* linespec.c (decode_objc): Add cleanup to free
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "dfp.h"
38 #include "user-regs.h"
39 #include "tracepoint.h"
40 #include <errno.h>
41 #include "gdb_string.h"
42 #include "gdb_assert.h"
43 #include "cp-support.h"
44 #include "observer.h"
45 #include "objfiles.h"
46 #include "symtab.h"
47 #include "exceptions.h"
48
49 extern int overload_debug;
50 /* Local functions. */
51
52 static int typecmp (int staticp, int varargs, int nargs,
53 struct field t1[], struct value *t2[]);
54
55 static struct value *search_struct_field (const char *, struct value *,
56 int, struct type *, int);
57
58 static struct value *search_struct_method (const char *, struct value **,
59 struct value **,
60 int, int *, struct type *);
61
62 static int find_oload_champ_namespace (struct value **, int,
63 const char *, const char *,
64 struct symbol ***,
65 struct badness_vector **,
66 const int no_adl);
67
68 static
69 int find_oload_champ_namespace_loop (struct value **, int,
70 const char *, const char *,
71 int, struct symbol ***,
72 struct badness_vector **, int *,
73 const int no_adl);
74
75 static int find_oload_champ (struct value **, int, int, int,
76 struct fn_field *, struct symbol **,
77 struct badness_vector **);
78
79 static int oload_method_static (int, struct fn_field *, int);
80
81 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
82
83 static enum
84 oload_classification classify_oload_match (struct badness_vector *,
85 int, int);
86
87 static struct value *value_struct_elt_for_reference (struct type *,
88 int, struct type *,
89 char *,
90 struct type *,
91 int, enum noside);
92
93 static struct value *value_namespace_elt (const struct type *,
94 char *, int , enum noside);
95
96 static struct value *value_maybe_namespace_elt (const struct type *,
97 char *, int,
98 enum noside);
99
100 static CORE_ADDR allocate_space_in_inferior (int);
101
102 static struct value *cast_into_complex (struct type *, struct value *);
103
104 static struct fn_field *find_method_list (struct value **, const char *,
105 int, struct type *, int *,
106 struct type **, int *);
107
108 void _initialize_valops (void);
109
110 #if 0
111 /* Flag for whether we want to abandon failed expression evals by
112 default. */
113
114 static int auto_abandon = 0;
115 #endif
116
117 int overload_resolution = 0;
118 static void
119 show_overload_resolution (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c,
121 const char *value)
122 {
123 fprintf_filtered (file, _("Overload resolution in evaluating "
124 "C++ functions is %s.\n"),
125 value);
126 }
127
128 /* Find the address of function name NAME in the inferior. If OBJF_P
129 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
130 is defined. */
131
132 struct value *
133 find_function_in_inferior (const char *name, struct objfile **objf_p)
134 {
135 struct symbol *sym;
136
137 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
138 if (sym != NULL)
139 {
140 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
141 {
142 error (_("\"%s\" exists in this program but is not a function."),
143 name);
144 }
145
146 if (objf_p)
147 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
148
149 return value_of_variable (sym, NULL);
150 }
151 else
152 {
153 struct minimal_symbol *msymbol =
154 lookup_minimal_symbol (name, NULL, NULL);
155
156 if (msymbol != NULL)
157 {
158 struct objfile *objfile = msymbol_objfile (msymbol);
159 struct gdbarch *gdbarch = get_objfile_arch (objfile);
160
161 struct type *type;
162 CORE_ADDR maddr;
163 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
164 type = lookup_function_type (type);
165 type = lookup_pointer_type (type);
166 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
167
168 if (objf_p)
169 *objf_p = objfile;
170
171 return value_from_pointer (type, maddr);
172 }
173 else
174 {
175 if (!target_has_execution)
176 error (_("evaluation of this expression "
177 "requires the target program to be active"));
178 else
179 error (_("evaluation of this expression requires the "
180 "program to have a function \"%s\"."),
181 name);
182 }
183 }
184 }
185
186 /* Allocate NBYTES of space in the inferior using the inferior's
187 malloc and return a value that is a pointer to the allocated
188 space. */
189
190 struct value *
191 value_allocate_space_in_inferior (int len)
192 {
193 struct objfile *objf;
194 struct value *val = find_function_in_inferior ("malloc", &objf);
195 struct gdbarch *gdbarch = get_objfile_arch (objf);
196 struct value *blocklen;
197
198 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
199 val = call_function_by_hand (val, 1, &blocklen);
200 if (value_logical_not (val))
201 {
202 if (!target_has_execution)
203 error (_("No memory available to program now: "
204 "you need to start the target first"));
205 else
206 error (_("No memory available to program: call to malloc failed"));
207 }
208 return val;
209 }
210
211 static CORE_ADDR
212 allocate_space_in_inferior (int len)
213 {
214 return value_as_long (value_allocate_space_in_inferior (len));
215 }
216
217 /* Cast struct value VAL to type TYPE and return as a value.
218 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
219 for this to work. Typedef to one of the codes is permitted.
220 Returns NULL if the cast is neither an upcast nor a downcast. */
221
222 static struct value *
223 value_cast_structs (struct type *type, struct value *v2)
224 {
225 struct type *t1;
226 struct type *t2;
227 struct value *v;
228
229 gdb_assert (type != NULL && v2 != NULL);
230
231 t1 = check_typedef (type);
232 t2 = check_typedef (value_type (v2));
233
234 /* Check preconditions. */
235 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
236 || TYPE_CODE (t1) == TYPE_CODE_UNION)
237 && !!"Precondition is that type is of STRUCT or UNION kind.");
238 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
239 || TYPE_CODE (t2) == TYPE_CODE_UNION)
240 && !!"Precondition is that value is of STRUCT or UNION kind");
241
242 if (TYPE_NAME (t1) != NULL
243 && TYPE_NAME (t2) != NULL
244 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
245 return NULL;
246
247 /* Upcasting: look in the type of the source to see if it contains the
248 type of the target as a superclass. If so, we'll need to
249 offset the pointer rather than just change its type. */
250 if (TYPE_NAME (t1) != NULL)
251 {
252 v = search_struct_field (type_name_no_tag (t1),
253 v2, 0, t2, 1);
254 if (v)
255 return v;
256 }
257
258 /* Downcasting: look in the type of the target to see if it contains the
259 type of the source as a superclass. If so, we'll need to
260 offset the pointer rather than just change its type. */
261 if (TYPE_NAME (t2) != NULL)
262 {
263 /* Try downcasting using the run-time type of the value. */
264 int full, top, using_enc;
265 struct type *real_type;
266
267 real_type = value_rtti_type (v2, &full, &top, &using_enc);
268 if (real_type)
269 {
270 v = value_full_object (v2, real_type, full, top, using_enc);
271 v = value_at_lazy (real_type, value_address (v));
272
273 /* We might be trying to cast to the outermost enclosing
274 type, in which case search_struct_field won't work. */
275 if (TYPE_NAME (real_type) != NULL
276 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
277 return v;
278
279 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
280 if (v)
281 return v;
282 }
283
284 /* Try downcasting using information from the destination type
285 T2. This wouldn't work properly for classes with virtual
286 bases, but those were handled above. */
287 v = search_struct_field (type_name_no_tag (t2),
288 value_zero (t1, not_lval), 0, t1, 1);
289 if (v)
290 {
291 /* Downcasting is possible (t1 is superclass of v2). */
292 CORE_ADDR addr2 = value_address (v2);
293
294 addr2 -= value_address (v) + value_embedded_offset (v);
295 return value_at (type, addr2);
296 }
297 }
298
299 return NULL;
300 }
301
302 /* Cast one pointer or reference type to another. Both TYPE and
303 the type of ARG2 should be pointer types, or else both should be
304 reference types. If SUBCLASS_CHECK is non-zero, this will force a
305 check to see whether TYPE is a superclass of ARG2's type. If
306 SUBCLASS_CHECK is zero, then the subclass check is done only when
307 ARG2 is itself non-zero. Returns the new pointer or reference. */
308
309 struct value *
310 value_cast_pointers (struct type *type, struct value *arg2,
311 int subclass_check)
312 {
313 struct type *type1 = check_typedef (type);
314 struct type *type2 = check_typedef (value_type (arg2));
315 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
316 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
317
318 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
319 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
320 && (subclass_check || !value_logical_not (arg2)))
321 {
322 struct value *v2;
323
324 if (TYPE_CODE (type2) == TYPE_CODE_REF)
325 v2 = coerce_ref (arg2);
326 else
327 v2 = value_ind (arg2);
328 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
329 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
330 v2 = value_cast_structs (t1, v2);
331 /* At this point we have what we can have, un-dereference if needed. */
332 if (v2)
333 {
334 struct value *v = value_addr (v2);
335
336 deprecated_set_value_type (v, type);
337 return v;
338 }
339 }
340
341 /* No superclass found, just change the pointer type. */
342 arg2 = value_copy (arg2);
343 deprecated_set_value_type (arg2, type);
344 set_value_enclosing_type (arg2, type);
345 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
346 return arg2;
347 }
348
349 /* Cast value ARG2 to type TYPE and return as a value.
350 More general than a C cast: accepts any two types of the same length,
351 and if ARG2 is an lvalue it can be cast into anything at all. */
352 /* In C++, casts may change pointer or object representations. */
353
354 struct value *
355 value_cast (struct type *type, struct value *arg2)
356 {
357 enum type_code code1;
358 enum type_code code2;
359 int scalar;
360 struct type *type2;
361
362 int convert_to_boolean = 0;
363
364 if (value_type (arg2) == type)
365 return arg2;
366
367 code1 = TYPE_CODE (check_typedef (type));
368
369 /* Check if we are casting struct reference to struct reference. */
370 if (code1 == TYPE_CODE_REF)
371 {
372 /* We dereference type; then we recurse and finally
373 we generate value of the given reference. Nothing wrong with
374 that. */
375 struct type *t1 = check_typedef (type);
376 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
377 struct value *val = value_cast (dereftype, arg2);
378
379 return value_ref (val);
380 }
381
382 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
383
384 if (code2 == TYPE_CODE_REF)
385 /* We deref the value and then do the cast. */
386 return value_cast (type, coerce_ref (arg2));
387
388 CHECK_TYPEDEF (type);
389 code1 = TYPE_CODE (type);
390 arg2 = coerce_ref (arg2);
391 type2 = check_typedef (value_type (arg2));
392
393 /* You can't cast to a reference type. See value_cast_pointers
394 instead. */
395 gdb_assert (code1 != TYPE_CODE_REF);
396
397 /* A cast to an undetermined-length array_type, such as
398 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
399 where N is sizeof(OBJECT)/sizeof(TYPE). */
400 if (code1 == TYPE_CODE_ARRAY)
401 {
402 struct type *element_type = TYPE_TARGET_TYPE (type);
403 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
404
405 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
406 {
407 struct type *range_type = TYPE_INDEX_TYPE (type);
408 int val_length = TYPE_LENGTH (type2);
409 LONGEST low_bound, high_bound, new_length;
410
411 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
412 low_bound = 0, high_bound = 0;
413 new_length = val_length / element_length;
414 if (val_length % element_length != 0)
415 warning (_("array element type size does not "
416 "divide object size in cast"));
417 /* FIXME-type-allocation: need a way to free this type when
418 we are done with it. */
419 range_type = create_range_type ((struct type *) NULL,
420 TYPE_TARGET_TYPE (range_type),
421 low_bound,
422 new_length + low_bound - 1);
423 deprecated_set_value_type (arg2,
424 create_array_type ((struct type *) NULL,
425 element_type,
426 range_type));
427 return arg2;
428 }
429 }
430
431 if (current_language->c_style_arrays
432 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
433 && !TYPE_VECTOR (type2))
434 arg2 = value_coerce_array (arg2);
435
436 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
437 arg2 = value_coerce_function (arg2);
438
439 type2 = check_typedef (value_type (arg2));
440 code2 = TYPE_CODE (type2);
441
442 if (code1 == TYPE_CODE_COMPLEX)
443 return cast_into_complex (type, arg2);
444 if (code1 == TYPE_CODE_BOOL)
445 {
446 code1 = TYPE_CODE_INT;
447 convert_to_boolean = 1;
448 }
449 if (code1 == TYPE_CODE_CHAR)
450 code1 = TYPE_CODE_INT;
451 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
452 code2 = TYPE_CODE_INT;
453
454 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
455 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
456 || code2 == TYPE_CODE_RANGE);
457
458 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
459 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
460 && TYPE_NAME (type) != 0)
461 {
462 struct value *v = value_cast_structs (type, arg2);
463
464 if (v)
465 return v;
466 }
467
468 if (code1 == TYPE_CODE_FLT && scalar)
469 return value_from_double (type, value_as_double (arg2));
470 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
471 {
472 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
473 int dec_len = TYPE_LENGTH (type);
474 gdb_byte dec[16];
475
476 if (code2 == TYPE_CODE_FLT)
477 decimal_from_floating (arg2, dec, dec_len, byte_order);
478 else if (code2 == TYPE_CODE_DECFLOAT)
479 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
480 byte_order, dec, dec_len, byte_order);
481 else
482 /* The only option left is an integral type. */
483 decimal_from_integral (arg2, dec, dec_len, byte_order);
484
485 return value_from_decfloat (type, dec);
486 }
487 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
488 || code1 == TYPE_CODE_RANGE)
489 && (scalar || code2 == TYPE_CODE_PTR
490 || code2 == TYPE_CODE_MEMBERPTR))
491 {
492 LONGEST longest;
493
494 /* When we cast pointers to integers, we mustn't use
495 gdbarch_pointer_to_address to find the address the pointer
496 represents, as value_as_long would. GDB should evaluate
497 expressions just as the compiler would --- and the compiler
498 sees a cast as a simple reinterpretation of the pointer's
499 bits. */
500 if (code2 == TYPE_CODE_PTR)
501 longest = extract_unsigned_integer
502 (value_contents (arg2), TYPE_LENGTH (type2),
503 gdbarch_byte_order (get_type_arch (type2)));
504 else
505 longest = value_as_long (arg2);
506 return value_from_longest (type, convert_to_boolean ?
507 (LONGEST) (longest ? 1 : 0) : longest);
508 }
509 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
510 || code2 == TYPE_CODE_ENUM
511 || code2 == TYPE_CODE_RANGE))
512 {
513 /* TYPE_LENGTH (type) is the length of a pointer, but we really
514 want the length of an address! -- we are really dealing with
515 addresses (i.e., gdb representations) not pointers (i.e.,
516 target representations) here.
