libiberty/md5: fix strict alias warnings
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "dfp.h"
38 #include "user-regs.h"
39 #include "tracepoint.h"
40 #include <errno.h>
41 #include "gdb_string.h"
42 #include "gdb_assert.h"
43 #include "cp-support.h"
44 #include "observer.h"
45 #include "objfiles.h"
46 #include "symtab.h"
47 #include "exceptions.h"
48
49 extern int overload_debug;
50 /* Local functions. */
51
52 static int typecmp (int staticp, int varargs, int nargs,
53 struct field t1[], struct value *t2[]);
54
55 static struct value *search_struct_field (const char *, struct value *,
56 int, struct type *, int);
57
58 static struct value *search_struct_method (const char *, struct value **,
59 struct value **,
60 int, int *, struct type *);
61
62 static int find_oload_champ_namespace (struct value **, int,
63 const char *, const char *,
64 struct symbol ***,
65 struct badness_vector **,
66 const int no_adl);
67
68 static
69 int find_oload_champ_namespace_loop (struct value **, int,
70 const char *, const char *,
71 int, struct symbol ***,
72 struct badness_vector **, int *,
73 const int no_adl);
74
75 static int find_oload_champ (struct value **, int, int, int,
76 struct fn_field *, struct symbol **,
77 struct badness_vector **);
78
79 static int oload_method_static (int, struct fn_field *, int);
80
81 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
82
83 static enum
84 oload_classification classify_oload_match (struct badness_vector *,
85 int, int);
86
87 static struct value *value_struct_elt_for_reference (struct type *,
88 int, struct type *,
89 char *,
90 struct type *,
91 int, enum noside);
92
93 static struct value *value_namespace_elt (const struct type *,
94 char *, int , enum noside);
95
96 static struct value *value_maybe_namespace_elt (const struct type *,
97 char *, int,
98 enum noside);
99
100 static CORE_ADDR allocate_space_in_inferior (int);
101
102 static struct value *cast_into_complex (struct type *, struct value *);
103
104 static struct fn_field *find_method_list (struct value **, const char *,
105 int, struct type *, int *,
106 struct type **, int *);
107
108 void _initialize_valops (void);
109
110 #if 0
111 /* Flag for whether we want to abandon failed expression evals by
112 default. */
113
114 static int auto_abandon = 0;
115 #endif
116
117 int overload_resolution = 0;
118 static void
119 show_overload_resolution (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c,
121 const char *value)
122 {
123 fprintf_filtered (file, _("Overload resolution in evaluating "
124 "C++ functions is %s.\n"),
125 value);
126 }
127
128 /* Find the address of function name NAME in the inferior. If OBJF_P
129 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
130 is defined. */
131
132 struct value *
133 find_function_in_inferior (const char *name, struct objfile **objf_p)
134 {
135 struct symbol *sym;
136
137 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
138 if (sym != NULL)
139 {
140 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
141 {
142 error (_("\"%s\" exists in this program but is not a function."),
143 name);
144 }
145
146 if (objf_p)
147 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
148
149 return value_of_variable (sym, NULL);
150 }
151 else
152 {
153 struct minimal_symbol *msymbol =
154 lookup_minimal_symbol (name, NULL, NULL);
155
156 if (msymbol != NULL)
157 {
158 struct objfile *objfile = msymbol_objfile (msymbol);
159 struct gdbarch *gdbarch = get_objfile_arch (objfile);
160
161 struct type *type;
162 CORE_ADDR maddr;
163 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
164 type = lookup_function_type (type);
165 type = lookup_pointer_type (type);
166 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
167
168 if (objf_p)
169 *objf_p = objfile;
170
171 return value_from_pointer (type, maddr);
172 }
173 else
174 {
175 if (!target_has_execution)
176 error (_("evaluation of this expression "
177 "requires the target program to be active"));
178 else
179 error (_("evaluation of this expression requires the "
180 "program to have a function \"%s\"."),
181 name);
182 }
183 }
184 }
185
186 /* Allocate NBYTES of space in the inferior using the inferior's
187 malloc and return a value that is a pointer to the allocated
188 space. */
189
190 struct value *
191 value_allocate_space_in_inferior (int len)
192 {
193 struct objfile *objf;
194 struct value *val = find_function_in_inferior ("malloc", &objf);
195 struct gdbarch *gdbarch = get_objfile_arch (objf);
196 struct value *blocklen;
197
198 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
199 val = call_function_by_hand (val, 1, &blocklen);
200 if (value_logical_not (val))
201 {
202 if (!target_has_execution)
203 error (_("No memory available to program now: "
204 "you need to start the target first"));
205 else
206 error (_("No memory available to program: call to malloc failed"));
207 }
208 return val;
209 }
210
211 static CORE_ADDR
212 allocate_space_in_inferior (int len)
213 {
214 return value_as_long (value_allocate_space_in_inferior (len));
215 }
216
217 /* Cast struct value VAL to type TYPE and return as a value.
218 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
219 for this to work. Typedef to one of the codes is permitted.
220 Returns NULL if the cast is neither an upcast nor a downcast. */
221
222 static struct value *
223 value_cast_structs (struct type *type, struct value *v2)
224 {
225 struct type *t1;
226 struct type *t2;
227 struct value *v;
228
229 gdb_assert (type != NULL && v2 != NULL);
230
231 t1 = check_typedef (type);
232 t2 = check_typedef (value_type (v2));
233
234 /* Check preconditions. */
235 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
236 || TYPE_CODE (t1) == TYPE_CODE_UNION)
237 && !!"Precondition is that type is of STRUCT or UNION kind.");
238 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
239 || TYPE_CODE (t2) == TYPE_CODE_UNION)
240 && !!"Precondition is that value is of STRUCT or UNION kind");
241
242 if (TYPE_NAME (t1) != NULL
243 && TYPE_NAME (t2) != NULL
244 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
245 return NULL;
246
247 /* Upcasting: look in the type of the source to see if it contains the
248 type of the target as a superclass. If so, we'll need to
249 offset the pointer rather than just change its type. */
250 if (TYPE_NAME (t1) != NULL)
251 {
252 v = search_struct_field (type_name_no_tag (t1),
253 v2, 0, t2, 1);
254 if (v)
255 return v;
256 }
257
258 /* Downcasting: look in the type of the target to see if it contains the
259 type of the source as a superclass. If so, we'll need to
260 offset the pointer rather than just change its type. */
261 if (TYPE_NAME (t2) != NULL)
262 {
263 /* Try downcasting using the run-time type of the value. */
264 int full, top, using_enc;
265 struct type *real_type;
266
267 real_type = value_rtti_type (v2, &full, &top, &using_enc);
268 if (real_type)
269 {
270 v = value_full_object (v2, real_type, full, top, using_enc);
271 v = value_at_lazy (real_type, value_address (v));
272
273 /* We might be trying to cast to the outermost enclosing
274 type, in which case search_struct_field won't work. */
275 if (TYPE_NAME (real_type) != NULL
276 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
277 return v;
278
279 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
280 if (v)
281 return v;
282 }
283
284 /* Try downcasting using information from the destination type
285 T2. This wouldn't work properly for classes with virtual
286 bases, but those were handled above. */
287 v = search_struct_field (type_name_no_tag (t2),
288 value_zero (t1, not_lval), 0, t1, 1);
289 if (v)
290 {
291 /* Downcasting is possible (t1 is superclass of v2). */
292 CORE_ADDR addr2 = value_address (v2);
293
294 addr2 -= value_address (v) + value_embedded_offset (v);
295 return value_at (type, addr2);
296 }
297 }
298
299 return NULL;
300 }
301
302 /* Cast one pointer or reference type to another. Both TYPE and
303 the type of ARG2 should be pointer types, or else both should be
304 reference types. If SUBCLASS_CHECK is non-zero, this will force a
305 check to see whether TYPE is a superclass of ARG2's type. If
306 SUBCLASS_CHECK is zero, then the subclass check is done only when
307 ARG2 is itself non-zero. Returns the new pointer or reference. */
308
309 struct value *
310 value_cast_pointers (struct type *type, struct value *arg2,
311 int subclass_check)
312 {
313 struct type *type1 = check_typedef (type);
314 struct type *type2 = check_typedef (value_type (arg2));
315 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
316 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
317
318 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
319 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
320 && (subclass_check || !value_logical_not (arg2)))
321 {
322 struct value *v2;
323
324 if (TYPE_CODE (type2) == TYPE_CODE_REF)
325 v2 = coerce_ref (arg2);
326 else
327 v2 = value_ind (arg2);
328 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
329 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
330 v2 = value_cast_structs (t1, v2);
331 /* At this point we have what we can have, un-dereference if needed. */
332 if (v2)
333 {
334 struct value *v = value_addr (v2);
335
336 deprecated_set_value_type (v, type);
337 return v;
338 }
339 }
340
341 /* No superclass found, just change the pointer type. */
342 arg2 = value_copy (arg2);
343 deprecated_set_value_type (arg2, type);
344 set_value_enclosing_type (arg2, type);
345 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
346 return arg2;
347 }
348
349 /* Cast value ARG2 to type TYPE and return as a value.
350 More general than a C cast: accepts any two types of the same length,
351 and if ARG2 is an lvalue it can be cast into anything at all. */
352 /* In C++, casts may change pointer or object representations. */
353
354 struct value *
355 value_cast (struct type *type, struct value *arg2)
356 {
357 enum type_code code1;
358 enum type_code code2;
359 int scalar;
360 struct type *type2;
361
362 int convert_to_boolean = 0;
363
364 if (value_type (arg2) == type)
365 return arg2;
366
367 code1 = TYPE_CODE (check_typedef (type));
368
369 /* Check if we are casting struct reference to struct reference. */
370 if (code1 == TYPE_CODE_REF)
371 {
372 /* We dereference type; then we recurse and finally
373 we generate value of the given reference. Nothing wrong with
374 that. */
375 struct type *t1 = check_typedef (type);
376 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
377 struct value *val = value_cast (dereftype, arg2);
378
379 return value_ref (val);
380 }
381
382 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
383
384 if (code2 == TYPE_CODE_REF)
385 /* We deref the value and then do the cast. */
386 return value_cast (type, coerce_ref (arg2));
387
388 CHECK_TYPEDEF (type);
389 code1 = TYPE_CODE (type);
390 arg2 = coerce_ref (arg2);
391 type2 = check_typedef (value_type (arg2));
392
393 /* You can't cast to a reference type. See value_cast_pointers
394 instead. */
395 gdb_assert (code1 != TYPE_CODE_REF);
396
397 /* A cast to an undetermined-length array_type, such as
398 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
399 where N is sizeof(OBJECT)/sizeof(TYPE). */
400 if (code1 == TYPE_CODE_ARRAY)
401 {
402 struct type *element_type = TYPE_TARGET_TYPE (type);
403 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
404
405 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
406 {
407 struct type *range_type = TYPE_INDEX_TYPE (type);
408 int val_length = TYPE_LENGTH (type2);
409 LONGEST low_bound, high_bound, new_length;
410
411 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
412 low_bound = 0, high_bound = 0;
413 new_length = val_length / element_length;
414 if (val_length % element_length != 0)
415 warning (_("array element type size does not "
416 "divide object size in cast"));
417 /* FIXME-type-allocation: need a way to free this type when
418 we are done with it. */
419 range_type = create_range_type ((struct type *) NULL,
420 TYPE_TARGET_TYPE (range_type),
421 low_bound,
422 new_length + low_bound - 1);
423 deprecated_set_value_type (arg2,
424 create_array_type ((struct type *) NULL,
425 element_type,
426 range_type));
427 return arg2;
428 }
429 }
430
431 if (current_language->c_style_arrays
432 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
433 && !TYPE_VECTOR (type2))
434 arg2 = value_coerce_array (arg2);
435
436 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
437 arg2 = value_coerce_function (arg2);
438
439 type2 = check_typedef (value_type (arg2));
440 code2 = TYPE_CODE (type2);
441
442 if (code1 == TYPE_CODE_COMPLEX)
443 return cast_into_complex (type, arg2);
444 if (code1 == TYPE_CODE_BOOL)
445 {
446 code1 = TYPE_CODE_INT;
447 convert_to_boolean = 1;
448 }
449 if (code1 == TYPE_CODE_CHAR)
450 code1 = TYPE_CODE_INT;
451 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
452 code2 = TYPE_CODE_INT;
453
454 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
455 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
456 || code2 == TYPE_CODE_RANGE);
457
458 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
459 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
460 && TYPE_NAME (type) != 0)
461 {
462 struct value *v = value_cast_structs (type, arg2);
463
464 if (v)
465 return v;
466 }
467
468 if (code1 == TYPE_CODE_FLT && scalar)
469 return value_from_double (type, value_as_double (arg2));
470 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
471 {
472 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
473 int dec_len = TYPE_LENGTH (type);
474 gdb_byte dec[16];
475
476 if (code2 == TYPE_CODE_FLT)
477 decimal_from_floating (arg2, dec, dec_len, byte_order);
478 else if (code2 == TYPE_CODE_DECFLOAT)
479 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
480 byte_order, dec, dec_len, byte_order);
481 else
482 /* The only option left is an integral type. */
483 decimal_from_integral (arg2, dec, dec_len, byte_order);
484
485 return value_from_decfloat (type, dec);
486 }
487 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
488 || code1 == TYPE_CODE_RANGE)
489 && (scalar || code2 == TYPE_CODE_PTR
490 || code2 == TYPE_CODE_MEMBERPTR))
491 {
492 LONGEST longest;
493
494 /* When we cast pointers to integers, we mustn't use
495 gdbarch_pointer_to_address to find the address the pointer
496 represents, as value_as_long would. GDB should evaluate
497 expressions just as the compiler would --- and the compiler
498 sees a cast as a simple reinterpretation of the pointer's
499 bits. */
500 if (code2 == TYPE_CODE_PTR)
501 longest = extract_unsigned_integer
502 (value_contents (arg2), TYPE_LENGTH (type2),
503 gdbarch_byte_order (get_type_arch (type2)));
504 else
505 longest = value_as_long (arg2);
506 return value_from_longest (type, convert_to_boolean ?
507 (LONGEST) (longest ? 1 : 0) : longest);
508 }
509 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
510 || code2 == TYPE_CODE_ENUM
511 || code2 == TYPE_CODE_RANGE))
512 {
513 /* TYPE_LENGTH (type) is the length of a pointer, but we really
514 want the length of an address! -- we are really dealing with
515 addresses (i.e., gdb representations) not pointers (i.e.,
516 target representations) here.
