gdb
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009, 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33 #include "regcache.h"
34 #include "cp-abi.h"
35 #include "block.h"
36 #include "infcall.h"
37 #include "dictionary.h"
38 #include "cp-support.h"
39 #include "dfp.h"
40 #include "user-regs.h"
41
42 #include <errno.h>
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
46 #include "observer.h"
47 #include "objfiles.h"
48 #include "symtab.h"
49 #include "exceptions.h"
50
51 extern int overload_debug;
52 /* Local functions. */
53
54 static int typecmp (int staticp, int varargs, int nargs,
55 struct field t1[], struct value *t2[]);
56
57 static struct value *search_struct_field (const char *, struct value *,
58 int, struct type *, int);
59
60 static struct value *search_struct_method (const char *, struct value **,
61 struct value **,
62 int, int *, struct type *);
63
64 static int find_oload_champ_namespace (struct type **, int,
65 const char *, const char *,
66 struct symbol ***,
67 struct badness_vector **,
68 const int no_adl);
69
70 static
71 int find_oload_champ_namespace_loop (struct type **, int,
72 const char *, const char *,
73 int, struct symbol ***,
74 struct badness_vector **, int *,
75 const int no_adl);
76
77 static int find_oload_champ (struct type **, int, int, int,
78 struct fn_field *, struct symbol **,
79 struct badness_vector **);
80
81 static int oload_method_static (int, struct fn_field *, int);
82
83 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
84
85 static enum
86 oload_classification classify_oload_match (struct badness_vector *,
87 int, int);
88
89 static struct value *value_struct_elt_for_reference (struct type *,
90 int, struct type *,
91 char *,
92 struct type *,
93 int, enum noside);
94
95 static struct value *value_namespace_elt (const struct type *,
96 char *, int , enum noside);
97
98 static struct value *value_maybe_namespace_elt (const struct type *,
99 char *, int,
100 enum noside);
101
102 static CORE_ADDR allocate_space_in_inferior (int);
103
104 static struct value *cast_into_complex (struct type *, struct value *);
105
106 static struct fn_field *find_method_list (struct value **, const char *,
107 int, struct type *, int *,
108 struct type **, int *);
109
110 void _initialize_valops (void);
111
112 #if 0
113 /* Flag for whether we want to abandon failed expression evals by
114 default. */
115
116 static int auto_abandon = 0;
117 #endif
118
119 int overload_resolution = 0;
120 static void
121 show_overload_resolution (struct ui_file *file, int from_tty,
122 struct cmd_list_element *c,
123 const char *value)
124 {
125 fprintf_filtered (file, _("\
126 Overload resolution in evaluating C++ functions is %s.\n"),
127 value);
128 }
129
130 /* Find the address of function name NAME in the inferior. If OBJF_P
131 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
132 is defined. */
133
134 struct value *
135 find_function_in_inferior (const char *name, struct objfile **objf_p)
136 {
137 struct symbol *sym;
138
139 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
140 if (sym != NULL)
141 {
142 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
143 {
144 error (_("\"%s\" exists in this program but is not a function."),
145 name);
146 }
147
148 if (objf_p)
149 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
150
151 return value_of_variable (sym, NULL);
152 }
153 else
154 {
155 struct minimal_symbol *msymbol =
156 lookup_minimal_symbol (name, NULL, NULL);
157
158 if (msymbol != NULL)
159 {
160 struct objfile *objfile = msymbol_objfile (msymbol);
161 struct gdbarch *gdbarch = get_objfile_arch (objfile);
162
163 struct type *type;
164 CORE_ADDR maddr;
165 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
166 type = lookup_function_type (type);
167 type = lookup_pointer_type (type);
168 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
169
170 if (objf_p)
171 *objf_p = objfile;
172
173 return value_from_pointer (type, maddr);
174 }
175 else
176 {
177 if (!target_has_execution)
178 error (_("evaluation of this expression requires the target program to be active"));
179 else
180 error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
181 }
182 }
183 }
184
185 /* Allocate NBYTES of space in the inferior using the inferior's
186 malloc and return a value that is a pointer to the allocated
187 space. */
188
189 struct value *
190 value_allocate_space_in_inferior (int len)
191 {
192 struct objfile *objf;
193 struct value *val = find_function_in_inferior ("malloc", &objf);
194 struct gdbarch *gdbarch = get_objfile_arch (objf);
195 struct value *blocklen;
196
197 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
198 val = call_function_by_hand (val, 1, &blocklen);
199 if (value_logical_not (val))
200 {
201 if (!target_has_execution)
202 error (_("No memory available to program now: you need to start the target first"));
203 else
204 error (_("No memory available to program: call to malloc failed"));
205 }
206 return val;
207 }
208
209 static CORE_ADDR
210 allocate_space_in_inferior (int len)
211 {
212 return value_as_long (value_allocate_space_in_inferior (len));
213 }
214
215 /* Cast struct value VAL to type TYPE and return as a value.
216 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
217 for this to work. Typedef to one of the codes is permitted.
218 Returns NULL if the cast is neither an upcast nor a downcast. */
219
220 static struct value *
221 value_cast_structs (struct type *type, struct value *v2)
222 {
223 struct type *t1;
224 struct type *t2;
225 struct value *v;
226
227 gdb_assert (type != NULL && v2 != NULL);
228
229 t1 = check_typedef (type);
230 t2 = check_typedef (value_type (v2));
231
232 /* Check preconditions. */
233 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
234 || TYPE_CODE (t1) == TYPE_CODE_UNION)
235 && !!"Precondition is that type is of STRUCT or UNION kind.");
236 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
237 || TYPE_CODE (t2) == TYPE_CODE_UNION)
238 && !!"Precondition is that value is of STRUCT or UNION kind");
239
240 if (TYPE_NAME (t1) != NULL
241 && TYPE_NAME (t2) != NULL
242 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
243 return NULL;
244
245 /* Upcasting: look in the type of the source to see if it contains the
246 type of the target as a superclass. If so, we'll need to
247 offset the pointer rather than just change its type. */
248 if (TYPE_NAME (t1) != NULL)
249 {
250 v = search_struct_field (type_name_no_tag (t1),
251 v2, 0, t2, 1);
252 if (v)
253 return v;
254 }
255
256 /* Downcasting: look in the type of the target to see if it contains the
257 type of the source as a superclass. If so, we'll need to
258 offset the pointer rather than just change its type. */
259 if (TYPE_NAME (t2) != NULL)
260 {
261 /* Try downcasting using the run-time type of the value. */
262 int full, top, using_enc;
263 struct type *real_type;
264
265 real_type = value_rtti_type (v2, &full, &top, &using_enc);
266 if (real_type)
267 {
268 v = value_full_object (v2, real_type, full, top, using_enc);
269 v = value_at_lazy (real_type, value_address (v));
270
271 /* We might be trying to cast to the outermost enclosing
272 type, in which case search_struct_field won't work. */
273 if (TYPE_NAME (real_type) != NULL
274 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
275 return v;
276
277 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
278 if (v)
279 return v;
280 }
281
282 /* Try downcasting using information from the destination type
283 T2. This wouldn't work properly for classes with virtual
284 bases, but those were handled above. */
285 v = search_struct_field (type_name_no_tag (t2),
286 value_zero (t1, not_lval), 0, t1, 1);
287 if (v)
288 {
289 /* Downcasting is possible (t1 is superclass of v2). */
290 CORE_ADDR addr2 = value_address (v2);
291
292 addr2 -= value_address (v) + value_embedded_offset (v);
293 return value_at (type, addr2);
294 }
295 }
296
297 return NULL;
298 }
299
300 /* Cast one pointer or reference type to another. Both TYPE and
301 the type of ARG2 should be pointer types, or else both should be
302 reference types. Returns the new pointer or reference. */
303
304 struct value *
305 value_cast_pointers (struct type *type, struct value *arg2)
306 {
307 struct type *type1 = check_typedef (type);
308 struct type *type2 = check_typedef (value_type (arg2));
309 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
310 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
311
312 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
313 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
314 && !value_logical_not (arg2))
315 {
316 struct value *v2;
317
318 if (TYPE_CODE (type2) == TYPE_CODE_REF)
319 v2 = coerce_ref (arg2);
320 else
321 v2 = value_ind (arg2);
322 gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) == TYPE_CODE_STRUCT
323 && !!"Why did coercion fail?");
324 v2 = value_cast_structs (t1, v2);
325 /* At this point we have what we can have, un-dereference if needed. */
326 if (v2)
327 {
328 struct value *v = value_addr (v2);
329
330 deprecated_set_value_type (v, type);
331 return v;
332 }
333 }
334
335 /* No superclass found, just change the pointer type. */
336 arg2 = value_copy (arg2);
337 deprecated_set_value_type (arg2, type);
338 set_value_enclosing_type (arg2, type);
339 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
340 return arg2;
341 }
342
343 /* Cast value ARG2 to type TYPE and return as a value.
344 More general than a C cast: accepts any two types of the same length,
345 and if ARG2 is an lvalue it can be cast into anything at all. */
346 /* In C++, casts may change pointer or object representations. */
347
348 struct value *
349 value_cast (struct type *type, struct value *arg2)
350 {
351 enum type_code code1;
352 enum type_code code2;
353 int scalar;
354 struct type *type2;
355
356 int convert_to_boolean = 0;
357
358 if (value_type (arg2) == type)
359 return arg2;
360
361 code1 = TYPE_CODE (check_typedef (type));
362
363 /* Check if we are casting struct reference to struct reference. */
364 if (code1 == TYPE_CODE_REF)
365 {
366 /* We dereference type; then we recurse and finally
367 we generate value of the given reference. Nothing wrong with
368 that. */
369 struct type *t1 = check_typedef (type);
370 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
371 struct value *val = value_cast (dereftype, arg2);
372
373 return value_ref (val);
374 }
375
376 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
377
378 if (code2 == TYPE_CODE_REF)
379 /* We deref the value and then do the cast. */
380 return value_cast (type, coerce_ref (arg2));
381
382 CHECK_TYPEDEF (type);
383 code1 = TYPE_CODE (type);
384 arg2 = coerce_ref (arg2);
385 type2 = check_typedef (value_type (arg2));
386
387 /* You can't cast to a reference type. See value_cast_pointers
388 instead. */
389 gdb_assert (code1 != TYPE_CODE_REF);
390
391 /* A cast to an undetermined-length array_type, such as
392 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
393 where N is sizeof(OBJECT)/sizeof(TYPE). */
394 if (code1 == TYPE_CODE_ARRAY)
395 {
396 struct type *element_type = TYPE_TARGET_TYPE (type);
397 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
398
399 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
400 {
401 struct type *range_type = TYPE_INDEX_TYPE (type);
402 int val_length = TYPE_LENGTH (type2);
403 LONGEST low_bound, high_bound, new_length;
404
405 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
406 low_bound = 0, high_bound = 0;
407 new_length = val_length / element_length;
408 if (val_length % element_length != 0)
409 warning (_("array element type size does not divide object size in cast"));
410 /* FIXME-type-allocation: need a way to free this type when
411 we are done with it. */
412 range_type = create_range_type ((struct type *) NULL,
413 TYPE_TARGET_TYPE (range_type),
414 low_bound,
415 new_length + low_bound - 1);
416 deprecated_set_value_type (arg2,
417 create_array_type ((struct type *) NULL,
418 element_type,
419 range_type));
420 return arg2;
421 }
422 }
423
424 if (current_language->c_style_arrays
425 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
426 && !TYPE_VECTOR (type2))
427 arg2 = value_coerce_array (arg2);
428
429 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
430 arg2 = value_coerce_function (arg2);
431
432 type2 = check_typedef (value_type (arg2));
433 code2 = TYPE_CODE (type2);
434
435 if (code1 == TYPE_CODE_COMPLEX)
436 return cast_into_complex (type, arg2);
437 if (code1 == TYPE_CODE_BOOL)
438 {
439 code1 = TYPE_CODE_INT;
440 convert_to_boolean = 1;
441 }
442 if (code1 == TYPE_CODE_CHAR)
443 code1 = TYPE_CODE_INT;
444 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
445 code2 = TYPE_CODE_INT;
446
447 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
448 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
449 || code2 == TYPE_CODE_RANGE);
450
451 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
452 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
453 && TYPE_NAME (type) != 0)
454 {
455 struct value *v = value_cast_structs (type, arg2);
456
457 if (v)
458 return v;
459 }
460
461 if (code1 == TYPE_CODE_FLT && scalar)
462 return value_from_double (type, value_as_double (arg2));
463 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
464 {
465 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
466 int dec_len = TYPE_LENGTH (type);
467 gdb_byte dec[16];
468
469 if (code2 == TYPE_CODE_FLT)
470 decimal_from_floating (arg2, dec, dec_len, byte_order);
471 else if (code2 == TYPE_CODE_DECFLOAT)
472 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
473 byte_order, dec, dec_len, byte_order);
474 else
475 /* The only option left is an integral type. */
476 decimal_from_integral (arg2, dec, dec_len, byte_order);
477
478 return value_from_decfloat (type, dec);
479 }
480 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
481 || code1 == TYPE_CODE_RANGE)
482 && (scalar || code2 == TYPE_CODE_PTR
483 || code2 == TYPE_CODE_MEMBERPTR))
484 {
485 LONGEST longest;
486
487 /* When we cast pointers to integers, we mustn't use
488 gdbarch_pointer_to_address to find the address the pointer
489 represents, as value_as_long would. GDB should evaluate
490 expressions just as the compiler would --- and the compiler
491 sees a cast as a simple reinterpretation of the pointer's
492 bits. */
493 if (code2 == TYPE_CODE_PTR)
494 longest = extract_unsigned_integer
495 (value_contents (arg2), TYPE_LENGTH (type2),
496 gdbarch_byte_order (get_type_arch (type2)));
497 else
498 longest = value_as_long (arg2);
499 return value_from_longest (type, convert_to_boolean ?