517
518 This allows things like "print *(int *)0x01000234" to work
519 without printing a misleading message -- which would
520 otherwise occur when dealing with a target having two byte
521 pointers and four byte addresses. */
522
523 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
524 LONGEST longest = value_as_long (arg2);
525
526 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
527 {
528 if (longest >= ((LONGEST) 1 << addr_bit)
529 || longest <= -((LONGEST) 1 << addr_bit))
530 warning (_("value truncated"));
531 }
532 return value_from_longest (type, longest);
533 }
534 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
535 && value_as_long (arg2) == 0)
536 {
537 struct value *result = allocate_value (type);
538
539 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
540 return result;
541 }
542 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
543 && value_as_long (arg2) == 0)
544 {
545 /* The Itanium C++ ABI represents NULL pointers to members as
546 minus one, instead of biasing the normal case. */
547 return value_from_longest (type, -1);
548 }
549 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar)
550 {
551 /* Widen the scalar to a vector. */
552 struct type *eltype;
553 struct value *val;
554 LONGEST low_bound, high_bound;
555 int i;
556
557 if (!get_array_bounds (type, &low_bound, &high_bound))
558 error (_("Could not determine the vector bounds"));
559
560 eltype = check_typedef (TYPE_TARGET_TYPE (type));
561 arg2 = value_cast (eltype, arg2);
562 val = allocate_value (type);
563
564 for (i = 0; i < high_bound - low_bound + 1; i++)
565 {
566 /* Duplicate the contents of arg2 into the destination vector. */
567 memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)),
568 value_contents_all (arg2), TYPE_LENGTH (eltype));
569 }
570 return val;
571 }
572 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
573 {
574 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
575 return value_cast_pointers (type, arg2, 0);
576
577 arg2 = value_copy (arg2);
578 deprecated_set_value_type (arg2, type);
579 set_value_enclosing_type (arg2, type);
580 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
581 return arg2;
582 }
583 else if (VALUE_LVAL (arg2) == lval_memory)
584 return value_at_lazy (type, value_address (arg2));
585 else if (code1 == TYPE_CODE_VOID)
586 {
587 return value_zero (type, not_lval);
588 }
589 else
590 {
591 error (_("Invalid cast."));
592 return 0;
593 }
594 }
595
596 /* The C++ reinterpret_cast operator. */
597
598 struct value *
599 value_reinterpret_cast (struct type *type, struct value *arg)
600 {
601 struct value *result;
602 struct type *real_type = check_typedef (type);
603 struct type *arg_type, *dest_type;
604 int is_ref = 0;
605 enum type_code dest_code, arg_code;
606
607 /* Do reference, function, and array conversion. */
608 arg = coerce_array (arg);
609
610 /* Attempt to preserve the type the user asked for. */
611 dest_type = type;
612
613 /* If we are casting to a reference type, transform
614 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
615 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
616 {
617 is_ref = 1;
618 arg = value_addr (arg);
619 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
620 real_type = lookup_pointer_type (real_type);
621 }
622
623 arg_type = value_type (arg);
624
625 dest_code = TYPE_CODE (real_type);
626 arg_code = TYPE_CODE (arg_type);
627
628 /* We can convert pointer types, or any pointer type to int, or int
629 type to pointer. */
630 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
631 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
632 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
633 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
634 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
635 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
636 || (dest_code == arg_code
637 && (dest_code == TYPE_CODE_PTR
638 || dest_code == TYPE_CODE_METHODPTR
639 || dest_code == TYPE_CODE_MEMBERPTR)))
640 result = value_cast (dest_type, arg);
641 else
642 error (_("Invalid reinterpret_cast"));
643
644 if (is_ref)
645 result = value_cast (type, value_ref (value_ind (result)));
646
647 return result;
648 }
649
650 /* A helper for value_dynamic_cast. This implements the first of two
651 runtime checks: we iterate over all the base classes of the value's
652 class which are equal to the desired class; if only one of these
653 holds the value, then it is the answer. */
654
655 static int
656 dynamic_cast_check_1 (struct type *desired_type,
657 const gdb_byte *valaddr,
658 int embedded_offset,
659 CORE_ADDR address,
660 struct value *val,
661 struct type *search_type,
662 CORE_ADDR arg_addr,
663 struct type *arg_type,
664 struct value **result)
665 {
666 int i, result_count = 0;
667
668 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
669 {
670 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
671 address, val);
672
673 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
674 {
675 if (address + embedded_offset + offset >= arg_addr
676 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
677 {
678 ++result_count;
679 if (!*result)
680 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
681 address + embedded_offset + offset);
682 }
683 }
684 else
685 result_count += dynamic_cast_check_1 (desired_type,
686 valaddr,
687 embedded_offset + offset,
688 address, val,
689 TYPE_BASECLASS (search_type, i),
690 arg_addr,
691 arg_type,
692 result);
693 }
694
695 return result_count;
696 }
697
698 /* A helper for value_dynamic_cast. This implements the second of two
699 runtime checks: we look for a unique public sibling class of the
700 argument's declared class. */
701
702 static int
703 dynamic_cast_check_2 (struct type *desired_type,
704 const gdb_byte *valaddr,
705 int embedded_offset,
706 CORE_ADDR address,
707 struct value *val,
708 struct type *search_type,
709 struct value **result)
710 {
711 int i, result_count = 0;
712
713 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
714 {
715 int offset;
716
717 if (! BASETYPE_VIA_PUBLIC (search_type, i))
718 continue;
719
720 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
721 address, val);
722 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
723 {
724 ++result_count;
725 if (*result == NULL)
726 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
727 address + embedded_offset + offset);
728 }
729 else
730 result_count += dynamic_cast_check_2 (desired_type,
731 valaddr,
732 embedded_offset + offset,
733 address, val,
734 TYPE_BASECLASS (search_type, i),
735 result);
736 }
737
738 return result_count;
739 }
740
741 /* The C++ dynamic_cast operator. */
742
743 struct value *
744 value_dynamic_cast (struct type *type, struct value *arg)
745 {
746 int full, top, using_enc;
747 struct type *resolved_type = check_typedef (type);
748 struct type *arg_type = check_typedef (value_type (arg));
749 struct type *class_type, *rtti_type;
750 struct value *result, *tem, *original_arg = arg;
751 CORE_ADDR addr;
752 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
753
754 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
755 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
756 error (_("Argument to dynamic_cast must be a pointer or reference type"));
757 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
758 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
759 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
760
761 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
762 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
763 {
764 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
765 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
766 && value_as_long (arg) == 0))
767 error (_("Argument to dynamic_cast does not have pointer type"));
768 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
769 {
770 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
771 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
772 error (_("Argument to dynamic_cast does "
773 "not have pointer to class type"));
774 }
775
776 /* Handle NULL pointers. */
777 if (value_as_long (arg) == 0)
778 return value_zero (type, not_lval);
779
780 arg = value_ind (arg);
781 }
782 else
783 {
784 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
785 error (_("Argument to dynamic_cast does not have class type"));
786 }
787
788 /* If the classes are the same, just return the argument. */
789 if (class_types_same_p (class_type, arg_type))
790 return value_cast (type, arg);
791
792 /* If the target type is a unique base class of the argument's
793 declared type, just cast it. */
794 if (is_ancestor (class_type, arg_type))
795 {
796 if (is_unique_ancestor (class_type, arg))
797 return value_cast (type, original_arg);
798 error (_("Ambiguous dynamic_cast"));
799 }
800
801 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
802 if (! rtti_type)
803 error (_("Couldn't determine value's most derived type for dynamic_cast"));
804
805 /* Compute the most derived object's address. */
806 addr = value_address (arg);
807 if (full)
808 {
809 /* Done. */
810 }
811 else if (using_enc)
812 addr += top;
813 else
814 addr += top + value_embedded_offset (arg);
815
816 /* dynamic_cast<void *> means to return a pointer to the
817 most-derived object. */
818 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
819 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
820 return value_at_lazy (type, addr);
821
822 tem = value_at (type, addr);
823
824 /* The first dynamic check specified in 5.2.7. */
825 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
826 {
827 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
828 return tem;
829 result = NULL;
830 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
831 value_contents_for_printing (tem),
832 value_embedded_offset (tem),
833 value_address (tem), tem,
834 rtti_type, addr,
835 arg_type,
836 &result) == 1)
837 return value_cast (type,
838 is_ref ? value_ref (result) : value_addr (result));
839 }
840
841 /* The second dynamic check specified in 5.2.7. */
842 result = NULL;
843 if (is_public_ancestor (arg_type, rtti_type)
844 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
845 value_contents_for_printing (tem),
846 value_embedded_offset (tem),
847 value_address (tem), tem,
848 rtti_type, &result) == 1)
849 return value_cast (type,
850 is_ref ? value_ref (result) : value_addr (result));
851
852 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
853 return value_zero (type, not_lval);
854
855 error (_("dynamic_cast failed"));
856 }
857
858 /* Create a value of type TYPE that is zero, and return it. */
859
860 struct value *
861 value_zero (struct type *type, enum lval_type lv)
862 {
863 struct value *val = allocate_value (type);
864
865 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
866 return val;
867 }
868
869 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
870
871 struct value *
872 value_one (struct type *type)
873 {
874 struct type *type1 = check_typedef (type);
875 struct value *val;
876
877 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
878 {
879 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
880 gdb_byte v[16];
881
882 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
883 val = value_from_decfloat (type, v);
884 }
885 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
886 {
887 val = value_from_double (type, (DOUBLEST) 1);
888 }
889 else if (is_integral_type (type1))
890 {
891 val = value_from_longest (type, (LONGEST) 1);
892 }
893 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
894 {
895 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
896 int i;
897 LONGEST low_bound, high_bound;
898 struct value *tmp;
899
900 if (!get_array_bounds (type1, &low_bound, &high_bound))
901 error (_("Could not determine the vector bounds"));
902
903 val = allocate_value (type);
904 for (i = 0; i < high_bound - low_bound + 1; i++)
905 {
906 tmp = value_one (eltype);
907 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
908 value_contents_all (tmp), TYPE_LENGTH (eltype));
909 }
910 }
911 else
912 {
913 error (_("Not a numeric type."));
914 }
915
916 /* value_one result is never used for assignments to. */
917 gdb_assert (VALUE_LVAL (val) == not_lval);
918
919 return val;
920 }
921
922 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
923
924 static struct value *
925 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
926 {
927 struct value *val;
928
929 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
930 error (_("Attempt to dereference a generic pointer."));
931
932 val = value_from_contents_and_address (type, NULL, addr);
933
934 if (!lazy)
935 value_fetch_lazy (val);
936
937 return val;
938 }
939
940 /* Return a value with type TYPE located at ADDR.
941
942 Call value_at only if the data needs to be fetched immediately;
943 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
944 value_at_lazy instead. value_at_lazy simply records the address of
945 the data and sets the lazy-evaluation-required flag. The lazy flag
946 is tested in the value_contents macro, which is used if and when
947 the contents are actually required.
948
949 Note: value_at does *NOT* handle embedded offsets; perform such
950 adjustments before or after calling it. */
951
952 struct value *
953 value_at (struct type *type, CORE_ADDR addr)
954 {
955 return get_value_at (type, addr, 0);
956 }
957
958 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
959
960 struct value *
961 value_at_lazy (struct type *type, CORE_ADDR addr)
962 {
963 return get_value_at (type, addr, 1);
964 }
965
966 /* Called only from the value_contents and value_contents_all()
967 macros, if the current data for a variable needs to be loaded into
968 value_contents(VAL). Fetches the data from the user's process, and
969 clears the lazy flag to indicate that the data in the buffer is
970 valid.
971
972 If the value is zero-length, we avoid calling read_memory, which
973 would abort. We mark the value as fetched anyway -- all 0 bytes of
974 it.
