buffer;
596 CORE_ADDR changed_addr;
597 int changed_len;
598
599 if (VALUE_BITSIZE (toval))
600 {
601 char buffer[sizeof (LONGEST)];
602 /* We assume that the argument to read_memory is in units of
603 host chars. FIXME: Is that correct? */
604 changed_len = (VALUE_BITPOS (toval)
605 + VALUE_BITSIZE (toval)
606 + HOST_CHAR_BIT - 1)
607 / HOST_CHAR_BIT;
608
609 if (changed_len > (int) sizeof (LONGEST))
610 error ("Can't handle bitfields which don't fit in a %d bit word.",
611 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
612
613 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
614 buffer, changed_len);
615 modify_field (buffer, value_as_long (fromval),
616 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
617 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
618 dest_buffer = buffer;
619 }
620 else if (use_buffer)
621 {
622 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
623 changed_len = use_buffer;
624 dest_buffer = raw_buffer;
625 }
626 else
627 {
628 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
629 changed_len = TYPE_LENGTH (type);
630 dest_buffer = VALUE_CONTENTS (fromval);
631 }
632
633 write_memory (changed_addr, dest_buffer, changed_len);
634 if (memory_changed_hook)
635 memory_changed_hook (changed_addr, changed_len);
636 }
637 break;
638
639 case lval_register:
640 if (VALUE_BITSIZE (toval))
641 {
642 char buffer[sizeof (LONGEST)];
643 int len =
644 REGISTER_RAW_SIZE (VALUE_REGNO (toval)) - VALUE_OFFSET (toval);
645
646 if (len > (int) sizeof (LONGEST))
647 error ("Can't handle bitfields in registers larger than %d bits.",
648 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
649
650 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
651 > len * HOST_CHAR_BIT)
652 /* Getting this right would involve being very careful about
653 byte order. */
654 error ("Can't assign to bitfields that cross register "
655 "boundaries.");
656
657 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
658 buffer, len);
659 modify_field (buffer, value_as_long (fromval),
660 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
661 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
662 buffer, len);
663 }
664 else if (use_buffer)
665 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
666 raw_buffer, use_buffer);
667 else
668 {
669 /* Do any conversion necessary when storing this type to more
670 than one register. */
671 #ifdef REGISTER_CONVERT_FROM_TYPE
672 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
673 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
674 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
675 raw_buffer, TYPE_LENGTH (type));
676 #else
677 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
678 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
679 #endif
680 }
681 /* Assigning to the stack pointer, frame pointer, and other
682 (architecture and calling convention specific) registers may
683 cause the frame cache to be out of date. We just do this
684 on all assignments to registers for simplicity; I doubt the slowdown
685 matters. */
686 reinit_frame_cache ();
687 break;
688
689 case lval_reg_frame_relative:
690 {
691 /* value is stored in a series of registers in the frame
692 specified by the structure. Copy that value out, modify
693 it, and copy it back in. */
694 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
695 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
696 int byte_offset = VALUE_OFFSET (toval) % reg_size;
697 int reg_offset = VALUE_OFFSET (toval) / reg_size;
698 int amount_copied;
699
700 /* Make the buffer large enough in all cases. */
701 /* FIXME (alloca): Not safe for very large data types. */
702 char *buffer = (char *) alloca (amount_to_copy
703 + sizeof (LONGEST)
704 + MAX_REGISTER_RAW_SIZE);
705
706 int regno;
707 struct frame_info *frame;
708
709 /* Figure out which frame this is in currently. */
710 for (frame = get_current_frame ();
711 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
712 frame = get_prev_frame (frame))
713 ;
714
715 if (!frame)
716 error ("Value being assigned to is no longer active.");
717
718 amount_to_copy += (reg_size - amount_to_copy % reg_size);
719
720 /* Copy it out. */
721 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
722 amount_copied = 0);
723 amount_copied < amount_to_copy;
724 amount_copied += reg_size, regno++)
725 {
726 get_saved_register (buffer + amount_copied,
727 (int *) NULL, (CORE_ADDR *) NULL,
728 frame, regno, (enum lval_type *) NULL);
729 }
730
731 /* Modify what needs to be modified. */
732 if (VALUE_BITSIZE (toval))
733 modify_field (buffer + byte_offset,
734 value_as_long (fromval),
735 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
736 else if (use_buffer)
737 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
738 else
739 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
740 TYPE_LENGTH (type));
741
742 /* Copy it back. */
743 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
744 amount_copied = 0);
745 amount_copied < amount_to_copy;
746 amount_copied += reg_size, regno++)
747 {
748 enum lval_type lval;
749 CORE_ADDR addr;
750 int optim;
751
752 /* Just find out where to put it. */
753 get_saved_register ((char *) NULL,
754 &optim, &addr, frame, regno, &lval);
755
756 if (optim)
757 error ("Attempt to assign to a value that was optimized out.");
758 if (lval == lval_memory)
759 write_memory (addr, buffer + amount_copied, reg_size);
760 else if (lval == lval_register)
761 write_register_bytes (addr, buffer + amount_copied, reg_size);
762 else
763 error ("Attempt to assign to an unmodifiable value.");
764 }
765
766 if (register_changed_hook)
767 register_changed_hook (-1);
768 }
769 break;
770
771
772 default:
773 error ("Left operand of assignment is not an lvalue.");
774 }
775
776 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
777 If the field is signed, and is negative, then sign extend. */
778 if ((VALUE_BITSIZE (toval) > 0)
779 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
780 {
781 LONGEST fieldval = value_as_long (fromval);
782 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
783
784 fieldval &= valmask;
785 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
786 fieldval |= ~valmask;
787
788 fromval = value_from_longest (type, fieldval);
789 }
790
791 val = value_copy (toval);
792 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
793 TYPE_LENGTH (type));
794 VALUE_TYPE (val) = type;
795 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
796 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
797 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
798
799 return val;
800 }
801
802 /* Extend a value VAL to COUNT repetitions of its type. */
803
804 struct value *
805 value_repeat (struct value *arg1, int count)
806 {
807 struct value *val;
808
809 if (VALUE_LVAL (arg1) != lval_memory)
810 error ("Only values in memory can be extended with '@'.");
811 if (count < 1)
812 error ("Invalid number %d of repetitions.", count);
813
814 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
815
816 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
817 VALUE_CONTENTS_ALL_RAW (val),
818 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
819 VALUE_LVAL (val) = lval_memory;
820 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
821
822 return val;
823 }
824
825 struct value *
826 value_of_variable (struct symbol *var, struct block *b)
827 {
828 struct value *val;
829 struct frame_info *frame = NULL;
830
831 if (!b)
832 frame = NULL; /* Use selected frame. */
833 else if (symbol_read_needs_frame (var))
834 {
835 frame = block_innermost_frame (b);
836 if (!frame)
837 {
838 if (BLOCK_FUNCTION (b)
839 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
840 error ("No frame is currently executing in block %s.",
841 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
842 else
843 error ("No frame is currently executing in specified block");
844 }
845 }
846
847 val = read_var_value (var, frame);
848 if (!val)
849 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
850
851 return val;
852 }
853
854 /* Given a value which is an array, return a value which is a pointer to its
855 first element, regardless of whether or not the array has a nonzero lower
856 bound.
857
858 FIXME: A previous comment here indicated that this routine should be
859 substracting the array's lower bound. It's not clear to me that this
860 is correct. Given an array subscripting operation, it would certainly
861 work to do the adjustment here, essentially computing:
862
863 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
864
865 However I believe a more appropriate and logical place to account for
866 the lower bound is to do so in value_subscript, essentially computing:
867
868 (&array[0] + ((index - lowerbound) * sizeof array[0]))
869
870 As further evidence consider what would happen with operations other
871 than array subscripting, where the caller would get back a value that
872 had an address somewhere before the actual first element of the array,
873 and the information about the lower bound would be lost because of
874 the coercion to pointer type.
875 */
876
877 struct value *
878 value_coerce_array (struct value *arg1)
879 {
880 register struct type *type = check_typedef (VALUE_TYPE (arg1));
881
882 if (VALUE_LVAL (arg1) != lval_memory)
883 error ("Attempt to take address of value not located in memory.");
884
885 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
886 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
887 }
888
889 /* Given a value which is a function, return a value which is a pointer
890 to it. */
891
892 struct value *
893 value_coerce_function (struct value *arg1)
894 {
895 struct value *retval;
896
897 if (VALUE_LVAL (arg1) != lval_memory)
898 error ("Attempt to take address of value not located in memory.");
899
900 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
901 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
902 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
903 return retval;
904 }
905
906 /* Return a pointer value for the object for which ARG1 is the contents. */
907
908 struct value *
909 value_addr (struct value *arg1)
910 {
911 struct value *arg2;
912
913 struct type *type = check_typedef (VALUE_TYPE (arg1));
914 if (TYPE_CODE (type) == TYPE_CODE_REF)
915 {
916 /* Copy the value, but change the type from (T&) to (T*).
917 We keep the same location information, which is efficient,
918 and allows &(&X) to get the location containing the reference. */
919 arg2 = value_copy (arg1);
920 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
921 return arg2;
922 }
923 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
924 return value_coerce_function (arg1);
925
926 if (VALUE_LVAL (arg1) != lval_memory)
927 error ("Attempt to take address of value not located in memory.");
928
929 /* Get target memory address */
930 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
931 (VALUE_ADDRESS (arg1)
932 + VALUE_OFFSET (arg1)
933 + VALUE_EMBEDDED_OFFSET (arg1)));
934
935 /* This may be a pointer to a base subobject; so remember the
936 full derived object's type ... */
937 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
938 /* ... and also the relative position of the subobject in the full object */
939 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
940 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
941 return arg2;
942 }
943
944 /* Given a value of a pointer type, apply the C unary * operator to it. */
945
946 struct value *
947 value_ind (struct value *arg1)
948 {
949 struct type *base_type;
950 struct value *arg2;
951
952 COERCE_ARRAY (arg1);
953
954 base_type = check_typedef (VALUE_TYPE (arg1));
955
956 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
957 error ("not implemented: member types in value_ind");
958
959 /* Allow * on an integer so we can cast it to whatever we want.