500 (LONGEST) (longest ? 1 : 0) : longest);
501 }
502 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
503 || code2 == TYPE_CODE_ENUM
504 || code2 == TYPE_CODE_RANGE))
505 {
506 /* TYPE_LENGTH (type) is the length of a pointer, but we really
507 want the length of an address! -- we are really dealing with
508 addresses (i.e., gdb representations) not pointers (i.e.,
509 target representations) here.
510
511 This allows things like "print *(int *)0x01000234" to work
512 without printing a misleading message -- which would
513 otherwise occur when dealing with a target having two byte
514 pointers and four byte addresses. */
515
516 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
517 LONGEST longest = value_as_long (arg2);
518
519 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
520 {
521 if (longest >= ((LONGEST) 1 << addr_bit)
522 || longest <= -((LONGEST) 1 << addr_bit))
523 warning (_("value truncated"));
524 }
525 return value_from_longest (type, longest);
526 }
527 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
528 && value_as_long (arg2) == 0)
529 {
530 struct value *result = allocate_value (type);
531
532 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
533 return result;
534 }
535 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
536 && value_as_long (arg2) == 0)
537 {
538 /* The Itanium C++ ABI represents NULL pointers to members as
539 minus one, instead of biasing the normal case. */
540 return value_from_longest (type, -1);
541 }
542 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar)
543 {
544 /* Widen the scalar to a vector. */
545 struct type *eltype;
546 struct value *val;
547 LONGEST low_bound, high_bound;
548 int i;
549
550 if (!get_array_bounds (type, &low_bound, &high_bound))
551 error (_("Could not determine the vector bounds"));
552
553 eltype = check_typedef (TYPE_TARGET_TYPE (type));
554 arg2 = value_cast (eltype, arg2);
555 val = allocate_value (type);
556
557 for (i = 0; i < high_bound - low_bound + 1; i++)
558 {
559 /* Duplicate the contents of arg2 into the destination vector. */
560 memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)),
561 value_contents_all (arg2), TYPE_LENGTH (eltype));
562 }
563 return val;
564 }
565 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
566 {
567 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
568 return value_cast_pointers (type, arg2);
569
570 arg2 = value_copy (arg2);
571 deprecated_set_value_type (arg2, type);
572 set_value_enclosing_type (arg2, type);
573 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
574 return arg2;
575 }
576 else if (VALUE_LVAL (arg2) == lval_memory)
577 return value_at_lazy (type, value_address (arg2));
578 else if (code1 == TYPE_CODE_VOID)
579 {
580 return value_zero (type, not_lval);
581 }
582 else
583 {
584 error (_("Invalid cast."));
585 return 0;
586 }
587 }
588
589 /* The C++ reinterpret_cast operator. */
590
591 struct value *
592 value_reinterpret_cast (struct type *type, struct value *arg)
593 {
594 struct value *result;
595 struct type *real_type = check_typedef (type);
596 struct type *arg_type, *dest_type;
597 int is_ref = 0;
598 enum type_code dest_code, arg_code;
599
600 /* Do reference, function, and array conversion. */
601 arg = coerce_array (arg);
602
603 /* Attempt to preserve the type the user asked for. */
604 dest_type = type;
605
606 /* If we are casting to a reference type, transform
607 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
608 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
609 {
610 is_ref = 1;
611 arg = value_addr (arg);
612 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
613 real_type = lookup_pointer_type (real_type);
614 }
615
616 arg_type = value_type (arg);
617
618 dest_code = TYPE_CODE (real_type);
619 arg_code = TYPE_CODE (arg_type);
620
621 /* We can convert pointer types, or any pointer type to int, or int
622 type to pointer. */
623 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
624 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
625 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
626 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
627 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
628 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
629 || (dest_code == arg_code
630 && (dest_code == TYPE_CODE_PTR
631 || dest_code == TYPE_CODE_METHODPTR
632 || dest_code == TYPE_CODE_MEMBERPTR)))
633 result = value_cast (dest_type, arg);
634 else
635 error (_("Invalid reinterpret_cast"));
636
637 if (is_ref)
638 result = value_cast (type, value_ref (value_ind (result)));
639
640 return result;
641 }
642
643 /* A helper for value_dynamic_cast. This implements the first of two
644 runtime checks: we iterate over all the base classes of the value's
645 class which are equal to the desired class; if only one of these
646 holds the value, then it is the answer. */
647
648 static int
649 dynamic_cast_check_1 (struct type *desired_type,
650 const bfd_byte *contents,
651 CORE_ADDR address,
652 struct type *search_type,
653 CORE_ADDR arg_addr,
654 struct type *arg_type,
655 struct value **result)
656 {
657 int i, result_count = 0;
658
659 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
660 {
661 int offset = baseclass_offset (search_type, i, contents, address);
662
663 if (offset == -1)
664 error (_("virtual baseclass botch"));
665 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
666 {
667 if (address + offset >= arg_addr
668 && address + offset < arg_addr + TYPE_LENGTH (arg_type))
669 {
670 ++result_count;
671 if (!*result)
672 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
673 address + offset);
674 }
675 }
676 else
677 result_count += dynamic_cast_check_1 (desired_type,
678 contents + offset,
679 address + offset,
680 TYPE_BASECLASS (search_type, i),
681 arg_addr,
682 arg_type,
683 result);
684 }
685
686 return result_count;
687 }
688
689 /* A helper for value_dynamic_cast. This implements the second of two
690 runtime checks: we look for a unique public sibling class of the
691 argument's declared class. */
692
693 static int
694 dynamic_cast_check_2 (struct type *desired_type,
695 const bfd_byte *contents,
696 CORE_ADDR address,
697 struct type *search_type,
698 struct value **result)
699 {
700 int i, result_count = 0;
701
702 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
703 {
704 int offset;
705
706 if (! BASETYPE_VIA_PUBLIC (search_type, i))
707 continue;
708
709 offset = baseclass_offset (search_type, i, contents, address);
710 if (offset == -1)
711 error (_("virtual baseclass botch"));
712 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
713 {
714 ++result_count;
715 if (*result == NULL)
716 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
717 address + offset);
718 }
719 else
720 result_count += dynamic_cast_check_2 (desired_type,
721 contents + offset,
722 address + offset,
723 TYPE_BASECLASS (search_type, i),
724 result);
725 }
726
727 return result_count;
728 }
729
730 /* The C++ dynamic_cast operator. */
731
732 struct value *
733 value_dynamic_cast (struct type *type, struct value *arg)
734 {
735 int full, top, using_enc;
736 struct type *resolved_type = check_typedef (type);
737 struct type *arg_type = check_typedef (value_type (arg));
738 struct type *class_type, *rtti_type;
739 struct value *result, *tem, *original_arg = arg;
740 CORE_ADDR addr;
741 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
742
743 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
744 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
745 error (_("Argument to dynamic_cast must be a pointer or reference type"));
746 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
747 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
748 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
749
750 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
751 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
752 {
753 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
754 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
755 && value_as_long (arg) == 0))
756 error (_("Argument to dynamic_cast does not have pointer type"));
757 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
758 {
759 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
760 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
761 error (_("Argument to dynamic_cast does not have pointer to class type"));
762 }
763
764 /* Handle NULL pointers. */
765 if (value_as_long (arg) == 0)
766 return value_zero (type, not_lval);
767
768 arg = value_ind (arg);
769 }
770 else
771 {
772 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
773 error (_("Argument to dynamic_cast does not have class type"));
774 }
775
776 /* If the classes are the same, just return the argument. */
777 if (class_types_same_p (class_type, arg_type))
778 return value_cast (type, arg);
779
780 /* If the target type is a unique base class of the argument's
781 declared type, just cast it. */
782 if (is_ancestor (class_type, arg_type))
783 {
784 if (is_unique_ancestor (class_type, arg))
785 return value_cast (type, original_arg);
786 error (_("Ambiguous dynamic_cast"));
787 }
788
789 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
790 if (! rtti_type)
791 error (_("Couldn't determine value's most derived type for dynamic_cast"));
792
793 /* Compute the most derived object's address. */
794 addr = value_address (arg);
795 if (full)
796 {
797 /* Done. */
798 }
799 else if (using_enc)
800 addr += top;
801 else
802 addr += top + value_embedded_offset (arg);
803
804 /* dynamic_cast<void *> means to return a pointer to the
805 most-derived object. */
806 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
807 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
808 return value_at_lazy (type, addr);
809
810 tem = value_at (type, addr);
811
812 /* The first dynamic check specified in 5.2.7. */
813 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
814 {
815 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
816 return tem;
817 result = NULL;
818 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
819 value_contents (tem), value_address (tem),
820 rtti_type, addr,
821 arg_type,
822 &result) == 1)
823 return value_cast (type,
824 is_ref ? value_ref (result) : value_addr (result));
825 }
826
827 /* The second dynamic check specified in 5.2.7. */
828 result = NULL;
829 if (is_public_ancestor (arg_type, rtti_type)
830 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
831 value_contents (tem), value_address (tem),
832 rtti_type, &result) == 1)
833 return value_cast (type,
834 is_ref ? value_ref (result) : value_addr (result));
835
836 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
837 return value_zero (type, not_lval);
838
839 error (_("dynamic_cast failed"));
840 }
841
842 /* Create a value of type TYPE that is zero, and return it. */
843
844 struct value *
845 value_zero (struct type *type, enum lval_type lv)
846 {
847 struct value *val = allocate_value (type);
848
849 VALUE_LVAL (val) = lv;
850 return val;
851 }
852
853 /* Create a value of numeric type TYPE that is one, and return it. */
854
855 struct value *
856 value_one (struct type *type, enum lval_type lv)
857 {
858 struct type *type1 = check_typedef (type);
859 struct value *val;
860
861 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
862 {
863 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
864 gdb_byte v[16];
865
866 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
867 val = value_from_decfloat (type, v);
868 }
869 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
870 {
871 val = value_from_double (type, (DOUBLEST) 1);
872 }
873 else if (is_integral_type (type1))
874 {
875 val = value_from_longest (type, (LONGEST) 1);
876 }
877 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
878 {
879 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
880 int i, n = TYPE_LENGTH (type1) / TYPE_LENGTH (eltype);
881 struct value *tmp;
882
883 val = allocate_value (type);
884 for (i = 0; i < n; i++)
885 {
886 tmp = value_one (eltype, lv);
887 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
888 value_contents_all (tmp), TYPE_LENGTH (eltype));
889 }
890 }
891 else
892 {
893 error (_("Not a numeric type."));
894 }
895
896 VALUE_LVAL (val) = lv;
897 return val;
898 }
899
900 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
901
902 static struct value *
903 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
904 {
905 struct value *val;
906
907 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
908 error (_("Attempt to dereference a generic pointer."));
909
910 if (lazy)
911 {
912 val = allocate_value_lazy (type);
913 }
914 else
915 {
916 val = allocate_value (type);
917 read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
918 }
919
920 VALUE_LVAL (val) = lval_memory;
921 set_value_address (val, addr);
922
923 return val;
924 }
925
926 /* Return a value with type TYPE located at ADDR.
927
928 Call value_at only if the data needs to be fetched immediately;
929 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
930 value_at_lazy instead. value_at_lazy simply records the address of
931 the data and sets the lazy-evaluation-required flag. The lazy flag
932 is tested in the value_contents macro, which is used if and when
933 the contents are actually required.
934
935 Note: value_at does *NOT* handle embedded offsets; perform such
936 adjustments before or after calling it. */
937
938 struct value *
939 value_at (struct type *type, CORE_ADDR addr)
940 {
941 return get_value_at (type, addr, 0);
942 }
943
944 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
945
946 struct value *
947 value_at_lazy (struct type *type, CORE_ADDR addr)
948 {
949 return get_value_at (type, addr, 1);
950 }
951
952 /* Called only from the value_contents and value_contents_all()
953 macros, if the current data for a variable needs to be loaded into
954 value_contents(VAL). Fetches the data from the user's process, and
955 clears the lazy flag to indicate that the data in the buffer is
956 valid.
957
958 If the value is zero-length, we avoid calling read_memory, which
959 would abort. We mark the value as fetched anyway -- all 0 bytes of
960 it.