975
976 This function returns a value because it is used in the
977 value_contents macro as part of an expression, where a void would
978 not work. The value is ignored. */
979
980 int
981 value_fetch_lazy (struct value *val)
982 {
983 gdb_assert (value_lazy (val));
984 allocate_value_contents (val);
985 if (value_bitsize (val))
986 {
987 /* To read a lazy bitfield, read the entire enclosing value. This
988 prevents reading the same block of (possibly volatile) memory once
989 per bitfield. It would be even better to read only the containing
990 word, but we have no way to record that just specific bits of a
991 value have been fetched. */
992 struct type *type = check_typedef (value_type (val));
993 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
994 struct value *parent = value_parent (val);
995 LONGEST offset = value_offset (val);
996 LONGEST num;
997 int length = TYPE_LENGTH (type);
998
999 if (!value_bits_valid (val,
1000 TARGET_CHAR_BIT * offset + value_bitpos (val),
1001 value_bitsize (val)))
1002 error (_("value has been optimized out"));
1003
1004 if (!unpack_value_bits_as_long (value_type (val),
1005 value_contents_for_printing (parent),
1006 offset,
1007 value_bitpos (val),
1008 value_bitsize (val), parent, &num))
1009 mark_value_bytes_unavailable (val,
1010 value_embedded_offset (val),
1011 length);
1012 else
1013 store_signed_integer (value_contents_raw (val), length,
1014 byte_order, num);
1015 }
1016 else if (VALUE_LVAL (val) == lval_memory)
1017 {
1018 CORE_ADDR addr = value_address (val);
1019 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
1020
1021 if (length)
1022 read_value_memory (val, 0, value_stack (val),
1023 addr, value_contents_all_raw (val), length);
1024 }
1025 else if (VALUE_LVAL (val) == lval_register)
1026 {
1027 struct frame_info *frame;
1028 int regnum;
1029 struct type *type = check_typedef (value_type (val));
1030 struct value *new_val = val, *mark = value_mark ();
1031
1032 /* Offsets are not supported here; lazy register values must
1033 refer to the entire register. */
1034 gdb_assert (value_offset (val) == 0);
1035
1036 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
1037 {
1038 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
1039 regnum = VALUE_REGNUM (new_val);
1040
1041 gdb_assert (frame != NULL);
1042
1043 /* Convertible register routines are used for multi-register
1044 values and for interpretation in different types
1045 (e.g. float or int from a double register). Lazy
1046 register values should have the register's natural type,
1047 so they do not apply. */
1048 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
1049 regnum, type));
1050
1051 new_val = get_frame_register_value (frame, regnum);
1052 }
1053
1054 /* If it's still lazy (for instance, a saved register on the
1055 stack), fetch it. */
1056 if (value_lazy (new_val))
1057 value_fetch_lazy (new_val);
1058
1059 /* If the register was not saved, mark it optimized out. */
1060 if (value_optimized_out (new_val))
1061 set_value_optimized_out (val, 1);
1062 else
1063 {
1064 set_value_lazy (val, 0);
1065 value_contents_copy (val, value_embedded_offset (val),
1066 new_val, value_embedded_offset (new_val),
1067 TYPE_LENGTH (type));
1068 }
1069
1070 if (frame_debug)
1071 {
1072 struct gdbarch *gdbarch;
1073 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1074 regnum = VALUE_REGNUM (val);
1075 gdbarch = get_frame_arch (frame);
1076
1077 fprintf_unfiltered (gdb_stdlog,
1078 "{ value_fetch_lazy "
1079 "(frame=%d,regnum=%d(%s),...) ",
1080 frame_relative_level (frame), regnum,
1081 user_reg_map_regnum_to_name (gdbarch, regnum));
1082
1083 fprintf_unfiltered (gdb_stdlog, "->");
1084 if (value_optimized_out (new_val))
1085 fprintf_unfiltered (gdb_stdlog, " optimized out");
1086 else
1087 {
1088 int i;
1089 const gdb_byte *buf = value_contents (new_val);
1090
1091 if (VALUE_LVAL (new_val) == lval_register)
1092 fprintf_unfiltered (gdb_stdlog, " register=%d",
1093 VALUE_REGNUM (new_val));
1094 else if (VALUE_LVAL (new_val) == lval_memory)
1095 fprintf_unfiltered (gdb_stdlog, " address=%s",
1096 paddress (gdbarch,
1097 value_address (new_val)));
1098 else
1099 fprintf_unfiltered (gdb_stdlog, " computed");
1100
1101 fprintf_unfiltered (gdb_stdlog, " bytes=");
1102 fprintf_unfiltered (gdb_stdlog, "[");
1103 for (i = 0; i < register_size (gdbarch, regnum); i++)
1104 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1105 fprintf_unfiltered (gdb_stdlog, "]");
1106 }
1107
1108 fprintf_unfiltered (gdb_stdlog, " }\n");
1109 }
1110
1111 /* Dispose of the intermediate values. This prevents
1112 watchpoints from trying to watch the saved frame pointer. */
1113 value_free_to_mark (mark);
1114 }
1115 else if (VALUE_LVAL (val) == lval_computed
1116 && value_computed_funcs (val)->read != NULL)
1117 value_computed_funcs (val)->read (val);
1118 else if (value_optimized_out (val))
1119 /* Keep it optimized out. */;
1120 else
1121 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
1122
1123 set_value_lazy (val, 0);
1124 return 0;
1125 }
1126
1127 void
1128 read_value_memory (struct value *val, int embedded_offset,
1129 int stack, CORE_ADDR memaddr,
1130 gdb_byte *buffer, size_t length)
1131 {
1132 if (length)
1133 {
1134 VEC(mem_range_s) *available_memory;
1135
1136 if (get_traceframe_number () < 0
1137 || !traceframe_available_memory (&available_memory, memaddr, length))
1138 {
1139 if (stack)
1140 read_stack (memaddr, buffer, length);
1141 else
1142 read_memory (memaddr, buffer, length);
1143 }
1144 else
1145 {
1146 struct target_section_table *table;
1147 struct cleanup *old_chain;
1148 CORE_ADDR unavail;
1149 mem_range_s *r;
1150 int i;
1151
1152 /* Fallback to reading from read-only sections. */
1153 table = target_get_section_table (&exec_ops);
1154 available_memory =
1155 section_table_available_memory (available_memory,
1156 memaddr, length,
1157 table->sections,
1158 table->sections_end);
1159
1160 old_chain = make_cleanup (VEC_cleanup(mem_range_s),
1161 &available_memory);
1162
1163 normalize_mem_ranges (available_memory);
1164
1165 /* Mark which bytes are unavailable, and read those which
1166 are available. */
1167
1168 unavail = memaddr;
1169
1170 for (i = 0;
1171 VEC_iterate (mem_range_s, available_memory, i, r);
1172 i++)
1173 {
1174 if (mem_ranges_overlap (r->start, r->length,
1175 memaddr, length))
1176 {
1177 CORE_ADDR lo1, hi1, lo2, hi2;
1178 CORE_ADDR start, end;
1179
1180 /* Get the intersection window. */
1181 lo1 = memaddr;
1182 hi1 = memaddr + length;
1183 lo2 = r->start;
1184 hi2 = r->start + r->length;
1185 start = max (lo1, lo2);
1186 end = min (hi1, hi2);
1187
1188 gdb_assert (end - memaddr <= length);
1189
1190 if (start > unavail)
1191 mark_value_bytes_unavailable (val,
1192 (embedded_offset
1193 + unavail - memaddr),
1194 start - unavail);
1195 unavail = end;
1196
1197 read_memory (start, buffer + start - memaddr, end - start);
1198 }
1199 }
1200
1201 if (unavail != memaddr + length)
1202 mark_value_bytes_unavailable (val,
1203 embedded_offset + unavail - memaddr,
1204 (memaddr + length) - unavail);
1205
1206 do_cleanups (old_chain);
1207 }
1208 }
1209 }
1210
1211 /* Store the contents of FROMVAL into the location of TOVAL.
1212 Return a new value with the location of TOVAL and contents of FROMVAL. */
1213
1214 struct value *
1215 value_assign (struct value *toval, struct value *fromval)
1216 {
1217 struct type *type;
1218 struct value *val;
1219 struct frame_id old_frame;
1220
1221 if (!deprecated_value_modifiable (toval))
1222 error (_("Left operand of assignment is not a modifiable lvalue."));
1223
1224 toval = coerce_ref (toval);
1225
1226 type = value_type (toval);
1227 if (VALUE_LVAL (toval) != lval_internalvar)
1228 fromval = value_cast (type, fromval);
1229 else
1230 {
1231 /* Coerce arrays and functions to pointers, except for arrays
1232 which only live in GDB's storage. */
1233 if (!value_must_coerce_to_target (fromval))
1234 fromval = coerce_array (fromval);
1235 }
1236
1237 CHECK_TYPEDEF (type);
1238
1239 /* Since modifying a register can trash the frame chain, and
1240 modifying memory can trash the frame cache, we save the old frame
1241 and then restore the new frame afterwards. */
1242 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1243
1244 switch (VALUE_LVAL (toval))
1245 {
1246 case lval_internalvar:
1247 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1248 return value_of_internalvar (get_type_arch (type),
1249 VALUE_INTERNALVAR (toval));
1250
1251 case lval_internalvar_component:
1252 set_internalvar_component (VALUE_INTERNALVAR (toval),
1253 value_offset (toval),
1254 value_bitpos (toval),
1255 value_bitsize (toval),
1256 fromval);
1257 break;
1258
1259 case lval_memory:
1260 {
1261 const gdb_byte *dest_buffer;
1262 CORE_ADDR changed_addr;
1263 int changed_len;
1264 gdb_byte buffer[sizeof (LONGEST)];
1265
1266 if (value_bitsize (toval))
1267 {
1268 struct value *parent = value_parent (toval);
1269
1270 changed_addr = value_address (parent) + value_offset (toval);
1271 changed_len = (value_bitpos (toval)
1272 + value_bitsize (toval)
1273 + HOST_CHAR_BIT - 1)
1274 / HOST_CHAR_BIT;
1275
1276 /* If we can read-modify-write exactly the size of the
1277 containing type (e.g. short or int) then do so. This
1278 is safer for volatile bitfields mapped to hardware
1279 registers. */
1280 if (changed_len < TYPE_LENGTH (type)
1281 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1282 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1283 changed_len = TYPE_LENGTH (type);
1284
1285 if (changed_len > (int) sizeof (LONGEST))
1286 error (_("Can't handle bitfields which "
1287 "don't fit in a %d bit word."),
1288 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1289
1290 read_memory (changed_addr, buffer, changed_len);
1291 modify_field (type, buffer, value_as_long (fromval),
1292 value_bitpos (toval), value_bitsize (toval));
1293 dest_buffer = buffer;
1294 }
1295 else
1296 {
1297 changed_addr = value_address (toval);
1298 changed_len = TYPE_LENGTH (type);
1299 dest_buffer = value_contents (fromval);
1300 }
1301
1302 write_memory (changed_addr, dest_buffer, changed_len);
1303 observer_notify_memory_changed (changed_addr, changed_len,
1304 dest_buffer);
1305 }
1306 break;
1307
1308 case lval_register:
1309 {
1310 struct frame_info *frame;
1311 struct gdbarch *gdbarch;
1312 int value_reg;
1313
1314 /* Figure out which frame this is in currently. */
1315 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1316 value_reg = VALUE_REGNUM (toval);
1317
1318 if (!frame)
1319 error (_("Value being assigned to is no longer active."));
1320
1321 gdbarch = get_frame_arch (frame);
1322 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1323 {
1324 /* If TOVAL is a special machine register requiring
1325 conversion of program values to a special raw
1326 format. */
1327 gdbarch_value_to_register (gdbarch, frame,
1328 VALUE_REGNUM (toval), type,
1329 value_contents (fromval));
1330 }
1331 else
1332 {
1333 if (value_bitsize (toval))
1334 {
1335 struct value *parent = value_parent (toval);
1336 int offset = value_offset (parent) + value_offset (toval);
1337 int changed_len;
1338 gdb_byte buffer[sizeof (LONGEST)];
1339 int optim, unavail;
1340
1341 changed_len = (value_bitpos (toval)
1342 + value_bitsize (toval)
1343 + HOST_CHAR_BIT - 1)
1344 / HOST_CHAR_BIT;
1345
1346 if (changed_len > (int) sizeof (LONGEST))
1347 error (_("Can't handle bitfields which "
1348 "don't fit in a %d bit word."),
1349 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1350
1351 if (!get_frame_register_bytes (frame, value_reg, offset,
1352 changed_len, buffer,
1353 &optim, &unavail))
1354 {
1355 if (optim)
1356 error (_("value has been optimized out"));
1357 if (unavail)
1358 throw_error (NOT_AVAILABLE_ERROR,
1359 _("value is not available"));
1360 }
1361
1362 modify_field (type, buffer, value_as_long (fromval),
1363 value_bitpos (toval), value_bitsize (toval));
1364
1365 put_frame_register_bytes (frame, value_reg, offset,
1366 changed_len, buffer);
1367 }
1368 else
1369 {
1370 put_frame_register_bytes (frame, value_reg,
1371 value_offset (toval),
1372 TYPE_LENGTH (type),
1373 value_contents (fromval));
1374 }
1375 }
1376
1377 if (deprecated_register_changed_hook)
1378 deprecated_register_changed_hook (-1);
1379 observer_notify_target_changed (&current_target);
1380 break;
1381 }
1382
1383 case lval_computed:
1384 {
1385 const struct lval_funcs *funcs = value_computed_funcs (toval);
1386
1387 if (funcs->write != NULL)
1388 {
1389 funcs->write (toval, fromval);
1390 break;
1391 }
1392 }
1393 /* Fall through. */
1394
1395 default:
1396 error (_("Left operand of assignment is not an lvalue."));
1397 }
1398
1399 /* Assigning to the stack pointer, frame pointer, and other
1400 (architecture and calling convention specific) registers may
1401 cause the frame cache to be out of date. Assigning to memory
1402 also can. We just do this on all assignments to registers or
1403 memory, for simplicity's sake; I doubt the slowdown matters. */
1404 switch (VALUE_LVAL (toval))
1405 {
1406 case lval_memory:
1407 case lval_register:
1408 case lval_computed:
1409
1410 reinit_frame_cache ();
1411
1412 /* Having destroyed the frame cache, restore the selected
1413 frame. */
1414
1415 /* FIXME: cagney/2002-11-02: There has to be a better way of
1416 doing this. Instead of constantly saving/restoring the
1417 frame. Why not create a get_selected_frame() function that,
1418 having saved the selected frame's ID can automatically
1419 re-find the previously selected frame automatically. */
1420
1421 {
1422 struct frame_info *fi = frame_find_by_id (old_frame);
1423
1424 if (fi != NULL)
1425 select_frame (fi);
1426 }
1427
1428 break;
1429 default:
1430 break;
1431 }
1432
1433 /* If the field does not entirely fill a LONGEST, then zero the sign
1434 bits. If the field is signed, and is negative, then sign
1435 extend. */
1436 if ((value_bitsize (toval) > 0)
1437 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1438 {
1439 LONGEST fieldval = value_as_long (fromval);
1440 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1441
1442 fieldval &= valmask;
1443 if (!TYPE_UNSIGNED (type)
1444 && (fieldval & (valmask ^ (valmask >> 1))))
1445 fieldval |= ~valmask;
1446
1447 fromval = value_from_longest (type, fieldval);
1448 }
1449
1450 /* The return value is a copy of TOVAL so it shares its location
1451 information, but its contents are updated from FROMVAL. This
1452 implies the returned value is not lazy, even if TOVAL was. */
1453 val = value_copy (toval);
1454 set_value_lazy (val, 0);
1455 memcpy (value_contents_raw (val), value_contents (fromval),
1456 TYPE_LENGTH (type));
1457
1458 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1459 in the case of pointer types. For object types, the enclosing type
1460 and embedded offset must *not* be copied: the target object refered
1461 to by TOVAL retains its original dynamic type after assignment. */
1462 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1463 {
1464 set_value_enclosing_type (val, value_enclosing_type (fromval));
1465 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1466 }
1467
1468 return val;
1469 }
1470
1471 /* Extend a value VAL to COUNT repetitions of its type. */
1472
1473 struct value *
1474 value_repeat (struct value *arg1, int count)
1475 {
1476 struct value *val;
1477
1478 if (VALUE_LVAL (arg1) != lval_memory)
1479 error (_("Only values in memory can be extended with '@'."));
1480 if (count < 1)
1481 error (_("Invalid number %d of repetitions."), count);
1482
1483 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1484
1485 VALUE_LVAL (val) = lval_memory;
1486 set_value_address (val, value_address (arg1));
1487
1488 read_value_memory (val, 0, value_stack (val), value_address (val),
1489 value_contents_all_raw (val),
1490 TYPE_LENGTH (value_enclosing_type (val)));
1491
1492 return val;
1493 }
1494
1495 struct value *
1496 value_of_variable (struct symbol *var, const struct block *b)
1497 {
1498 struct frame_info *frame;
1499
1500 if (!symbol_read_needs_frame (var))
1501 frame = NULL;
1502 else if (!b)
1503 frame = get_selected_frame (_("No frame selected."));
1504 else
1505 {
1506 frame = block_innermost_frame (b);
1507 if (!frame)
1508 {
1509 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1510 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1511 error (_("No frame is currently executing in block %s."),
1512 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1513 else
1514 error (_("No frame is currently executing in specified block"));
1515 }
1516 }
1517
1518 return read_var_value (var, frame);
1519 }
1520
1521 struct value *
1522 address_of_variable (struct symbol *var, struct block *b)
1523 {
1524 struct type *type = SYMBOL_TYPE (var);
1525 struct value *val;
1526
1527 /* Evaluate it first; if the result is a memory address, we're fine.