517
518 This allows things like "print *(int *)0x01000234" to work
519 without printing a misleading message -- which would
520 otherwise occur when dealing with a target having two byte
521 pointers and four byte addresses. */
522
523 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
524 LONGEST longest = value_as_long (arg2);
525
526 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
527 {
528 if (longest >= ((LONGEST) 1 << addr_bit)
529 || longest <= -((LONGEST) 1 << addr_bit))
530 warning (_("value truncated"));
531 }
532 return value_from_longest (type, longest);
533 }
534 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
535 && value_as_long (arg2) == 0)
536 {
537 struct value *result = allocate_value (type);
538
539 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
540 return result;
541 }
542 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
543 && value_as_long (arg2) == 0)
544 {
545 /* The Itanium C++ ABI represents NULL pointers to members as
546 minus one, instead of biasing the normal case. */
547 return value_from_longest (type, -1);
548 }
549 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar)
550 {
551 /* Widen the scalar to a vector. */
552 struct type *eltype;
553 struct value *val;
554 LONGEST low_bound, high_bound;
555 int i;
556
557 if (!get_array_bounds (type, &low_bound, &high_bound))
558 error (_("Could not determine the vector bounds"));
559
560 eltype = check_typedef (TYPE_TARGET_TYPE (type));
561 arg2 = value_cast (eltype, arg2);
562 val = allocate_value (type);
563
564 for (i = 0; i < high_bound - low_bound + 1; i++)
565 {
566 /* Duplicate the contents of arg2 into the destination vector. */
567 memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)),
568 value_contents_all (arg2), TYPE_LENGTH (eltype));
569 }
570 return val;
571 }
572 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
573 {
574 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
575 return value_cast_pointers (type, arg2, 0);
576
577 arg2 = value_copy (arg2);
578 deprecated_set_value_type (arg2, type);
579 set_value_enclosing_type (arg2, type);
580 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
581 return arg2;
582 }
583 else if (VALUE_LVAL (arg2) == lval_memory)
584 return value_at_lazy (type, value_address (arg2));
585 else if (code1 == TYPE_CODE_VOID)
586 {
587 return value_zero (type, not_lval);
588 }
589 else
590 {
591 error (_("Invalid cast."));
592 return 0;
593 }
594 }
595
596 /* The C++ reinterpret_cast operator. */
597
598 struct value *
599 value_reinterpret_cast (struct type *type, struct value *arg)
600 {
601 struct value *result;
602 struct type *real_type = check_typedef (type);
603 struct type *arg_type, *dest_type;
604 int is_ref = 0;
605 enum type_code dest_code, arg_code;
606
607 /* Do reference, function, and array conversion. */
608 arg = coerce_array (arg);
609
610 /* Attempt to preserve the type the user asked for. */
611 dest_type = type;
612
613 /* If we are casting to a reference type, transform
614 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
615 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
616 {
617 is_ref = 1;
618 arg = value_addr (arg);
619 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
620 real_type = lookup_pointer_type (real_type);
621 }
622
623 arg_type = value_type (arg);
624
625 dest_code = TYPE_CODE (real_type);
626 arg_code = TYPE_CODE (arg_type);
627
628 /* We can convert pointer types, or any pointer type to int, or int
629 type to pointer. */
630 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
631 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
632 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
633 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
634 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
635 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
636 || (dest_code == arg_code
637 && (dest_code == TYPE_CODE_PTR
638 || dest_code == TYPE_CODE_METHODPTR
639 || dest_code == TYPE_CODE_MEMBERPTR)))
640 result = value_cast (dest_type, arg);
641 else
642 error (_("Invalid reinterpret_cast"));
643
644 if (is_ref)
645 result = value_cast (type, value_ref (value_ind (result)));
646
647 return result;
648 }
649
650 /* A helper for value_dynamic_cast. This implements the first of two
651 runtime checks: we iterate over all the base classes of the value's
652 class which are equal to the desired class; if only one of these
653 holds the value, then it is the answer. */
654
655 static int
656 dynamic_cast_check_1 (struct type *desired_type,
657 const gdb_byte *valaddr,
658 int embedded_offset,
659 CORE_ADDR address,
660 struct value *val,
661 struct type *search_type,
662 CORE_ADDR arg_addr,
663 struct type *arg_type,
664 struct value **result)
665 {
666 int i, result_count = 0;
667
668 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
669 {
670 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
671 address, val);
672
673 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
674 {
675 if (address + embedded_offset + offset >= arg_addr
676 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
677 {
678 ++result_count;
679 if (!*result)
680 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
681 address + embedded_offset + offset);
682 }
683 }
684 else
685 result_count += dynamic_cast_check_1 (desired_type,
686 valaddr,
687 embedded_offset + offset,
688 address, val,
689 TYPE_BASECLASS (search_type, i),
690 arg_addr,
691 arg_type,
692 result);
693 }
694
695 return result_count;
696 }
697
698 /* A helper for value_dynamic_cast. This implements the second of two
699 runtime checks: we look for a unique public sibling class of the
700 argument's declared class. */
701
702 static int
703 dynamic_cast_check_2 (struct type *desired_type,
704 const gdb_byte *valaddr,
705 int embedded_offset,
706 CORE_ADDR address,
707 struct value *val,
708 struct type *search_type,
709 struct value **result)
710 {
711 int i, result_count = 0;
712
713 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
714 {
715 int offset;
716
717 if (! BASETYPE_VIA_PUBLIC (search_type, i))
718 continue;
719
720 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
721 address, val);
722 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
723 {
724 ++result_count;
725 if (*result == NULL)
726 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
727 address + embedded_offset + offset);
728 }
729 else
730 result_count += dynamic_cast_check_2 (desired_type,
731 valaddr,
732 embedded_offset + offset,
733 address, val,
734 TYPE_BASECLASS (search_type, i),
735 result);
736 }
737
738 return result_count;
739 }
740
741 /* The C++ dynamic_cast operator. */
742
743 struct value *
744 value_dynamic_cast (struct type *type, struct value *arg)
745 {
746 int full, top, using_enc;
747 struct type *resolved_type = check_typedef (type);
748 struct type *arg_type = check_typedef (value_type (arg));
749 struct type *class_type, *rtti_type;
750 struct value *result, *tem, *original_arg = arg;
751 CORE_ADDR addr;
752 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
753
754 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
755 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
756 error (_("Argument to dynamic_cast must be a pointer or reference type"));
757 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
758 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
759 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
760
761 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
762 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
763 {
764 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
765 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
766 && value_as_long (arg) == 0))
767 error (_("Argument to dynamic_cast does not have pointer type"));
768 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
769 {
770 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
771 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
772 error (_("Argument to dynamic_cast does "
773 "not have pointer to class type"));
774 }
775
776 /* Handle NULL pointers. */
777 if (value_as_long (arg) == 0)
778 return value_zero (type, not_lval);
779
780 arg = value_ind (arg);
781 }
782 else
783 {
784 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
785 error (_("Argument to dynamic_cast does not have class type"));
786 }
787
788 /* If the classes are the same, just return the argument. */
789 if (class_types_same_p (class_type, arg_type))
790 return value_cast (type, arg);
791
792 /* If the target type is a unique base class of the argument's
793 declared type, just cast it. */
794 if (is_ancestor (class_type, arg_type))
795 {
796 if (is_unique_ancestor (class_type, arg))
797 return value_cast (type, original_arg);
798 error (_("Ambiguous dynamic_cast"));
799 }
800
801 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
802 if (! rtti_type)
803 error (_("Couldn't determine value's most derived type for dynamic_cast"));
804
805 /* Compute the most derived object's address. */
806 addr = value_address (arg);
807 if (full)
808 {
809 /* Done. */
810 }
811 else if (using_enc)
812 addr += top;
813 else
814 addr += top + value_embedded_offset (arg);
815
816 /* dynamic_cast<void *> means to return a pointer to the
817 most-derived object. */
818 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
819 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
820 return value_at_lazy (type, addr);
821
822 tem = value_at (type, addr);
823
824 /* The first dynamic check specified in 5.2.7. */
825 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
826 {
827 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
828 return tem;
829 result = NULL;
830 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
831 value_contents_for_printing (tem),
832 value_embedded_offset (tem),
833 value_address (tem), tem,
834 rtti_type, addr,
835 arg_type,
836 &result) == 1)
837 return value_cast (type,
838 is_ref ? value_ref (result) : value_addr (result));
839 }
840
841 /* The second dynamic check specified in 5.2.7. */
842 result = NULL;
843 if (is_public_ancestor (arg_type, rtti_type)
844 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
845 value_contents_for_printing (tem),
846 value_embedded_offset (tem),
847 value_address (tem), tem,
848 rtti_type, &result) == 1)
849 return value_cast (type,
850 is_ref ? value_ref (result) : value_addr (result));
851
852 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
853 return value_zero (type, not_lval);
854
855 error (_("dynamic_cast failed"));
856 }
857
858 /* Create a value of type TYPE that is zero, and return it. */
859
860 struct value *
861 value_zero (struct type *type, enum lval_type lv)
862 {
863 struct value *val = allocate_value (type);
864
865 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
866 return val;
867 }
868
869 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
870
871 struct value *
872 value_one (struct type *type)
873 {
874 struct type *type1 = check_typedef (type);
875 struct value *val;
876
877 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
878 {
879 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
880 gdb_byte v[16];
881
882 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
883 val = value_from_decfloat (type, v);
884 }
885 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
886 {
887 val = value_from_double (type, (DOUBLEST) 1);
888 }
889 else if (is_integral_type (type1))
890 {
891 val = value_from_longest (type, (LONGEST) 1);
892 }
893 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
894 {
895 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
896 int i;
897 LONGEST low_bound, high_bound;
898 struct value *tmp;
899
900 if (!get_array_bounds (type1, &low_bound, &high_bound))
901 error (_("Could not determine the vector bounds"));
902
903 val = allocate_value (type);
904 for (i = 0; i < high_bound - low_bound + 1; i++)
905 {
906 tmp = value_one (eltype);
907 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
908 value_contents_all (tmp), TYPE_LENGTH (eltype));
909 }
910 }
911 else
912 {
913 error (_("Not a numeric type."));
914 }
915
916 /* value_one result is never used for assignments to. */
917 gdb_assert (VALUE_LVAL (val) == not_lval);
918
919 return val;
920 }
921
922 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
923
924 static struct value *
925 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
926 {
927 struct value *val;
928
929 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
930 error (_("Attempt to dereference a generic pointer."));
931
932 val = value_from_contents_and_address (type, NULL, addr);
933
934 if (!lazy)
935 value_fetch_lazy (val);
936
937 return val;
938 }
939
940 /* Return a value with type TYPE located at ADDR.
941
942 Call value_at only if the data needs to be fetched immediately;
943 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
944 value_at_lazy instead. value_at_lazy simply records the address of
945 the data and sets the lazy-evaluation-required flag. The lazy flag
946 is tested in the value_contents macro, which is used if and when
947 the contents are actually required.
948
949 Note: value_at does *NOT* handle embedded offsets; perform such
950 adjustments before or after calling it. */
951
952 struct value *
953 value_at (struct type *type, CORE_ADDR addr)
954 {
955 return get_value_at (type, addr, 0);
956 }
957
958 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
959
960 struct value *
961 value_at_lazy (struct type *type, CORE_ADDR addr)
962 {
963 return get_value_at (type, addr, 1);
964 }
965
966 /* Called only from the value_contents and value_contents_all()
967 macros, if the current data for a variable needs to be loaded into
968 value_contents(VAL). Fetches the data from the user's process, and
969 clears the lazy flag to indicate that the data in the buffer is
970 valid.
971
972 If the value is zero-length, we avoid calling read_memory, which
973 would abort. We mark the value as fetched anyway -- all 0 bytes of
974 it.