961
962 This function returns a value because it is used in the
963 value_contents macro as part of an expression, where a void would
964 not work. The value is ignored. */
965
966 int
967 value_fetch_lazy (struct value *val)
968 {
969 gdb_assert (value_lazy (val));
970 allocate_value_contents (val);
971 if (value_bitsize (val))
972 {
973 /* To read a lazy bitfield, read the entire enclosing value. This
974 prevents reading the same block of (possibly volatile) memory once
975 per bitfield. It would be even better to read only the containing
976 word, but we have no way to record that just specific bits of a
977 value have been fetched. */
978 struct type *type = check_typedef (value_type (val));
979 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
980 struct value *parent = value_parent (val);
981 LONGEST offset = value_offset (val);
982 LONGEST num = unpack_bits_as_long (value_type (val),
983 (value_contents_for_printing (parent)
984 + offset),
985 value_bitpos (val),
986 value_bitsize (val));
987 int length = TYPE_LENGTH (type);
988
989 if (!value_bits_valid (val,
990 TARGET_CHAR_BIT * offset + value_bitpos (val),
991 value_bitsize (val)))
992 error (_("value has been optimized out"));
993
994 store_signed_integer (value_contents_raw (val), length, byte_order, num);
995 }
996 else if (VALUE_LVAL (val) == lval_memory)
997 {
998 CORE_ADDR addr = value_address (val);
999 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
1000
1001 if (length)
1002 {
1003 if (value_stack (val))
1004 read_stack (addr, value_contents_all_raw (val), length);
1005 else
1006 read_memory (addr, value_contents_all_raw (val), length);
1007 }
1008 }
1009 else if (VALUE_LVAL (val) == lval_register)
1010 {
1011 struct frame_info *frame;
1012 int regnum;
1013 struct type *type = check_typedef (value_type (val));
1014 struct value *new_val = val, *mark = value_mark ();
1015
1016 /* Offsets are not supported here; lazy register values must
1017 refer to the entire register. */
1018 gdb_assert (value_offset (val) == 0);
1019
1020 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
1021 {
1022 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
1023 regnum = VALUE_REGNUM (new_val);
1024
1025 gdb_assert (frame != NULL);
1026
1027 /* Convertible register routines are used for multi-register
1028 values and for interpretation in different types
1029 (e.g. float or int from a double register). Lazy
1030 register values should have the register's natural type,
1031 so they do not apply. */
1032 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
1033 regnum, type));
1034
1035 new_val = get_frame_register_value (frame, regnum);
1036 }
1037
1038 /* If it's still lazy (for instance, a saved register on the
1039 stack), fetch it. */
1040 if (value_lazy (new_val))
1041 value_fetch_lazy (new_val);
1042
1043 /* If the register was not saved, mark it unavailable. */
1044 if (value_optimized_out (new_val))
1045 set_value_optimized_out (val, 1);
1046 else
1047 memcpy (value_contents_raw (val), value_contents (new_val),
1048 TYPE_LENGTH (type));
1049
1050 if (frame_debug)
1051 {
1052 struct gdbarch *gdbarch;
1053 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1054 regnum = VALUE_REGNUM (val);
1055 gdbarch = get_frame_arch (frame);
1056
1057 fprintf_unfiltered (gdb_stdlog, "\
1058 { value_fetch_lazy (frame=%d,regnum=%d(%s),...) ",
1059 frame_relative_level (frame), regnum,
1060 user_reg_map_regnum_to_name (gdbarch, regnum));
1061
1062 fprintf_unfiltered (gdb_stdlog, "->");
1063 if (value_optimized_out (new_val))
1064 fprintf_unfiltered (gdb_stdlog, " optimized out");
1065 else
1066 {
1067 int i;
1068 const gdb_byte *buf = value_contents (new_val);
1069
1070 if (VALUE_LVAL (new_val) == lval_register)
1071 fprintf_unfiltered (gdb_stdlog, " register=%d",
1072 VALUE_REGNUM (new_val));
1073 else if (VALUE_LVAL (new_val) == lval_memory)
1074 fprintf_unfiltered (gdb_stdlog, " address=%s",
1075 paddress (gdbarch,
1076 value_address (new_val)));
1077 else
1078 fprintf_unfiltered (gdb_stdlog, " computed");
1079
1080 fprintf_unfiltered (gdb_stdlog, " bytes=");
1081 fprintf_unfiltered (gdb_stdlog, "[");
1082 for (i = 0; i < register_size (gdbarch, regnum); i++)
1083 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1084 fprintf_unfiltered (gdb_stdlog, "]");
1085 }
1086
1087 fprintf_unfiltered (gdb_stdlog, " }\n");
1088 }
1089
1090 /* Dispose of the intermediate values. This prevents
1091 watchpoints from trying to watch the saved frame pointer. */
1092 value_free_to_mark (mark);
1093 }
1094 else if (VALUE_LVAL (val) == lval_computed)
1095 value_computed_funcs (val)->read (val);
1096 else
1097 internal_error (__FILE__, __LINE__, "Unexpected lazy value type.");
1098
1099 set_value_lazy (val, 0);
1100 return 0;
1101 }
1102
1103
1104 /* Store the contents of FROMVAL into the location of TOVAL.
1105 Return a new value with the location of TOVAL and contents of FROMVAL. */
1106
1107 struct value *
1108 value_assign (struct value *toval, struct value *fromval)
1109 {
1110 struct type *type;
1111 struct value *val;
1112 struct frame_id old_frame;
1113
1114 if (!deprecated_value_modifiable (toval))
1115 error (_("Left operand of assignment is not a modifiable lvalue."));
1116
1117 toval = coerce_ref (toval);
1118
1119 type = value_type (toval);
1120 if (VALUE_LVAL (toval) != lval_internalvar)
1121 fromval = value_cast (type, fromval);
1122 else
1123 {
1124 /* Coerce arrays and functions to pointers, except for arrays
1125 which only live in GDB's storage. */
1126 if (!value_must_coerce_to_target (fromval))
1127 fromval = coerce_array (fromval);
1128 }
1129
1130 CHECK_TYPEDEF (type);
1131
1132 /* Since modifying a register can trash the frame chain, and
1133 modifying memory can trash the frame cache, we save the old frame
1134 and then restore the new frame afterwards. */
1135 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1136
1137 switch (VALUE_LVAL (toval))
1138 {
1139 case lval_internalvar:
1140 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1141 val = value_copy (fromval);
1142 set_value_enclosing_type (val, value_enclosing_type (fromval));
1143 set_value_embedded_offset (val, value_embedded_offset (fromval));
1144 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1145 return val;
1146
1147 case lval_internalvar_component:
1148 set_internalvar_component (VALUE_INTERNALVAR (toval),
1149 value_offset (toval),
1150 value_bitpos (toval),
1151 value_bitsize (toval),
1152 fromval);
1153 break;
1154
1155 case lval_memory:
1156 {
1157 const gdb_byte *dest_buffer;
1158 CORE_ADDR changed_addr;
1159 int changed_len;
1160 gdb_byte buffer[sizeof (LONGEST)];
1161
1162 if (value_bitsize (toval))
1163 {
1164 struct value *parent = value_parent (toval);
1165
1166 changed_addr = value_address (parent) + value_offset (toval);
1167 changed_len = (value_bitpos (toval)
1168 + value_bitsize (toval)
1169 + HOST_CHAR_BIT - 1)
1170 / HOST_CHAR_BIT;
1171
1172 /* If we can read-modify-write exactly the size of the
1173 containing type (e.g. short or int) then do so. This
1174 is safer for volatile bitfields mapped to hardware
1175 registers. */
1176 if (changed_len < TYPE_LENGTH (type)
1177 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1178 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1179 changed_len = TYPE_LENGTH (type);
1180
1181 if (changed_len > (int) sizeof (LONGEST))
1182 error (_("Can't handle bitfields which don't fit in a %d bit word."),
1183 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1184
1185 read_memory (changed_addr, buffer, changed_len);
1186 modify_field (type, buffer, value_as_long (fromval),
1187 value_bitpos (toval), value_bitsize (toval));
1188 dest_buffer = buffer;
1189 }
1190 else
1191 {
1192 changed_addr = value_address (toval);
1193 changed_len = TYPE_LENGTH (type);
1194 dest_buffer = value_contents (fromval);
1195 }
1196
1197 write_memory (changed_addr, dest_buffer, changed_len);
1198 observer_notify_memory_changed (changed_addr, changed_len,
1199 dest_buffer);
1200 }
1201 break;
1202
1203 case lval_register:
1204 {
1205 struct frame_info *frame;
1206 struct gdbarch *gdbarch;
1207 int value_reg;
1208
1209 /* Figure out which frame this is in currently. */
1210 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1211 value_reg = VALUE_REGNUM (toval);
1212
1213 if (!frame)
1214 error (_("Value being assigned to is no longer active."));
1215
1216 gdbarch = get_frame_arch (frame);
1217 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1218 {
1219 /* If TOVAL is a special machine register requiring
1220 conversion of program values to a special raw
1221 format. */
1222 gdbarch_value_to_register (gdbarch, frame,
1223 VALUE_REGNUM (toval), type,
1224 value_contents (fromval));
1225 }
1226 else
1227 {
1228 if (value_bitsize (toval))
1229 {
1230 struct value *parent = value_parent (toval);
1231 int offset = value_offset (parent) + value_offset (toval);
1232 int changed_len;
1233 gdb_byte buffer[sizeof (LONGEST)];
1234
1235 changed_len = (value_bitpos (toval)
1236 + value_bitsize (toval)
1237 + HOST_CHAR_BIT - 1)
1238 / HOST_CHAR_BIT;
1239
1240 if (changed_len > (int) sizeof (LONGEST))
1241 error (_("Can't handle bitfields which don't fit in a %d bit word."),
1242 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1243
1244 get_frame_register_bytes (frame, value_reg, offset,
1245 changed_len, buffer);
1246
1247 modify_field (type, buffer, value_as_long (fromval),
1248 value_bitpos (toval), value_bitsize (toval));
1249
1250 put_frame_register_bytes (frame, value_reg, offset,
1251 changed_len, buffer);
1252 }
1253 else
1254 {
1255 put_frame_register_bytes (frame, value_reg,
1256 value_offset (toval),
1257 TYPE_LENGTH (type),
1258 value_contents (fromval));
1259 }
1260 }
1261
1262 if (deprecated_register_changed_hook)
1263 deprecated_register_changed_hook (-1);
1264 observer_notify_target_changed (&current_target);
1265 break;
1266 }
1267
1268 case lval_computed:
1269 {
1270 struct lval_funcs *funcs = value_computed_funcs (toval);
1271
1272 funcs->write (toval, fromval);
1273 }
1274 break;
1275
1276 default:
1277 error (_("Left operand of assignment is not an lvalue."));
1278 }
1279
1280 /* Assigning to the stack pointer, frame pointer, and other
1281 (architecture and calling convention specific) registers may
1282 cause the frame cache to be out of date. Assigning to memory
1283 also can. We just do this on all assignments to registers or
1284 memory, for simplicity's sake; I doubt the slowdown matters. */
1285 switch (VALUE_LVAL (toval))
1286 {
1287 case lval_memory:
1288 case lval_register:
1289 case lval_computed:
1290
1291 reinit_frame_cache ();
1292
1293 /* Having destroyed the frame cache, restore the selected
1294 frame. */
1295
1296 /* FIXME: cagney/2002-11-02: There has to be a better way of
1297 doing this. Instead of constantly saving/restoring the
1298 frame. Why not create a get_selected_frame() function that,
1299 having saved the selected frame's ID can automatically
1300 re-find the previously selected frame automatically. */
1301
1302 {
1303 struct frame_info *fi = frame_find_by_id (old_frame);
1304
1305 if (fi != NULL)
1306 select_frame (fi);
1307 }
1308
1309 break;
1310 default:
1311 break;
1312 }
1313
1314 /* If the field does not entirely fill a LONGEST, then zero the sign
1315 bits. If the field is signed, and is negative, then sign
1316 extend. */
1317 if ((value_bitsize (toval) > 0)
1318 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1319 {
1320 LONGEST fieldval = value_as_long (fromval);
1321 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1322
1323 fieldval &= valmask;
1324 if (!TYPE_UNSIGNED (type)
1325 && (fieldval & (valmask ^ (valmask >> 1))))
1326 fieldval |= ~valmask;
1327
1328 fromval = value_from_longest (type, fieldval);
1329 }
1330
1331 val = value_copy (toval);
1332 memcpy (value_contents_raw (val), value_contents (fromval),
1333 TYPE_LENGTH (type));
1334 deprecated_set_value_type (val, type);
1335 set_value_enclosing_type (val, value_enclosing_type (fromval));
1336 set_value_embedded_offset (val, value_embedded_offset (fromval));
1337 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1338
1339 return val;
1340 }
1341
1342 /* Extend a value VAL to COUNT repetitions of its type. */
1343
1344 struct value *
1345 value_repeat (struct value *arg1, int count)
1346 {
1347 struct value *val;
1348
1349 if (VALUE_LVAL (arg1) != lval_memory)
1350 error (_("Only values in memory can be extended with '@'."));
1351 if (count < 1)
1352 error (_("Invalid number %d of repetitions."), count);
1353
1354 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1355
1356 read_memory (value_address (arg1),
1357 value_contents_all_raw (val),
1358 TYPE_LENGTH (value_enclosing_type (val)));
1359 VALUE_LVAL (val) = lval_memory;
1360 set_value_address (val, value_address (arg1));
1361
1362 return val;
1363 }
1364
1365 struct value *
1366 value_of_variable (struct symbol *var, struct block *b)
1367 {
1368 struct value *val;
1369 struct frame_info *frame;
1370
1371 if (!symbol_read_needs_frame (var))
1372 frame = NULL;
1373 else if (!b)
1374 frame = get_selected_frame (_("No frame selected."));
1375 else
1376 {
1377 frame = block_innermost_frame (b);
1378 if (!frame)
1379 {
1380 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1381 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1382 error (_("No frame is currently executing in block %s."),
1383 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1384 else
1385 error (_("No frame is currently executing in specified block"));
1386 }
1387 }
1388
1389 val = read_var_value (var, frame);
1390 if (!val)
1391 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
1392
1393 return val;
1394 }
1395
1396 struct value *
1397 address_of_variable (struct symbol *var, struct block *b)
1398 {
1399 struct type *type = SYMBOL_TYPE (var);
1400 struct value *val;
1401
1402 /* Evaluate it first; if the result is a memory address, we're fine.
