gdb: Remove a cleanup from find_overload_match
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "target-float.h"
38 #include "tracepoint.h"
39 #include "observable.h"
40 #include "objfiles.h"
41 #include "extension.h"
42 #include "byte-vector.h"
43
44 extern unsigned int overload_debug;
45 /* Local functions. */
46
47 static int typecmp (int staticp, int varargs, int nargs,
48 struct field t1[], struct value *t2[]);
49
50 static struct value *search_struct_field (const char *, struct value *,
51 struct type *, int);
52
53 static struct value *search_struct_method (const char *, struct value **,
54 struct value **,
55 LONGEST, int *, struct type *);
56
57 static int find_oload_champ_namespace (gdb::array_view<value *> args,
58 const char *, const char *,
59 std::vector<symbol *> *oload_syms,
60 badness_vector *,
61 const int no_adl);
62
63 static int find_oload_champ_namespace_loop (gdb::array_view<value *> args,
64 const char *, const char *,
65 int, std::vector<symbol *> *oload_syms,
66 badness_vector *, int *,
67 const int no_adl);
68
69 static int find_oload_champ (gdb::array_view<value *> args,
70 size_t num_fns,
71 fn_field *methods,
72 xmethod_worker_up *xmethods,
73 symbol **functions,
74 badness_vector *oload_champ_bv);
75
76 static int oload_method_static_p (struct fn_field *, int);
77
78 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
79
80 static enum oload_classification classify_oload_match
81 (const badness_vector &, int, int);
82
83 static struct value *value_struct_elt_for_reference (struct type *,
84 int, struct type *,
85 const char *,
86 struct type *,
87 int, enum noside);
88
89 static struct value *value_namespace_elt (const struct type *,
90 const char *, int , enum noside);
91
92 static struct value *value_maybe_namespace_elt (const struct type *,
93 const char *, int,
94 enum noside);
95
96 static CORE_ADDR allocate_space_in_inferior (int);
97
98 static struct value *cast_into_complex (struct type *, struct value *);
99
100 int overload_resolution = 0;
101 static void
102 show_overload_resolution (struct ui_file *file, int from_tty,
103 struct cmd_list_element *c,
104 const char *value)
105 {
106 fprintf_filtered (file, _("Overload resolution in evaluating "
107 "C++ functions is %s.\n"),
108 value);
109 }
110
111 /* Find the address of function name NAME in the inferior. If OBJF_P
112 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
113 is defined. */
114
115 struct value *
116 find_function_in_inferior (const char *name, struct objfile **objf_p)
117 {
118 struct block_symbol sym;
119
120 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
121 if (sym.symbol != NULL)
122 {
123 if (SYMBOL_CLASS (sym.symbol) != LOC_BLOCK)
124 {
125 error (_("\"%s\" exists in this program but is not a function."),
126 name);
127 }
128
129 if (objf_p)
130 *objf_p = symbol_objfile (sym.symbol);
131
132 return value_of_variable (sym.symbol, sym.block);
133 }
134 else
135 {
136 struct bound_minimal_symbol msymbol =
137 lookup_bound_minimal_symbol (name);
138
139 if (msymbol.minsym != NULL)
140 {
141 struct objfile *objfile = msymbol.objfile;
142 struct gdbarch *gdbarch = get_objfile_arch (objfile);
143
144 struct type *type;
145 CORE_ADDR maddr;
146 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
147 type = lookup_function_type (type);
148 type = lookup_pointer_type (type);
149 maddr = BMSYMBOL_VALUE_ADDRESS (msymbol);
150
151 if (objf_p)
152 *objf_p = objfile;
153
154 return value_from_pointer (type, maddr);
155 }
156 else
157 {
158 if (!target_has_execution)
159 error (_("evaluation of this expression "
160 "requires the target program to be active"));
161 else
162 error (_("evaluation of this expression requires the "
163 "program to have a function \"%s\"."),
164 name);
165 }
166 }
167 }
168
169 /* Allocate NBYTES of space in the inferior using the inferior's
170 malloc and return a value that is a pointer to the allocated
171 space. */
172
173 struct value *
174 value_allocate_space_in_inferior (int len)
175 {
176 struct objfile *objf;
177 struct value *val = find_function_in_inferior ("malloc", &objf);
178 struct gdbarch *gdbarch = get_objfile_arch (objf);
179 struct value *blocklen;
180
181 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
182 val = call_function_by_hand (val, NULL, blocklen);
183 if (value_logical_not (val))
184 {
185 if (!target_has_execution)
186 error (_("No memory available to program now: "
187 "you need to start the target first"));
188 else
189 error (_("No memory available to program: call to malloc failed"));
190 }
191 return val;
192 }
193
194 static CORE_ADDR
195 allocate_space_in_inferior (int len)
196 {
197 return value_as_long (value_allocate_space_in_inferior (len));
198 }
199
200 /* Cast struct value VAL to type TYPE and return as a value.