975
976 This function returns a value because it is used in the
977 value_contents macro as part of an expression, where a void would
978 not work. The value is ignored. */
979
980 int
981 value_fetch_lazy (struct value *val)
982 {
983 gdb_assert (value_lazy (val));
984 allocate_value_contents (val);
985 if (value_bitsize (val))
986 {
987 /* To read a lazy bitfield, read the entire enclosing value. This
988 prevents reading the same block of (possibly volatile) memory once
989 per bitfield. It would be even better to read only the containing
990 word, but we have no way to record that just specific bits of a
991 value have been fetched. */
992 struct type *type = check_typedef (value_type (val));
993 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
994 struct value *parent = value_parent (val);
995 LONGEST offset = value_offset (val);
996 LONGEST num;
997 int length = TYPE_LENGTH (type);
998
999 if (!value_bits_valid (val,
1000 TARGET_CHAR_BIT * offset + value_bitpos (val),
1001 value_bitsize (val)))
1002 error (_("value has been optimized out"));
1003
1004 if (!unpack_value_bits_as_long (value_type (val),
1005 value_contents_for_printing (parent),
1006 offset,
1007 value_bitpos (val),
1008 value_bitsize (val), parent, &num))
1009 mark_value_bytes_unavailable (val,
1010 value_embedded_offset (val),
1011 length);
1012 else
1013 store_signed_integer (value_contents_raw (val), length,
1014 byte_order, num);
1015 }
1016 else if (VALUE_LVAL (val) == lval_memory)
1017 {
1018 CORE_ADDR addr = value_address (val);
1019 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
1020
1021 if (length)
1022 read_value_memory (val, 0, value_stack (val),
1023 addr, value_contents_all_raw (val), length);
1024 }
1025 else if (VALUE_LVAL (val) == lval_register)
1026 {
1027 struct frame_info *frame;
1028 int regnum;
1029 struct type *type = check_typedef (value_type (val));
1030 struct value *new_val = val, *mark = value_mark ();
1031
1032 /* Offsets are not supported here; lazy register values must
1033 refer to the entire register. */
1034 gdb_assert (value_offset (val) == 0);
1035
1036 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
1037 {
1038 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
1039 regnum = VALUE_REGNUM (new_val);
1040
1041 gdb_assert (frame != NULL);
1042
1043 /* Convertible register routines are used for multi-register
1044 values and for interpretation in different types
1045 (e.g. float or int from a double register). Lazy
1046 register values should have the register's natural type,
1047 so they do not apply. */
1048 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
1049 regnum, type));
1050
1051 new_val = get_frame_register_value (frame, regnum);
1052 }
1053
1054 /* If it's still lazy (for instance, a saved register on the
1055 stack), fetch it. */
1056 if (value_lazy (new_val))
1057 value_fetch_lazy (new_val);
1058
1059 /* If the register was not saved, mark it optimized out. */
1060 if (value_optimized_out (new_val))
1061 set_value_optimized_out (val, 1);
1062 else
1063 {
1064 set_value_lazy (val, 0);
1065 value_contents_copy (val, value_embedded_offset (val),
1066 new_val, value_embedded_offset (new_val),
1067 TYPE_LENGTH (type));
1068 }
1069
1070 if (frame_debug)
1071 {
1072 struct gdbarch *gdbarch;
1073 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1074 regnum = VALUE_REGNUM (val);
1075 gdbarch = get_frame_arch (frame);
1076
1077 fprintf_unfiltered (gdb_stdlog,
1078 "{ value_fetch_lazy "
1079 "(frame=%d,regnum=%d(%s),...) ",
1080 frame_relative_level (frame), regnum,
1081 user_reg_map_regnum_to_name (gdbarch, regnum));
1082
1083 fprintf_unfiltered (gdb_stdlog, "->");
1084 if (value_optimized_out (new_val))
1085 fprintf_unfiltered (gdb_stdlog, " optimized out");
1086 else
1087 {
1088 int i;
1089 const gdb_byte *buf = value_contents (new_val);
1090
1091 if (VALUE_LVAL (new_val) == lval_register)
1092 fprintf_unfiltered (gdb_stdlog, " register=%d",
1093 VALUE_REGNUM (new_val));
1094 else if (VALUE_LVAL (new_val) == lval_memory)
1095 fprintf_unfiltered (gdb_stdlog, " address=%s",
1096 paddress (gdbarch,
1097 value_address (new_val)));
1098 else
1099 fprintf_unfiltered (gdb_stdlog, " computed");
1100
1101 fprintf_unfiltered (gdb_stdlog, " bytes=");
1102 fprintf_unfiltered (gdb_stdlog, "[");
1103 for (i = 0; i < register_size (gdbarch, regnum); i++)
1104 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1105 fprintf_unfiltered (gdb_stdlog, "]");
1106 }
1107
1108 fprintf_unfiltered (gdb_stdlog, " }\n");
1109 }
1110
1111 /* Dispose of the intermediate values. This prevents
1112 watchpoints from trying to watch the saved frame pointer. */
1113 value_free_to_mark (mark);
1114 }
1115 else if (VALUE_LVAL (val) == lval_computed
1116 && value_computed_funcs (val)->read != NULL)
1117 value_computed_funcs (val)->read (val);
1118 else if (value_optimized_out (val))
1119 /* Keep it optimized out. */;
1120 else
1121 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
1122
1123 set_value_lazy (val, 0);
1124 return 0;
1125 }
1126
1127 void
1128 read_value_memory (struct value *val, int embedded_offset,
1129 int stack, CORE_ADDR memaddr,
1130 gdb_byte *buffer, size_t length)
1131 {
1132 if (length)
1133 {
1134 VEC(mem_range_s) *available_memory;
1135
1136 if (get_traceframe_number () < 0
1137 || !traceframe_available_memory (&available_memory, memaddr, length))
1138 {
1139 if (stack)
1140 read_stack (memaddr, buffer, length);
1141 else
1142 read_memory (memaddr, buffer, length);
1143 }
1144 else
1145 {
1146 struct target_section_table *table;
1147 struct cleanup *old_chain;
1148 CORE_ADDR unavail;
1149 mem_range_s *r;
1150 int i;
1151
1152 /* Fallback to reading from read-only sections. */
1153 table = target_get_section_table (&exec_ops);
1154 available_memory =
1155 section_table_available_memory (available_memory,
1156 memaddr, length,
1157 table->sections,
1158 table->sections_end);
1159
1160 old_chain = make_cleanup (VEC_cleanup(mem_range_s),
1161 &available_memory);
1162
1163 normalize_mem_ranges (available_memory);
1164
1165 /* Mark which bytes are unavailable, and read those which
1166 are available. */
1167
1168 unavail = memaddr;
1169
1170 for (i = 0;
1171 VEC_iterate (mem_range_s, available_memory, i, r);
1172 i++)
1173 {
1174 if (mem_ranges_overlap (r->start, r->length,
1175 memaddr, length))
1176 {
1177 CORE_ADDR lo1, hi1, lo2, hi2;
1178 CORE_ADDR start, end;
1179
1180 /* Get the intersection window. */
1181 lo1 = memaddr;
1182 hi1 = memaddr + length;
1183 lo2 = r->start;
1184 hi2 = r->start + r->length;
1185 start = max (lo1, lo2);
1186 end = min (hi1, hi2);
1187
1188 gdb_assert (end - memaddr <= length);
1189
1190 if (start > unavail)
1191 mark_value_bytes_unavailable (val,
1192 (embedded_offset
1193 + unavail - memaddr),
1194 start - unavail);
1195 unavail = end;
1196
1197 read_memory (start, buffer + start - memaddr, end - start);
1198 }
1199 }
1200
1201 if (unavail != memaddr + length)
1202 mark_value_bytes_unavailable (val,
1203 embedded_offset + unavail - memaddr,
1204 (memaddr + length) - unavail);
1205
1206 do_cleanups (old_chain);
1207 }
1208 }
1209 }
1210
1211 /* Store the contents of FROMVAL into the location of TOVAL.
1212 Return a new value with the location of TOVAL and contents of FROMVAL. */
1213
1214 struct value *
1215 value_assign (struct value *toval, struct value *fromval)
1216 {
1217 struct type *type;
1218 struct value *val;
1219 struct frame_id old_frame;
1220
1221 if (!deprecated_value_modifiable (toval))
1222 error (_("Left operand of assignment is not a modifiable lvalue."));
1223
1224 toval = coerce_ref (toval);
1225
1226 type = value_type (toval);
1227 if (VALUE_LVAL (toval) != lval_internalvar)
1228 fromval = value_cast (type, fromval);
1229 else
1230 {
1231 /* Coerce arrays and functions to pointers, except for arrays
1232 which only live in GDB's storage. */
1233 if (!value_must_coerce_to_target (fromval))
1234 fromval = coerce_array (fromval);
1235 }
1236
1237 CHECK_TYPEDEF (type);
1238
1239 /* Since modifying a register can trash the frame chain, and
1240 modifying memory can trash the frame cache, we save the old frame
1241 and then restore the new frame afterwards. */
1242 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1243
1244 switch (VALUE_LVAL (toval))
1245 {
1246 case lval_internalvar:
1247 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1248 return value_of_internalvar (get_type_arch (type),
1249 VALUE_INTERNALVAR (toval));
1250
1251 case lval_internalvar_component:
1252 set_internalvar_component (VALUE_INTERNALVAR (toval),
1253 value_offset (toval),
1254 value_bitpos (toval),
1255 value_bitsize (toval),
1256 fromval);
1257 break;
1258
1259 case lval_memory:
1260 {
1261 const gdb_byte *dest_buffer;
1262 CORE_ADDR changed_addr;
1263 int changed_len;
1264 gdb_byte buffer[sizeof (LONGEST)];
1265
1266 if (value_bitsize (toval))
1267 {
1268 struct value *parent = value_parent (toval);
1269
1270 changed_addr = value_address (parent) + value_offset (toval);
1271 changed_len = (value_bitpos (toval)
1272 + value_bitsize (toval)
1273 + HOST_CHAR_BIT - 1)
1274 / HOST_CHAR_BIT;
1275
1276 /* If we can read-modify-write exactly the size of the
1277 containing type (e.g. short or int) then do so. This
1278 is safer for volatile bitfields mapped to hardware
1279 registers. */
1280 if (changed_len < TYPE_LENGTH (type)
1281 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1282 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1283 changed_len = TYPE_LENGTH (type);
1284
1285 if (changed_len > (int) sizeof (LONGEST))
1286 error (_("Can't handle bitfields which "
1287 "don't fit in a %d bit word."),
1288 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1289
1290 read_memory (changed_addr, buffer, changed_len);
1291 modify_field (type, buffer, value_as_long (fromval),
1292 value_bitpos (toval), value_bitsize (toval));
1293 dest_buffer = buffer;
1294 }
1295 else
1296 {
1297 changed_addr = value_address (toval);
1298 changed_len = TYPE_LENGTH (type);
1299 dest_buffer = value_contents (fromval);
1300 }
1301
1302 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1303 }
1304 break;
1305
1306 case lval_register:
1307 {
1308 struct frame_info *frame;
1309 struct gdbarch *gdbarch;
1310 int value_reg;
1311
1312 /* Figure out which frame this is in currently. */
1313 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1314 value_reg = VALUE_REGNUM (toval);
1315
1316 if (!frame)
1317 error (_("Value being assigned to is no longer active."));
1318
1319 gdbarch = get_frame_arch (frame);
1320 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1321 {
1322 /* If TOVAL is a special machine register requiring
1323 conversion of program values to a special raw
1324 format. */
1325 gdbarch_value_to_register (gdbarch, frame,
1326 VALUE_REGNUM (toval), type,
1327 value_contents (fromval));
1328 }
1329 else
1330 {
1331 if (value_bitsize (toval))
1332 {
1333 struct value *parent = value_parent (toval);
1334 int offset = value_offset (parent) + value_offset (toval);
1335 int changed_len;
1336 gdb_byte buffer[sizeof (LONGEST)];
1337 int optim, unavail;
1338
1339 changed_len = (value_bitpos (toval)
1340 + value_bitsize (toval)
1341 + HOST_CHAR_BIT - 1)
1342 / HOST_CHAR_BIT;
1343
1344 if (changed_len > (int) sizeof (LONGEST))
1345 error (_("Can't handle bitfields which "
1346 "don't fit in a %d bit word."),
1347 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1348
1349 if (!get_frame_register_bytes (frame, value_reg, offset,
1350 changed_len, buffer,
1351 &optim, &unavail))
1352 {
1353 if (optim)
1354 error (_("value has been optimized out"));
1355 if (unavail)
1356 throw_error (NOT_AVAILABLE_ERROR,
1357 _("value is not available"));
1358 }
1359
1360 modify_field (type, buffer, value_as_long (fromval),
1361 value_bitpos (toval), value_bitsize (toval));
1362
1363 put_frame_register_bytes (frame, value_reg, offset,
1364 changed_len, buffer);
1365 }
1366 else
1367 {
1368 put_frame_register_bytes (frame, value_reg,
1369 value_offset (toval),
1370 TYPE_LENGTH (type),
1371 value_contents (fromval));
1372 }
1373 }
1374
1375 if (deprecated_register_changed_hook)
1376 deprecated_register_changed_hook (-1);
1377 observer_notify_target_changed (&current_target);
1378 break;
1379 }
1380
1381 case lval_computed:
1382 {
1383 const struct lval_funcs *funcs = value_computed_funcs (toval);
1384
1385 if (funcs->write != NULL)
1386 {
1387 funcs->write (toval, fromval);
1388 break;
1389 }
1390 }
1391 /* Fall through. */
1392
1393 default:
1394 error (_("Left operand of assignment is not an lvalue."));
1395 }
1396
1397 /* Assigning to the stack pointer, frame pointer, and other
1398 (architecture and calling convention specific) registers may
1399 cause the frame cache to be out of date. Assigning to memory
1400 also can. We just do this on all assignments to registers or
1401 memory, for simplicity's sake; I doubt the slowdown matters. */
1402 switch (VALUE_LVAL (toval))
1403 {
1404 case lval_memory:
1405 case lval_register:
1406 case lval_computed:
1407
1408 reinit_frame_cache ();
1409
1410 /* Having destroyed the frame cache, restore the selected
1411 frame. */
1412
1413 /* FIXME: cagney/2002-11-02: There has to be a better way of
1414 doing this. Instead of constantly saving/restoring the
1415 frame. Why not create a get_selected_frame() function that,
1416 having saved the selected frame's ID can automatically
1417 re-find the previously selected frame automatically. */
1418
1419 {
1420 struct frame_info *fi = frame_find_by_id (old_frame);
1421
1422 if (fi != NULL)
1423 select_frame (fi);
1424 }
1425
1426 break;
1427 default:
1428 break;
1429 }
1430
1431 /* If the field does not entirely fill a LONGEST, then zero the sign
1432 bits. If the field is signed, and is negative, then sign
1433 extend. */
1434 if ((value_bitsize (toval) > 0)
1435 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1436 {
1437 LONGEST fieldval = value_as_long (fromval);
1438 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1439
1440 fieldval &= valmask;
1441 if (!TYPE_UNSIGNED (type)
1442 && (fieldval & (valmask ^ (valmask >> 1))))
1443 fieldval |= ~valmask;
1444
1445 fromval = value_from_longest (type, fieldval);
1446 }
1447
1448 /* The return value is a copy of TOVAL so it shares its location
1449 information, but its contents are updated from FROMVAL. This
1450 implies the returned value is not lazy, even if TOVAL was. */
1451 val = value_copy (toval);
1452 set_value_lazy (val, 0);
1453 memcpy (value_contents_raw (val), value_contents (fromval),
1454 TYPE_LENGTH (type));
1455
1456 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1457 in the case of pointer types. For object types, the enclosing type
1458 and embedded offset must *not* be copied: the target object refered
1459 to by TOVAL retains its original dynamic type after assignment. */
1460 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1461 {
1462 set_value_enclosing_type (val, value_enclosing_type (fromval));
1463 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1464 }
1465
1466 return val;
1467 }
1468
1469 /* Extend a value VAL to COUNT repetitions of its type. */
1470
1471 struct value *
1472 value_repeat (struct value *arg1, int count)
1473 {
1474 struct value *val;
1475
1476 if (VALUE_LVAL (arg1) != lval_memory)
1477 error (_("Only values in memory can be extended with '@'."));
1478 if (count < 1)
1479 error (_("Invalid number %d of repetitions."), count);
1480
1481 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1482
1483 VALUE_LVAL (val) = lval_memory;
1484 set_value_address (val, value_address (arg1));
1485
1486 read_value_memory (val, 0, value_stack (val), value_address (val),
1487 value_contents_all_raw (val),
1488 TYPE_LENGTH (value_enclosing_type (val)));
1489
1490 return val;
1491 }
1492
1493 struct value *
1494 value_of_variable (struct symbol *var, const struct block *b)
1495 {
1496 struct frame_info *frame;
1497
1498 if (!symbol_read_needs_frame (var))
1499 frame = NULL;
1500 else if (!b)
1501 frame = get_selected_frame (_("No frame selected."));
1502 else
1503 {
1504 frame = block_innermost_frame (b);
1505 if (!frame)
1506 {
1507 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1508 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1509 error (_("No frame is currently executing in block %s."),
1510 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1511 else
1512 error (_("No frame is currently executing in specified block"));
1513 }
1514 }
1515
1516 return read_var_value (var, frame);
1517 }
1518
1519 struct value *
1520 address_of_variable (struct symbol *var, struct block *b)
1521 {
1522 struct type *type = SYMBOL_TYPE (var);
1523 struct value *val;
1524
1525 /* Evaluate it first; if the result is a memory address, we're fine.