1403 Lazy evaluation pays off here. */
1404
1405 val = value_of_variable (var, b);
1406
1407 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1408 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1409 {
1410 CORE_ADDR addr = value_address (val);
1411
1412 return value_from_pointer (lookup_pointer_type (type), addr);
1413 }
1414
1415 /* Not a memory address; check what the problem was. */
1416 switch (VALUE_LVAL (val))
1417 {
1418 case lval_register:
1419 {
1420 struct frame_info *frame;
1421 const char *regname;
1422
1423 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1424 gdb_assert (frame);
1425
1426 regname = gdbarch_register_name (get_frame_arch (frame),
1427 VALUE_REGNUM (val));
1428 gdb_assert (regname && *regname);
1429
1430 error (_("Address requested for identifier "
1431 "\"%s\" which is in register $%s"),
1432 SYMBOL_PRINT_NAME (var), regname);
1433 break;
1434 }
1435
1436 default:
1437 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1438 SYMBOL_PRINT_NAME (var));
1439 break;
1440 }
1441
1442 return val;
1443 }
1444
1445 /* Return one if VAL does not live in target memory, but should in order
1446 to operate on it. Otherwise return zero. */
1447
1448 int
1449 value_must_coerce_to_target (struct value *val)
1450 {
1451 struct type *valtype;
1452
1453 /* The only lval kinds which do not live in target memory. */
1454 if (VALUE_LVAL (val) != not_lval
1455 && VALUE_LVAL (val) != lval_internalvar)
1456 return 0;
1457
1458 valtype = check_typedef (value_type (val));
1459
1460 switch (TYPE_CODE (valtype))
1461 {
1462 case TYPE_CODE_ARRAY:
1463 return TYPE_VECTOR (valtype) ? 0 : 1;
1464 case TYPE_CODE_STRING:
1465 return 1;
1466 default:
1467 return 0;
1468 }
1469 }
1470
1471 /* Make sure that VAL lives in target memory if it's supposed to. For instance,
1472 strings are constructed as character arrays in GDB's storage, and this
1473 function copies them to the target. */
1474
1475 struct value *
1476 value_coerce_to_target (struct value *val)
1477 {
1478 LONGEST length;
1479 CORE_ADDR addr;
1480
1481 if (!value_must_coerce_to_target (val))
1482 return val;
1483
1484 length = TYPE_LENGTH (check_typedef (value_type (val)));
1485 addr = allocate_space_in_inferior (length);
1486 write_memory (addr, value_contents (val), length);
1487 return value_at_lazy (value_type (val), addr);
1488 }
1489
1490 /* Given a value which is an array, return a value which is a pointer
1491 to its first element, regardless of whether or not the array has a
1492 nonzero lower bound.
1493
1494 FIXME: A previous comment here indicated that this routine should
1495 be substracting the array's lower bound. It's not clear to me that
1496 this is correct. Given an array subscripting operation, it would
1497 certainly work to do the adjustment here, essentially computing:
1498
1499 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1500
1501 However I believe a more appropriate and logical place to account
1502 for the lower bound is to do so in value_subscript, essentially
1503 computing:
1504
1505 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1506
1507 As further evidence consider what would happen with operations
1508 other than array subscripting, where the caller would get back a
1509 value that had an address somewhere before the actual first element
1510 of the array, and the information about the lower bound would be
1511 lost because of the coercion to pointer type.
1512 */
1513
1514 struct value *
1515 value_coerce_array (struct value *arg1)
1516 {
1517 struct type *type = check_typedef (value_type (arg1));
1518
1519 /* If the user tries to do something requiring a pointer with an
1520 array that has not yet been pushed to the target, then this would
1521 be a good time to do so. */
1522 arg1 = value_coerce_to_target (arg1);
1523
1524 if (VALUE_LVAL (arg1) != lval_memory)
1525 error (_("Attempt to take address of value not located in memory."));
1526
1527 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1528 value_address (arg1));
1529 }
1530
1531 /* Given a value which is a function, return a value which is a pointer
1532 to it. */
1533
1534 struct value *
1535 value_coerce_function (struct value *arg1)
1536 {
1537 struct value *retval;
1538
1539 if (VALUE_LVAL (arg1) != lval_memory)
1540 error (_("Attempt to take address of value not located in memory."));
1541
1542 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1543 value_address (arg1));
1544 return retval;
1545 }
1546
1547 /* Return a pointer value for the object for which ARG1 is the
1548 contents. */
1549
1550 struct value *
1551 value_addr (struct value *arg1)
1552 {
1553 struct value *arg2;
1554 struct type *type = check_typedef (value_type (arg1));
1555
1556 if (TYPE_CODE (type) == TYPE_CODE_REF)
1557 {
1558 /* Copy the value, but change the type from (T&) to (T*). We
1559 keep the same location information, which is efficient, and
1560 allows &(&X) to get the location containing the reference. */
1561 arg2 = value_copy (arg1);
1562 deprecated_set_value_type (arg2,
1563 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1564 return arg2;
1565 }
1566 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1567 return value_coerce_function (arg1);
1568
1569 /* If this is an array that has not yet been pushed to the target,
1570 then this would be a good time to force it to memory. */
1571 arg1 = value_coerce_to_target (arg1);
1572
1573 if (VALUE_LVAL (arg1) != lval_memory)
1574 error (_("Attempt to take address of value not located in memory."));
1575
1576 /* Get target memory address */
1577 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1578 (value_address (arg1)
1579 + value_embedded_offset (arg1)));
1580
1581 /* This may be a pointer to a base subobject; so remember the
1582 full derived object's type ... */
1583 set_value_enclosing_type (arg2,
1584 lookup_pointer_type (value_enclosing_type (arg1)));
1585 /* ... and also the relative position of the subobject in the full
1586 object. */
1587 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1588 return arg2;
1589 }
1590
1591 /* Return a reference value for the object for which ARG1 is the
1592 contents. */
1593
1594 struct value *
1595 value_ref (struct value *arg1)
1596 {
1597 struct value *arg2;
1598 struct type *type = check_typedef (value_type (arg1));
1599
1600 if (TYPE_CODE (type) == TYPE_CODE_REF)
1601 return arg1;
1602
1603 arg2 = value_addr (arg1);
1604 deprecated_set_value_type (arg2, lookup_reference_type (type));
1605 return arg2;
1606 }
1607
1608 /* Given a value of a pointer type, apply the C unary * operator to
1609 it. */
1610
1611 struct value *
1612 value_ind (struct value *arg1)
1613 {
1614 struct type *base_type;
1615 struct value *arg2;
1616
1617 arg1 = coerce_array (arg1);
1618
1619 base_type = check_typedef (value_type (arg1));
1620
1621 if (VALUE_LVAL (arg1) == lval_computed)
1622 {
1623 struct lval_funcs *funcs = value_computed_funcs (arg1);
1624
1625 if (funcs->indirect)
1626 {
1627 struct value *result = funcs->indirect (arg1);
1628
1629 if (result)
1630 return result;
1631 }
1632 }
1633
1634 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1635 {
1636 struct type *enc_type;
1637
1638 /* We may be pointing to something embedded in a larger object.
1639 Get the real type of the enclosing object. */
1640 enc_type = check_typedef (value_enclosing_type (arg1));
1641 enc_type = TYPE_TARGET_TYPE (enc_type);
1642
1643 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1644 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1645 /* For functions, go through find_function_addr, which knows
1646 how to handle function descriptors. */
1647 arg2 = value_at_lazy (enc_type,
1648 find_function_addr (arg1, NULL));
1649 else
1650 /* Retrieve the enclosing object pointed to */
1651 arg2 = value_at_lazy (enc_type,
1652 (value_as_address (arg1)
1653 - value_pointed_to_offset (arg1)));
1654
1655 /* Re-adjust type. */
1656 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
1657 /* Add embedding info. */
1658 set_value_enclosing_type (arg2, enc_type);
1659 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
1660
1661 /* We may be pointing to an object of some derived type. */
1662 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1663 return arg2;
1664 }
1665
1666 error (_("Attempt to take contents of a non-pointer value."));
1667 return 0; /* For lint -- never reached. */
1668 }
1669 \f
1670 /* Create a value for an array by allocating space in GDB, copying
1671 copying the data into that space, and then setting up an array
1672 value.
1673
1674 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1675 is populated from the values passed in ELEMVEC.
1676
1677 The element type of the array is inherited from the type of the
1678 first element, and all elements must have the same size (though we
1679 don't currently enforce any restriction on their types). */
1680
1681 struct value *
1682 value_array (int lowbound, int highbound, struct value **elemvec)
1683 {
1684 int nelem;
1685 int idx;
1686 unsigned int typelength;
1687 struct value *val;
1688 struct type *arraytype;
1689
1690 /* Validate that the bounds are reasonable and that each of the
1691 elements have the same size. */
1692
1693 nelem = highbound - lowbound + 1;
1694 if (nelem <= 0)
1695 {
1696 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1697 }
1698 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1699 for (idx = 1; idx < nelem; idx++)
1700 {
1701 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1702 {
1703 error (_("array elements must all be the same size"));
1704 }
1705 }
1706
1707 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1708 lowbound, highbound);
1709
1710 if (!current_language->c_style_arrays)
1711 {
1712 val = allocate_value (arraytype);
1713 for (idx = 0; idx < nelem; idx++)
1714 {
1715 memcpy (value_contents_all_raw (val) + (idx * typelength),
1716 value_contents_all (elemvec[idx]),
1717 typelength);
1718 }
1719 return val;
1720 }
1721
1722 /* Allocate space to store the array, and then initialize it by
1723 copying in each element. */
1724
1725 val = allocate_value (arraytype);
1726 for (idx = 0; idx < nelem; idx++)
1727 memcpy (value_contents_writeable (val) + (idx * typelength),
1728 value_contents_all (elemvec[idx]),
1729 typelength);
1730 return val;
1731 }
1732
1733 struct value *
1734 value_cstring (char *ptr, int len, struct type *char_type)
1735 {
1736 struct value *val;
1737 int lowbound = current_language->string_lower_bound;
1738 int highbound = len / TYPE_LENGTH (char_type);
1739 struct type *stringtype
1740 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1741
1742 val = allocate_value (stringtype);
1743 memcpy (value_contents_raw (val), ptr, len);
1744 return val;
1745 }
1746
1747 /* Create a value for a string constant by allocating space in the
1748 inferior, copying the data into that space, and returning the
1749 address with type TYPE_CODE_STRING. PTR points to the string
1750 constant data; LEN is number of characters.
1751
1752 Note that string types are like array of char types with a lower
1753 bound of zero and an upper bound of LEN - 1. Also note that the
1754 string may contain embedded null bytes. */
1755
1756 struct value *
1757 value_string (char *ptr, int len, struct type *char_type)
1758 {
1759 struct value *val;
1760 int lowbound = current_language->string_lower_bound;
1761 int highbound = len / TYPE_LENGTH (char_type);
1762 struct type *stringtype
1763 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1764
1765 val = allocate_value (stringtype);
1766 memcpy (value_contents_raw (val), ptr, len);
1767 return val;
1768 }
1769
1770 struct value *
1771 value_bitstring (char *ptr, int len, struct type *index_type)
1772 {
1773 struct value *val;
1774 struct type *domain_type
1775 = create_range_type (NULL, index_type, 0, len - 1);
1776 struct type *type = create_set_type (NULL, domain_type);
1777
1778 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1779 val = allocate_value (type);
1780 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1781 return val;
1782 }
1783 \f
1784 /* See if we can pass arguments in T2 to a function which takes
1785 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1786 a NULL-terminated vector. If some arguments need coercion of some
1787 sort, then the coerced values are written into T2. Return value is
1788 0 if the arguments could be matched, or the position at which they
1789 differ if not.
1790
1791 STATICP is nonzero if the T1 argument list came from a static
1792 member function. T2 will still include the ``this'' pointer, but
1793 it will be skipped.
1794
1795 For non-static member functions, we ignore the first argument,
1796 which is the type of the instance variable. This is because we
1797 want to handle calls with objects from derived classes. This is
1798 not entirely correct: we should actually check to make sure that a
1799 requested operation is type secure, shouldn't we? FIXME. */
1800
1801 static int
1802 typecmp (int staticp, int varargs, int nargs,
1803 struct field t1[], struct value *t2[])
1804 {
1805 int i;
1806
1807 if (t2 == 0)
1808 internal_error (__FILE__, __LINE__,
1809 _("typecmp: no argument list"));
1810
1811 /* Skip ``this'' argument if applicable. T2 will always include
1812 THIS. */
1813 if (staticp)
1814 t2 ++;
1815
1816 for (i = 0;
1817 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1818 i++)
1819 {
1820 struct type *tt1, *tt2;
1821
1822 if (!t2[i])
1823 return i + 1;
1824
1825 tt1 = check_typedef (t1[i].type);
1826 tt2 = check_typedef (value_type (t2[i]));
1827
1828 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1829 /* We should be doing hairy argument matching, as below. */
1830 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1831 {
1832 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1833 t2[i] = value_coerce_array (t2[i]);
1834 else
1835 t2[i] = value_ref (t2[i]);
1836 continue;
1837 }
1838
1839 /* djb - 20000715 - Until the new type structure is in the
1840 place, and we can attempt things like implicit conversions,
1841 we need to do this so you can take something like a map<const
1842 char *>, and properly access map["hello"], because the
1843 argument to [] will be a reference to a pointer to a char,
1844 and the argument will be a pointer to a char. */
1845 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1846 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1847 {
1848 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1849 }
1850 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1851 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1852 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1853 {
1854 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1855 }
1856 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1857 continue;
1858 /* Array to pointer is a `trivial conversion' according to the
1859 ARM. */
1860
1861 /* We should be doing much hairier argument matching (see
1862 section 13.2 of the ARM), but as a quick kludge, just check
1863 for the same type code. */
1864 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1865 return i + 1;
1866 }
1867 if (varargs || t2[i] == NULL)
1868 return 0;
1869 return i + 1;
1870 }
1871
1872 /* Helper function used by value_struct_elt to recurse through
1873 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1874 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1875 TYPE. If found, return value, else return NULL.
