Add -mevexrcig={rne|rd|ru|rz} option to x86 assembler.
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "dfp.h"
38 #include "tracepoint.h"
39 #include "observer.h"
40 #include "objfiles.h"
41 #include "exceptions.h"
42 #include "extension.h"
43
44 extern unsigned int overload_debug;
45 /* Local functions. */
46
47 static int typecmp (int staticp, int varargs, int nargs,
48 struct field t1[], struct value *t2[]);
49
50 static struct value *search_struct_field (const char *, struct value *,
51 int, struct type *, int);
52
53 static struct value *search_struct_method (const char *, struct value **,
54 struct value **,
55 int, int *, struct type *);
56
57 static int find_oload_champ_namespace (struct value **, int,
58 const char *, const char *,
59 struct symbol ***,
60 struct badness_vector **,
61 const int no_adl);
62
63 static
64 int find_oload_champ_namespace_loop (struct value **, int,
65 const char *, const char *,
66 int, struct symbol ***,
67 struct badness_vector **, int *,
68 const int no_adl);
69
70 static int find_oload_champ (struct value **, int, int,
71 struct fn_field *, VEC (xmethod_worker_ptr) *,
72 struct symbol **, struct badness_vector **);
73
74 static int oload_method_static_p (struct fn_field *, int);
75
76 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
77
78 static enum
79 oload_classification classify_oload_match (struct badness_vector *,
80 int, int);
81
82 static struct value *value_struct_elt_for_reference (struct type *,
83 int, struct type *,
84 const char *,
85 struct type *,
86 int, enum noside);
87
88 static struct value *value_namespace_elt (const struct type *,
89 const char *, int , enum noside);
90
91 static struct value *value_maybe_namespace_elt (const struct type *,
92 const char *, int,
93 enum noside);
94
95 static CORE_ADDR allocate_space_in_inferior (int);
96
97 static struct value *cast_into_complex (struct type *, struct value *);
98
99 static void find_method_list (struct value **, const char *,
100 int, struct type *, struct fn_field **, int *,
101 VEC (xmethod_worker_ptr) **,
102 struct type **, int *);
103
104 void _initialize_valops (void);
105
106 #if 0
107 /* Flag for whether we want to abandon failed expression evals by
108 default. */
109
110 static int auto_abandon = 0;
111 #endif
112
113 int overload_resolution = 0;
114 static void
115 show_overload_resolution (struct ui_file *file, int from_tty,
116 struct cmd_list_element *c,
117 const char *value)
118 {
119 fprintf_filtered (file, _("Overload resolution in evaluating "
120 "C++ functions is %s.\n"),
121 value);
122 }
123
124 /* Find the address of function name NAME in the inferior. If OBJF_P
125 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
126 is defined. */
127
128 struct value *
129 find_function_in_inferior (const char *name, struct objfile **objf_p)
130 {
131 struct symbol *sym;
132
133 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
134 if (sym != NULL)
135 {
136 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
137 {
138 error (_("\"%s\" exists in this program but is not a function."),
139 name);
140 }
141
142 if (objf_p)
143 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
144
145 return value_of_variable (sym, NULL);
146 }
147 else
148 {
149 struct bound_minimal_symbol msymbol =
150 lookup_bound_minimal_symbol (name);
151
152 if (msymbol.minsym != NULL)
153 {
154 struct objfile *objfile = msymbol.objfile;
155 struct gdbarch *gdbarch = get_objfile_arch (objfile);
156
157 struct type *type;
158 CORE_ADDR maddr;
159 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
160 type = lookup_function_type (type);
161 type = lookup_pointer_type (type);
162 maddr = BMSYMBOL_VALUE_ADDRESS (msymbol);
163
164 if (objf_p)
165 *objf_p = objfile;
166
167 return value_from_pointer (type, maddr);
168 }
169 else
170 {
171 if (!target_has_execution)
172 error (_("evaluation of this expression "
173 "requires the target program to be active"));
174 else
175 error (_("evaluation of this expression requires the "
176 "program to have a function \"%s\"."),
177 name);
178 }
179 }
180 }
181
182 /* Allocate NBYTES of space in the inferior using the inferior's
183 malloc and return a value that is a pointer to the allocated
184 space. */
185
186 struct value *
187 value_allocate_space_in_inferior (int len)
188 {
189 struct objfile *objf;
190 struct value *val = find_function_in_inferior ("malloc", &objf);
191 struct gdbarch *gdbarch = get_objfile_arch (objf);
192 struct value *blocklen;
193
194 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
195 val = call_function_by_hand (val, 1, &blocklen);
196 if (value_logical_not (val))
197 {
198 if (!target_has_execution)
199 error (_("No memory available to program now: "
200 "you need to start the target first"));
201 else
202 error (_("No memory available to program: call to malloc failed"));
203 }
204 return val;
205 }
206
207 static CORE_ADDR
208 allocate_space_in_inferior (int len)
209 {
210 return value_as_long (value_allocate_space_in_inferior (len));
211 }
212
213 /* Cast struct value VAL to type TYPE and return as a value.
214 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
215 for this to work. Typedef to one of the codes is permitted.
216 Returns NULL if the cast is neither an upcast nor a downcast. */
217
218 static struct value *
219 value_cast_structs (struct type *type, struct value *v2)
220 {
221 struct type *t1;
222 struct type *t2;
223 struct value *v;
224
225 gdb_assert (type != NULL && v2 != NULL);
226
227 t1 = check_typedef (type);
228 t2 = check_typedef (value_type (v2));
229
230 /* Check preconditions. */
231 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
232 || TYPE_CODE (t1) == TYPE_CODE_UNION)
233 && !!"Precondition is that type is of STRUCT or UNION kind.");
234 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
235 || TYPE_CODE (t2) == TYPE_CODE_UNION)
236 && !!"Precondition is that value is of STRUCT or UNION kind");
237
238 if (TYPE_NAME (t1) != NULL
239 && TYPE_NAME (t2) != NULL
240 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
241 return NULL;
242
243 /* Upcasting: look in the type of the source to see if it contains the
244 type of the target as a superclass. If so, we'll need to
245 offset the pointer rather than just change its type. */
246 if (TYPE_NAME (t1) != NULL)
247 {
248 v = search_struct_field (type_name_no_tag (t1),
249 v2, 0, t2, 1);
250 if (v)
251 return v;
252 }
253
254 /* Downcasting: look in the type of the target to see if it contains the
255 type of the source as a superclass. If so, we'll need to
256 offset the pointer rather than just change its type. */
257 if (TYPE_NAME (t2) != NULL)
258 {
259 /* Try downcasting using the run-time type of the value. */
260 int full, top, using_enc;
261 struct type *real_type;
262
263 real_type = value_rtti_type (v2, &full, &top, &using_enc);
264 if (real_type)
265 {
266 v = value_full_object (v2, real_type, full, top, using_enc);
267 v = value_at_lazy (real_type, value_address (v));
268 real_type = value_type (v);
269
270 /* We might be trying to cast to the outermost enclosing
271 type, in which case search_struct_field won't work. */
272 if (TYPE_NAME (real_type) != NULL
273 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
274 return v;
275
276 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
277 if (v)
278 return v;
279 }
280
281 /* Try downcasting using information from the destination type
282 T2. This wouldn't work properly for classes with virtual
283 bases, but those were handled above. */
284 v = search_struct_field (type_name_no_tag (t2),
285 value_zero (t1, not_lval), 0, t1, 1);
286 if (v)
287 {
288 /* Downcasting is possible (t1 is superclass of v2). */
289 CORE_ADDR addr2 = value_address (v2);
290
291 addr2 -= value_address (v) + value_embedded_offset (v);
292 return value_at (type, addr2);
293 }
294 }
295
296 return NULL;
297 }
298
299 /* Cast one pointer or reference type to another. Both TYPE and
300 the type of ARG2 should be pointer types, or else both should be
301 reference types. If SUBCLASS_CHECK is non-zero, this will force a
302 check to see whether TYPE is a superclass of ARG2's type. If
303 SUBCLASS_CHECK is zero, then the subclass check is done only when
304 ARG2 is itself non-zero. Returns the new pointer or reference. */
305
306 struct value *
307 value_cast_pointers (struct type *type, struct value *arg2,
308 int subclass_check)
309 {
310 struct type *type1 = check_typedef (type);
311 struct type *type2 = check_typedef (value_type (arg2));
312 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
313 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
314
315 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
316 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
317 && (subclass_check || !value_logical_not (arg2)))
318 {
319 struct value *v2;
320
321 if (TYPE_CODE (type2) == TYPE_CODE_REF)
322 v2 = coerce_ref (arg2);
323 else
324 v2 = value_ind (arg2);
325 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
326 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
327 v2 = value_cast_structs (t1, v2);
328 /* At this point we have what we can have, un-dereference if needed. */
329 if (v2)
330 {
331 struct value *v = value_addr (v2);
332
333 deprecated_set_value_type (v, type);
334 return v;
335 }
336 }
337
338 /* No superclass found, just change the pointer type. */
339 arg2 = value_copy (arg2);
340 deprecated_set_value_type (arg2, type);
341 set_value_enclosing_type (arg2, type);
342 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
343 return arg2;
344 }
345
346 /* Cast value ARG2 to type TYPE and return as a value.
347 More general than a C cast: accepts any two types of the same length,
348 and if ARG2 is an lvalue it can be cast into anything at all. */
349 /* In C++, casts may change pointer or object representations. */
350
351 struct value *
352 value_cast (struct type *type, struct value *arg2)
353 {
354 enum type_code code1;
355 enum type_code code2;
356 int scalar;
357 struct type *type2;
358
359 int convert_to_boolean = 0;
360
361 if (value_type (arg2) == type)
362 return arg2;
363
364 code1 = TYPE_CODE (check_typedef (type));
365
366 /* Check if we are casting struct reference to struct reference. */
367 if (code1 == TYPE_CODE_REF)
368 {
369 /* We dereference type; then we recurse and finally
370 we generate value of the given reference. Nothing wrong with
371 that. */
372 struct type *t1 = check_typedef (type);
373 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
374 struct value *val = value_cast (dereftype, arg2);
375
376 return value_ref (val);
377 }
378
379 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
380
381 if (code2 == TYPE_CODE_REF)
382 /* We deref the value and then do the cast. */
383 return value_cast (type, coerce_ref (arg2));
384
385 CHECK_TYPEDEF (type);
386 code1 = TYPE_CODE (type);
387 arg2 = coerce_ref (arg2);
388 type2 = check_typedef (value_type (arg2));
389
390 /* You can't cast to a reference type. See value_cast_pointers
391 instead. */
392 gdb_assert (code1 != TYPE_CODE_REF);
393
394 /* A cast to an undetermined-length array_type, such as
395 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
396 where N is sizeof(OBJECT)/sizeof(TYPE). */
397 if (code1 == TYPE_CODE_ARRAY)
398 {
399 struct type *element_type = TYPE_TARGET_TYPE (type);
400 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
401
402 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
403 {
404 struct type *range_type = TYPE_INDEX_TYPE (type);
405 int val_length = TYPE_LENGTH (type2);
406 LONGEST low_bound, high_bound, new_length;
407
408 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
409 low_bound = 0, high_bound = 0;
410 new_length = val_length / element_length;
411 if (val_length % element_length != 0)
412 warning (_("array element type size does not "
413 "divide object size in cast"));
414 /* FIXME-type-allocation: need a way to free this type when
415 we are done with it. */
416 range_type = create_static_range_type ((struct type *) NULL,
417 TYPE_TARGET_TYPE (range_type),
418 low_bound,
419 new_length + low_bound - 1);
420 deprecated_set_value_type (arg2,
421 create_array_type ((struct type *) NULL,
422 element_type,
423 range_type));
424 return arg2;
425 }
426 }
427
428 if (current_language->c_style_arrays
429 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
430 && !TYPE_VECTOR (type2))
431 arg2 = value_coerce_array (arg2);
432
433 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
434 arg2 = value_coerce_function (arg2);
435
436 type2 = check_typedef (value_type (arg2));
437 code2 = TYPE_CODE (type2);
438
439 if (code1 == TYPE_CODE_COMPLEX)
440 return cast_into_complex (type, arg2);
441 if (code1 == TYPE_CODE_BOOL)
442 {
443 code1 = TYPE_CODE_INT;
444 convert_to_boolean = 1;
445 }
446 if (code1 == TYPE_CODE_CHAR)
447 code1 = TYPE_CODE_INT;
448 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
449 code2 = TYPE_CODE_INT;
450
451 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
452 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
453 || code2 == TYPE_CODE_RANGE);
454
455 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
456 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
457 && TYPE_NAME (type) != 0)
458 {
459 struct value *v = value_cast_structs (type, arg2);
460
461 if (v)
462 return v;
463 }
464
465 if (code1 == TYPE_CODE_FLT && scalar)
466 return value_from_double (type, value_as_double (arg2));
467 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
468 {
469 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
470 int dec_len = TYPE_LENGTH (type);
471 gdb_byte dec[16];
472
473 if (code2 == TYPE_CODE_FLT)
474 decimal_from_floating (arg2, dec, dec_len, byte_order);
475 else if (code2 == TYPE_CODE_DECFLOAT)
476 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
477 byte_order, dec, dec_len, byte_order);
478 else
479 /* The only option left is an integral type. */
480 decimal_from_integral (arg2, dec, dec_len, byte_order);
481
482 return value_from_decfloat (type, dec);
483 }
484 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
485 || code1 == TYPE_CODE_RANGE)
486 && (scalar || code2 == TYPE_CODE_PTR
487 || code2 == TYPE_CODE_MEMBERPTR))
488 {
489 LONGEST longest;
490
491 /* When we cast pointers to integers, we mustn't use
492 gdbarch_pointer_to_address to find the address the pointer
493 represents, as value_as_long would. GDB should evaluate
494 expressions just as the compiler would --- and the compiler
495 sees a cast as a simple reinterpretation of the pointer's
496 bits. */
497 if (code2 == TYPE_CODE_PTR)
498 longest = extract_unsigned_integer
499 (value_contents (arg2), TYPE_LENGTH (type2),
500 gdbarch_byte_order (get_type_arch (type2)));
501 else
502 longest = value_as_long (arg2);
503 return value_from_longest (type, convert_to_boolean ?
504 (LONGEST) (longest ? 1 : 0) : longest);
505 }
506 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
507 || code2 == TYPE_CODE_ENUM
508 || code2 == TYPE_CODE_RANGE))
509 {
510 /* TYPE_LENGTH (type) is the length of a pointer, but we really
511 want the length of an address! -- we are really dealing with
512 addresses (i.e., gdb representations) not pointers (i.e.,
513 target representations) here.
