e18d9c802a71441ebbade0050aafd57bc4819c6f
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009, 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33 #include "regcache.h"
34 #include "cp-abi.h"
35 #include "block.h"
36 #include "infcall.h"
37 #include "dictionary.h"
38 #include "cp-support.h"
39 #include "dfp.h"
40 #include "user-regs.h"
41
42 #include <errno.h>
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
46 #include "observer.h"
47 #include "objfiles.h"
48 #include "symtab.h"
49
50 extern int overload_debug;
51 /* Local functions. */
52
53 static int typecmp (int staticp, int varargs, int nargs,
54 struct field t1[], struct value *t2[]);
55
56 static struct value *search_struct_field (const char *, struct value *,
57 int, struct type *, int);
58
59 static struct value *search_struct_method (const char *, struct value **,
60 struct value **,
61 int, int *, struct type *);
62
63 static int find_oload_champ_namespace (struct type **, int,
64 const char *, const char *,
65 struct symbol ***,
66 struct badness_vector **,
67 const int no_adl);
68
69 static
70 int find_oload_champ_namespace_loop (struct type **, int,
71 const char *, const char *,
72 int, struct symbol ***,
73 struct badness_vector **, int *,
74 const int no_adl);
75
76 static int find_oload_champ (struct type **, int, int, int,
77 struct fn_field *, struct symbol **,
78 struct badness_vector **);
79
80 static int oload_method_static (int, struct fn_field *, int);
81
82 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
83
84 static enum
85 oload_classification classify_oload_match (struct badness_vector *,
86 int, int);
87
88 static struct value *value_struct_elt_for_reference (struct type *,
89 int, struct type *,
90 char *,
91 struct type *,
92 int, enum noside);
93
94 static struct value *value_namespace_elt (const struct type *,
95 char *, int , enum noside);
96
97 static struct value *value_maybe_namespace_elt (const struct type *,
98 char *, int,
99 enum noside);
100
101 static CORE_ADDR allocate_space_in_inferior (int);
102
103 static struct value *cast_into_complex (struct type *, struct value *);
104
105 static struct fn_field *find_method_list (struct value **, const char *,
106 int, struct type *, int *,
107 struct type **, int *);
108
109 void _initialize_valops (void);
110
111 #if 0
112 /* Flag for whether we want to abandon failed expression evals by
113 default. */
114
115 static int auto_abandon = 0;
116 #endif
117
118 int overload_resolution = 0;
119 static void
120 show_overload_resolution (struct ui_file *file, int from_tty,
121 struct cmd_list_element *c,
122 const char *value)
123 {
124 fprintf_filtered (file, _("\
125 Overload resolution in evaluating C++ functions is %s.\n"),
126 value);
127 }
128
129 /* Find the address of function name NAME in the inferior. If OBJF_P
130 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
131 is defined. */
132
133 struct value *
134 find_function_in_inferior (const char *name, struct objfile **objf_p)
135 {
136 struct symbol *sym;
137 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
138 if (sym != NULL)
139 {
140 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
141 {
142 error (_("\"%s\" exists in this program but is not a function."),
143 name);
144 }
145
146 if (objf_p)
147 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
148
149 return value_of_variable (sym, NULL);
150 }
151 else
152 {
153 struct minimal_symbol *msymbol =
154 lookup_minimal_symbol (name, NULL, NULL);
155 if (msymbol != NULL)
156 {
157 struct objfile *objfile = msymbol_objfile (msymbol);
158 struct gdbarch *gdbarch = get_objfile_arch (objfile);
159
160 struct type *type;
161 CORE_ADDR maddr;
162 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
163 type = lookup_function_type (type);
164 type = lookup_pointer_type (type);
165 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
166
167 if (objf_p)
168 *objf_p = objfile;
169
170 return value_from_pointer (type, maddr);
171 }
172 else
173 {
174 if (!target_has_execution)
175 error (_("evaluation of this expression requires the target program to be active"));
176 else
177 error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
178 }
179 }
180 }
181
182 /* Allocate NBYTES of space in the inferior using the inferior's
183 malloc and return a value that is a pointer to the allocated
184 space. */
185
186 struct value *
187 value_allocate_space_in_inferior (int len)
188 {
189 struct objfile *objf;
190 struct value *val = find_function_in_inferior ("malloc", &objf);
191 struct gdbarch *gdbarch = get_objfile_arch (objf);
192 struct value *blocklen;
193
194 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
195 val = call_function_by_hand (val, 1, &blocklen);
196 if (value_logical_not (val))
197 {
198 if (!target_has_execution)
199 error (_("No memory available to program now: you need to start the target first"));
200 else
201 error (_("No memory available to program: call to malloc failed"));
202 }
203 return val;
204 }
205
206 static CORE_ADDR
207 allocate_space_in_inferior (int len)
208 {
209 return value_as_long (value_allocate_space_in_inferior (len));
210 }
211
212 /* Cast struct value VAL to type TYPE and return as a value.
213 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
214 for this to work. Typedef to one of the codes is permitted.
215 Returns NULL if the cast is neither an upcast nor a downcast. */
216
217 static struct value *
218 value_cast_structs (struct type *type, struct value *v2)
219 {
220 struct type *t1;
221 struct type *t2;
222 struct value *v;
223
224 gdb_assert (type != NULL && v2 != NULL);
225
226 t1 = check_typedef (type);
227 t2 = check_typedef (value_type (v2));
228
229 /* Check preconditions. */
230 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
231 || TYPE_CODE (t1) == TYPE_CODE_UNION)
232 && !!"Precondition is that type is of STRUCT or UNION kind.");
233 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
234 || TYPE_CODE (t2) == TYPE_CODE_UNION)
235 && !!"Precondition is that value is of STRUCT or UNION kind");
236
237 if (TYPE_NAME (t1) != NULL
238 && TYPE_NAME (t2) != NULL
239 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
240 return NULL;
241
242 /* Upcasting: look in the type of the source to see if it contains the
243 type of the target as a superclass. If so, we'll need to
244 offset the pointer rather than just change its type. */
245 if (TYPE_NAME (t1) != NULL)
246 {
247 v = search_struct_field (type_name_no_tag (t1),
248 v2, 0, t2, 1);
249 if (v)
250 return v;
251 }
252
253 /* Downcasting: look in the type of the target to see if it contains the
254 type of the source as a superclass. If so, we'll need to
255 offset the pointer rather than just change its type. */
256 if (TYPE_NAME (t2) != NULL)
257 {
258 /* Try downcasting using the run-time type of the value. */
259 int full, top, using_enc;
260 struct type *real_type;
261
262 real_type = value_rtti_type (v2, &full, &top, &using_enc);
263 if (real_type)
264 {
265 v = value_full_object (v2, real_type, full, top, using_enc);
266 v = value_at_lazy (real_type, value_address (v));
267
268 /* We might be trying to cast to the outermost enclosing
269 type, in which case search_struct_field won't work. */
270 if (TYPE_NAME (real_type) != NULL
271 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
272 return v;
273
274 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
275 if (v)
276 return v;
277 }
278
279 /* Try downcasting using information from the destination type
280 T2. This wouldn't work properly for classes with virtual
281 bases, but those were handled above. */
282 v = search_struct_field (type_name_no_tag (t2),
283 value_zero (t1, not_lval), 0, t1, 1);
284 if (v)
285 {
286 /* Downcasting is possible (t1 is superclass of v2). */
287 CORE_ADDR addr2 = value_address (v2);
288 addr2 -= value_address (v) + value_embedded_offset (v);
289 return value_at (type, addr2);
290 }
291 }
292
293 return NULL;
294 }
295
296 /* Cast one pointer or reference type to another. Both TYPE and
297 the type of ARG2 should be pointer types, or else both should be
298 reference types. Returns the new pointer or reference. */
299
300 struct value *
301 value_cast_pointers (struct type *type, struct value *arg2)
302 {
303 struct type *type1 = check_typedef (type);
304 struct type *type2 = check_typedef (value_type (arg2));
305 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
306 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
307
308 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
309 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
310 && !value_logical_not (arg2))
311 {
312 struct value *v2;
313
314 if (TYPE_CODE (type2) == TYPE_CODE_REF)
315 v2 = coerce_ref (arg2);
316 else
317 v2 = value_ind (arg2);
318 gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) == TYPE_CODE_STRUCT
319 && !!"Why did coercion fail?");
320 v2 = value_cast_structs (t1, v2);
321 /* At this point we have what we can have, un-dereference if needed. */
322 if (v2)
323 {
324 struct value *v = value_addr (v2);
325 deprecated_set_value_type (v, type);
326 return v;
327 }
328 }
329
330 /* No superclass found, just change the pointer type. */
331 arg2 = value_copy (arg2);
332 deprecated_set_value_type (arg2, type);
333 arg2 = value_change_enclosing_type (arg2, type);
334 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
335 return arg2;
336 }
337
338 /* Cast value ARG2 to type TYPE and return as a value.
339 More general than a C cast: accepts any two types of the same length,
340 and if ARG2 is an lvalue it can be cast into anything at all. */
341 /* In C++, casts may change pointer or object representations. */
342
343 struct value *
344 value_cast (struct type *type, struct value *arg2)
345 {
346 enum type_code code1;
347 enum type_code code2;
348 int scalar;
349 struct type *type2;
350
351 int convert_to_boolean = 0;
352
353 if (value_type (arg2) == type)
354 return arg2;
355
356 code1 = TYPE_CODE (check_typedef (type));
357
358 /* Check if we are casting struct reference to struct reference. */
359 if (code1 == TYPE_CODE_REF)
360 {
361 /* We dereference type; then we recurse and finally
362 we generate value of the given reference. Nothing wrong with
363 that. */
364 struct type *t1 = check_typedef (type);
365 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
366 struct value *val = value_cast (dereftype, arg2);
367 return value_ref (val);
368 }
369
370 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
371
372 if (code2 == TYPE_CODE_REF)
373 /* We deref the value and then do the cast. */
374 return value_cast (type, coerce_ref (arg2));
375
376 CHECK_TYPEDEF (type);
377 code1 = TYPE_CODE (type);
378 arg2 = coerce_ref (arg2);
379 type2 = check_typedef (value_type (arg2));
380
381 /* You can't cast to a reference type. See value_cast_pointers
382 instead. */
383 gdb_assert (code1 != TYPE_CODE_REF);
384
385 /* A cast to an undetermined-length array_type, such as
386 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
387 where N is sizeof(OBJECT)/sizeof(TYPE). */
388 if (code1 == TYPE_CODE_ARRAY)
389 {
390 struct type *element_type = TYPE_TARGET_TYPE (type);
391 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
392 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
393 {
394 struct type *range_type = TYPE_INDEX_TYPE (type);
395 int val_length = TYPE_LENGTH (type2);
396 LONGEST low_bound, high_bound, new_length;
397 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
398 low_bound = 0, high_bound = 0;
399 new_length = val_length / element_length;
400 if (val_length % element_length != 0)
401 warning (_("array element type size does not divide object size in cast"));
402 /* FIXME-type-allocation: need a way to free this type when
403 we are done with it. */
404 range_type = create_range_type ((struct type *) NULL,
405 TYPE_TARGET_TYPE (range_type),
406 low_bound,
407 new_length + low_bound - 1);
408 deprecated_set_value_type (arg2,
409 create_array_type ((struct type *) NULL,
410 element_type,
411 range_type));
412 return arg2;
413 }
414 }
415
416 if (current_language->c_style_arrays
417 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
418 arg2 = value_coerce_array (arg2);
419
420 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
421 arg2 = value_coerce_function (arg2);
422
423 type2 = check_typedef (value_type (arg2));
424 code2 = TYPE_CODE (type2);
425
426 if (code1 == TYPE_CODE_COMPLEX)
427 return cast_into_complex (type, arg2);
428 if (code1 == TYPE_CODE_BOOL)
429 {
430 code1 = TYPE_CODE_INT;
431 convert_to_boolean = 1;
432 }
433 if (code1 == TYPE_CODE_CHAR)
434 code1 = TYPE_CODE_INT;
435 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
436 code2 = TYPE_CODE_INT;
437
438 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
439 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
440 || code2 == TYPE_CODE_RANGE);
441
442 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
443 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
444 && TYPE_NAME (type) != 0)
445 {
446 struct value *v = value_cast_structs (type, arg2);
447 if (v)
448 return v;
449 }
450
451 if (code1 == TYPE_CODE_FLT && scalar)
452 return value_from_double (type, value_as_double (arg2));
453 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
454 {
455 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
456 int dec_len = TYPE_LENGTH (type);
457 gdb_byte dec[16];
458
459 if (code2 == TYPE_CODE_FLT)
460 decimal_from_floating (arg2, dec, dec_len, byte_order);
461 else if (code2 == TYPE_CODE_DECFLOAT)
462 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
463 byte_order, dec, dec_len, byte_order);
464 else
465 /* The only option left is an integral type. */
466 decimal_from_integral (arg2, dec, dec_len, byte_order);
467
468 return value_from_decfloat (type, dec);
469 }
470 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
471 || code1 == TYPE_CODE_RANGE)
472 && (scalar || code2 == TYPE_CODE_PTR
473 || code2 == TYPE_CODE_MEMBERPTR))
474 {
475 LONGEST longest;
476
477 /* When we cast pointers to integers, we mustn't use
478 gdbarch_pointer_to_address to find the address the pointer
479 represents, as value_as_long would. GDB should evaluate
480 expressions just as the compiler would --- and the compiler
481 sees a cast as a simple reinterpretation of the pointer's
482 bits. */
483 if (code2 == TYPE_CODE_PTR)
484 longest = extract_unsigned_integer
485 (value_contents (arg2), TYPE_LENGTH (type2),
486 gdbarch_byte_order (get_type_arch (type2)));
487 else
488 longest = value_as_long (arg2);
489 return value_from_longest (type, convert_to_boolean ?