1876
1877 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1878 fields, look for a baseclass named NAME. */
1879
1880 static struct value *
1881 search_struct_field (const char *name, struct value *arg1, int offset,
1882 struct type *type, int looking_for_baseclass)
1883 {
1884 int i;
1885 int nbases;
1886
1887 CHECK_TYPEDEF (type);
1888 nbases = TYPE_N_BASECLASSES (type);
1889
1890 if (!looking_for_baseclass)
1891 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1892 {
1893 char *t_field_name = TYPE_FIELD_NAME (type, i);
1894
1895 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1896 {
1897 struct value *v;
1898
1899 if (field_is_static (&TYPE_FIELD (type, i)))
1900 {
1901 v = value_static_field (type, i);
1902 if (v == 0)
1903 error (_("field %s is nonexistent or has been optimized out"),
1904 name);
1905 }
1906 else
1907 {
1908 v = value_primitive_field (arg1, offset, i, type);
1909 if (v == 0)
1910 error (_("there is no field named %s"), name);
1911 }
1912 return v;
1913 }
1914
1915 if (t_field_name
1916 && (t_field_name[0] == '\0'
1917 || (TYPE_CODE (type) == TYPE_CODE_UNION
1918 && (strcmp_iw (t_field_name, "else") == 0))))
1919 {
1920 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1921
1922 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1923 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1924 {
1925 /* Look for a match through the fields of an anonymous
1926 union, or anonymous struct. C++ provides anonymous
1927 unions.
1928
1929 In the GNU Chill (now deleted from GDB)
1930 implementation of variant record types, each
1931 <alternative field> has an (anonymous) union type,
1932 each member of the union represents a <variant
1933 alternative>. Each <variant alternative> is
1934 represented as a struct, with a member for each
1935 <variant field>. */
1936
1937 struct value *v;
1938 int new_offset = offset;
1939
1940 /* This is pretty gross. In G++, the offset in an
1941 anonymous union is relative to the beginning of the
1942 enclosing struct. In the GNU Chill (now deleted
1943 from GDB) implementation of variant records, the
1944 bitpos is zero in an anonymous union field, so we
1945 have to add the offset of the union here. */
1946 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1947 || (TYPE_NFIELDS (field_type) > 0
1948 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1949 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1950
1951 v = search_struct_field (name, arg1, new_offset,
1952 field_type,
1953 looking_for_baseclass);
1954 if (v)
1955 return v;
1956 }
1957 }
1958 }
1959
1960 for (i = 0; i < nbases; i++)
1961 {
1962 struct value *v;
1963 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1964 /* If we are looking for baseclasses, this is what we get when
1965 we hit them. But it could happen that the base part's member
1966 name is not yet filled in. */
1967 int found_baseclass = (looking_for_baseclass
1968 && TYPE_BASECLASS_NAME (type, i) != NULL
1969 && (strcmp_iw (name,
1970 TYPE_BASECLASS_NAME (type,
1971 i)) == 0));
1972
1973 if (BASETYPE_VIA_VIRTUAL (type, i))
1974 {
1975 int boffset;
1976 struct value *v2;
1977
1978 boffset = baseclass_offset (type, i,
1979 value_contents (arg1) + offset,
1980 value_address (arg1)
1981 + value_embedded_offset (arg1)
1982 + offset);
1983 if (boffset == -1)
1984 error (_("virtual baseclass botch"));
1985
1986 /* The virtual base class pointer might have been clobbered
1987 by the user program. Make sure that it still points to a
1988 valid memory location. */
1989
1990 boffset += value_embedded_offset (arg1) + offset;
1991 if (boffset < 0
1992 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1993 {
1994 CORE_ADDR base_addr;
1995
1996 v2 = allocate_value (basetype);
1997 base_addr = value_address (arg1) + boffset;
1998 if (target_read_memory (base_addr,
1999 value_contents_raw (v2),
2000 TYPE_LENGTH (basetype)) != 0)
2001 error (_("virtual baseclass botch"));
2002 VALUE_LVAL (v2) = lval_memory;
2003 set_value_address (v2, base_addr);
2004 }
2005 else
2006 {
2007 v2 = value_copy (arg1);
2008 deprecated_set_value_type (v2, basetype);
2009 set_value_embedded_offset (v2, boffset);
2010 }
2011
2012 if (found_baseclass)
2013 return v2;
2014 v = search_struct_field (name, v2, 0,
2015 TYPE_BASECLASS (type, i),
2016 looking_for_baseclass);
2017 }
2018 else if (found_baseclass)
2019 v = value_primitive_field (arg1, offset, i, type);
2020 else
2021 v = search_struct_field (name, arg1,
2022 offset + TYPE_BASECLASS_BITPOS (type,
2023 i) / 8,
2024 basetype, looking_for_baseclass);
2025 if (v)
2026 return v;
2027 }
2028 return NULL;
2029 }
2030
2031 /* Helper function used by value_struct_elt to recurse through
2032 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2033 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2034 TYPE.
2035
2036 If found, return value, else if name matched and args not return
2037 (value) -1, else return NULL. */
2038
2039 static struct value *
2040 search_struct_method (const char *name, struct value **arg1p,
2041 struct value **args, int offset,
2042 int *static_memfuncp, struct type *type)
2043 {
2044 int i;
2045 struct value *v;
2046 int name_matched = 0;
2047 char dem_opname[64];
2048
2049 CHECK_TYPEDEF (type);
2050 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2051 {
2052 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2053
2054 /* FIXME! May need to check for ARM demangling here */
2055 if (strncmp (t_field_name, "__", 2) == 0 ||
2056 strncmp (t_field_name, "op", 2) == 0 ||
2057 strncmp (t_field_name, "type", 4) == 0)
2058 {
2059 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2060 t_field_name = dem_opname;
2061 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2062 t_field_name = dem_opname;
2063 }
2064 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2065 {
2066 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2067 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2068
2069 name_matched = 1;
2070 check_stub_method_group (type, i);
2071 if (j > 0 && args == 0)
2072 error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
2073 else if (j == 0 && args == 0)
2074 {
2075 v = value_fn_field (arg1p, f, j, type, offset);
2076 if (v != NULL)
2077 return v;
2078 }
2079 else
2080 while (j >= 0)
2081 {
2082 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2083 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2084 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2085 TYPE_FN_FIELD_ARGS (f, j), args))
2086 {
2087 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2088 return value_virtual_fn_field (arg1p, f, j,
2089 type, offset);
2090 if (TYPE_FN_FIELD_STATIC_P (f, j)
2091 && static_memfuncp)
2092 *static_memfuncp = 1;
2093 v = value_fn_field (arg1p, f, j, type, offset);
2094 if (v != NULL)
2095 return v;
2096 }
2097 j--;
2098 }
2099 }
2100 }
2101
2102 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2103 {
2104 int base_offset;
2105
2106 if (BASETYPE_VIA_VIRTUAL (type, i))
2107 {
2108 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2109 const gdb_byte *base_valaddr;
2110
2111 /* The virtual base class pointer might have been
2112 clobbered by the user program. Make sure that it
2113 still points to a valid memory location. */
2114
2115 if (offset < 0 || offset >= TYPE_LENGTH (type))
2116 {
2117 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
2118
2119 if (target_read_memory (value_address (*arg1p) + offset,
2120 tmp, TYPE_LENGTH (baseclass)) != 0)
2121 error (_("virtual baseclass botch"));
2122 base_valaddr = tmp;
2123 }
2124 else
2125 base_valaddr = value_contents (*arg1p) + offset;
2126
2127 base_offset = baseclass_offset (type, i, base_valaddr,
2128 value_address (*arg1p) + offset);
2129 if (base_offset == -1)
2130 error (_("virtual baseclass botch"));
2131 }
2132 else
2133 {
2134 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2135 }
2136 v = search_struct_method (name, arg1p, args, base_offset + offset,
2137 static_memfuncp, TYPE_BASECLASS (type, i));
2138 if (v == (struct value *) - 1)
2139 {
2140 name_matched = 1;
2141 }
2142 else if (v)
2143 {
2144 /* FIXME-bothner: Why is this commented out? Why is it here? */
2145 /* *arg1p = arg1_tmp; */
2146 return v;
2147 }
2148 }
2149 if (name_matched)
2150 return (struct value *) - 1;
2151 else
2152 return NULL;
2153 }
2154
2155 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2156 extract the component named NAME from the ultimate target
2157 structure/union and return it as a value with its appropriate type.
2158 ERR is used in the error message if *ARGP's type is wrong.
2159
2160 C++: ARGS is a list of argument types to aid in the selection of
2161 an appropriate method. Also, handle derived types.
2162
2163 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2164 where the truthvalue of whether the function that was resolved was
2165 a static member function or not is stored.
2166
2167 ERR is an error message to be printed in case the field is not
2168 found. */
2169
2170 struct value *
2171 value_struct_elt (struct value **argp, struct value **args,
2172 const char *name, int *static_memfuncp, const char *err)
2173 {
2174 struct type *t;
2175 struct value *v;
2176
2177 *argp = coerce_array (*argp);
2178
2179 t = check_typedef (value_type (*argp));
2180
2181 /* Follow pointers until we get to a non-pointer. */
2182
2183 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2184 {
2185 *argp = value_ind (*argp);
2186 /* Don't coerce fn pointer to fn and then back again! */
2187 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2188 *argp = coerce_array (*argp);
2189 t = check_typedef (value_type (*argp));
2190 }
2191
2192 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2193 && TYPE_CODE (t) != TYPE_CODE_UNION)
2194 error (_("Attempt to extract a component of a value that is not a %s."), err);
2195
2196 /* Assume it's not, unless we see that it is. */
2197 if (static_memfuncp)
2198 *static_memfuncp = 0;
2199
2200 if (!args)
2201 {
2202 /* if there are no arguments ...do this... */
2203
2204 /* Try as a field first, because if we succeed, there is less
2205 work to be done. */
2206 v = search_struct_field (name, *argp, 0, t, 0);
2207 if (v)
2208 return v;
2209
2210 /* C++: If it was not found as a data field, then try to
2211 return it as a pointer to a method. */
2212 v = search_struct_method (name, argp, args, 0,
2213 static_memfuncp, t);
2214
2215 if (v == (struct value *) - 1)
2216 error (_("Cannot take address of method %s."), name);
2217 else if (v == 0)
2218 {
2219 if (TYPE_NFN_FIELDS (t))
2220 error (_("There is no member or method named %s."), name);
2221 else
2222 error (_("There is no member named %s."), name);
2223 }
2224 return v;
2225 }
2226
2227 v = search_struct_method (name, argp, args, 0,
2228 static_memfuncp, t);
2229
2230 if (v == (struct value *) - 1)
2231 {
2232 error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
2233 }
2234 else if (v == 0)
2235 {
2236 /* See if user tried to invoke data as function. If so, hand it
2237 back. If it's not callable (i.e., a pointer to function),
2238 gdb should give an error. */
2239 v = search_struct_field (name, *argp, 0, t, 0);
2240 /* If we found an ordinary field, then it is not a method call.
2241 So, treat it as if it were a static member function. */
2242 if (v && static_memfuncp)
2243 *static_memfuncp = 1;
2244 }
2245
2246 if (!v)
2247 throw_error (NOT_FOUND_ERROR,
2248 _("Structure has no component named %s."), name);
2249 return v;
2250 }
2251
2252 /* Search through the methods of an object (and its bases) to find a
2253 specified method. Return the pointer to the fn_field list of
2254 overloaded instances.
2255
2256 Helper function for value_find_oload_list.
2257 ARGP is a pointer to a pointer to a value (the object).
2258 METHOD is a string containing the method name.
2259 OFFSET is the offset within the value.
2260 TYPE is the assumed type of the object.
2261 NUM_FNS is the number of overloaded instances.
2262 BASETYPE is set to the actual type of the subobject where the
2263 method is found.
2264 BOFFSET is the offset of the base subobject where the method is found.
2265 */
2266
2267 static struct fn_field *
2268 find_method_list (struct value **argp, const char *method,
2269 int offset, struct type *type, int *num_fns,
2270 struct type **basetype, int *boffset)
2271 {
2272 int i;
2273 struct fn_field *f;
2274 CHECK_TYPEDEF (type);
2275
2276 *num_fns = 0;
2277
2278 /* First check in object itself. */
2279 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2280 {
2281 /* pai: FIXME What about operators and type conversions? */
2282 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2283
2284 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2285 {
2286 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2287 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2288
2289 *num_fns = len;
2290 *basetype = type;
2291 *boffset = offset;
2292
2293 /* Resolve any stub methods. */
2294 check_stub_method_group (type, i);
2295
2296 return f;
2297 }
2298 }
2299
2300 /* Not found in object, check in base subobjects. */
2301 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2302 {
2303 int base_offset;
2304
2305 if (BASETYPE_VIA_VIRTUAL (type, i))
2306 {
2307 base_offset = value_offset (*argp) + offset;
2308 base_offset = baseclass_offset (type, i,
2309 value_contents (*argp) + base_offset,
2310 value_address (*argp) + base_offset);
2311 if (base_offset == -1)
2312 error (_("virtual baseclass botch"));
2313 }
2314 else /* Non-virtual base, simply use bit position from debug
2315 info. */
2316 {
2317 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2318 }
2319 f = find_method_list (argp, method, base_offset + offset,
2320 TYPE_BASECLASS (type, i), num_fns,
2321 basetype, boffset);
2322 if (f)
2323 return f;
2324 }
2325 return NULL;
2326 }
2327
2328 /* Return the list of overloaded methods of a specified name.
2329
2330 ARGP is a pointer to a pointer to a value (the object).
2331 METHOD is the method name.
2332 OFFSET is the offset within the value contents.
2333 NUM_FNS is the number of overloaded instances.
2334 BASETYPE is set to the type of the base subobject that defines the
2335 method.