514
515 This allows things like "print *(int *)0x01000234" to work
516 without printing a misleading message -- which would
517 otherwise occur when dealing with a target having two byte
518 pointers and four byte addresses. */
519
520 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
521 LONGEST longest = value_as_long (arg2);
522
523 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
524 {
525 if (longest >= ((LONGEST) 1 << addr_bit)
526 || longest <= -((LONGEST) 1 << addr_bit))
527 warning (_("value truncated"));
528 }
529 return value_from_longest (type, longest);
530 }
531 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
532 && value_as_long (arg2) == 0)
533 {
534 struct value *result = allocate_value (type);
535
536 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
537 return result;
538 }
539 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
540 && value_as_long (arg2) == 0)
541 {
542 /* The Itanium C++ ABI represents NULL pointers to members as
543 minus one, instead of biasing the normal case. */
544 return value_from_longest (type, -1);
545 }
546 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
547 && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
548 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
549 error (_("Cannot convert between vector values of different sizes"));
550 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
551 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
552 error (_("can only cast scalar to vector of same size"));
553 else if (code1 == TYPE_CODE_VOID)
554 {
555 return value_zero (type, not_lval);
556 }
557 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
558 {
559 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
560 return value_cast_pointers (type, arg2, 0);
561
562 arg2 = value_copy (arg2);
563 deprecated_set_value_type (arg2, type);
564 set_value_enclosing_type (arg2, type);
565 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
566 return arg2;
567 }
568 else if (VALUE_LVAL (arg2) == lval_memory)
569 return value_at_lazy (type, value_address (arg2));
570 else
571 {
572 error (_("Invalid cast."));
573 return 0;
574 }
575 }
576
577 /* The C++ reinterpret_cast operator. */
578
579 struct value *
580 value_reinterpret_cast (struct type *type, struct value *arg)
581 {
582 struct value *result;
583 struct type *real_type = check_typedef (type);
584 struct type *arg_type, *dest_type;
585 int is_ref = 0;
586 enum type_code dest_code, arg_code;
587
588 /* Do reference, function, and array conversion. */
589 arg = coerce_array (arg);
590
591 /* Attempt to preserve the type the user asked for. */
592 dest_type = type;
593
594 /* If we are casting to a reference type, transform
595 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
596 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
597 {
598 is_ref = 1;
599 arg = value_addr (arg);
600 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
601 real_type = lookup_pointer_type (real_type);
602 }
603
604 arg_type = value_type (arg);
605
606 dest_code = TYPE_CODE (real_type);
607 arg_code = TYPE_CODE (arg_type);
608
609 /* We can convert pointer types, or any pointer type to int, or int
610 type to pointer. */
611 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
612 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
613 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
614 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
615 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
616 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
617 || (dest_code == arg_code
618 && (dest_code == TYPE_CODE_PTR
619 || dest_code == TYPE_CODE_METHODPTR
620 || dest_code == TYPE_CODE_MEMBERPTR)))
621 result = value_cast (dest_type, arg);
622 else
623 error (_("Invalid reinterpret_cast"));
624
625 if (is_ref)
626 result = value_cast (type, value_ref (value_ind (result)));
627
628 return result;
629 }
630
631 /* A helper for value_dynamic_cast. This implements the first of two
632 runtime checks: we iterate over all the base classes of the value's
633 class which are equal to the desired class; if only one of these
634 holds the value, then it is the answer. */
635
636 static int
637 dynamic_cast_check_1 (struct type *desired_type,
638 const gdb_byte *valaddr,
639 int embedded_offset,
640 CORE_ADDR address,
641 struct value *val,
642 struct type *search_type,
643 CORE_ADDR arg_addr,
644 struct type *arg_type,
645 struct value **result)
646 {
647 int i, result_count = 0;
648
649 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
650 {
651 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
652 address, val);
653
654 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
655 {
656 if (address + embedded_offset + offset >= arg_addr
657 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
658 {
659 ++result_count;
660 if (!*result)
661 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
662 address + embedded_offset + offset);
663 }
664 }
665 else
666 result_count += dynamic_cast_check_1 (desired_type,
667 valaddr,
668 embedded_offset + offset,
669 address, val,
670 TYPE_BASECLASS (search_type, i),
671 arg_addr,
672 arg_type,
673 result);
674 }
675
676 return result_count;
677 }
678
679 /* A helper for value_dynamic_cast. This implements the second of two
680 runtime checks: we look for a unique public sibling class of the
681 argument's declared class. */
682
683 static int
684 dynamic_cast_check_2 (struct type *desired_type,
685 const gdb_byte *valaddr,
686 int embedded_offset,
687 CORE_ADDR address,
688 struct value *val,
689 struct type *search_type,
690 struct value **result)
691 {
692 int i, result_count = 0;
693
694 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
695 {
696 int offset;
697
698 if (! BASETYPE_VIA_PUBLIC (search_type, i))
699 continue;
700
701 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
702 address, val);
703 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
704 {
705 ++result_count;
706 if (*result == NULL)
707 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
708 address + embedded_offset + offset);
709 }
710 else
711 result_count += dynamic_cast_check_2 (desired_type,
712 valaddr,
713 embedded_offset + offset,
714 address, val,
715 TYPE_BASECLASS (search_type, i),
716 result);
717 }
718
719 return result_count;
720 }
721
722 /* The C++ dynamic_cast operator. */
723
724 struct value *
725 value_dynamic_cast (struct type *type, struct value *arg)
726 {
727 int full, top, using_enc;
728 struct type *resolved_type = check_typedef (type);
729 struct type *arg_type = check_typedef (value_type (arg));
730 struct type *class_type, *rtti_type;
731 struct value *result, *tem, *original_arg = arg;
732 CORE_ADDR addr;
733 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
734
735 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
736 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
737 error (_("Argument to dynamic_cast must be a pointer or reference type"));
738 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
739 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
740 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
741
742 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
743 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
744 {
745 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
746 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
747 && value_as_long (arg) == 0))
748 error (_("Argument to dynamic_cast does not have pointer type"));
749 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
750 {
751 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
752 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
753 error (_("Argument to dynamic_cast does "
754 "not have pointer to class type"));
755 }
756
757 /* Handle NULL pointers. */
758 if (value_as_long (arg) == 0)
759 return value_zero (type, not_lval);
760
761 arg = value_ind (arg);
762 }
763 else
764 {
765 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
766 error (_("Argument to dynamic_cast does not have class type"));
767 }
768
769 /* If the classes are the same, just return the argument. */
770 if (class_types_same_p (class_type, arg_type))
771 return value_cast (type, arg);
772
773 /* If the target type is a unique base class of the argument's
774 declared type, just cast it. */
775 if (is_ancestor (class_type, arg_type))
776 {
777 if (is_unique_ancestor (class_type, arg))
778 return value_cast (type, original_arg);
779 error (_("Ambiguous dynamic_cast"));
780 }
781
782 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
783 if (! rtti_type)
784 error (_("Couldn't determine value's most derived type for dynamic_cast"));
785
786 /* Compute the most derived object's address. */
787 addr = value_address (arg);
788 if (full)
789 {
790 /* Done. */
791 }
792 else if (using_enc)
793 addr += top;
794 else
795 addr += top + value_embedded_offset (arg);
796
797 /* dynamic_cast<void *> means to return a pointer to the
798 most-derived object. */
799 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
800 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
801 return value_at_lazy (type, addr);
802
803 tem = value_at (type, addr);
804 type = value_type (tem);
805
806 /* The first dynamic check specified in 5.2.7. */
807 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
808 {
809 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
810 return tem;
811 result = NULL;
812 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
813 value_contents_for_printing (tem),
814 value_embedded_offset (tem),
815 value_address (tem), tem,
816 rtti_type, addr,
817 arg_type,
818 &result) == 1)
819 return value_cast (type,
820 is_ref ? value_ref (result) : value_addr (result));
821 }
822
823 /* The second dynamic check specified in 5.2.7. */
824 result = NULL;
825 if (is_public_ancestor (arg_type, rtti_type)
826 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
827 value_contents_for_printing (tem),
828 value_embedded_offset (tem),
829 value_address (tem), tem,
830 rtti_type, &result) == 1)
831 return value_cast (type,
832 is_ref ? value_ref (result) : value_addr (result));
833
834 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
835 return value_zero (type, not_lval);
836
837 error (_("dynamic_cast failed"));
838 }
839
840 /* Create a value of type TYPE that is zero, and return it. */
841
842 struct value *
843 value_zero (struct type *type, enum lval_type lv)
844 {
845 struct value *val = allocate_value (type);
846
847 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
848 return val;
849 }
850
851 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
852
853 struct value *
854 value_one (struct type *type)
855 {
856 struct type *type1 = check_typedef (type);
857 struct value *val;
858
859 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
860 {
861 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
862 gdb_byte v[16];
863
864 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
865 val = value_from_decfloat (type, v);
866 }
867 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
868 {
869 val = value_from_double (type, (DOUBLEST) 1);
870 }
871 else if (is_integral_type (type1))
872 {
873 val = value_from_longest (type, (LONGEST) 1);
874 }
875 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
876 {
877 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
878 int i;
879 LONGEST low_bound, high_bound;
880 struct value *tmp;
881
882 if (!get_array_bounds (type1, &low_bound, &high_bound))
883 error (_("Could not determine the vector bounds"));
884
885 val = allocate_value (type);
886 for (i = 0; i < high_bound - low_bound + 1; i++)
887 {
888 tmp = value_one (eltype);
889 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
890 value_contents_all (tmp), TYPE_LENGTH (eltype));
891 }
892 }
893 else
894 {
895 error (_("Not a numeric type."));
896 }
897
898 /* value_one result is never used for assignments to. */
899 gdb_assert (VALUE_LVAL (val) == not_lval);
900
901 return val;
902 }
903
904 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.
905 The type of the created value may differ from the passed type TYPE.
906 Make sure to retrieve the returned values's new type after this call
907 e.g. in case the type is a variable length array. */
908
909 static struct value *
910 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
911 {
912 struct value *val;
913
914 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
915 error (_("Attempt to dereference a generic pointer."));
916
917 val = value_from_contents_and_address (type, NULL, addr);
918
919 if (!lazy)
920 value_fetch_lazy (val);
921
922 return val;
923 }
924
925 /* Return a value with type TYPE located at ADDR.
926
927 Call value_at only if the data needs to be fetched immediately;
928 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
929 value_at_lazy instead. value_at_lazy simply records the address of
930 the data and sets the lazy-evaluation-required flag. The lazy flag
931 is tested in the value_contents macro, which is used if and when
932 the contents are actually required. The type of the created value
933 may differ from the passed type TYPE. Make sure to retrieve the
934 returned values's new type after this call e.g. in case the type
935 is a variable length array.
936
937 Note: value_at does *NOT* handle embedded offsets; perform such
938 adjustments before or after calling it. */
939
940 struct value *
941 value_at (struct type *type, CORE_ADDR addr)
942 {
943 return get_value_at (type, addr, 0);
944 }
945
946 /* Return a lazy value with type TYPE located at ADDR (cf. value_at).
947 The type of the created value may differ from the passed type TYPE.
948 Make sure to retrieve the returned values's new type after this call
949 e.g. in case the type is a variable length array. */
950
951 struct value *
952 value_at_lazy (struct type *type, CORE_ADDR addr)
953 {
954 return get_value_at (type, addr, 1);
955 }
956
957 void
958 read_value_memory (struct value *val, int embedded_offset,
959 int stack, CORE_ADDR memaddr,
960 gdb_byte *buffer, size_t length)
961 {
962 ULONGEST xfered = 0;
963
964 while (xfered < length)
965 {
966 enum target_xfer_status status;
967 ULONGEST xfered_len;
968
969 status = target_xfer_partial (current_target.beneath,
970 TARGET_OBJECT_MEMORY, NULL,
971 buffer + xfered, NULL,
972 memaddr + xfered, length - xfered,
973 &xfered_len);
974
975 if (status == TARGET_XFER_OK)
976 /* nothing */;
977 else if (status == TARGET_XFER_UNAVAILABLE)
978 mark_value_bytes_unavailable (val, embedded_offset + xfered,
979 xfered_len);
980 else if (status == TARGET_XFER_EOF)
981 memory_error (TARGET_XFER_E_IO, memaddr + xfered);
982 else
983 memory_error (status, memaddr + xfered);
984
985 xfered += xfered_len;
986 QUIT;
987 }
988 }
989
990 /* Store the contents of FROMVAL into the location of TOVAL.
991 Return a new value with the location of TOVAL and contents of FROMVAL. */
992
993 struct value *
994 value_assign (struct value *toval, struct value *fromval)
995 {
996 struct type *type;
997 struct value *val;
998 struct frame_id old_frame;
999
1000 if (!deprecated_value_modifiable (toval))
1001 error (_("Left operand of assignment is not a modifiable lvalue."));
1002
1003 toval = coerce_ref (toval);
1004
1005 type = value_type (toval);
1006 if (VALUE_LVAL (toval) != lval_internalvar)
1007 fromval = value_cast (type, fromval);
1008 else
1009 {
1010 /* Coerce arrays and functions to pointers, except for arrays
1011 which only live in GDB's storage. */
1012 if (!value_must_coerce_to_target (fromval))
1013 fromval = coerce_array (fromval);
1014 }
1015
1016 CHECK_TYPEDEF (type);
1017
1018 /* Since modifying a register can trash the frame chain, and
1019 modifying memory can trash the frame cache, we save the old frame
1020 and then restore the new frame afterwards. */
1021 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1022
1023 switch (VALUE_LVAL (toval))
1024 {
1025 case lval_internalvar:
1026 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1027 return value_of_internalvar (get_type_arch (type),
1028 VALUE_INTERNALVAR (toval));
1029
1030 case lval_internalvar_component:
1031 {
1032 int offset = value_offset (toval);
1033
1034 /* Are we dealing with a bitfield?