490 (LONGEST) (longest ? 1 : 0) : longest);
491 }
492 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
493 || code2 == TYPE_CODE_ENUM
494 || code2 == TYPE_CODE_RANGE))
495 {
496 /* TYPE_LENGTH (type) is the length of a pointer, but we really
497 want the length of an address! -- we are really dealing with
498 addresses (i.e., gdb representations) not pointers (i.e.,
499 target representations) here.
500
501 This allows things like "print *(int *)0x01000234" to work
502 without printing a misleading message -- which would
503 otherwise occur when dealing with a target having two byte
504 pointers and four byte addresses. */
505
506 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
507
508 LONGEST longest = value_as_long (arg2);
509 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
510 {
511 if (longest >= ((LONGEST) 1 << addr_bit)
512 || longest <= -((LONGEST) 1 << addr_bit))
513 warning (_("value truncated"));
514 }
515 return value_from_longest (type, longest);
516 }
517 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
518 && value_as_long (arg2) == 0)
519 {
520 struct value *result = allocate_value (type);
521 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
522 return result;
523 }
524 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
525 && value_as_long (arg2) == 0)
526 {
527 /* The Itanium C++ ABI represents NULL pointers to members as
528 minus one, instead of biasing the normal case. */
529 return value_from_longest (type, -1);
530 }
531 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
532 {
533 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
534 return value_cast_pointers (type, arg2);
535
536 arg2 = value_copy (arg2);
537 deprecated_set_value_type (arg2, type);
538 arg2 = value_change_enclosing_type (arg2, type);
539 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
540 return arg2;
541 }
542 else if (VALUE_LVAL (arg2) == lval_memory)
543 return value_at_lazy (type, value_address (arg2));
544 else if (code1 == TYPE_CODE_VOID)
545 {
546 return value_zero (type, not_lval);
547 }
548 else
549 {
550 error (_("Invalid cast."));
551 return 0;
552 }
553 }
554
555 /* The C++ reinterpret_cast operator. */
556
557 struct value *
558 value_reinterpret_cast (struct type *type, struct value *arg)
559 {
560 struct value *result;
561 struct type *real_type = check_typedef (type);
562 struct type *arg_type, *dest_type;
563 int is_ref = 0;
564 enum type_code dest_code, arg_code;
565
566 /* Do reference, function, and array conversion. */
567 arg = coerce_array (arg);
568
569 /* Attempt to preserve the type the user asked for. */
570 dest_type = type;
571
572 /* If we are casting to a reference type, transform
573 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
574 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
575 {
576 is_ref = 1;
577 arg = value_addr (arg);
578 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
579 real_type = lookup_pointer_type (real_type);
580 }
581
582 arg_type = value_type (arg);
583
584 dest_code = TYPE_CODE (real_type);
585 arg_code = TYPE_CODE (arg_type);
586
587 /* We can convert pointer types, or any pointer type to int, or int
588 type to pointer. */
589 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
590 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
591 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
592 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
593 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
594 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
595 || (dest_code == arg_code
596 && (dest_code == TYPE_CODE_PTR
597 || dest_code == TYPE_CODE_METHODPTR
598 || dest_code == TYPE_CODE_MEMBERPTR)))
599 result = value_cast (dest_type, arg);
600 else
601 error (_("Invalid reinterpret_cast"));
602
603 if (is_ref)
604 result = value_cast (type, value_ref (value_ind (result)));
605
606 return result;
607 }
608
609 /* A helper for value_dynamic_cast. This implements the first of two
610 runtime checks: we iterate over all the base classes of the value's
611 class which are equal to the desired class; if only one of these
612 holds the value, then it is the answer. */
613
614 static int
615 dynamic_cast_check_1 (struct type *desired_type,
616 const bfd_byte *contents,
617 CORE_ADDR address,
618 struct type *search_type,
619 CORE_ADDR arg_addr,
620 struct type *arg_type,
621 struct value **result)
622 {
623 int i, result_count = 0;
624
625 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
626 {
627 int offset = baseclass_offset (search_type, i, contents, address);
628 if (offset == -1)
629 error (_("virtual baseclass botch"));
630 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
631 {
632 if (address + offset >= arg_addr
633 && address + offset < arg_addr + TYPE_LENGTH (arg_type))
634 {
635 ++result_count;
636 if (!*result)
637 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
638 address + offset);
639 }
640 }
641 else
642 result_count += dynamic_cast_check_1 (desired_type,
643 contents + offset,
644 address + offset,
645 TYPE_BASECLASS (search_type, i),
646 arg_addr,
647 arg_type,
648 result);
649 }
650
651 return result_count;
652 }
653
654 /* A helper for value_dynamic_cast. This implements the second of two
655 runtime checks: we look for a unique public sibling class of the
656 argument's declared class. */
657
658 static int
659 dynamic_cast_check_2 (struct type *desired_type,
660 const bfd_byte *contents,
661 CORE_ADDR address,
662 struct type *search_type,
663 struct value **result)
664 {
665 int i, result_count = 0;
666
667 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
668 {
669 int offset;
670
671 if (! BASETYPE_VIA_PUBLIC (search_type, i))
672 continue;
673
674 offset = baseclass_offset (search_type, i, contents, address);
675 if (offset == -1)
676 error (_("virtual baseclass botch"));
677 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
678 {
679 ++result_count;
680 if (*result == NULL)
681 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
682 address + offset);
683 }
684 else
685 result_count += dynamic_cast_check_2 (desired_type,
686 contents + offset,
687 address + offset,
688 TYPE_BASECLASS (search_type, i),
689 result);
690 }
691
692 return result_count;
693 }
694
695 /* The C++ dynamic_cast operator. */
696
697 struct value *
698 value_dynamic_cast (struct type *type, struct value *arg)
699 {
700 int full, top, using_enc;
701 struct type *resolved_type = check_typedef (type);
702 struct type *arg_type = check_typedef (value_type (arg));
703 struct type *class_type, *rtti_type;
704 struct value *result, *tem, *original_arg = arg;
705 CORE_ADDR addr;
706 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
707
708 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
709 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
710 error (_("Argument to dynamic_cast must be a pointer or reference type"));
711 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
712 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
713 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
714
715 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
716 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
717 {
718 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
719 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
720 && value_as_long (arg) == 0))
721 error (_("Argument to dynamic_cast does not have pointer type"));
722 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
723 {
724 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
725 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
726 error (_("Argument to dynamic_cast does not have pointer to class type"));
727 }
728
729 /* Handle NULL pointers. */
730 if (value_as_long (arg) == 0)
731 return value_zero (type, not_lval);
732
733 arg = value_ind (arg);
734 }
735 else
736 {
737 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
738 error (_("Argument to dynamic_cast does not have class type"));
739 }
740
741 /* If the classes are the same, just return the argument. */
742 if (class_types_same_p (class_type, arg_type))
743 return value_cast (type, arg);
744
745 /* If the target type is a unique base class of the argument's
746 declared type, just cast it. */
747 if (is_ancestor (class_type, arg_type))
748 {
749 if (is_unique_ancestor (class_type, arg))
750 return value_cast (type, original_arg);
751 error (_("Ambiguous dynamic_cast"));
752 }
753
754 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
755 if (! rtti_type)
756 error (_("Couldn't determine value's most derived type for dynamic_cast"));
757
758 /* Compute the most derived object's address. */
759 addr = value_address (arg);
760 if (full)
761 {
762 /* Done. */
763 }
764 else if (using_enc)
765 addr += top;
766 else
767 addr += top + value_embedded_offset (arg);
768
769 /* dynamic_cast<void *> means to return a pointer to the
770 most-derived object. */
771 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
772 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
773 return value_at_lazy (type, addr);
774
775 tem = value_at (type, addr);
776
777 /* The first dynamic check specified in 5.2.7. */
778 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
779 {
780 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
781 return tem;
782 result = NULL;
783 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
784 value_contents (tem), value_address (tem),
785 rtti_type, addr,
786 arg_type,
787 &result) == 1)
788 return value_cast (type,
789 is_ref ? value_ref (result) : value_addr (result));
790 }
791
792 /* The second dynamic check specified in 5.2.7. */
793 result = NULL;
794 if (is_public_ancestor (arg_type, rtti_type)
795 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
796 value_contents (tem), value_address (tem),
797 rtti_type, &result) == 1)
798 return value_cast (type,
799 is_ref ? value_ref (result) : value_addr (result));
800
801 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
802 return value_zero (type, not_lval);
803
804 error (_("dynamic_cast failed"));
805 }
806
807 /* Create a value of type TYPE that is zero, and return it. */
808
809 struct value *
810 value_zero (struct type *type, enum lval_type lv)
811 {
812 struct value *val = allocate_value (type);
813 VALUE_LVAL (val) = lv;
814
815 return val;
816 }
817
818 /* Create a value of numeric type TYPE that is one, and return it. */
819
820 struct value *
821 value_one (struct type *type, enum lval_type lv)
822 {
823 struct type *type1 = check_typedef (type);
824 struct value *val;
825
826 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
827 {
828 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
829 gdb_byte v[16];
830 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
831 val = value_from_decfloat (type, v);
832 }
833 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
834 {
835 val = value_from_double (type, (DOUBLEST) 1);
836 }
837 else if (is_integral_type (type1))
838 {
839 val = value_from_longest (type, (LONGEST) 1);
840 }
841 else
842 {
843 error (_("Not a numeric type."));
844 }
845
846 VALUE_LVAL (val) = lv;
847 return val;
848 }
849
850 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
851
852 static struct value *
853 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
854 {
855 struct value *val;
856
857 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
858 error (_("Attempt to dereference a generic pointer."));
859
860 if (lazy)
861 {
862 val = allocate_value_lazy (type);
863 }
864 else
865 {
866 val = allocate_value (type);
867 read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
868 }
869
870 VALUE_LVAL (val) = lval_memory;
871 set_value_address (val, addr);
872
873 return val;
874 }
875
876 /* Return a value with type TYPE located at ADDR.
877
878 Call value_at only if the data needs to be fetched immediately;
879 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
880 value_at_lazy instead. value_at_lazy simply records the address of
881 the data and sets the lazy-evaluation-required flag. The lazy flag
882 is tested in the value_contents macro, which is used if and when
883 the contents are actually required.
884
885 Note: value_at does *NOT* handle embedded offsets; perform such
886 adjustments before or after calling it. */
887
888 struct value *
889 value_at (struct type *type, CORE_ADDR addr)
890 {
891 return get_value_at (type, addr, 0);
892 }
893
894 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
895
896 struct value *
897 value_at_lazy (struct type *type, CORE_ADDR addr)
898 {
899 return get_value_at (type, addr, 1);
900 }
901
902 /* Called only from the value_contents and value_contents_all()
903 macros, if the current data for a variable needs to be loaded into
904 value_contents(VAL). Fetches the data from the user's process, and
905 clears the lazy flag to indicate that the data in the buffer is
906 valid.
907
908 If the value is zero-length, we avoid calling read_memory, which
909 would abort. We mark the value as fetched anyway -- all 0 bytes of
910 it.