2336 BOFFSET is the offset of the base subobject which defines the method.
2337 */
2338
2339 struct fn_field *
2340 value_find_oload_method_list (struct value **argp, const char *method,
2341 int offset, int *num_fns,
2342 struct type **basetype, int *boffset)
2343 {
2344 struct type *t;
2345
2346 t = check_typedef (value_type (*argp));
2347
2348 /* Code snarfed from value_struct_elt. */
2349 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2350 {
2351 *argp = value_ind (*argp);
2352 /* Don't coerce fn pointer to fn and then back again! */
2353 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2354 *argp = coerce_array (*argp);
2355 t = check_typedef (value_type (*argp));
2356 }
2357
2358 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2359 && TYPE_CODE (t) != TYPE_CODE_UNION)
2360 error (_("Attempt to extract a component of a value that is not a struct or union"));
2361
2362 return find_method_list (argp, method, 0, t, num_fns,
2363 basetype, boffset);
2364 }
2365
2366 /* Given an array of argument types (ARGTYPES) (which includes an
2367 entry for "this" in the case of C++ methods), the number of
2368 arguments NARGS, the NAME of a function whether it's a method or
2369 not (METHOD), and the degree of laxness (LAX) in conforming to
2370 overload resolution rules in ANSI C++, find the best function that
2371 matches on the argument types according to the overload resolution
2372 rules.
2373
2374 METHOD can be one of three values:
2375 NON_METHOD for non-member functions.
2376 METHOD: for member functions.
2377 BOTH: used for overload resolution of operators where the
2378 candidates are expected to be either member or non member
2379 functions. In this case the first argument ARGTYPES
2380 (representing 'this') is expected to be a reference to the
2381 target object, and will be dereferenced when attempting the
2382 non-member search.
2383
2384 In the case of class methods, the parameter OBJ is an object value
2385 in which to search for overloaded methods.
2386
2387 In the case of non-method functions, the parameter FSYM is a symbol
2388 corresponding to one of the overloaded functions.
2389
2390 Return value is an integer: 0 -> good match, 10 -> debugger applied
2391 non-standard coercions, 100 -> incompatible.
2392
2393 If a method is being searched for, VALP will hold the value.
2394 If a non-method is being searched for, SYMP will hold the symbol
2395 for it.
2396
2397 If a method is being searched for, and it is a static method,
2398 then STATICP will point to a non-zero value.
2399
2400 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2401 ADL overload candidates when performing overload resolution for a fully
2402 qualified name.
2403
2404 Note: This function does *not* check the value of
2405 overload_resolution. Caller must check it to see whether overload
2406 resolution is permitted.
2407 */
2408
2409 int
2410 find_overload_match (struct type **arg_types, int nargs,
2411 const char *name, enum oload_search_type method,
2412 int lax, struct value **objp, struct symbol *fsym,
2413 struct value **valp, struct symbol **symp,
2414 int *staticp, const int no_adl)
2415 {
2416 struct value *obj = (objp ? *objp : NULL);
2417 /* Index of best overloaded function. */
2418 int func_oload_champ = -1;
2419 int method_oload_champ = -1;
2420
2421 /* The measure for the current best match. */
2422 struct badness_vector *method_badness = NULL;
2423 struct badness_vector *func_badness = NULL;
2424
2425 struct value *temp = obj;
2426 /* For methods, the list of overloaded methods. */
2427 struct fn_field *fns_ptr = NULL;
2428 /* For non-methods, the list of overloaded function symbols. */
2429 struct symbol **oload_syms = NULL;
2430 /* Number of overloaded instances being considered. */
2431 int num_fns = 0;
2432 struct type *basetype = NULL;
2433 int boffset;
2434
2435 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2436
2437 const char *obj_type_name = NULL;
2438 const char *func_name = NULL;
2439 enum oload_classification match_quality;
2440 enum oload_classification method_match_quality = INCOMPATIBLE;
2441 enum oload_classification func_match_quality = INCOMPATIBLE;
2442
2443 /* Get the list of overloaded methods or functions. */
2444 if (method == METHOD || method == BOTH)
2445 {
2446 gdb_assert (obj);
2447
2448 /* OBJ may be a pointer value rather than the object itself. */
2449 obj = coerce_ref (obj);
2450 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2451 obj = coerce_ref (value_ind (obj));
2452 obj_type_name = TYPE_NAME (value_type (obj));
2453
2454 /* First check whether this is a data member, e.g. a pointer to
2455 a function. */
2456 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2457 {
2458 *valp = search_struct_field (name, obj, 0,
2459 check_typedef (value_type (obj)), 0);
2460 if (*valp)
2461 {
2462 *staticp = 1;
2463 return 0;
2464 }
2465 }
2466
2467 /* Retrieve the list of methods with the name NAME. */
2468 fns_ptr = value_find_oload_method_list (&temp, name,
2469 0, &num_fns,
2470 &basetype, &boffset);
2471 /* If this is a method only search, and no methods were found
2472 the search has faild. */
2473 if (method == METHOD && (!fns_ptr || !num_fns))
2474 error (_("Couldn't find method %s%s%s"),
2475 obj_type_name,
2476 (obj_type_name && *obj_type_name) ? "::" : "",
2477 name);
2478 /* If we are dealing with stub method types, they should have
2479 been resolved by find_method_list via
2480 value_find_oload_method_list above. */
2481 if (fns_ptr)
2482 {
2483 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2484 method_oload_champ = find_oload_champ (arg_types, nargs, method,
2485 num_fns, fns_ptr,
2486 oload_syms, &method_badness);
2487
2488 method_match_quality =
2489 classify_oload_match (method_badness, nargs,
2490 oload_method_static (method, fns_ptr,
2491 method_oload_champ));
2492
2493 make_cleanup (xfree, method_badness);
2494 }
2495
2496 }
2497
2498 if (method == NON_METHOD || method == BOTH)
2499 {
2500 const char *qualified_name = NULL;
2501
2502 /* If the the overload match is being search for both
2503 as a method and non member function, the first argument
2504 must now be dereferenced. */
2505 if (method == BOTH)
2506 arg_types[0] = TYPE_TARGET_TYPE (arg_types[0]);
2507
2508 if (fsym)
2509 {
2510 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2511
2512 /* If we have a function with a C++ name, try to extract just
2513 the function part. Do not try this for non-functions (e.g.
2514 function pointers). */
2515 if (qualified_name
2516 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym))) == TYPE_CODE_FUNC)
2517 {
2518 char *temp;
2519
2520 temp = cp_func_name (qualified_name);
2521
2522 /* If cp_func_name did not remove anything, the name of the
2523 symbol did not include scope or argument types - it was
2524 probably a C-style function. */
2525 if (temp)
2526 {
2527 make_cleanup (xfree, temp);
2528 if (strcmp (temp, qualified_name) == 0)
2529 func_name = NULL;
2530 else
2531 func_name = temp;
2532 }
2533 }
2534 }
2535 else
2536 {
2537 func_name = name;
2538 qualified_name = name;
2539 }
2540
2541 /* If there was no C++ name, this must be a C-style function or
2542 not a function at all. Just return the same symbol. Do the
2543 same if cp_func_name fails for some reason. */
2544 if (func_name == NULL)
2545 {
2546 *symp = fsym;
2547 return 0;
2548 }
2549
2550 func_oload_champ = find_oload_champ_namespace (arg_types, nargs,
2551 func_name,
2552 qualified_name,
2553 &oload_syms,
2554 &func_badness,
2555 no_adl);
2556
2557 if (func_oload_champ >= 0)
2558 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2559
2560 make_cleanup (xfree, oload_syms);
2561 make_cleanup (xfree, func_badness);
2562 }
2563
2564 /* Did we find a match ? */
2565 if (method_oload_champ == -1 && func_oload_champ == -1)
2566 throw_error (NOT_FOUND_ERROR,
2567 _("No symbol \"%s\" in current context."),
2568 name);
2569
2570 /* If we have found both a method match and a function
2571 match, find out which one is better, and calculate match
2572 quality. */
2573 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2574 {
2575 switch (compare_badness (func_badness, method_badness))
2576 {
2577 case 0: /* Top two contenders are equally good. */
2578 /* FIXME: GDB does not support the general ambiguous
2579 case. All candidates should be collected and presented
2580 the the user. */
2581 error (_("Ambiguous overload resolution"));
2582 break;
2583 case 1: /* Incomparable top contenders. */
2584 /* This is an error incompatible candidates
2585 should not have been proposed. */
2586 error (_("Internal error: incompatible overload candidates proposed"));
2587 break;
2588 case 2: /* Function champion. */
2589 method_oload_champ = -1;
2590 match_quality = func_match_quality;
2591 break;
2592 case 3: /* Method champion. */
2593 func_oload_champ = -1;
2594 match_quality = method_match_quality;
2595 break;
2596 default:
2597 error (_("Internal error: unexpected overload comparison result"));
2598 break;
2599 }
2600 }
2601 else
2602 {
2603 /* We have either a method match or a function match. */
2604 if (method_oload_champ >= 0)
2605 match_quality = method_match_quality;
2606 else
2607 match_quality = func_match_quality;
2608 }
2609
2610 if (match_quality == INCOMPATIBLE)
2611 {
2612 if (method == METHOD)
2613 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2614 obj_type_name,
2615 (obj_type_name && *obj_type_name) ? "::" : "",
2616 name);
2617 else
2618 error (_("Cannot resolve function %s to any overloaded instance"),
2619 func_name);
2620 }
2621 else if (match_quality == NON_STANDARD)
2622 {
2623 if (method == METHOD)
2624 warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
2625 obj_type_name,
2626 (obj_type_name && *obj_type_name) ? "::" : "",
2627 name);
2628 else
2629 warning (_("Using non-standard conversion to match function %s to supplied arguments"),
2630 func_name);
2631 }
2632
2633 if (staticp != NULL)
2634 *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2635
2636 if (method_oload_champ >= 0)
2637 {
2638 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2639 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2640 basetype, boffset);
2641 else
2642 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2643 basetype, boffset);
2644 }
2645 else
2646 *symp = oload_syms[func_oload_champ];
2647
2648 if (objp)
2649 {
2650 struct type *temp_type = check_typedef (value_type (temp));
2651 struct type *obj_type = check_typedef (value_type (*objp));
2652
2653 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2654 && (TYPE_CODE (obj_type) == TYPE_CODE_PTR
2655 || TYPE_CODE (obj_type) == TYPE_CODE_REF))
2656 {
2657 temp = value_addr (temp);
2658 }
2659 *objp = temp;
2660 }
2661
2662 do_cleanups (all_cleanups);
2663
2664 switch (match_quality)
2665 {
2666 case INCOMPATIBLE:
2667 return 100;
2668 case NON_STANDARD:
2669 return 10;
2670 default: /* STANDARD */
2671 return 0;
2672 }
2673 }
2674
2675 /* Find the best overload match, searching for FUNC_NAME in namespaces
2676 contained in QUALIFIED_NAME until it either finds a good match or
2677 runs out of namespaces. It stores the overloaded functions in
2678 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2679 calling function is responsible for freeing *OLOAD_SYMS and
2680 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2681 performned. */
2682
2683 static int
2684 find_oload_champ_namespace (struct type **arg_types, int nargs,
2685 const char *func_name,
2686 const char *qualified_name,
2687 struct symbol ***oload_syms,
2688 struct badness_vector **oload_champ_bv,
2689 const int no_adl)
2690 {
2691 int oload_champ;
2692
2693 find_oload_champ_namespace_loop (arg_types, nargs,
2694 func_name,
2695 qualified_name, 0,
2696 oload_syms, oload_champ_bv,
2697 &oload_champ,
2698 no_adl);
2699
2700 return oload_champ;
2701 }
2702
2703 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2704 how deep we've looked for namespaces, and the champ is stored in
2705 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2706 if it isn't. Other arguments are the same as in
2707 find_oload_champ_namespace
2708
2709 It is the caller's responsibility to free *OLOAD_SYMS and
2710 *OLOAD_CHAMP_BV. */
2711
2712 static int
2713 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2714 const char *func_name,
2715 const char *qualified_name,
2716 int namespace_len,
2717 struct symbol ***oload_syms,
2718 struct badness_vector **oload_champ_bv,
2719 int *oload_champ,
2720 const int no_adl)
2721 {
2722 int next_namespace_len = namespace_len;
2723 int searched_deeper = 0;
2724 int num_fns = 0;
2725 struct cleanup *old_cleanups;
2726 int new_oload_champ;
2727 struct symbol **new_oload_syms;
2728 struct badness_vector *new_oload_champ_bv;
2729 char *new_namespace;
2730
2731 if (next_namespace_len != 0)
2732 {
2733 gdb_assert (qualified_name[next_namespace_len] == ':');
2734 next_namespace_len += 2;
2735 }
2736 next_namespace_len +=
2737 cp_find_first_component (qualified_name + next_namespace_len);
2738
2739 /* Initialize these to values that can safely be xfree'd. */
2740 *oload_syms = NULL;
2741 *oload_champ_bv = NULL;
2742
2743 /* First, see if we have a deeper namespace we can search in.