960 This returns an int, which seems like the most C-like thing
961 to do. "long long" variables are rare enough that
962 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
963 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
964 return value_at_lazy (builtin_type_int,
965 (CORE_ADDR) value_as_long (arg1),
966 VALUE_BFD_SECTION (arg1));
967 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
968 {
969 struct type *enc_type;
970 /* We may be pointing to something embedded in a larger object */
971 /* Get the real type of the enclosing object */
972 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
973 enc_type = TYPE_TARGET_TYPE (enc_type);
974 /* Retrieve the enclosing object pointed to */
975 arg2 = value_at_lazy (enc_type,
976 value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
977 VALUE_BFD_SECTION (arg1));
978 /* Re-adjust type */
979 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
980 /* Add embedding info */
981 arg2 = value_change_enclosing_type (arg2, enc_type);
982 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
983
984 /* We may be pointing to an object of some derived type */
985 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
986 return arg2;
987 }
988
989 error ("Attempt to take contents of a non-pointer value.");
990 return 0; /* For lint -- never reached */
991 }
992 \f
993 /* Pushing small parts of stack frames. */
994
995 /* Push one word (the size of object that a register holds). */
996
997 CORE_ADDR
998 push_word (CORE_ADDR sp, ULONGEST word)
999 {
1000 register int len = REGISTER_SIZE;
1001 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
1002
1003 store_unsigned_integer (buffer, len, word);
1004 if (INNER_THAN (1, 2))
1005 {
1006 /* stack grows downward */
1007 sp -= len;
1008 write_memory (sp, buffer, len);
1009 }
1010 else
1011 {
1012 /* stack grows upward */
1013 write_memory (sp, buffer, len);
1014 sp += len;
1015 }
1016
1017 return sp;
1018 }
1019
1020 /* Push LEN bytes with data at BUFFER. */
1021
1022 CORE_ADDR
1023 push_bytes (CORE_ADDR sp, char *buffer, int len)
1024 {
1025 if (INNER_THAN (1, 2))
1026 {
1027 /* stack grows downward */
1028 sp -= len;
1029 write_memory (sp, buffer, len);
1030 }
1031 else
1032 {
1033 /* stack grows upward */
1034 write_memory (sp, buffer, len);
1035 sp += len;
1036 }
1037
1038 return sp;
1039 }
1040
1041 #ifndef PARM_BOUNDARY
1042 #define PARM_BOUNDARY (0)
1043 #endif
1044
1045 /* Push onto the stack the specified value VALUE. Pad it correctly for
1046 it to be an argument to a function. */
1047
1048 static CORE_ADDR
1049 value_push (register CORE_ADDR sp, struct value *arg)
1050 {
1051 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1052 register int container_len = len;
1053 register int offset;
1054
1055 /* How big is the container we're going to put this value in? */
1056 if (PARM_BOUNDARY)
1057 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1058 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1059
1060 /* Are we going to put it at the high or low end of the container? */
1061 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1062 offset = container_len - len;
1063 else
1064 offset = 0;
1065
1066 if (INNER_THAN (1, 2))
1067 {
1068 /* stack grows downward */
1069 sp -= container_len;
1070 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1071 }
1072 else
1073 {
1074 /* stack grows upward */
1075 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1076 sp += container_len;
1077 }
1078
1079 return sp;
1080 }
1081
1082 CORE_ADDR
1083 default_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1084 int struct_return, CORE_ADDR struct_addr)
1085 {
1086 /* ASSERT ( !struct_return); */
1087 int i;
1088 for (i = nargs - 1; i >= 0; i--)
1089 sp = value_push (sp, args[i]);
1090 return sp;
1091 }
1092
1093
1094 /* Functions to use for the COERCE_FLOAT_TO_DOUBLE gdbarch method.
1095
1096 How you should pass arguments to a function depends on whether it
1097 was defined in K&R style or prototype style. If you define a
1098 function using the K&R syntax that takes a `float' argument, then
1099 callers must pass that argument as a `double'. If you define the
1100 function using the prototype syntax, then you must pass the
1101 argument as a `float', with no promotion.
1102
1103 Unfortunately, on certain older platforms, the debug info doesn't
1104 indicate reliably how each function was defined. A function type's
1105 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
1106 defined in prototype style. When calling a function whose
1107 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults the
1108 COERCE_FLOAT_TO_DOUBLE gdbarch method to decide what to do.
1109
1110 For modern targets, it is proper to assume that, if the prototype
1111 flag is clear, that can be trusted: `float' arguments should be
1112 promoted to `double'. You should register the function
1113 `standard_coerce_float_to_double' to get this behavior.
1114
1115 For some older targets, if the prototype flag is clear, that
1116 doesn't tell us anything. So we guess that, if we don't have a
1117 type for the formal parameter (i.e., the first argument to
1118 COERCE_FLOAT_TO_DOUBLE is null), then we should promote it;
1119 otherwise, we should leave it alone. The function
1120 `default_coerce_float_to_double' provides this behavior; it is the
1121 default value, for compatibility with older configurations. */
1122 int
1123 default_coerce_float_to_double (struct type *formal, struct type *actual)
1124 {
1125 return formal == NULL;
1126 }
1127
1128
1129 int
1130 standard_coerce_float_to_double (struct type *formal, struct type *actual)
1131 {
1132 return 1;
1133 }
1134
1135
1136 /* Perform the standard coercions that are specified
1137 for arguments to be passed to C functions.
1138
1139 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1140 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1141
1142 static struct value *
1143 value_arg_coerce (struct value *arg, struct type *param_type,
1144 int is_prototyped)
1145 {
1146 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1147 register struct type *type
1148 = param_type ? check_typedef (param_type) : arg_type;
1149
1150 switch (TYPE_CODE (type))
1151 {
1152 case TYPE_CODE_REF:
1153 if (TYPE_CODE (arg_type) != TYPE_CODE_REF
1154 && TYPE_CODE (arg_type) != TYPE_CODE_PTR)
1155 {
1156 arg = value_addr (arg);
1157 VALUE_TYPE (arg) = param_type;
1158 return arg;
1159 }
1160 break;
1161 case TYPE_CODE_INT:
1162 case TYPE_CODE_CHAR:
1163 case TYPE_CODE_BOOL:
1164 case TYPE_CODE_ENUM:
1165 /* If we don't have a prototype, coerce to integer type if necessary. */
1166 if (!is_prototyped)
1167 {
1168 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1169 type = builtin_type_int;
1170 }
1171 /* Currently all target ABIs require at least the width of an integer
1172 type for an argument. We may have to conditionalize the following
1173 type coercion for future targets. */
1174 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1175 type = builtin_type_int;
1176 break;
1177 case TYPE_CODE_FLT:
1178 /* FIXME: We should always convert floats to doubles in the
1179 non-prototyped case. As many debugging formats include
1180 no information about prototyping, we have to live with
1181 COERCE_FLOAT_TO_DOUBLE for now. */
1182 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
1183 {
1184 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1185 type = builtin_type_double;
1186 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1187 type = builtin_type_long_double;
1188 }
1189 break;
1190 case TYPE_CODE_FUNC:
1191 type = lookup_pointer_type (type);
1192 break;
1193 case TYPE_CODE_ARRAY:
1194 /* Arrays are coerced to pointers to their first element, unless
1195 they are vectors, in which case we want to leave them alone,
1196 because they are passed by value. */
1197 if (current_language->c_style_arrays)
1198 if (!TYPE_VECTOR (type))
1199 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1200 break;
1201 case TYPE_CODE_UNDEF:
1202 case TYPE_CODE_PTR:
1203 case TYPE_CODE_STRUCT:
1204 case TYPE_CODE_UNION:
1205 case TYPE_CODE_VOID:
1206 case TYPE_CODE_SET:
1207 case TYPE_CODE_RANGE:
1208 case TYPE_CODE_STRING:
1209 case TYPE_CODE_BITSTRING:
1210 case TYPE_CODE_ERROR:
1211 case TYPE_CODE_MEMBER:
1212 case TYPE_CODE_METHOD:
1213 case TYPE_CODE_COMPLEX:
1214 default:
1215 break;
1216 }
1217
1218 return value_cast (type, arg);
1219 }
1220
1221 /* Determine a function's address and its return type from its value.
1222 Calls error() if the function is not valid for calling. */
1223
1224 static CORE_ADDR
1225 find_function_addr (struct value *function, struct type **retval_type)
1226 {
1227 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1228 register enum type_code code = TYPE_CODE (ftype);
1229 struct type *value_type;
1230 CORE_ADDR funaddr;
1231
1232 /* If it's a member function, just look at the function
1233 part of it. */
1234
1235 /* Determine address to call. */
1236 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1237 {
1238 funaddr = VALUE_ADDRESS (function);
1239 value_type = TYPE_TARGET_TYPE (ftype);
1240 }
1241 else if (code == TYPE_CODE_PTR)
1242 {
1243 funaddr = value_as_address (function);
1244 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1245 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1246 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1247 {
1248 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1249 value_type = TYPE_TARGET_TYPE (ftype);
1250 }
1251 else
1252 value_type = builtin_type_int;
1253 }
1254 else if (code == TYPE_CODE_INT)
1255 {
1256 /* Handle the case of functions lacking debugging info.
1257 Their values are characters since their addresses are char */
1258 if (TYPE_LENGTH (ftype) == 1)
1259 funaddr = value_as_address (value_addr (function));
1260 else
1261 /* Handle integer used as address of a function. */
1262 funaddr = (CORE_ADDR) value_as_long (function);
1263
1264 value_type = builtin_type_int;
1265 }
1266 else
1267 error ("Invalid data type for function to be called.");
1268
1269 *retval_type = value_type;
1270 return funaddr;
1271 }
1272
1273 /* All this stuff with a dummy frame may seem unnecessarily complicated
1274 (why not just save registers in GDB?). The purpose of pushing a dummy
1275 frame which looks just like a real frame is so that if you call a
1276 function and then hit a breakpoint (get a signal, etc), "backtrace"
1277 will look right. Whether the backtrace needs to actually show the
1278 stack at the time the inferior function was called is debatable, but
1279 it certainly needs to not display garbage. So if you are contemplating
1280 making dummy frames be different from normal frames, consider that. */
1281
1282 /* Perform a function call in the inferior.
1283 ARGS is a vector of values of arguments (NARGS of them).
1284 FUNCTION is a value, the function to be called.
1285 Returns a value representing what the function returned.
1286 May fail to return, if a breakpoint or signal is hit
1287 during the execution of the function.
1288
1289 ARGS is modified to contain coerced values. */
1290
1291 static struct value *
1292 hand_function_call (struct value *function, int nargs, struct value **args)
1293 {
1294 register CORE_ADDR sp;
1295 register int i;
1296 int rc;
1297 CORE_ADDR start_sp;
1298 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1299 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1300 and remove any extra bytes which might exist because ULONGEST is
1301 bigger than REGISTER_SIZE.