911
912 This function returns a value because it is used in the
913 value_contents macro as part of an expression, where a void would
914 not work. The value is ignored. */
915
916 int
917 value_fetch_lazy (struct value *val)
918 {
919 gdb_assert (value_lazy (val));
920 allocate_value_contents (val);
921 if (value_bitsize (val))
922 {
923 /* To read a lazy bitfield, read the entire enclosing value. This
924 prevents reading the same block of (possibly volatile) memory once
925 per bitfield. It would be even better to read only the containing
926 word, but we have no way to record that just specific bits of a
927 value have been fetched. */
928 struct type *type = check_typedef (value_type (val));
929 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
930 struct value *parent = value_parent (val);
931 LONGEST offset = value_offset (val);
932 LONGEST num = unpack_bits_as_long (value_type (val),
933 value_contents (parent) + offset,
934 value_bitpos (val),
935 value_bitsize (val));
936 int length = TYPE_LENGTH (type);
937 store_signed_integer (value_contents_raw (val), length, byte_order, num);
938 }
939 else if (VALUE_LVAL (val) == lval_memory)
940 {
941 CORE_ADDR addr = value_address (val);
942 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
943
944 if (length)
945 {
946 if (value_stack (val))
947 read_stack (addr, value_contents_all_raw (val), length);
948 else
949 read_memory (addr, value_contents_all_raw (val), length);
950 }
951 }
952 else if (VALUE_LVAL (val) == lval_register)
953 {
954 struct frame_info *frame;
955 int regnum;
956 struct type *type = check_typedef (value_type (val));
957 struct value *new_val = val, *mark = value_mark ();
958
959 /* Offsets are not supported here; lazy register values must
960 refer to the entire register. */
961 gdb_assert (value_offset (val) == 0);
962
963 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
964 {
965 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
966 regnum = VALUE_REGNUM (new_val);
967
968 gdb_assert (frame != NULL);
969
970 /* Convertible register routines are used for multi-register
971 values and for interpretation in different types
972 (e.g. float or int from a double register). Lazy
973 register values should have the register's natural type,
974 so they do not apply. */
975 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
976 regnum, type));
977
978 new_val = get_frame_register_value (frame, regnum);
979 }
980
981 /* If it's still lazy (for instance, a saved register on the
982 stack), fetch it. */
983 if (value_lazy (new_val))
984 value_fetch_lazy (new_val);
985
986 /* If the register was not saved, mark it unavailable. */
987 if (value_optimized_out (new_val))
988 set_value_optimized_out (val, 1);
989 else
990 memcpy (value_contents_raw (val), value_contents (new_val),
991 TYPE_LENGTH (type));
992
993 if (frame_debug)
994 {
995 struct gdbarch *gdbarch;
996 frame = frame_find_by_id (VALUE_FRAME_ID (val));
997 regnum = VALUE_REGNUM (val);
998 gdbarch = get_frame_arch (frame);
999
1000 fprintf_unfiltered (gdb_stdlog, "\
1001 { value_fetch_lazy (frame=%d,regnum=%d(%s),...) ",
1002 frame_relative_level (frame), regnum,
1003 user_reg_map_regnum_to_name (gdbarch, regnum));
1004
1005 fprintf_unfiltered (gdb_stdlog, "->");
1006 if (value_optimized_out (new_val))
1007 fprintf_unfiltered (gdb_stdlog, " optimized out");
1008 else
1009 {
1010 int i;
1011 const gdb_byte *buf = value_contents (new_val);
1012
1013 if (VALUE_LVAL (new_val) == lval_register)
1014 fprintf_unfiltered (gdb_stdlog, " register=%d",
1015 VALUE_REGNUM (new_val));
1016 else if (VALUE_LVAL (new_val) == lval_memory)
1017 fprintf_unfiltered (gdb_stdlog, " address=%s",
1018 paddress (gdbarch,
1019 value_address (new_val)));
1020 else
1021 fprintf_unfiltered (gdb_stdlog, " computed");
1022
1023 fprintf_unfiltered (gdb_stdlog, " bytes=");
1024 fprintf_unfiltered (gdb_stdlog, "[");
1025 for (i = 0; i < register_size (gdbarch, regnum); i++)
1026 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1027 fprintf_unfiltered (gdb_stdlog, "]");
1028 }
1029
1030 fprintf_unfiltered (gdb_stdlog, " }\n");
1031 }
1032
1033 /* Dispose of the intermediate values. This prevents
1034 watchpoints from trying to watch the saved frame pointer. */
1035 value_free_to_mark (mark);
1036 }
1037 else if (VALUE_LVAL (val) == lval_computed)
1038 value_computed_funcs (val)->read (val);
1039 else
1040 internal_error (__FILE__, __LINE__, "Unexpected lazy value type.");
1041
1042 set_value_lazy (val, 0);
1043 return 0;
1044 }
1045
1046
1047 /* Store the contents of FROMVAL into the location of TOVAL.
1048 Return a new value with the location of TOVAL and contents of FROMVAL. */
1049
1050 struct value *
1051 value_assign (struct value *toval, struct value *fromval)
1052 {
1053 struct type *type;
1054 struct value *val;
1055 struct frame_id old_frame;
1056
1057 if (!deprecated_value_modifiable (toval))
1058 error (_("Left operand of assignment is not a modifiable lvalue."));
1059
1060 toval = coerce_ref (toval);
1061
1062 type = value_type (toval);
1063 if (VALUE_LVAL (toval) != lval_internalvar)
1064 {
1065 toval = value_coerce_to_target (toval);
1066 fromval = value_cast (type, fromval);
1067 }
1068 else
1069 {
1070 /* Coerce arrays and functions to pointers, except for arrays
1071 which only live in GDB's storage. */
1072 if (!value_must_coerce_to_target (fromval))
1073 fromval = coerce_array (fromval);
1074 }
1075
1076 CHECK_TYPEDEF (type);
1077
1078 /* Since modifying a register can trash the frame chain, and
1079 modifying memory can trash the frame cache, we save the old frame
1080 and then restore the new frame afterwards. */
1081 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1082
1083 switch (VALUE_LVAL (toval))
1084 {
1085 case lval_internalvar:
1086 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1087 val = value_copy (fromval);
1088 val = value_change_enclosing_type (val,
1089 value_enclosing_type (fromval));
1090 set_value_embedded_offset (val, value_embedded_offset (fromval));
1091 set_value_pointed_to_offset (val,
1092 value_pointed_to_offset (fromval));
1093 return val;
1094
1095 case lval_internalvar_component:
1096 set_internalvar_component (VALUE_INTERNALVAR (toval),
1097 value_offset (toval),
1098 value_bitpos (toval),
1099 value_bitsize (toval),
1100 fromval);
1101 break;
1102
1103 case lval_memory:
1104 {
1105 const gdb_byte *dest_buffer;
1106 CORE_ADDR changed_addr;
1107 int changed_len;
1108 gdb_byte buffer[sizeof (LONGEST)];
1109
1110 if (value_bitsize (toval))
1111 {
1112 struct value *parent = value_parent (toval);
1113 changed_addr = value_address (parent) + value_offset (toval);
1114
1115 changed_len = (value_bitpos (toval)
1116 + value_bitsize (toval)
1117 + HOST_CHAR_BIT - 1)
1118 / HOST_CHAR_BIT;
1119
1120 /* If we can read-modify-write exactly the size of the
1121 containing type (e.g. short or int) then do so. This
1122 is safer for volatile bitfields mapped to hardware
1123 registers. */
1124 if (changed_len < TYPE_LENGTH (type)
1125 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1126 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1127 changed_len = TYPE_LENGTH (type);
1128
1129 if (changed_len > (int) sizeof (LONGEST))
1130 error (_("Can't handle bitfields which don't fit in a %d bit word."),
1131 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1132
1133 read_memory (changed_addr, buffer, changed_len);
1134 modify_field (type, buffer, value_as_long (fromval),
1135 value_bitpos (toval), value_bitsize (toval));
1136 dest_buffer = buffer;
1137 }
1138 else
1139 {
1140 changed_addr = value_address (toval);
1141 changed_len = TYPE_LENGTH (type);
1142 dest_buffer = value_contents (fromval);
1143 }
1144
1145 write_memory (changed_addr, dest_buffer, changed_len);
1146 observer_notify_memory_changed (changed_addr, changed_len,
1147 dest_buffer);
1148 }
1149 break;
1150
1151 case lval_register:
1152 {
1153 struct frame_info *frame;
1154 struct gdbarch *gdbarch;
1155 int value_reg;
1156
1157 /* Figure out which frame this is in currently. */
1158 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1159 value_reg = VALUE_REGNUM (toval);
1160
1161 if (!frame)
1162 error (_("Value being assigned to is no longer active."));
1163
1164 gdbarch = get_frame_arch (frame);
1165 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1166 {
1167 /* If TOVAL is a special machine register requiring
1168 conversion of program values to a special raw
1169 format. */
1170 gdbarch_value_to_register (gdbarch, frame,
1171 VALUE_REGNUM (toval), type,
1172 value_contents (fromval));
1173 }
1174 else
1175 {
1176 if (value_bitsize (toval))
1177 {
1178 struct value *parent = value_parent (toval);
1179 int offset = value_offset (parent) + value_offset (toval);
1180 int changed_len;
1181 gdb_byte buffer[sizeof (LONGEST)];
1182
1183 changed_len = (value_bitpos (toval)
1184 + value_bitsize (toval)
1185 + HOST_CHAR_BIT - 1)
1186 / HOST_CHAR_BIT;
1187
1188 if (changed_len > (int) sizeof (LONGEST))
1189 error (_("Can't handle bitfields which don't fit in a %d bit word."),
1190 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1191
1192 get_frame_register_bytes (frame, value_reg, offset,
1193 changed_len, buffer);
1194
1195 modify_field (type, buffer, value_as_long (fromval),
1196 value_bitpos (toval), value_bitsize (toval));
1197
1198 put_frame_register_bytes (frame, value_reg, offset,
1199 changed_len, buffer);
1200 }
1201 else
1202 {
1203 put_frame_register_bytes (frame, value_reg,
1204 value_offset (toval),
1205 TYPE_LENGTH (type),
1206 value_contents (fromval));
1207 }
1208 }
1209
1210 if (deprecated_register_changed_hook)
1211 deprecated_register_changed_hook (-1);
1212 observer_notify_target_changed (&current_target);
1213 break;
1214 }
1215
1216 case lval_computed:
1217 {
1218 struct lval_funcs *funcs = value_computed_funcs (toval);
1219
1220 funcs->write (toval, fromval);
1221 }
1222 break;
1223
1224 default:
1225 error (_("Left operand of assignment is not an lvalue."));
1226 }
1227
1228 /* Assigning to the stack pointer, frame pointer, and other
1229 (architecture and calling convention specific) registers may
1230 cause the frame cache to be out of date. Assigning to memory
1231 also can. We just do this on all assignments to registers or
1232 memory, for simplicity's sake; I doubt the slowdown matters. */
1233 switch (VALUE_LVAL (toval))
1234 {
1235 case lval_memory:
1236 case lval_register:
1237
1238 reinit_frame_cache ();
1239
1240 /* Having destroyed the frame cache, restore the selected
1241 frame. */
1242
1243 /* FIXME: cagney/2002-11-02: There has to be a better way of
1244 doing this. Instead of constantly saving/restoring the
1245 frame. Why not create a get_selected_frame() function that,
1246 having saved the selected frame's ID can automatically
1247 re-find the previously selected frame automatically. */
1248
1249 {
1250 struct frame_info *fi = frame_find_by_id (old_frame);
1251 if (fi != NULL)
1252 select_frame (fi);
1253 }
1254
1255 break;
1256 default:
1257 break;
1258 }
1259
1260 /* If the field does not entirely fill a LONGEST, then zero the sign
1261 bits. If the field is signed, and is negative, then sign
1262 extend. */
1263 if ((value_bitsize (toval) > 0)
1264 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1265 {
1266 LONGEST fieldval = value_as_long (fromval);
1267 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1268
1269 fieldval &= valmask;
1270 if (!TYPE_UNSIGNED (type)
1271 && (fieldval & (valmask ^ (valmask >> 1))))
1272 fieldval |= ~valmask;
1273
1274 fromval = value_from_longest (type, fieldval);
1275 }
1276
1277 val = value_copy (toval);
1278 memcpy (value_contents_raw (val), value_contents (fromval),
1279 TYPE_LENGTH (type));
1280 deprecated_set_value_type (val, type);
1281 val = value_change_enclosing_type (val,
1282 value_enclosing_type (fromval));
1283 set_value_embedded_offset (val, value_embedded_offset (fromval));
1284 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1285
1286 return val;
1287 }
1288
1289 /* Extend a value VAL to COUNT repetitions of its type. */
1290
1291 struct value *
1292 value_repeat (struct value *arg1, int count)
1293 {
1294 struct value *val;
1295
1296 if (VALUE_LVAL (arg1) != lval_memory)
1297 error (_("Only values in memory can be extended with '@'."));
1298 if (count < 1)
1299 error (_("Invalid number %d of repetitions."), count);
1300
1301 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1302
1303 read_memory (value_address (arg1),
1304 value_contents_all_raw (val),
1305 TYPE_LENGTH (value_enclosing_type (val)));
1306 VALUE_LVAL (val) = lval_memory;
1307 set_value_address (val, value_address (arg1));
1308
1309 return val;
1310 }
1311
1312 struct value *
1313 value_of_variable (struct symbol *var, struct block *b)
1314 {
1315 struct value *val;
1316 struct frame_info *frame;
1317
1318 if (!symbol_read_needs_frame (var))
1319 frame = NULL;
1320 else if (!b)
1321 frame = get_selected_frame (_("No frame selected."));
1322 else
1323 {
1324 frame = block_innermost_frame (b);
1325 if (!frame)
1326 {
1327 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1328 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1329 error (_("No frame is currently executing in block %s."),
1330 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1331 else
1332 error (_("No frame is currently executing in specified block"));
1333 }
1334 }
1335
1336 val = read_var_value (var, frame);
1337 if (!val)
1338 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
1339
1340 return val;
1341 }
1342
1343 struct value *
1344 address_of_variable (struct symbol *var, struct block *b)
1345 {
1346 struct type *type = SYMBOL_TYPE (var);
1347 struct value *val;
1348
1349 /* Evaluate it first; if the result is a memory address, we're fine.