1528 Lazy evaluation pays off here. */
1529
1530 val = value_of_variable (var, b);
1531
1532 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1533 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1534 {
1535 CORE_ADDR addr = value_address (val);
1536
1537 return value_from_pointer (lookup_pointer_type (type), addr);
1538 }
1539
1540 /* Not a memory address; check what the problem was. */
1541 switch (VALUE_LVAL (val))
1542 {
1543 case lval_register:
1544 {
1545 struct frame_info *frame;
1546 const char *regname;
1547
1548 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1549 gdb_assert (frame);
1550
1551 regname = gdbarch_register_name (get_frame_arch (frame),
1552 VALUE_REGNUM (val));
1553 gdb_assert (regname && *regname);
1554
1555 error (_("Address requested for identifier "
1556 "\"%s\" which is in register $%s"),
1557 SYMBOL_PRINT_NAME (var), regname);
1558 break;
1559 }
1560
1561 default:
1562 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1563 SYMBOL_PRINT_NAME (var));
1564 break;
1565 }
1566
1567 return val;
1568 }
1569
1570 /* Return one if VAL does not live in target memory, but should in order
1571 to operate on it. Otherwise return zero. */
1572
1573 int
1574 value_must_coerce_to_target (struct value *val)
1575 {
1576 struct type *valtype;
1577
1578 /* The only lval kinds which do not live in target memory. */
1579 if (VALUE_LVAL (val) != not_lval
1580 && VALUE_LVAL (val) != lval_internalvar)
1581 return 0;
1582
1583 valtype = check_typedef (value_type (val));
1584
1585 switch (TYPE_CODE (valtype))
1586 {
1587 case TYPE_CODE_ARRAY:
1588 return TYPE_VECTOR (valtype) ? 0 : 1;
1589 case TYPE_CODE_STRING:
1590 return 1;
1591 default:
1592 return 0;
1593 }
1594 }
1595
1596 /* Make sure that VAL lives in target memory if it's supposed to. For
1597 instance, strings are constructed as character arrays in GDB's
1598 storage, and this function copies them to the target. */
1599
1600 struct value *
1601 value_coerce_to_target (struct value *val)
1602 {
1603 LONGEST length;
1604 CORE_ADDR addr;
1605
1606 if (!value_must_coerce_to_target (val))
1607 return val;
1608
1609 length = TYPE_LENGTH (check_typedef (value_type (val)));
1610 addr = allocate_space_in_inferior (length);
1611 write_memory (addr, value_contents (val), length);
1612 return value_at_lazy (value_type (val), addr);
1613 }
1614
1615 /* Given a value which is an array, return a value which is a pointer
1616 to its first element, regardless of whether or not the array has a
1617 nonzero lower bound.
1618
1619 FIXME: A previous comment here indicated that this routine should
1620 be substracting the array's lower bound. It's not clear to me that
1621 this is correct. Given an array subscripting operation, it would
1622 certainly work to do the adjustment here, essentially computing:
1623
1624 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1625
1626 However I believe a more appropriate and logical place to account
1627 for the lower bound is to do so in value_subscript, essentially
1628 computing:
1629
1630 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1631
1632 As further evidence consider what would happen with operations
1633 other than array subscripting, where the caller would get back a
1634 value that had an address somewhere before the actual first element
1635 of the array, and the information about the lower bound would be
1636 lost because of the coercion to pointer type. */
1637
1638 struct value *
1639 value_coerce_array (struct value *arg1)
1640 {
1641 struct type *type = check_typedef (value_type (arg1));
1642
1643 /* If the user tries to do something requiring a pointer with an
1644 array that has not yet been pushed to the target, then this would
1645 be a good time to do so. */
1646 arg1 = value_coerce_to_target (arg1);
1647
1648 if (VALUE_LVAL (arg1) != lval_memory)
1649 error (_("Attempt to take address of value not located in memory."));
1650
1651 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1652 value_address (arg1));
1653 }
1654
1655 /* Given a value which is a function, return a value which is a pointer
1656 to it. */
1657
1658 struct value *
1659 value_coerce_function (struct value *arg1)
1660 {
1661 struct value *retval;
1662
1663 if (VALUE_LVAL (arg1) != lval_memory)
1664 error (_("Attempt to take address of value not located in memory."));
1665
1666 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1667 value_address (arg1));
1668 return retval;
1669 }
1670
1671 /* Return a pointer value for the object for which ARG1 is the
1672 contents. */
1673
1674 struct value *
1675 value_addr (struct value *arg1)
1676 {
1677 struct value *arg2;
1678 struct type *type = check_typedef (value_type (arg1));
1679
1680 if (TYPE_CODE (type) == TYPE_CODE_REF)
1681 {
1682 /* Copy the value, but change the type from (T&) to (T*). We
1683 keep the same location information, which is efficient, and
1684 allows &(&X) to get the location containing the reference. */
1685 arg2 = value_copy (arg1);
1686 deprecated_set_value_type (arg2,
1687 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1688 return arg2;
1689 }
1690 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1691 return value_coerce_function (arg1);
1692
1693 /* If this is an array that has not yet been pushed to the target,
1694 then this would be a good time to force it to memory. */
1695 arg1 = value_coerce_to_target (arg1);
1696
1697 if (VALUE_LVAL (arg1) != lval_memory)
1698 error (_("Attempt to take address of value not located in memory."));
1699
1700 /* Get target memory address. */
1701 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1702 (value_address (arg1)
1703 + value_embedded_offset (arg1)));
1704
1705 /* This may be a pointer to a base subobject; so remember the
1706 full derived object's type ... */
1707 set_value_enclosing_type (arg2,
1708 lookup_pointer_type (value_enclosing_type (arg1)));
1709 /* ... and also the relative position of the subobject in the full
1710 object. */
1711 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1712 return arg2;
1713 }
1714
1715 /* Return a reference value for the object for which ARG1 is the
1716 contents. */
1717
1718 struct value *
1719 value_ref (struct value *arg1)
1720 {
1721 struct value *arg2;
1722 struct type *type = check_typedef (value_type (arg1));
1723
1724 if (TYPE_CODE (type) == TYPE_CODE_REF)
1725 return arg1;
1726
1727 arg2 = value_addr (arg1);
1728 deprecated_set_value_type (arg2, lookup_reference_type (type));
1729 return arg2;
1730 }
1731
1732 /* Given a value of a pointer type, apply the C unary * operator to
1733 it. */
1734
1735 struct value *
1736 value_ind (struct value *arg1)
1737 {
1738 struct type *base_type;
1739 struct value *arg2;
1740
1741 arg1 = coerce_array (arg1);
1742
1743 base_type = check_typedef (value_type (arg1));
1744
1745 if (VALUE_LVAL (arg1) == lval_computed)
1746 {
1747 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1748
1749 if (funcs->indirect)
1750 {
1751 struct value *result = funcs->indirect (arg1);
1752
1753 if (result)
1754 return result;
1755 }
1756 }
1757
1758 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1759 {
1760 struct type *enc_type;
1761
1762 /* We may be pointing to something embedded in a larger object.
1763 Get the real type of the enclosing object. */
1764 enc_type = check_typedef (value_enclosing_type (arg1));
1765 enc_type = TYPE_TARGET_TYPE (enc_type);
1766
1767 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1768 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1769 /* For functions, go through find_function_addr, which knows
1770 how to handle function descriptors. */
1771 arg2 = value_at_lazy (enc_type,
1772 find_function_addr (arg1, NULL));
1773 else
1774 /* Retrieve the enclosing object pointed to. */
1775 arg2 = value_at_lazy (enc_type,
1776 (value_as_address (arg1)
1777 - value_pointed_to_offset (arg1)));
1778
1779 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1780 }
1781
1782 error (_("Attempt to take contents of a non-pointer value."));
1783 return 0; /* For lint -- never reached. */
1784 }
1785 \f
1786 /* Create a value for an array by allocating space in GDB, copying the
1787 data into that space, and then setting up an array value.
1788
1789 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1790 is populated from the values passed in ELEMVEC.
1791
1792 The element type of the array is inherited from the type of the
1793 first element, and all elements must have the same size (though we
1794 don't currently enforce any restriction on their types). */
1795
1796 struct value *
1797 value_array (int lowbound, int highbound, struct value **elemvec)
1798 {
1799 int nelem;
1800 int idx;
1801 unsigned int typelength;
1802 struct value *val;
1803 struct type *arraytype;
1804
1805 /* Validate that the bounds are reasonable and that each of the
1806 elements have the same size. */
1807
1808 nelem = highbound - lowbound + 1;
1809 if (nelem <= 0)
1810 {
1811 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1812 }
1813 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1814 for (idx = 1; idx < nelem; idx++)
1815 {
1816 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1817 {
1818 error (_("array elements must all be the same size"));
1819 }
1820 }
1821
1822 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1823 lowbound, highbound);
1824
1825 if (!current_language->c_style_arrays)
1826 {
1827 val = allocate_value (arraytype);
1828 for (idx = 0; idx < nelem; idx++)
1829 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1830 typelength);
1831 return val;
1832 }
1833
1834 /* Allocate space to store the array, and then initialize it by
1835 copying in each element. */
1836
1837 val = allocate_value (arraytype);
1838 for (idx = 0; idx < nelem; idx++)
1839 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1840 return val;
1841 }
1842
1843 struct value *
1844 value_cstring (char *ptr, int len, struct type *char_type)
1845 {
1846 struct value *val;
1847 int lowbound = current_language->string_lower_bound;
1848 int highbound = len / TYPE_LENGTH (char_type);
1849 struct type *stringtype
1850 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1851
1852 val = allocate_value (stringtype);
1853 memcpy (value_contents_raw (val), ptr, len);
1854 return val;
1855 }
1856
1857 /* Create a value for a string constant by allocating space in the
1858 inferior, copying the data into that space, and returning the
1859 address with type TYPE_CODE_STRING. PTR points to the string
1860 constant data; LEN is number of characters.
1861
1862 Note that string types are like array of char types with a lower
1863 bound of zero and an upper bound of LEN - 1. Also note that the
1864 string may contain embedded null bytes. */
1865
1866 struct value *
1867 value_string (char *ptr, int len, struct type *char_type)
1868 {
1869 struct value *val;
1870 int lowbound = current_language->string_lower_bound;
1871 int highbound = len / TYPE_LENGTH (char_type);
1872 struct type *stringtype
1873 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1874
1875 val = allocate_value (stringtype);
1876 memcpy (value_contents_raw (val), ptr, len);
1877 return val;
1878 }
1879
1880 struct value *
1881 value_bitstring (char *ptr, int len, struct type *index_type)
1882 {
1883 struct value *val;
1884 struct type *domain_type
1885 = create_range_type (NULL, index_type, 0, len - 1);
1886 struct type *type = create_set_type (NULL, domain_type);
1887
1888 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1889 val = allocate_value (type);
1890 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1891 return val;
1892 }
1893 \f
1894 /* See if we can pass arguments in T2 to a function which takes
1895 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1896 a NULL-terminated vector. If some arguments need coercion of some
1897 sort, then the coerced values are written into T2. Return value is
1898 0 if the arguments could be matched, or the position at which they
1899 differ if not.
1900
1901 STATICP is nonzero if the T1 argument list came from a static
1902 member function. T2 will still include the ``this'' pointer, but
1903 it will be skipped.
1904
1905 For non-static member functions, we ignore the first argument,
1906 which is the type of the instance variable. This is because we
1907 want to handle calls with objects from derived classes. This is
1908 not entirely correct: we should actually check to make sure that a
1909 requested operation is type secure, shouldn't we? FIXME. */
1910
1911 static int
1912 typecmp (int staticp, int varargs, int nargs,
1913 struct field t1[], struct value *t2[])
1914 {
1915 int i;
1916
1917 if (t2 == 0)
1918 internal_error (__FILE__, __LINE__,
1919 _("typecmp: no argument list"));
1920
1921 /* Skip ``this'' argument if applicable. T2 will always include
1922 THIS. */
1923 if (staticp)
1924 t2 ++;
1925
1926 for (i = 0;
1927 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1928 i++)
1929 {
1930 struct type *tt1, *tt2;
1931
1932 if (!t2[i])
1933 return i + 1;
1934
1935 tt1 = check_typedef (t1[i].type);
1936 tt2 = check_typedef (value_type (t2[i]));
1937
1938 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1939 /* We should be doing hairy argument matching, as below. */
1940 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1941 == TYPE_CODE (tt2)))
1942 {
1943 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1944 t2[i] = value_coerce_array (t2[i]);
1945 else
1946 t2[i] = value_ref (t2[i]);
1947 continue;
1948 }
1949
1950 /* djb - 20000715 - Until the new type structure is in the
1951 place, and we can attempt things like implicit conversions,
1952 we need to do this so you can take something like a map<const
1953 char *>, and properly access map["hello"], because the
1954 argument to [] will be a reference to a pointer to a char,
1955 and the argument will be a pointer to a char. */
1956 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1957 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1958 {
1959 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1960 }
1961 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1962 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1963 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1964 {
1965 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1966 }
1967 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1968 continue;
1969 /* Array to pointer is a `trivial conversion' according to the
1970 ARM. */
1971
1972 /* We should be doing much hairier argument matching (see
1973 section 13.2 of the ARM), but as a quick kludge, just check
1974 for the same type code. */
1975 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1976 return i + 1;
1977 }
1978 if (varargs || t2[i] == NULL)
1979 return 0;
1980 return i + 1;
1981 }
1982
1983 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1984 and *LAST_BOFFSET, and possibly throws an exception if the field
1985 search has yielded ambiguous results. */
1986
1987 static void
1988 update_search_result (struct value **result_ptr, struct value *v,
1989 int *last_boffset, int boffset,
1990 const char *name, struct type *type)
1991 {
1992 if (v != NULL)
1993 {
1994 if (*result_ptr != NULL
1995 /* The result is not ambiguous if all the classes that are
1996 found occupy the same space. */
1997 && *last_boffset != boffset)
1998 error (_("base class '%s' is ambiguous in type '%s'"),
1999 name, TYPE_SAFE_NAME (type));
2000 *result_ptr = v;
2001 *last_boffset = boffset;
2002 }
2003 }
2004
2005 /* A helper for search_struct_field. This does all the work; most
2006 arguments are as passed to search_struct_field. The result is
2007 stored in *RESULT_PTR, which must be initialized to NULL.