1526 Lazy evaluation pays off here. */
1527
1528 val = value_of_variable (var, b);
1529
1530 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1531 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1532 {
1533 CORE_ADDR addr = value_address (val);
1534
1535 return value_from_pointer (lookup_pointer_type (type), addr);
1536 }
1537
1538 /* Not a memory address; check what the problem was. */
1539 switch (VALUE_LVAL (val))
1540 {
1541 case lval_register:
1542 {
1543 struct frame_info *frame;
1544 const char *regname;
1545
1546 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1547 gdb_assert (frame);
1548
1549 regname = gdbarch_register_name (get_frame_arch (frame),
1550 VALUE_REGNUM (val));
1551 gdb_assert (regname && *regname);
1552
1553 error (_("Address requested for identifier "
1554 "\"%s\" which is in register $%s"),
1555 SYMBOL_PRINT_NAME (var), regname);
1556 break;
1557 }
1558
1559 default:
1560 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1561 SYMBOL_PRINT_NAME (var));
1562 break;
1563 }
1564
1565 return val;
1566 }
1567
1568 /* Return one if VAL does not live in target memory, but should in order
1569 to operate on it. Otherwise return zero. */
1570
1571 int
1572 value_must_coerce_to_target (struct value *val)
1573 {
1574 struct type *valtype;
1575
1576 /* The only lval kinds which do not live in target memory. */
1577 if (VALUE_LVAL (val) != not_lval
1578 && VALUE_LVAL (val) != lval_internalvar)
1579 return 0;
1580
1581 valtype = check_typedef (value_type (val));
1582
1583 switch (TYPE_CODE (valtype))
1584 {
1585 case TYPE_CODE_ARRAY:
1586 return TYPE_VECTOR (valtype) ? 0 : 1;
1587 case TYPE_CODE_STRING:
1588 return 1;
1589 default:
1590 return 0;
1591 }
1592 }
1593
1594 /* Make sure that VAL lives in target memory if it's supposed to. For
1595 instance, strings are constructed as character arrays in GDB's
1596 storage, and this function copies them to the target. */
1597
1598 struct value *
1599 value_coerce_to_target (struct value *val)
1600 {
1601 LONGEST length;
1602 CORE_ADDR addr;
1603
1604 if (!value_must_coerce_to_target (val))
1605 return val;
1606
1607 length = TYPE_LENGTH (check_typedef (value_type (val)));
1608 addr = allocate_space_in_inferior (length);
1609 write_memory (addr, value_contents (val), length);
1610 return value_at_lazy (value_type (val), addr);
1611 }
1612
1613 /* Given a value which is an array, return a value which is a pointer
1614 to its first element, regardless of whether or not the array has a
1615 nonzero lower bound.
1616
1617 FIXME: A previous comment here indicated that this routine should
1618 be substracting the array's lower bound. It's not clear to me that
1619 this is correct. Given an array subscripting operation, it would
1620 certainly work to do the adjustment here, essentially computing:
1621
1622 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1623
1624 However I believe a more appropriate and logical place to account
1625 for the lower bound is to do so in value_subscript, essentially
1626 computing:
1627
1628 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1629
1630 As further evidence consider what would happen with operations
1631 other than array subscripting, where the caller would get back a
1632 value that had an address somewhere before the actual first element
1633 of the array, and the information about the lower bound would be
1634 lost because of the coercion to pointer type. */
1635
1636 struct value *
1637 value_coerce_array (struct value *arg1)
1638 {
1639 struct type *type = check_typedef (value_type (arg1));
1640
1641 /* If the user tries to do something requiring a pointer with an
1642 array that has not yet been pushed to the target, then this would
1643 be a good time to do so. */
1644 arg1 = value_coerce_to_target (arg1);
1645
1646 if (VALUE_LVAL (arg1) != lval_memory)
1647 error (_("Attempt to take address of value not located in memory."));
1648
1649 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1650 value_address (arg1));
1651 }
1652
1653 /* Given a value which is a function, return a value which is a pointer
1654 to it. */
1655
1656 struct value *
1657 value_coerce_function (struct value *arg1)
1658 {
1659 struct value *retval;
1660
1661 if (VALUE_LVAL (arg1) != lval_memory)
1662 error (_("Attempt to take address of value not located in memory."));
1663
1664 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1665 value_address (arg1));
1666 return retval;
1667 }
1668
1669 /* Return a pointer value for the object for which ARG1 is the
1670 contents. */
1671
1672 struct value *
1673 value_addr (struct value *arg1)
1674 {
1675 struct value *arg2;
1676 struct type *type = check_typedef (value_type (arg1));
1677
1678 if (TYPE_CODE (type) == TYPE_CODE_REF)
1679 {
1680 /* Copy the value, but change the type from (T&) to (T*). We
1681 keep the same location information, which is efficient, and
1682 allows &(&X) to get the location containing the reference. */
1683 arg2 = value_copy (arg1);
1684 deprecated_set_value_type (arg2,
1685 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1686 return arg2;
1687 }
1688 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1689 return value_coerce_function (arg1);
1690
1691 /* If this is an array that has not yet been pushed to the target,
1692 then this would be a good time to force it to memory. */
1693 arg1 = value_coerce_to_target (arg1);
1694
1695 if (VALUE_LVAL (arg1) != lval_memory)
1696 error (_("Attempt to take address of value not located in memory."));
1697
1698 /* Get target memory address. */
1699 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1700 (value_address (arg1)
1701 + value_embedded_offset (arg1)));
1702
1703 /* This may be a pointer to a base subobject; so remember the
1704 full derived object's type ... */
1705 set_value_enclosing_type (arg2,
1706 lookup_pointer_type (value_enclosing_type (arg1)));
1707 /* ... and also the relative position of the subobject in the full
1708 object. */
1709 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1710 return arg2;
1711 }
1712
1713 /* Return a reference value for the object for which ARG1 is the
1714 contents. */
1715
1716 struct value *
1717 value_ref (struct value *arg1)
1718 {
1719 struct value *arg2;
1720 struct type *type = check_typedef (value_type (arg1));
1721
1722 if (TYPE_CODE (type) == TYPE_CODE_REF)
1723 return arg1;
1724
1725 arg2 = value_addr (arg1);
1726 deprecated_set_value_type (arg2, lookup_reference_type (type));
1727 return arg2;
1728 }
1729
1730 /* Given a value of a pointer type, apply the C unary * operator to
1731 it. */
1732
1733 struct value *
1734 value_ind (struct value *arg1)
1735 {
1736 struct type *base_type;
1737 struct value *arg2;
1738
1739 arg1 = coerce_array (arg1);
1740
1741 base_type = check_typedef (value_type (arg1));
1742
1743 if (VALUE_LVAL (arg1) == lval_computed)
1744 {
1745 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1746
1747 if (funcs->indirect)
1748 {
1749 struct value *result = funcs->indirect (arg1);
1750
1751 if (result)
1752 return result;
1753 }
1754 }
1755
1756 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1757 {
1758 struct type *enc_type;
1759
1760 /* We may be pointing to something embedded in a larger object.
1761 Get the real type of the enclosing object. */
1762 enc_type = check_typedef (value_enclosing_type (arg1));
1763 enc_type = TYPE_TARGET_TYPE (enc_type);
1764
1765 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1766 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1767 /* For functions, go through find_function_addr, which knows
1768 how to handle function descriptors. */
1769 arg2 = value_at_lazy (enc_type,
1770 find_function_addr (arg1, NULL));
1771 else
1772 /* Retrieve the enclosing object pointed to. */
1773 arg2 = value_at_lazy (enc_type,
1774 (value_as_address (arg1)
1775 - value_pointed_to_offset (arg1)));
1776
1777 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1778 }
1779
1780 error (_("Attempt to take contents of a non-pointer value."));
1781 return 0; /* For lint -- never reached. */
1782 }
1783 \f
1784 /* Create a value for an array by allocating space in GDB, copying the
1785 data into that space, and then setting up an array value.
1786
1787 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1788 is populated from the values passed in ELEMVEC.
1789
1790 The element type of the array is inherited from the type of the
1791 first element, and all elements must have the same size (though we
1792 don't currently enforce any restriction on their types). */
1793
1794 struct value *
1795 value_array (int lowbound, int highbound, struct value **elemvec)
1796 {
1797 int nelem;
1798 int idx;
1799 unsigned int typelength;
1800 struct value *val;
1801 struct type *arraytype;
1802
1803 /* Validate that the bounds are reasonable and that each of the
1804 elements have the same size. */
1805
1806 nelem = highbound - lowbound + 1;
1807 if (nelem <= 0)
1808 {
1809 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1810 }
1811 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1812 for (idx = 1; idx < nelem; idx++)
1813 {
1814 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1815 {
1816 error (_("array elements must all be the same size"));
1817 }
1818 }
1819
1820 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1821 lowbound, highbound);
1822
1823 if (!current_language->c_style_arrays)
1824 {
1825 val = allocate_value (arraytype);
1826 for (idx = 0; idx < nelem; idx++)
1827 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1828 typelength);
1829 return val;
1830 }
1831
1832 /* Allocate space to store the array, and then initialize it by
1833 copying in each element. */
1834
1835 val = allocate_value (arraytype);
1836 for (idx = 0; idx < nelem; idx++)
1837 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1838 return val;
1839 }
1840
1841 struct value *
1842 value_cstring (char *ptr, int len, struct type *char_type)
1843 {
1844 struct value *val;
1845 int lowbound = current_language->string_lower_bound;
1846 int highbound = len / TYPE_LENGTH (char_type);
1847 struct type *stringtype
1848 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1849
1850 val = allocate_value (stringtype);
1851 memcpy (value_contents_raw (val), ptr, len);
1852 return val;
1853 }
1854
1855 /* Create a value for a string constant by allocating space in the
1856 inferior, copying the data into that space, and returning the
1857 address with type TYPE_CODE_STRING. PTR points to the string
1858 constant data; LEN is number of characters.
1859
1860 Note that string types are like array of char types with a lower
1861 bound of zero and an upper bound of LEN - 1. Also note that the
1862 string may contain embedded null bytes. */
1863
1864 struct value *
1865 value_string (char *ptr, int len, struct type *char_type)
1866 {
1867 struct value *val;
1868 int lowbound = current_language->string_lower_bound;
1869 int highbound = len / TYPE_LENGTH (char_type);
1870 struct type *stringtype
1871 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1872
1873 val = allocate_value (stringtype);
1874 memcpy (value_contents_raw (val), ptr, len);
1875 return val;
1876 }
1877
1878 struct value *
1879 value_bitstring (char *ptr, int len, struct type *index_type)
1880 {
1881 struct value *val;
1882 struct type *domain_type
1883 = create_range_type (NULL, index_type, 0, len - 1);
1884 struct type *type = create_set_type (NULL, domain_type);
1885
1886 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1887 val = allocate_value (type);
1888 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1889 return val;
1890 }
1891 \f
1892 /* See if we can pass arguments in T2 to a function which takes
1893 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1894 a NULL-terminated vector. If some arguments need coercion of some
1895 sort, then the coerced values are written into T2. Return value is
1896 0 if the arguments could be matched, or the position at which they
1897 differ if not.
1898
1899 STATICP is nonzero if the T1 argument list came from a static
1900 member function. T2 will still include the ``this'' pointer, but
1901 it will be skipped.
1902
1903 For non-static member functions, we ignore the first argument,
1904 which is the type of the instance variable. This is because we
1905 want to handle calls with objects from derived classes. This is
1906 not entirely correct: we should actually check to make sure that a
1907 requested operation is type secure, shouldn't we? FIXME. */
1908
1909 static int
1910 typecmp (int staticp, int varargs, int nargs,
1911 struct field t1[], struct value *t2[])
1912 {
1913 int i;
1914
1915 if (t2 == 0)
1916 internal_error (__FILE__, __LINE__,
1917 _("typecmp: no argument list"));
1918
1919 /* Skip ``this'' argument if applicable. T2 will always include
1920 THIS. */
1921 if (staticp)
1922 t2 ++;
1923
1924 for (i = 0;
1925 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1926 i++)
1927 {
1928 struct type *tt1, *tt2;
1929
1930 if (!t2[i])
1931 return i + 1;
1932
1933 tt1 = check_typedef (t1[i].type);
1934 tt2 = check_typedef (value_type (t2[i]));
1935
1936 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1937 /* We should be doing hairy argument matching, as below. */
1938 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1939 == TYPE_CODE (tt2)))
1940 {
1941 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1942 t2[i] = value_coerce_array (t2[i]);
1943 else
1944 t2[i] = value_ref (t2[i]);
1945 continue;
1946 }
1947
1948 /* djb - 20000715 - Until the new type structure is in the
1949 place, and we can attempt things like implicit conversions,
1950 we need to do this so you can take something like a map<const
1951 char *>, and properly access map["hello"], because the
1952 argument to [] will be a reference to a pointer to a char,
1953 and the argument will be a pointer to a char. */
1954 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1955 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1956 {
1957 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1958 }
1959 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1960 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1961 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1962 {
1963 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1964 }
1965 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1966 continue;
1967 /* Array to pointer is a `trivial conversion' according to the
1968 ARM. */
1969
1970 /* We should be doing much hairier argument matching (see
1971 section 13.2 of the ARM), but as a quick kludge, just check
1972 for the same type code. */
1973 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1974 return i + 1;
1975 }
1976 if (varargs || t2[i] == NULL)
1977 return 0;
1978 return i + 1;
1979 }
1980
1981 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1982 and *LAST_BOFFSET, and possibly throws an exception if the field
1983 search has yielded ambiguous results. */
1984
1985 static void
1986 update_search_result (struct value **result_ptr, struct value *v,
1987 int *last_boffset, int boffset,
1988 const char *name, struct type *type)
1989 {
1990 if (v != NULL)
1991 {
1992 if (*result_ptr != NULL
1993 /* The result is not ambiguous if all the classes that are
1994 found occupy the same space. */
1995 && *last_boffset != boffset)
1996 error (_("base class '%s' is ambiguous in type '%s'"),
1997 name, TYPE_SAFE_NAME (type));
1998 *result_ptr = v;
1999 *last_boffset = boffset;
2000 }
2001 }
2002
2003 /* A helper for search_struct_field. This does all the work; most
2004 arguments are as passed to search_struct_field. The result is
2005 stored in *RESULT_PTR, which must be initialized to NULL.