1350 Lazy evaluation pays off here. */
1351
1352 val = value_of_variable (var, b);
1353
1354 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1355 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1356 {
1357 CORE_ADDR addr = value_address (val);
1358 return value_from_pointer (lookup_pointer_type (type), addr);
1359 }
1360
1361 /* Not a memory address; check what the problem was. */
1362 switch (VALUE_LVAL (val))
1363 {
1364 case lval_register:
1365 {
1366 struct frame_info *frame;
1367 const char *regname;
1368
1369 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1370 gdb_assert (frame);
1371
1372 regname = gdbarch_register_name (get_frame_arch (frame),
1373 VALUE_REGNUM (val));
1374 gdb_assert (regname && *regname);
1375
1376 error (_("Address requested for identifier "
1377 "\"%s\" which is in register $%s"),
1378 SYMBOL_PRINT_NAME (var), regname);
1379 break;
1380 }
1381
1382 default:
1383 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1384 SYMBOL_PRINT_NAME (var));
1385 break;
1386 }
1387
1388 return val;
1389 }
1390
1391 /* Return one if VAL does not live in target memory, but should in order
1392 to operate on it. Otherwise return zero. */
1393
1394 int
1395 value_must_coerce_to_target (struct value *val)
1396 {
1397 struct type *valtype;
1398
1399 /* The only lval kinds which do not live in target memory. */
1400 if (VALUE_LVAL (val) != not_lval
1401 && VALUE_LVAL (val) != lval_internalvar)
1402 return 0;
1403
1404 valtype = check_typedef (value_type (val));
1405
1406 switch (TYPE_CODE (valtype))
1407 {
1408 case TYPE_CODE_ARRAY:
1409 case TYPE_CODE_STRING:
1410 return 1;
1411 default:
1412 return 0;
1413 }
1414 }
1415
1416 /* Make sure that VAL lives in target memory if it's supposed to. For instance,
1417 strings are constructed as character arrays in GDB's storage, and this
1418 function copies them to the target. */
1419
1420 struct value *
1421 value_coerce_to_target (struct value *val)
1422 {
1423 LONGEST length;
1424 CORE_ADDR addr;
1425
1426 if (!value_must_coerce_to_target (val))
1427 return val;
1428
1429 length = TYPE_LENGTH (check_typedef (value_type (val)));
1430 addr = allocate_space_in_inferior (length);
1431 write_memory (addr, value_contents (val), length);
1432 return value_at_lazy (value_type (val), addr);
1433 }
1434
1435 /* Given a value which is an array, return a value which is a pointer
1436 to its first element, regardless of whether or not the array has a
1437 nonzero lower bound.
1438
1439 FIXME: A previous comment here indicated that this routine should
1440 be substracting the array's lower bound. It's not clear to me that
1441 this is correct. Given an array subscripting operation, it would
1442 certainly work to do the adjustment here, essentially computing:
1443
1444 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1445
1446 However I believe a more appropriate and logical place to account
1447 for the lower bound is to do so in value_subscript, essentially
1448 computing:
1449
1450 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1451
1452 As further evidence consider what would happen with operations
1453 other than array subscripting, where the caller would get back a
1454 value that had an address somewhere before the actual first element
1455 of the array, and the information about the lower bound would be
1456 lost because of the coercion to pointer type.
1457 */
1458
1459 struct value *
1460 value_coerce_array (struct value *arg1)
1461 {
1462 struct type *type = check_typedef (value_type (arg1));
1463
1464 /* If the user tries to do something requiring a pointer with an
1465 array that has not yet been pushed to the target, then this would
1466 be a good time to do so. */
1467 arg1 = value_coerce_to_target (arg1);
1468
1469 if (VALUE_LVAL (arg1) != lval_memory)
1470 error (_("Attempt to take address of value not located in memory."));
1471
1472 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1473 value_address (arg1));
1474 }
1475
1476 /* Given a value which is a function, return a value which is a pointer
1477 to it. */
1478
1479 struct value *
1480 value_coerce_function (struct value *arg1)
1481 {
1482 struct value *retval;
1483
1484 if (VALUE_LVAL (arg1) != lval_memory)
1485 error (_("Attempt to take address of value not located in memory."));
1486
1487 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1488 value_address (arg1));
1489 return retval;
1490 }
1491
1492 /* Return a pointer value for the object for which ARG1 is the
1493 contents. */
1494
1495 struct value *
1496 value_addr (struct value *arg1)
1497 {
1498 struct value *arg2;
1499
1500 struct type *type = check_typedef (value_type (arg1));
1501 if (TYPE_CODE (type) == TYPE_CODE_REF)
1502 {
1503 /* Copy the value, but change the type from (T&) to (T*). We
1504 keep the same location information, which is efficient, and
1505 allows &(&X) to get the location containing the reference. */
1506 arg2 = value_copy (arg1);
1507 deprecated_set_value_type (arg2,
1508 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1509 return arg2;
1510 }
1511 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1512 return value_coerce_function (arg1);
1513
1514 /* If this is an array that has not yet been pushed to the target,
1515 then this would be a good time to force it to memory. */
1516 arg1 = value_coerce_to_target (arg1);
1517
1518 if (VALUE_LVAL (arg1) != lval_memory)
1519 error (_("Attempt to take address of value not located in memory."));
1520
1521 /* Get target memory address */
1522 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1523 (value_address (arg1)
1524 + value_embedded_offset (arg1)));
1525
1526 /* This may be a pointer to a base subobject; so remember the
1527 full derived object's type ... */
1528 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1)));
1529 /* ... and also the relative position of the subobject in the full
1530 object. */
1531 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1532 return arg2;
1533 }
1534
1535 /* Return a reference value for the object for which ARG1 is the
1536 contents. */
1537
1538 struct value *
1539 value_ref (struct value *arg1)
1540 {
1541 struct value *arg2;
1542
1543 struct type *type = check_typedef (value_type (arg1));
1544 if (TYPE_CODE (type) == TYPE_CODE_REF)
1545 return arg1;
1546
1547 arg2 = value_addr (arg1);
1548 deprecated_set_value_type (arg2, lookup_reference_type (type));
1549 return arg2;
1550 }
1551
1552 /* Given a value of a pointer type, apply the C unary * operator to
1553 it. */
1554
1555 struct value *
1556 value_ind (struct value *arg1)
1557 {
1558 struct type *base_type;
1559 struct value *arg2;
1560
1561 arg1 = coerce_array (arg1);
1562
1563 base_type = check_typedef (value_type (arg1));
1564
1565 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1566 {
1567 struct type *enc_type;
1568 /* We may be pointing to something embedded in a larger object.
1569 Get the real type of the enclosing object. */
1570 enc_type = check_typedef (value_enclosing_type (arg1));
1571 enc_type = TYPE_TARGET_TYPE (enc_type);
1572
1573 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1574 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1575 /* For functions, go through find_function_addr, which knows
1576 how to handle function descriptors. */
1577 arg2 = value_at_lazy (enc_type,
1578 find_function_addr (arg1, NULL));
1579 else
1580 /* Retrieve the enclosing object pointed to */
1581 arg2 = value_at_lazy (enc_type,
1582 (value_as_address (arg1)
1583 - value_pointed_to_offset (arg1)));
1584
1585 /* Re-adjust type. */
1586 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
1587 /* Add embedding info. */
1588 arg2 = value_change_enclosing_type (arg2, enc_type);
1589 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
1590
1591 /* We may be pointing to an object of some derived type. */
1592 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1593 return arg2;
1594 }
1595
1596 error (_("Attempt to take contents of a non-pointer value."));
1597 return 0; /* For lint -- never reached. */
1598 }
1599 \f
1600 /* Create a value for an array by allocating space in GDB, copying
1601 copying the data into that space, and then setting up an array
1602 value.
1603
1604 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1605 is populated from the values passed in ELEMVEC.
1606
1607 The element type of the array is inherited from the type of the
1608 first element, and all elements must have the same size (though we
1609 don't currently enforce any restriction on their types). */
1610
1611 struct value *
1612 value_array (int lowbound, int highbound, struct value **elemvec)
1613 {
1614 int nelem;
1615 int idx;
1616 unsigned int typelength;
1617 struct value *val;
1618 struct type *arraytype;
1619
1620 /* Validate that the bounds are reasonable and that each of the
1621 elements have the same size. */
1622
1623 nelem = highbound - lowbound + 1;
1624 if (nelem <= 0)
1625 {
1626 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1627 }
1628 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1629 for (idx = 1; idx < nelem; idx++)
1630 {
1631 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1632 {
1633 error (_("array elements must all be the same size"));
1634 }
1635 }
1636
1637 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1638 lowbound, highbound);
1639
1640 if (!current_language->c_style_arrays)
1641 {
1642 val = allocate_value (arraytype);
1643 for (idx = 0; idx < nelem; idx++)
1644 {
1645 memcpy (value_contents_all_raw (val) + (idx * typelength),
1646 value_contents_all (elemvec[idx]),
1647 typelength);
1648 }
1649 return val;
1650 }
1651
1652 /* Allocate space to store the array, and then initialize it by
1653 copying in each element. */
1654
1655 val = allocate_value (arraytype);
1656 for (idx = 0; idx < nelem; idx++)
1657 memcpy (value_contents_writeable (val) + (idx * typelength),
1658 value_contents_all (elemvec[idx]),
1659 typelength);
1660 return val;
1661 }
1662
1663 struct value *
1664 value_cstring (char *ptr, int len, struct type *char_type)
1665 {
1666 struct value *val;
1667 int lowbound = current_language->string_lower_bound;
1668 int highbound = len / TYPE_LENGTH (char_type);
1669 struct type *stringtype
1670 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1671
1672 val = allocate_value (stringtype);
1673 memcpy (value_contents_raw (val), ptr, len);
1674 return val;
1675 }
1676
1677 /* Create a value for a string constant by allocating space in the
1678 inferior, copying the data into that space, and returning the
1679 address with type TYPE_CODE_STRING. PTR points to the string
1680 constant data; LEN is number of characters.
1681
1682 Note that string types are like array of char types with a lower
1683 bound of zero and an upper bound of LEN - 1. Also note that the
1684 string may contain embedded null bytes. */
1685
1686 struct value *
1687 value_string (char *ptr, int len, struct type *char_type)
1688 {
1689 struct value *val;
1690 int lowbound = current_language->string_lower_bound;
1691 int highbound = len / TYPE_LENGTH (char_type);
1692 struct type *stringtype
1693 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1694
1695 val = allocate_value (stringtype);
1696 memcpy (value_contents_raw (val), ptr, len);
1697 return val;
1698 }
1699
1700 struct value *
1701 value_bitstring (char *ptr, int len, struct type *index_type)
1702 {
1703 struct value *val;
1704 struct type *domain_type
1705 = create_range_type (NULL, index_type, 0, len - 1);
1706 struct type *type = create_set_type (NULL, domain_type);
1707 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1708 val = allocate_value (type);
1709 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1710 return val;
1711 }
1712 \f
1713 /* See if we can pass arguments in T2 to a function which takes
1714 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1715 a NULL-terminated vector. If some arguments need coercion of some
1716 sort, then the coerced values are written into T2. Return value is
1717 0 if the arguments could be matched, or the position at which they
1718 differ if not.
1719
1720 STATICP is nonzero if the T1 argument list came from a static
1721 member function. T2 will still include the ``this'' pointer, but
1722 it will be skipped.
1723
1724 For non-static member functions, we ignore the first argument,
1725 which is the type of the instance variable. This is because we
1726 want to handle calls with objects from derived classes. This is
1727 not entirely correct: we should actually check to make sure that a
1728 requested operation is type secure, shouldn't we? FIXME. */
1729
1730 static int
1731 typecmp (int staticp, int varargs, int nargs,
1732 struct field t1[], struct value *t2[])
1733 {
1734 int i;
1735
1736 if (t2 == 0)
1737 internal_error (__FILE__, __LINE__,
1738 _("typecmp: no argument list"));
1739
1740 /* Skip ``this'' argument if applicable. T2 will always include
1741 THIS. */
1742 if (staticp)
1743 t2 ++;
1744
1745 for (i = 0;
1746 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1747 i++)
1748 {
1749 struct type *tt1, *tt2;
1750
1751 if (!t2[i])
1752 return i + 1;
1753
1754 tt1 = check_typedef (t1[i].type);
1755 tt2 = check_typedef (value_type (t2[i]));
1756
1757 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1758 /* We should be doing hairy argument matching, as below. */
1759 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1760 {
1761 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1762 t2[i] = value_coerce_array (t2[i]);
1763 else
1764 t2[i] = value_ref (t2[i]);
1765 continue;
1766 }
1767
1768 /* djb - 20000715 - Until the new type structure is in the
1769 place, and we can attempt things like implicit conversions,
1770 we need to do this so you can take something like a map<const
1771 char *>, and properly access map["hello"], because the
1772 argument to [] will be a reference to a pointer to a char,
1773 and the argument will be a pointer to a char. */
1774 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1775 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1776 {
1777 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1778 }
1779 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1780 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1781 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1782 {
1783 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1784 }
1785 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1786 continue;
1787 /* Array to pointer is a `trivial conversion' according to the
1788 ARM. */
1789
1790 /* We should be doing much hairier argument matching (see
1791 section 13.2 of the ARM), but as a quick kludge, just check
1792 for the same type code. */
1793 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1794 return i + 1;
1795 }
1796 if (varargs || t2[i] == NULL)
1797 return 0;
1798 return i + 1;
1799 }
1800
1801 /* Helper function used by value_struct_elt to recurse through
1802 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1803 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1804 TYPE. If found, return value, else return NULL.