201 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
202 for this to work. Typedef to one of the codes is permitted.
203 Returns NULL if the cast is neither an upcast nor a downcast. */
204
205 static struct value *
206 value_cast_structs (struct type *type, struct value *v2)
207 {
208 struct type *t1;
209 struct type *t2;
210 struct value *v;
211
212 gdb_assert (type != NULL && v2 != NULL);
213
214 t1 = check_typedef (type);
215 t2 = check_typedef (value_type (v2));
216
217 /* Check preconditions. */
218 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
219 || TYPE_CODE (t1) == TYPE_CODE_UNION)
220 && !!"Precondition is that type is of STRUCT or UNION kind.");
221 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
222 || TYPE_CODE (t2) == TYPE_CODE_UNION)
223 && !!"Precondition is that value is of STRUCT or UNION kind");
224
225 if (TYPE_NAME (t1) != NULL
226 && TYPE_NAME (t2) != NULL
227 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
228 return NULL;
229
230 /* Upcasting: look in the type of the source to see if it contains the
231 type of the target as a superclass. If so, we'll need to
232 offset the pointer rather than just change its type. */
233 if (TYPE_NAME (t1) != NULL)
234 {
235 v = search_struct_field (TYPE_NAME (t1),
236 v2, t2, 1);
237 if (v)
238 return v;
239 }
240
241 /* Downcasting: look in the type of the target to see if it contains the
242 type of the source as a superclass. If so, we'll need to
243 offset the pointer rather than just change its type. */
244 if (TYPE_NAME (t2) != NULL)
245 {
246 /* Try downcasting using the run-time type of the value. */
247 int full, using_enc;
248 LONGEST top;
249 struct type *real_type;
250
251 real_type = value_rtti_type (v2, &full, &top, &using_enc);
252 if (real_type)
253 {
254 v = value_full_object (v2, real_type, full, top, using_enc);
255 v = value_at_lazy (real_type, value_address (v));
256 real_type = value_type (v);
257
258 /* We might be trying to cast to the outermost enclosing
259 type, in which case search_struct_field won't work. */
260 if (TYPE_NAME (real_type) != NULL
261 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
262 return v;
263
264 v = search_struct_field (TYPE_NAME (t2), v, real_type, 1);
265 if (v)
266 return v;
267 }
268
269 /* Try downcasting using information from the destination type
270 T2. This wouldn't work properly for classes with virtual
271 bases, but those were handled above. */
272 v = search_struct_field (TYPE_NAME (t2),
273 value_zero (t1, not_lval), t1, 1);
274 if (v)
275 {
276 /* Downcasting is possible (t1 is superclass of v2). */
277 CORE_ADDR addr2 = value_address (v2);
278
279 addr2 -= value_address (v) + value_embedded_offset (v);
280 return value_at (type, addr2);
281 }
282 }
283
284 return NULL;
285 }
286
287 /* Cast one pointer or reference type to another. Both TYPE and
288 the type of ARG2 should be pointer types, or else both should be
289 reference types. If SUBCLASS_CHECK is non-zero, this will force a
290 check to see whether TYPE is a superclass of ARG2's type. If
291 SUBCLASS_CHECK is zero, then the subclass check is done only when
292 ARG2 is itself non-zero. Returns the new pointer or reference. */
293
294 struct value *
295 value_cast_pointers (struct type *type, struct value *arg2,
296 int subclass_check)
297 {
298 struct type *type1 = check_typedef (type);
299 struct type *type2 = check_typedef (value_type (arg2));
300 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
301 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
302
303 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
304 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
305 && (subclass_check || !value_logical_not (arg2)))
306 {
307 struct value *v2;
308
309 if (TYPE_IS_REFERENCE (type2))
310 v2 = coerce_ref (arg2);
311 else
312 v2 = value_ind (arg2);
313 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
314 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
315 v2 = value_cast_structs (t1, v2);
316 /* At this point we have what we can have, un-dereference if needed. */
317 if (v2)
318 {
319 struct value *v = value_addr (v2);
320
321 deprecated_set_value_type (v, type);
322 return v;
323 }
324 }
325
326 /* No superclass found, just change the pointer type. */
327 arg2 = value_copy (arg2);
328 deprecated_set_value_type (arg2, type);
329 set_value_enclosing_type (arg2, type);
330 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
331 return arg2;
332 }
333
334 /* Cast value ARG2 to type TYPE and return as a value.