1035
1036 It is important to mention that `value_parent (toval)' is
1037 non-NULL iff `value_bitsize (toval)' is non-zero. */
1038 if (value_bitsize (toval))
1039 {
1040 /* VALUE_INTERNALVAR below refers to the parent value, while
1041 the offset is relative to this parent value. */
1042 gdb_assert (value_parent (value_parent (toval)) == NULL);
1043 offset += value_offset (value_parent (toval));
1044 }
1045
1046 set_internalvar_component (VALUE_INTERNALVAR (toval),
1047 offset,
1048 value_bitpos (toval),
1049 value_bitsize (toval),
1050 fromval);
1051 }
1052 break;
1053
1054 case lval_memory:
1055 {
1056 const gdb_byte *dest_buffer;
1057 CORE_ADDR changed_addr;
1058 int changed_len;
1059 gdb_byte buffer[sizeof (LONGEST)];
1060
1061 if (value_bitsize (toval))
1062 {
1063 struct value *parent = value_parent (toval);
1064
1065 changed_addr = value_address (parent) + value_offset (toval);
1066 changed_len = (value_bitpos (toval)
1067 + value_bitsize (toval)
1068 + HOST_CHAR_BIT - 1)
1069 / HOST_CHAR_BIT;
1070
1071 /* If we can read-modify-write exactly the size of the
1072 containing type (e.g. short or int) then do so. This
1073 is safer for volatile bitfields mapped to hardware
1074 registers. */
1075 if (changed_len < TYPE_LENGTH (type)
1076 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1077 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1078 changed_len = TYPE_LENGTH (type);
1079
1080 if (changed_len > (int) sizeof (LONGEST))
1081 error (_("Can't handle bitfields which "
1082 "don't fit in a %d bit word."),
1083 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1084
1085 read_memory (changed_addr, buffer, changed_len);
1086 modify_field (type, buffer, value_as_long (fromval),
1087 value_bitpos (toval), value_bitsize (toval));
1088 dest_buffer = buffer;
1089 }
1090 else
1091 {
1092 changed_addr = value_address (toval);
1093 changed_len = TYPE_LENGTH (type);
1094 dest_buffer = value_contents (fromval);
1095 }
1096
1097 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1098 }
1099 break;
1100
1101 case lval_register:
1102 {
1103 struct frame_info *frame;
1104 struct gdbarch *gdbarch;
1105 int value_reg;
1106
1107 /* Figure out which frame this is in currently. */
1108 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1109 value_reg = VALUE_REGNUM (toval);
1110
1111 if (!frame)
1112 error (_("Value being assigned to is no longer active."));
1113
1114 gdbarch = get_frame_arch (frame);
1115 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1116 {
1117 /* If TOVAL is a special machine register requiring
1118 conversion of program values to a special raw
1119 format. */
1120 gdbarch_value_to_register (gdbarch, frame,
1121 VALUE_REGNUM (toval), type,
1122 value_contents (fromval));
1123 }
1124 else
1125 {
1126 if (value_bitsize (toval))
1127 {
1128 struct value *parent = value_parent (toval);
1129 int offset = value_offset (parent) + value_offset (toval);
1130 int changed_len;
1131 gdb_byte buffer[sizeof (LONGEST)];
1132 int optim, unavail;
1133
1134 changed_len = (value_bitpos (toval)
1135 + value_bitsize (toval)
1136 + HOST_CHAR_BIT - 1)
1137 / HOST_CHAR_BIT;
1138
1139 if (changed_len > (int) sizeof (LONGEST))
1140 error (_("Can't handle bitfields which "
1141 "don't fit in a %d bit word."),
1142 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1143
1144 if (!get_frame_register_bytes (frame, value_reg, offset,
1145 changed_len, buffer,
1146 &optim, &unavail))
1147 {
1148 if (optim)
1149 throw_error (OPTIMIZED_OUT_ERROR,
1150 _("value has been optimized out"));
1151 if (unavail)
1152 throw_error (NOT_AVAILABLE_ERROR,
1153 _("value is not available"));
1154 }
1155
1156 modify_field (type, buffer, value_as_long (fromval),
1157 value_bitpos (toval), value_bitsize (toval));
1158
1159 put_frame_register_bytes (frame, value_reg, offset,
1160 changed_len, buffer);
1161 }
1162 else
1163 {
1164 put_frame_register_bytes (frame, value_reg,
1165 value_offset (toval),
1166 TYPE_LENGTH (type),
1167 value_contents (fromval));
1168 }
1169 }
1170
1171 if (deprecated_register_changed_hook)
1172 deprecated_register_changed_hook (-1);
1173 break;
1174 }
1175
1176 case lval_computed:
1177 {
1178 const struct lval_funcs *funcs = value_computed_funcs (toval);
1179
1180 if (funcs->write != NULL)
1181 {
1182 funcs->write (toval, fromval);
1183 break;
1184 }
1185 }
1186 /* Fall through. */
1187
1188 default:
1189 error (_("Left operand of assignment is not an lvalue."));
1190 }
1191
1192 /* Assigning to the stack pointer, frame pointer, and other
1193 (architecture and calling convention specific) registers may
1194 cause the frame cache and regcache to be out of date. Assigning to memory
1195 also can. We just do this on all assignments to registers or
1196 memory, for simplicity's sake; I doubt the slowdown matters. */
1197 switch (VALUE_LVAL (toval))
1198 {
1199 case lval_memory:
1200 case lval_register:
1201 case lval_computed:
1202
1203 observer_notify_target_changed (&current_target);
1204
1205 /* Having destroyed the frame cache, restore the selected
1206 frame. */
1207
1208 /* FIXME: cagney/2002-11-02: There has to be a better way of
1209 doing this. Instead of constantly saving/restoring the
1210 frame. Why not create a get_selected_frame() function that,
1211 having saved the selected frame's ID can automatically
1212 re-find the previously selected frame automatically. */
1213
1214 {
1215 struct frame_info *fi = frame_find_by_id (old_frame);
1216
1217 if (fi != NULL)
1218 select_frame (fi);
1219 }
1220
1221 break;
1222 default:
1223 break;
1224 }
1225
1226 /* If the field does not entirely fill a LONGEST, then zero the sign
1227 bits. If the field is signed, and is negative, then sign
1228 extend. */
1229 if ((value_bitsize (toval) > 0)
1230 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1231 {
1232 LONGEST fieldval = value_as_long (fromval);
1233 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1234
1235 fieldval &= valmask;
1236 if (!TYPE_UNSIGNED (type)
1237 && (fieldval & (valmask ^ (valmask >> 1))))
1238 fieldval |= ~valmask;
1239
1240 fromval = value_from_longest (type, fieldval);
1241 }
1242
1243 /* The return value is a copy of TOVAL so it shares its location
1244 information, but its contents are updated from FROMVAL. This
1245 implies the returned value is not lazy, even if TOVAL was. */
1246 val = value_copy (toval);
1247 set_value_lazy (val, 0);
1248 memcpy (value_contents_raw (val), value_contents (fromval),
1249 TYPE_LENGTH (type));
1250
1251 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1252 in the case of pointer types. For object types, the enclosing type
1253 and embedded offset must *not* be copied: the target object refered
1254 to by TOVAL retains its original dynamic type after assignment. */
1255 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1256 {
1257 set_value_enclosing_type (val, value_enclosing_type (fromval));
1258 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1259 }
1260
1261 return val;
1262 }
1263
1264 /* Extend a value VAL to COUNT repetitions of its type. */
1265
1266 struct value *
1267 value_repeat (struct value *arg1, int count)
1268 {
1269 struct value *val;
1270
1271 if (VALUE_LVAL (arg1) != lval_memory)
1272 error (_("Only values in memory can be extended with '@'."));
1273 if (count < 1)
1274 error (_("Invalid number %d of repetitions."), count);
1275
1276 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1277
1278 VALUE_LVAL (val) = lval_memory;
1279 set_value_address (val, value_address (arg1));
1280
1281 read_value_memory (val, 0, value_stack (val), value_address (val),
1282 value_contents_all_raw (val),
1283 TYPE_LENGTH (value_enclosing_type (val)));
1284
1285 return val;
1286 }
1287
1288 struct value *
1289 value_of_variable (struct symbol *var, const struct block *b)
1290 {
1291 struct frame_info *frame;
1292
1293 if (!symbol_read_needs_frame (var))
1294 frame = NULL;
1295 else if (!b)
1296 frame = get_selected_frame (_("No frame selected."));
1297 else
1298 {
1299 frame = block_innermost_frame (b);
1300 if (!frame)
1301 {
1302 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1303 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1304 error (_("No frame is currently executing in block %s."),
1305 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1306 else
1307 error (_("No frame is currently executing in specified block"));
1308 }
1309 }
1310
1311 return read_var_value (var, frame);
1312 }
1313
1314 struct value *
1315 address_of_variable (struct symbol *var, const struct block *b)
1316 {
1317 struct type *type = SYMBOL_TYPE (var);
1318 struct value *val;
1319
1320 /* Evaluate it first; if the result is a memory address, we're fine.
1321 Lazy evaluation pays off here. */
1322
1323 val = value_of_variable (var, b);
1324 type = value_type (val);
1325
1326 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1327 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1328 {
1329 CORE_ADDR addr = value_address (val);
1330
1331 return value_from_pointer (lookup_pointer_type (type), addr);
1332 }
1333
1334 /* Not a memory address; check what the problem was. */
1335 switch (VALUE_LVAL (val))
1336 {
1337 case lval_register:
1338 {
1339 struct frame_info *frame;
1340 const char *regname;
1341
1342 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1343 gdb_assert (frame);
1344
1345 regname = gdbarch_register_name (get_frame_arch (frame),
1346 VALUE_REGNUM (val));
1347 gdb_assert (regname && *regname);
1348
1349 error (_("Address requested for identifier "
1350 "\"%s\" which is in register $%s"),
1351 SYMBOL_PRINT_NAME (var), regname);
1352 break;
1353 }
1354
1355 default:
1356 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1357 SYMBOL_PRINT_NAME (var));
1358 break;
1359 }
1360
1361 return val;
1362 }
1363
1364 /* Return one if VAL does not live in target memory, but should in order
1365 to operate on it. Otherwise return zero. */
1366
1367 int
1368 value_must_coerce_to_target (struct value *val)
1369 {
1370 struct type *valtype;
1371
1372 /* The only lval kinds which do not live in target memory. */
1373 if (VALUE_LVAL (val) != not_lval
1374 && VALUE_LVAL (val) != lval_internalvar
1375 && VALUE_LVAL (val) != lval_xcallable)
1376 return 0;
1377
1378 valtype = check_typedef (value_type (val));
1379
1380 switch (TYPE_CODE (valtype))
1381 {
1382 case TYPE_CODE_ARRAY:
1383 return TYPE_VECTOR (valtype) ? 0 : 1;
1384 case TYPE_CODE_STRING:
1385 return 1;
1386 default:
1387 return 0;
1388 }
1389 }
1390
1391 /* Make sure that VAL lives in target memory if it's supposed to. For
1392 instance, strings are constructed as character arrays in GDB's
1393 storage, and this function copies them to the target. */
1394
1395 struct value *
1396 value_coerce_to_target (struct value *val)
1397 {
1398 LONGEST length;
1399 CORE_ADDR addr;
1400
1401 if (!value_must_coerce_to_target (val))
1402 return val;
1403
1404 length = TYPE_LENGTH (check_typedef (value_type (val)));
1405 addr = allocate_space_in_inferior (length);
1406 write_memory (addr, value_contents (val), length);
1407 return value_at_lazy (value_type (val), addr);
1408 }
1409
1410 /* Given a value which is an array, return a value which is a pointer
1411 to its first element, regardless of whether or not the array has a
1412 nonzero lower bound.
1413
1414 FIXME: A previous comment here indicated that this routine should
1415 be substracting the array's lower bound. It's not clear to me that
1416 this is correct. Given an array subscripting operation, it would
1417 certainly work to do the adjustment here, essentially computing:
1418
1419 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1420
1421 However I believe a more appropriate and logical place to account
1422 for the lower bound is to do so in value_subscript, essentially
1423 computing:
1424
1425 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1426
1427 As further evidence consider what would happen with operations
1428 other than array subscripting, where the caller would get back a
1429 value that had an address somewhere before the actual first element
1430 of the array, and the information about the lower bound would be
1431 lost because of the coercion to pointer type. */
1432
1433 struct value *
1434 value_coerce_array (struct value *arg1)
1435 {
1436 struct type *type = check_typedef (value_type (arg1));
1437
1438 /* If the user tries to do something requiring a pointer with an
1439 array that has not yet been pushed to the target, then this would
1440 be a good time to do so. */
1441 arg1 = value_coerce_to_target (arg1);
1442
1443 if (VALUE_LVAL (arg1) != lval_memory)
1444 error (_("Attempt to take address of value not located in memory."));
1445
1446 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1447 value_address (arg1));
1448 }
1449
1450 /* Given a value which is a function, return a value which is a pointer
1451 to it. */
1452
1453 struct value *
1454 value_coerce_function (struct value *arg1)
1455 {
1456 struct value *retval;
1457
1458 if (VALUE_LVAL (arg1) != lval_memory)
1459 error (_("Attempt to take address of value not located in memory."));
1460
1461 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1462 value_address (arg1));
1463 return retval;
1464 }
1465
1466 /* Return a pointer value for the object for which ARG1 is the
1467 contents. */
1468
1469 struct value *
1470 value_addr (struct value *arg1)
1471 {
1472 struct value *arg2;
1473 struct type *type = check_typedef (value_type (arg1));
1474
1475 if (TYPE_CODE (type) == TYPE_CODE_REF)
1476 {
1477 /* Copy the value, but change the type from (T&) to (T*). We
1478 keep the same location information, which is efficient, and
1479 allows &(&X) to get the location containing the reference. */
1480 arg2 = value_copy (arg1);
1481 deprecated_set_value_type (arg2,
1482 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1483 return arg2;
1484 }
1485 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1486 return value_coerce_function (arg1);
1487
1488 /* If this is an array that has not yet been pushed to the target,
1489 then this would be a good time to force it to memory. */
1490 arg1 = value_coerce_to_target (arg1);
1491
1492 if (VALUE_LVAL (arg1) != lval_memory)
1493 error (_("Attempt to take address of value not located in memory."));
1494
1495 /* Get target memory address. */
1496 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1497 (value_address (arg1)
1498 + value_embedded_offset (arg1)));
1499
1500 /* This may be a pointer to a base subobject; so remember the
1501 full derived object's type ... */
1502 set_value_enclosing_type (arg2,
1503 lookup_pointer_type (value_enclosing_type (arg1)));
1504 /* ... and also the relative position of the subobject in the full
1505 object. */
1506 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1507 return arg2;
1508 }
1509
1510 /* Return a reference value for the object for which ARG1 is the
1511 contents. */
1512
1513 struct value *
1514 value_ref (struct value *arg1)
1515 {
1516 struct value *arg2;
1517 struct type *type = check_typedef (value_type (arg1));
1518
1519 if (TYPE_CODE (type) == TYPE_CODE_REF)
1520 return arg1;
1521
1522 arg2 = value_addr (arg1);
1523 deprecated_set_value_type (arg2, lookup_reference_type (type));
1524 return arg2;
1525 }
1526
1527 /* Given a value of a pointer type, apply the C unary * operator to
1528 it. */
1529
1530 struct value *
1531 value_ind (struct value *arg1)
1532 {
1533 struct type *base_type;
1534 struct value *arg2;
1535
1536 arg1 = coerce_array (arg1);
1537
1538 base_type = check_typedef (value_type (arg1));
1539
1540 if (VALUE_LVAL (arg1) == lval_computed)
1541 {
1542 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1543
1544 if (funcs->indirect)
1545 {
1546 struct value *result = funcs->indirect (arg1);
1547
1548 if (result)
1549 return result;
1550 }
1551 }
1552
1553 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1554 {
1555 struct type *enc_type;
1556
1557 /* We may be pointing to something embedded in a larger object.