2008 OUTERMOST_TYPE is the type of the initial type passed to
2009 search_struct_field; this is used for error reporting when the
2010 lookup is ambiguous. */
2011
2012 static void
2013 do_search_struct_field (const char *name, struct value *arg1, int offset,
2014 struct type *type, int looking_for_baseclass,
2015 struct value **result_ptr,
2016 int *last_boffset,
2017 struct type *outermost_type)
2018 {
2019 int i;
2020 int nbases;
2021
2022 CHECK_TYPEDEF (type);
2023 nbases = TYPE_N_BASECLASSES (type);
2024
2025 if (!looking_for_baseclass)
2026 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2027 {
2028 const char *t_field_name = TYPE_FIELD_NAME (type, i);
2029
2030 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2031 {
2032 struct value *v;
2033
2034 if (field_is_static (&TYPE_FIELD (type, i)))
2035 {
2036 v = value_static_field (type, i);
2037 if (v == 0)
2038 error (_("field %s is nonexistent or "
2039 "has been optimized out"),
2040 name);
2041 }
2042 else
2043 v = value_primitive_field (arg1, offset, i, type);
2044 *result_ptr = v;
2045 return;
2046 }
2047
2048 if (t_field_name
2049 && (t_field_name[0] == '\0'
2050 || (TYPE_CODE (type) == TYPE_CODE_UNION
2051 && (strcmp_iw (t_field_name, "else") == 0))))
2052 {
2053 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2054
2055 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2056 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2057 {
2058 /* Look for a match through the fields of an anonymous
2059 union, or anonymous struct. C++ provides anonymous
2060 unions.
2061
2062 In the GNU Chill (now deleted from GDB)
2063 implementation of variant record types, each
2064 <alternative field> has an (anonymous) union type,
2065 each member of the union represents a <variant
2066 alternative>. Each <variant alternative> is
2067 represented as a struct, with a member for each
2068 <variant field>. */
2069
2070 struct value *v = NULL;
2071 int new_offset = offset;
2072
2073 /* This is pretty gross. In G++, the offset in an
2074 anonymous union is relative to the beginning of the
2075 enclosing struct. In the GNU Chill (now deleted
2076 from GDB) implementation of variant records, the
2077 bitpos is zero in an anonymous union field, so we
2078 have to add the offset of the union here. */
2079 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2080 || (TYPE_NFIELDS (field_type) > 0
2081 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2082 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2083
2084 do_search_struct_field (name, arg1, new_offset,
2085 field_type,
2086 looking_for_baseclass, &v,
2087 last_boffset,
2088 outermost_type);
2089 if (v)
2090 {
2091 *result_ptr = v;
2092 return;
2093 }
2094 }
2095 }
2096 }
2097
2098 for (i = 0; i < nbases; i++)
2099 {
2100 struct value *v = NULL;
2101 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2102 /* If we are looking for baseclasses, this is what we get when
2103 we hit them. But it could happen that the base part's member
2104 name is not yet filled in. */
2105 int found_baseclass = (looking_for_baseclass
2106 && TYPE_BASECLASS_NAME (type, i) != NULL
2107 && (strcmp_iw (name,
2108 TYPE_BASECLASS_NAME (type,
2109 i)) == 0));
2110 int boffset = value_embedded_offset (arg1) + offset;
2111
2112 if (BASETYPE_VIA_VIRTUAL (type, i))
2113 {
2114 struct value *v2;
2115
2116 boffset = baseclass_offset (type, i,
2117 value_contents_for_printing (arg1),
2118 value_embedded_offset (arg1) + offset,
2119 value_address (arg1),
2120 arg1);
2121
2122 /* The virtual base class pointer might have been clobbered
2123 by the user program. Make sure that it still points to a
2124 valid memory location. */
2125
2126 boffset += value_embedded_offset (arg1) + offset;
2127 if (boffset < 0
2128 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
2129 {
2130 CORE_ADDR base_addr;
2131
2132 v2 = allocate_value (basetype);
2133 base_addr = value_address (arg1) + boffset;
2134 if (target_read_memory (base_addr,
2135 value_contents_raw (v2),
2136 TYPE_LENGTH (basetype)) != 0)
2137 error (_("virtual baseclass botch"));
2138 VALUE_LVAL (v2) = lval_memory;
2139 set_value_address (v2, base_addr);
2140 }
2141 else
2142 {
2143 v2 = value_copy (arg1);
2144 deprecated_set_value_type (v2, basetype);
2145 set_value_embedded_offset (v2, boffset);
2146 }
2147
2148 if (found_baseclass)
2149 v = v2;
2150 else
2151 {
2152 do_search_struct_field (name, v2, 0,
2153 TYPE_BASECLASS (type, i),
2154 looking_for_baseclass,
2155 result_ptr, last_boffset,
2156 outermost_type);
2157 }
2158 }
2159 else if (found_baseclass)
2160 v = value_primitive_field (arg1, offset, i, type);
2161 else
2162 {
2163 do_search_struct_field (name, arg1,
2164 offset + TYPE_BASECLASS_BITPOS (type,
2165 i) / 8,
2166 basetype, looking_for_baseclass,
2167 result_ptr, last_boffset,
2168 outermost_type);
2169 }
2170
2171 update_search_result (result_ptr, v, last_boffset,
2172 boffset, name, outermost_type);
2173 }
2174 }
2175
2176 /* Helper function used by value_struct_elt to recurse through
2177 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2178 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2179 TYPE. If found, return value, else return NULL.
2180
2181 If LOOKING_FOR_BASECLASS, then instead of looking for struct
2182 fields, look for a baseclass named NAME. */
2183
2184 static struct value *
2185 search_struct_field (const char *name, struct value *arg1, int offset,
2186 struct type *type, int looking_for_baseclass)
2187 {
2188 struct value *result = NULL;
2189 int boffset = 0;
2190
2191 do_search_struct_field (name, arg1, offset, type, looking_for_baseclass,
2192 &result, &boffset, type);
2193 return result;
2194 }
2195
2196 /* Helper function used by value_struct_elt to recurse through
2197 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2198 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2199 TYPE.
2200
2201 If found, return value, else if name matched and args not return
2202 (value) -1, else return NULL. */
2203
2204 static struct value *
2205 search_struct_method (const char *name, struct value **arg1p,
2206 struct value **args, int offset,
2207 int *static_memfuncp, struct type *type)
2208 {
2209 int i;
2210 struct value *v;
2211 int name_matched = 0;
2212 char dem_opname[64];
2213
2214 CHECK_TYPEDEF (type);
2215 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2216 {
2217 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2218
2219 /* FIXME! May need to check for ARM demangling here. */
2220 if (strncmp (t_field_name, "__", 2) == 0 ||
2221 strncmp (t_field_name, "op", 2) == 0 ||
2222 strncmp (t_field_name, "type", 4) == 0)
2223 {
2224 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2225 t_field_name = dem_opname;
2226 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2227 t_field_name = dem_opname;
2228 }
2229 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2230 {
2231 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2232 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2233
2234 name_matched = 1;
2235 check_stub_method_group (type, i);
2236 if (j > 0 && args == 0)
2237 error (_("cannot resolve overloaded method "
2238 "`%s': no arguments supplied"), name);
2239 else if (j == 0 && args == 0)
2240 {
2241 v = value_fn_field (arg1p, f, j, type, offset);
2242 if (v != NULL)
2243 return v;
2244 }
2245 else
2246 while (j >= 0)
2247 {
2248 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2249 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2250 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2251 TYPE_FN_FIELD_ARGS (f, j), args))
2252 {
2253 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2254 return value_virtual_fn_field (arg1p, f, j,
2255 type, offset);
2256 if (TYPE_FN_FIELD_STATIC_P (f, j)
2257 && static_memfuncp)
2258 *static_memfuncp = 1;
2259 v = value_fn_field (arg1p, f, j, type, offset);
2260 if (v != NULL)
2261 return v;
2262 }
2263 j--;
2264 }
2265 }
2266 }
2267
2268 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2269 {
2270 int base_offset;
2271 int skip = 0;
2272 int this_offset;
2273
2274 if (BASETYPE_VIA_VIRTUAL (type, i))
2275 {
2276 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2277 struct value *base_val;
2278 const gdb_byte *base_valaddr;
2279
2280 /* The virtual base class pointer might have been
2281 clobbered by the user program. Make sure that it
2282 still points to a valid memory location. */
2283
2284 if (offset < 0 || offset >= TYPE_LENGTH (type))
2285 {
2286 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
2287 CORE_ADDR address = value_address (*arg1p);
2288
2289 if (target_read_memory (address + offset,
2290 tmp, TYPE_LENGTH (baseclass)) != 0)
2291 error (_("virtual baseclass botch"));
2292
2293 base_val = value_from_contents_and_address (baseclass,
2294 tmp,
2295 address + offset);
2296 base_valaddr = value_contents_for_printing (base_val);
2297 this_offset = 0;
2298 }
2299 else
2300 {
2301 base_val = *arg1p;
2302 base_valaddr = value_contents_for_printing (*arg1p);
2303 this_offset = offset;
2304 }
2305
2306 base_offset = baseclass_offset (type, i, base_valaddr,
2307 this_offset, value_address (base_val),
2308 base_val);
2309 }
2310 else
2311 {
2312 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2313 }
2314 v = search_struct_method (name, arg1p, args, base_offset + offset,
2315 static_memfuncp, TYPE_BASECLASS (type, i));
2316 if (v == (struct value *) - 1)
2317 {
2318 name_matched = 1;
2319 }
2320 else if (v)
2321 {
2322 /* FIXME-bothner: Why is this commented out? Why is it here? */
2323 /* *arg1p = arg1_tmp; */
2324 return v;
2325 }
2326 }
2327 if (name_matched)
2328 return (struct value *) - 1;
2329 else
2330 return NULL;
2331 }
2332
2333 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2334 extract the component named NAME from the ultimate target
2335 structure/union and return it as a value with its appropriate type.
2336 ERR is used in the error message if *ARGP's type is wrong.
2337
2338 C++: ARGS is a list of argument types to aid in the selection of
2339 an appropriate method. Also, handle derived types.
2340
2341 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2342 where the truthvalue of whether the function that was resolved was
2343 a static member function or not is stored.
2344
2345 ERR is an error message to be printed in case the field is not
2346 found. */
2347
2348 struct value *
2349 value_struct_elt (struct value **argp, struct value **args,
2350 const char *name, int *static_memfuncp, const char *err)
2351 {
2352 struct type *t;
2353 struct value *v;
2354
2355 *argp = coerce_array (*argp);
2356
2357 t = check_typedef (value_type (*argp));
2358
2359 /* Follow pointers until we get to a non-pointer. */
2360
2361 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2362 {
2363 *argp = value_ind (*argp);
2364 /* Don't coerce fn pointer to fn and then back again! */
2365 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2366 *argp = coerce_array (*argp);
2367 t = check_typedef (value_type (*argp));
2368 }
2369
2370 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2371 && TYPE_CODE (t) != TYPE_CODE_UNION)
2372 error (_("Attempt to extract a component of a value that is not a %s."),
2373 err);
2374
2375 /* Assume it's not, unless we see that it is. */
2376 if (static_memfuncp)
2377 *static_memfuncp = 0;
2378
2379 if (!args)
2380 {
2381 /* if there are no arguments ...do this... */
2382
2383 /* Try as a field first, because if we succeed, there is less
2384 work to be done. */
2385 v = search_struct_field (name, *argp, 0, t, 0);
2386 if (v)
2387 return v;
2388
2389 /* C++: If it was not found as a data field, then try to
2390 return it as a pointer to a method. */
2391 v = search_struct_method (name, argp, args, 0,
2392 static_memfuncp, t);
2393
2394 if (v == (struct value *) - 1)
2395 error (_("Cannot take address of method %s."), name);
2396 else if (v == 0)
2397 {
2398 if (TYPE_NFN_FIELDS (t))
2399 error (_("There is no member or method named %s."), name);
2400 else
2401 error (_("There is no member named %s."), name);
2402 }
2403 return v;
2404 }
2405
2406 v = search_struct_method (name, argp, args, 0,
2407 static_memfuncp, t);
2408
2409 if (v == (struct value *) - 1)
2410 {
2411 error (_("One of the arguments you tried to pass to %s could not "
2412 "be converted to what the function wants."), name);
2413 }
2414 else if (v == 0)
2415 {
2416 /* See if user tried to invoke data as function. If so, hand it
2417 back. If it's not callable (i.e., a pointer to function),
2418 gdb should give an error. */
2419 v = search_struct_field (name, *argp, 0, t, 0);
2420 /* If we found an ordinary field, then it is not a method call.
2421 So, treat it as if it were a static member function. */
2422 if (v && static_memfuncp)
2423 *static_memfuncp = 1;
2424 }
2425
2426 if (!v)
2427 throw_error (NOT_FOUND_ERROR,
2428 _("Structure has no component named %s."), name);
2429 return v;
2430 }
2431
2432 /* Search through the methods of an object (and its bases) to find a
2433 specified method. Return the pointer to the fn_field list of
2434 overloaded instances.
2435
2436 Helper function for value_find_oload_list.
2437 ARGP is a pointer to a pointer to a value (the object).
2438 METHOD is a string containing the method name.
2439 OFFSET is the offset within the value.
2440 TYPE is the assumed type of the object.
2441 NUM_FNS is the number of overloaded instances.
2442 BASETYPE is set to the actual type of the subobject where the
2443 method is found.