1302
1303 NOTE: This is pretty wierd, as the call dummy is actually a
1304 sequence of instructions. But CISC machines will have
1305 to pack the instructions into REGISTER_SIZE units (and
1306 so will RISC machines for which INSTRUCTION_SIZE is not
1307 REGISTER_SIZE).
1308
1309 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1310 target byte order. */
1311
1312 static ULONGEST *dummy;
1313 int sizeof_dummy1;
1314 char *dummy1;
1315 CORE_ADDR old_sp;
1316 struct type *value_type;
1317 unsigned char struct_return;
1318 CORE_ADDR struct_addr = 0;
1319 struct regcache *retbuf;
1320 struct cleanup *retbuf_cleanup;
1321 struct inferior_status *inf_status;
1322 struct cleanup *inf_status_cleanup;
1323 CORE_ADDR funaddr;
1324 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1325 CORE_ADDR real_pc;
1326 struct type *param_type = NULL;
1327 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1328 int n_method_args = 0;
1329
1330 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1331 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1332 dummy1 = alloca (sizeof_dummy1);
1333 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1334
1335 if (!target_has_execution)
1336 noprocess ();
1337
1338 /* Create a cleanup chain that contains the retbuf (buffer
1339 containing the register values). This chain is create BEFORE the
1340 inf_status chain so that the inferior status can cleaned up
1341 (restored or discarded) without having the retbuf freed. */
1342 retbuf = regcache_xmalloc (current_gdbarch);
1343 retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
1344
1345 /* A cleanup for the inferior status. Create this AFTER the retbuf
1346 so that this can be discarded or applied without interfering with
1347 the regbuf. */
1348 inf_status = save_inferior_status (1);
1349 inf_status_cleanup = make_cleanup_restore_inferior_status (inf_status);
1350
1351 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1352 (and POP_FRAME for restoring them). (At least on most machines)
1353 they are saved on the stack in the inferior. */
1354 PUSH_DUMMY_FRAME;
1355
1356 old_sp = sp = read_sp ();
1357
1358 if (INNER_THAN (1, 2))
1359 {
1360 /* Stack grows down */
1361 sp -= sizeof_dummy1;
1362 start_sp = sp;
1363 }
1364 else
1365 {
1366 /* Stack grows up */
1367 start_sp = sp;
1368 sp += sizeof_dummy1;
1369 }
1370
1371 funaddr = find_function_addr (function, &value_type);
1372 CHECK_TYPEDEF (value_type);
1373
1374 {
1375 struct block *b = block_for_pc (funaddr);
1376 /* If compiled without -g, assume GCC 2. */
1377 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1378 }
1379
1380 /* Are we returning a value using a structure return or a normal
1381 value return? */
1382
1383 struct_return = using_struct_return (function, funaddr, value_type,
1384 using_gcc);
1385
1386 /* Create a call sequence customized for this function
1387 and the number of arguments for it. */
1388 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1389 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1390 REGISTER_SIZE,
1391 (ULONGEST) dummy[i]);
1392
1393 #ifdef GDB_TARGET_IS_HPPA
1394 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1395 value_type, using_gcc);
1396 #else
1397 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1398 value_type, using_gcc);
1399 real_pc = start_sp;
1400 #endif
1401
1402 if (CALL_DUMMY_LOCATION == ON_STACK)
1403 {
1404 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1405 if (USE_GENERIC_DUMMY_FRAMES)
1406 generic_save_call_dummy_addr (start_sp, start_sp + sizeof_dummy1);
1407 }
1408
1409 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1410 {
1411 /* Convex Unix prohibits executing in the stack segment. */
1412 /* Hope there is empty room at the top of the text segment. */
1413 extern CORE_ADDR text_end;
1414 static int checked = 0;
1415 if (!checked)
1416 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1417 if (read_memory_integer (start_sp, 1) != 0)
1418 error ("text segment full -- no place to put call");
1419 checked = 1;
1420 sp = old_sp;
1421 real_pc = text_end - sizeof_dummy1;
1422 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1423 if (USE_GENERIC_DUMMY_FRAMES)
1424 generic_save_call_dummy_addr (real_pc, real_pc + sizeof_dummy1);
1425 }
1426
1427 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1428 {
1429 extern CORE_ADDR text_end;
1430 int errcode;
1431 sp = old_sp;
1432 real_pc = text_end;
1433 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1434 if (errcode != 0)
1435 error ("Cannot write text segment -- call_function failed");
1436 if (USE_GENERIC_DUMMY_FRAMES)
1437 generic_save_call_dummy_addr (real_pc, real_pc + sizeof_dummy1);
1438 }
1439
1440 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1441 {
1442 real_pc = funaddr;
1443 if (USE_GENERIC_DUMMY_FRAMES)
1444 /* NOTE: cagney/2002-04-13: The entry point is going to be
1445 modified with a single breakpoint. */
1446 generic_save_call_dummy_addr (CALL_DUMMY_ADDRESS (),
1447 CALL_DUMMY_ADDRESS () + 1);
1448 }
1449
1450 #ifdef lint
1451 sp = old_sp; /* It really is used, for some ifdef's... */
1452 #endif
1453
1454 if (nargs < TYPE_NFIELDS (ftype))
1455 error ("too few arguments in function call");
1456
1457 for (i = nargs - 1; i >= 0; i--)
1458 {
1459 int prototyped;
1460
1461 /* FIXME drow/2002-05-31: Should just always mark methods as
1462 prototyped. Can we respect TYPE_VARARGS? Probably not. */
1463 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1464 prototyped = 1;
1465 else
1466 prototyped = TYPE_PROTOTYPED (ftype);
1467
1468 if (i < TYPE_NFIELDS (ftype))
1469 args[i] = value_arg_coerce (args[i], TYPE_FIELD_TYPE (ftype, i),
1470 prototyped);
1471 else
1472 args[i] = value_arg_coerce (args[i], NULL, 0);
1473
1474 /*elz: this code is to handle the case in which the function to be called
1475 has a pointer to function as parameter and the corresponding actual argument
1476 is the address of a function and not a pointer to function variable.
1477 In aCC compiled code, the calls through pointers to functions (in the body
1478 of the function called by hand) are made via $$dyncall_external which
1479 requires some registers setting, this is taken care of if we call
1480 via a function pointer variable, but not via a function address.
1481 In cc this is not a problem. */
1482
1483 if (using_gcc == 0)
1484 if (param_type && TYPE_CODE (ftype) != TYPE_CODE_METHOD)
1485 /* if this parameter is a pointer to function */
1486 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1487 if (TYPE_CODE (TYPE_TARGET_TYPE (param_type)) == TYPE_CODE_FUNC)
1488 /* elz: FIXME here should go the test about the compiler used
1489 to compile the target. We want to issue the error
1490 message only if the compiler used was HP's aCC.
1491 If we used HP's cc, then there is no problem and no need
1492 to return at this point */
1493 if (using_gcc == 0) /* && compiler == aCC */
1494 /* go see if the actual parameter is a variable of type
1495 pointer to function or just a function */
1496 if (args[i]->lval == not_lval)
1497 {
1498 char *arg_name;
1499 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1500 error ("\
1501 You cannot use function <%s> as argument. \n\
1502 You must use a pointer to function type variable. Command ignored.", arg_name);
1503 }
1504 }
1505
1506 if (REG_STRUCT_HAS_ADDR_P ())
1507 {
1508 /* This is a machine like the sparc, where we may need to pass a
1509 pointer to the structure, not the structure itself. */
1510 for (i = nargs - 1; i >= 0; i--)
1511 {
1512 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1513 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1514 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1515 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1516 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1517 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1518 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1519 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1520 && TYPE_LENGTH (arg_type) > 8)
1521 )
1522 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1523 {
1524 CORE_ADDR addr;
1525 int len; /* = TYPE_LENGTH (arg_type); */
1526 int aligned_len;
1527 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1528 len = TYPE_LENGTH (arg_type);
1529
1530 if (STACK_ALIGN_P ())
1531 /* MVS 11/22/96: I think at least some of this
1532 stack_align code is really broken. Better to let
1533 PUSH_ARGUMENTS adjust the stack in a target-defined
1534 manner. */
1535 aligned_len = STACK_ALIGN (len);
1536 else
1537 aligned_len = len;
1538 if (INNER_THAN (1, 2))
1539 {
1540 /* stack grows downward */
1541 sp -= aligned_len;
1542 /* ... so the address of the thing we push is the
1543 stack pointer after we push it. */
1544 addr = sp;
1545 }
1546 else
1547 {
1548 /* The stack grows up, so the address of the thing
1549 we push is the stack pointer before we push it. */
1550 addr = sp;
1551 sp += aligned_len;
1552 }
1553 /* Push the structure. */
1554 write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
1555 /* The value we're going to pass is the address of the
1556 thing we just pushed. */
1557 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1558 (LONGEST) addr); */
1559 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1560 addr);
1561 }
1562 }
1563 }
1564
1565
1566 /* Reserve space for the return structure to be written on the
1567 stack, if necessary */
1568
1569 if (struct_return)
1570 {
1571 int len = TYPE_LENGTH (value_type);
1572 if (STACK_ALIGN_P ())
1573 /* MVS 11/22/96: I think at least some of this stack_align
1574 code is really broken. Better to let PUSH_ARGUMENTS adjust
1575 the stack in a target-defined manner. */
1576 len = STACK_ALIGN (len);
1577 if (INNER_THAN (1, 2))
1578 {
1579 /* stack grows downward */
1580 sp -= len;
1581 struct_addr = sp;
1582 }
1583 else
1584 {
1585 /* stack grows upward */
1586 struct_addr = sp;
1587 sp += len;
1588 }
1589 }
1590
1591 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1592 on other architectures. This is because all the alignment is
1593 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1594 in hppa_push_arguments */
1595 if (EXTRA_STACK_ALIGNMENT_NEEDED)
1596 {
1597 /* MVS 11/22/96: I think at least some of this stack_align code
1598 is really broken. Better to let PUSH_ARGUMENTS adjust the
1599 stack in a target-defined manner. */
1600 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1601 {
1602 /* If stack grows down, we must leave a hole at the top. */
1603 int len = 0;
1604
1605 for (i = nargs - 1; i >= 0; i--)
1606 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1607 if (CALL_DUMMY_STACK_ADJUST_P)
1608 len += CALL_DUMMY_STACK_ADJUST;
1609 sp -= STACK_ALIGN (len) - len;
1610 }
1611 }
1612
1613 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1614
1615 if (PUSH_RETURN_ADDRESS_P ())
1616 /* for targets that use no CALL_DUMMY */
1617 /* There are a number of targets now which actually don't write
1618 any CALL_DUMMY instructions into the target, but instead just
1619 save the machine state, push the arguments, and jump directly
1620 to the callee function. Since this doesn't actually involve
1621 executing a JSR/BSR instruction, the return address must be set
1622 up by hand, either by pushing onto the stack or copying into a
1623 return-address register as appropriate. Formerly this has been
1624 done in PUSH_ARGUMENTS, but that's overloading its
1625 functionality a bit, so I'm making it explicit to do it here. */
1626 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1627
1628 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
1629 {
1630 /* If stack grows up, we must leave a hole at the bottom, note
1631 that sp already has been advanced for the arguments! */
1632 if (CALL_DUMMY_STACK_ADJUST_P)
1633 sp += CALL_DUMMY_STACK_ADJUST;
1634 sp = STACK_ALIGN (sp);
1635 }
1636
1637 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1638 anything here! */
1639 /* MVS 11/22/96: I think at least some of this stack_align code is
1640 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1641 a target-defined manner. */
1642 if (CALL_DUMMY_STACK_ADJUST_P)
1643 if (INNER_THAN (1, 2))
1644 {
1645 /* stack grows downward */
1646 sp -= CALL_DUMMY_STACK_ADJUST;
1647 }
1648
1649 /* Store the address at which the structure is supposed to be
1650 written. Note that this (and the code which reserved the space
1651 above) assumes that gcc was used to compile this function. Since
1652 it doesn't cost us anything but space and if the function is pcc
1653 it will ignore this value, we will make that assumption.