1805
1806 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1807 fields, look for a baseclass named NAME. */
1808
1809 static struct value *
1810 search_struct_field (const char *name, struct value *arg1, int offset,
1811 struct type *type, int looking_for_baseclass)
1812 {
1813 int i;
1814 int nbases;
1815
1816 CHECK_TYPEDEF (type);
1817 nbases = TYPE_N_BASECLASSES (type);
1818
1819 if (!looking_for_baseclass)
1820 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1821 {
1822 char *t_field_name = TYPE_FIELD_NAME (type, i);
1823
1824 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1825 {
1826 struct value *v;
1827 if (field_is_static (&TYPE_FIELD (type, i)))
1828 {
1829 v = value_static_field (type, i);
1830 if (v == 0)
1831 error (_("field %s is nonexistent or has been optimised out"),
1832 name);
1833 }
1834 else
1835 {
1836 v = value_primitive_field (arg1, offset, i, type);
1837 if (v == 0)
1838 error (_("there is no field named %s"), name);
1839 }
1840 return v;
1841 }
1842
1843 if (t_field_name
1844 && (t_field_name[0] == '\0'
1845 || (TYPE_CODE (type) == TYPE_CODE_UNION
1846 && (strcmp_iw (t_field_name, "else") == 0))))
1847 {
1848 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1849 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1850 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1851 {
1852 /* Look for a match through the fields of an anonymous
1853 union, or anonymous struct. C++ provides anonymous
1854 unions.
1855
1856 In the GNU Chill (now deleted from GDB)
1857 implementation of variant record types, each
1858 <alternative field> has an (anonymous) union type,
1859 each member of the union represents a <variant
1860 alternative>. Each <variant alternative> is
1861 represented as a struct, with a member for each
1862 <variant field>. */
1863
1864 struct value *v;
1865 int new_offset = offset;
1866
1867 /* This is pretty gross. In G++, the offset in an
1868 anonymous union is relative to the beginning of the
1869 enclosing struct. In the GNU Chill (now deleted
1870 from GDB) implementation of variant records, the
1871 bitpos is zero in an anonymous union field, so we
1872 have to add the offset of the union here. */
1873 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1874 || (TYPE_NFIELDS (field_type) > 0
1875 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1876 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1877
1878 v = search_struct_field (name, arg1, new_offset,
1879 field_type,
1880 looking_for_baseclass);
1881 if (v)
1882 return v;
1883 }
1884 }
1885 }
1886
1887 for (i = 0; i < nbases; i++)
1888 {
1889 struct value *v;
1890 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1891 /* If we are looking for baseclasses, this is what we get when
1892 we hit them. But it could happen that the base part's member
1893 name is not yet filled in. */
1894 int found_baseclass = (looking_for_baseclass
1895 && TYPE_BASECLASS_NAME (type, i) != NULL
1896 && (strcmp_iw (name,
1897 TYPE_BASECLASS_NAME (type,
1898 i)) == 0));
1899
1900 if (BASETYPE_VIA_VIRTUAL (type, i))
1901 {
1902 int boffset;
1903 struct value *v2;
1904
1905 boffset = baseclass_offset (type, i,
1906 value_contents (arg1) + offset,
1907 value_address (arg1)
1908 + value_embedded_offset (arg1)
1909 + offset);
1910 if (boffset == -1)
1911 error (_("virtual baseclass botch"));
1912
1913 /* The virtual base class pointer might have been clobbered
1914 by the user program. Make sure that it still points to a
1915 valid memory location. */
1916
1917 boffset += value_embedded_offset (arg1) + offset;
1918 if (boffset < 0
1919 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1920 {
1921 CORE_ADDR base_addr;
1922
1923 v2 = allocate_value (basetype);
1924 base_addr = value_address (arg1) + boffset;
1925 if (target_read_memory (base_addr,
1926 value_contents_raw (v2),
1927 TYPE_LENGTH (basetype)) != 0)
1928 error (_("virtual baseclass botch"));
1929 VALUE_LVAL (v2) = lval_memory;
1930 set_value_address (v2, base_addr);
1931 }
1932 else
1933 {
1934 v2 = value_copy (arg1);
1935 deprecated_set_value_type (v2, basetype);
1936 set_value_embedded_offset (v2, boffset);
1937 }
1938
1939 if (found_baseclass)
1940 return v2;
1941 v = search_struct_field (name, v2, 0,
1942 TYPE_BASECLASS (type, i),
1943 looking_for_baseclass);
1944 }
1945 else if (found_baseclass)
1946 v = value_primitive_field (arg1, offset, i, type);
1947 else
1948 v = search_struct_field (name, arg1,
1949 offset + TYPE_BASECLASS_BITPOS (type,
1950 i) / 8,
1951 basetype, looking_for_baseclass);
1952 if (v)
1953 return v;
1954 }
1955 return NULL;
1956 }
1957
1958 /* Helper function used by value_struct_elt to recurse through
1959 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1960 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1961 TYPE.
1962
1963 If found, return value, else if name matched and args not return
1964 (value) -1, else return NULL. */
1965
1966 static struct value *
1967 search_struct_method (const char *name, struct value **arg1p,
1968 struct value **args, int offset,
1969 int *static_memfuncp, struct type *type)
1970 {
1971 int i;
1972 struct value *v;
1973 int name_matched = 0;
1974 char dem_opname[64];
1975
1976 CHECK_TYPEDEF (type);
1977 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1978 {
1979 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1980 /* FIXME! May need to check for ARM demangling here */
1981 if (strncmp (t_field_name, "__", 2) == 0 ||
1982 strncmp (t_field_name, "op", 2) == 0 ||
1983 strncmp (t_field_name, "type", 4) == 0)
1984 {
1985 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
1986 t_field_name = dem_opname;
1987 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
1988 t_field_name = dem_opname;
1989 }
1990 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1991 {
1992 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1993 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1994 name_matched = 1;
1995
1996 check_stub_method_group (type, i);
1997 if (j > 0 && args == 0)
1998 error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
1999 else if (j == 0 && args == 0)
2000 {
2001 v = value_fn_field (arg1p, f, j, type, offset);
2002 if (v != NULL)
2003 return v;
2004 }
2005 else
2006 while (j >= 0)
2007 {
2008 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2009 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2010 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2011 TYPE_FN_FIELD_ARGS (f, j), args))
2012 {
2013 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2014 return value_virtual_fn_field (arg1p, f, j,
2015 type, offset);
2016 if (TYPE_FN_FIELD_STATIC_P (f, j)
2017 && static_memfuncp)
2018 *static_memfuncp = 1;
2019 v = value_fn_field (arg1p, f, j, type, offset);
2020 if (v != NULL)
2021 return v;
2022 }
2023 j--;
2024 }
2025 }
2026 }
2027
2028 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2029 {
2030 int base_offset;
2031
2032 if (BASETYPE_VIA_VIRTUAL (type, i))
2033 {
2034 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2035 const gdb_byte *base_valaddr;
2036
2037 /* The virtual base class pointer might have been
2038 clobbered by the user program. Make sure that it
2039 still points to a valid memory location. */
2040
2041 if (offset < 0 || offset >= TYPE_LENGTH (type))
2042 {
2043 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
2044 if (target_read_memory (value_address (*arg1p) + offset,
2045 tmp, TYPE_LENGTH (baseclass)) != 0)
2046 error (_("virtual baseclass botch"));
2047 base_valaddr = tmp;
2048 }
2049 else
2050 base_valaddr = value_contents (*arg1p) + offset;
2051
2052 base_offset = baseclass_offset (type, i, base_valaddr,
2053 value_address (*arg1p) + offset);
2054 if (base_offset == -1)
2055 error (_("virtual baseclass botch"));
2056 }
2057 else
2058 {
2059 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2060 }
2061 v = search_struct_method (name, arg1p, args, base_offset + offset,
2062 static_memfuncp, TYPE_BASECLASS (type, i));
2063 if (v == (struct value *) - 1)
2064 {
2065 name_matched = 1;
2066 }
2067 else if (v)
2068 {
2069 /* FIXME-bothner: Why is this commented out? Why is it here? */
2070 /* *arg1p = arg1_tmp; */
2071 return v;
2072 }
2073 }
2074 if (name_matched)
2075 return (struct value *) - 1;
2076 else
2077 return NULL;
2078 }
2079
2080 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2081 extract the component named NAME from the ultimate target
2082 structure/union and return it as a value with its appropriate type.
2083 ERR is used in the error message if *ARGP's type is wrong.
2084
2085 C++: ARGS is a list of argument types to aid in the selection of
2086 an appropriate method. Also, handle derived types.
2087
2088 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2089 where the truthvalue of whether the function that was resolved was
2090 a static member function or not is stored.
2091
2092 ERR is an error message to be printed in case the field is not
2093 found. */
2094
2095 struct value *
2096 value_struct_elt (struct value **argp, struct value **args,
2097 const char *name, int *static_memfuncp, const char *err)
2098 {
2099 struct type *t;
2100 struct value *v;
2101
2102 *argp = coerce_array (*argp);
2103
2104 t = check_typedef (value_type (*argp));
2105
2106 /* Follow pointers until we get to a non-pointer. */
2107
2108 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2109 {
2110 *argp = value_ind (*argp);
2111 /* Don't coerce fn pointer to fn and then back again! */
2112 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2113 *argp = coerce_array (*argp);
2114 t = check_typedef (value_type (*argp));
2115 }
2116
2117 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2118 && TYPE_CODE (t) != TYPE_CODE_UNION)
2119 error (_("Attempt to extract a component of a value that is not a %s."), err);
2120
2121 /* Assume it's not, unless we see that it is. */
2122 if (static_memfuncp)
2123 *static_memfuncp = 0;
2124
2125 if (!args)
2126 {
2127 /* if there are no arguments ...do this... */
2128
2129 /* Try as a field first, because if we succeed, there is less
2130 work to be done. */
2131 v = search_struct_field (name, *argp, 0, t, 0);
2132 if (v)
2133 return v;
2134
2135 /* C++: If it was not found as a data field, then try to
2136 return it as a pointer to a method. */
2137 v = search_struct_method (name, argp, args, 0,
2138 static_memfuncp, t);
2139
2140 if (v == (struct value *) - 1)
2141 error (_("Cannot take address of method %s."), name);
2142 else if (v == 0)
2143 {
2144 if (TYPE_NFN_FIELDS (t))
2145 error (_("There is no member or method named %s."), name);
2146 else
2147 error (_("There is no member named %s."), name);
2148 }
2149 return v;
2150 }
2151
2152 v = search_struct_method (name, argp, args, 0,
2153 static_memfuncp, t);
2154
2155 if (v == (struct value *) - 1)
2156 {
2157 error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
2158 }
2159 else if (v == 0)
2160 {
2161 /* See if user tried to invoke data as function. If so, hand it
2162 back. If it's not callable (i.e., a pointer to function),
2163 gdb should give an error. */
2164 v = search_struct_field (name, *argp, 0, t, 0);
2165 /* If we found an ordinary field, then it is not a method call.
2166 So, treat it as if it were a static member function. */
2167 if (v && static_memfuncp)
2168 *static_memfuncp = 1;
2169 }
2170
2171 if (!v)
2172 error (_("Structure has no component named %s."), name);
2173 return v;
2174 }
2175
2176 /* Search through the methods of an object (and its bases) to find a
2177 specified method. Return the pointer to the fn_field list of
2178 overloaded instances.
2179
2180 Helper function for value_find_oload_list.
2181 ARGP is a pointer to a pointer to a value (the object).
2182 METHOD is a string containing the method name.
2183 OFFSET is the offset within the value.
2184 TYPE is the assumed type of the object.
2185 NUM_FNS is the number of overloaded instances.
2186 BASETYPE is set to the actual type of the subobject where the
2187 method is found.