2006 OUTERMOST_TYPE is the type of the initial type passed to
2007 search_struct_field; this is used for error reporting when the
2008 lookup is ambiguous. */
2009
2010 static void
2011 do_search_struct_field (const char *name, struct value *arg1, int offset,
2012 struct type *type, int looking_for_baseclass,
2013 struct value **result_ptr,
2014 int *last_boffset,
2015 struct type *outermost_type)
2016 {
2017 int i;
2018 int nbases;
2019
2020 CHECK_TYPEDEF (type);
2021 nbases = TYPE_N_BASECLASSES (type);
2022
2023 if (!looking_for_baseclass)
2024 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2025 {
2026 const char *t_field_name = TYPE_FIELD_NAME (type, i);
2027
2028 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2029 {
2030 struct value *v;
2031
2032 if (field_is_static (&TYPE_FIELD (type, i)))
2033 {
2034 v = value_static_field (type, i);
2035 if (v == 0)
2036 error (_("field %s is nonexistent or "
2037 "has been optimized out"),
2038 name);
2039 }
2040 else
2041 v = value_primitive_field (arg1, offset, i, type);
2042 *result_ptr = v;
2043 return;
2044 }
2045
2046 if (t_field_name
2047 && (t_field_name[0] == '\0'
2048 || (TYPE_CODE (type) == TYPE_CODE_UNION
2049 && (strcmp_iw (t_field_name, "else") == 0))))
2050 {
2051 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2052
2053 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2054 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2055 {
2056 /* Look for a match through the fields of an anonymous
2057 union, or anonymous struct. C++ provides anonymous
2058 unions.
2059
2060 In the GNU Chill (now deleted from GDB)
2061 implementation of variant record types, each
2062 <alternative field> has an (anonymous) union type,
2063 each member of the union represents a <variant
2064 alternative>. Each <variant alternative> is
2065 represented as a struct, with a member for each
2066 <variant field>. */
2067
2068 struct value *v = NULL;
2069 int new_offset = offset;
2070
2071 /* This is pretty gross. In G++, the offset in an
2072 anonymous union is relative to the beginning of the
2073 enclosing struct. In the GNU Chill (now deleted
2074 from GDB) implementation of variant records, the
2075 bitpos is zero in an anonymous union field, so we
2076 have to add the offset of the union here. */
2077 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2078 || (TYPE_NFIELDS (field_type) > 0
2079 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2080 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2081
2082 do_search_struct_field (name, arg1, new_offset,
2083 field_type,
2084 looking_for_baseclass, &v,
2085 last_boffset,
2086 outermost_type);
2087 if (v)
2088 {
2089 *result_ptr = v;
2090 return;
2091 }
2092 }
2093 }
2094 }
2095
2096 for (i = 0; i < nbases; i++)
2097 {
2098 struct value *v = NULL;
2099 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2100 /* If we are looking for baseclasses, this is what we get when
2101 we hit them. But it could happen that the base part's member
2102 name is not yet filled in. */
2103 int found_baseclass = (looking_for_baseclass
2104 && TYPE_BASECLASS_NAME (type, i) != NULL
2105 && (strcmp_iw (name,
2106 TYPE_BASECLASS_NAME (type,
2107 i)) == 0));
2108 int boffset = value_embedded_offset (arg1) + offset;
2109
2110 if (BASETYPE_VIA_VIRTUAL (type, i))
2111 {
2112 struct value *v2;
2113
2114 boffset = baseclass_offset (type, i,
2115 value_contents_for_printing (arg1),
2116 value_embedded_offset (arg1) + offset,
2117 value_address (arg1),
2118 arg1);
2119
2120 /* The virtual base class pointer might have been clobbered
2121 by the user program. Make sure that it still points to a
2122 valid memory location. */
2123
2124 boffset += value_embedded_offset (arg1) + offset;
2125 if (boffset < 0
2126 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
2127 {
2128 CORE_ADDR base_addr;
2129
2130 v2 = allocate_value (basetype);
2131 base_addr = value_address (arg1) + boffset;
2132 if (target_read_memory (base_addr,
2133 value_contents_raw (v2),
2134 TYPE_LENGTH (basetype)) != 0)
2135 error (_("virtual baseclass botch"));
2136 VALUE_LVAL (v2) = lval_memory;
2137 set_value_address (v2, base_addr);
2138 }
2139 else
2140 {
2141 v2 = value_copy (arg1);
2142 deprecated_set_value_type (v2, basetype);
2143 set_value_embedded_offset (v2, boffset);
2144 }
2145
2146 if (found_baseclass)
2147 v = v2;
2148 else
2149 {
2150 do_search_struct_field (name, v2, 0,
2151 TYPE_BASECLASS (type, i),
2152 looking_for_baseclass,
2153 result_ptr, last_boffset,
2154 outermost_type);
2155 }
2156 }
2157 else if (found_baseclass)
2158 v = value_primitive_field (arg1, offset, i, type);
2159 else
2160 {
2161 do_search_struct_field (name, arg1,
2162 offset + TYPE_BASECLASS_BITPOS (type,
2163 i) / 8,
2164 basetype, looking_for_baseclass,
2165 result_ptr, last_boffset,
2166 outermost_type);
2167 }
2168
2169 update_search_result (result_ptr, v, last_boffset,
2170 boffset, name, outermost_type);
2171 }
2172 }
2173
2174 /* Helper function used by value_struct_elt to recurse through
2175 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2176 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2177 TYPE. If found, return value, else return NULL.
2178
2179 If LOOKING_FOR_BASECLASS, then instead of looking for struct
2180 fields, look for a baseclass named NAME. */
2181
2182 static struct value *
2183 search_struct_field (const char *name, struct value *arg1, int offset,
2184 struct type *type, int looking_for_baseclass)
2185 {
2186 struct value *result = NULL;
2187 int boffset = 0;
2188
2189 do_search_struct_field (name, arg1, offset, type, looking_for_baseclass,
2190 &result, &boffset, type);
2191 return result;
2192 }
2193
2194 /* Helper function used by value_struct_elt to recurse through
2195 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2196 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2197 TYPE.
2198
2199 If found, return value, else if name matched and args not return
2200 (value) -1, else return NULL. */
2201
2202 static struct value *
2203 search_struct_method (const char *name, struct value **arg1p,
2204 struct value **args, int offset,
2205 int *static_memfuncp, struct type *type)
2206 {
2207 int i;
2208 struct value *v;
2209 int name_matched = 0;
2210 char dem_opname[64];
2211
2212 CHECK_TYPEDEF (type);
2213 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2214 {
2215 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2216
2217 /* FIXME! May need to check for ARM demangling here. */
2218 if (strncmp (t_field_name, "__", 2) == 0 ||
2219 strncmp (t_field_name, "op", 2) == 0 ||
2220 strncmp (t_field_name, "type", 4) == 0)
2221 {
2222 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2223 t_field_name = dem_opname;
2224 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2225 t_field_name = dem_opname;
2226 }
2227 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2228 {
2229 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2230 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2231
2232 name_matched = 1;
2233 check_stub_method_group (type, i);
2234 if (j > 0 && args == 0)
2235 error (_("cannot resolve overloaded method "
2236 "`%s': no arguments supplied"), name);
2237 else if (j == 0 && args == 0)
2238 {
2239 v = value_fn_field (arg1p, f, j, type, offset);
2240 if (v != NULL)
2241 return v;
2242 }
2243 else
2244 while (j >= 0)
2245 {
2246 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2247 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2248 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2249 TYPE_FN_FIELD_ARGS (f, j), args))
2250 {
2251 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2252 return value_virtual_fn_field (arg1p, f, j,
2253 type, offset);
2254 if (TYPE_FN_FIELD_STATIC_P (f, j)
2255 && static_memfuncp)
2256 *static_memfuncp = 1;
2257 v = value_fn_field (arg1p, f, j, type, offset);
2258 if (v != NULL)
2259 return v;
2260 }
2261 j--;
2262 }
2263 }
2264 }
2265
2266 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2267 {
2268 int base_offset;
2269 int skip = 0;
2270 int this_offset;
2271
2272 if (BASETYPE_VIA_VIRTUAL (type, i))
2273 {
2274 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2275 struct value *base_val;
2276 const gdb_byte *base_valaddr;
2277
2278 /* The virtual base class pointer might have been
2279 clobbered by the user program. Make sure that it
2280 still points to a valid memory location. */
2281
2282 if (offset < 0 || offset >= TYPE_LENGTH (type))
2283 {
2284 gdb_byte *tmp;
2285 struct cleanup *back_to;
2286 CORE_ADDR address;
2287
2288 tmp = xmalloc (TYPE_LENGTH (baseclass));
2289 back_to = make_cleanup (xfree, tmp);
2290 address = value_address (*arg1p);
2291
2292 if (target_read_memory (address + offset,
2293 tmp, TYPE_LENGTH (baseclass)) != 0)
2294 error (_("virtual baseclass botch"));
2295
2296 base_val = value_from_contents_and_address (baseclass,
2297 tmp,
2298 address + offset);
2299 base_valaddr = value_contents_for_printing (base_val);
2300 this_offset = 0;
2301 do_cleanups (back_to);
2302 }
2303 else
2304 {
2305 base_val = *arg1p;
2306 base_valaddr = value_contents_for_printing (*arg1p);
2307 this_offset = offset;
2308 }
2309
2310 base_offset = baseclass_offset (type, i, base_valaddr,
2311 this_offset, value_address (base_val),
2312 base_val);
2313 }
2314 else
2315 {
2316 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2317 }
2318 v = search_struct_method (name, arg1p, args, base_offset + offset,
2319 static_memfuncp, TYPE_BASECLASS (type, i));
2320 if (v == (struct value *) - 1)
2321 {
2322 name_matched = 1;
2323 }
2324 else if (v)
2325 {
2326 /* FIXME-bothner: Why is this commented out? Why is it here? */
2327 /* *arg1p = arg1_tmp; */
2328 return v;
2329 }
2330 }
2331 if (name_matched)
2332 return (struct value *) - 1;
2333 else
2334 return NULL;
2335 }
2336
2337 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2338 extract the component named NAME from the ultimate target
2339 structure/union and return it as a value with its appropriate type.
2340 ERR is used in the error message if *ARGP's type is wrong.
2341
2342 C++: ARGS is a list of argument types to aid in the selection of
2343 an appropriate method. Also, handle derived types.
2344
2345 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2346 where the truthvalue of whether the function that was resolved was
2347 a static member function or not is stored.
2348
2349 ERR is an error message to be printed in case the field is not
2350 found. */
2351
2352 struct value *
2353 value_struct_elt (struct value **argp, struct value **args,
2354 const char *name, int *static_memfuncp, const char *err)
2355 {
2356 struct type *t;
2357 struct value *v;
2358
2359 *argp = coerce_array (*argp);
2360
2361 t = check_typedef (value_type (*argp));
2362
2363 /* Follow pointers until we get to a non-pointer. */
2364
2365 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2366 {
2367 *argp = value_ind (*argp);
2368 /* Don't coerce fn pointer to fn and then back again! */
2369 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2370 *argp = coerce_array (*argp);
2371 t = check_typedef (value_type (*argp));
2372 }
2373
2374 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2375 && TYPE_CODE (t) != TYPE_CODE_UNION)
2376 error (_("Attempt to extract a component of a value that is not a %s."),
2377 err);
2378
2379 /* Assume it's not, unless we see that it is. */
2380 if (static_memfuncp)
2381 *static_memfuncp = 0;
2382
2383 if (!args)
2384 {
2385 /* if there are no arguments ...do this... */
2386
2387 /* Try as a field first, because if we succeed, there is less
2388 work to be done. */
2389 v = search_struct_field (name, *argp, 0, t, 0);
2390 if (v)
2391 return v;
2392
2393 /* C++: If it was not found as a data field, then try to
2394 return it as a pointer to a method. */
2395 v = search_struct_method (name, argp, args, 0,
2396 static_memfuncp, t);
2397
2398 if (v == (struct value *) - 1)
2399 error (_("Cannot take address of method %s."), name);
2400 else if (v == 0)
2401 {
2402 if (TYPE_NFN_FIELDS (t))
2403 error (_("There is no member or method named %s."), name);
2404 else
2405 error (_("There is no member named %s."), name);
2406 }
2407 return v;
2408 }
2409
2410 v = search_struct_method (name, argp, args, 0,
2411 static_memfuncp, t);
2412
2413 if (v == (struct value *) - 1)
2414 {
2415 error (_("One of the arguments you tried to pass to %s could not "
2416 "be converted to what the function wants."), name);
2417 }
2418 else if (v == 0)
2419 {
2420 /* See if user tried to invoke data as function. If so, hand it
2421 back. If it's not callable (i.e., a pointer to function),
2422 gdb should give an error. */
2423 v = search_struct_field (name, *argp, 0, t, 0);
2424 /* If we found an ordinary field, then it is not a method call.
2425 So, treat it as if it were a static member function. */
2426 if (v && static_memfuncp)
2427 *static_memfuncp = 1;
2428 }
2429
2430 if (!v)
2431 throw_error (NOT_FOUND_ERROR,
2432 _("Structure has no component named %s."), name);
2433 return v;
2434 }
2435
2436 /* Search through the methods of an object (and its bases) to find a
2437 specified method. Return the pointer to the fn_field list of
2438 overloaded instances.
2439
2440 Helper function for value_find_oload_list.
2441 ARGP is a pointer to a pointer to a value (the object).
2442 METHOD is a string containing the method name.
2443 OFFSET is the offset within the value.
2444 TYPE is the assumed type of the object.
2445 NUM_FNS is the number of overloaded instances.
2446 BASETYPE is set to the actual type of the subobject where the
2447 method is found.