1654
1655 Also note that on some machines (like the sparc) pcc uses a
1656 convention like gcc's. */
1657
1658 if (struct_return)
1659 STORE_STRUCT_RETURN (struct_addr, sp);
1660
1661 /* Write the stack pointer. This is here because the statements above
1662 might fool with it. On SPARC, this write also stores the register
1663 window into the right place in the new stack frame, which otherwise
1664 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1665 write_sp (sp);
1666
1667 if (SAVE_DUMMY_FRAME_TOS_P ())
1668 SAVE_DUMMY_FRAME_TOS (sp);
1669
1670 {
1671 char *name;
1672 struct symbol *symbol;
1673
1674 name = NULL;
1675 symbol = find_pc_function (funaddr);
1676 if (symbol)
1677 {
1678 name = SYMBOL_SOURCE_NAME (symbol);
1679 }
1680 else
1681 {
1682 /* Try the minimal symbols. */
1683 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1684
1685 if (msymbol)
1686 {
1687 name = SYMBOL_SOURCE_NAME (msymbol);
1688 }
1689 }
1690 if (name == NULL)
1691 {
1692 char format[80];
1693 sprintf (format, "at %s", local_hex_format ());
1694 name = alloca (80);
1695 /* FIXME-32x64: assumes funaddr fits in a long. */
1696 sprintf (name, format, (unsigned long) funaddr);
1697 }
1698
1699 /* Execute the stack dummy routine, calling FUNCTION.
1700 When it is done, discard the empty frame
1701 after storing the contents of all regs into retbuf. */
1702 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1703
1704 if (rc == 1)
1705 {
1706 /* We stopped inside the FUNCTION because of a random signal.
1707 Further execution of the FUNCTION is not allowed. */
1708
1709 if (unwind_on_signal_p)
1710 {
1711 /* The user wants the context restored. */
1712
1713 /* We must get back to the frame we were before the dummy call. */
1714 POP_FRAME;
1715
1716 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1717 a C++ name with arguments and stuff. */
1718 error ("\
1719 The program being debugged was signaled while in a function called from GDB.\n\
1720 GDB has restored the context to what it was before the call.\n\
1721 To change this behavior use \"set unwindonsignal off\"\n\
1722 Evaluation of the expression containing the function (%s) will be abandoned.",
1723 name);
1724 }
1725 else
1726 {
1727 /* The user wants to stay in the frame where we stopped (default).*/
1728
1729 /* If we restored the inferior status (via the cleanup),
1730 we would print a spurious error message (Unable to
1731 restore previously selected frame), would write the
1732 registers from the inf_status (which is wrong), and
1733 would do other wrong things. */
1734 discard_cleanups (inf_status_cleanup);
1735 discard_inferior_status (inf_status);
1736
1737 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1738 a C++ name with arguments and stuff. */
1739 error ("\
1740 The program being debugged was signaled while in a function called from GDB.\n\
1741 GDB remains in the frame where the signal was received.\n\
1742 To change this behavior use \"set unwindonsignal on\"\n\
1743 Evaluation of the expression containing the function (%s) will be abandoned.",
1744 name);
1745 }
1746 }
1747
1748 if (rc == 2)
1749 {
1750 /* We hit a breakpoint inside the FUNCTION. */
1751
1752 /* If we restored the inferior status (via the cleanup), we
1753 would print a spurious error message (Unable to restore
1754 previously selected frame), would write the registers from
1755 the inf_status (which is wrong), and would do other wrong
1756 things. */
1757 discard_cleanups (inf_status_cleanup);
1758 discard_inferior_status (inf_status);
1759
1760 /* The following error message used to say "The expression
1761 which contained the function call has been discarded." It
1762 is a hard concept to explain in a few words. Ideally, GDB
1763 would be able to resume evaluation of the expression when
1764 the function finally is done executing. Perhaps someday
1765 this will be implemented (it would not be easy). */
1766
1767 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1768 a C++ name with arguments and stuff. */
1769 error ("\
1770 The program being debugged stopped while in a function called from GDB.\n\
1771 When the function (%s) is done executing, GDB will silently\n\
1772 stop (instead of continuing to evaluate the expression containing\n\
1773 the function call).", name);
1774 }
1775
1776 /* If we get here the called FUNCTION run to completion. */
1777
1778 /* Restore the inferior status, via its cleanup. At this stage,
1779 leave the RETBUF alone. */
1780 do_cleanups (inf_status_cleanup);
1781
1782 /* Figure out the value returned by the function. */
1783 /* elz: I defined this new macro for the hppa architecture only.
1784 this gives us a way to get the value returned by the function from the stack,
1785 at the same address we told the function to put it.
1786 We cannot assume on the pa that r28 still contains the address of the returned
1787 structure. Usually this will be overwritten by the callee.
1788 I don't know about other architectures, so I defined this macro
1789 */
1790
1791 #ifdef VALUE_RETURNED_FROM_STACK
1792 if (struct_return)
1793 {
1794 do_cleanups (retbuf_cleanup);
1795 return VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1796 }
1797 #endif
1798
1799 {
1800 struct value *retval = value_being_returned (value_type, retbuf, struct_return);
1801 do_cleanups (retbuf_cleanup);
1802 return retval;
1803 }
1804 }
1805 }
1806
1807 struct value *
1808 call_function_by_hand (struct value *function, int nargs, struct value **args)
1809 {
1810 if (CALL_DUMMY_P)
1811 {
1812 return hand_function_call (function, nargs, args);
1813 }
1814 else
1815 {
1816 error ("Cannot invoke functions on this machine.");
1817 }
1818 }
1819 \f
1820
1821
1822 /* Create a value for an array by allocating space in the inferior, copying
1823 the data into that space, and then setting up an array value.
1824
1825 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1826 populated from the values passed in ELEMVEC.
1827
1828 The element type of the array is inherited from the type of the
1829 first element, and all elements must have the same size (though we
1830 don't currently enforce any restriction on their types). */
1831
1832 struct value *
1833 value_array (int lowbound, int highbound, struct value **elemvec)
1834 {
1835 int nelem;
1836 int idx;
1837 unsigned int typelength;
1838 struct value *val;
1839 struct type *rangetype;
1840 struct type *arraytype;
1841 CORE_ADDR addr;
1842
1843 /* Validate that the bounds are reasonable and that each of the elements
1844 have the same size. */
1845
1846 nelem = highbound - lowbound + 1;
1847 if (nelem <= 0)
1848 {
1849 error ("bad array bounds (%d, %d)", lowbound, highbound);
1850 }
1851 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1852 for (idx = 1; idx < nelem; idx++)
1853 {
1854 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1855 {
1856 error ("array elements must all be the same size");
1857 }
1858 }
1859
1860 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1861 lowbound, highbound);
1862 arraytype = create_array_type ((struct type *) NULL,
1863 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1864
1865 if (!current_language->c_style_arrays)
1866 {
1867 val = allocate_value (arraytype);
1868 for (idx = 0; idx < nelem; idx++)
1869 {
1870 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1871 VALUE_CONTENTS_ALL (elemvec[idx]),
1872 typelength);
1873 }
1874 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1875 return val;
1876 }
1877
1878 /* Allocate space to store the array in the inferior, and then initialize
1879 it by copying in each element. FIXME: Is it worth it to create a
1880 local buffer in which to collect each value and then write all the
1881 bytes in one operation? */
1882
1883 addr = allocate_space_in_inferior (nelem * typelength);
1884 for (idx = 0; idx < nelem; idx++)
1885 {
1886 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1887 typelength);
1888 }
1889
1890 /* Create the array type and set up an array value to be evaluated lazily. */
1891
1892 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1893 return (val);
1894 }
1895
1896 /* Create a value for a string constant by allocating space in the inferior,
1897 copying the data into that space, and returning the address with type
1898 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1899 of characters.
1900 Note that string types are like array of char types with a lower bound of
1901 zero and an upper bound of LEN - 1. Also note that the string may contain
1902 embedded null bytes. */
1903
1904 struct value *
1905 value_string (char *ptr, int len)
1906 {
1907 struct value *val;
1908 int lowbound = current_language->string_lower_bound;
1909 struct type *rangetype = create_range_type ((struct type *) NULL,
1910 builtin_type_int,
1911 lowbound, len + lowbound - 1);
1912 struct type *stringtype
1913 = create_string_type ((struct type *) NULL, rangetype);
1914 CORE_ADDR addr;
1915
1916 if (current_language->c_style_arrays == 0)
1917 {
1918 val = allocate_value (stringtype);
1919 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1920 return val;
1921 }
1922
1923
1924 /* Allocate space to store the string in the inferior, and then
1925 copy LEN bytes from PTR in gdb to that address in the inferior. */
1926
1927 addr = allocate_space_in_inferior (len);
1928 write_memory (addr, ptr, len);
1929
1930 val = value_at_lazy (stringtype, addr, NULL);
1931 return (val);
1932 }
1933
1934 struct value *
1935 value_bitstring (char *ptr, int len)
1936 {
1937 struct value *val;
1938 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1939 0, len - 1);
1940 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1941 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1942 val = allocate_value (type);
1943 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1944 return val;
1945 }
1946 \f
1947 /* See if we can pass arguments in T2 to a function which takes arguments
1948 of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
1949 vector. If some arguments need coercion of some sort, then the coerced
1950 values are written into T2. Return value is 0 if the arguments could be
1951 matched, or the position at which they differ if not.
1952
1953 STATICP is nonzero if the T1 argument list came from a
1954 static member function. T2 will still include the ``this'' pointer,
1955 but it will be skipped.