1558 Get the real type of the enclosing object. */
1559 enc_type = check_typedef (value_enclosing_type (arg1));
1560 enc_type = TYPE_TARGET_TYPE (enc_type);
1561
1562 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1563 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1564 /* For functions, go through find_function_addr, which knows
1565 how to handle function descriptors. */
1566 arg2 = value_at_lazy (enc_type,
1567 find_function_addr (arg1, NULL));
1568 else
1569 /* Retrieve the enclosing object pointed to. */
1570 arg2 = value_at_lazy (enc_type,
1571 (value_as_address (arg1)
1572 - value_pointed_to_offset (arg1)));
1573
1574 enc_type = value_type (arg2);
1575 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1576 }
1577
1578 error (_("Attempt to take contents of a non-pointer value."));
1579 return 0; /* For lint -- never reached. */
1580 }
1581 \f
1582 /* Create a value for an array by allocating space in GDB, copying the
1583 data into that space, and then setting up an array value.
1584
1585 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1586 is populated from the values passed in ELEMVEC.
1587
1588 The element type of the array is inherited from the type of the
1589 first element, and all elements must have the same size (though we
1590 don't currently enforce any restriction on their types). */
1591
1592 struct value *
1593 value_array (int lowbound, int highbound, struct value **elemvec)
1594 {
1595 int nelem;
1596 int idx;
1597 unsigned int typelength;
1598 struct value *val;
1599 struct type *arraytype;
1600
1601 /* Validate that the bounds are reasonable and that each of the
1602 elements have the same size. */
1603
1604 nelem = highbound - lowbound + 1;
1605 if (nelem <= 0)
1606 {
1607 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1608 }
1609 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1610 for (idx = 1; idx < nelem; idx++)
1611 {
1612 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1613 {
1614 error (_("array elements must all be the same size"));
1615 }
1616 }
1617
1618 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1619 lowbound, highbound);
1620
1621 if (!current_language->c_style_arrays)
1622 {
1623 val = allocate_value (arraytype);
1624 for (idx = 0; idx < nelem; idx++)
1625 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1626 typelength);
1627 return val;
1628 }
1629
1630 /* Allocate space to store the array, and then initialize it by
1631 copying in each element. */
1632
1633 val = allocate_value (arraytype);
1634 for (idx = 0; idx < nelem; idx++)
1635 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1636 return val;
1637 }
1638
1639 struct value *
1640 value_cstring (char *ptr, ssize_t len, struct type *char_type)
1641 {
1642 struct value *val;
1643 int lowbound = current_language->string_lower_bound;
1644 ssize_t highbound = len / TYPE_LENGTH (char_type);
1645 struct type *stringtype
1646 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1647
1648 val = allocate_value (stringtype);
1649 memcpy (value_contents_raw (val), ptr, len);
1650 return val;
1651 }
1652
1653 /* Create a value for a string constant by allocating space in the
1654 inferior, copying the data into that space, and returning the
1655 address with type TYPE_CODE_STRING. PTR points to the string
1656 constant data; LEN is number of characters.
1657
1658 Note that string types are like array of char types with a lower
1659 bound of zero and an upper bound of LEN - 1. Also note that the
1660 string may contain embedded null bytes. */
1661
1662 struct value *
1663 value_string (char *ptr, ssize_t len, struct type *char_type)
1664 {
1665 struct value *val;
1666 int lowbound = current_language->string_lower_bound;
1667 ssize_t highbound = len / TYPE_LENGTH (char_type);
1668 struct type *stringtype
1669 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1670
1671 val = allocate_value (stringtype);
1672 memcpy (value_contents_raw (val), ptr, len);
1673 return val;
1674 }
1675
1676 \f
1677 /* See if we can pass arguments in T2 to a function which takes
1678 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1679 a NULL-terminated vector. If some arguments need coercion of some
1680 sort, then the coerced values are written into T2. Return value is
1681 0 if the arguments could be matched, or the position at which they
1682 differ if not.
1683
1684 STATICP is nonzero if the T1 argument list came from a static
1685 member function. T2 will still include the ``this'' pointer, but
1686 it will be skipped.
1687
1688 For non-static member functions, we ignore the first argument,
1689 which is the type of the instance variable. This is because we
1690 want to handle calls with objects from derived classes. This is
1691 not entirely correct: we should actually check to make sure that a
1692 requested operation is type secure, shouldn't we? FIXME. */
1693
1694 static int
1695 typecmp (int staticp, int varargs, int nargs,
1696 struct field t1[], struct value *t2[])
1697 {
1698 int i;
1699
1700 if (t2 == 0)
1701 internal_error (__FILE__, __LINE__,
1702 _("typecmp: no argument list"));
1703
1704 /* Skip ``this'' argument if applicable. T2 will always include
1705 THIS. */
1706 if (staticp)
1707 t2 ++;
1708
1709 for (i = 0;
1710 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1711 i++)
1712 {
1713 struct type *tt1, *tt2;
1714
1715 if (!t2[i])
1716 return i + 1;
1717
1718 tt1 = check_typedef (t1[i].type);
1719 tt2 = check_typedef (value_type (t2[i]));
1720
1721 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1722 /* We should be doing hairy argument matching, as below. */
1723 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1724 == TYPE_CODE (tt2)))
1725 {
1726 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1727 t2[i] = value_coerce_array (t2[i]);
1728 else
1729 t2[i] = value_ref (t2[i]);
1730 continue;
1731 }
1732
1733 /* djb - 20000715 - Until the new type structure is in the
1734 place, and we can attempt things like implicit conversions,
1735 we need to do this so you can take something like a map<const
1736 char *>, and properly access map["hello"], because the
1737 argument to [] will be a reference to a pointer to a char,
1738 and the argument will be a pointer to a char. */
1739 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1740 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1741 {
1742 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1743 }
1744 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1745 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1746 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1747 {
1748 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1749 }
1750 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1751 continue;
1752 /* Array to pointer is a `trivial conversion' according to the
1753 ARM. */
1754
1755 /* We should be doing much hairier argument matching (see
1756 section 13.2 of the ARM), but as a quick kludge, just check
1757 for the same type code. */
1758 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1759 return i + 1;
1760 }
1761 if (varargs || t2[i] == NULL)
1762 return 0;
1763 return i + 1;
1764 }
1765
1766 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1767 and *LAST_BOFFSET, and possibly throws an exception if the field
1768 search has yielded ambiguous results. */
1769
1770 static void
1771 update_search_result (struct value **result_ptr, struct value *v,
1772 int *last_boffset, int boffset,
1773 const char *name, struct type *type)
1774 {
1775 if (v != NULL)
1776 {
1777 if (*result_ptr != NULL
1778 /* The result is not ambiguous if all the classes that are
1779 found occupy the same space. */
1780 && *last_boffset != boffset)
1781 error (_("base class '%s' is ambiguous in type '%s'"),
1782 name, TYPE_SAFE_NAME (type));
1783 *result_ptr = v;
1784 *last_boffset = boffset;
1785 }
1786 }
1787
1788 /* A helper for search_struct_field. This does all the work; most
1789 arguments are as passed to search_struct_field. The result is
1790 stored in *RESULT_PTR, which must be initialized to NULL.
1791 OUTERMOST_TYPE is the type of the initial type passed to
1792 search_struct_field; this is used for error reporting when the
1793 lookup is ambiguous. */
1794
1795 static void
1796 do_search_struct_field (const char *name, struct value *arg1, int offset,
1797 struct type *type, int looking_for_baseclass,
1798 struct value **result_ptr,
1799 int *last_boffset,
1800 struct type *outermost_type)
1801 {
1802 int i;
1803 int nbases;
1804
1805 CHECK_TYPEDEF (type);
1806 nbases = TYPE_N_BASECLASSES (type);
1807
1808 if (!looking_for_baseclass)
1809 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1810 {
1811 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1812
1813 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1814 {
1815 struct value *v;
1816
1817 if (field_is_static (&TYPE_FIELD (type, i)))
1818 v = value_static_field (type, i);
1819 else
1820 v = value_primitive_field (arg1, offset, i, type);
1821 *result_ptr = v;
1822 return;
1823 }
1824
1825 if (t_field_name
1826 && (t_field_name[0] == '\0'
1827 || (TYPE_CODE (type) == TYPE_CODE_UNION
1828 && (strcmp_iw (t_field_name, "else") == 0))))
1829 {
1830 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1831
1832 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1833 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1834 {
1835 /* Look for a match through the fields of an anonymous
1836 union, or anonymous struct. C++ provides anonymous
1837 unions.
1838
1839 In the GNU Chill (now deleted from GDB)
1840 implementation of variant record types, each
1841 <alternative field> has an (anonymous) union type,
1842 each member of the union represents a <variant
1843 alternative>. Each <variant alternative> is
1844 represented as a struct, with a member for each
1845 <variant field>. */
1846
1847 struct value *v = NULL;
1848 int new_offset = offset;
1849
1850 /* This is pretty gross. In G++, the offset in an
1851 anonymous union is relative to the beginning of the
1852 enclosing struct. In the GNU Chill (now deleted
1853 from GDB) implementation of variant records, the
1854 bitpos is zero in an anonymous union field, so we
1855 have to add the offset of the union here. */
1856 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1857 || (TYPE_NFIELDS (field_type) > 0
1858 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1859 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1860
1861 do_search_struct_field (name, arg1, new_offset,
1862 field_type,
1863 looking_for_baseclass, &v,
1864 last_boffset,
1865 outermost_type);
1866 if (v)
1867 {
1868 *result_ptr = v;
1869 return;
1870 }
1871 }
1872 }
1873 }
1874
1875 for (i = 0; i < nbases; i++)
1876 {
1877 struct value *v = NULL;
1878 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1879 /* If we are looking for baseclasses, this is what we get when
1880 we hit them. But it could happen that the base part's member
1881 name is not yet filled in. */
1882 int found_baseclass = (looking_for_baseclass
1883 && TYPE_BASECLASS_NAME (type, i) != NULL
1884 && (strcmp_iw (name,
1885 TYPE_BASECLASS_NAME (type,
1886 i)) == 0));
1887 int boffset = value_embedded_offset (arg1) + offset;
1888
1889 if (BASETYPE_VIA_VIRTUAL (type, i))
1890 {
1891 struct value *v2;
1892
1893 boffset = baseclass_offset (type, i,
1894 value_contents_for_printing (arg1),
1895 value_embedded_offset (arg1) + offset,
1896 value_address (arg1),
1897 arg1);
1898
1899 /* The virtual base class pointer might have been clobbered
1900 by the user program. Make sure that it still points to a
1901 valid memory location. */
1902
1903 boffset += value_embedded_offset (arg1) + offset;
1904 if (boffset < 0
1905 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1906 {
1907 CORE_ADDR base_addr;
1908
1909 base_addr = value_address (arg1) + boffset;
1910 v2 = value_at_lazy (basetype, base_addr);
1911 if (target_read_memory (base_addr,
1912 value_contents_raw (v2),
1913 TYPE_LENGTH (value_type (v2))) != 0)
1914 error (_("virtual baseclass botch"));
1915 }
1916 else
1917 {
1918 v2 = value_copy (arg1);
1919 deprecated_set_value_type (v2, basetype);
1920 set_value_embedded_offset (v2, boffset);
1921 }
1922
1923 if (found_baseclass)
1924 v = v2;
1925 else
1926 {
1927 do_search_struct_field (name, v2, 0,
1928 TYPE_BASECLASS (type, i),
1929 looking_for_baseclass,
1930 result_ptr, last_boffset,
1931 outermost_type);
1932 }
1933 }
1934 else if (found_baseclass)
1935 v = value_primitive_field (arg1, offset, i, type);
1936 else
1937 {
1938 do_search_struct_field (name, arg1,
1939 offset + TYPE_BASECLASS_BITPOS (type,
1940 i) / 8,
1941 basetype, looking_for_baseclass,
1942 result_ptr, last_boffset,
1943 outermost_type);
1944 }
1945
1946 update_search_result (result_ptr, v, last_boffset,
1947 boffset, name, outermost_type);
1948 }
1949 }
1950
1951 /* Helper function used by value_struct_elt to recurse through
1952 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1953 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1954 TYPE. If found, return value, else return NULL.
1955
1956 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1957 fields, look for a baseclass named NAME. */
1958
1959 static struct value *
1960 search_struct_field (const char *name, struct value *arg1, int offset,
1961 struct type *type, int looking_for_baseclass)
1962 {
1963 struct value *result = NULL;
1964 int boffset = 0;
1965
1966 do_search_struct_field (name, arg1, offset, type, looking_for_baseclass,
1967 &result, &boffset, type);
1968 return result;
1969 }
1970
1971 /* Helper function used by value_struct_elt to recurse through
1972 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1973 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1974 TYPE.
1975
1976 If found, return value, else if name matched and args not return
1977 (value) -1, else return NULL. */
1978
1979 static struct value *
1980 search_struct_method (const char *name, struct value **arg1p,
1981 struct value **args, int offset,
1982 int *static_memfuncp, struct type *type)
1983 {
1984 int i;
1985 struct value *v;
1986 int name_matched = 0;
1987 char dem_opname[64];
1988
1989 CHECK_TYPEDEF (type);
1990 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1991 {
1992 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1993
1994 /* FIXME! May need to check for ARM demangling here. */
1995 if (strncmp (t_field_name, "__", 2) == 0 ||
1996 strncmp (t_field_name, "op", 2) == 0 ||
1997 strncmp (t_field_name, "type", 4) == 0)
1998 {
1999 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2000 t_field_name = dem_opname;
2001 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2002 t_field_name = dem_opname;
2003 }
2004 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2005 {
2006 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2007 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2008
2009 name_matched = 1;
2010 check_stub_method_group (type, i);
2011 if (j > 0 && args == 0)
2012 error (_("cannot resolve overloaded method "
2013 "`%s': no arguments supplied"), name);
2014 else if (j == 0 && args == 0)
2015 {
2016 v = value_fn_field (arg1p, f, j, type, offset);
2017 if (v != NULL)
2018 return v;
2019 }
2020 else
2021 while (j >= 0)
2022 {
2023 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2024 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2025 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2026 TYPE_FN_FIELD_ARGS (f, j), args))
2027 {
2028 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2029 return value_virtual_fn_field (arg1p, f, j,
2030 type, offset);
2031 if (TYPE_FN_FIELD_STATIC_P (f, j)
2032 && static_memfuncp)
2033 *static_memfuncp = 1;
2034 v = value_fn_field (arg1p, f, j, type, offset);
2035 if (v != NULL)
2036 return v;
2037 }
2038 j--;
2039 }
2040 }
2041 }
2042
2043 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2044 {
2045 int base_offset;
2046 int this_offset;
2047
2048 if (BASETYPE_VIA_VIRTUAL (type, i))
2049 {
2050 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2051 struct value *base_val;
2052 const gdb_byte *base_valaddr;
2053
2054 /* The virtual base class pointer might have been
2055 clobbered by the user program. Make sure that it
2056 still points to a valid memory location. */
2057
2058 if (offset < 0 || offset >= TYPE_LENGTH (type))
2059 {
2060 gdb_byte *tmp;
2061 struct cleanup *back_to;
2062 CORE_ADDR address;
2063
2064 tmp = xmalloc (TYPE_LENGTH (baseclass));
2065 back_to = make_cleanup (xfree, tmp);
2066 address = value_address (*arg1p);
2067
2068 if (target_read_memory (address + offset,
2069 tmp, TYPE_LENGTH (baseclass)) != 0)
2070 error (_("virtual baseclass botch"));
2071
2072 base_val = value_from_contents_and_address (baseclass,
2073 tmp,
2074 address + offset);
2075 base_valaddr = value_contents_for_printing (base_val);
2076 this_offset = 0;
2077 do_cleanups (back_to);
2078 }
2079 else
2080 {
2081 base_val = *arg1p;
2082 base_valaddr = value_contents_for_printing (*arg1p);
2083 this_offset = offset;
2084 }
2085
2086 base_offset = baseclass_offset (type, i, base_valaddr,
2087 this_offset, value_address (base_val),
2088 base_val);
2089 }
2090 else
2091 {
2092 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2093 }
2094 v = search_struct_method (name, arg1p, args, base_offset + offset,
2095 static_memfuncp, TYPE_BASECLASS (type, i));
2096 if (v == (struct value *) - 1)
2097 {
2098 name_matched = 1;
2099 }
2100 else if (v)
2101 {
2102 /* FIXME-bothner: Why is this commented out? Why is it here? */
2103 /* *arg1p = arg1_tmp; */
2104 return v;
2105 }
2106 }
2107 if (name_matched)
2108 return (struct value *) - 1;
2109 else
2110 return NULL;
2111 }
2112
2113 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2114 extract the component named NAME from the ultimate target
2115 structure/union and return it as a value with its appropriate type.