2448 BOFFSET is the offset of the base subobject where the method is found. */
2449
2450 static struct fn_field *
2451 find_method_list (struct value **argp, const char *method,
2452 int offset, struct type *type, int *num_fns,
2453 struct type **basetype, int *boffset)
2454 {
2455 int i;
2456 struct fn_field *f;
2457 CHECK_TYPEDEF (type);
2458
2459 *num_fns = 0;
2460
2461 /* First check in object itself. */
2462 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2463 {
2464 /* pai: FIXME What about operators and type conversions? */
2465 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2466
2467 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2468 {
2469 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2470 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2471
2472 *num_fns = len;
2473 *basetype = type;
2474 *boffset = offset;
2475
2476 /* Resolve any stub methods. */
2477 check_stub_method_group (type, i);
2478
2479 return f;
2480 }
2481 }
2482
2483 /* Not found in object, check in base subobjects. */
2484 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2485 {
2486 int base_offset;
2487
2488 if (BASETYPE_VIA_VIRTUAL (type, i))
2489 {
2490 base_offset = baseclass_offset (type, i,
2491 value_contents_for_printing (*argp),
2492 value_offset (*argp) + offset,
2493 value_address (*argp), *argp);
2494 }
2495 else /* Non-virtual base, simply use bit position from debug
2496 info. */
2497 {
2498 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2499 }
2500 f = find_method_list (argp, method, base_offset + offset,
2501 TYPE_BASECLASS (type, i), num_fns,
2502 basetype, boffset);
2503 if (f)
2504 return f;
2505 }
2506 return NULL;
2507 }
2508
2509 /* Return the list of overloaded methods of a specified name.
2510
2511 ARGP is a pointer to a pointer to a value (the object).
2512 METHOD is the method name.
2513 OFFSET is the offset within the value contents.
2514 NUM_FNS is the number of overloaded instances.
2515 BASETYPE is set to the type of the base subobject that defines the
2516 method.
2517 BOFFSET is the offset of the base subobject which defines the method. */
2518
2519 static struct fn_field *
2520 value_find_oload_method_list (struct value **argp, const char *method,
2521 int offset, int *num_fns,
2522 struct type **basetype, int *boffset)
2523 {
2524 struct type *t;
2525
2526 t = check_typedef (value_type (*argp));
2527
2528 /* Code snarfed from value_struct_elt. */
2529 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2530 {
2531 *argp = value_ind (*argp);
2532 /* Don't coerce fn pointer to fn and then back again! */
2533 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2534 *argp = coerce_array (*argp);
2535 t = check_typedef (value_type (*argp));
2536 }
2537
2538 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2539 && TYPE_CODE (t) != TYPE_CODE_UNION)
2540 error (_("Attempt to extract a component of a "
2541 "value that is not a struct or union"));
2542
2543 return find_method_list (argp, method, 0, t, num_fns,
2544 basetype, boffset);
2545 }
2546
2547 /* Given an array of arguments (ARGS) (which includes an
2548 entry for "this" in the case of C++ methods), the number of
2549 arguments NARGS, the NAME of a function whether it's a method or
2550 not (METHOD), and the degree of laxness (LAX) in conforming to
2551 overload resolution rules in ANSI C++, find the best function that
2552 matches on the argument types according to the overload resolution
2553 rules.
2554
2555 METHOD can be one of three values:
2556 NON_METHOD for non-member functions.
2557 METHOD: for member functions.
2558 BOTH: used for overload resolution of operators where the
2559 candidates are expected to be either member or non member
2560 functions. In this case the first argument ARGTYPES
2561 (representing 'this') is expected to be a reference to the
2562 target object, and will be dereferenced when attempting the
2563 non-member search.
2564
2565 In the case of class methods, the parameter OBJ is an object value
2566 in which to search for overloaded methods.
2567
2568 In the case of non-method functions, the parameter FSYM is a symbol
2569 corresponding to one of the overloaded functions.
2570
2571 Return value is an integer: 0 -> good match, 10 -> debugger applied
2572 non-standard coercions, 100 -> incompatible.
2573
2574 If a method is being searched for, VALP will hold the value.
2575 If a non-method is being searched for, SYMP will hold the symbol
2576 for it.
2577
2578 If a method is being searched for, and it is a static method,
2579 then STATICP will point to a non-zero value.
2580
2581 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2582 ADL overload candidates when performing overload resolution for a fully
2583 qualified name.
2584
2585 Note: This function does *not* check the value of
2586 overload_resolution. Caller must check it to see whether overload
2587 resolution is permitted. */
2588
2589 int
2590 find_overload_match (struct value **args, int nargs,
2591 const char *name, enum oload_search_type method,
2592 int lax, struct value **objp, struct symbol *fsym,
2593 struct value **valp, struct symbol **symp,
2594 int *staticp, const int no_adl)
2595 {
2596 struct value *obj = (objp ? *objp : NULL);
2597 struct type *obj_type = obj ? value_type (obj) : NULL;
2598 /* Index of best overloaded function. */
2599 int func_oload_champ = -1;
2600 int method_oload_champ = -1;
2601
2602 /* The measure for the current best match. */
2603 struct badness_vector *method_badness = NULL;
2604 struct badness_vector *func_badness = NULL;
2605
2606 struct value *temp = obj;
2607 /* For methods, the list of overloaded methods. */
2608 struct fn_field *fns_ptr = NULL;
2609 /* For non-methods, the list of overloaded function symbols. */
2610 struct symbol **oload_syms = NULL;
2611 /* Number of overloaded instances being considered. */
2612 int num_fns = 0;
2613 struct type *basetype = NULL;
2614 int boffset;
2615
2616 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2617
2618 const char *obj_type_name = NULL;
2619 const char *func_name = NULL;
2620 enum oload_classification match_quality;
2621 enum oload_classification method_match_quality = INCOMPATIBLE;
2622 enum oload_classification func_match_quality = INCOMPATIBLE;
2623
2624 /* Get the list of overloaded methods or functions. */
2625 if (method == METHOD || method == BOTH)
2626 {
2627 gdb_assert (obj);
2628
2629 /* OBJ may be a pointer value rather than the object itself. */
2630 obj = coerce_ref (obj);
2631 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2632 obj = coerce_ref (value_ind (obj));
2633 obj_type_name = TYPE_NAME (value_type (obj));
2634
2635 /* First check whether this is a data member, e.g. a pointer to
2636 a function. */
2637 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2638 {
2639 *valp = search_struct_field (name, obj, 0,
2640 check_typedef (value_type (obj)), 0);
2641 if (*valp)
2642 {
2643 *staticp = 1;
2644 do_cleanups (all_cleanups);
2645 return 0;
2646 }
2647 }
2648
2649 /* Retrieve the list of methods with the name NAME. */
2650 fns_ptr = value_find_oload_method_list (&temp, name,
2651 0, &num_fns,
2652 &basetype, &boffset);
2653 /* If this is a method only search, and no methods were found
2654 the search has faild. */
2655 if (method == METHOD && (!fns_ptr || !num_fns))
2656 error (_("Couldn't find method %s%s%s"),
2657 obj_type_name,
2658 (obj_type_name && *obj_type_name) ? "::" : "",
2659 name);
2660 /* If we are dealing with stub method types, they should have
2661 been resolved by find_method_list via
2662 value_find_oload_method_list above. */
2663 if (fns_ptr)
2664 {
2665 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2666 method_oload_champ = find_oload_champ (args, nargs, method,
2667 num_fns, fns_ptr,
2668 oload_syms, &method_badness);
2669
2670 method_match_quality =
2671 classify_oload_match (method_badness, nargs,
2672 oload_method_static (method, fns_ptr,
2673 method_oload_champ));
2674
2675 make_cleanup (xfree, method_badness);
2676 }
2677
2678 }
2679
2680 if (method == NON_METHOD || method == BOTH)
2681 {
2682 const char *qualified_name = NULL;
2683
2684 /* If the overload match is being search for both as a method
2685 and non member function, the first argument must now be
2686 dereferenced. */
2687 if (method == BOTH)
2688 args[0] = value_ind (args[0]);
2689
2690 if (fsym)
2691 {
2692 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2693
2694 /* If we have a function with a C++ name, try to extract just
2695 the function part. Do not try this for non-functions (e.g.
2696 function pointers). */
2697 if (qualified_name
2698 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2699 == TYPE_CODE_FUNC)
2700 {
2701 char *temp;
2702
2703 temp = cp_func_name (qualified_name);
2704
2705 /* If cp_func_name did not remove anything, the name of the
2706 symbol did not include scope or argument types - it was
2707 probably a C-style function. */
2708 if (temp)
2709 {
2710 make_cleanup (xfree, temp);
2711 if (strcmp (temp, qualified_name) == 0)
2712 func_name = NULL;
2713 else
2714 func_name = temp;
2715 }
2716 }
2717 }
2718 else
2719 {
2720 func_name = name;
2721 qualified_name = name;
2722 }
2723
2724 /* If there was no C++ name, this must be a C-style function or
2725 not a function at all. Just return the same symbol. Do the
2726 same if cp_func_name fails for some reason. */
2727 if (func_name == NULL)
2728 {
2729 *symp = fsym;
2730 do_cleanups (all_cleanups);
2731 return 0;
2732 }
2733
2734 func_oload_champ = find_oload_champ_namespace (args, nargs,
2735 func_name,
2736 qualified_name,
2737 &oload_syms,
2738 &func_badness,
2739 no_adl);
2740
2741 if (func_oload_champ >= 0)
2742 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2743
2744 make_cleanup (xfree, oload_syms);
2745 make_cleanup (xfree, func_badness);
2746 }
2747
2748 /* Did we find a match ? */
2749 if (method_oload_champ == -1 && func_oload_champ == -1)
2750 throw_error (NOT_FOUND_ERROR,
2751 _("No symbol \"%s\" in current context."),
2752 name);
2753
2754 /* If we have found both a method match and a function
2755 match, find out which one is better, and calculate match
2756 quality. */
2757 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2758 {
2759 switch (compare_badness (func_badness, method_badness))
2760 {
2761 case 0: /* Top two contenders are equally good. */
2762 /* FIXME: GDB does not support the general ambiguous case.
2763 All candidates should be collected and presented the
2764 user. */
2765 error (_("Ambiguous overload resolution"));
2766 break;
2767 case 1: /* Incomparable top contenders. */
2768 /* This is an error incompatible candidates
2769 should not have been proposed. */
2770 error (_("Internal error: incompatible "
2771 "overload candidates proposed"));
2772 break;
2773 case 2: /* Function champion. */
2774 method_oload_champ = -1;
2775 match_quality = func_match_quality;
2776 break;
2777 case 3: /* Method champion. */
2778 func_oload_champ = -1;
2779 match_quality = method_match_quality;
2780 break;
2781 default:
2782 error (_("Internal error: unexpected overload comparison result"));
2783 break;
2784 }
2785 }
2786 else
2787 {
2788 /* We have either a method match or a function match. */
2789 if (method_oload_champ >= 0)
2790 match_quality = method_match_quality;
2791 else
2792 match_quality = func_match_quality;
2793 }
2794
2795 if (match_quality == INCOMPATIBLE)
2796 {
2797 if (method == METHOD)
2798 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2799 obj_type_name,
2800 (obj_type_name && *obj_type_name) ? "::" : "",
2801 name);
2802 else
2803 error (_("Cannot resolve function %s to any overloaded instance"),
2804 func_name);
2805 }
2806 else if (match_quality == NON_STANDARD)
2807 {
2808 if (method == METHOD)
2809 warning (_("Using non-standard conversion to match "
2810 "method %s%s%s to supplied arguments"),
2811 obj_type_name,
2812 (obj_type_name && *obj_type_name) ? "::" : "",
2813 name);
2814 else
2815 warning (_("Using non-standard conversion to match "
2816 "function %s to supplied arguments"),
2817 func_name);
2818 }
2819
2820 if (staticp != NULL)
2821 *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2822
2823 if (method_oload_champ >= 0)
2824 {
2825 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2826 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2827 basetype, boffset);
2828 else
2829 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2830 basetype, boffset);
2831 }
2832 else
2833 *symp = oload_syms[func_oload_champ];
2834
2835 if (objp)
2836 {
2837 struct type *temp_type = check_typedef (value_type (temp));
2838 struct type *objtype = check_typedef (obj_type);
2839
2840 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2841 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2842 || TYPE_CODE (objtype) == TYPE_CODE_REF))
2843 {
2844 temp = value_addr (temp);
2845 }
2846 *objp = temp;
2847 }
2848
2849 do_cleanups (all_cleanups);
2850
2851 switch (match_quality)
2852 {
2853 case INCOMPATIBLE:
2854 return 100;
2855 case NON_STANDARD:
2856 return 10;
2857 default: /* STANDARD */
2858 return 0;
2859 }
2860 }
2861
2862 /* Find the best overload match, searching for FUNC_NAME in namespaces
2863 contained in QUALIFIED_NAME until it either finds a good match or
2864 runs out of namespaces. It stores the overloaded functions in
2865 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2866 calling function is responsible for freeing *OLOAD_SYMS and
2867 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2868 performned. */
2869
2870 static int
2871 find_oload_champ_namespace (struct value **args, int nargs,
2872 const char *func_name,
2873 const char *qualified_name,
2874 struct symbol ***oload_syms,
2875 struct badness_vector **oload_champ_bv,
2876 const int no_adl)
2877 {
2878 int oload_champ;
2879
2880 find_oload_champ_namespace_loop (args, nargs,
2881 func_name,
2882 qualified_name, 0,
2883 oload_syms, oload_champ_bv,
2884 &oload_champ,
2885 no_adl);
2886
2887 return oload_champ;
2888 }
2889
2890 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2891 how deep we've looked for namespaces, and the champ is stored in
2892 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2893 if it isn't. Other arguments are the same as in
2894 find_oload_champ_namespace
2895
2896 It is the caller's responsibility to free *OLOAD_SYMS and
2897 *OLOAD_CHAMP_BV. */
2898
2899 static int
2900 find_oload_champ_namespace_loop (struct value **args, int nargs,
2901 const char *func_name,
2902 const char *qualified_name,
2903 int namespace_len,
2904 struct symbol ***oload_syms,
2905 struct badness_vector **oload_champ_bv,
2906 int *oload_champ,
2907 const int no_adl)
2908 {
2909 int next_namespace_len = namespace_len;
2910 int searched_deeper = 0;
2911 int num_fns = 0;
2912 struct cleanup *old_cleanups;
2913 int new_oload_champ;
2914 struct symbol **new_oload_syms;
2915 struct badness_vector *new_oload_champ_bv;
2916 char *new_namespace;
2917
2918 if (next_namespace_len != 0)
2919 {
2920 gdb_assert (qualified_name[next_namespace_len] == ':');
2921 next_namespace_len += 2;
2922 }
2923 next_namespace_len +=
2924 cp_find_first_component (qualified_name + next_namespace_len);
2925
2926 /* Initialize these to values that can safely be xfree'd. */
2927 *oload_syms = NULL;
2928 *oload_champ_bv = NULL;
2929
2930 /* First, see if we have a deeper namespace we can search in.