335 More general than a C cast: accepts any two types of the same length,
336 and if ARG2 is an lvalue it can be cast into anything at all. */
337 /* In C++, casts may change pointer or object representations. */
338
339 struct value *
340 value_cast (struct type *type, struct value *arg2)
341 {
342 enum type_code code1;
343 enum type_code code2;
344 int scalar;
345 struct type *type2;
346
347 int convert_to_boolean = 0;
348
349 if (value_type (arg2) == type)
350 return arg2;
351
352 /* Check if we are casting struct reference to struct reference. */
353 if (TYPE_IS_REFERENCE (check_typedef (type)))
354 {
355 /* We dereference type; then we recurse and finally
356 we generate value of the given reference. Nothing wrong with
357 that. */
358 struct type *t1 = check_typedef (type);
359 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
360 struct value *val = value_cast (dereftype, arg2);
361
362 return value_ref (val, TYPE_CODE (t1));
363 }
364
365 if (TYPE_IS_REFERENCE (check_typedef (value_type (arg2))))
366 /* We deref the value and then do the cast. */
367 return value_cast (type, coerce_ref (arg2));
368
369 /* Strip typedefs / resolve stubs in order to get at the type's
370 code/length, but remember the original type, to use as the
371 resulting type of the cast, in case it was a typedef. */
372 struct type *to_type = type;
373
374 type = check_typedef (type);
375 code1 = TYPE_CODE (type);
376 arg2 = coerce_ref (arg2);
377 type2 = check_typedef (value_type (arg2));
378
379 /* You can't cast to a reference type. See value_cast_pointers
380 instead. */
381 gdb_assert (!TYPE_IS_REFERENCE (type));
382
383 /* A cast to an undetermined-length array_type, such as
384 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
385 where N is sizeof(OBJECT)/sizeof(TYPE). */
386 if (code1 == TYPE_CODE_ARRAY)
387 {
388 struct type *element_type = TYPE_TARGET_TYPE (type);
389 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
390
391 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
392 {
393 struct type *range_type = TYPE_INDEX_TYPE (type);
394 int val_length = TYPE_LENGTH (type2);
395 LONGEST low_bound, high_bound, new_length;
396
397 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
398 low_bound = 0, high_bound = 0;
399 new_length = val_length / element_length;
400 if (val_length % element_length != 0)
401 warning (_("array element type size does not "
402 "divide object size in cast"));
403 /* FIXME-type-allocation: need a way to free this type when
404 we are done with it. */
405 range_type = create_static_range_type ((struct type *) NULL,
406 TYPE_TARGET_TYPE (range_type),
407 low_bound,
408 new_length + low_bound - 1);
409 deprecated_set_value_type (arg2,
410 create_array_type ((struct type *) NULL,
411 element_type,
412 range_type));
413 return arg2;
414 }
415 }
416
417 if (current_language->c_style_arrays
418 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
419 && !TYPE_VECTOR (type2))
420 arg2 = value_coerce_array (arg2);
421
422 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
423 arg2 = value_coerce_function (arg2);
424
425 type2 = check_typedef (value_type (arg2));
426 code2 = TYPE_CODE (type2);
427
428 if (code1 == TYPE_CODE_COMPLEX)
429 return cast_into_complex (to_type, arg2);
430 if (code1 == TYPE_CODE_BOOL)
431 {
432 code1 = TYPE_CODE_INT;
433 convert_to_boolean = 1;
434 }
435 if (code1 == TYPE_CODE_CHAR)
436 code1 = TYPE_CODE_INT;
437 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
438 code2 = TYPE_CODE_INT;
439
440 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
441 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
442 || code2 == TYPE_CODE_RANGE);
443
444 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
445 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
446 && TYPE_NAME (type) != 0)
447 {
448 struct value *v = value_cast_structs (to_type, arg2);
449
450 if (v)
451 return v;
452 }
453
454 if (is_floating_type (type) && scalar)
455 {
456 if (is_floating_value (arg2))
457 {
458 struct value *v = allocate_value (to_type);
459 target_float_convert (value_contents (arg2), type2,
460 value_contents_raw (v), type);
461 return v;
462 }
463
464 /* The only option left is an integral type. */
465 if (TYPE_UNSIGNED (type2))
466 return value_from_ulongest (to_type, value_as_long (arg2));
467 else
468 return value_from_longest (to_type, value_as_long (arg2));
469 }
470 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
471 || code1 == TYPE_CODE_RANGE)
472 && (scalar || code2 == TYPE_CODE_PTR
473 || code2 == TYPE_CODE_MEMBERPTR))
474 {
475 LONGEST longest;
476
477 /* When we cast pointers to integers, we mustn't use
478 gdbarch_pointer_to_address to find the address the pointer
479 represents, as value_as_long would. GDB should evaluate
480 expressions just as the compiler would --- and the compiler
481 sees a cast as a simple reinterpretation of the pointer's
482 bits. */
483 if (code2 == TYPE_CODE_PTR)
484 longest = extract_unsigned_integer
485 (value_contents (arg2), TYPE_LENGTH (type2),
486 gdbarch_byte_order (get_type_arch (type2)));
487 else
488 longest = value_as_long (arg2);
489 return value_from_longest (to_type, convert_to_boolean ?