2116 ERR is used in the error message if *ARGP's type is wrong.
2117
2118 C++: ARGS is a list of argument types to aid in the selection of
2119 an appropriate method. Also, handle derived types.
2120
2121 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2122 where the truthvalue of whether the function that was resolved was
2123 a static member function or not is stored.
2124
2125 ERR is an error message to be printed in case the field is not
2126 found. */
2127
2128 struct value *
2129 value_struct_elt (struct value **argp, struct value **args,
2130 const char *name, int *static_memfuncp, const char *err)
2131 {
2132 struct type *t;
2133 struct value *v;
2134
2135 *argp = coerce_array (*argp);
2136
2137 t = check_typedef (value_type (*argp));
2138
2139 /* Follow pointers until we get to a non-pointer. */
2140
2141 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2142 {
2143 *argp = value_ind (*argp);
2144 /* Don't coerce fn pointer to fn and then back again! */
2145 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2146 *argp = coerce_array (*argp);
2147 t = check_typedef (value_type (*argp));
2148 }
2149
2150 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2151 && TYPE_CODE (t) != TYPE_CODE_UNION)
2152 error (_("Attempt to extract a component of a value that is not a %s."),
2153 err);
2154
2155 /* Assume it's not, unless we see that it is. */
2156 if (static_memfuncp)
2157 *static_memfuncp = 0;
2158
2159 if (!args)
2160 {
2161 /* if there are no arguments ...do this... */
2162
2163 /* Try as a field first, because if we succeed, there is less
2164 work to be done. */
2165 v = search_struct_field (name, *argp, 0, t, 0);
2166 if (v)
2167 return v;
2168
2169 /* C++: If it was not found as a data field, then try to
2170 return it as a pointer to a method. */
2171 v = search_struct_method (name, argp, args, 0,
2172 static_memfuncp, t);
2173
2174 if (v == (struct value *) - 1)
2175 error (_("Cannot take address of method %s."), name);
2176 else if (v == 0)
2177 {
2178 if (TYPE_NFN_FIELDS (t))
2179 error (_("There is no member or method named %s."), name);
2180 else
2181 error (_("There is no member named %s."), name);
2182 }
2183 return v;
2184 }
2185
2186 v = search_struct_method (name, argp, args, 0,
2187 static_memfuncp, t);
2188
2189 if (v == (struct value *) - 1)
2190 {
2191 error (_("One of the arguments you tried to pass to %s could not "
2192 "be converted to what the function wants."), name);
2193 }
2194 else if (v == 0)
2195 {
2196 /* See if user tried to invoke data as function. If so, hand it
2197 back. If it's not callable (i.e., a pointer to function),
2198 gdb should give an error. */
2199 v = search_struct_field (name, *argp, 0, t, 0);
2200 /* If we found an ordinary field, then it is not a method call.
2201 So, treat it as if it were a static member function. */
2202 if (v && static_memfuncp)
2203 *static_memfuncp = 1;
2204 }
2205
2206 if (!v)
2207 throw_error (NOT_FOUND_ERROR,
2208 _("Structure has no component named %s."), name);
2209 return v;
2210 }
2211
2212 /* Given *ARGP, a value of type structure or union, or a pointer/reference
2213 to a structure or union, extract and return its component (field) of
2214 type FTYPE at the specified BITPOS.
2215 Throw an exception on error. */
2216
2217 struct value *
2218 value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
2219 const char *err)
2220 {
2221 struct type *t;
2222 struct value *v;
2223 int i;
2224 int nbases;
2225
2226 *argp = coerce_array (*argp);
2227
2228 t = check_typedef (value_type (*argp));
2229
2230 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2231 {
2232 *argp = value_ind (*argp);
2233 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2234 *argp = coerce_array (*argp);
2235 t = check_typedef (value_type (*argp));
2236 }
2237
2238 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2239 && TYPE_CODE (t) != TYPE_CODE_UNION)
2240 error (_("Attempt to extract a component of a value that is not a %s."),
2241 err);
2242
2243 for (i = TYPE_N_BASECLASSES (t); i < TYPE_NFIELDS (t); i++)
2244 {
2245 if (!field_is_static (&TYPE_FIELD (t, i))
2246 && bitpos == TYPE_FIELD_BITPOS (t, i)
2247 && types_equal (ftype, TYPE_FIELD_TYPE (t, i)))
2248 return value_primitive_field (*argp, 0, i, t);
2249 }
2250
2251 error (_("No field with matching bitpos and type."));
2252
2253 /* Never hit. */
2254 return NULL;
2255 }
2256
2257 /* Search through the methods of an object (and its bases) to find a
2258 specified method. Return the pointer to the fn_field list FN_LIST of
2259 overloaded instances defined in the source language. If available
2260 and matching, a vector of matching xmethods defined in extension
2261 languages are also returned in XM_WORKER_VEC
2262
2263 Helper function for value_find_oload_list.
2264 ARGP is a pointer to a pointer to a value (the object).
2265 METHOD is a string containing the method name.
2266 OFFSET is the offset within the value.
2267 TYPE is the assumed type of the object.
2268 FN_LIST is the pointer to matching overloaded instances defined in
2269 source language. Since this is a recursive function, *FN_LIST
2270 should be set to NULL when calling this function.
2271 NUM_FNS is the number of overloaded instances. *NUM_FNS should be set to
2272 0 when calling this function.
2273 XM_WORKER_VEC is the vector of matching xmethod workers. *XM_WORKER_VEC
2274 should also be set to NULL when calling this function.
2275 BASETYPE is set to the actual type of the subobject where the
2276 method is found.
2277 BOFFSET is the offset of the base subobject where the method is found. */
2278
2279 static void
2280 find_method_list (struct value **argp, const char *method,
2281 int offset, struct type *type,
2282 struct fn_field **fn_list, int *num_fns,
2283 VEC (xmethod_worker_ptr) **xm_worker_vec,
2284 struct type **basetype, int *boffset)
2285 {
2286 int i;
2287 struct fn_field *f = NULL;
2288 VEC (xmethod_worker_ptr) *worker_vec = NULL, *new_vec = NULL;
2289
2290 gdb_assert (fn_list != NULL && xm_worker_vec != NULL);
2291 CHECK_TYPEDEF (type);
2292
2293 /* First check in object itself.
2294 This function is called recursively to search through base classes.
2295 If there is a source method match found at some stage, then we need not
2296 look for source methods in consequent recursive calls. */
2297 if ((*fn_list) == NULL)
2298 {
2299 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2300 {
2301 /* pai: FIXME What about operators and type conversions? */
2302 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2303
2304 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2305 {
2306 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2307 f = TYPE_FN_FIELDLIST1 (type, i);
2308 *fn_list = f;
2309
2310 *num_fns = len;
2311 *basetype = type;
2312 *boffset = offset;
2313
2314 /* Resolve any stub methods. */
2315 check_stub_method_group (type, i);
2316
2317 break;
2318 }
2319 }
2320 }
2321
2322 /* Unlike source methods, xmethods can be accumulated over successive
2323 recursive calls. In other words, an xmethod named 'm' in a class
2324 will not hide an xmethod named 'm' in its base class(es). We want
2325 it to be this way because xmethods are after all convenience functions
2326 and hence there is no point restricting them with something like method
2327 hiding. Moreover, if hiding is done for xmethods as well, then we will
2328 have to provide a mechanism to un-hide (like the 'using' construct). */
2329 worker_vec = get_matching_xmethod_workers (type, method);
2330 new_vec = VEC_merge (xmethod_worker_ptr, *xm_worker_vec, worker_vec);
2331
2332 VEC_free (xmethod_worker_ptr, *xm_worker_vec);
2333 VEC_free (xmethod_worker_ptr, worker_vec);
2334 *xm_worker_vec = new_vec;
2335
2336 /* If source methods are not found in current class, look for them in the
2337 base classes. We also have to go through the base classes to gather
2338 extension methods. */
2339 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2340 {
2341 int base_offset;
2342
2343 if (BASETYPE_VIA_VIRTUAL (type, i))
2344 {
2345 base_offset = baseclass_offset (type, i,
2346 value_contents_for_printing (*argp),
2347 value_offset (*argp) + offset,
2348 value_address (*argp), *argp);
2349 }
2350 else /* Non-virtual base, simply use bit position from debug
2351 info. */
2352 {
2353 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2354 }
2355
2356 find_method_list (argp, method, base_offset + offset,
2357 TYPE_BASECLASS (type, i), fn_list, num_fns,
2358 xm_worker_vec, basetype, boffset);
2359 }
2360 }
2361
2362 /* Return the list of overloaded methods of a specified name. The methods
2363 could be those GDB finds in the binary, or xmethod. Methods found in
2364 the binary are returned in FN_LIST, and xmethods are returned in
2365 XM_WORKER_VEC.
2366
2367 ARGP is a pointer to a pointer to a value (the object).
2368 METHOD is the method name.
2369 OFFSET is the offset within the value contents.
2370 FN_LIST is the pointer to matching overloaded instances defined in
2371 source language.
2372 NUM_FNS is the number of overloaded instances.
2373 XM_WORKER_VEC is the vector of matching xmethod workers defined in
2374 extension languages.
2375 BASETYPE is set to the type of the base subobject that defines the
2376 method.
2377 BOFFSET is the offset of the base subobject which defines the method. */
2378
2379 static void
2380 value_find_oload_method_list (struct value **argp, const char *method,
2381 int offset, struct fn_field **fn_list,
2382 int *num_fns,
2383 VEC (xmethod_worker_ptr) **xm_worker_vec,
2384 struct type **basetype, int *boffset)
2385 {
2386 struct type *t;
2387
2388 t = check_typedef (value_type (*argp));
2389
2390 /* Code snarfed from value_struct_elt. */
2391 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2392 {
2393 *argp = value_ind (*argp);
2394 /* Don't coerce fn pointer to fn and then back again! */
2395 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2396 *argp = coerce_array (*argp);
2397 t = check_typedef (value_type (*argp));
2398 }
2399
2400 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2401 && TYPE_CODE (t) != TYPE_CODE_UNION)
2402 error (_("Attempt to extract a component of a "
2403 "value that is not a struct or union"));
2404
2405 gdb_assert (fn_list != NULL && xm_worker_vec != NULL);
2406
2407 /* Clear the lists. */
2408 *fn_list = NULL;
2409 *num_fns = 0;
2410 *xm_worker_vec = NULL;
2411
2412 find_method_list (argp, method, 0, t, fn_list, num_fns, xm_worker_vec,
2413 basetype, boffset);
2414 }
2415
2416 /* Given an array of arguments (ARGS) (which includes an
2417 entry for "this" in the case of C++ methods), the number of
2418 arguments NARGS, the NAME of a function, and whether it's a method or
2419 not (METHOD), find the best function that matches on the argument types
2420 according to the overload resolution rules.
2421
2422 METHOD can be one of three values:
2423 NON_METHOD for non-member functions.
2424 METHOD: for member functions.
2425 BOTH: used for overload resolution of operators where the
2426 candidates are expected to be either member or non member
2427 functions. In this case the first argument ARGTYPES
2428 (representing 'this') is expected to be a reference to the
2429 target object, and will be dereferenced when attempting the
2430 non-member search.
2431
2432 In the case of class methods, the parameter OBJ is an object value
2433 in which to search for overloaded methods.
2434
2435 In the case of non-method functions, the parameter FSYM is a symbol
2436 corresponding to one of the overloaded functions.
2437
2438 Return value is an integer: 0 -> good match, 10 -> debugger applied
2439 non-standard coercions, 100 -> incompatible.
2440
2441 If a method is being searched for, VALP will hold the value.
2442 If a non-method is being searched for, SYMP will hold the symbol
2443 for it.
2444
2445 If a method is being searched for, and it is a static method,
2446 then STATICP will point to a non-zero value.
2447
2448 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2449 ADL overload candidates when performing overload resolution for a fully
2450 qualified name.
2451
2452 If NOSIDE is EVAL_AVOID_SIDE_EFFECTS, then OBJP's memory cannot be
2453 read while picking the best overload match (it may be all zeroes and thus
2454 not have a vtable pointer), in which case skip virtual function lookup.
2455 This is ok as typically EVAL_AVOID_SIDE_EFFECTS is only used to determine
2456 the result type.