2444 BOFFSET is the offset of the base subobject where the method is found. */
2445
2446 static struct fn_field *
2447 find_method_list (struct value **argp, const char *method,
2448 int offset, struct type *type, int *num_fns,
2449 struct type **basetype, int *boffset)
2450 {
2451 int i;
2452 struct fn_field *f;
2453 CHECK_TYPEDEF (type);
2454
2455 *num_fns = 0;
2456
2457 /* First check in object itself. */
2458 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2459 {
2460 /* pai: FIXME What about operators and type conversions? */
2461 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2462
2463 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2464 {
2465 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2466 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2467
2468 *num_fns = len;
2469 *basetype = type;
2470 *boffset = offset;
2471
2472 /* Resolve any stub methods. */
2473 check_stub_method_group (type, i);
2474
2475 return f;
2476 }
2477 }
2478
2479 /* Not found in object, check in base subobjects. */
2480 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2481 {
2482 int base_offset;
2483
2484 if (BASETYPE_VIA_VIRTUAL (type, i))
2485 {
2486 base_offset = baseclass_offset (type, i,
2487 value_contents_for_printing (*argp),
2488 value_offset (*argp) + offset,
2489 value_address (*argp), *argp);
2490 }
2491 else /* Non-virtual base, simply use bit position from debug
2492 info. */
2493 {
2494 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2495 }
2496 f = find_method_list (argp, method, base_offset + offset,
2497 TYPE_BASECLASS (type, i), num_fns,
2498 basetype, boffset);
2499 if (f)
2500 return f;
2501 }
2502 return NULL;
2503 }
2504
2505 /* Return the list of overloaded methods of a specified name.
2506
2507 ARGP is a pointer to a pointer to a value (the object).
2508 METHOD is the method name.
2509 OFFSET is the offset within the value contents.
2510 NUM_FNS is the number of overloaded instances.
2511 BASETYPE is set to the type of the base subobject that defines the
2512 method.
2513 BOFFSET is the offset of the base subobject which defines the method. */
2514
2515 struct fn_field *
2516 value_find_oload_method_list (struct value **argp, const char *method,
2517 int offset, int *num_fns,
2518 struct type **basetype, int *boffset)
2519 {
2520 struct type *t;
2521
2522 t = check_typedef (value_type (*argp));
2523
2524 /* Code snarfed from value_struct_elt. */
2525 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2526 {
2527 *argp = value_ind (*argp);
2528 /* Don't coerce fn pointer to fn and then back again! */
2529 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2530 *argp = coerce_array (*argp);
2531 t = check_typedef (value_type (*argp));
2532 }
2533
2534 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2535 && TYPE_CODE (t) != TYPE_CODE_UNION)
2536 error (_("Attempt to extract a component of a "
2537 "value that is not a struct or union"));
2538
2539 return find_method_list (argp, method, 0, t, num_fns,
2540 basetype, boffset);
2541 }
2542
2543 /* Given an array of arguments (ARGS) (which includes an
2544 entry for "this" in the case of C++ methods), the number of
2545 arguments NARGS, the NAME of a function whether it's a method or
2546 not (METHOD), and the degree of laxness (LAX) in conforming to
2547 overload resolution rules in ANSI C++, find the best function that
2548 matches on the argument types according to the overload resolution
2549 rules.
2550
2551 METHOD can be one of three values:
2552 NON_METHOD for non-member functions.
2553 METHOD: for member functions.
2554 BOTH: used for overload resolution of operators where the
2555 candidates are expected to be either member or non member
2556 functions. In this case the first argument ARGTYPES
2557 (representing 'this') is expected to be a reference to the
2558 target object, and will be dereferenced when attempting the
2559 non-member search.
2560
2561 In the case of class methods, the parameter OBJ is an object value
2562 in which to search for overloaded methods.
2563
2564 In the case of non-method functions, the parameter FSYM is a symbol
2565 corresponding to one of the overloaded functions.
2566
2567 Return value is an integer: 0 -> good match, 10 -> debugger applied
2568 non-standard coercions, 100 -> incompatible.
2569
2570 If a method is being searched for, VALP will hold the value.
2571 If a non-method is being searched for, SYMP will hold the symbol
2572 for it.
2573
2574 If a method is being searched for, and it is a static method,
2575 then STATICP will point to a non-zero value.
2576
2577 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2578 ADL overload candidates when performing overload resolution for a fully
2579 qualified name.
2580
2581 Note: This function does *not* check the value of
2582 overload_resolution. Caller must check it to see whether overload
2583 resolution is permitted. */
2584
2585 int
2586 find_overload_match (struct value **args, int nargs,
2587 const char *name, enum oload_search_type method,
2588 int lax, struct value **objp, struct symbol *fsym,
2589 struct value **valp, struct symbol **symp,
2590 int *staticp, const int no_adl)
2591 {
2592 struct value *obj = (objp ? *objp : NULL);
2593 struct type *obj_type = obj ? value_type (obj) : NULL;
2594 /* Index of best overloaded function. */
2595 int func_oload_champ = -1;
2596 int method_oload_champ = -1;
2597
2598 /* The measure for the current best match. */
2599 struct badness_vector *method_badness = NULL;
2600 struct badness_vector *func_badness = NULL;
2601
2602 struct value *temp = obj;
2603 /* For methods, the list of overloaded methods. */
2604 struct fn_field *fns_ptr = NULL;
2605 /* For non-methods, the list of overloaded function symbols. */
2606 struct symbol **oload_syms = NULL;
2607 /* Number of overloaded instances being considered. */
2608 int num_fns = 0;
2609 struct type *basetype = NULL;
2610 int boffset;
2611
2612 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2613
2614 const char *obj_type_name = NULL;
2615 const char *func_name = NULL;
2616 enum oload_classification match_quality;
2617 enum oload_classification method_match_quality = INCOMPATIBLE;
2618 enum oload_classification func_match_quality = INCOMPATIBLE;
2619
2620 /* Get the list of overloaded methods or functions. */
2621 if (method == METHOD || method == BOTH)
2622 {
2623 gdb_assert (obj);
2624
2625 /* OBJ may be a pointer value rather than the object itself. */
2626 obj = coerce_ref (obj);
2627 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2628 obj = coerce_ref (value_ind (obj));
2629 obj_type_name = TYPE_NAME (value_type (obj));
2630
2631 /* First check whether this is a data member, e.g. a pointer to
2632 a function. */
2633 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2634 {
2635 *valp = search_struct_field (name, obj, 0,
2636 check_typedef (value_type (obj)), 0);
2637 if (*valp)
2638 {
2639 *staticp = 1;
2640 do_cleanups (all_cleanups);
2641 return 0;
2642 }
2643 }
2644
2645 /* Retrieve the list of methods with the name NAME. */
2646 fns_ptr = value_find_oload_method_list (&temp, name,
2647 0, &num_fns,
2648 &basetype, &boffset);
2649 /* If this is a method only search, and no methods were found
2650 the search has faild. */
2651 if (method == METHOD && (!fns_ptr || !num_fns))
2652 error (_("Couldn't find method %s%s%s"),
2653 obj_type_name,
2654 (obj_type_name && *obj_type_name) ? "::" : "",
2655 name);
2656 /* If we are dealing with stub method types, they should have
2657 been resolved by find_method_list via
2658 value_find_oload_method_list above. */
2659 if (fns_ptr)
2660 {
2661 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2662 method_oload_champ = find_oload_champ (args, nargs, method,
2663 num_fns, fns_ptr,
2664 oload_syms, &method_badness);
2665
2666 method_match_quality =
2667 classify_oload_match (method_badness, nargs,
2668 oload_method_static (method, fns_ptr,
2669 method_oload_champ));
2670
2671 make_cleanup (xfree, method_badness);
2672 }
2673
2674 }
2675
2676 if (method == NON_METHOD || method == BOTH)
2677 {
2678 const char *qualified_name = NULL;
2679
2680 /* If the overload match is being search for both as a method
2681 and non member function, the first argument must now be
2682 dereferenced. */
2683 if (method == BOTH)
2684 deprecated_set_value_type (args[0],
2685 TYPE_TARGET_TYPE (value_type (args[0])));
2686
2687 if (fsym)
2688 {
2689 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2690
2691 /* If we have a function with a C++ name, try to extract just
2692 the function part. Do not try this for non-functions (e.g.
2693 function pointers). */
2694 if (qualified_name
2695 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2696 == TYPE_CODE_FUNC)
2697 {
2698 char *temp;
2699
2700 temp = cp_func_name (qualified_name);
2701
2702 /* If cp_func_name did not remove anything, the name of the
2703 symbol did not include scope or argument types - it was
2704 probably a C-style function. */
2705 if (temp)
2706 {
2707 make_cleanup (xfree, temp);
2708 if (strcmp (temp, qualified_name) == 0)
2709 func_name = NULL;
2710 else
2711 func_name = temp;
2712 }
2713 }
2714 }
2715 else
2716 {
2717 func_name = name;
2718 qualified_name = name;
2719 }
2720
2721 /* If there was no C++ name, this must be a C-style function or
2722 not a function at all. Just return the same symbol. Do the
2723 same if cp_func_name fails for some reason. */
2724 if (func_name == NULL)
2725 {
2726 *symp = fsym;
2727 do_cleanups (all_cleanups);
2728 return 0;
2729 }
2730
2731 func_oload_champ = find_oload_champ_namespace (args, nargs,
2732 func_name,
2733 qualified_name,
2734 &oload_syms,
2735 &func_badness,
2736 no_adl);
2737
2738 if (func_oload_champ >= 0)
2739 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2740
2741 make_cleanup (xfree, oload_syms);
2742 make_cleanup (xfree, func_badness);
2743 }
2744
2745 /* Did we find a match ? */
2746 if (method_oload_champ == -1 && func_oload_champ == -1)
2747 throw_error (NOT_FOUND_ERROR,
2748 _("No symbol \"%s\" in current context."),
2749 name);
2750
2751 /* If we have found both a method match and a function
2752 match, find out which one is better, and calculate match
2753 quality. */
2754 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2755 {
2756 switch (compare_badness (func_badness, method_badness))
2757 {
2758 case 0: /* Top two contenders are equally good. */
2759 /* FIXME: GDB does not support the general ambiguous case.
2760 All candidates should be collected and presented the
2761 user. */
2762 error (_("Ambiguous overload resolution"));
2763 break;
2764 case 1: /* Incomparable top contenders. */
2765 /* This is an error incompatible candidates
2766 should not have been proposed. */
2767 error (_("Internal error: incompatible "
2768 "overload candidates proposed"));
2769 break;
2770 case 2: /* Function champion. */
2771 method_oload_champ = -1;
2772 match_quality = func_match_quality;
2773 break;
2774 case 3: /* Method champion. */
2775 func_oload_champ = -1;
2776 match_quality = method_match_quality;
2777 break;
2778 default:
2779 error (_("Internal error: unexpected overload comparison result"));
2780 break;
2781 }
2782 }
2783 else
2784 {
2785 /* We have either a method match or a function match. */
2786 if (method_oload_champ >= 0)
2787 match_quality = method_match_quality;
2788 else
2789 match_quality = func_match_quality;
2790 }
2791
2792 if (match_quality == INCOMPATIBLE)
2793 {
2794 if (method == METHOD)
2795 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2796 obj_type_name,
2797 (obj_type_name && *obj_type_name) ? "::" : "",
2798 name);
2799 else
2800 error (_("Cannot resolve function %s to any overloaded instance"),
2801 func_name);
2802 }
2803 else if (match_quality == NON_STANDARD)
2804 {
2805 if (method == METHOD)
2806 warning (_("Using non-standard conversion to match "
2807 "method %s%s%s to supplied arguments"),
2808 obj_type_name,
2809 (obj_type_name && *obj_type_name) ? "::" : "",
2810 name);
2811 else
2812 warning (_("Using non-standard conversion to match "
2813 "function %s to supplied arguments"),
2814 func_name);
2815 }
2816
2817 if (staticp != NULL)
2818 *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2819
2820 if (method_oload_champ >= 0)
2821 {
2822 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2823 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2824 basetype, boffset);
2825 else
2826 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2827 basetype, boffset);
2828 }
2829 else
2830 *symp = oload_syms[func_oload_champ];
2831
2832 if (objp)
2833 {
2834 struct type *temp_type = check_typedef (value_type (temp));
2835 struct type *objtype = check_typedef (obj_type);
2836
2837 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2838 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2839 || TYPE_CODE (objtype) == TYPE_CODE_REF))
2840 {
2841 temp = value_addr (temp);
2842 }
2843 *objp = temp;
2844 }
2845
2846 do_cleanups (all_cleanups);
2847
2848 switch (match_quality)
2849 {
2850 case INCOMPATIBLE:
2851 return 100;
2852 case NON_STANDARD:
2853 return 10;
2854 default: /* STANDARD */
2855 return 0;
2856 }
2857 }
2858
2859 /* Find the best overload match, searching for FUNC_NAME in namespaces
2860 contained in QUALIFIED_NAME until it either finds a good match or
2861 runs out of namespaces. It stores the overloaded functions in
2862 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2863 calling function is responsible for freeing *OLOAD_SYMS and
2864 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2865 performned. */
2866
2867 static int
2868 find_oload_champ_namespace (struct value **args, int nargs,
2869 const char *func_name,
2870 const char *qualified_name,
2871 struct symbol ***oload_syms,
2872 struct badness_vector **oload_champ_bv,
2873 const int no_adl)
2874 {
2875 int oload_champ;
2876
2877 find_oload_champ_namespace_loop (args, nargs,
2878 func_name,
2879 qualified_name, 0,
2880 oload_syms, oload_champ_bv,
2881 &oload_champ,
2882 no_adl);
2883
2884 return oload_champ;
2885 }
2886
2887 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2888 how deep we've looked for namespaces, and the champ is stored in
2889 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2890 if it isn't. Other arguments are the same as in
2891 find_oload_champ_namespace
2892
2893 It is the caller's responsibility to free *OLOAD_SYMS and
2894 *OLOAD_CHAMP_BV. */
2895
2896 static int
2897 find_oload_champ_namespace_loop (struct value **args, int nargs,
2898 const char *func_name,
2899 const char *qualified_name,
2900 int namespace_len,
2901 struct symbol ***oload_syms,
2902 struct badness_vector **oload_champ_bv,
2903 int *oload_champ,
2904 const int no_adl)
2905 {
2906 int next_namespace_len = namespace_len;
2907 int searched_deeper = 0;
2908 int num_fns = 0;
2909 struct cleanup *old_cleanups;
2910 int new_oload_champ;
2911 struct symbol **new_oload_syms;
2912 struct badness_vector *new_oload_champ_bv;
2913 char *new_namespace;
2914
2915 if (next_namespace_len != 0)
2916 {
2917 gdb_assert (qualified_name[next_namespace_len] == ':');
2918 next_namespace_len += 2;
2919 }
2920 next_namespace_len +=
2921 cp_find_first_component (qualified_name + next_namespace_len);
2922
2923 /* Initialize these to values that can safely be xfree'd. */
2924 *oload_syms = NULL;
2925 *oload_champ_bv = NULL;
2926
2927 /* First, see if we have a deeper namespace we can search in.