490 (LONGEST) (longest ? 1 : 0) : longest);
491 }
492 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
493 || code2 == TYPE_CODE_ENUM
494 || code2 == TYPE_CODE_RANGE))
495 {
496 /* TYPE_LENGTH (type) is the length of a pointer, but we really
497 want the length of an address! -- we are really dealing with
498 addresses (i.e., gdb representations) not pointers (i.e.,
499 target representations) here.
500
501 This allows things like "print *(int *)0x01000234" to work
502 without printing a misleading message -- which would
503 otherwise occur when dealing with a target having two byte
504 pointers and four byte addresses. */
505
506 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
507 LONGEST longest = value_as_long (arg2);
508
509 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
510 {
511 if (longest >= ((LONGEST) 1 << addr_bit)
512 || longest <= -((LONGEST) 1 << addr_bit))
513 warning (_("value truncated"));
514 }
515 return value_from_longest (to_type, longest);
516 }
517 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
518 && value_as_long (arg2) == 0)
519 {
520 struct value *result = allocate_value (to_type);
521
522 cplus_make_method_ptr (to_type, value_contents_writeable (result), 0, 0);
523 return result;
524 }
525 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
526 && value_as_long (arg2) == 0)
527 {
528 /* The Itanium C++ ABI represents NULL pointers to members as
529 minus one, instead of biasing the normal case. */
530 return value_from_longest (to_type, -1);
531 }
532 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
533 && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
534 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
535 error (_("Cannot convert between vector values of different sizes"));
536 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
537 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
538 error (_("can only cast scalar to vector of same size"));
539 else if (code1 == TYPE_CODE_VOID)
540 {
541 return value_zero (to_type, not_lval);
542 }
543 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
544 {
545 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
546 return value_cast_pointers (to_type, arg2, 0);
547
548 arg2 = value_copy (arg2);
549 deprecated_set_value_type (arg2, to_type);
550 set_value_enclosing_type (arg2, to_type);
551 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
552 return arg2;
553 }
554 else if (VALUE_LVAL (arg2) == lval_memory)
555 return value_at_lazy (to_type, value_address (arg2));
556 else
557 {
558 error (_("Invalid cast."));
559 return 0;
560 }
561 }
562
563 /* The C++ reinterpret_cast operator. */
564
565 struct value *
566 value_reinterpret_cast (struct type *type, struct value *arg)
567 {
568 struct value *result;
569 struct type *real_type = check_typedef (type);
570 struct type *arg_type, *dest_type;
571 int is_ref = 0;
572 enum type_code dest_code, arg_code;
573
574 /* Do reference, function, and array conversion. */
575 arg = coerce_array (arg);
576
577 /* Attempt to preserve the type the user asked for. */
578 dest_type = type;
579
580 /* If we are casting to a reference type, transform
581 reinterpret_cast<T&[&]>(V) to *reinterpret_cast<T*>(&V). */
582 if (TYPE_IS_REFERENCE (real_type))
583 {
584 is_ref = 1;
585 arg = value_addr (arg);
586 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
587 real_type = lookup_pointer_type (real_type);
588 }
589
590 arg_type = value_type (arg);
591
592 dest_code = TYPE_CODE (real_type);
593 arg_code = TYPE_CODE (arg_type);
594
595 /* We can convert pointer types, or any pointer type to int, or int
596 type to pointer. */
597 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
598 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
599 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
600 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
601 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
602 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
603 || (dest_code == arg_code
604 && (dest_code == TYPE_CODE_PTR
605 || dest_code == TYPE_CODE_METHODPTR
606 || dest_code == TYPE_CODE_MEMBERPTR)))
607 result = value_cast (dest_type, arg);
608 else
609 error (_("Invalid reinterpret_cast"));
610
611 if (is_ref)
612 result = value_cast (type, value_ref (value_ind (result),
613 TYPE_CODE (type)));
614
615 return result;
616 }
617
618 /* A helper for value_dynamic_cast. This implements the first of two
619 runtime checks: we iterate over all the base classes of the value's
620 class which are equal to the desired class; if only one of these
621 holds the value, then it is the answer. */
622
623 static int
624 dynamic_cast_check_1 (struct type *desired_type,
625 const gdb_byte *valaddr,
626 LONGEST embedded_offset,
627 CORE_ADDR address,
628 struct value *val,
629 struct type *search_type,
630 CORE_ADDR arg_addr,
631 struct type *arg_type,
632 struct value **result)
633 {
634 int i, result_count = 0;
635
636 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
637 {
638 LONGEST offset = baseclass_offset (search_type, i, valaddr,
639 embedded_offset,
640 address, val);
641
642 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
643 {
644 if (address + embedded_offset + offset >= arg_addr
645 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
646 {
647 ++result_count;
648 if (!*result)
649 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
650 address + embedded_offset + offset);
651 }
652 }
653 else
654 result_count += dynamic_cast_check_1 (desired_type,
655 valaddr,
656 embedded_offset + offset,
657 address, val,
658 TYPE_BASECLASS (search_type, i),
659 arg_addr,
660 arg_type,
661 result);
662 }
663
664 return result_count;
665 }
666
667 /* A helper for value_dynamic_cast. This implements the second of two
668 runtime checks: we look for a unique public sibling class of the
669 argument's declared class. */
670
671 static int
672 dynamic_cast_check_2 (struct type *desired_type,
673 const gdb_byte *valaddr,
674 LONGEST embedded_offset,
675 CORE_ADDR address,
676 struct value *val,
677 struct type *search_type,
678 struct value **result)
679 {
680 int i, result_count = 0;