2457
2458 Note: This function does *not* check the value of
2459 overload_resolution. Caller must check it to see whether overload
2460 resolution is permitted. */
2461
2462 int
2463 find_overload_match (struct value **args, int nargs,
2464 const char *name, enum oload_search_type method,
2465 struct value **objp, struct symbol *fsym,
2466 struct value **valp, struct symbol **symp,
2467 int *staticp, const int no_adl,
2468 const enum noside noside)
2469 {
2470 struct value *obj = (objp ? *objp : NULL);
2471 struct type *obj_type = obj ? value_type (obj) : NULL;
2472 /* Index of best overloaded function. */
2473 int func_oload_champ = -1;
2474 int method_oload_champ = -1;
2475 int src_method_oload_champ = -1;
2476 int ext_method_oload_champ = -1;
2477 int src_and_ext_equal = 0;
2478
2479 /* The measure for the current best match. */
2480 struct badness_vector *method_badness = NULL;
2481 struct badness_vector *func_badness = NULL;
2482 struct badness_vector *ext_method_badness = NULL;
2483 struct badness_vector *src_method_badness = NULL;
2484
2485 struct value *temp = obj;
2486 /* For methods, the list of overloaded methods. */
2487 struct fn_field *fns_ptr = NULL;
2488 /* For non-methods, the list of overloaded function symbols. */
2489 struct symbol **oload_syms = NULL;
2490 /* For xmethods, the VEC of xmethod workers. */
2491 VEC (xmethod_worker_ptr) *xm_worker_vec = NULL;
2492 /* Number of overloaded instances being considered. */
2493 int num_fns = 0;
2494 struct type *basetype = NULL;
2495 int boffset;
2496
2497 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2498
2499 const char *obj_type_name = NULL;
2500 const char *func_name = NULL;
2501 enum oload_classification match_quality;
2502 enum oload_classification method_match_quality = INCOMPATIBLE;
2503 enum oload_classification src_method_match_quality = INCOMPATIBLE;
2504 enum oload_classification ext_method_match_quality = INCOMPATIBLE;
2505 enum oload_classification func_match_quality = INCOMPATIBLE;
2506
2507 /* Get the list of overloaded methods or functions. */
2508 if (method == METHOD || method == BOTH)
2509 {
2510 gdb_assert (obj);
2511
2512 /* OBJ may be a pointer value rather than the object itself. */
2513 obj = coerce_ref (obj);
2514 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2515 obj = coerce_ref (value_ind (obj));
2516 obj_type_name = TYPE_NAME (value_type (obj));
2517
2518 /* First check whether this is a data member, e.g. a pointer to
2519 a function. */
2520 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2521 {
2522 *valp = search_struct_field (name, obj, 0,
2523 check_typedef (value_type (obj)), 0);
2524 if (*valp)
2525 {
2526 *staticp = 1;
2527 do_cleanups (all_cleanups);
2528 return 0;
2529 }
2530 }
2531
2532 /* Retrieve the list of methods with the name NAME. */
2533 value_find_oload_method_list (&temp, name, 0, &fns_ptr, &num_fns,
2534 &xm_worker_vec, &basetype, &boffset);
2535 /* If this is a method only search, and no methods were found
2536 the search has faild. */
2537 if (method == METHOD && (!fns_ptr || !num_fns) && !xm_worker_vec)
2538 error (_("Couldn't find method %s%s%s"),
2539 obj_type_name,
2540 (obj_type_name && *obj_type_name) ? "::" : "",
2541 name);
2542 /* If we are dealing with stub method types, they should have
2543 been resolved by find_method_list via
2544 value_find_oload_method_list above. */
2545 if (fns_ptr)
2546 {
2547 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2548
2549 src_method_oload_champ = find_oload_champ (args, nargs,
2550 num_fns, fns_ptr, NULL,
2551 NULL, &src_method_badness);
2552
2553 src_method_match_quality = classify_oload_match
2554 (src_method_badness, nargs,
2555 oload_method_static_p (fns_ptr, src_method_oload_champ));
2556
2557 make_cleanup (xfree, src_method_badness);
2558 }
2559
2560 if (VEC_length (xmethod_worker_ptr, xm_worker_vec) > 0)
2561 {
2562 ext_method_oload_champ = find_oload_champ (args, nargs,
2563 0, NULL, xm_worker_vec,
2564 NULL, &ext_method_badness);
2565 ext_method_match_quality = classify_oload_match (ext_method_badness,
2566 nargs, 0);
2567 make_cleanup (xfree, ext_method_badness);
2568 make_cleanup (free_xmethod_worker_vec, xm_worker_vec);
2569 }
2570
2571 if (src_method_oload_champ >= 0 && ext_method_oload_champ >= 0)
2572 {
2573 switch (compare_badness (ext_method_badness, src_method_badness))
2574 {
2575 case 0: /* Src method and xmethod are equally good. */
2576 src_and_ext_equal = 1;
2577 /* If src method and xmethod are equally good, then
2578 xmethod should be the winner. Hence, fall through to the
2579 case where a xmethod is better than the source
2580 method, except when the xmethod match quality is
2581 non-standard. */
2582 /* FALLTHROUGH */
2583 case 1: /* Src method and ext method are incompatible. */
2584 /* If ext method match is not standard, then let source method
2585 win. Otherwise, fallthrough to let xmethod win. */
2586 if (ext_method_match_quality != STANDARD)
2587 {
2588 method_oload_champ = src_method_oload_champ;
2589 method_badness = src_method_badness;
2590 ext_method_oload_champ = -1;
2591 method_match_quality = src_method_match_quality;
2592 break;
2593 }
2594 /* FALLTHROUGH */
2595 case 2: /* Ext method is champion. */
2596 method_oload_champ = ext_method_oload_champ;
2597 method_badness = ext_method_badness;
2598 src_method_oload_champ = -1;
2599 method_match_quality = ext_method_match_quality;
2600 break;
2601 case 3: /* Src method is champion. */
2602 method_oload_champ = src_method_oload_champ;
2603 method_badness = src_method_badness;
2604 ext_method_oload_champ = -1;
2605 method_match_quality = src_method_match_quality;
2606 break;
2607 default:
2608 gdb_assert_not_reached ("Unexpected overload comparison "
2609 "result");
2610 break;
2611 }
2612 }
2613 else if (src_method_oload_champ >= 0)
2614 {
2615 method_oload_champ = src_method_oload_champ;
2616 method_badness = src_method_badness;
2617 method_match_quality = src_method_match_quality;
2618 }
2619 else if (ext_method_oload_champ >= 0)
2620 {
2621 method_oload_champ = ext_method_oload_champ;
2622 method_badness = ext_method_badness;
2623 method_match_quality = ext_method_match_quality;
2624 }
2625 }
2626
2627 if (method == NON_METHOD || method == BOTH)
2628 {
2629 const char *qualified_name = NULL;
2630
2631 /* If the overload match is being search for both as a method
2632 and non member function, the first argument must now be
2633 dereferenced. */
2634 if (method == BOTH)
2635 args[0] = value_ind (args[0]);
2636
2637 if (fsym)
2638 {
2639 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2640
2641 /* If we have a function with a C++ name, try to extract just
2642 the function part. Do not try this for non-functions (e.g.
2643 function pointers). */
2644 if (qualified_name
2645 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2646 == TYPE_CODE_FUNC)
2647 {
2648 char *temp;
2649
2650 temp = cp_func_name (qualified_name);
2651
2652 /* If cp_func_name did not remove anything, the name of the
2653 symbol did not include scope or argument types - it was
2654 probably a C-style function. */
2655 if (temp)
2656 {
2657 make_cleanup (xfree, temp);
2658 if (strcmp (temp, qualified_name) == 0)
2659 func_name = NULL;
2660 else
2661 func_name = temp;
2662 }
2663 }
2664 }
2665 else
2666 {
2667 func_name = name;
2668 qualified_name = name;
2669 }
2670
2671 /* If there was no C++ name, this must be a C-style function or
2672 not a function at all. Just return the same symbol. Do the
2673 same if cp_func_name fails for some reason. */
2674 if (func_name == NULL)
2675 {
2676 *symp = fsym;
2677 do_cleanups (all_cleanups);
2678 return 0;
2679 }
2680
2681 func_oload_champ = find_oload_champ_namespace (args, nargs,
2682 func_name,
2683 qualified_name,
2684 &oload_syms,
2685 &func_badness,
2686 no_adl);
2687
2688 if (func_oload_champ >= 0)
2689 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2690
2691 make_cleanup (xfree, oload_syms);
2692 make_cleanup (xfree, func_badness);
2693 }
2694
2695 /* Did we find a match ? */
2696 if (method_oload_champ == -1 && func_oload_champ == -1)
2697 throw_error (NOT_FOUND_ERROR,
2698 _("No symbol \"%s\" in current context."),
2699 name);
2700
2701 /* If we have found both a method match and a function
2702 match, find out which one is better, and calculate match
2703 quality. */
2704 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2705 {
2706 switch (compare_badness (func_badness, method_badness))
2707 {
2708 case 0: /* Top two contenders are equally good. */
2709 /* FIXME: GDB does not support the general ambiguous case.
2710 All candidates should be collected and presented the
2711 user. */
2712 error (_("Ambiguous overload resolution"));
2713 break;
2714 case 1: /* Incomparable top contenders. */
2715 /* This is an error incompatible candidates
2716 should not have been proposed. */
2717 error (_("Internal error: incompatible "
2718 "overload candidates proposed"));
2719 break;
2720 case 2: /* Function champion. */
2721 method_oload_champ = -1;
2722 match_quality = func_match_quality;
2723 break;
2724 case 3: /* Method champion. */
2725 func_oload_champ = -1;
2726 match_quality = method_match_quality;
2727 break;
2728 default:
2729 error (_("Internal error: unexpected overload comparison result"));
2730 break;
2731 }
2732 }
2733 else
2734 {
2735 /* We have either a method match or a function match. */
2736 if (method_oload_champ >= 0)
2737 match_quality = method_match_quality;
2738 else
2739 match_quality = func_match_quality;
2740 }
2741
2742 if (match_quality == INCOMPATIBLE)
2743 {
2744 if (method == METHOD)
2745 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2746 obj_type_name,
2747 (obj_type_name && *obj_type_name) ? "::" : "",
2748 name);
2749 else
2750 error (_("Cannot resolve function %s to any overloaded instance"),
2751 func_name);
2752 }
2753 else if (match_quality == NON_STANDARD)
2754 {
2755 if (method == METHOD)
2756 warning (_("Using non-standard conversion to match "
2757 "method %s%s%s to supplied arguments"),
2758 obj_type_name,
2759 (obj_type_name && *obj_type_name) ? "::" : "",
2760 name);
2761 else
2762 warning (_("Using non-standard conversion to match "
2763 "function %s to supplied arguments"),
2764 func_name);
2765 }
2766
2767 if (staticp != NULL)
2768 *staticp = oload_method_static_p (fns_ptr, method_oload_champ);
2769
2770 if (method_oload_champ >= 0)
2771 {
2772 if (src_method_oload_champ >= 0)
2773 {
2774 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ)
2775 && noside != EVAL_AVOID_SIDE_EFFECTS)
2776 {
2777 *valp = value_virtual_fn_field (&temp, fns_ptr,
2778 method_oload_champ, basetype,
2779 boffset);
2780 }
2781 else
2782 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2783 basetype, boffset);
2784 }
2785 else
2786 {
2787 *valp = value_of_xmethod (clone_xmethod_worker
2788 (VEC_index (xmethod_worker_ptr, xm_worker_vec,
2789 ext_method_oload_champ)));
2790 }
2791 }
2792 else
2793 *symp = oload_syms[func_oload_champ];
2794
2795 if (objp)
2796 {
2797 struct type *temp_type = check_typedef (value_type (temp));
2798 struct type *objtype = check_typedef (obj_type);
2799
2800 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2801 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2802 || TYPE_CODE (objtype) == TYPE_CODE_REF))
2803 {
2804 temp = value_addr (temp);
2805 }
2806 *objp = temp;
2807 }
2808
2809 do_cleanups (all_cleanups);
2810
2811 switch (match_quality)
2812 {
2813 case INCOMPATIBLE:
2814 return 100;
2815 case NON_STANDARD:
2816 return 10;
2817 default: /* STANDARD */
2818 return 0;
2819 }
2820 }
2821
2822 /* Find the best overload match, searching for FUNC_NAME in namespaces
2823 contained in QUALIFIED_NAME until it either finds a good match or
2824 runs out of namespaces. It stores the overloaded functions in
2825 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2826 calling function is responsible for freeing *OLOAD_SYMS and
2827 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2828 performned. */
2829
2830 static int
2831 find_oload_champ_namespace (struct value **args, int nargs,
2832 const char *func_name,
2833 const char *qualified_name,
2834 struct symbol ***oload_syms,
2835 struct badness_vector **oload_champ_bv,
2836 const int no_adl)
2837 {
2838 int oload_champ;
2839
2840 find_oload_champ_namespace_loop (args, nargs,
2841 func_name,
2842 qualified_name, 0,
2843 oload_syms, oload_champ_bv,
2844 &oload_champ,
2845 no_adl);
2846
2847 return oload_champ;
2848 }
2849
2850 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2851 how deep we've looked for namespaces, and the champ is stored in
2852 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2853 if it isn't. Other arguments are the same as in
2854 find_oload_champ_namespace
2855
2856 It is the caller's responsibility to free *OLOAD_SYMS and
2857 *OLOAD_CHAMP_BV. */
2858
2859 static int
2860 find_oload_champ_namespace_loop (struct value **args, int nargs,
2861 const char *func_name,
2862 const char *qualified_name,
2863 int namespace_len,
2864 struct symbol ***oload_syms,
2865 struct badness_vector **oload_champ_bv,
2866 int *oload_champ,
2867 const int no_adl)
2868 {
2869 int next_namespace_len = namespace_len;
2870 int searched_deeper = 0;
2871 int num_fns = 0;
2872 struct cleanup *old_cleanups;
2873 int new_oload_champ;
2874 struct symbol **new_oload_syms;
2875 struct badness_vector *new_oload_champ_bv;
2876 char *new_namespace;
2877
2878 if (next_namespace_len != 0)
2879 {
2880 gdb_assert (qualified_name[next_namespace_len] == ':');
2881 next_namespace_len += 2;
2882 }
2883 next_namespace_len +=
2884 cp_find_first_component (qualified_name + next_namespace_len);
2885
2886 /* Initialize these to values that can safely be xfree'd. */
2887 *oload_syms = NULL;
2888 *oload_champ_bv = NULL;
2889
2890 /* First, see if we have a deeper namespace we can search in.