2928 If we get a good match there, use it. */
2929
2930 if (qualified_name[next_namespace_len] == ':')
2931 {
2932 searched_deeper = 1;
2933
2934 if (find_oload_champ_namespace_loop (args, nargs,
2935 func_name, qualified_name,
2936 next_namespace_len,
2937 oload_syms, oload_champ_bv,
2938 oload_champ, no_adl))
2939 {
2940 return 1;
2941 }
2942 };
2943
2944 /* If we reach here, either we're in the deepest namespace or we
2945 didn't find a good match in a deeper namespace. But, in the
2946 latter case, we still have a bad match in a deeper namespace;
2947 note that we might not find any match at all in the current
2948 namespace. (There's always a match in the deepest namespace,
2949 because this overload mechanism only gets called if there's a
2950 function symbol to start off with.) */
2951
2952 old_cleanups = make_cleanup (xfree, *oload_syms);
2953 make_cleanup (xfree, *oload_champ_bv);
2954 new_namespace = alloca (namespace_len + 1);
2955 strncpy (new_namespace, qualified_name, namespace_len);
2956 new_namespace[namespace_len] = '\0';
2957 new_oload_syms = make_symbol_overload_list (func_name,
2958 new_namespace);
2959
2960 /* If we have reached the deepest level perform argument
2961 determined lookup. */
2962 if (!searched_deeper && !no_adl)
2963 {
2964 int ix;
2965 struct type **arg_types;
2966
2967 /* Prepare list of argument types for overload resolution. */
2968 arg_types = (struct type **)
2969 alloca (nargs * (sizeof (struct type *)));
2970 for (ix = 0; ix < nargs; ix++)
2971 arg_types[ix] = value_type (args[ix]);
2972 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2973 }
2974
2975 while (new_oload_syms[num_fns])
2976 ++num_fns;
2977
2978 new_oload_champ = find_oload_champ (args, nargs, 0, num_fns,
2979 NULL, new_oload_syms,
2980 &new_oload_champ_bv);
2981
2982 /* Case 1: We found a good match. Free earlier matches (if any),
2983 and return it. Case 2: We didn't find a good match, but we're
2984 not the deepest function. Then go with the bad match that the
2985 deeper function found. Case 3: We found a bad match, and we're
2986 the deepest function. Then return what we found, even though
2987 it's a bad match. */
2988
2989 if (new_oload_champ != -1
2990 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2991 {
2992 *oload_syms = new_oload_syms;
2993 *oload_champ = new_oload_champ;
2994 *oload_champ_bv = new_oload_champ_bv;
2995 do_cleanups (old_cleanups);
2996 return 1;
2997 }
2998 else if (searched_deeper)
2999 {
3000 xfree (new_oload_syms);
3001 xfree (new_oload_champ_bv);
3002 discard_cleanups (old_cleanups);
3003 return 0;
3004 }
3005 else
3006 {
3007 *oload_syms = new_oload_syms;
3008 *oload_champ = new_oload_champ;
3009 *oload_champ_bv = new_oload_champ_bv;
3010 do_cleanups (old_cleanups);
3011 return 0;
3012 }
3013 }
3014
3015 /* Look for a function to take NARGS args of ARGS. Find
3016 the best match from among the overloaded methods or functions
3017 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
3018 The number of methods/functions in the list is given by NUM_FNS.
3019 Return the index of the best match; store an indication of the
3020 quality of the match in OLOAD_CHAMP_BV.
3021
3022 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
3023
3024 static int
3025 find_oload_champ (struct value **args, int nargs, int method,
3026 int num_fns, struct fn_field *fns_ptr,
3027 struct symbol **oload_syms,
3028 struct badness_vector **oload_champ_bv)
3029 {
3030 int ix;
3031 /* A measure of how good an overloaded instance is. */
3032 struct badness_vector *bv;
3033 /* Index of best overloaded function. */
3034 int oload_champ = -1;
3035 /* Current ambiguity state for overload resolution. */
3036 int oload_ambiguous = 0;
3037 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
3038
3039 *oload_champ_bv = NULL;
3040
3041 /* Consider each candidate in turn. */
3042 for (ix = 0; ix < num_fns; ix++)
3043 {
3044 int jj;
3045 int static_offset = oload_method_static (method, fns_ptr, ix);
3046 int nparms;
3047 struct type **parm_types;
3048
3049 if (method)
3050 {
3051 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
3052 }
3053 else
3054 {
3055 /* If it's not a method, this is the proper place. */
3056 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
3057 }
3058
3059 /* Prepare array of parameter types. */
3060 parm_types = (struct type **)
3061 xmalloc (nparms * (sizeof (struct type *)));
3062 for (jj = 0; jj < nparms; jj++)
3063 parm_types[jj] = (method
3064 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
3065 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
3066 jj));
3067
3068 /* Compare parameter types to supplied argument types. Skip
3069 THIS for static methods. */
3070 bv = rank_function (parm_types, nparms,
3071 args + static_offset,
3072 nargs - static_offset);
3073
3074 if (!*oload_champ_bv)
3075 {
3076 *oload_champ_bv = bv;
3077 oload_champ = 0;
3078 }
3079 else /* See whether current candidate is better or worse than
3080 previous best. */
3081 switch (compare_badness (bv, *oload_champ_bv))
3082 {
3083 case 0: /* Top two contenders are equally good. */
3084 oload_ambiguous = 1;
3085 break;
3086 case 1: /* Incomparable top contenders. */
3087 oload_ambiguous = 2;
3088 break;
3089 case 2: /* New champion, record details. */
3090 *oload_champ_bv = bv;
3091 oload_ambiguous = 0;
3092 oload_champ = ix;
3093 break;
3094 case 3:
3095 default:
3096 break;
3097 }
3098 xfree (parm_types);
3099 if (overload_debug)
3100 {
3101 if (method)
3102 fprintf_filtered (gdb_stderr,
3103 "Overloaded method instance %s, # of parms %d\n",
3104 fns_ptr[ix].physname, nparms);
3105 else
3106 fprintf_filtered (gdb_stderr,
3107 "Overloaded function instance "
3108 "%s # of parms %d\n",
3109 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
3110 nparms);
3111 for (jj = 0; jj < nargs - static_offset; jj++)
3112 fprintf_filtered (gdb_stderr,
3113 "...Badness @ %d : %d\n",
3114 jj, bv->rank[jj].rank);
3115 fprintf_filtered (gdb_stderr, "Overload resolution "
3116 "champion is %d, ambiguous? %d\n",
3117 oload_champ, oload_ambiguous);
3118 }
3119 }
3120
3121 return oload_champ;
3122 }
3123
3124 /* Return 1 if we're looking at a static method, 0 if we're looking at
3125 a non-static method or a function that isn't a method. */
3126
3127 static int
3128 oload_method_static (int method, struct fn_field *fns_ptr, int index)
3129 {
3130 if (method && fns_ptr && index >= 0
3131 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3132 return 1;
3133 else
3134 return 0;
3135 }
3136
3137 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3138
3139 static enum oload_classification
3140 classify_oload_match (struct badness_vector *oload_champ_bv,
3141 int nargs,
3142 int static_offset)
3143 {
3144 int ix;
3145 enum oload_classification worst = STANDARD;
3146
3147 for (ix = 1; ix <= nargs - static_offset; ix++)
3148 {
3149 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3150 or worse return INCOMPATIBLE. */
3151 if (compare_ranks (oload_champ_bv->rank[ix],
3152 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3153 return INCOMPATIBLE; /* Truly mismatched types. */
3154 /* Otherwise If this conversion is as bad as
3155 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3156 else if (compare_ranks (oload_champ_bv->rank[ix],
3157 NS_POINTER_CONVERSION_BADNESS) <= 0)
3158 worst = NON_STANDARD; /* Non-standard type conversions
3159 needed. */
3160 }
3161
3162 /* If no INCOMPATIBLE classification was found, return the worst one
3163 that was found (if any). */
3164 return worst;
3165 }
3166
3167 /* C++: return 1 is NAME is a legitimate name for the destructor of
3168 type TYPE. If TYPE does not have a destructor, or if NAME is
3169 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3170 have CHECK_TYPEDEF applied, this function will apply it itself. */
3171
3172 int
3173 destructor_name_p (const char *name, struct type *type)
3174 {
3175 if (name[0] == '~')
3176 {
3177 const char *dname = type_name_no_tag_or_error (type);
3178 const char *cp = strchr (dname, '<');
3179 unsigned int len;
3180
3181 /* Do not compare the template part for template classes. */
3182 if (cp == NULL)
3183 len = strlen (dname);
3184 else
3185 len = cp - dname;
3186 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3187 error (_("name of destructor must equal name of class"));
3188 else
3189 return 1;
3190 }
3191 return 0;
3192 }
3193
3194 /* Given TYPE, a structure/union,
3195 return 1 if the component named NAME from the ultimate target
3196 structure/union is defined, otherwise, return 0. */
3197
3198 int
3199 check_field (struct type *type, const char *name)
3200 {
3201 int i;
3202
3203 /* The type may be a stub. */
3204 CHECK_TYPEDEF (type);
3205
3206 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
3207 {
3208 const char *t_field_name = TYPE_FIELD_NAME (type, i);
3209
3210 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
3211 return 1;
3212 }
3213
3214 /* C++: If it was not found as a data field, then try to return it
3215 as a pointer to a method. */
3216
3217 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
3218 {
3219 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
3220 return 1;
3221 }
3222
3223 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3224 if (check_field (TYPE_BASECLASS (type, i), name))
3225 return 1;
3226
3227 return 0;
3228 }
3229
3230 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3231 return the appropriate member (or the address of the member, if
3232 WANT_ADDRESS). This function is used to resolve user expressions
3233 of the form "DOMAIN::NAME". For more details on what happens, see
3234 the comment before value_struct_elt_for_reference. */
3235
3236 struct value *
3237 value_aggregate_elt (struct type *curtype, char *name,
3238 struct type *expect_type, int want_address,
3239 enum noside noside)
3240 {
3241 switch (TYPE_CODE (curtype))
3242 {
3243 case TYPE_CODE_STRUCT:
3244 case TYPE_CODE_UNION:
3245 return value_struct_elt_for_reference (curtype, 0, curtype,
3246 name, expect_type,
3247 want_address, noside);
3248 case TYPE_CODE_NAMESPACE:
3249 return value_namespace_elt (curtype, name,
3250 want_address, noside);
3251 default:
3252 internal_error (__FILE__, __LINE__,
3253 _("non-aggregate type in value_aggregate_elt"));
3254 }
3255 }
3256
3257 /* Compares the two method/function types T1 and T2 for "equality"
3258 with respect to the methods' parameters. If the types of the
3259 two parameter lists are the same, returns 1; 0 otherwise. This
3260 comparison may ignore any artificial parameters in T1 if
3261 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3262 the first artificial parameter in T1, assumed to be a 'this' pointer.
3263
3264 The type T2 is expected to have come from make_params (in eval.c). */
3265
3266 static int
3267 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3268 {
3269 int start = 0;
3270
3271 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3272 ++start;
3273
3274 /* If skipping artificial fields, find the first real field
3275 in T1. */
3276 if (skip_artificial)
3277 {
3278 while (start < TYPE_NFIELDS (t1)
3279 && TYPE_FIELD_ARTIFICIAL (t1, start))
3280 ++start;
3281 }
3282
3283 /* Now compare parameters. */
3284
3285 /* Special case: a method taking void. T1 will contain no
3286 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3287 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3288 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3289 return 1;
3290
3291 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3292 {
3293 int i;
3294
3295 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3296 {
3297 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3298 TYPE_FIELD_TYPE (t2, i), NULL),
3299 EXACT_MATCH_BADNESS) != 0)
3300 return 0;
3301 }
3302
3303 return 1;
3304 }
3305
3306 return 0;
3307 }
3308
3309 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3310 return the address of this member as a "pointer to member" type.
3311 If INTYPE is non-null, then it will be the type of the member we
3312 are looking for. This will help us resolve "pointers to member
3313 functions". This function is used to resolve user expressions of
3314 the form "DOMAIN::NAME". */
3315
3316 static struct value *
3317 value_struct_elt_for_reference (struct type *domain, int offset,
3318 struct type *curtype, char *name,
3319 struct type *intype,
3320 int want_address,
3321 enum noside noside)
3322 {
3323 struct type *t = curtype;
3324 int i;
3325 struct value *v, *result;
3326
3327 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3328 && TYPE_CODE (t) != TYPE_CODE_UNION)
3329 error (_("Internal error: non-aggregate type "
3330 "to value_struct_elt_for_reference"));
3331
3332 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3333 {
3334 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3335
3336 if (t_field_name && strcmp (t_field_name, name) == 0)
3337 {
3338 if (field_is_static (&TYPE_FIELD (t, i)))
3339 {
3340 v = value_static_field (t, i);
3341 if (v == NULL)
3342 error (_("static field %s has been optimized out"),
3343 name);
3344 if (want_address)
3345 v = value_addr (v);
3346 return v;
3347 }
3348 if (TYPE_FIELD_PACKED (t, i))
3349 error (_("pointers to bitfield members not allowed"));
3350
3351 if (want_address)
3352 return value_from_longest
3353 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3354 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3355 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3356 return allocate_value (TYPE_FIELD_TYPE (t, i));
3357 else
3358 error (_("Cannot reference non-static field \"%s\""), name);
3359 }
3360 }
3361
3362 /* C++: If it was not found as a data field, then try to return it
3363 as a pointer to a method. */
3364
3365 /* Perform all necessary dereferencing. */
3366 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3367 intype = TYPE_TARGET_TYPE (intype);
3368
3369 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3370 {
3371 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3372 char dem_opname[64];
3373
3374 if (strncmp (t_field_name, "__", 2) == 0
3375 || strncmp (t_field_name, "op", 2) == 0
3376 || strncmp (t_field_name, "type", 4) == 0)
3377 {
3378 if (cplus_demangle_opname (t_field_name,
3379 dem_opname, DMGL_ANSI))
3380 t_field_name = dem_opname;
3381 else if (cplus_demangle_opname (t_field_name,
3382 dem_opname, 0))
3383 t_field_name = dem_opname;
3384 }
3385 if (t_field_name && strcmp (t_field_name, name) == 0)
3386 {
3387 int j;
3388 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3389 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3390
3391 check_stub_method_group (t, i);
3392
3393 if (intype)
3394 {
3395 for (j = 0; j < len; ++j)
3396 {
3397 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3398 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3399 intype, 1))
3400 break;
3401 }
3402
3403 if (j == len)
3404 error (_("no member function matches "
3405 "that type instantiation"));
3406 }
3407 else
3408 {
3409 int ii;
3410
3411 j = -1;
3412 for (ii = 0; ii < len; ++ii)
3413 {
3414 /* Skip artificial methods. This is necessary if,
3415 for example, the user wants to "print
3416 subclass::subclass" with only one user-defined
3417 constructor. There is no ambiguity in this case.