2744 If we get a good match there, use it. */
2745
2746 if (qualified_name[next_namespace_len] == ':')
2747 {
2748 searched_deeper = 1;
2749
2750 if (find_oload_champ_namespace_loop (arg_types, nargs,
2751 func_name, qualified_name,
2752 next_namespace_len,
2753 oload_syms, oload_champ_bv,
2754 oload_champ, no_adl))
2755 {
2756 return 1;
2757 }
2758 };
2759
2760 /* If we reach here, either we're in the deepest namespace or we
2761 didn't find a good match in a deeper namespace. But, in the
2762 latter case, we still have a bad match in a deeper namespace;
2763 note that we might not find any match at all in the current
2764 namespace. (There's always a match in the deepest namespace,
2765 because this overload mechanism only gets called if there's a
2766 function symbol to start off with.) */
2767
2768 old_cleanups = make_cleanup (xfree, *oload_syms);
2769 make_cleanup (xfree, *oload_champ_bv);
2770 new_namespace = alloca (namespace_len + 1);
2771 strncpy (new_namespace, qualified_name, namespace_len);
2772 new_namespace[namespace_len] = '\0';
2773 new_oload_syms = make_symbol_overload_list (func_name,
2774 new_namespace);
2775
2776 /* If we have reached the deepest level perform argument
2777 determined lookup. */
2778 if (!searched_deeper && !no_adl)
2779 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2780
2781 while (new_oload_syms[num_fns])
2782 ++num_fns;
2783
2784 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2785 NULL, new_oload_syms,
2786 &new_oload_champ_bv);
2787
2788 /* Case 1: We found a good match. Free earlier matches (if any),
2789 and return it. Case 2: We didn't find a good match, but we're
2790 not the deepest function. Then go with the bad match that the
2791 deeper function found. Case 3: We found a bad match, and we're
2792 the deepest function. Then return what we found, even though
2793 it's a bad match. */
2794
2795 if (new_oload_champ != -1
2796 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2797 {
2798 *oload_syms = new_oload_syms;
2799 *oload_champ = new_oload_champ;
2800 *oload_champ_bv = new_oload_champ_bv;
2801 do_cleanups (old_cleanups);
2802 return 1;
2803 }
2804 else if (searched_deeper)
2805 {
2806 xfree (new_oload_syms);
2807 xfree (new_oload_champ_bv);
2808 discard_cleanups (old_cleanups);
2809 return 0;
2810 }
2811 else
2812 {
2813 *oload_syms = new_oload_syms;
2814 *oload_champ = new_oload_champ;
2815 *oload_champ_bv = new_oload_champ_bv;
2816 do_cleanups (old_cleanups);
2817 return 0;
2818 }
2819 }
2820
2821 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2822 the best match from among the overloaded methods or functions
2823 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2824 The number of methods/functions in the list is given by NUM_FNS.
2825 Return the index of the best match; store an indication of the
2826 quality of the match in OLOAD_CHAMP_BV.
2827
2828 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2829
2830 static int
2831 find_oload_champ (struct type **arg_types, int nargs, int method,
2832 int num_fns, struct fn_field *fns_ptr,
2833 struct symbol **oload_syms,
2834 struct badness_vector **oload_champ_bv)
2835 {
2836 int ix;
2837 /* A measure of how good an overloaded instance is. */
2838 struct badness_vector *bv;
2839 /* Index of best overloaded function. */
2840 int oload_champ = -1;
2841 /* Current ambiguity state for overload resolution. */
2842 int oload_ambiguous = 0;
2843 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2844
2845 *oload_champ_bv = NULL;
2846
2847 /* Consider each candidate in turn. */
2848 for (ix = 0; ix < num_fns; ix++)
2849 {
2850 int jj;
2851 int static_offset = oload_method_static (method, fns_ptr, ix);
2852 int nparms;
2853 struct type **parm_types;
2854
2855 if (method)
2856 {
2857 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2858 }
2859 else
2860 {
2861 /* If it's not a method, this is the proper place. */
2862 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2863 }
2864
2865 /* Prepare array of parameter types. */
2866 parm_types = (struct type **)
2867 xmalloc (nparms * (sizeof (struct type *)));
2868 for (jj = 0; jj < nparms; jj++)
2869 parm_types[jj] = (method
2870 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2871 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2872 jj));
2873
2874 /* Compare parameter types to supplied argument types. Skip
2875 THIS for static methods. */
2876 bv = rank_function (parm_types, nparms,
2877 arg_types + static_offset,
2878 nargs - static_offset);
2879
2880 if (!*oload_champ_bv)
2881 {
2882 *oload_champ_bv = bv;
2883 oload_champ = 0;
2884 }
2885 else /* See whether current candidate is better or worse than
2886 previous best. */
2887 switch (compare_badness (bv, *oload_champ_bv))
2888 {
2889 case 0: /* Top two contenders are equally good. */
2890 oload_ambiguous = 1;
2891 break;
2892 case 1: /* Incomparable top contenders. */
2893 oload_ambiguous = 2;
2894 break;
2895 case 2: /* New champion, record details. */
2896 *oload_champ_bv = bv;
2897 oload_ambiguous = 0;
2898 oload_champ = ix;
2899 break;
2900 case 3:
2901 default:
2902 break;
2903 }
2904 xfree (parm_types);
2905 if (overload_debug)
2906 {
2907 if (method)
2908 fprintf_filtered (gdb_stderr,
2909 "Overloaded method instance %s, # of parms %d\n",
2910 fns_ptr[ix].physname, nparms);
2911 else
2912 fprintf_filtered (gdb_stderr,
2913 "Overloaded function instance %s # of parms %d\n",
2914 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2915 nparms);
2916 for (jj = 0; jj < nargs - static_offset; jj++)
2917 fprintf_filtered (gdb_stderr,
2918 "...Badness @ %d : %d\n",
2919 jj, bv->rank[jj].rank);
2920 fprintf_filtered (gdb_stderr,
2921 "Overload resolution champion is %d, ambiguous? %d\n",
2922 oload_champ, oload_ambiguous);
2923 }
2924 }
2925
2926 return oload_champ;
2927 }
2928
2929 /* Return 1 if we're looking at a static method, 0 if we're looking at
2930 a non-static method or a function that isn't a method. */
2931
2932 static int
2933 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2934 {
2935 if (method && fns_ptr && index >= 0
2936 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2937 return 1;
2938 else
2939 return 0;
2940 }
2941
2942 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2943
2944 static enum oload_classification
2945 classify_oload_match (struct badness_vector *oload_champ_bv,
2946 int nargs,
2947 int static_offset)
2948 {
2949 int ix;
2950
2951 for (ix = 1; ix <= nargs - static_offset; ix++)
2952 {
2953 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
2954 or worse return INCOMPATIBLE. */
2955 if (compare_ranks (oload_champ_bv->rank[ix],
2956 INCOMPATIBLE_TYPE_BADNESS) <= 0)
2957 return INCOMPATIBLE; /* Truly mismatched types. */
2958 /* Otherwise If this conversion is as bad as
2959 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
2960 else if (compare_ranks (oload_champ_bv->rank[ix],
2961 NS_POINTER_CONVERSION_BADNESS) <= 0)
2962 return NON_STANDARD; /* Non-standard type conversions
2963 needed. */
2964 }
2965
2966 return STANDARD; /* Only standard conversions needed. */
2967 }
2968
2969 /* C++: return 1 is NAME is a legitimate name for the destructor of
2970 type TYPE. If TYPE does not have a destructor, or if NAME is
2971 inappropriate for TYPE, an error is signaled. */
2972 int
2973 destructor_name_p (const char *name, const struct type *type)
2974 {
2975 if (name[0] == '~')
2976 {
2977 char *dname = type_name_no_tag (type);
2978 char *cp = strchr (dname, '<');
2979 unsigned int len;
2980
2981 /* Do not compare the template part for template classes. */
2982 if (cp == NULL)
2983 len = strlen (dname);
2984 else
2985 len = cp - dname;
2986 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2987 error (_("name of destructor must equal name of class"));
2988 else
2989 return 1;
2990 }
2991 return 0;
2992 }
2993
2994 /* Given TYPE, a structure/union,
2995 return 1 if the component named NAME from the ultimate target
2996 structure/union is defined, otherwise, return 0. */
2997
2998 int
2999 check_field (struct type *type, const char *name)
3000 {
3001 int i;
3002
3003 /* The type may be a stub. */
3004 CHECK_TYPEDEF (type);
3005
3006 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
3007 {
3008 char *t_field_name = TYPE_FIELD_NAME (type, i);
3009
3010 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
3011 return 1;
3012 }
3013
3014 /* C++: If it was not found as a data field, then try to return it
3015 as a pointer to a method. */
3016
3017 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
3018 {
3019 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
3020 return 1;
3021 }
3022
3023 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3024 if (check_field (TYPE_BASECLASS (type, i), name))
3025 return 1;
3026
3027 return 0;
3028 }
3029
3030 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3031 return the appropriate member (or the address of the member, if
3032 WANT_ADDRESS). This function is used to resolve user expressions
3033 of the form "DOMAIN::NAME". For more details on what happens, see
3034 the comment before value_struct_elt_for_reference. */
3035
3036 struct value *
3037 value_aggregate_elt (struct type *curtype, char *name,
3038 struct type *expect_type, int want_address,
3039 enum noside noside)
3040 {
3041 switch (TYPE_CODE (curtype))
3042 {
3043 case TYPE_CODE_STRUCT:
3044 case TYPE_CODE_UNION:
3045 return value_struct_elt_for_reference (curtype, 0, curtype,
3046 name, expect_type,
3047 want_address, noside);
3048 case TYPE_CODE_NAMESPACE:
3049 return value_namespace_elt (curtype, name,
3050 want_address, noside);
3051 default:
3052 internal_error (__FILE__, __LINE__,
3053 _("non-aggregate type in value_aggregate_elt"));
3054 }
3055 }
3056
3057 /* Compares the two method/function types T1 and T2 for "equality"
3058 with respect to the the methods' parameters. If the types of the
3059 two parameter lists are the same, returns 1; 0 otherwise. This
3060 comparison may ignore any artificial parameters in T1 if
3061 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3062 the first artificial parameter in T1, assumed to be a 'this' pointer.
3063
3064 The type T2 is expected to have come from make_params (in eval.c). */
3065
3066 static int
3067 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3068 {
3069 int start = 0;
3070
3071 if (TYPE_FIELD_ARTIFICIAL (t1, 0))
3072 ++start;
3073
3074 /* If skipping artificial fields, find the first real field
3075 in T1. */
3076 if (skip_artificial)
3077 {
3078 while (start < TYPE_NFIELDS (t1)
3079 && TYPE_FIELD_ARTIFICIAL (t1, start))
3080 ++start;
3081 }
3082
3083 /* Now compare parameters */
3084
3085 /* Special case: a method taking void. T1 will contain no
3086 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3087 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3088 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3089 return 1;
3090
3091 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3092 {
3093 int i;
3094
3095 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3096 {
3097 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3098 TYPE_FIELD_TYPE (t2, i)),
3099 EXACT_MATCH_BADNESS) != 0)
3100 return 0;
3101 }
3102
3103 return 1;
3104 }
3105
3106 return 0;
3107 }
3108
3109 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3110 return the address of this member as a "pointer to member" type.