2188 BOFFSET is the offset of the base subobject where the method is found.
2189 */
2190
2191 static struct fn_field *
2192 find_method_list (struct value **argp, const char *method,
2193 int offset, struct type *type, int *num_fns,
2194 struct type **basetype, int *boffset)
2195 {
2196 int i;
2197 struct fn_field *f;
2198 CHECK_TYPEDEF (type);
2199
2200 *num_fns = 0;
2201
2202 /* First check in object itself. */
2203 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2204 {
2205 /* pai: FIXME What about operators and type conversions? */
2206 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2207 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2208 {
2209 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2210 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2211
2212 *num_fns = len;
2213 *basetype = type;
2214 *boffset = offset;
2215
2216 /* Resolve any stub methods. */
2217 check_stub_method_group (type, i);
2218
2219 return f;
2220 }
2221 }
2222
2223 /* Not found in object, check in base subobjects. */
2224 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2225 {
2226 int base_offset;
2227 if (BASETYPE_VIA_VIRTUAL (type, i))
2228 {
2229 base_offset = value_offset (*argp) + offset;
2230 base_offset = baseclass_offset (type, i,
2231 value_contents (*argp) + base_offset,
2232 value_address (*argp) + base_offset);
2233 if (base_offset == -1)
2234 error (_("virtual baseclass botch"));
2235 }
2236 else /* Non-virtual base, simply use bit position from debug
2237 info. */
2238 {
2239 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2240 }
2241 f = find_method_list (argp, method, base_offset + offset,
2242 TYPE_BASECLASS (type, i), num_fns,
2243 basetype, boffset);
2244 if (f)
2245 return f;
2246 }
2247 return NULL;
2248 }
2249
2250 /* Return the list of overloaded methods of a specified name.
2251
2252 ARGP is a pointer to a pointer to a value (the object).
2253 METHOD is the method name.
2254 OFFSET is the offset within the value contents.
2255 NUM_FNS is the number of overloaded instances.
2256 BASETYPE is set to the type of the base subobject that defines the
2257 method.
2258 BOFFSET is the offset of the base subobject which defines the method.
2259 */
2260
2261 struct fn_field *
2262 value_find_oload_method_list (struct value **argp, const char *method,
2263 int offset, int *num_fns,
2264 struct type **basetype, int *boffset)
2265 {
2266 struct type *t;
2267
2268 t = check_typedef (value_type (*argp));
2269
2270 /* Code snarfed from value_struct_elt. */
2271 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2272 {
2273 *argp = value_ind (*argp);
2274 /* Don't coerce fn pointer to fn and then back again! */
2275 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2276 *argp = coerce_array (*argp);
2277 t = check_typedef (value_type (*argp));
2278 }
2279
2280 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2281 && TYPE_CODE (t) != TYPE_CODE_UNION)
2282 error (_("Attempt to extract a component of a value that is not a struct or union"));
2283
2284 return find_method_list (argp, method, 0, t, num_fns,
2285 basetype, boffset);
2286 }
2287
2288 /* Given an array of argument types (ARGTYPES) (which includes an
2289 entry for "this" in the case of C++ methods), the number of
2290 arguments NARGS, the NAME of a function whether it's a method or
2291 not (METHOD), and the degree of laxness (LAX) in conforming to
2292 overload resolution rules in ANSI C++, find the best function that
2293 matches on the argument types according to the overload resolution
2294 rules.
2295
2296 In the case of class methods, the parameter OBJ is an object value
2297 in which to search for overloaded methods.
2298
2299 In the case of non-method functions, the parameter FSYM is a symbol
2300 corresponding to one of the overloaded functions.
2301
2302 Return value is an integer: 0 -> good match, 10 -> debugger applied
2303 non-standard coercions, 100 -> incompatible.
2304
2305 If a method is being searched for, VALP will hold the value.
2306 If a non-method is being searched for, SYMP will hold the symbol
2307 for it.
2308
2309 If a method is being searched for, and it is a static method,
2310 then STATICP will point to a non-zero value.
2311
2312 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2313 ADL overload candidates when performing overload resolution for a fully
2314 qualified name.
2315
2316 Note: This function does *not* check the value of
2317 overload_resolution. Caller must check it to see whether overload
2318 resolution is permitted.
2319 */
2320
2321 int
2322 find_overload_match (struct type **arg_types, int nargs,
2323 const char *name, int method, int lax,
2324 struct value **objp, struct symbol *fsym,
2325 struct value **valp, struct symbol **symp,
2326 int *staticp, const int no_adl)
2327 {
2328 struct value *obj = (objp ? *objp : NULL);
2329 /* Index of best overloaded function. */
2330 int oload_champ;
2331 /* The measure for the current best match. */
2332 struct badness_vector *oload_champ_bv = NULL;
2333 struct value *temp = obj;
2334 /* For methods, the list of overloaded methods. */
2335 struct fn_field *fns_ptr = NULL;
2336 /* For non-methods, the list of overloaded function symbols. */
2337 struct symbol **oload_syms = NULL;
2338 /* Number of overloaded instances being considered. */
2339 int num_fns = 0;
2340 struct type *basetype = NULL;
2341 int boffset;
2342
2343 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2344
2345 const char *obj_type_name = NULL;
2346 const char *func_name = NULL;
2347 enum oload_classification match_quality;
2348
2349 /* Get the list of overloaded methods or functions. */
2350 if (method)
2351 {
2352 gdb_assert (obj);
2353
2354 /* OBJ may be a pointer value rather than the object itself. */
2355 obj = coerce_ref (obj);
2356 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2357 obj = coerce_ref (value_ind (obj));
2358 obj_type_name = TYPE_NAME (value_type (obj));
2359
2360 /* First check whether this is a data member, e.g. a pointer to
2361 a function. */
2362 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2363 {
2364 *valp = search_struct_field (name, obj, 0,
2365 check_typedef (value_type (obj)), 0);
2366 if (*valp)
2367 {
2368 *staticp = 1;
2369 return 0;
2370 }
2371 }
2372
2373 fns_ptr = value_find_oload_method_list (&temp, name,
2374 0, &num_fns,
2375 &basetype, &boffset);
2376 if (!fns_ptr || !num_fns)
2377 error (_("Couldn't find method %s%s%s"),
2378 obj_type_name,
2379 (obj_type_name && *obj_type_name) ? "::" : "",
2380 name);
2381 /* If we are dealing with stub method types, they should have
2382 been resolved by find_method_list via
2383 value_find_oload_method_list above. */
2384 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2385 oload_champ = find_oload_champ (arg_types, nargs, method,
2386 num_fns, fns_ptr,
2387 oload_syms, &oload_champ_bv);
2388 }
2389 else
2390 {
2391 const char *qualified_name = NULL;
2392
2393 if (fsym)
2394 {
2395 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2396
2397 /* If we have a function with a C++ name, try to extract just
2398 the function part. Do not try this for non-functions (e.g.
2399 function pointers). */
2400 if (qualified_name
2401 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym))) == TYPE_CODE_FUNC)
2402 {
2403 char *temp;
2404
2405 temp = cp_func_name (qualified_name);
2406
2407 /* If cp_func_name did not remove anything, the name of the
2408 symbol did not include scope or argument types - it was
2409 probably a C-style function. */
2410 if (temp)
2411 {
2412 make_cleanup (xfree, temp);
2413 if (strcmp (temp, qualified_name) == 0)
2414 func_name = NULL;
2415 else
2416 func_name = temp;
2417 }
2418 }
2419 }
2420 else
2421 {
2422 func_name = name;
2423 qualified_name = name;
2424 }
2425
2426 /* If there was no C++ name, this must be a C-style function or
2427 not a function at all. Just return the same symbol. Do the
2428 same if cp_func_name fails for some reason. */
2429 if (func_name == NULL)
2430 {
2431 *symp = fsym;
2432 return 0;
2433 }
2434
2435 make_cleanup (xfree, oload_syms);
2436 make_cleanup (xfree, oload_champ_bv);
2437
2438 oload_champ = find_oload_champ_namespace (arg_types, nargs,
2439 func_name,
2440 qualified_name,
2441 &oload_syms,
2442 &oload_champ_bv,
2443 no_adl);
2444 }
2445
2446 /* Did we find a match ? */
2447 if (oload_champ == -1)
2448 error ("No symbol \"%s\" in current context.", name);
2449
2450 /* Check how bad the best match is. */
2451 match_quality =
2452 classify_oload_match (oload_champ_bv, nargs,
2453 oload_method_static (method, fns_ptr,
2454 oload_champ));
2455
2456 if (match_quality == INCOMPATIBLE)
2457 {
2458 if (method)
2459 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2460 obj_type_name,
2461 (obj_type_name && *obj_type_name) ? "::" : "",
2462 name);
2463 else
2464 error (_("Cannot resolve function %s to any overloaded instance"),
2465 func_name);
2466 }
2467 else if (match_quality == NON_STANDARD)
2468 {
2469 if (method)
2470 warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
2471 obj_type_name,
2472 (obj_type_name && *obj_type_name) ? "::" : "",
2473 name);
2474 else
2475 warning (_("Using non-standard conversion to match function %s to supplied arguments"),
2476 func_name);
2477 }
2478
2479 if (method)
2480 {
2481 if (staticp != NULL)
2482 *staticp = oload_method_static (method, fns_ptr, oload_champ);
2483 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2484 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ,
2485 basetype, boffset);
2486 else
2487 *valp = value_fn_field (&temp, fns_ptr, oload_champ,
2488 basetype, boffset);
2489 }
2490 else
2491 {
2492 *symp = oload_syms[oload_champ];
2493 }
2494
2495 if (objp)
2496 {
2497 struct type *temp_type = check_typedef (value_type (temp));
2498 struct type *obj_type = check_typedef (value_type (*objp));
2499 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2500 && (TYPE_CODE (obj_type) == TYPE_CODE_PTR
2501 || TYPE_CODE (obj_type) == TYPE_CODE_REF))
2502 {
2503 temp = value_addr (temp);
2504 }
2505 *objp = temp;
2506 }
2507
2508 do_cleanups (all_cleanups);
2509
2510 switch (match_quality)
2511 {
2512 case INCOMPATIBLE:
2513 return 100;
2514 case NON_STANDARD:
2515 return 10;
2516 default: /* STANDARD */
2517 return 0;
2518 }
2519 }
2520
2521 /* Find the best overload match, searching for FUNC_NAME in namespaces
2522 contained in QUALIFIED_NAME until it either finds a good match or
2523 runs out of namespaces. It stores the overloaded functions in
2524 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2525 calling function is responsible for freeing *OLOAD_SYMS and
2526 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2527 performned. */
2528
2529 static int
2530 find_oload_champ_namespace (struct type **arg_types, int nargs,
2531 const char *func_name,
2532 const char *qualified_name,
2533 struct symbol ***oload_syms,
2534 struct badness_vector **oload_champ_bv,
2535 const int no_adl)
2536 {
2537 int oload_champ;
2538
2539 find_oload_champ_namespace_loop (arg_types, nargs,
2540 func_name,
2541 qualified_name, 0,
2542 oload_syms, oload_champ_bv,
2543 &oload_champ,
2544 no_adl);
2545
2546 return oload_champ;
2547 }
2548
2549 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2550 how deep we've looked for namespaces, and the champ is stored in
2551 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2552 if it isn't. Other arguments are the same as in
2553 find_oload_champ_namespace
2554
2555 It is the caller's responsibility to free *OLOAD_SYMS and
2556 *OLOAD_CHAMP_BV. */
2557
2558 static int
2559 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2560 const char *func_name,
2561 const char *qualified_name,
2562 int namespace_len,
2563 struct symbol ***oload_syms,
2564 struct badness_vector **oload_champ_bv,
2565 int *oload_champ,
2566 const int no_adl)
2567 {
2568 int next_namespace_len = namespace_len;
2569 int searched_deeper = 0;
2570 int num_fns = 0;
2571 struct cleanup *old_cleanups;
2572 int new_oload_champ;
2573 struct symbol **new_oload_syms;
2574 struct badness_vector *new_oload_champ_bv;
2575 char *new_namespace;
2576
2577 if (next_namespace_len != 0)
2578 {
2579 gdb_assert (qualified_name[next_namespace_len] == ':');
2580 next_namespace_len += 2;
2581 }
2582 next_namespace_len +=
2583 cp_find_first_component (qualified_name + next_namespace_len);
2584
2585 /* Initialize these to values that can safely be xfree'd. */
2586 *oload_syms = NULL;
2587 *oload_champ_bv = NULL;
2588
2589 /* First, see if we have a deeper namespace we can search in.