1956
1957 For non-static member functions, we ignore the first argument,
1958 which is the type of the instance variable. This is because we want
1959 to handle calls with objects from derived classes. This is not
1960 entirely correct: we should actually check to make sure that a
1961 requested operation is type secure, shouldn't we? FIXME. */
1962
1963 static int
1964 typecmp (int staticp, int varargs, int nargs,
1965 struct field t1[], struct value *t2[])
1966 {
1967 int i;
1968
1969 if (t2 == 0)
1970 internal_error (__FILE__, __LINE__, "typecmp: no argument list");
1971
1972 /* Skip ``this'' argument if applicable. T2 will always include THIS. */
1973 if (staticp)
1974 t2 ++;
1975
1976 for (i = 0;
1977 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1978 i++)
1979 {
1980 struct type *tt1, *tt2;
1981
1982 if (!t2[i])
1983 return i + 1;
1984
1985 tt1 = check_typedef (t1[i].type);
1986 tt2 = check_typedef (VALUE_TYPE (t2[i]));
1987
1988 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1989 /* We should be doing hairy argument matching, as below. */
1990 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1991 {
1992 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1993 t2[i] = value_coerce_array (t2[i]);
1994 else
1995 t2[i] = value_addr (t2[i]);
1996 continue;
1997 }
1998
1999 /* djb - 20000715 - Until the new type structure is in the
2000 place, and we can attempt things like implicit conversions,
2001 we need to do this so you can take something like a map<const
2002 char *>, and properly access map["hello"], because the
2003 argument to [] will be a reference to a pointer to a char,
2004 and the argument will be a pointer to a char. */
2005 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
2006 TYPE_CODE (tt1) == TYPE_CODE_PTR)
2007 {
2008 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
2009 }
2010 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
2011 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
2012 TYPE_CODE(tt2) == TYPE_CODE_REF)
2013 {
2014 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
2015 }
2016 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
2017 continue;
2018 /* Array to pointer is a `trivial conversion' according to the ARM. */
2019
2020 /* We should be doing much hairier argument matching (see section 13.2
2021 of the ARM), but as a quick kludge, just check for the same type
2022 code. */
2023 if (TYPE_CODE (t1[i].type) != TYPE_CODE (VALUE_TYPE (t2[i])))
2024 return i + 1;
2025 }
2026 if (varargs || t2[i] == NULL)
2027 return 0;
2028 return i + 1;
2029 }
2030
2031 /* Helper function used by value_struct_elt to recurse through baseclasses.
2032 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2033 and search in it assuming it has (class) type TYPE.
2034 If found, return value, else return NULL.
2035
2036 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2037 look for a baseclass named NAME. */
2038
2039 static struct value *
2040 search_struct_field (char *name, struct value *arg1, int offset,
2041 register struct type *type, int looking_for_baseclass)
2042 {
2043 int i;
2044 int nbases = TYPE_N_BASECLASSES (type);
2045
2046 CHECK_TYPEDEF (type);
2047
2048 if (!looking_for_baseclass)
2049 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2050 {
2051 char *t_field_name = TYPE_FIELD_NAME (type, i);
2052
2053 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2054 {
2055 struct value *v;
2056 if (TYPE_FIELD_STATIC (type, i))
2057 v = value_static_field (type, i);
2058 else
2059 v = value_primitive_field (arg1, offset, i, type);
2060 if (v == 0)
2061 error ("there is no field named %s", name);
2062 return v;
2063 }
2064
2065 if (t_field_name
2066 && (t_field_name[0] == '\0'
2067 || (TYPE_CODE (type) == TYPE_CODE_UNION
2068 && (strcmp_iw (t_field_name, "else") == 0))))
2069 {
2070 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2071 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2072 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2073 {
2074 /* Look for a match through the fields of an anonymous union,
2075 or anonymous struct. C++ provides anonymous unions.
2076
2077 In the GNU Chill implementation of variant record types,
2078 each <alternative field> has an (anonymous) union type,
2079 each member of the union represents a <variant alternative>.
2080 Each <variant alternative> is represented as a struct,
2081 with a member for each <variant field>. */
2082
2083 struct value *v;
2084 int new_offset = offset;
2085
2086 /* This is pretty gross. In G++, the offset in an anonymous
2087 union is relative to the beginning of the enclosing struct.
2088 In the GNU Chill implementation of variant records,
2089 the bitpos is zero in an anonymous union field, so we
2090 have to add the offset of the union here. */
2091 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2092 || (TYPE_NFIELDS (field_type) > 0
2093 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2094 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2095
2096 v = search_struct_field (name, arg1, new_offset, field_type,
2097 looking_for_baseclass);
2098 if (v)
2099 return v;
2100 }
2101 }
2102 }
2103
2104 for (i = 0; i < nbases; i++)
2105 {
2106 struct value *v;
2107 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2108 /* If we are looking for baseclasses, this is what we get when we
2109 hit them. But it could happen that the base part's member name
2110 is not yet filled in. */
2111 int found_baseclass = (looking_for_baseclass
2112 && TYPE_BASECLASS_NAME (type, i) != NULL
2113 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2114
2115 if (BASETYPE_VIA_VIRTUAL (type, i))
2116 {
2117 int boffset;
2118 struct value *v2 = allocate_value (basetype);
2119
2120 boffset = baseclass_offset (type, i,
2121 VALUE_CONTENTS (arg1) + offset,
2122 VALUE_ADDRESS (arg1)
2123 + VALUE_OFFSET (arg1) + offset);
2124 if (boffset == -1)
2125 error ("virtual baseclass botch");
2126
2127 /* The virtual base class pointer might have been clobbered by the
2128 user program. Make sure that it still points to a valid memory
2129 location. */
2130
2131 boffset += offset;
2132 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2133 {
2134 CORE_ADDR base_addr;
2135
2136 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2137 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2138 TYPE_LENGTH (basetype)) != 0)
2139 error ("virtual baseclass botch");
2140 VALUE_LVAL (v2) = lval_memory;
2141 VALUE_ADDRESS (v2) = base_addr;
2142 }
2143 else
2144 {
2145 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2146 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2147 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2148 if (VALUE_LAZY (arg1))
2149 VALUE_LAZY (v2) = 1;
2150 else
2151 memcpy (VALUE_CONTENTS_RAW (v2),
2152 VALUE_CONTENTS_RAW (arg1) + boffset,
2153 TYPE_LENGTH (basetype));
2154 }
2155
2156 if (found_baseclass)
2157 return v2;
2158 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2159 looking_for_baseclass);
2160 }
2161 else if (found_baseclass)
2162 v = value_primitive_field (arg1, offset, i, type);
2163 else
2164 v = search_struct_field (name, arg1,
2165 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2166 basetype, looking_for_baseclass);
2167 if (v)
2168 return v;
2169 }
2170 return NULL;
2171 }
2172
2173
2174 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2175 * in an object pointed to by VALADDR (on the host), assumed to be of
2176 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2177 * looking (in case VALADDR is the contents of an enclosing object).
2178 *
2179 * This routine recurses on the primary base of the derived class because
2180 * the virtual base entries of the primary base appear before the other
2181 * virtual base entries.
2182 *
2183 * If the virtual base is not found, a negative integer is returned.
2184 * The magnitude of the negative integer is the number of entries in
2185 * the virtual table to skip over (entries corresponding to various
2186 * ancestral classes in the chain of primary bases).
2187 *
2188 * Important: This assumes the HP / Taligent C++ runtime
2189 * conventions. Use baseclass_offset() instead to deal with g++
2190 * conventions. */
2191
2192 void
2193 find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2194 int offset, int *boffset_p, int *skip_p)
2195 {
2196 int boffset; /* offset of virtual base */
2197 int index; /* displacement to use in virtual table */
2198 int skip;
2199
2200 struct value *vp;
2201 CORE_ADDR vtbl; /* the virtual table pointer */
2202 struct type *pbc; /* the primary base class */
2203
2204 /* Look for the virtual base recursively in the primary base, first.
2205 * This is because the derived class object and its primary base
2206 * subobject share the primary virtual table. */
2207
2208 boffset = 0;
2209 pbc = TYPE_PRIMARY_BASE (type);
2210 if (pbc)
2211 {
2212 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2213 if (skip < 0)
2214 {
2215 *boffset_p = boffset;
2216 *skip_p = -1;
2217 return;
2218 }
2219 }
2220 else
2221 skip = 0;
2222
2223
2224 /* Find the index of the virtual base according to HP/Taligent
2225 runtime spec. (Depth-first, left-to-right.) */
2226 index = virtual_base_index_skip_primaries (basetype, type);
2227
2228 if (index < 0)
2229 {
2230 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2231 *boffset_p = 0;
2232 return;
2233 }
2234
2235 /* pai: FIXME -- 32x64 possible problem */
2236 /* First word (4 bytes) in object layout is the vtable pointer */
2237 vtbl = *(CORE_ADDR *) (valaddr + offset);
2238
2239 /* Before the constructor is invoked, things are usually zero'd out. */
2240 if (vtbl == 0)
2241 error ("Couldn't find virtual table -- object may not be constructed yet.");
2242
2243
2244 /* Find virtual base's offset -- jump over entries for primary base
2245 * ancestors, then use the index computed above. But also adjust by
2246 * HP_ACC_VBASE_START for the vtable slots before the start of the
2247 * virtual base entries. Offset is negative -- virtual base entries
2248 * appear _before_ the address point of the virtual table. */
2249
2250 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2251 & use long type */
2252
2253 /* epstein : FIXME -- added param for overlay section. May not be correct */
2254 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2255 boffset = value_as_long (vp);
2256 *skip_p = -1;
2257 *boffset_p = boffset;
2258 return;
2259 }
2260
2261
2262 /* Helper function used by value_struct_elt to recurse through baseclasses.
2263 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2264 and search in it assuming it has (class) type TYPE.