681
682 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
683 {
684 LONGEST offset;
685
686 if (! BASETYPE_VIA_PUBLIC (search_type, i))
687 continue;
688
689 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
690 address, val);
691 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
692 {
693 ++result_count;
694 if (*result == NULL)
695 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
696 address + embedded_offset + offset);
697 }
698 else
699 result_count += dynamic_cast_check_2 (desired_type,
700 valaddr,
701 embedded_offset + offset,
702 address, val,
703 TYPE_BASECLASS (search_type, i),
704 result);
705 }
706
707 return result_count;
708 }
709
710 /* The C++ dynamic_cast operator. */
711
712 struct value *
713 value_dynamic_cast (struct type *type, struct value *arg)
714 {
715 int full, using_enc;
716 LONGEST top;
717 struct type *resolved_type = check_typedef (type);
718 struct type *arg_type = check_typedef (value_type (arg));
719 struct type *class_type, *rtti_type;
720 struct value *result, *tem, *original_arg = arg;
721 CORE_ADDR addr;
722 int is_ref = TYPE_IS_REFERENCE (resolved_type);
723
724 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
725 && !TYPE_IS_REFERENCE (resolved_type))
726 error (_("Argument to dynamic_cast must be a pointer or reference type"));
727 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
728 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_STRUCT)
729 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
730
731 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
732 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
733 {
734 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
735 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
736 && value_as_long (arg) == 0))
737 error (_("Argument to dynamic_cast does not have pointer type"));
738 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
739 {
740 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
741 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
742 error (_("Argument to dynamic_cast does "
743 "not have pointer to class type"));
744 }
745
746 /* Handle NULL pointers. */
747 if (value_as_long (arg) == 0)
748 return value_zero (type, not_lval);
749
750 arg = value_ind (arg);
751 }
752 else
753 {
754 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
755 error (_("Argument to dynamic_cast does not have class type"));
756 }
757
758 /* If the classes are the same, just return the argument. */
759 if (class_types_same_p (class_type, arg_type))
760 return value_cast (type, arg);
761
762 /* If the target type is a unique base class of the argument's
763 declared type, just cast it. */
764 if (is_ancestor (class_type, arg_type))
765 {
766 if (is_unique_ancestor (class_type, arg))
767 return value_cast (type, original_arg);
768 error (_("Ambiguous dynamic_cast"));
769 }
770
771 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
772 if (! rtti_type)
773 error (_("Couldn't determine value's most derived type for dynamic_cast"));
774
775 /* Compute the most derived object's address. */
776 addr = value_address (arg);
777 if (full)
778 {
779 /* Done. */
780 }
781 else if (using_enc)
782 addr += top;
783 else
784 addr += top + value_embedded_offset (arg);
785
786 /* dynamic_cast<void *> means to return a pointer to the
787 most-derived object. */
788 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
789 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
790 return value_at_lazy (type, addr);
791
792 tem = value_at (type, addr);
793 type = value_type (tem);
794
795 /* The first dynamic check specified in 5.2.7. */
796 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
797 {
798 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
799 return tem;
800 result = NULL;
801 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
802 value_contents_for_printing (tem),
803 value_embedded_offset (tem),
804 value_address (tem), tem,
805 rtti_type, addr,
806 arg_type,
807 &result) == 1)
808 return value_cast (type,
809 is_ref
810 ? value_ref (result, TYPE_CODE (resolved_type))
811 : value_addr (result));
812 }
813
814 /* The second dynamic check specified in 5.2.7. */
815 result = NULL;
816 if (is_public_ancestor (arg_type, rtti_type)
817 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
818 value_contents_for_printing (tem),
819 value_embedded_offset (tem),
820 value_address (tem), tem,
821 rtti_type, &result) == 1)
822 return value_cast (type,
823 is_ref
824 ? value_ref (result, TYPE_CODE (resolved_type))
825 : value_addr (result));
826
827 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
828 return value_zero (type, not_lval);
829
830 error (_("dynamic_cast failed"));
831 }
832
833 /* Create a value of type TYPE that is zero, and return it. */
834
835 struct value *
836 value_zero (struct type *type, enum lval_type lv)
837 {
838 struct value *val = allocate_value (type);
839
840 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
841 return val;
842 }
843
844 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
845
846 struct value *
847 value_one (struct type *type)
848 {
849 struct type *type1 = check_typedef (type);
850 struct value *val;
851
852 if (is_integral_type (type1) || is_floating_type (type1))
853 {
854 val = value_from_longest (type, (LONGEST) 1);
855 }
856 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
857 {
858 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
859 int i;
860 LONGEST low_bound, high_bound;
861 struct value *tmp;
862
863 if (!get_array_bounds (type1, &low_bound, &high_bound))
864 error (_("Could not determine the vector bounds"));
865
866 val = allocate_value (type);
867 for (i = 0; i < high_bound - low_bound + 1; i++)
868 {
869 tmp = value_one (eltype);
870 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
871 value_contents_all (tmp), TYPE_LENGTH (eltype));
872 }
873 }
874 else
875 {
876 error (_("Not a numeric type."));
877 }
878
879 /* value_one result is never used for assignments to. */
880 gdb_assert (VALUE_LVAL (val) == not_lval);
881
882 return val;
883 }
884
885 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.