2590 If we get a good match there, use it. */
2591
2592 if (qualified_name[next_namespace_len] == ':')
2593 {
2594 searched_deeper = 1;
2595
2596 if (find_oload_champ_namespace_loop (arg_types, nargs,
2597 func_name, qualified_name,
2598 next_namespace_len,
2599 oload_syms, oload_champ_bv,
2600 oload_champ, no_adl))
2601 {
2602 return 1;
2603 }
2604 };
2605
2606 /* If we reach here, either we're in the deepest namespace or we
2607 didn't find a good match in a deeper namespace. But, in the
2608 latter case, we still have a bad match in a deeper namespace;
2609 note that we might not find any match at all in the current
2610 namespace. (There's always a match in the deepest namespace,
2611 because this overload mechanism only gets called if there's a
2612 function symbol to start off with.) */
2613
2614 old_cleanups = make_cleanup (xfree, *oload_syms);
2615 old_cleanups = make_cleanup (xfree, *oload_champ_bv);
2616 new_namespace = alloca (namespace_len + 1);
2617 strncpy (new_namespace, qualified_name, namespace_len);
2618 new_namespace[namespace_len] = '\0';
2619 new_oload_syms = make_symbol_overload_list (func_name,
2620 new_namespace);
2621
2622 /* If we have reached the deepest level perform argument
2623 determined lookup. */
2624 if (!searched_deeper && !no_adl)
2625 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2626
2627 while (new_oload_syms[num_fns])
2628 ++num_fns;
2629
2630 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2631 NULL, new_oload_syms,
2632 &new_oload_champ_bv);
2633
2634 /* Case 1: We found a good match. Free earlier matches (if any),
2635 and return it. Case 2: We didn't find a good match, but we're
2636 not the deepest function. Then go with the bad match that the
2637 deeper function found. Case 3: We found a bad match, and we're
2638 the deepest function. Then return what we found, even though
2639 it's a bad match. */
2640
2641 if (new_oload_champ != -1
2642 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2643 {
2644 *oload_syms = new_oload_syms;
2645 *oload_champ = new_oload_champ;
2646 *oload_champ_bv = new_oload_champ_bv;
2647 do_cleanups (old_cleanups);
2648 return 1;
2649 }
2650 else if (searched_deeper)
2651 {
2652 xfree (new_oload_syms);
2653 xfree (new_oload_champ_bv);
2654 discard_cleanups (old_cleanups);
2655 return 0;
2656 }
2657 else
2658 {
2659 *oload_syms = new_oload_syms;
2660 *oload_champ = new_oload_champ;
2661 *oload_champ_bv = new_oload_champ_bv;
2662 discard_cleanups (old_cleanups);
2663 return 0;
2664 }
2665 }
2666
2667 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2668 the best match from among the overloaded methods or functions
2669 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2670 The number of methods/functions in the list is given by NUM_FNS.
2671 Return the index of the best match; store an indication of the
2672 quality of the match in OLOAD_CHAMP_BV.
2673
2674 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2675
2676 static int
2677 find_oload_champ (struct type **arg_types, int nargs, int method,
2678 int num_fns, struct fn_field *fns_ptr,
2679 struct symbol **oload_syms,
2680 struct badness_vector **oload_champ_bv)
2681 {
2682 int ix;
2683 /* A measure of how good an overloaded instance is. */
2684 struct badness_vector *bv;
2685 /* Index of best overloaded function. */
2686 int oload_champ = -1;
2687 /* Current ambiguity state for overload resolution. */
2688 int oload_ambiguous = 0;
2689 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2690
2691 *oload_champ_bv = NULL;
2692
2693 /* Consider each candidate in turn. */
2694 for (ix = 0; ix < num_fns; ix++)
2695 {
2696 int jj;
2697 int static_offset = oload_method_static (method, fns_ptr, ix);
2698 int nparms;
2699 struct type **parm_types;
2700
2701 if (method)
2702 {
2703 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2704 }
2705 else
2706 {
2707 /* If it's not a method, this is the proper place. */
2708 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2709 }
2710
2711 /* Prepare array of parameter types. */
2712 parm_types = (struct type **)
2713 xmalloc (nparms * (sizeof (struct type *)));
2714 for (jj = 0; jj < nparms; jj++)
2715 parm_types[jj] = (method
2716 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2717 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2718 jj));
2719
2720 /* Compare parameter types to supplied argument types. Skip
2721 THIS for static methods. */
2722 bv = rank_function (parm_types, nparms,
2723 arg_types + static_offset,
2724 nargs - static_offset);
2725
2726 if (!*oload_champ_bv)
2727 {
2728 *oload_champ_bv = bv;
2729 oload_champ = 0;
2730 }
2731 else /* See whether current candidate is better or worse than
2732 previous best. */
2733 switch (compare_badness (bv, *oload_champ_bv))
2734 {
2735 case 0: /* Top two contenders are equally good. */
2736 oload_ambiguous = 1;
2737 break;
2738 case 1: /* Incomparable top contenders. */
2739 oload_ambiguous = 2;
2740 break;
2741 case 2: /* New champion, record details. */
2742 *oload_champ_bv = bv;
2743 oload_ambiguous = 0;
2744 oload_champ = ix;
2745 break;
2746 case 3:
2747 default:
2748 break;
2749 }
2750 xfree (parm_types);
2751 if (overload_debug)
2752 {
2753 if (method)
2754 fprintf_filtered (gdb_stderr,
2755 "Overloaded method instance %s, # of parms %d\n",
2756 fns_ptr[ix].physname, nparms);
2757 else
2758 fprintf_filtered (gdb_stderr,
2759 "Overloaded function instance %s # of parms %d\n",
2760 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2761 nparms);
2762 for (jj = 0; jj < nargs - static_offset; jj++)
2763 fprintf_filtered (gdb_stderr,
2764 "...Badness @ %d : %d\n",
2765 jj, bv->rank[jj]);
2766 fprintf_filtered (gdb_stderr,
2767 "Overload resolution champion is %d, ambiguous? %d\n",
2768 oload_champ, oload_ambiguous);
2769 }
2770 }
2771
2772 return oload_champ;
2773 }
2774
2775 /* Return 1 if we're looking at a static method, 0 if we're looking at
2776 a non-static method or a function that isn't a method. */
2777
2778 static int
2779 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2780 {
2781 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2782 return 1;
2783 else
2784 return 0;
2785 }
2786
2787 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2788
2789 static enum oload_classification
2790 classify_oload_match (struct badness_vector *oload_champ_bv,
2791 int nargs,
2792 int static_offset)
2793 {
2794 int ix;
2795
2796 for (ix = 1; ix <= nargs - static_offset; ix++)
2797 {
2798 if (oload_champ_bv->rank[ix] >= 100)
2799 return INCOMPATIBLE; /* Truly mismatched types. */
2800 else if (oload_champ_bv->rank[ix] >= 10)
2801 return NON_STANDARD; /* Non-standard type conversions
2802 needed. */
2803 }
2804
2805 return STANDARD; /* Only standard conversions needed. */
2806 }
2807
2808 /* C++: return 1 is NAME is a legitimate name for the destructor of
2809 type TYPE. If TYPE does not have a destructor, or if NAME is
2810 inappropriate for TYPE, an error is signaled. */
2811 int
2812 destructor_name_p (const char *name, const struct type *type)
2813 {
2814 if (name[0] == '~')
2815 {
2816 char *dname = type_name_no_tag (type);
2817 char *cp = strchr (dname, '<');
2818 unsigned int len;
2819
2820 /* Do not compare the template part for template classes. */
2821 if (cp == NULL)
2822 len = strlen (dname);
2823 else
2824 len = cp - dname;
2825 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2826 error (_("name of destructor must equal name of class"));
2827 else
2828 return 1;
2829 }
2830 return 0;
2831 }
2832
2833 /* Given TYPE, a structure/union,
2834 return 1 if the component named NAME from the ultimate target
2835 structure/union is defined, otherwise, return 0. */
2836
2837 int
2838 check_field (struct type *type, const char *name)
2839 {
2840 int i;
2841
2842 /* The type may be a stub. */
2843 CHECK_TYPEDEF (type);
2844
2845 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2846 {
2847 char *t_field_name = TYPE_FIELD_NAME (type, i);
2848 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2849 return 1;
2850 }
2851
2852 /* C++: If it was not found as a data field, then try to return it
2853 as a pointer to a method. */
2854
2855 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2856 {
2857 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2858 return 1;
2859 }
2860
2861 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2862 if (check_field (TYPE_BASECLASS (type, i), name))
2863 return 1;
2864
2865 return 0;
2866 }
2867
2868 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2869 return the appropriate member (or the address of the member, if
2870 WANT_ADDRESS). This function is used to resolve user expressions
2871 of the form "DOMAIN::NAME". For more details on what happens, see
2872 the comment before value_struct_elt_for_reference. */
2873
2874 struct value *
2875 value_aggregate_elt (struct type *curtype, char *name,
2876 struct type *expect_type, int want_address,
2877 enum noside noside)
2878 {
2879 switch (TYPE_CODE (curtype))
2880 {
2881 case TYPE_CODE_STRUCT:
2882 case TYPE_CODE_UNION:
2883 return value_struct_elt_for_reference (curtype, 0, curtype,
2884 name, expect_type,
2885 want_address, noside);
2886 case TYPE_CODE_NAMESPACE:
2887 return value_namespace_elt (curtype, name,
2888 want_address, noside);
2889 default:
2890 internal_error (__FILE__, __LINE__,
2891 _("non-aggregate type in value_aggregate_elt"));
2892 }
2893 }
2894
2895 /* Compares the two method/function types T1 and T2 for "equality"
2896 with respect to the the methods' parameters. If the types of the
2897 two parameter lists are the same, returns 1; 0 otherwise. This
2898 comparison may ignore any artificial parameters in T1 if
2899 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
2900 the first artificial parameter in T1, assumed to be a 'this' pointer.
2901
2902 The type T2 is expected to have come from make_params (in eval.c). */
2903
2904 static int
2905 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
2906 {
2907 int start = 0;
2908
2909 if (TYPE_FIELD_ARTIFICIAL (t1, 0))
2910 ++start;
2911
2912 /* If skipping artificial fields, find the first real field
2913 in T1. */
2914 if (skip_artificial)
2915 {
2916 while (start < TYPE_NFIELDS (t1)
2917 && TYPE_FIELD_ARTIFICIAL (t1, start))
2918 ++start;
2919 }
2920
2921 /* Now compare parameters */
2922
2923 /* Special case: a method taking void. T1 will contain no
2924 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
2925 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
2926 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
2927 return 1;
2928
2929 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
2930 {
2931 int i;
2932 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
2933 {
2934 if (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
2935 TYPE_FIELD_TYPE (t2, i))
2936 != 0)
2937 return 0;
2938 }
2939
2940 return 1;
2941 }
2942
2943 return 0;
2944 }
2945
2946 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2947 return the address of this member as a "pointer to member" type.