2931 If we get a good match there, use it. */
2932
2933 if (qualified_name[next_namespace_len] == ':')
2934 {
2935 searched_deeper = 1;
2936
2937 if (find_oload_champ_namespace_loop (args, nargs,
2938 func_name, qualified_name,
2939 next_namespace_len,
2940 oload_syms, oload_champ_bv,
2941 oload_champ, no_adl))
2942 {
2943 return 1;
2944 }
2945 };
2946
2947 /* If we reach here, either we're in the deepest namespace or we
2948 didn't find a good match in a deeper namespace. But, in the
2949 latter case, we still have a bad match in a deeper namespace;
2950 note that we might not find any match at all in the current
2951 namespace. (There's always a match in the deepest namespace,
2952 because this overload mechanism only gets called if there's a
2953 function symbol to start off with.) */
2954
2955 old_cleanups = make_cleanup (xfree, *oload_syms);
2956 make_cleanup (xfree, *oload_champ_bv);
2957 new_namespace = alloca (namespace_len + 1);
2958 strncpy (new_namespace, qualified_name, namespace_len);
2959 new_namespace[namespace_len] = '\0';
2960 new_oload_syms = make_symbol_overload_list (func_name,
2961 new_namespace);
2962
2963 /* If we have reached the deepest level perform argument
2964 determined lookup. */
2965 if (!searched_deeper && !no_adl)
2966 {
2967 int ix;
2968 struct type **arg_types;
2969
2970 /* Prepare list of argument types for overload resolution. */
2971 arg_types = (struct type **)
2972 alloca (nargs * (sizeof (struct type *)));
2973 for (ix = 0; ix < nargs; ix++)
2974 arg_types[ix] = value_type (args[ix]);
2975 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2976 }
2977
2978 while (new_oload_syms[num_fns])
2979 ++num_fns;
2980
2981 new_oload_champ = find_oload_champ (args, nargs, 0, num_fns,
2982 NULL, new_oload_syms,
2983 &new_oload_champ_bv);
2984
2985 /* Case 1: We found a good match. Free earlier matches (if any),
2986 and return it. Case 2: We didn't find a good match, but we're
2987 not the deepest function. Then go with the bad match that the
2988 deeper function found. Case 3: We found a bad match, and we're
2989 the deepest function. Then return what we found, even though
2990 it's a bad match. */
2991
2992 if (new_oload_champ != -1
2993 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2994 {
2995 *oload_syms = new_oload_syms;
2996 *oload_champ = new_oload_champ;
2997 *oload_champ_bv = new_oload_champ_bv;
2998 do_cleanups (old_cleanups);
2999 return 1;
3000 }
3001 else if (searched_deeper)
3002 {
3003 xfree (new_oload_syms);
3004 xfree (new_oload_champ_bv);
3005 discard_cleanups (old_cleanups);
3006 return 0;
3007 }
3008 else
3009 {
3010 *oload_syms = new_oload_syms;
3011 *oload_champ = new_oload_champ;
3012 *oload_champ_bv = new_oload_champ_bv;
3013 do_cleanups (old_cleanups);
3014 return 0;
3015 }
3016 }
3017
3018 /* Look for a function to take NARGS args of ARGS. Find
3019 the best match from among the overloaded methods or functions
3020 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
3021 The number of methods/functions in the list is given by NUM_FNS.
3022 Return the index of the best match; store an indication of the
3023 quality of the match in OLOAD_CHAMP_BV.
3024
3025 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
3026
3027 static int
3028 find_oload_champ (struct value **args, int nargs, int method,
3029 int num_fns, struct fn_field *fns_ptr,
3030 struct symbol **oload_syms,
3031 struct badness_vector **oload_champ_bv)
3032 {
3033 int ix;
3034 /* A measure of how good an overloaded instance is. */
3035 struct badness_vector *bv;
3036 /* Index of best overloaded function. */
3037 int oload_champ = -1;
3038 /* Current ambiguity state for overload resolution. */
3039 int oload_ambiguous = 0;
3040 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
3041
3042 *oload_champ_bv = NULL;
3043
3044 /* Consider each candidate in turn. */
3045 for (ix = 0; ix < num_fns; ix++)
3046 {
3047 int jj;
3048 int static_offset = oload_method_static (method, fns_ptr, ix);
3049 int nparms;
3050 struct type **parm_types;
3051
3052 if (method)
3053 {
3054 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
3055 }
3056 else
3057 {
3058 /* If it's not a method, this is the proper place. */
3059 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
3060 }
3061
3062 /* Prepare array of parameter types. */
3063 parm_types = (struct type **)
3064 xmalloc (nparms * (sizeof (struct type *)));
3065 for (jj = 0; jj < nparms; jj++)
3066 parm_types[jj] = (method
3067 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
3068 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
3069 jj));
3070
3071 /* Compare parameter types to supplied argument types. Skip
3072 THIS for static methods. */
3073 bv = rank_function (parm_types, nparms,
3074 args + static_offset,
3075 nargs - static_offset);
3076
3077 if (!*oload_champ_bv)
3078 {
3079 *oload_champ_bv = bv;
3080 oload_champ = 0;
3081 }
3082 else /* See whether current candidate is better or worse than
3083 previous best. */
3084 switch (compare_badness (bv, *oload_champ_bv))
3085 {
3086 case 0: /* Top two contenders are equally good. */
3087 oload_ambiguous = 1;
3088 break;
3089 case 1: /* Incomparable top contenders. */
3090 oload_ambiguous = 2;
3091 break;
3092 case 2: /* New champion, record details. */
3093 *oload_champ_bv = bv;
3094 oload_ambiguous = 0;
3095 oload_champ = ix;
3096 break;
3097 case 3:
3098 default:
3099 break;
3100 }
3101 xfree (parm_types);
3102 if (overload_debug)
3103 {
3104 if (method)
3105 fprintf_filtered (gdb_stderr,
3106 "Overloaded method instance %s, # of parms %d\n",
3107 fns_ptr[ix].physname, nparms);
3108 else
3109 fprintf_filtered (gdb_stderr,
3110 "Overloaded function instance "
3111 "%s # of parms %d\n",
3112 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
3113 nparms);
3114 for (jj = 0; jj < nargs - static_offset; jj++)
3115 fprintf_filtered (gdb_stderr,
3116 "...Badness @ %d : %d\n",
3117 jj, bv->rank[jj].rank);
3118 fprintf_filtered (gdb_stderr, "Overload resolution "
3119 "champion is %d, ambiguous? %d\n",
3120 oload_champ, oload_ambiguous);
3121 }
3122 }
3123
3124 return oload_champ;
3125 }
3126
3127 /* Return 1 if we're looking at a static method, 0 if we're looking at
3128 a non-static method or a function that isn't a method. */
3129
3130 static int
3131 oload_method_static (int method, struct fn_field *fns_ptr, int index)
3132 {
3133 if (method && fns_ptr && index >= 0
3134 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3135 return 1;
3136 else
3137 return 0;
3138 }
3139
3140 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3141
3142 static enum oload_classification
3143 classify_oload_match (struct badness_vector *oload_champ_bv,
3144 int nargs,
3145 int static_offset)
3146 {
3147 int ix;
3148 enum oload_classification worst = STANDARD;
3149
3150 for (ix = 1; ix <= nargs - static_offset; ix++)
3151 {
3152 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3153 or worse return INCOMPATIBLE. */
3154 if (compare_ranks (oload_champ_bv->rank[ix],
3155 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3156 return INCOMPATIBLE; /* Truly mismatched types. */
3157 /* Otherwise If this conversion is as bad as
3158 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3159 else if (compare_ranks (oload_champ_bv->rank[ix],
3160 NS_POINTER_CONVERSION_BADNESS) <= 0)
3161 worst = NON_STANDARD; /* Non-standard type conversions
3162 needed. */
3163 }
3164
3165 /* If no INCOMPATIBLE classification was found, return the worst one
3166 that was found (if any). */
3167 return worst;
3168 }
3169
3170 /* C++: return 1 is NAME is a legitimate name for the destructor of
3171 type TYPE. If TYPE does not have a destructor, or if NAME is
3172 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3173 have CHECK_TYPEDEF applied, this function will apply it itself. */
3174
3175 int
3176 destructor_name_p (const char *name, struct type *type)
3177 {
3178 if (name[0] == '~')
3179 {
3180 const char *dname = type_name_no_tag_or_error (type);
3181 const char *cp = strchr (dname, '<');
3182 unsigned int len;
3183
3184 /* Do not compare the template part for template classes. */
3185 if (cp == NULL)
3186 len = strlen (dname);
3187 else
3188 len = cp - dname;
3189 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3190 error (_("name of destructor must equal name of class"));
3191 else
3192 return 1;
3193 }
3194 return 0;
3195 }
3196
3197 /* Given TYPE, a structure/union,
3198 return 1 if the component named NAME from the ultimate target
3199 structure/union is defined, otherwise, return 0. */
3200
3201 int
3202 check_field (struct type *type, const char *name)
3203 {
3204 int i;
3205
3206 /* The type may be a stub. */
3207 CHECK_TYPEDEF (type);
3208
3209 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
3210 {
3211 const char *t_field_name = TYPE_FIELD_NAME (type, i);
3212
3213 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
3214 return 1;
3215 }
3216
3217 /* C++: If it was not found as a data field, then try to return it
3218 as a pointer to a method. */
3219
3220 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
3221 {
3222 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
3223 return 1;
3224 }
3225
3226 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3227 if (check_field (TYPE_BASECLASS (type, i), name))
3228 return 1;
3229
3230 return 0;
3231 }
3232
3233 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3234 return the appropriate member (or the address of the member, if
3235 WANT_ADDRESS). This function is used to resolve user expressions
3236 of the form "DOMAIN::NAME". For more details on what happens, see
3237 the comment before value_struct_elt_for_reference. */
3238
3239 struct value *
3240 value_aggregate_elt (struct type *curtype, char *name,
3241 struct type *expect_type, int want_address,
3242 enum noside noside)
3243 {
3244 switch (TYPE_CODE (curtype))
3245 {
3246 case TYPE_CODE_STRUCT:
3247 case TYPE_CODE_UNION:
3248 return value_struct_elt_for_reference (curtype, 0, curtype,
3249 name, expect_type,
3250 want_address, noside);
3251 case TYPE_CODE_NAMESPACE:
3252 return value_namespace_elt (curtype, name,
3253 want_address, noside);
3254 default:
3255 internal_error (__FILE__, __LINE__,
3256 _("non-aggregate type in value_aggregate_elt"));
3257 }
3258 }
3259
3260 /* Compares the two method/function types T1 and T2 for "equality"
3261 with respect to the methods' parameters. If the types of the
3262 two parameter lists are the same, returns 1; 0 otherwise. This
3263 comparison may ignore any artificial parameters in T1 if
3264 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3265 the first artificial parameter in T1, assumed to be a 'this' pointer.
3266
3267 The type T2 is expected to have come from make_params (in eval.c). */
3268
3269 static int
3270 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3271 {
3272 int start = 0;
3273
3274 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3275 ++start;
3276
3277 /* If skipping artificial fields, find the first real field
3278 in T1. */
3279 if (skip_artificial)
3280 {
3281 while (start < TYPE_NFIELDS (t1)
3282 && TYPE_FIELD_ARTIFICIAL (t1, start))
3283 ++start;
3284 }
3285
3286 /* Now compare parameters. */
3287
3288 /* Special case: a method taking void. T1 will contain no
3289 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3290 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3291 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3292 return 1;
3293
3294 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3295 {
3296 int i;
3297
3298 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3299 {
3300 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3301 TYPE_FIELD_TYPE (t2, i), NULL),
3302 EXACT_MATCH_BADNESS) != 0)
3303 return 0;
3304 }
3305
3306 return 1;
3307 }
3308
3309 return 0;
3310 }
3311
3312 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3313 return the address of this member as a "pointer to member" type.
3314 If INTYPE is non-null, then it will be the type of the member we
3315 are looking for. This will help us resolve "pointers to member
3316 functions". This function is used to resolve user expressions of
3317 the form "DOMAIN::NAME". */
3318
3319 static struct value *
3320 value_struct_elt_for_reference (struct type *domain, int offset,
3321 struct type *curtype, char *name,
3322 struct type *intype,
3323 int want_address,
3324 enum noside noside)
3325 {
3326 struct type *t = curtype;
3327 int i;
3328 struct value *v, *result;
3329
3330 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3331 && TYPE_CODE (t) != TYPE_CODE_UNION)
3332 error (_("Internal error: non-aggregate type "
3333 "to value_struct_elt_for_reference"));
3334
3335 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3336 {
3337 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3338
3339 if (t_field_name && strcmp (t_field_name, name) == 0)
3340 {
3341 if (field_is_static (&TYPE_FIELD (t, i)))
3342 {
3343 v = value_static_field (t, i);
3344 if (v == NULL)
3345 error (_("static field %s has been optimized out"),
3346 name);
3347 if (want_address)
3348 v = value_addr (v);
3349 return v;
3350 }
3351 if (TYPE_FIELD_PACKED (t, i))
3352 error (_("pointers to bitfield members not allowed"));
3353
3354 if (want_address)
3355 return value_from_longest
3356 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3357 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3358 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3359 return allocate_value (TYPE_FIELD_TYPE (t, i));
3360 else
3361 error (_("Cannot reference non-static field \"%s\""), name);
3362 }
3363 }
3364
3365 /* C++: If it was not found as a data field, then try to return it
3366 as a pointer to a method. */
3367
3368 /* Perform all necessary dereferencing. */
3369 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3370 intype = TYPE_TARGET_TYPE (intype);
3371
3372 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3373 {
3374 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3375 char dem_opname[64];
3376
3377 if (strncmp (t_field_name, "__", 2) == 0
3378 || strncmp (t_field_name, "op", 2) == 0
3379 || strncmp (t_field_name, "type", 4) == 0)
3380 {
3381 if (cplus_demangle_opname (t_field_name,
3382 dem_opname, DMGL_ANSI))
3383 t_field_name = dem_opname;
3384 else if (cplus_demangle_opname (t_field_name,
3385 dem_opname, 0))
3386 t_field_name = dem_opname;
3387 }
3388 if (t_field_name && strcmp (t_field_name, name) == 0)
3389 {
3390 int j;
3391 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3392 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3393
3394 check_stub_method_group (t, i);
3395
3396 if (intype)
3397 {
3398 for (j = 0; j < len; ++j)
3399 {
3400 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3401 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3402 intype, 1))
3403 break;
3404 }
3405
3406 if (j == len)
3407 error (_("no member function matches "
3408 "that type instantiation"));
3409 }
3410 else
3411 {
3412 int ii;
3413
3414 j = -1;
3415 for (ii = 0; ii < len; ++ii)
3416 {
3417 /* Skip artificial methods. This is necessary if,
3418 for example, the user wants to "print
3419 subclass::subclass" with only one user-defined
3420 constructor. There is no ambiguity in this case.