2265 If found, return value, else if name matched and args not return (value)-1,
2266 else return NULL. */
2267
2268 static struct value *
2269 search_struct_method (char *name, struct value **arg1p,
2270 struct value **args, int offset,
2271 int *static_memfuncp, register struct type *type)
2272 {
2273 int i;
2274 struct value *v;
2275 int name_matched = 0;
2276 char dem_opname[64];
2277
2278 CHECK_TYPEDEF (type);
2279 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2280 {
2281 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2282 /* FIXME! May need to check for ARM demangling here */
2283 if (strncmp (t_field_name, "__", 2) == 0 ||
2284 strncmp (t_field_name, "op", 2) == 0 ||
2285 strncmp (t_field_name, "type", 4) == 0)
2286 {
2287 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2288 t_field_name = dem_opname;
2289 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2290 t_field_name = dem_opname;
2291 }
2292 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2293 {
2294 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2295 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2296 name_matched = 1;
2297
2298 if (j > 0 && args == 0)
2299 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2300 else if (j == 0 && args == 0)
2301 {
2302 if (TYPE_FN_FIELD_STUB (f, j))
2303 check_stub_method (type, i, j);
2304 v = value_fn_field (arg1p, f, j, type, offset);
2305 if (v != NULL)
2306 return v;
2307 }
2308 else
2309 while (j >= 0)
2310 {
2311 if (TYPE_FN_FIELD_STUB (f, j))
2312 check_stub_method (type, i, j);
2313 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2314 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2315 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2316 TYPE_FN_FIELD_ARGS (f, j), args))
2317 {
2318 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2319 return value_virtual_fn_field (arg1p, f, j, type, offset);
2320 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2321 *static_memfuncp = 1;
2322 v = value_fn_field (arg1p, f, j, type, offset);
2323 if (v != NULL)
2324 return v;
2325 }
2326 j--;
2327 }
2328 }
2329 }
2330
2331 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2332 {
2333 int base_offset;
2334
2335 if (BASETYPE_VIA_VIRTUAL (type, i))
2336 {
2337 if (TYPE_HAS_VTABLE (type))
2338 {
2339 /* HP aCC compiled type, search for virtual base offset
2340 according to HP/Taligent runtime spec. */
2341 int skip;
2342 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2343 VALUE_CONTENTS_ALL (*arg1p),
2344 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2345 &base_offset, &skip);
2346 if (skip >= 0)
2347 error ("Virtual base class offset not found in vtable");
2348 }
2349 else
2350 {
2351 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2352 char *base_valaddr;
2353
2354 /* The virtual base class pointer might have been clobbered by the
2355 user program. Make sure that it still points to a valid memory
2356 location. */
2357
2358 if (offset < 0 || offset >= TYPE_LENGTH (type))
2359 {
2360 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2361 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2362 + VALUE_OFFSET (*arg1p) + offset,
2363 base_valaddr,
2364 TYPE_LENGTH (baseclass)) != 0)
2365 error ("virtual baseclass botch");
2366 }
2367 else
2368 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2369
2370 base_offset =
2371 baseclass_offset (type, i, base_valaddr,
2372 VALUE_ADDRESS (*arg1p)
2373 + VALUE_OFFSET (*arg1p) + offset);
2374 if (base_offset == -1)
2375 error ("virtual baseclass botch");
2376 }
2377 }
2378 else
2379 {
2380 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2381 }
2382 v = search_struct_method (name, arg1p, args, base_offset + offset,
2383 static_memfuncp, TYPE_BASECLASS (type, i));
2384 if (v == (struct value *) - 1)
2385 {
2386 name_matched = 1;
2387 }
2388 else if (v)
2389 {
2390 /* FIXME-bothner: Why is this commented out? Why is it here? */
2391 /* *arg1p = arg1_tmp; */
2392 return v;
2393 }
2394 }
2395 if (name_matched)
2396 return (struct value *) - 1;
2397 else
2398 return NULL;
2399 }
2400
2401 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2402 extract the component named NAME from the ultimate target structure/union
2403 and return it as a value with its appropriate type.
2404 ERR is used in the error message if *ARGP's type is wrong.
2405
2406 C++: ARGS is a list of argument types to aid in the selection of
2407 an appropriate method. Also, handle derived types.
2408
2409 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2410 where the truthvalue of whether the function that was resolved was
2411 a static member function or not is stored.
2412
2413 ERR is an error message to be printed in case the field is not found. */
2414
2415 struct value *
2416 value_struct_elt (struct value **argp, struct value **args,
2417 char *name, int *static_memfuncp, char *err)
2418 {
2419 register struct type *t;
2420 struct value *v;
2421
2422 COERCE_ARRAY (*argp);
2423
2424 t = check_typedef (VALUE_TYPE (*argp));
2425
2426 /* Follow pointers until we get to a non-pointer. */
2427
2428 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2429 {
2430 *argp = value_ind (*argp);
2431 /* Don't coerce fn pointer to fn and then back again! */
2432 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2433 COERCE_ARRAY (*argp);
2434 t = check_typedef (VALUE_TYPE (*argp));
2435 }
2436
2437 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2438 error ("not implemented: member type in value_struct_elt");
2439
2440 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2441 && TYPE_CODE (t) != TYPE_CODE_UNION)
2442 error ("Attempt to extract a component of a value that is not a %s.", err);
2443
2444 /* Assume it's not, unless we see that it is. */
2445 if (static_memfuncp)
2446 *static_memfuncp = 0;
2447
2448 if (!args)
2449 {
2450 /* if there are no arguments ...do this... */
2451
2452 /* Try as a field first, because if we succeed, there
2453 is less work to be done. */
2454 v = search_struct_field (name, *argp, 0, t, 0);
2455 if (v)
2456 return v;
2457
2458 /* C++: If it was not found as a data field, then try to
2459 return it as a pointer to a method. */
2460
2461 if (destructor_name_p (name, t))
2462 error ("Cannot get value of destructor");
2463
2464 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2465
2466 if (v == (struct value *) - 1)
2467 error ("Cannot take address of a method");
2468 else if (v == 0)
2469 {
2470 if (TYPE_NFN_FIELDS (t))
2471 error ("There is no member or method named %s.", name);
2472 else
2473 error ("There is no member named %s.", name);
2474 }
2475 return v;
2476 }
2477
2478 if (destructor_name_p (name, t))
2479 {
2480 if (!args[1])
2481 {
2482 /* Destructors are a special case. */
2483 int m_index, f_index;
2484
2485 v = NULL;
2486 if (get_destructor_fn_field (t, &m_index, &f_index))
2487 {
2488 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2489 f_index, NULL, 0);
2490 }
2491 if (v == NULL)
2492 error ("could not find destructor function named %s.", name);
2493 else
2494 return v;
2495 }
2496 else
2497 {
2498 error ("destructor should not have any argument");
2499 }
2500 }
2501 else
2502 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2503
2504 if (v == (struct value *) - 1)
2505 {
2506 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
2507 }
2508 else if (v == 0)
2509 {
2510 /* See if user tried to invoke data as function. If so,
2511 hand it back. If it's not callable (i.e., a pointer to function),
2512 gdb should give an error. */
2513 v = search_struct_field (name, *argp, 0, t, 0);
2514 }
2515
2516 if (!v)
2517 error ("Structure has no component named %s.", name);
2518 return v;
2519 }
2520
2521 /* Search through the methods of an object (and its bases)
2522 * to find a specified method. Return the pointer to the
2523 * fn_field list of overloaded instances.
2524 * Helper function for value_find_oload_list.
2525 * ARGP is a pointer to a pointer to a value (the object)
2526 * METHOD is a string containing the method name
2527 * OFFSET is the offset within the value
2528 * STATIC_MEMFUNCP is set if the method is static
2529 * TYPE is the assumed type of the object
2530 * NUM_FNS is the number of overloaded instances
2531 * BASETYPE is set to the actual type of the subobject where the method is found
2532 * BOFFSET is the offset of the base subobject where the method is found */
2533
2534 static struct fn_field *
2535 find_method_list (struct value **argp, char *method, int offset,
2536 struct type *type, int *num_fns,
2537 struct type **basetype, int *boffset)
2538 {
2539 int i;
2540 struct fn_field *f;
2541 CHECK_TYPEDEF (type);
2542
2543 *num_fns = 0;
2544
2545 /* First check in object itself */
2546 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2547 {
2548 /* pai: FIXME What about operators and type conversions? */
2549 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2550 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2551 {
2552 /* Resolve any stub methods. */
2553 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2554 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2555 int j;
2556
2557 *num_fns = len;
2558 *basetype = type;
2559 *boffset = offset;
2560
2561 for (j = 0; j < len; j++)
2562 {
2563 if (TYPE_FN_FIELD_STUB (f, j))
2564 check_stub_method (type, i, j);
2565 }
2566
2567 return f;
2568 }
2569 }
2570
2571 /* Not found in object, check in base subobjects */
2572 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2573 {
2574 int base_offset;
2575 if (BASETYPE_VIA_VIRTUAL (type, i))
2576 {
2577 if (TYPE_HAS_VTABLE (type))
2578 {
2579 /* HP aCC compiled type, search for virtual base offset
2580 * according to HP/Taligent runtime spec. */
2581 int skip;
2582 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2583 VALUE_CONTENTS_ALL (*argp),
2584 offset + VALUE_EMBEDDED_OFFSET (*argp),
2585 &base_offset, &skip);
2586 if (skip >= 0)
2587 error ("Virtual base class offset not found in vtable");
2588 }
2589 else
2590 {
2591 /* probably g++ runtime model */
2592 base_offset = VALUE_OFFSET (*argp) + offset;
2593 base_offset =
2594 baseclass_offset (type, i,
2595 VALUE_CONTENTS (*argp) + base_offset,
2596 VALUE_ADDRESS (*argp) + base_offset);
2597 if (base_offset == -1)
2598 error ("virtual baseclass botch");
2599 }
2600 }
2601 else
2602 /* non-virtual base, simply use bit position from debug info */
2603 {
2604 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2605 }
2606 f = find_method_list (argp, method, base_offset + offset,
2607 TYPE_BASECLASS (type, i), num_fns, basetype,
2608 boffset);
2609 if (f)
2610 return f;
2611 }
2612 return NULL;
2613 }
2614
2615 /* Return the list of overloaded methods of a specified name.
2616 * ARGP is a pointer to a pointer to a value (the object)
2617 * METHOD is the method name
2618 * OFFSET is the offset within the value contents
2619 * STATIC_MEMFUNCP is set if the method is static
2620 * NUM_FNS is the number of overloaded instances
2621 * BASETYPE is set to the type of the base subobject that defines the method
2622 * BOFFSET is the offset of the base subobject which defines the method */
2623
2624 struct fn_field *
2625 value_find_oload_method_list (struct value **argp, char *method, int offset,
2626 int *num_fns, struct type **basetype,
2627 int *boffset)
2628 {
2629 struct type *t;
2630
2631 t = check_typedef (VALUE_TYPE (*argp));
2632
2633 /* code snarfed from value_struct_elt */
2634 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2635 {
2636 *argp = value_ind (*argp);
2637 /* Don't coerce fn pointer to fn and then back again! */
2638 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2639 COERCE_ARRAY (*argp);
2640 t = check_typedef (VALUE_TYPE (*argp));
2641 }
2642
2643 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2644 error ("Not implemented: member type in value_find_oload_lis");
2645
2646 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2647 && TYPE_CODE (t) != TYPE_CODE_UNION)
2648 error ("Attempt to extract a component of a value that is not a struct or union");
2649
2650 return find_method_list (argp, method, 0, t, num_fns, basetype, boffset);
2651 }
2652
2653 /* Given an array of argument types (ARGTYPES) (which includes an
2654 entry for "this" in the case of C++ methods), the number of
2655 arguments NARGS, the NAME of a function whether it's a method or
2656 not (METHOD), and the degree of laxness (LAX) in conforming to
2657 overload resolution rules in ANSI C++, find the best function that
2658 matches on the argument types according to the overload resolution
2659 rules.
2660
2661 In the case of class methods, the parameter OBJ is an object value
2662 in which to search for overloaded methods.
2663
2664 In the case of non-method functions, the parameter FSYM is a symbol
2665 corresponding to one of the overloaded functions.
2666
2667 Return value is an integer: 0 -> good match, 10 -> debugger applied
2668 non-standard coercions, 100 -> incompatible.
2669
2670 If a method is being searched for, VALP will hold the value.
2671 If a non-method is being searched for, SYMP will hold the symbol for it.
2672
2673 If a method is being searched for, and it is a static method,
2674 then STATICP will point to a non-zero value.