2948 If INTYPE is non-null, then it will be the type of the member we
2949 are looking for. This will help us resolve "pointers to member
2950 functions". This function is used to resolve user expressions of
2951 the form "DOMAIN::NAME". */
2952
2953 static struct value *
2954 value_struct_elt_for_reference (struct type *domain, int offset,
2955 struct type *curtype, char *name,
2956 struct type *intype,
2957 int want_address,
2958 enum noside noside)
2959 {
2960 struct type *t = curtype;
2961 int i;
2962 struct value *v, *result;
2963
2964 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2965 && TYPE_CODE (t) != TYPE_CODE_UNION)
2966 error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
2967
2968 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2969 {
2970 char *t_field_name = TYPE_FIELD_NAME (t, i);
2971
2972 if (t_field_name && strcmp (t_field_name, name) == 0)
2973 {
2974 if (field_is_static (&TYPE_FIELD (t, i)))
2975 {
2976 v = value_static_field (t, i);
2977 if (v == NULL)
2978 error (_("static field %s has been optimized out"),
2979 name);
2980 if (want_address)
2981 v = value_addr (v);
2982 return v;
2983 }
2984 if (TYPE_FIELD_PACKED (t, i))
2985 error (_("pointers to bitfield members not allowed"));
2986
2987 if (want_address)
2988 return value_from_longest
2989 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
2990 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2991 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2992 return allocate_value (TYPE_FIELD_TYPE (t, i));
2993 else
2994 error (_("Cannot reference non-static field \"%s\""), name);
2995 }
2996 }
2997
2998 /* C++: If it was not found as a data field, then try to return it
2999 as a pointer to a method. */
3000
3001 /* Perform all necessary dereferencing. */
3002 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3003 intype = TYPE_TARGET_TYPE (intype);
3004
3005 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3006 {
3007 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3008 char dem_opname[64];
3009
3010 if (strncmp (t_field_name, "__", 2) == 0
3011 || strncmp (t_field_name, "op", 2) == 0
3012 || strncmp (t_field_name, "type", 4) == 0)
3013 {
3014 if (cplus_demangle_opname (t_field_name,
3015 dem_opname, DMGL_ANSI))
3016 t_field_name = dem_opname;
3017 else if (cplus_demangle_opname (t_field_name,
3018 dem_opname, 0))
3019 t_field_name = dem_opname;
3020 }
3021 if (t_field_name && strcmp (t_field_name, name) == 0)
3022 {
3023 int j;
3024 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3025 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3026
3027 check_stub_method_group (t, i);
3028
3029 if (intype)
3030 {
3031 for (j = 0; j < len; ++j)
3032 {
3033 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3034 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 1))
3035 break;
3036 }
3037
3038 if (j == len)
3039 error (_("no member function matches that type instantiation"));
3040 }
3041 else
3042 {
3043 int ii;
3044
3045 j = -1;
3046 for (ii = 0; ii < TYPE_FN_FIELDLIST_LENGTH (t, i);
3047 ++ii)
3048 {
3049 /* Skip artificial methods. This is necessary if,
3050 for example, the user wants to "print
3051 subclass::subclass" with only one user-defined
3052 constructor. There is no ambiguity in this
3053 case. */
3054 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3055 continue;
3056
3057 /* Desired method is ambiguous if more than one
3058 method is defined. */
3059 if (j != -1)
3060 error (_("non-unique member `%s' requires type instantiation"), name);
3061
3062 j = ii;
3063 }
3064 }
3065
3066 if (TYPE_FN_FIELD_STATIC_P (f, j))
3067 {
3068 struct symbol *s =
3069 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3070 0, VAR_DOMAIN, 0);
3071 if (s == NULL)
3072 return NULL;
3073
3074 if (want_address)
3075 return value_addr (read_var_value (s, 0));
3076 else
3077 return read_var_value (s, 0);
3078 }
3079
3080 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3081 {
3082 if (want_address)
3083 {
3084 result = allocate_value
3085 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3086 cplus_make_method_ptr (value_type (result),
3087 value_contents_writeable (result),
3088 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3089 }
3090 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3091 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3092 else
3093 error (_("Cannot reference virtual member function \"%s\""),
3094 name);
3095 }
3096 else
3097 {
3098 struct symbol *s =
3099 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3100 0, VAR_DOMAIN, 0);
3101 if (s == NULL)
3102 return NULL;
3103
3104 v = read_var_value (s, 0);
3105 if (!want_address)
3106 result = v;
3107 else
3108 {
3109 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3110 cplus_make_method_ptr (value_type (result),
3111 value_contents_writeable (result),
3112 value_address (v), 0);
3113 }
3114 }
3115 return result;
3116 }
3117 }
3118 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3119 {
3120 struct value *v;
3121 int base_offset;
3122
3123 if (BASETYPE_VIA_VIRTUAL (t, i))
3124 base_offset = 0;
3125 else
3126 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3127 v = value_struct_elt_for_reference (domain,
3128 offset + base_offset,
3129 TYPE_BASECLASS (t, i),
3130 name, intype,
3131 want_address, noside);
3132 if (v)
3133 return v;
3134 }
3135
3136 /* As a last chance, pretend that CURTYPE is a namespace, and look
3137 it up that way; this (frequently) works for types nested inside
3138 classes. */
3139
3140 return value_maybe_namespace_elt (curtype, name,
3141 want_address, noside);
3142 }
3143
3144 /* C++: Return the member NAME of the namespace given by the type
3145 CURTYPE. */
3146
3147 static struct value *
3148 value_namespace_elt (const struct type *curtype,
3149 char *name, int want_address,
3150 enum noside noside)
3151 {
3152 struct value *retval = value_maybe_namespace_elt (curtype, name,
3153 want_address,
3154 noside);
3155
3156 if (retval == NULL)
3157 error (_("No symbol \"%s\" in namespace \"%s\"."),
3158 name, TYPE_TAG_NAME (curtype));
3159
3160 return retval;
3161 }
3162
3163 /* A helper function used by value_namespace_elt and
3164 value_struct_elt_for_reference. It looks up NAME inside the
3165 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3166 is a class and NAME refers to a type in CURTYPE itself (as opposed
3167 to, say, some base class of CURTYPE). */
3168
3169 static struct value *
3170 value_maybe_namespace_elt (const struct type *curtype,
3171 char *name, int want_address,
3172 enum noside noside)
3173 {
3174 const char *namespace_name = TYPE_TAG_NAME (curtype);
3175 struct symbol *sym;
3176 struct value *result;
3177
3178 sym = cp_lookup_symbol_namespace (namespace_name, name,
3179 get_selected_block (0),
3180 VAR_DOMAIN);
3181
3182 if (sym == NULL)
3183 return NULL;
3184 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3185 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3186 result = allocate_value (SYMBOL_TYPE (sym));
3187 else
3188 result = value_of_variable (sym, get_selected_block (0));
3189
3190 if (result && want_address)
3191 result = value_addr (result);
3192
3193 return result;
3194 }
3195
3196 /* Given a pointer value V, find the real (RTTI) type of the object it
3197 points to.
3198
3199 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3200 and refer to the values computed for the object pointed to. */
3201
3202 struct type *
3203 value_rtti_target_type (struct value *v, int *full,
3204 int *top, int *using_enc)
3205 {
3206 struct value *target;
3207
3208 target = value_ind (v);
3209
3210 return value_rtti_type (target, full, top, using_enc);
3211 }
3212
3213 /* Given a value pointed to by ARGP, check its real run-time type, and
3214 if that is different from the enclosing type, create a new value
3215 using the real run-time type as the enclosing type (and of the same
3216 type as ARGP) and return it, with the embedded offset adjusted to
3217 be the correct offset to the enclosed object. RTYPE is the type,
3218 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3219 by value_rtti_type(). If these are available, they can be supplied
3220 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3221 NULL if they're not available. */
3222
3223 struct value *
3224 value_full_object (struct value *argp,
3225 struct type *rtype,
3226 int xfull, int xtop,
3227 int xusing_enc)
3228 {
3229 struct type *real_type;
3230 int full = 0;
3231 int top = -1;
3232 int using_enc = 0;
3233 struct value *new_val;
3234
3235 if (rtype)
3236 {
3237 real_type = rtype;
3238 full = xfull;
3239 top = xtop;
3240 using_enc = xusing_enc;
3241 }
3242 else
3243 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3244
3245 /* If no RTTI data, or if object is already complete, do nothing. */
3246 if (!real_type || real_type == value_enclosing_type (argp))
3247 return argp;
3248
3249 /* If we have the full object, but for some reason the enclosing
3250 type is wrong, set it. */
3251 /* pai: FIXME -- sounds iffy */
3252 if (full)
3253 {
3254 argp = value_change_enclosing_type (argp, real_type);
3255 return argp;
3256 }
3257
3258 /* Check if object is in memory */
3259 if (VALUE_LVAL (argp) != lval_memory)
3260 {
3261 warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."),
3262 TYPE_NAME (real_type));
3263
3264 return argp;
3265 }
3266
3267 /* All other cases -- retrieve the complete object. */
3268 /* Go back by the computed top_offset from the beginning of the
3269 object, adjusting for the embedded offset of argp if that's what
3270 value_rtti_type used for its computation. */
3271 new_val = value_at_lazy (real_type, value_address (argp) - top +
3272 (using_enc ? 0 : value_embedded_offset (argp)));
3273 deprecated_set_value_type (new_val, value_type (argp));
3274 set_value_embedded_offset (new_val, (using_enc
3275 ? top + value_embedded_offset (argp)
3276 : top));
3277 return new_val;
3278 }
3279
3280
3281 /* Return the value of the local variable, if one exists.
3282 Flag COMPLAIN signals an error if the request is made in an
3283 inappropriate context. */
3284
3285 struct value *
3286 value_of_local (const char *name, int complain)
3287 {
3288 struct symbol *func, *sym;
3289 struct block *b;
3290 struct value * ret;
3291 struct frame_info *frame;
3292
3293 if (complain)
3294 frame = get_selected_frame (_("no frame selected"));
3295 else
3296 {
3297 frame = deprecated_safe_get_selected_frame ();
3298 if (frame == 0)
3299 return 0;
3300 }
3301
3302 func = get_frame_function (frame);
3303 if (!func)
3304 {
3305 if (complain)
3306 error (_("no `%s' in nameless context"), name);
3307 else
3308 return 0;
3309 }
3310
3311 b = SYMBOL_BLOCK_VALUE (func);
3312 if (dict_empty (BLOCK_DICT (b)))
3313 {
3314 if (complain)
3315 error (_("no args, no `%s'"), name);
3316 else
3317 return 0;
3318 }
3319
3320 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3321 symbol instead of the LOC_ARG one (if both exist). */
3322 sym = lookup_block_symbol (b, name, VAR_DOMAIN);
3323 if (sym == NULL)
3324 {
3325 if (complain)
3326 error (_("current stack frame does not contain a variable named `%s'"),
3327 name);
3328 else
3329 return NULL;
3330 }
3331
3332 ret = read_var_value (sym, frame);
3333 if (ret == 0 && complain)
3334 error (_("`%s' argument unreadable"), name);
3335 return ret;
3336 }
3337
3338 /* C++/Objective-C: return the value of the class instance variable,
3339 if one exists. Flag COMPLAIN signals an error if the request is
3340 made in an inappropriate context. */
3341
3342 struct value *
3343 value_of_this (int complain)
3344 {
3345 if (!current_language->la_name_of_this)
3346 return 0;
3347 return value_of_local (current_language->la_name_of_this, complain);
3348 }
3349
3350 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3351 elements long, starting at LOWBOUND. The result has the same lower
3352 bound as the original ARRAY. */
3353
3354 struct value *
3355 value_slice (struct value *array, int lowbound, int length)
3356 {
3357 struct type *slice_range_type, *slice_type, *range_type;
3358 LONGEST lowerbound, upperbound;
3359 struct value *slice;
3360 struct type *array_type;
3361
3362 array_type = check_typedef (value_type (array));
3363 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3364 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3365 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3366 error (_("cannot take slice of non-array"));
3367
3368 range_type = TYPE_INDEX_TYPE (array_type);
3369 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3370 error (_("slice from bad array or bitstring"));
3371
3372 if (lowbound < lowerbound || length < 0
3373 || lowbound + length - 1 > upperbound)
3374 error (_("slice out of range"));
3375
3376 /* FIXME-type-allocation: need a way to free this type when we are
3377 done with it. */
3378 slice_range_type = create_range_type ((struct type *) NULL,
3379 TYPE_TARGET_TYPE (range_type),
3380 lowbound,
3381 lowbound + length - 1);
3382 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3383 {
3384 int i;
3385
3386 slice_type = create_set_type ((struct type *) NULL,
3387 slice_range_type);
3388 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3389 slice = value_zero (slice_type, not_lval);
3390
3391 for (i = 0; i < length; i++)
3392 {
3393 int element = value_bit_index (array_type,
3394 value_contents (array),
3395 lowbound + i);
3396 if (element < 0)
3397 error (_("internal error accessing bitstring"));
3398 else if (element > 0)
3399 {
3400 int j = i % TARGET_CHAR_BIT;
3401 if (gdbarch_bits_big_endian (get_type_arch (array_type)))
3402 j = TARGET_CHAR_BIT - 1 - j;
3403 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3404 }
3405 }
3406 /* We should set the address, bitssize, and bitspos, so the
3407 slice can be used on the LHS, but that may require extensions
3408 to value_assign. For now, just leave as a non_lval.
3409 FIXME. */
3410 }
3411 else
3412 {
3413 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3414 LONGEST offset =
3415 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3416
3417 slice_type = create_array_type ((struct type *) NULL,
3418 element_type,
3419 slice_range_type);
3420 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3421
3422 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3423 slice = allocate_value_lazy (slice_type);
3424 else
3425 {
3426 slice = allocate_value (slice_type);
3427 memcpy (value_contents_writeable (slice),
3428 value_contents (array) + offset,
3429 TYPE_LENGTH (slice_type));
3430 }
3431
3432 set_value_component_location (slice, array);
3433 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3434 set_value_offset (slice, value_offset (array) + offset);
3435 }
3436 return slice;
3437 }
3438
3439 /* Create a value for a FORTRAN complex number. Currently most of the
3440 time values are coerced to COMPLEX*16 (i.e. a complex number
3441 composed of 2 doubles. This really should be a smarter routine
3442 that figures out precision inteligently as opposed to assuming
3443 doubles. FIXME: fmb */
3444
3445 struct value *
3446 value_literal_complex (struct value *arg1,
3447 struct value *arg2,
3448 struct type *type)
3449 {
3450 struct value *val;
3451 struct type *real_type = TYPE_TARGET_TYPE (type);
3452
3453 val = allocate_value (type);
3454 arg1 = value_cast (real_type, arg1);
3455 arg2 = value_cast (real_type, arg2);
3456
3457 memcpy (value_contents_raw (val),
3458 value_contents (arg1), TYPE_LENGTH (real_type));
3459 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3460 value_contents (arg2), TYPE_LENGTH (real_type));
3461 return val;
3462 }
3463
3464 /* Cast a value into the appropriate complex data type. */
3465
3466 static struct value *
3467 cast_into_complex (struct type *type, struct value *val)
3468 {
3469 struct type *real_type = TYPE_TARGET_TYPE (type);
3470
3471 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3472 {
3473 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3474 struct value *re_val = allocate_value (val_real_type);
3475 struct value *im_val = allocate_value (val_real_type);
3476
3477 memcpy (value_contents_raw (re_val),
3478 value_contents (val), TYPE_LENGTH (val_real_type));
3479 memcpy (value_contents_raw (im_val),
3480 value_contents (val) + TYPE_LENGTH (val_real_type),
3481 TYPE_LENGTH (val_real_type));
3482
3483 return value_literal_complex (re_val, im_val, type);
3484 }
3485 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3486 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3487 return value_literal_complex (val,
3488 value_zero (real_type, not_lval),
3489 type);
3490 else
3491 error (_("cannot cast non-number to complex"));
3492 }
3493
3494 void
3495 _initialize_valops (void)
3496 {
3497 add_setshow_boolean_cmd ("overload-resolution", class_support,
3498 &overload_resolution, _("\
3499 Set overload resolution in evaluating C++ functions."), _("\
3500 Show overload resolution in evaluating C++ functions."),
3501 NULL, NULL,
3502 show_overload_resolution,
3503 &setlist, &showlist);
3504 overload_resolution = 1;
3505 }
This page took 0.110484 seconds and 4 git commands to generate.