3421 We are careful here to allow artificial methods
3422 if they are the unique result. */
3423 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3424 {
3425 if (j == -1)
3426 j = ii;
3427 continue;
3428 }
3429
3430 /* Desired method is ambiguous if more than one
3431 method is defined. */
3432 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3433 error (_("non-unique member `%s' requires "
3434 "type instantiation"), name);
3435
3436 j = ii;
3437 }
3438
3439 if (j == -1)
3440 error (_("no matching member function"));
3441 }
3442
3443 if (TYPE_FN_FIELD_STATIC_P (f, j))
3444 {
3445 struct symbol *s =
3446 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3447 0, VAR_DOMAIN, 0);
3448
3449 if (s == NULL)
3450 return NULL;
3451
3452 if (want_address)
3453 return value_addr (read_var_value (s, 0));
3454 else
3455 return read_var_value (s, 0);
3456 }
3457
3458 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3459 {
3460 if (want_address)
3461 {
3462 result = allocate_value
3463 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3464 cplus_make_method_ptr (value_type (result),
3465 value_contents_writeable (result),
3466 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3467 }
3468 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3469 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3470 else
3471 error (_("Cannot reference virtual member function \"%s\""),
3472 name);
3473 }
3474 else
3475 {
3476 struct symbol *s =
3477 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3478 0, VAR_DOMAIN, 0);
3479
3480 if (s == NULL)
3481 return NULL;
3482
3483 v = read_var_value (s, 0);
3484 if (!want_address)
3485 result = v;
3486 else
3487 {
3488 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3489 cplus_make_method_ptr (value_type (result),
3490 value_contents_writeable (result),
3491 value_address (v), 0);
3492 }
3493 }
3494 return result;
3495 }
3496 }
3497 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3498 {
3499 struct value *v;
3500 int base_offset;
3501
3502 if (BASETYPE_VIA_VIRTUAL (t, i))
3503 base_offset = 0;
3504 else
3505 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3506 v = value_struct_elt_for_reference (domain,
3507 offset + base_offset,
3508 TYPE_BASECLASS (t, i),
3509 name, intype,
3510 want_address, noside);
3511 if (v)
3512 return v;
3513 }
3514
3515 /* As a last chance, pretend that CURTYPE is a namespace, and look
3516 it up that way; this (frequently) works for types nested inside
3517 classes. */
3518
3519 return value_maybe_namespace_elt (curtype, name,
3520 want_address, noside);
3521 }
3522
3523 /* C++: Return the member NAME of the namespace given by the type
3524 CURTYPE. */
3525
3526 static struct value *
3527 value_namespace_elt (const struct type *curtype,
3528 char *name, int want_address,
3529 enum noside noside)
3530 {
3531 struct value *retval = value_maybe_namespace_elt (curtype, name,
3532 want_address,
3533 noside);
3534
3535 if (retval == NULL)
3536 error (_("No symbol \"%s\" in namespace \"%s\"."),
3537 name, TYPE_TAG_NAME (curtype));
3538
3539 return retval;
3540 }
3541
3542 /* A helper function used by value_namespace_elt and
3543 value_struct_elt_for_reference. It looks up NAME inside the
3544 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3545 is a class and NAME refers to a type in CURTYPE itself (as opposed
3546 to, say, some base class of CURTYPE). */
3547
3548 static struct value *
3549 value_maybe_namespace_elt (const struct type *curtype,
3550 char *name, int want_address,
3551 enum noside noside)
3552 {
3553 const char *namespace_name = TYPE_TAG_NAME (curtype);
3554 struct symbol *sym;
3555 struct value *result;
3556
3557 sym = cp_lookup_symbol_namespace (namespace_name, name,
3558 get_selected_block (0), VAR_DOMAIN);
3559
3560 if (sym == NULL)
3561 {
3562 char *concatenated_name = alloca (strlen (namespace_name) + 2
3563 + strlen (name) + 1);
3564
3565 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3566 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3567 }
3568
3569 if (sym == NULL)
3570 return NULL;
3571 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3572 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3573 result = allocate_value (SYMBOL_TYPE (sym));
3574 else
3575 result = value_of_variable (sym, get_selected_block (0));
3576
3577 if (result && want_address)
3578 result = value_addr (result);
3579
3580 return result;
3581 }
3582
3583 /* Given a pointer or a reference value V, find its real (RTTI) type.
3584
3585 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3586 and refer to the values computed for the object pointed to. */
3587
3588 struct type *
3589 value_rtti_indirect_type (struct value *v, int *full,
3590 int *top, int *using_enc)
3591 {
3592 struct value *target;
3593 struct type *type, *real_type, *target_type;
3594
3595 type = value_type (v);
3596 type = check_typedef (type);
3597 if (TYPE_CODE (type) == TYPE_CODE_REF)
3598 target = coerce_ref (v);
3599 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3600 target = value_ind (v);
3601 else
3602 return NULL;
3603
3604 real_type = value_rtti_type (target, full, top, using_enc);
3605
3606 if (real_type)
3607 {
3608 /* Copy qualifiers to the referenced object. */
3609 target_type = value_type (target);
3610 real_type = make_cv_type (TYPE_CONST (target_type),
3611 TYPE_VOLATILE (target_type), real_type, NULL);
3612 if (TYPE_CODE (type) == TYPE_CODE_REF)
3613 real_type = lookup_reference_type (real_type);
3614 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3615 real_type = lookup_pointer_type (real_type);
3616 else
3617 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3618
3619 /* Copy qualifiers to the pointer/reference. */
3620 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3621 real_type, NULL);
3622 }
3623
3624 return real_type;
3625 }
3626
3627 /* Given a value pointed to by ARGP, check its real run-time type, and
3628 if that is different from the enclosing type, create a new value
3629 using the real run-time type as the enclosing type (and of the same
3630 type as ARGP) and return it, with the embedded offset adjusted to
3631 be the correct offset to the enclosed object. RTYPE is the type,
3632 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3633 by value_rtti_type(). If these are available, they can be supplied
3634 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3635 NULL if they're not available. */
3636
3637 struct value *
3638 value_full_object (struct value *argp,
3639 struct type *rtype,
3640 int xfull, int xtop,
3641 int xusing_enc)
3642 {
3643 struct type *real_type;
3644 int full = 0;
3645 int top = -1;
3646 int using_enc = 0;
3647 struct value *new_val;
3648
3649 if (rtype)
3650 {
3651 real_type = rtype;
3652 full = xfull;
3653 top = xtop;
3654 using_enc = xusing_enc;
3655 }
3656 else
3657 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3658
3659 /* If no RTTI data, or if object is already complete, do nothing. */
3660 if (!real_type || real_type == value_enclosing_type (argp))
3661 return argp;
3662
3663 /* In a destructor we might see a real type that is a superclass of
3664 the object's type. In this case it is better to leave the object
3665 as-is. */
3666 if (full
3667 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3668 return argp;
3669
3670 /* If we have the full object, but for some reason the enclosing
3671 type is wrong, set it. */
3672 /* pai: FIXME -- sounds iffy */
3673 if (full)
3674 {
3675 argp = value_copy (argp);
3676 set_value_enclosing_type (argp, real_type);
3677 return argp;
3678 }
3679
3680 /* Check if object is in memory. */
3681 if (VALUE_LVAL (argp) != lval_memory)
3682 {
3683 warning (_("Couldn't retrieve complete object of RTTI "
3684 "type %s; object may be in register(s)."),
3685 TYPE_NAME (real_type));
3686
3687 return argp;
3688 }
3689
3690 /* All other cases -- retrieve the complete object. */
3691 /* Go back by the computed top_offset from the beginning of the
3692 object, adjusting for the embedded offset of argp if that's what
3693 value_rtti_type used for its computation. */
3694 new_val = value_at_lazy (real_type, value_address (argp) - top +
3695 (using_enc ? 0 : value_embedded_offset (argp)));
3696 deprecated_set_value_type (new_val, value_type (argp));
3697 set_value_embedded_offset (new_val, (using_enc
3698 ? top + value_embedded_offset (argp)
3699 : top));
3700 return new_val;
3701 }
3702
3703
3704 /* Return the value of the local variable, if one exists. Throw error
3705 otherwise, such as if the request is made in an inappropriate context. */
3706
3707 struct value *
3708 value_of_this (const struct language_defn *lang)
3709 {
3710 struct symbol *sym;
3711 struct block *b;
3712 struct frame_info *frame;
3713
3714 if (!lang->la_name_of_this)
3715 error (_("no `this' in current language"));
3716
3717 frame = get_selected_frame (_("no frame selected"));
3718
3719 b = get_frame_block (frame, NULL);
3720
3721 sym = lookup_language_this (lang, b);
3722 if (sym == NULL)
3723 error (_("current stack frame does not contain a variable named `%s'"),
3724 lang->la_name_of_this);
3725
3726 return read_var_value (sym, frame);
3727 }
3728
3729 /* Return the value of the local variable, if one exists. Return NULL
3730 otherwise. Never throw error. */
3731
3732 struct value *
3733 value_of_this_silent (const struct language_defn *lang)
3734 {
3735 struct value *ret = NULL;
3736 volatile struct gdb_exception except;
3737
3738 TRY_CATCH (except, RETURN_MASK_ERROR)
3739 {
3740 ret = value_of_this (lang);
3741 }
3742
3743 return ret;
3744 }
3745
3746 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3747 elements long, starting at LOWBOUND. The result has the same lower
3748 bound as the original ARRAY. */
3749
3750 struct value *
3751 value_slice (struct value *array, int lowbound, int length)
3752 {
3753 struct type *slice_range_type, *slice_type, *range_type;
3754 LONGEST lowerbound, upperbound;
3755 struct value *slice;
3756 struct type *array_type;
3757
3758 array_type = check_typedef (value_type (array));
3759 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3760 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3761 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3762 error (_("cannot take slice of non-array"));
3763
3764 range_type = TYPE_INDEX_TYPE (array_type);
3765 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3766 error (_("slice from bad array or bitstring"));
3767
3768 if (lowbound < lowerbound || length < 0
3769 || lowbound + length - 1 > upperbound)
3770 error (_("slice out of range"));
3771
3772 /* FIXME-type-allocation: need a way to free this type when we are
3773 done with it. */
3774 slice_range_type = create_range_type ((struct type *) NULL,
3775 TYPE_TARGET_TYPE (range_type),
3776 lowbound,
3777 lowbound + length - 1);
3778 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3779 {
3780 int i;
3781
3782 slice_type = create_set_type ((struct type *) NULL,
3783 slice_range_type);
3784 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3785 slice = value_zero (slice_type, not_lval);
3786
3787 for (i = 0; i < length; i++)
3788 {
3789 int element = value_bit_index (array_type,
3790 value_contents (array),
3791 lowbound + i);
3792
3793 if (element < 0)
3794 error (_("internal error accessing bitstring"));
3795 else if (element > 0)
3796 {
3797 int j = i % TARGET_CHAR_BIT;
3798
3799 if (gdbarch_bits_big_endian (get_type_arch (array_type)))
3800 j = TARGET_CHAR_BIT - 1 - j;
3801 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3802 }
3803 }
3804 /* We should set the address, bitssize, and bitspos, so the
3805 slice can be used on the LHS, but that may require extensions
3806 to value_assign. For now, just leave as a non_lval.
3807 FIXME. */
3808 }
3809 else
3810 {
3811 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3812 LONGEST offset =
3813 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3814
3815 slice_type = create_array_type ((struct type *) NULL,
3816 element_type,
3817 slice_range_type);
3818 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3819
3820 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3821 slice = allocate_value_lazy (slice_type);
3822 else
3823 {
3824 slice = allocate_value (slice_type);
3825 value_contents_copy (slice, 0, array, offset,
3826 TYPE_LENGTH (slice_type));
3827 }
3828
3829 set_value_component_location (slice, array);
3830 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3831 set_value_offset (slice, value_offset (array) + offset);
3832 }
3833 return slice;
3834 }
3835
3836 /* Create a value for a FORTRAN complex number. Currently most of the
3837 time values are coerced to COMPLEX*16 (i.e. a complex number
3838 composed of 2 doubles. This really should be a smarter routine
3839 that figures out precision inteligently as opposed to assuming
3840 doubles. FIXME: fmb */
3841
3842 struct value *
3843 value_literal_complex (struct value *arg1,
3844 struct value *arg2,
3845 struct type *type)
3846 {
3847 struct value *val;
3848 struct type *real_type = TYPE_TARGET_TYPE (type);
3849
3850 val = allocate_value (type);
3851 arg1 = value_cast (real_type, arg1);
3852 arg2 = value_cast (real_type, arg2);
3853
3854 memcpy (value_contents_raw (val),
3855 value_contents (arg1), TYPE_LENGTH (real_type));
3856 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3857 value_contents (arg2), TYPE_LENGTH (real_type));
3858 return val;
3859 }
3860
3861 /* Cast a value into the appropriate complex data type. */
3862
3863 static struct value *
3864 cast_into_complex (struct type *type, struct value *val)
3865 {
3866 struct type *real_type = TYPE_TARGET_TYPE (type);
3867
3868 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3869 {
3870 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3871 struct value *re_val = allocate_value (val_real_type);
3872 struct value *im_val = allocate_value (val_real_type);
3873
3874 memcpy (value_contents_raw (re_val),
3875 value_contents (val), TYPE_LENGTH (val_real_type));
3876 memcpy (value_contents_raw (im_val),
3877 value_contents (val) + TYPE_LENGTH (val_real_type),
3878 TYPE_LENGTH (val_real_type));
3879
3880 return value_literal_complex (re_val, im_val, type);
3881 }
3882 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3883 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3884 return value_literal_complex (val,
3885 value_zero (real_type, not_lval),
3886 type);
3887 else
3888 error (_("cannot cast non-number to complex"));
3889 }
3890
3891 void
3892 _initialize_valops (void)
3893 {
3894 add_setshow_boolean_cmd ("overload-resolution", class_support,
3895 &overload_resolution, _("\
3896 Set overload resolution in evaluating C++ functions."), _("\
3897 Show overload resolution in evaluating C++ functions."),
3898 NULL, NULL,
3899 show_overload_resolution,
3900 &setlist, &showlist);
3901 overload_resolution = 1;
3902 }
This page took 0.111834 seconds and 4 git commands to generate.