3418 We are careful here to allow artificial methods
3419 if they are the unique result. */
3420 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3421 {
3422 if (j == -1)
3423 j = ii;
3424 continue;
3425 }
3426
3427 /* Desired method is ambiguous if more than one
3428 method is defined. */
3429 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3430 error (_("non-unique member `%s' requires "
3431 "type instantiation"), name);
3432
3433 j = ii;
3434 }
3435
3436 if (j == -1)
3437 error (_("no matching member function"));
3438 }
3439
3440 if (TYPE_FN_FIELD_STATIC_P (f, j))
3441 {
3442 struct symbol *s =
3443 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3444 0, VAR_DOMAIN, 0);
3445
3446 if (s == NULL)
3447 return NULL;
3448
3449 if (want_address)
3450 return value_addr (read_var_value (s, 0));
3451 else
3452 return read_var_value (s, 0);
3453 }
3454
3455 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3456 {
3457 if (want_address)
3458 {
3459 result = allocate_value
3460 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3461 cplus_make_method_ptr (value_type (result),
3462 value_contents_writeable (result),
3463 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3464 }
3465 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3466 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3467 else
3468 error (_("Cannot reference virtual member function \"%s\""),
3469 name);
3470 }
3471 else
3472 {
3473 struct symbol *s =
3474 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3475 0, VAR_DOMAIN, 0);
3476
3477 if (s == NULL)
3478 return NULL;
3479
3480 v = read_var_value (s, 0);
3481 if (!want_address)
3482 result = v;
3483 else
3484 {
3485 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3486 cplus_make_method_ptr (value_type (result),
3487 value_contents_writeable (result),
3488 value_address (v), 0);
3489 }
3490 }
3491 return result;
3492 }
3493 }
3494 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3495 {
3496 struct value *v;
3497 int base_offset;
3498
3499 if (BASETYPE_VIA_VIRTUAL (t, i))
3500 base_offset = 0;
3501 else
3502 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3503 v = value_struct_elt_for_reference (domain,
3504 offset + base_offset,
3505 TYPE_BASECLASS (t, i),
3506 name, intype,
3507 want_address, noside);
3508 if (v)
3509 return v;
3510 }
3511
3512 /* As a last chance, pretend that CURTYPE is a namespace, and look
3513 it up that way; this (frequently) works for types nested inside
3514 classes. */
3515
3516 return value_maybe_namespace_elt (curtype, name,
3517 want_address, noside);
3518 }
3519
3520 /* C++: Return the member NAME of the namespace given by the type
3521 CURTYPE. */
3522
3523 static struct value *
3524 value_namespace_elt (const struct type *curtype,
3525 char *name, int want_address,
3526 enum noside noside)
3527 {
3528 struct value *retval = value_maybe_namespace_elt (curtype, name,
3529 want_address,
3530 noside);
3531
3532 if (retval == NULL)
3533 error (_("No symbol \"%s\" in namespace \"%s\"."),
3534 name, TYPE_TAG_NAME (curtype));
3535
3536 return retval;
3537 }
3538
3539 /* A helper function used by value_namespace_elt and
3540 value_struct_elt_for_reference. It looks up NAME inside the
3541 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3542 is a class and NAME refers to a type in CURTYPE itself (as opposed
3543 to, say, some base class of CURTYPE). */
3544
3545 static struct value *
3546 value_maybe_namespace_elt (const struct type *curtype,
3547 char *name, int want_address,
3548 enum noside noside)
3549 {
3550 const char *namespace_name = TYPE_TAG_NAME (curtype);
3551 struct symbol *sym;
3552 struct value *result;
3553
3554 sym = cp_lookup_symbol_namespace (namespace_name, name,
3555 get_selected_block (0), VAR_DOMAIN);
3556
3557 if (sym == NULL)
3558 {
3559 char *concatenated_name = alloca (strlen (namespace_name) + 2
3560 + strlen (name) + 1);
3561
3562 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3563 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3564 }
3565
3566 if (sym == NULL)
3567 return NULL;
3568 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3569 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3570 result = allocate_value (SYMBOL_TYPE (sym));
3571 else
3572 result = value_of_variable (sym, get_selected_block (0));
3573
3574 if (result && want_address)
3575 result = value_addr (result);
3576
3577 return result;
3578 }
3579
3580 /* Given a pointer or a reference value V, find its real (RTTI) type.
3581
3582 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3583 and refer to the values computed for the object pointed to. */
3584
3585 struct type *
3586 value_rtti_indirect_type (struct value *v, int *full,
3587 int *top, int *using_enc)
3588 {
3589 struct value *target;
3590 struct type *type, *real_type, *target_type;
3591
3592 type = value_type (v);
3593 type = check_typedef (type);
3594 if (TYPE_CODE (type) == TYPE_CODE_REF)
3595 target = coerce_ref (v);
3596 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3597 target = value_ind (v);
3598 else
3599 return NULL;
3600
3601 real_type = value_rtti_type (target, full, top, using_enc);
3602
3603 if (real_type)
3604 {
3605 /* Copy qualifiers to the referenced object. */
3606 target_type = value_type (target);
3607 real_type = make_cv_type (TYPE_CONST (target_type),
3608 TYPE_VOLATILE (target_type), real_type, NULL);
3609 if (TYPE_CODE (type) == TYPE_CODE_REF)
3610 real_type = lookup_reference_type (real_type);
3611 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3612 real_type = lookup_pointer_type (real_type);
3613 else
3614 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3615
3616 /* Copy qualifiers to the pointer/reference. */
3617 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3618 real_type, NULL);
3619 }
3620
3621 return real_type;
3622 }
3623
3624 /* Given a value pointed to by ARGP, check its real run-time type, and
3625 if that is different from the enclosing type, create a new value
3626 using the real run-time type as the enclosing type (and of the same
3627 type as ARGP) and return it, with the embedded offset adjusted to
3628 be the correct offset to the enclosed object. RTYPE is the type,
3629 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3630 by value_rtti_type(). If these are available, they can be supplied
3631 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3632 NULL if they're not available. */
3633
3634 struct value *
3635 value_full_object (struct value *argp,
3636 struct type *rtype,
3637 int xfull, int xtop,
3638 int xusing_enc)
3639 {
3640 struct type *real_type;
3641 int full = 0;
3642 int top = -1;
3643 int using_enc = 0;
3644 struct value *new_val;
3645
3646 if (rtype)
3647 {
3648 real_type = rtype;
3649 full = xfull;
3650 top = xtop;
3651 using_enc = xusing_enc;
3652 }
3653 else
3654 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3655
3656 /* If no RTTI data, or if object is already complete, do nothing. */
3657 if (!real_type || real_type == value_enclosing_type (argp))
3658 return argp;
3659
3660 /* In a destructor we might see a real type that is a superclass of
3661 the object's type. In this case it is better to leave the object
3662 as-is. */
3663 if (full
3664 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3665 return argp;
3666
3667 /* If we have the full object, but for some reason the enclosing
3668 type is wrong, set it. */
3669 /* pai: FIXME -- sounds iffy */
3670 if (full)
3671 {
3672 argp = value_copy (argp);
3673 set_value_enclosing_type (argp, real_type);
3674 return argp;
3675 }
3676
3677 /* Check if object is in memory. */
3678 if (VALUE_LVAL (argp) != lval_memory)
3679 {
3680 warning (_("Couldn't retrieve complete object of RTTI "
3681 "type %s; object may be in register(s)."),
3682 TYPE_NAME (real_type));
3683
3684 return argp;
3685 }
3686
3687 /* All other cases -- retrieve the complete object. */
3688 /* Go back by the computed top_offset from the beginning of the
3689 object, adjusting for the embedded offset of argp if that's what
3690 value_rtti_type used for its computation. */
3691 new_val = value_at_lazy (real_type, value_address (argp) - top +
3692 (using_enc ? 0 : value_embedded_offset (argp)));
3693 deprecated_set_value_type (new_val, value_type (argp));
3694 set_value_embedded_offset (new_val, (using_enc
3695 ? top + value_embedded_offset (argp)
3696 : top));
3697 return new_val;
3698 }
3699
3700
3701 /* Return the value of the local variable, if one exists. Throw error
3702 otherwise, such as if the request is made in an inappropriate context. */
3703
3704 struct value *
3705 value_of_this (const struct language_defn *lang)
3706 {
3707 struct symbol *sym;
3708 struct block *b;
3709 struct frame_info *frame;
3710
3711 if (!lang->la_name_of_this)
3712 error (_("no `this' in current language"));
3713
3714 frame = get_selected_frame (_("no frame selected"));
3715
3716 b = get_frame_block (frame, NULL);
3717
3718 sym = lookup_language_this (lang, b);
3719 if (sym == NULL)
3720 error (_("current stack frame does not contain a variable named `%s'"),
3721 lang->la_name_of_this);
3722
3723 return read_var_value (sym, frame);
3724 }
3725
3726 /* Return the value of the local variable, if one exists. Return NULL
3727 otherwise. Never throw error. */
3728
3729 struct value *
3730 value_of_this_silent (const struct language_defn *lang)
3731 {
3732 struct value *ret = NULL;
3733 volatile struct gdb_exception except;
3734
3735 TRY_CATCH (except, RETURN_MASK_ERROR)
3736 {
3737 ret = value_of_this (lang);
3738 }
3739
3740 return ret;
3741 }
3742
3743 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3744 elements long, starting at LOWBOUND. The result has the same lower
3745 bound as the original ARRAY. */
3746
3747 struct value *
3748 value_slice (struct value *array, int lowbound, int length)
3749 {
3750 struct type *slice_range_type, *slice_type, *range_type;
3751 LONGEST lowerbound, upperbound;
3752 struct value *slice;
3753 struct type *array_type;
3754
3755 array_type = check_typedef (value_type (array));
3756 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3757 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3758 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3759 error (_("cannot take slice of non-array"));
3760
3761 range_type = TYPE_INDEX_TYPE (array_type);
3762 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3763 error (_("slice from bad array or bitstring"));
3764
3765 if (lowbound < lowerbound || length < 0
3766 || lowbound + length - 1 > upperbound)
3767 error (_("slice out of range"));
3768
3769 /* FIXME-type-allocation: need a way to free this type when we are
3770 done with it. */
3771 slice_range_type = create_range_type ((struct type *) NULL,
3772 TYPE_TARGET_TYPE (range_type),
3773 lowbound,
3774 lowbound + length - 1);
3775 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3776 {
3777 int i;
3778
3779 slice_type = create_set_type ((struct type *) NULL,
3780 slice_range_type);
3781 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3782 slice = value_zero (slice_type, not_lval);
3783
3784 for (i = 0; i < length; i++)
3785 {
3786 int element = value_bit_index (array_type,
3787 value_contents (array),
3788 lowbound + i);
3789
3790 if (element < 0)
3791 error (_("internal error accessing bitstring"));
3792 else if (element > 0)
3793 {
3794 int j = i % TARGET_CHAR_BIT;
3795
3796 if (gdbarch_bits_big_endian (get_type_arch (array_type)))
3797 j = TARGET_CHAR_BIT - 1 - j;
3798 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3799 }
3800 }
3801 /* We should set the address, bitssize, and bitspos, so the
3802 slice can be used on the LHS, but that may require extensions
3803 to value_assign. For now, just leave as a non_lval.
3804 FIXME. */
3805 }
3806 else
3807 {
3808 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3809 LONGEST offset =
3810 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3811
3812 slice_type = create_array_type ((struct type *) NULL,
3813 element_type,
3814 slice_range_type);
3815 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3816
3817 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3818 slice = allocate_value_lazy (slice_type);
3819 else
3820 {
3821 slice = allocate_value (slice_type);
3822 value_contents_copy (slice, 0, array, offset,
3823 TYPE_LENGTH (slice_type));
3824 }
3825
3826 set_value_component_location (slice, array);
3827 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3828 set_value_offset (slice, value_offset (array) + offset);
3829 }
3830 return slice;
3831 }
3832
3833 /* Create a value for a FORTRAN complex number. Currently most of the
3834 time values are coerced to COMPLEX*16 (i.e. a complex number
3835 composed of 2 doubles. This really should be a smarter routine
3836 that figures out precision inteligently as opposed to assuming
3837 doubles. FIXME: fmb */
3838
3839 struct value *
3840 value_literal_complex (struct value *arg1,
3841 struct value *arg2,
3842 struct type *type)
3843 {
3844 struct value *val;
3845 struct type *real_type = TYPE_TARGET_TYPE (type);
3846
3847 val = allocate_value (type);
3848 arg1 = value_cast (real_type, arg1);
3849 arg2 = value_cast (real_type, arg2);
3850
3851 memcpy (value_contents_raw (val),
3852 value_contents (arg1), TYPE_LENGTH (real_type));
3853 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3854 value_contents (arg2), TYPE_LENGTH (real_type));
3855 return val;
3856 }
3857
3858 /* Cast a value into the appropriate complex data type. */
3859
3860 static struct value *
3861 cast_into_complex (struct type *type, struct value *val)
3862 {
3863 struct type *real_type = TYPE_TARGET_TYPE (type);
3864
3865 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3866 {
3867 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3868 struct value *re_val = allocate_value (val_real_type);
3869 struct value *im_val = allocate_value (val_real_type);
3870
3871 memcpy (value_contents_raw (re_val),
3872 value_contents (val), TYPE_LENGTH (val_real_type));
3873 memcpy (value_contents_raw (im_val),
3874 value_contents (val) + TYPE_LENGTH (val_real_type),
3875 TYPE_LENGTH (val_real_type));
3876
3877 return value_literal_complex (re_val, im_val, type);
3878 }
3879 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3880 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3881 return value_literal_complex (val,
3882 value_zero (real_type, not_lval),
3883 type);
3884 else
3885 error (_("cannot cast non-number to complex"));
3886 }
3887
3888 void
3889 _initialize_valops (void)
3890 {
3891 add_setshow_boolean_cmd ("overload-resolution", class_support,
3892 &overload_resolution, _("\
3893 Set overload resolution in evaluating C++ functions."), _("\
3894 Show overload resolution in evaluating C++ functions."),
3895 NULL, NULL,
3896 show_overload_resolution,
3897 &setlist, &showlist);
3898 overload_resolution = 1;
3899 }
This page took 0.120592 seconds and 4 git commands to generate.