2891 If we get a good match there, use it. */
2892
2893 if (qualified_name[next_namespace_len] == ':')
2894 {
2895 searched_deeper = 1;
2896
2897 if (find_oload_champ_namespace_loop (args, nargs,
2898 func_name, qualified_name,
2899 next_namespace_len,
2900 oload_syms, oload_champ_bv,
2901 oload_champ, no_adl))
2902 {
2903 return 1;
2904 }
2905 };
2906
2907 /* If we reach here, either we're in the deepest namespace or we
2908 didn't find a good match in a deeper namespace. But, in the
2909 latter case, we still have a bad match in a deeper namespace;
2910 note that we might not find any match at all in the current
2911 namespace. (There's always a match in the deepest namespace,
2912 because this overload mechanism only gets called if there's a
2913 function symbol to start off with.) */
2914
2915 old_cleanups = make_cleanup (xfree, *oload_syms);
2916 make_cleanup (xfree, *oload_champ_bv);
2917 new_namespace = alloca (namespace_len + 1);
2918 strncpy (new_namespace, qualified_name, namespace_len);
2919 new_namespace[namespace_len] = '\0';
2920 new_oload_syms = make_symbol_overload_list (func_name,
2921 new_namespace);
2922
2923 /* If we have reached the deepest level perform argument
2924 determined lookup. */
2925 if (!searched_deeper && !no_adl)
2926 {
2927 int ix;
2928 struct type **arg_types;
2929
2930 /* Prepare list of argument types for overload resolution. */
2931 arg_types = (struct type **)
2932 alloca (nargs * (sizeof (struct type *)));
2933 for (ix = 0; ix < nargs; ix++)
2934 arg_types[ix] = value_type (args[ix]);
2935 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2936 }
2937
2938 while (new_oload_syms[num_fns])
2939 ++num_fns;
2940
2941 new_oload_champ = find_oload_champ (args, nargs, num_fns,
2942 NULL, NULL, new_oload_syms,
2943 &new_oload_champ_bv);
2944
2945 /* Case 1: We found a good match. Free earlier matches (if any),
2946 and return it. Case 2: We didn't find a good match, but we're
2947 not the deepest function. Then go with the bad match that the
2948 deeper function found. Case 3: We found a bad match, and we're
2949 the deepest function. Then return what we found, even though
2950 it's a bad match. */
2951
2952 if (new_oload_champ != -1
2953 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2954 {
2955 *oload_syms = new_oload_syms;
2956 *oload_champ = new_oload_champ;
2957 *oload_champ_bv = new_oload_champ_bv;
2958 do_cleanups (old_cleanups);
2959 return 1;
2960 }
2961 else if (searched_deeper)
2962 {
2963 xfree (new_oload_syms);
2964 xfree (new_oload_champ_bv);
2965 discard_cleanups (old_cleanups);
2966 return 0;
2967 }
2968 else
2969 {
2970 *oload_syms = new_oload_syms;
2971 *oload_champ = new_oload_champ;
2972 *oload_champ_bv = new_oload_champ_bv;
2973 do_cleanups (old_cleanups);
2974 return 0;
2975 }
2976 }
2977
2978 /* Look for a function to take NARGS args of ARGS. Find
2979 the best match from among the overloaded methods or functions
2980 given by FNS_PTR or OLOAD_SYMS or XM_WORKER_VEC, respectively.
2981 One, and only one of FNS_PTR, OLOAD_SYMS and XM_WORKER_VEC can be
2982 non-NULL.
2983
2984 If XM_WORKER_VEC is NULL, then the length of the arrays FNS_PTR
2985 or OLOAD_SYMS (whichever is non-NULL) is specified in NUM_FNS.
2986
2987 Return the index of the best match; store an indication of the
2988 quality of the match in OLOAD_CHAMP_BV.
2989
2990 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2991
2992 static int
2993 find_oload_champ (struct value **args, int nargs,
2994 int num_fns, struct fn_field *fns_ptr,
2995 VEC (xmethod_worker_ptr) *xm_worker_vec,
2996 struct symbol **oload_syms,
2997 struct badness_vector **oload_champ_bv)
2998 {
2999 int ix;
3000 int fn_count;
3001 int xm_worker_vec_n = VEC_length (xmethod_worker_ptr, xm_worker_vec);
3002 /* A measure of how good an overloaded instance is. */
3003 struct badness_vector *bv;
3004 /* Index of best overloaded function. */
3005 int oload_champ = -1;
3006 /* Current ambiguity state for overload resolution. */
3007 int oload_ambiguous = 0;
3008 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
3009
3010 /* A champion can be found among methods alone, or among functions
3011 alone, or in xmethods alone, but not in more than one of these
3012 groups. */
3013 gdb_assert ((fns_ptr != NULL) + (oload_syms != NULL) + (xm_worker_vec != NULL)
3014 == 1);
3015
3016 *oload_champ_bv = NULL;
3017
3018 fn_count = (xm_worker_vec != NULL
3019 ? VEC_length (xmethod_worker_ptr, xm_worker_vec)
3020 : num_fns);
3021 /* Consider each candidate in turn. */
3022 for (ix = 0; ix < fn_count; ix++)
3023 {
3024 int jj;
3025 int static_offset = 0;
3026 int nparms;
3027 struct type **parm_types;
3028 struct xmethod_worker *worker = NULL;
3029
3030 if (xm_worker_vec != NULL)
3031 {
3032 worker = VEC_index (xmethod_worker_ptr, xm_worker_vec, ix);
3033 parm_types = get_xmethod_arg_types (worker, &nparms);
3034 }
3035 else
3036 {
3037 if (fns_ptr != NULL)
3038 {
3039 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
3040 static_offset = oload_method_static_p (fns_ptr, ix);
3041 }
3042 else
3043 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
3044
3045 parm_types = (struct type **)
3046 xmalloc (nparms * (sizeof (struct type *)));
3047 for (jj = 0; jj < nparms; jj++)
3048 parm_types[jj] = (fns_ptr != NULL
3049 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
3050 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
3051 jj));
3052 }
3053
3054 /* Compare parameter types to supplied argument types. Skip
3055 THIS for static methods. */
3056 bv = rank_function (parm_types, nparms,
3057 args + static_offset,
3058 nargs - static_offset);
3059
3060 if (!*oload_champ_bv)
3061 {
3062 *oload_champ_bv = bv;
3063 oload_champ = 0;
3064 }
3065 else /* See whether current candidate is better or worse than
3066 previous best. */
3067 switch (compare_badness (bv, *oload_champ_bv))
3068 {
3069 case 0: /* Top two contenders are equally good. */
3070 oload_ambiguous = 1;
3071 break;
3072 case 1: /* Incomparable top contenders. */
3073 oload_ambiguous = 2;
3074 break;
3075 case 2: /* New champion, record details. */
3076 *oload_champ_bv = bv;
3077 oload_ambiguous = 0;
3078 oload_champ = ix;
3079 break;
3080 case 3:
3081 default:
3082 break;
3083 }
3084 xfree (parm_types);
3085 if (overload_debug)
3086 {
3087 if (fns_ptr != NULL)
3088 fprintf_filtered (gdb_stderr,
3089 "Overloaded method instance %s, # of parms %d\n",
3090 fns_ptr[ix].physname, nparms);
3091 else if (xm_worker_vec != NULL)
3092 fprintf_filtered (gdb_stderr,
3093 "Xmethod worker, # of parms %d\n",
3094 nparms);
3095 else
3096 fprintf_filtered (gdb_stderr,
3097 "Overloaded function instance "
3098 "%s # of parms %d\n",
3099 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
3100 nparms);
3101 for (jj = 0; jj < nargs - static_offset; jj++)
3102 fprintf_filtered (gdb_stderr,
3103 "...Badness @ %d : %d\n",
3104 jj, bv->rank[jj].rank);
3105 fprintf_filtered (gdb_stderr, "Overload resolution "
3106 "champion is %d, ambiguous? %d\n",
3107 oload_champ, oload_ambiguous);
3108 }
3109 }
3110
3111 return oload_champ;
3112 }
3113
3114 /* Return 1 if we're looking at a static method, 0 if we're looking at
3115 a non-static method or a function that isn't a method. */
3116
3117 static int
3118 oload_method_static_p (struct fn_field *fns_ptr, int index)
3119 {
3120 if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3121 return 1;
3122 else
3123 return 0;
3124 }
3125
3126 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3127
3128 static enum oload_classification
3129 classify_oload_match (struct badness_vector *oload_champ_bv,
3130 int nargs,
3131 int static_offset)
3132 {
3133 int ix;
3134 enum oload_classification worst = STANDARD;
3135
3136 for (ix = 1; ix <= nargs - static_offset; ix++)
3137 {
3138 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3139 or worse return INCOMPATIBLE. */
3140 if (compare_ranks (oload_champ_bv->rank[ix],
3141 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3142 return INCOMPATIBLE; /* Truly mismatched types. */
3143 /* Otherwise If this conversion is as bad as
3144 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3145 else if (compare_ranks (oload_champ_bv->rank[ix],
3146 NS_POINTER_CONVERSION_BADNESS) <= 0)
3147 worst = NON_STANDARD; /* Non-standard type conversions
3148 needed. */
3149 }
3150
3151 /* If no INCOMPATIBLE classification was found, return the worst one
3152 that was found (if any). */
3153 return worst;
3154 }
3155
3156 /* C++: return 1 is NAME is a legitimate name for the destructor of
3157 type TYPE. If TYPE does not have a destructor, or if NAME is
3158 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3159 have CHECK_TYPEDEF applied, this function will apply it itself. */
3160
3161 int
3162 destructor_name_p (const char *name, struct type *type)
3163 {
3164 if (name[0] == '~')
3165 {
3166 const char *dname = type_name_no_tag_or_error (type);
3167 const char *cp = strchr (dname, '<');
3168 unsigned int len;
3169
3170 /* Do not compare the template part for template classes. */
3171 if (cp == NULL)
3172 len = strlen (dname);
3173 else
3174 len = cp - dname;
3175 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3176 error (_("name of destructor must equal name of class"));
3177 else
3178 return 1;
3179 }
3180 return 0;
3181 }
3182
3183 /* Find an enum constant named NAME in TYPE. TYPE must be an "enum
3184 class". If the name is found, return a value representing it;
3185 otherwise throw an exception. */
3186
3187 static struct value *
3188 enum_constant_from_type (struct type *type, const char *name)
3189 {
3190 int i;
3191 int name_len = strlen (name);
3192
3193 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ENUM
3194 && TYPE_DECLARED_CLASS (type));
3195
3196 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); ++i)
3197 {
3198 const char *fname = TYPE_FIELD_NAME (type, i);
3199 int len;
3200
3201 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_ENUMVAL
3202 || fname == NULL)
3203 continue;
3204
3205 /* Look for the trailing "::NAME", since enum class constant
3206 names are qualified here. */
3207 len = strlen (fname);
3208 if (len + 2 >= name_len
3209 && fname[len - name_len - 2] == ':'
3210 && fname[len - name_len - 1] == ':'
3211 && strcmp (&fname[len - name_len], name) == 0)
3212 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, i));
3213 }
3214
3215 error (_("no constant named \"%s\" in enum \"%s\""),
3216 name, TYPE_TAG_NAME (type));
3217 }
3218
3219 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3220 return the appropriate member (or the address of the member, if
3221 WANT_ADDRESS). This function is used to resolve user expressions
3222 of the form "DOMAIN::NAME". For more details on what happens, see
3223 the comment before value_struct_elt_for_reference. */
3224
3225 struct value *
3226 value_aggregate_elt (struct type *curtype, const char *name,
3227 struct type *expect_type, int want_address,
3228 enum noside noside)
3229 {
3230 switch (TYPE_CODE (curtype))
3231 {
3232 case TYPE_CODE_STRUCT:
3233 case TYPE_CODE_UNION:
3234 return value_struct_elt_for_reference (curtype, 0, curtype,
3235 name, expect_type,
3236 want_address, noside);
3237 case TYPE_CODE_NAMESPACE:
3238 return value_namespace_elt (curtype, name,
3239 want_address, noside);
3240
3241 case TYPE_CODE_ENUM:
3242 return enum_constant_from_type (curtype, name);
3243
3244 default:
3245 internal_error (__FILE__, __LINE__,
3246 _("non-aggregate type in value_aggregate_elt"));
3247 }
3248 }
3249
3250 /* Compares the two method/function types T1 and T2 for "equality"
3251 with respect to the methods' parameters. If the types of the
3252 two parameter lists are the same, returns 1; 0 otherwise. This
3253 comparison may ignore any artificial parameters in T1 if
3254 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3255 the first artificial parameter in T1, assumed to be a 'this' pointer.
3256
3257 The type T2 is expected to have come from make_params (in eval.c). */
3258
3259 static int
3260 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3261 {
3262 int start = 0;
3263
3264 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3265 ++start;
3266
3267 /* If skipping artificial fields, find the first real field
3268 in T1. */
3269 if (skip_artificial)
3270 {
3271 while (start < TYPE_NFIELDS (t1)
3272 && TYPE_FIELD_ARTIFICIAL (t1, start))
3273 ++start;
3274 }
3275
3276 /* Now compare parameters. */
3277
3278 /* Special case: a method taking void. T1 will contain no
3279 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3280 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3281 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3282 return 1;
3283
3284 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3285 {
3286 int i;
3287
3288 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3289 {
3290 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3291 TYPE_FIELD_TYPE (t2, i), NULL),
3292 EXACT_MATCH_BADNESS) != 0)
3293 return 0;
3294 }
3295
3296 return 1;
3297 }
3298
3299 return 0;
3300 }
3301
3302 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3303 return the address of this member as a "pointer to member" type.
3304 If INTYPE is non-null, then it will be the type of the member we
3305 are looking for. This will help us resolve "pointers to member
3306 functions". This function is used to resolve user expressions of
3307 the form "DOMAIN::NAME". */
3308
3309 static struct value *
3310 value_struct_elt_for_reference (struct type *domain, int offset,
3311 struct type *curtype, const char *name,
3312 struct type *intype,
3313 int want_address,
3314 enum noside noside)
3315 {
3316 struct type *t = curtype;
3317 int i;
3318 struct value *v, *result;
3319
3320 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3321 && TYPE_CODE (t) != TYPE_CODE_UNION)
3322 error (_("Internal error: non-aggregate type "
3323 "to value_struct_elt_for_reference"));
3324
3325 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3326 {
3327 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3328
3329 if (t_field_name && strcmp (t_field_name, name) == 0)
3330 {
3331 if (field_is_static (&TYPE_FIELD (t, i)))
3332 {
3333 v = value_static_field (t, i);
3334 if (want_address)
3335 v = value_addr (v);
3336 return v;
3337 }
3338 if (TYPE_FIELD_PACKED (t, i))
3339 error (_("pointers to bitfield members not allowed"));
3340
3341 if (want_address)
3342 return value_from_longest
3343 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3344 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3345 else if (noside != EVAL_NORMAL)
3346 return allocate_value (TYPE_FIELD_TYPE (t, i));
3347 else
3348 {
3349 /* Try to evaluate NAME as a qualified name with implicit
3350 this pointer. In this case, attempt to return the
3351 equivalent to `this->*(&TYPE::NAME)'. */
3352 v = value_of_this_silent (current_language);
3353 if (v != NULL)
3354 {
3355 struct value *ptr;
3356 long mem_offset;
3357 struct type *type, *tmp;
3358
3359 ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
3360 type = check_typedef (value_type (ptr));
3361 gdb_assert (type != NULL
3362 && TYPE_CODE (type) == TYPE_CODE_MEMBERPTR);
3363 tmp = lookup_pointer_type (TYPE_DOMAIN_TYPE (type));
3364 v = value_cast_pointers (tmp, v, 1);
3365 mem_offset = value_as_long (ptr);
3366 tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type));
3367 result = value_from_pointer (tmp,
3368 value_as_long (v) + mem_offset);
3369 return value_ind (result);
3370 }
3371
3372 error (_("Cannot reference non-static field \"%s\""), name);
3373 }
3374 }
3375 }
3376
3377 /* C++: If it was not found as a data field, then try to return it
3378 as a pointer to a method. */
3379
3380 /* Perform all necessary dereferencing. */
3381 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3382 intype = TYPE_TARGET_TYPE (intype);
3383
3384 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3385 {
3386 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3387 char dem_opname[64];
3388
3389 if (strncmp (t_field_name, "__", 2) == 0
3390 || strncmp (t_field_name, "op", 2) == 0
3391 || strncmp (t_field_name, "type", 4) == 0)
3392 {
3393 if (cplus_demangle_opname (t_field_name,
3394 dem_opname, DMGL_ANSI))
3395 t_field_name = dem_opname;
3396 else if (cplus_demangle_opname (t_field_name,
3397 dem_opname, 0))
3398 t_field_name = dem_opname;
3399 }
3400 if (t_field_name && strcmp (t_field_name, name) == 0)
3401 {
3402 int j;
3403 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3404 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3405
3406 check_stub_method_group (t, i);
3407
3408 if (intype)
3409 {
3410 for (j = 0; j < len; ++j)
3411 {
3412 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3413 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3414 intype, 1))
3415 break;
3416 }
3417
3418 if (j == len)
3419 error (_("no member function matches "
3420 "that type instantiation"));
3421 }
3422 else
3423 {
3424 int ii;
3425
3426 j = -1;
3427 for (ii = 0; ii < len; ++ii)
3428 {
3429 /* Skip artificial methods. This is necessary if,
3430 for example, the user wants to "print
3431 subclass::subclass" with only one user-defined
3432 constructor. There is no ambiguity in this case.