2675
2676 Note: This function does *not* check the value of
2677 overload_resolution. Caller must check it to see whether overload
2678 resolution is permitted.
2679 */
2680
2681 int
2682 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
2683 int lax, struct value **objp, struct symbol *fsym,
2684 struct value **valp, struct symbol **symp, int *staticp)
2685 {
2686 int nparms;
2687 struct type **parm_types;
2688 int champ_nparms = 0;
2689 struct value *obj = (objp ? *objp : NULL);
2690
2691 short oload_champ = -1; /* Index of best overloaded function */
2692 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2693 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2694 short oload_ambig_champ = -1; /* 2nd contender for best match */
2695 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2696 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2697
2698 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2699 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2700
2701 struct value *temp = obj;
2702 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2703 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2704 int num_fns = 0; /* Number of overloaded instances being considered */
2705 struct type *basetype = NULL;
2706 int boffset;
2707 register int jj;
2708 register int ix;
2709 int static_offset;
2710
2711 char *obj_type_name = NULL;
2712 char *func_name = NULL;
2713
2714 /* Get the list of overloaded methods or functions */
2715 if (method)
2716 {
2717 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2718 /* Hack: evaluate_subexp_standard often passes in a pointer
2719 value rather than the object itself, so try again */
2720 if ((!obj_type_name || !*obj_type_name) &&
2721 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2722 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2723
2724 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2725 &num_fns,
2726 &basetype, &boffset);
2727 if (!fns_ptr || !num_fns)
2728 error ("Couldn't find method %s%s%s",
2729 obj_type_name,
2730 (obj_type_name && *obj_type_name) ? "::" : "",
2731 name);
2732 /* If we are dealing with stub method types, they should have
2733 been resolved by find_method_list via value_find_oload_method_list
2734 above. */
2735 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2736 }
2737 else
2738 {
2739 int i = -1;
2740 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2741
2742 /* If the name is NULL this must be a C-style function.
2743 Just return the same symbol. */
2744 if (!func_name)
2745 {
2746 *symp = fsym;
2747 return 0;
2748 }
2749
2750 oload_syms = make_symbol_overload_list (fsym);
2751 while (oload_syms[++i])
2752 num_fns++;
2753 if (!num_fns)
2754 error ("Couldn't find function %s", func_name);
2755 }
2756
2757 oload_champ_bv = NULL;
2758
2759 /* Consider each candidate in turn */
2760 for (ix = 0; ix < num_fns; ix++)
2761 {
2762 static_offset = 0;
2763 if (method)
2764 {
2765 if (TYPE_FN_FIELD_STATIC_P (fns_ptr, ix))
2766 static_offset = 1;
2767 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2768 }
2769 else
2770 {
2771 /* If it's not a method, this is the proper place */
2772 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2773 }
2774
2775 /* Prepare array of parameter types */
2776 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2777 for (jj = 0; jj < nparms; jj++)
2778 parm_types[jj] = (method
2779 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2780 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2781
2782 /* Compare parameter types to supplied argument types. Skip THIS for
2783 static methods. */
2784 bv = rank_function (parm_types, nparms, arg_types + static_offset,
2785 nargs - static_offset);
2786
2787 if (!oload_champ_bv)
2788 {
2789 oload_champ_bv = bv;
2790 oload_champ = 0;
2791 champ_nparms = nparms;
2792 }
2793 else
2794 /* See whether current candidate is better or worse than previous best */
2795 switch (compare_badness (bv, oload_champ_bv))
2796 {
2797 case 0:
2798 oload_ambiguous = 1; /* top two contenders are equally good */
2799 oload_ambig_champ = ix;
2800 break;
2801 case 1:
2802 oload_ambiguous = 2; /* incomparable top contenders */
2803 oload_ambig_champ = ix;
2804 break;
2805 case 2:
2806 oload_champ_bv = bv; /* new champion, record details */
2807 oload_ambiguous = 0;
2808 oload_champ = ix;
2809 oload_ambig_champ = -1;
2810 champ_nparms = nparms;
2811 break;
2812 case 3:
2813 default:
2814 break;
2815 }
2816 xfree (parm_types);
2817 if (overload_debug)
2818 {
2819 if (method)
2820 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2821 else
2822 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2823 for (jj = 0; jj < nargs - static_offset; jj++)
2824 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2825 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2826 }
2827 } /* end loop over all candidates */
2828 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2829 if they have the exact same goodness. This is because there is no
2830 way to differentiate based on return type, which we need to in
2831 cases like overloads of .begin() <It's both const and non-const> */
2832 #if 0
2833 if (oload_ambiguous)
2834 {
2835 if (method)
2836 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2837 obj_type_name,
2838 (obj_type_name && *obj_type_name) ? "::" : "",
2839 name);
2840 else
2841 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2842 func_name);
2843 }
2844 #endif
2845
2846 /* Check how bad the best match is. */
2847 static_offset = 0;
2848 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2849 static_offset = 1;
2850 for (ix = 1; ix <= nargs - static_offset; ix++)
2851 {
2852 if (oload_champ_bv->rank[ix] >= 100)
2853 oload_incompatible = 1; /* truly mismatched types */
2854
2855 else if (oload_champ_bv->rank[ix] >= 10)
2856 oload_non_standard = 1; /* non-standard type conversions needed */
2857 }
2858 if (oload_incompatible)
2859 {
2860 if (method)
2861 error ("Cannot resolve method %s%s%s to any overloaded instance",
2862 obj_type_name,
2863 (obj_type_name && *obj_type_name) ? "::" : "",
2864 name);
2865 else
2866 error ("Cannot resolve function %s to any overloaded instance",
2867 func_name);
2868 }
2869 else if (oload_non_standard)
2870 {
2871 if (method)
2872 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2873 obj_type_name,
2874 (obj_type_name && *obj_type_name) ? "::" : "",
2875 name);
2876 else
2877 warning ("Using non-standard conversion to match function %s to supplied arguments",
2878 func_name);
2879 }
2880
2881 if (method)
2882 {
2883 if (staticp && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2884 *staticp = 1;
2885 else if (staticp)
2886 *staticp = 0;
2887 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2888 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2889 else
2890 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2891 }
2892 else
2893 {
2894 *symp = oload_syms[oload_champ];
2895 xfree (func_name);
2896 }
2897
2898 if (objp)
2899 {
2900 if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR
2901 && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR)
2902 {
2903 temp = value_addr (temp);
2904 }
2905 *objp = temp;
2906 }
2907 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2908 }
2909
2910 /* C++: return 1 is NAME is a legitimate name for the destructor
2911 of type TYPE. If TYPE does not have a destructor, or
2912 if NAME is inappropriate for TYPE, an error is signaled. */
2913 int
2914 destructor_name_p (const char *name, const struct type *type)
2915 {
2916 /* destructors are a special case. */
2917
2918 if (name[0] == '~')
2919 {
2920 char *dname = type_name_no_tag (type);
2921 char *cp = strchr (dname, '<');
2922 unsigned int len;
2923
2924 /* Do not compare the template part for template classes. */
2925 if (cp == NULL)
2926 len = strlen (dname);
2927 else
2928 len = cp - dname;
2929 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2930 error ("name of destructor must equal name of class");
2931 else
2932 return 1;
2933 }
2934 return 0;
2935 }
2936
2937 /* Helper function for check_field: Given TYPE, a structure/union,
2938 return 1 if the component named NAME from the ultimate
2939 target structure/union is defined, otherwise, return 0. */
2940
2941 static int
2942 check_field_in (register struct type *type, const char *name)
2943 {
2944 register int i;
2945
2946 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2947 {
2948 char *t_field_name = TYPE_FIELD_NAME (type, i);
2949 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2950 return 1;
2951 }
2952
2953 /* C++: If it was not found as a data field, then try to
2954 return it as a pointer to a method. */
2955
2956 /* Destructors are a special case. */
2957 if (destructor_name_p (name, type))
2958 {
2959 int m_index, f_index;
2960
2961 return get_destructor_fn_field (type, &m_index, &f_index);
2962 }
2963
2964 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2965 {
2966 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2967 return 1;
2968 }
2969
2970 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2971 if (check_field_in (TYPE_BASECLASS (type, i), name))
2972 return 1;
2973
2974 return 0;
2975 }
2976
2977
2978 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2979 return 1 if the component named NAME from the ultimate
2980 target structure/union is defined, otherwise, return 0. */
2981
2982 int
2983 check_field (struct value *arg1, const char *name)
2984 {
2985 register struct type *t;
2986
2987 COERCE_ARRAY (arg1);
2988
2989 t = VALUE_TYPE (arg1);
2990
2991 /* Follow pointers until we get to a non-pointer. */
2992
2993 for (;;)
2994 {
2995 CHECK_TYPEDEF (t);
2996 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2997 break;
2998 t = TYPE_TARGET_TYPE (t);
2999 }
3000
3001 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
3002 error ("not implemented: member type in check_field");
3003
3004 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3005 && TYPE_CODE (t) != TYPE_CODE_UNION)
3006 error ("Internal error: `this' is not an aggregate");
3007
3008 return check_field_in (t, name);
3009 }
3010
3011 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3012 return the address of this member as a "pointer to member"
3013 type. If INTYPE is non-null, then it will be the type
3014 of the member we are looking for. This will help us resolve
3015 "pointers to member functions". This function is used
3016 to resolve user expressions of the form "DOMAIN::NAME". */
3017
3018 struct value *
3019 value_struct_elt_for_reference (struct type *domain, int offset,
3020 struct type *curtype, char *name,
3021 struct type *intype)
3022 {
3023 register struct type *t = curtype;
3024 register int i;
3025 struct value *v;
3026
3027 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3028 && TYPE_CODE (t) != TYPE_CODE_UNION)
3029 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3030
3031 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3032 {
3033 char *t_field_name = TYPE_FIELD_NAME (t, i);
3034
3035 if (t_field_name && STREQ (t_field_name, name))
3036 {
3037 if (TYPE_FIELD_STATIC (t, i))
3038 {
3039 v = value_static_field (t, i);
3040 if (v == NULL)
3041 error ("Internal error: could not find static variable %s",
3042 name);
3043 return v;
3044 }
3045 if (TYPE_FIELD_PACKED (t, i))
3046 error ("pointers to bitfield members not allowed");
3047
3048 return value_from_longest
3049 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3050 domain)),
3051 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3052 }
3053 }
3054
3055 /* C++: If it was not found as a data field, then try to
3056 return it as a pointer to a method. */
3057
3058 /* Destructors are a special case. */
3059 if (destructor_name_p (name, t))
3060 {
3061 error ("member pointers to destructors not implemented yet");
3062 }
3063
3064 /* Perform all necessary dereferencing. */
3065 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3066 intype = TYPE_TARGET_TYPE (intype);
3067
3068 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3069 {
3070 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3071 char dem_opname[64];
3072
3073 if (strncmp (t_field_name, "__", 2) == 0 ||
3074 strncmp (t_field_name, "op", 2) == 0 ||
3075 strncmp (t_field_name, "type", 4) == 0)
3076 {
3077 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3078 t_field_name = dem_opname;
3079 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3080 t_field_name = dem_opname;
3081 }
3082 if (t_field_name && STREQ (t_field_name, name))
3083 {
3084 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3085 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3086
3087 if (intype == 0 && j > 1)
3088 error ("non-unique member `%s' requires type instantiation", name);
3089 if (intype)
3090 {
3091 while (j--)
3092 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3093 break;
3094 if (j < 0)
3095 error ("no member function matches that type instantiation");
3096 }
3097 else
3098 j = 0;
3099
3100 if (TYPE_FN_FIELD_STUB (f, j))
3101 check_stub_method (t, i, j);
3102 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3103 {
3104 return value_from_longest
3105 (lookup_reference_type
3106 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3107 domain)),
3108 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3109 }
3110 else
3111 {
3112 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3113 0, VAR_NAMESPACE, 0, NULL);
3114 if (s == NULL)
3115 {
3116 v = 0;
3117 }
3118 else
3119 {
3120 v = read_var_value (s, 0);
3121 #if 0
3122 VALUE_TYPE (v) = lookup_reference_type
3123 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3124 domain));
3125 #endif
3126 }
3127 return v;
3128 }
3129 }
3130 }
3131 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3132 {
3133 struct value *v;
3134 int base_offset;
3135
3136 if (BASETYPE_VIA_VIRTUAL (t, i))
3137 base_offset = 0;
3138 else
3139 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3140 v = value_struct_elt_for_reference (domain,
3141 offset + base_offset,
3142 TYPE_BASECLASS (t, i),
3143 name,
3144 intype);
3145 if (v)
3146 return v;
3147 }
3148 return 0;
3149 }
3150
3151
3152 /* Given a pointer value V, find the real (RTTI) type
3153 of the object it points to.