886 The type of the created value may differ from the passed type TYPE.
887 Make sure to retrieve the returned values's new type after this call
888 e.g. in case the type is a variable length array. */
889
890 static struct value *
891 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
892 {
893 struct value *val;
894
895 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
896 error (_("Attempt to dereference a generic pointer."));
897
898 val = value_from_contents_and_address (type, NULL, addr);
899
900 if (!lazy)
901 value_fetch_lazy (val);
902
903 return val;
904 }
905
906 /* Return a value with type TYPE located at ADDR.
907
908 Call value_at only if the data needs to be fetched immediately;
909 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
910 value_at_lazy instead. value_at_lazy simply records the address of
911 the data and sets the lazy-evaluation-required flag. The lazy flag
912 is tested in the value_contents macro, which is used if and when
913 the contents are actually required. The type of the created value
914 may differ from the passed type TYPE. Make sure to retrieve the
915 returned values's new type after this call e.g. in case the type
916 is a variable length array.
917
918 Note: value_at does *NOT* handle embedded offsets; perform such
919 adjustments before or after calling it. */
920
921 struct value *
922 value_at (struct type *type, CORE_ADDR addr)
923 {
924 return get_value_at (type, addr, 0);
925 }
926
927 /* Return a lazy value with type TYPE located at ADDR (cf. value_at).
928 The type of the created value may differ from the passed type TYPE.
929 Make sure to retrieve the returned values's new type after this call
930 e.g. in case the type is a variable length array. */
931
932 struct value *
933 value_at_lazy (struct type *type, CORE_ADDR addr)
934 {
935 return get_value_at (type, addr, 1);
936 }
937
938 void
939 read_value_memory (struct value *val, LONGEST bit_offset,
940 int stack, CORE_ADDR memaddr,
941 gdb_byte *buffer, size_t length)
942 {
943 ULONGEST xfered_total = 0;
944 struct gdbarch *arch = get_value_arch (val);
945 int unit_size = gdbarch_addressable_memory_unit_size (arch);
946 enum target_object object;
947
948 object = stack ? TARGET_OBJECT_STACK_MEMORY : TARGET_OBJECT_MEMORY;
949
950 while (xfered_total < length)
951 {
952 enum target_xfer_status status;
953 ULONGEST xfered_partial;
954
955 status = target_xfer_partial (current_top_target (),
956 object, NULL,
957 buffer + xfered_total * unit_size, NULL,
958 memaddr + xfered_total,
959 length - xfered_total,
960 &xfered_partial);
961
962 if (status == TARGET_XFER_OK)
963 /* nothing */;
964 else if (status == TARGET_XFER_UNAVAILABLE)
965 mark_value_bits_unavailable (val, (xfered_total * HOST_CHAR_BIT
966 + bit_offset),
967 xfered_partial * HOST_CHAR_BIT);
968 else if (status == TARGET_XFER_EOF)
969 memory_error (TARGET_XFER_E_IO, memaddr + xfered_total);
970 else
971 memory_error (status, memaddr + xfered_total);
972
973 xfered_total += xfered_partial;
974 QUIT;
975 }
976 }
977
978 /* Store the contents of FROMVAL into the location of TOVAL.