3111 If INTYPE is non-null, then it will be the type of the member we
3112 are looking for. This will help us resolve "pointers to member
3113 functions". This function is used to resolve user expressions of
3114 the form "DOMAIN::NAME". */
3115
3116 static struct value *
3117 value_struct_elt_for_reference (struct type *domain, int offset,
3118 struct type *curtype, char *name,
3119 struct type *intype,
3120 int want_address,
3121 enum noside noside)
3122 {
3123 struct type *t = curtype;
3124 int i;
3125 struct value *v, *result;
3126
3127 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3128 && TYPE_CODE (t) != TYPE_CODE_UNION)
3129 error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
3130
3131 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3132 {
3133 char *t_field_name = TYPE_FIELD_NAME (t, i);
3134
3135 if (t_field_name && strcmp (t_field_name, name) == 0)
3136 {
3137 if (field_is_static (&TYPE_FIELD (t, i)))
3138 {
3139 v = value_static_field (t, i);
3140 if (v == NULL)
3141 error (_("static field %s has been optimized out"),
3142 name);
3143 if (want_address)
3144 v = value_addr (v);
3145 return v;
3146 }
3147 if (TYPE_FIELD_PACKED (t, i))
3148 error (_("pointers to bitfield members not allowed"));
3149
3150 if (want_address)
3151 return value_from_longest
3152 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3153 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3154 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3155 return allocate_value (TYPE_FIELD_TYPE (t, i));
3156 else
3157 error (_("Cannot reference non-static field \"%s\""), name);
3158 }
3159 }
3160
3161 /* C++: If it was not found as a data field, then try to return it
3162 as a pointer to a method. */
3163
3164 /* Perform all necessary dereferencing. */
3165 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3166 intype = TYPE_TARGET_TYPE (intype);
3167
3168 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3169 {
3170 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3171 char dem_opname[64];
3172
3173 if (strncmp (t_field_name, "__", 2) == 0
3174 || strncmp (t_field_name, "op", 2) == 0
3175 || strncmp (t_field_name, "type", 4) == 0)
3176 {
3177 if (cplus_demangle_opname (t_field_name,
3178 dem_opname, DMGL_ANSI))
3179 t_field_name = dem_opname;
3180 else if (cplus_demangle_opname (t_field_name,
3181 dem_opname, 0))
3182 t_field_name = dem_opname;
3183 }
3184 if (t_field_name && strcmp (t_field_name, name) == 0)
3185 {
3186 int j;
3187 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3188 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3189
3190 check_stub_method_group (t, i);
3191
3192 if (intype)
3193 {
3194 for (j = 0; j < len; ++j)
3195 {
3196 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3197 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 1))
3198 break;
3199 }
3200
3201 if (j == len)
3202 error (_("no member function matches that type instantiation"));
3203 }
3204 else
3205 {
3206 int ii;
3207
3208 j = -1;
3209 for (ii = 0; ii < TYPE_FN_FIELDLIST_LENGTH (t, i);
3210 ++ii)
3211 {
3212 /* Skip artificial methods. This is necessary if,
3213 for example, the user wants to "print
3214 subclass::subclass" with only one user-defined
3215 constructor. There is no ambiguity in this
3216 case. */
3217 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3218 continue;
3219
3220 /* Desired method is ambiguous if more than one
3221 method is defined. */
3222 if (j != -1)
3223 error (_("non-unique member `%s' requires type instantiation"), name);
3224
3225 j = ii;
3226 }
3227 }
3228
3229 if (TYPE_FN_FIELD_STATIC_P (f, j))
3230 {
3231 struct symbol *s =
3232 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3233 0, VAR_DOMAIN, 0);
3234
3235 if (s == NULL)
3236 return NULL;
3237
3238 if (want_address)
3239 return value_addr (read_var_value (s, 0));
3240 else
3241 return read_var_value (s, 0);
3242 }
3243
3244 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3245 {
3246 if (want_address)
3247 {
3248 result = allocate_value
3249 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3250 cplus_make_method_ptr (value_type (result),
3251 value_contents_writeable (result),
3252 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3253 }
3254 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3255 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3256 else
3257 error (_("Cannot reference virtual member function \"%s\""),
3258 name);
3259 }
3260 else
3261 {
3262 struct symbol *s =
3263 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3264 0, VAR_DOMAIN, 0);
3265
3266 if (s == NULL)
3267 return NULL;
3268
3269 v = read_var_value (s, 0);
3270 if (!want_address)
3271 result = v;
3272 else
3273 {
3274 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3275 cplus_make_method_ptr (value_type (result),
3276 value_contents_writeable (result),
3277 value_address (v), 0);
3278 }
3279 }
3280 return result;
3281 }
3282 }
3283 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3284 {
3285 struct value *v;
3286 int base_offset;
3287
3288 if (BASETYPE_VIA_VIRTUAL (t, i))
3289 base_offset = 0;
3290 else
3291 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3292 v = value_struct_elt_for_reference (domain,
3293 offset + base_offset,
3294 TYPE_BASECLASS (t, i),
3295 name, intype,
3296 want_address, noside);
3297 if (v)
3298 return v;
3299 }
3300
3301 /* As a last chance, pretend that CURTYPE is a namespace, and look
3302 it up that way; this (frequently) works for types nested inside
3303 classes. */
3304
3305 return value_maybe_namespace_elt (curtype, name,
3306 want_address, noside);
3307 }
3308
3309 /* C++: Return the member NAME of the namespace given by the type
3310 CURTYPE. */
3311
3312 static struct value *
3313 value_namespace_elt (const struct type *curtype,
3314 char *name, int want_address,
3315 enum noside noside)
3316 {
3317 struct value *retval = value_maybe_namespace_elt (curtype, name,
3318 want_address,
3319 noside);
3320
3321 if (retval == NULL)
3322 error (_("No symbol \"%s\" in namespace \"%s\"."),
3323 name, TYPE_TAG_NAME (curtype));
3324
3325 return retval;
3326 }
3327
3328 /* A helper function used by value_namespace_elt and
3329 value_struct_elt_for_reference. It looks up NAME inside the
3330 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3331 is a class and NAME refers to a type in CURTYPE itself (as opposed
3332 to, say, some base class of CURTYPE). */
3333
3334 static struct value *
3335 value_maybe_namespace_elt (const struct type *curtype,
3336 char *name, int want_address,
3337 enum noside noside)
3338 {
3339 const char *namespace_name = TYPE_TAG_NAME (curtype);
3340 struct symbol *sym;
3341 struct value *result;
3342
3343 sym = cp_lookup_symbol_namespace (namespace_name, name,
3344 get_selected_block (0), VAR_DOMAIN);
3345
3346 if (sym == NULL)
3347 {
3348 char *concatenated_name = alloca (strlen (namespace_name) + 2
3349 + strlen (name) + 1);
3350
3351 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3352 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3353 }
3354
3355 if (sym == NULL)
3356 return NULL;
3357 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3358 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3359 result = allocate_value (SYMBOL_TYPE (sym));
3360 else
3361 result = value_of_variable (sym, get_selected_block (0));
3362
3363 if (result && want_address)
3364 result = value_addr (result);
3365
3366 return result;
3367 }
3368
3369 /* Given a pointer value V, find the real (RTTI) type of the object it
3370 points to.
3371
3372 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3373 and refer to the values computed for the object pointed to. */
3374
3375 struct type *
3376 value_rtti_target_type (struct value *v, int *full,
3377 int *top, int *using_enc)
3378 {
3379 struct value *target;
3380
3381 target = value_ind (v);
3382
3383 return value_rtti_type (target, full, top, using_enc);
3384 }
3385
3386 /* Given a value pointed to by ARGP, check its real run-time type, and
3387 if that is different from the enclosing type, create a new value
3388 using the real run-time type as the enclosing type (and of the same
3389 type as ARGP) and return it, with the embedded offset adjusted to
3390 be the correct offset to the enclosed object. RTYPE is the type,
3391 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3392 by value_rtti_type(). If these are available, they can be supplied
3393 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3394 NULL if they're not available. */
3395
3396 struct value *
3397 value_full_object (struct value *argp,
3398 struct type *rtype,
3399 int xfull, int xtop,
3400 int xusing_enc)
3401 {
3402 struct type *real_type;
3403 int full = 0;
3404 int top = -1;
3405 int using_enc = 0;
3406 struct value *new_val;
3407
3408 if (rtype)
3409 {
3410 real_type = rtype;
3411 full = xfull;
3412 top = xtop;
3413 using_enc = xusing_enc;
3414 }
3415 else
3416 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3417
3418 /* If no RTTI data, or if object is already complete, do nothing. */
3419 if (!real_type || real_type == value_enclosing_type (argp))
3420 return argp;
3421
3422 /* If we have the full object, but for some reason the enclosing
3423 type is wrong, set it. */
3424 /* pai: FIXME -- sounds iffy */
3425 if (full)
3426 {
3427 argp = value_copy (argp);
3428 set_value_enclosing_type (argp, real_type);
3429 return argp;
3430 }
3431
3432 /* Check if object is in memory */
3433 if (VALUE_LVAL (argp) != lval_memory)
3434 {
3435 warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."),
3436 TYPE_NAME (real_type));
3437
3438 return argp;
3439 }
3440
3441 /* All other cases -- retrieve the complete object. */
3442 /* Go back by the computed top_offset from the beginning of the
3443 object, adjusting for the embedded offset of argp if that's what
3444 value_rtti_type used for its computation. */
3445 new_val = value_at_lazy (real_type, value_address (argp) - top +
3446 (using_enc ? 0 : value_embedded_offset (argp)));
3447 deprecated_set_value_type (new_val, value_type (argp));
3448 set_value_embedded_offset (new_val, (using_enc
3449 ? top + value_embedded_offset (argp)
3450 : top));
3451 return new_val;
3452 }
3453
3454
3455 /* Return the value of the local variable, if one exists.
3456 Flag COMPLAIN signals an error if the request is made in an
3457 inappropriate context. */
3458
3459 struct value *
3460 value_of_local (const char *name, int complain)
3461 {
3462 struct symbol *func, *sym;
3463 struct block *b;
3464 struct value * ret;
3465 struct frame_info *frame;
3466
3467 if (complain)
3468 frame = get_selected_frame (_("no frame selected"));
3469 else
3470 {
3471 frame = deprecated_safe_get_selected_frame ();
3472 if (frame == 0)
3473 return 0;
3474 }
3475
3476 func = get_frame_function (frame);
3477 if (!func)
3478 {
3479 if (complain)
3480 error (_("no `%s' in nameless context"), name);
3481 else
3482 return 0;
3483 }
3484
3485 b = SYMBOL_BLOCK_VALUE (func);
3486 if (dict_empty (BLOCK_DICT (b)))
3487 {
3488 if (complain)
3489 error (_("no args, no `%s'"), name);
3490 else
3491 return 0;
3492 }
3493
3494 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3495 symbol instead of the LOC_ARG one (if both exist). */
3496 sym = lookup_block_symbol (b, name, VAR_DOMAIN);
3497 if (sym == NULL)
3498 {
3499 if (complain)
3500 error (_("current stack frame does not contain a variable named `%s'"),
3501 name);
3502 else
3503 return NULL;
3504 }
3505
3506 ret = read_var_value (sym, frame);
3507 if (ret == 0 && complain)
3508 error (_("`%s' argument unreadable"), name);
3509 return ret;
3510 }
3511
3512 /* C++/Objective-C: return the value of the class instance variable,
3513 if one exists. Flag COMPLAIN signals an error if the request is
3514 made in an inappropriate context. */
3515
3516 struct value *
3517 value_of_this (int complain)
3518 {
3519 if (!current_language->la_name_of_this)
3520 return 0;
3521 return value_of_local (current_language->la_name_of_this, complain);
3522 }
3523
3524 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3525 elements long, starting at LOWBOUND. The result has the same lower
3526 bound as the original ARRAY. */
3527
3528 struct value *
3529 value_slice (struct value *array, int lowbound, int length)
3530 {
3531 struct type *slice_range_type, *slice_type, *range_type;
3532 LONGEST lowerbound, upperbound;
3533 struct value *slice;
3534 struct type *array_type;
3535
3536 array_type = check_typedef (value_type (array));
3537 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3538 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3539 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3540 error (_("cannot take slice of non-array"));
3541
3542 range_type = TYPE_INDEX_TYPE (array_type);
3543 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3544 error (_("slice from bad array or bitstring"));
3545
3546 if (lowbound < lowerbound || length < 0
3547 || lowbound + length - 1 > upperbound)
3548 error (_("slice out of range"));
3549
3550 /* FIXME-type-allocation: need a way to free this type when we are
3551 done with it. */
3552 slice_range_type = create_range_type ((struct type *) NULL,
3553 TYPE_TARGET_TYPE (range_type),
3554 lowbound,
3555 lowbound + length - 1);
3556 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3557 {
3558 int i;
3559
3560 slice_type = create_set_type ((struct type *) NULL,
3561 slice_range_type);
3562 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3563 slice = value_zero (slice_type, not_lval);
3564
3565 for (i = 0; i < length; i++)
3566 {
3567 int element = value_bit_index (array_type,
3568 value_contents (array),
3569 lowbound + i);
3570
3571 if (element < 0)
3572 error (_("internal error accessing bitstring"));
3573 else if (element > 0)
3574 {
3575 int j = i % TARGET_CHAR_BIT;
3576
3577 if (gdbarch_bits_big_endian (get_type_arch (array_type)))
3578 j = TARGET_CHAR_BIT - 1 - j;
3579 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3580 }
3581 }
3582 /* We should set the address, bitssize, and bitspos, so the
3583 slice can be used on the LHS, but that may require extensions
3584 to value_assign. For now, just leave as a non_lval.
3585 FIXME. */
3586 }
3587 else
3588 {
3589 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3590 LONGEST offset =
3591 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3592
3593 slice_type = create_array_type ((struct type *) NULL,
3594 element_type,
3595 slice_range_type);
3596 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3597
3598 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3599 slice = allocate_value_lazy (slice_type);
3600 else
3601 {
3602 slice = allocate_value (slice_type);
3603 memcpy (value_contents_writeable (slice),
3604 value_contents (array) + offset,
3605 TYPE_LENGTH (slice_type));
3606 }
3607
3608 set_value_component_location (slice, array);
3609 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3610 set_value_offset (slice, value_offset (array) + offset);
3611 }
3612 return slice;
3613 }
3614
3615 /* Create a value for a FORTRAN complex number. Currently most of the
3616 time values are coerced to COMPLEX*16 (i.e. a complex number
3617 composed of 2 doubles. This really should be a smarter routine
3618 that figures out precision inteligently as opposed to assuming
3619 doubles. FIXME: fmb */
3620
3621 struct value *
3622 value_literal_complex (struct value *arg1,
3623 struct value *arg2,
3624 struct type *type)
3625 {
3626 struct value *val;
3627 struct type *real_type = TYPE_TARGET_TYPE (type);
3628
3629 val = allocate_value (type);
3630 arg1 = value_cast (real_type, arg1);
3631 arg2 = value_cast (real_type, arg2);
3632
3633 memcpy (value_contents_raw (val),
3634 value_contents (arg1), TYPE_LENGTH (real_type));
3635 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3636 value_contents (arg2), TYPE_LENGTH (real_type));
3637 return val;
3638 }
3639
3640 /* Cast a value into the appropriate complex data type. */
3641
3642 static struct value *
3643 cast_into_complex (struct type *type, struct value *val)
3644 {
3645 struct type *real_type = TYPE_TARGET_TYPE (type);
3646
3647 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3648 {
3649 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3650 struct value *re_val = allocate_value (val_real_type);
3651 struct value *im_val = allocate_value (val_real_type);
3652
3653 memcpy (value_contents_raw (re_val),
3654 value_contents (val), TYPE_LENGTH (val_real_type));
3655 memcpy (value_contents_raw (im_val),
3656 value_contents (val) + TYPE_LENGTH (val_real_type),
3657 TYPE_LENGTH (val_real_type));
3658
3659 return value_literal_complex (re_val, im_val, type);
3660 }
3661 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3662 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3663 return value_literal_complex (val,
3664 value_zero (real_type, not_lval),
3665 type);
3666 else
3667 error (_("cannot cast non-number to complex"));
3668 }
3669
3670 void
3671 _initialize_valops (void)
3672 {
3673 add_setshow_boolean_cmd ("overload-resolution", class_support,
3674 &overload_resolution, _("\
3675 Set overload resolution in evaluating C++ functions."), _("\
3676 Show overload resolution in evaluating C++ functions."),
3677 NULL, NULL,
3678 show_overload_resolution,
3679 &setlist, &showlist);
3680 overload_resolution = 1;
3681 }
This page took 0.111207 seconds and 4 git commands to generate.