3154 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3155 and refer to the values computed for the object pointed to. */
3156
3157 struct type *
3158 value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
3159 {
3160 struct value *target;
3161
3162 target = value_ind (v);
3163
3164 return value_rtti_type (target, full, top, using_enc);
3165 }
3166
3167 /* Given a value pointed to by ARGP, check its real run-time type, and
3168 if that is different from the enclosing type, create a new value
3169 using the real run-time type as the enclosing type (and of the same
3170 type as ARGP) and return it, with the embedded offset adjusted to
3171 be the correct offset to the enclosed object
3172 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3173 parameters, computed by value_rtti_type(). If these are available,
3174 they can be supplied and a second call to value_rtti_type() is avoided.
3175 (Pass RTYPE == NULL if they're not available */
3176
3177 struct value *
3178 value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
3179 int xusing_enc)
3180 {
3181 struct type *real_type;
3182 int full = 0;
3183 int top = -1;
3184 int using_enc = 0;
3185 struct value *new_val;
3186
3187 if (rtype)
3188 {
3189 real_type = rtype;
3190 full = xfull;
3191 top = xtop;
3192 using_enc = xusing_enc;
3193 }
3194 else
3195 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3196
3197 /* If no RTTI data, or if object is already complete, do nothing */
3198 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3199 return argp;
3200
3201 /* If we have the full object, but for some reason the enclosing
3202 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3203 if (full)
3204 {
3205 argp = value_change_enclosing_type (argp, real_type);
3206 return argp;
3207 }
3208
3209 /* Check if object is in memory */
3210 if (VALUE_LVAL (argp) != lval_memory)
3211 {
3212 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3213
3214 return argp;
3215 }
3216
3217 /* All other cases -- retrieve the complete object */
3218 /* Go back by the computed top_offset from the beginning of the object,
3219 adjusting for the embedded offset of argp if that's what value_rtti_type
3220 used for its computation. */
3221 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3222 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3223 VALUE_BFD_SECTION (argp));
3224 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3225 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3226 return new_val;
3227 }
3228
3229
3230
3231
3232 /* C++: return the value of the class instance variable, if one exists.
3233 Flag COMPLAIN signals an error if the request is made in an
3234 inappropriate context. */
3235
3236 struct value *
3237 value_of_this (int complain)
3238 {
3239 struct symbol *func, *sym;
3240 struct block *b;
3241 int i;
3242 static const char funny_this[] = "this";
3243 struct value *this;
3244
3245 if (selected_frame == 0)
3246 {
3247 if (complain)
3248 error ("no frame selected");
3249 else
3250 return 0;
3251 }
3252
3253 func = get_frame_function (selected_frame);
3254 if (!func)
3255 {
3256 if (complain)
3257 error ("no `this' in nameless context");
3258 else
3259 return 0;
3260 }
3261
3262 b = SYMBOL_BLOCK_VALUE (func);
3263 i = BLOCK_NSYMS (b);
3264 if (i <= 0)
3265 {
3266 if (complain)
3267 error ("no args, no `this'");
3268 else
3269 return 0;
3270 }
3271
3272 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3273 symbol instead of the LOC_ARG one (if both exist). */
3274 sym = lookup_block_symbol (b, funny_this, NULL, VAR_NAMESPACE);
3275 if (sym == NULL)
3276 {
3277 if (complain)
3278 error ("current stack frame not in method");
3279 else
3280 return NULL;
3281 }
3282
3283 this = read_var_value (sym, selected_frame);
3284 if (this == 0 && complain)
3285 error ("`this' argument at unknown address");
3286 return this;
3287 }
3288
3289 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3290 long, starting at LOWBOUND. The result has the same lower bound as
3291 the original ARRAY. */
3292
3293 struct value *
3294 value_slice (struct value *array, int lowbound, int length)
3295 {
3296 struct type *slice_range_type, *slice_type, *range_type;
3297 LONGEST lowerbound, upperbound, offset;
3298 struct value *slice;
3299 struct type *array_type;
3300 array_type = check_typedef (VALUE_TYPE (array));
3301 COERCE_VARYING_ARRAY (array, array_type);
3302 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3303 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3304 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3305 error ("cannot take slice of non-array");
3306 range_type = TYPE_INDEX_TYPE (array_type);
3307 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3308 error ("slice from bad array or bitstring");
3309 if (lowbound < lowerbound || length < 0
3310 || lowbound + length - 1 > upperbound
3311 /* Chill allows zero-length strings but not arrays. */
3312 || (current_language->la_language == language_chill
3313 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3314 error ("slice out of range");
3315 /* FIXME-type-allocation: need a way to free this type when we are
3316 done with it. */
3317 slice_range_type = create_range_type ((struct type *) NULL,
3318 TYPE_TARGET_TYPE (range_type),
3319 lowbound, lowbound + length - 1);
3320 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3321 {
3322 int i;
3323 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3324 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3325 slice = value_zero (slice_type, not_lval);
3326 for (i = 0; i < length; i++)
3327 {
3328 int element = value_bit_index (array_type,
3329 VALUE_CONTENTS (array),
3330 lowbound + i);
3331 if (element < 0)
3332 error ("internal error accessing bitstring");
3333 else if (element > 0)
3334 {
3335 int j = i % TARGET_CHAR_BIT;
3336 if (BITS_BIG_ENDIAN)
3337 j = TARGET_CHAR_BIT - 1 - j;
3338 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3339 }
3340 }
3341 /* We should set the address, bitssize, and bitspos, so the clice
3342 can be used on the LHS, but that may require extensions to
3343 value_assign. For now, just leave as a non_lval. FIXME. */
3344 }
3345 else
3346 {
3347 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3348 offset
3349 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3350 slice_type = create_array_type ((struct type *) NULL, element_type,
3351 slice_range_type);
3352 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3353 slice = allocate_value (slice_type);
3354 if (VALUE_LAZY (array))
3355 VALUE_LAZY (slice) = 1;
3356 else
3357 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3358 TYPE_LENGTH (slice_type));
3359 if (VALUE_LVAL (array) == lval_internalvar)
3360 VALUE_LVAL (slice) = lval_internalvar_component;
3361 else
3362 VALUE_LVAL (slice) = VALUE_LVAL (array);
3363 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3364 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3365 }
3366 return slice;
3367 }
3368
3369 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3370 value as a fixed-length array. */
3371
3372 struct value *
3373 varying_to_slice (struct value *varray)
3374 {
3375 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3376 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3377 VALUE_CONTENTS (varray)
3378 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3379 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3380 }
3381
3382 /* Create a value for a FORTRAN complex number. Currently most of
3383 the time values are coerced to COMPLEX*16 (i.e. a complex number
3384 composed of 2 doubles. This really should be a smarter routine
3385 that figures out precision inteligently as opposed to assuming
3386 doubles. FIXME: fmb */
3387
3388 struct value *
3389 value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
3390 {
3391 struct value *val;
3392 struct type *real_type = TYPE_TARGET_TYPE (type);
3393
3394 val = allocate_value (type);
3395 arg1 = value_cast (real_type, arg1);
3396 arg2 = value_cast (real_type, arg2);
3397
3398 memcpy (VALUE_CONTENTS_RAW (val),
3399 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3400 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3401 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3402 return val;
3403 }
3404
3405 /* Cast a value into the appropriate complex data type. */
3406
3407 static struct value *
3408 cast_into_complex (struct type *type, struct value *val)
3409 {
3410 struct type *real_type = TYPE_TARGET_TYPE (type);
3411 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3412 {
3413 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3414 struct value *re_val = allocate_value (val_real_type);
3415 struct value *im_val = allocate_value (val_real_type);
3416
3417 memcpy (VALUE_CONTENTS_RAW (re_val),
3418 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3419 memcpy (VALUE_CONTENTS_RAW (im_val),
3420 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3421 TYPE_LENGTH (val_real_type));
3422
3423 return value_literal_complex (re_val, im_val, type);
3424 }
3425 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3426 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3427 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3428 else
3429 error ("cannot cast non-number to complex");
3430 }
3431
3432 void
3433 _initialize_valops (void)
3434 {
3435 #if 0
3436 add_show_from_set
3437 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3438 "Set automatic abandonment of expressions upon failure.",
3439 &setlist),
3440 &showlist);
3441 #endif
3442
3443 add_show_from_set
3444 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3445 "Set overload resolution in evaluating C++ functions.",
3446 &setlist),
3447 &showlist);
3448 overload_resolution = 1;
3449
3450 add_show_from_set (
3451 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3452 (char *) &unwind_on_signal_p,
3453 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3454 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3455 is received while in a function called from gdb (call dummy). If set, gdb\n\
3456 unwinds the stack and restore the context to what as it was before the call.\n\
3457 The default is to stop in the frame where the signal was received.", &setlist),
3458 &showlist);
3459 }
This page took 0.106669 seconds and 4 git commands to generate.