979 Return a new value with the location of TOVAL and contents of FROMVAL. */
980
981 struct value *
982 value_assign (struct value *toval, struct value *fromval)
983 {
984 struct type *type;
985 struct value *val;
986 struct frame_id old_frame;
987
988 if (!deprecated_value_modifiable (toval))
989 error (_("Left operand of assignment is not a modifiable lvalue."));
990
991 toval = coerce_ref (toval);
992
993 type = value_type (toval);
994 if (VALUE_LVAL (toval) != lval_internalvar)
995 fromval = value_cast (type, fromval);
996 else
997 {
998 /* Coerce arrays and functions to pointers, except for arrays
999 which only live in GDB's storage. */
1000 if (!value_must_coerce_to_target (fromval))
1001 fromval = coerce_array (fromval);
1002 }
1003
1004 type = check_typedef (type);
1005
1006 /* Since modifying a register can trash the frame chain, and
1007 modifying memory can trash the frame cache, we save the old frame
1008 and then restore the new frame afterwards. */
1009 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1010
1011 switch (VALUE_LVAL (toval))
1012 {
1013 case lval_internalvar:
1014 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1015 return value_of_internalvar (get_type_arch (type),
1016 VALUE_INTERNALVAR (toval));
1017
1018 case lval_internalvar_component:
1019 {
1020 LONGEST offset = value_offset (toval);
1021
1022 /* Are we dealing with a bitfield?
1023
1024 It is important to mention that `value_parent (toval)' is
1025 non-NULL iff `value_bitsize (toval)' is non-zero. */
1026 if (value_bitsize (toval))
1027 {
1028 /* VALUE_INTERNALVAR below refers to the parent value, while
1029 the offset is relative to this parent value. */
1030 gdb_assert (value_parent (value_parent (toval)) == NULL);
1031 offset += value_offset (value_parent (toval));
1032 }
1033
1034 set_internalvar_component (VALUE_INTERNALVAR (toval),
1035 offset,
1036 value_bitpos (toval),
1037 value_bitsize (toval),
1038 fromval);
1039 }
1040 break;
1041
1042 case lval_memory:
1043 {
1044 const gdb_byte *dest_buffer;
1045 CORE_ADDR changed_addr;
1046 int changed_len;
1047 gdb_byte buffer[sizeof (LONGEST)];
1048
1049 if (value_bitsize (toval))
1050 {
1051 struct value *parent = value_parent (toval);
1052
1053 changed_addr = value_address (parent) + value_offset (toval);
1054 changed_len = (value_bitpos (toval)
1055 + value_bitsize (toval)
1056 + HOST_CHAR_BIT - 1)
1057 / HOST_CHAR_BIT;
1058
1059 /* If we can read-modify-write exactly the size of the
1060 containing type (e.g. short or int) then do so. This
1061 is safer for volatile bitfields mapped to hardware
1062 registers. */
1063 if (changed_len < TYPE_LENGTH (type)
1064 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1065 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1066 changed_len = TYPE_LENGTH (type);
1067
1068 if (changed_len > (int) sizeof (LONGEST))
1069 error (_("Can't handle bitfields which "
1070 "don't fit in a %d bit word."),
1071 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1072
1073 read_memory (changed_addr, buffer, changed_len);
1074 modify_field (type, buffer, value_as_long (fromval),
1075 value_bitpos (toval), value_bitsize (toval));
1076 dest_buffer = buffer;
1077 }
1078 else
1079 {
1080 changed_addr = value_address (toval);
1081 changed_len = type_length_units (type);
1082 dest_buffer = value_contents (fromval);
1083 }
1084
1085 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1086 }
1087 break;
1088
1089 case lval_register:
1090 {
1091 struct frame_info *frame;
1092 struct gdbarch *gdbarch;
1093 int value_reg;
1094
1095 /* Figure out which frame this is in currently.