3433 We are careful here to allow artificial methods
3434 if they are the unique result. */
3435 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3436 {
3437 if (j == -1)
3438 j = ii;
3439 continue;
3440 }
3441
3442 /* Desired method is ambiguous if more than one
3443 method is defined. */
3444 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3445 error (_("non-unique member `%s' requires "
3446 "type instantiation"), name);
3447
3448 j = ii;
3449 }
3450
3451 if (j == -1)
3452 error (_("no matching member function"));
3453 }
3454
3455 if (TYPE_FN_FIELD_STATIC_P (f, j))
3456 {
3457 struct symbol *s =
3458 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3459 0, VAR_DOMAIN, 0);
3460
3461 if (s == NULL)
3462 return NULL;
3463
3464 if (want_address)
3465 return value_addr (read_var_value (s, 0));
3466 else
3467 return read_var_value (s, 0);
3468 }
3469
3470 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3471 {
3472 if (want_address)
3473 {
3474 result = allocate_value
3475 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3476 cplus_make_method_ptr (value_type (result),
3477 value_contents_writeable (result),
3478 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3479 }
3480 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3481 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3482 else
3483 error (_("Cannot reference virtual member function \"%s\""),
3484 name);
3485 }
3486 else
3487 {
3488 struct symbol *s =
3489 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3490 0, VAR_DOMAIN, 0);
3491
3492 if (s == NULL)
3493 return NULL;
3494
3495 v = read_var_value (s, 0);
3496 if (!want_address)
3497 result = v;
3498 else
3499 {
3500 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3501 cplus_make_method_ptr (value_type (result),
3502 value_contents_writeable (result),
3503 value_address (v), 0);
3504 }
3505 }
3506 return result;
3507 }
3508 }
3509 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3510 {
3511 struct value *v;
3512 int base_offset;
3513
3514 if (BASETYPE_VIA_VIRTUAL (t, i))
3515 base_offset = 0;
3516 else
3517 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3518 v = value_struct_elt_for_reference (domain,
3519 offset + base_offset,
3520 TYPE_BASECLASS (t, i),
3521 name, intype,
3522 want_address, noside);
3523 if (v)
3524 return v;
3525 }
3526
3527 /* As a last chance, pretend that CURTYPE is a namespace, and look
3528 it up that way; this (frequently) works for types nested inside
3529 classes. */
3530
3531 return value_maybe_namespace_elt (curtype, name,
3532 want_address, noside);
3533 }
3534
3535 /* C++: Return the member NAME of the namespace given by the type
3536 CURTYPE. */
3537
3538 static struct value *
3539 value_namespace_elt (const struct type *curtype,
3540 const char *name, int want_address,
3541 enum noside noside)
3542 {
3543 struct value *retval = value_maybe_namespace_elt (curtype, name,
3544 want_address,
3545 noside);
3546
3547 if (retval == NULL)
3548 error (_("No symbol \"%s\" in namespace \"%s\"."),
3549 name, TYPE_TAG_NAME (curtype));
3550
3551 return retval;
3552 }
3553
3554 /* A helper function used by value_namespace_elt and
3555 value_struct_elt_for_reference. It looks up NAME inside the
3556 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3557 is a class and NAME refers to a type in CURTYPE itself (as opposed
3558 to, say, some base class of CURTYPE). */
3559
3560 static struct value *
3561 value_maybe_namespace_elt (const struct type *curtype,
3562 const char *name, int want_address,
3563 enum noside noside)
3564 {
3565 const char *namespace_name = TYPE_TAG_NAME (curtype);
3566 struct symbol *sym;
3567 struct value *result;
3568
3569 sym = cp_lookup_symbol_namespace (namespace_name, name,
3570 get_selected_block (0), VAR_DOMAIN);
3571
3572 if (sym == NULL)
3573 {
3574 char *concatenated_name = alloca (strlen (namespace_name) + 2
3575 + strlen (name) + 1);
3576
3577 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3578 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3579 }
3580
3581 if (sym == NULL)
3582 return NULL;
3583 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3584 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3585 result = allocate_value (SYMBOL_TYPE (sym));
3586 else
3587 result = value_of_variable (sym, get_selected_block (0));
3588
3589 if (result && want_address)
3590 result = value_addr (result);
3591
3592 return result;
3593 }
3594
3595 /* Given a pointer or a reference value V, find its real (RTTI) type.
3596
3597 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3598 and refer to the values computed for the object pointed to. */
3599
3600 struct type *
3601 value_rtti_indirect_type (struct value *v, int *full,
3602 int *top, int *using_enc)
3603 {
3604 struct value *target;
3605 struct type *type, *real_type, *target_type;
3606
3607 type = value_type (v);
3608 type = check_typedef (type);
3609 if (TYPE_CODE (type) == TYPE_CODE_REF)
3610 target = coerce_ref (v);
3611 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3612 target = value_ind (v);
3613 else
3614 return NULL;
3615
3616 real_type = value_rtti_type (target, full, top, using_enc);
3617
3618 if (real_type)
3619 {
3620 /* Copy qualifiers to the referenced object. */
3621 target_type = value_type (target);
3622 real_type = make_cv_type (TYPE_CONST (target_type),
3623 TYPE_VOLATILE (target_type), real_type, NULL);
3624 if (TYPE_CODE (type) == TYPE_CODE_REF)
3625 real_type = lookup_reference_type (real_type);
3626 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3627 real_type = lookup_pointer_type (real_type);
3628 else
3629 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3630
3631 /* Copy qualifiers to the pointer/reference. */
3632 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3633 real_type, NULL);
3634 }
3635
3636 return real_type;
3637 }
3638
3639 /* Given a value pointed to by ARGP, check its real run-time type, and
3640 if that is different from the enclosing type, create a new value
3641 using the real run-time type as the enclosing type (and of the same
3642 type as ARGP) and return it, with the embedded offset adjusted to
3643 be the correct offset to the enclosed object. RTYPE is the type,
3644 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3645 by value_rtti_type(). If these are available, they can be supplied
3646 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3647 NULL if they're not available. */
3648
3649 struct value *
3650 value_full_object (struct value *argp,
3651 struct type *rtype,
3652 int xfull, int xtop,
3653 int xusing_enc)
3654 {
3655 struct type *real_type;
3656 int full = 0;
3657 int top = -1;
3658 int using_enc = 0;
3659 struct value *new_val;
3660
3661 if (rtype)
3662 {
3663 real_type = rtype;
3664 full = xfull;
3665 top = xtop;
3666 using_enc = xusing_enc;
3667 }
3668 else
3669 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3670
3671 /* If no RTTI data, or if object is already complete, do nothing. */
3672 if (!real_type || real_type == value_enclosing_type (argp))
3673 return argp;
3674
3675 /* In a destructor we might see a real type that is a superclass of
3676 the object's type. In this case it is better to leave the object
3677 as-is. */
3678 if (full
3679 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3680 return argp;
3681
3682 /* If we have the full object, but for some reason the enclosing
3683 type is wrong, set it. */
3684 /* pai: FIXME -- sounds iffy */
3685 if (full)
3686 {
3687 argp = value_copy (argp);
3688 set_value_enclosing_type (argp, real_type);
3689 return argp;
3690 }
3691
3692 /* Check if object is in memory. */
3693 if (VALUE_LVAL (argp) != lval_memory)
3694 {
3695 warning (_("Couldn't retrieve complete object of RTTI "
3696 "type %s; object may be in register(s)."),
3697 TYPE_NAME (real_type));
3698
3699 return argp;
3700 }
3701
3702 /* All other cases -- retrieve the complete object. */
3703 /* Go back by the computed top_offset from the beginning of the
3704 object, adjusting for the embedded offset of argp if that's what
3705 value_rtti_type used for its computation. */
3706 new_val = value_at_lazy (real_type, value_address (argp) - top +
3707 (using_enc ? 0 : value_embedded_offset (argp)));
3708 deprecated_set_value_type (new_val, value_type (argp));
3709 set_value_embedded_offset (new_val, (using_enc
3710 ? top + value_embedded_offset (argp)
3711 : top));
3712 return new_val;
3713 }
3714
3715
3716 /* Return the value of the local variable, if one exists. Throw error
3717 otherwise, such as if the request is made in an inappropriate context. */
3718
3719 struct value *
3720 value_of_this (const struct language_defn *lang)
3721 {
3722 struct symbol *sym;
3723 const struct block *b;
3724 struct frame_info *frame;
3725
3726 if (!lang->la_name_of_this)
3727 error (_("no `this' in current language"));
3728
3729 frame = get_selected_frame (_("no frame selected"));
3730
3731 b = get_frame_block (frame, NULL);
3732
3733 sym = lookup_language_this (lang, b);
3734 if (sym == NULL)
3735 error (_("current stack frame does not contain a variable named `%s'"),
3736 lang->la_name_of_this);
3737
3738 return read_var_value (sym, frame);
3739 }
3740
3741 /* Return the value of the local variable, if one exists. Return NULL
3742 otherwise. Never throw error. */
3743
3744 struct value *
3745 value_of_this_silent (const struct language_defn *lang)
3746 {
3747 struct value *ret = NULL;
3748 volatile struct gdb_exception except;
3749
3750 TRY_CATCH (except, RETURN_MASK_ERROR)
3751 {
3752 ret = value_of_this (lang);
3753 }
3754
3755 return ret;
3756 }
3757
3758 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3759 elements long, starting at LOWBOUND. The result has the same lower
3760 bound as the original ARRAY. */
3761
3762 struct value *
3763 value_slice (struct value *array, int lowbound, int length)
3764 {
3765 struct type *slice_range_type, *slice_type, *range_type;
3766 LONGEST lowerbound, upperbound;
3767 struct value *slice;
3768 struct type *array_type;
3769
3770 array_type = check_typedef (value_type (array));
3771 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3772 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
3773 error (_("cannot take slice of non-array"));
3774
3775 range_type = TYPE_INDEX_TYPE (array_type);
3776 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3777 error (_("slice from bad array or bitstring"));
3778
3779 if (lowbound < lowerbound || length < 0
3780 || lowbound + length - 1 > upperbound)
3781 error (_("slice out of range"));
3782
3783 /* FIXME-type-allocation: need a way to free this type when we are
3784 done with it. */
3785 slice_range_type = create_static_range_type ((struct type *) NULL,
3786 TYPE_TARGET_TYPE (range_type),
3787 lowbound,
3788 lowbound + length - 1);
3789
3790 {
3791 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3792 LONGEST offset
3793 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3794
3795 slice_type = create_array_type ((struct type *) NULL,
3796 element_type,
3797 slice_range_type);
3798 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3799
3800 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3801 slice = allocate_value_lazy (slice_type);
3802 else
3803 {
3804 slice = allocate_value (slice_type);
3805 value_contents_copy (slice, 0, array, offset,
3806 TYPE_LENGTH (slice_type));
3807 }
3808
3809 set_value_component_location (slice, array);
3810 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3811 set_value_offset (slice, value_offset (array) + offset);
3812 }
3813
3814 return slice;
3815 }
3816
3817 /* Create a value for a FORTRAN complex number. Currently most of the
3818 time values are coerced to COMPLEX*16 (i.e. a complex number
3819 composed of 2 doubles. This really should be a smarter routine
3820 that figures out precision inteligently as opposed to assuming
3821 doubles. FIXME: fmb */
3822
3823 struct value *
3824 value_literal_complex (struct value *arg1,
3825 struct value *arg2,
3826 struct type *type)
3827 {
3828 struct value *val;
3829 struct type *real_type = TYPE_TARGET_TYPE (type);
3830
3831 val = allocate_value (type);
3832 arg1 = value_cast (real_type, arg1);
3833 arg2 = value_cast (real_type, arg2);
3834
3835 memcpy (value_contents_raw (val),
3836 value_contents (arg1), TYPE_LENGTH (real_type));
3837 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3838 value_contents (arg2), TYPE_LENGTH (real_type));
3839 return val;
3840 }
3841
3842 /* Cast a value into the appropriate complex data type. */
3843
3844 static struct value *
3845 cast_into_complex (struct type *type, struct value *val)
3846 {
3847 struct type *real_type = TYPE_TARGET_TYPE (type);
3848
3849 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3850 {
3851 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3852 struct value *re_val = allocate_value (val_real_type);
3853 struct value *im_val = allocate_value (val_real_type);
3854
3855 memcpy (value_contents_raw (re_val),
3856 value_contents (val), TYPE_LENGTH (val_real_type));
3857 memcpy (value_contents_raw (im_val),
3858 value_contents (val) + TYPE_LENGTH (val_real_type),
3859 TYPE_LENGTH (val_real_type));
3860
3861 return value_literal_complex (re_val, im_val, type);
3862 }
3863 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3864 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3865 return value_literal_complex (val,
3866 value_zero (real_type, not_lval),
3867 type);
3868 else
3869 error (_("cannot cast non-number to complex"));
3870 }
3871
3872 void
3873 _initialize_valops (void)
3874 {
3875 add_setshow_boolean_cmd ("overload-resolution", class_support,
3876 &overload_resolution, _("\
3877 Set overload resolution in evaluating C++ functions."), _("\
3878 Show overload resolution in evaluating C++ functions."),
3879 NULL, NULL,
3880 show_overload_resolution,
3881 &setlist, &showlist);
3882 overload_resolution = 1;
3883 }
This page took 0.154991 seconds and 4 git commands to generate.