1096
1097 We use VALUE_FRAME_ID for obtaining the value's frame id instead of
1098 VALUE_NEXT_FRAME_ID due to requiring a frame which may be passed to
1099 put_frame_register_bytes() below. That function will (eventually)
1100 perform the necessary unwind operation by first obtaining the next
1101 frame. */
1102 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1103
1104 value_reg = VALUE_REGNUM (toval);
1105
1106 if (!frame)
1107 error (_("Value being assigned to is no longer active."));
1108
1109 gdbarch = get_frame_arch (frame);
1110
1111 if (value_bitsize (toval))
1112 {
1113 struct value *parent = value_parent (toval);
1114 LONGEST offset = value_offset (parent) + value_offset (toval);
1115 int changed_len;
1116 gdb_byte buffer[sizeof (LONGEST)];
1117 int optim, unavail;
1118
1119 changed_len = (value_bitpos (toval)
1120 + value_bitsize (toval)
1121 + HOST_CHAR_BIT - 1)
1122 / HOST_CHAR_BIT;
1123
1124 if (changed_len > (int) sizeof (LONGEST))
1125 error (_("Can't handle bitfields which "
1126 "don't fit in a %d bit word."),
1127 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1128
1129 if (!get_frame_register_bytes (frame, value_reg, offset,
1130 changed_len, buffer,
1131 &optim, &unavail))
1132 {
1133 if (optim)
1134 throw_error (OPTIMIZED_OUT_ERROR,
1135 _("value has been optimized out"));
1136 if (unavail)
1137 throw_error (NOT_AVAILABLE_ERROR,
1138 _("value is not available"));
1139 }
1140
1141 modify_field (type, buffer, value_as_long (fromval),
1142 value_bitpos (toval), value_bitsize (toval));
1143
1144 put_frame_register_bytes (frame, value_reg, offset,
1145 changed_len, buffer);
1146 }
1147 else
1148 {
1149 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval),
1150 type))
1151 {
1152 /* If TOVAL is a special machine register requiring
1153 conversion of program values to a special raw
1154 format. */
1155 gdbarch_value_to_register (gdbarch, frame,
1156 VALUE_REGNUM (toval), type,
1157 value_contents (fromval));
1158 }
1159 else
1160 {
1161 put_frame_register_bytes (frame, value_reg,
1162 value_offset (toval),
1163 TYPE_LENGTH (type),
1164 value_contents (fromval));
1165 }
1166 }
1167
1168 gdb::observers::register_changed.notify (frame, value_reg);
1169 break;
1170 }
1171
1172 case lval_computed:
1173 {
1174 const struct lval_funcs *funcs = value_computed_funcs (toval);
1175
1176 if (funcs->write != NULL)
1177 {
1178 funcs->write (toval, fromval);
1179 break;
1180 }
1181 }
1182 /* Fall through. */
1183
1184 default:
1185 error (_("Left operand of assignment is not an lvalue."));
1186 }
1187
1188 /* Assigning to the stack pointer, frame pointer, and other
1189 (architecture and calling convention specific) registers may
1190 cause the frame cache and regcache to be out of date. Assigning to memory
1191 also can. We just do this on all assignments to registers or
1192 memory, for simplicity's sake; I doubt the slowdown matters. */
1193 switch (VALUE_LVAL (toval))
1194 {
1195 case lval_memory:
1196 case lval_register:
1197 case lval_computed:
1198
1199 gdb::observers::target_changed.notify (current_top_target ());
1200
1201 /* Having destroyed the frame cache, restore the selected
1202 frame. */
1203
1204 /* FIXME: cagney/2002-11-02: There has to be a better way of
1205 doing this. Instead of constantly saving/restoring the
1206 frame. Why not create a get_selected_frame() function that,
1207 having saved the selected frame's ID can automatically
1208 re-find the previously selected frame automatically. */
1209
1210 {
1211 struct frame_info *fi = frame_find_by_id (old_frame);
1212
1213 if (fi != NULL)
1214 select_frame (fi);
1215 }
1216
1217 break;
1218 default:
1219 break;
1220 }
1221
1222 /* If the field does not entirely fill a LONGEST, then zero the sign
1223 bits. If the field is signed, and is negative, then sign
1224 extend. */
1225 if ((value_bitsize (toval) > 0)
1226 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1227 {
1228 LONGEST fieldval = value_as_long (fromval);
1229 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1230
1231 fieldval &= valmask;
1232 if (!TYPE_UNSIGNED (type)
1233 && (fieldval & (valmask ^ (valmask >> 1))))
1234 fieldval |= ~valmask;
1235
1236 fromval = value_from_longest (type, fieldval);
1237 }
1238
1239 /* The return value is a copy of TOVAL so it shares its location
1240 information, but its contents are updated from FROMVAL. This
1241 implies the returned value is not lazy, even if TOVAL was. */
1242 val = value_copy (toval);
1243 set_value_lazy (val, 0);
1244 memcpy (value_contents_raw (val), value_contents (fromval),
1245 TYPE_LENGTH (type));
1246
1247 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1248 in the case of pointer types. For object types, the enclosing type
1249 and embedded offset must *not* be copied: the target object refered
1250 to by TOVAL retains its original dynamic type after assignment. */
1251 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1252 {
1253 set_value_enclosing_type (val, value_enclosing_type (fromval));
1254 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1255 }
1256
1257 return val;
1258 }
1259
1260 /* Extend a value VAL to COUNT repetitions of its type. */
1261
1262 struct value *
1263 value_repeat (struct value *arg1, int count)
1264 {
1265 struct value *val;
1266
1267 if (VALUE_LVAL (arg1) != lval_memory)
1268 error (_("Only values in memory can be extended with '@'."));
1269 if (count < 1)
1270 error (_("Invalid number %d of repetitions."), count);
1271
1272 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1273
1274 VALUE_LVAL (val) = lval_memory;
1275 set_value_address (val, value_address (arg1));
1276
1277 read_value_memory (val, 0, value_stack (val), value_address (val),
1278 value_contents_all_raw (val),
1279 type_length_units (value_enclosing_type (val)));
1280
1281 return val;
1282 }
1283
1284 struct value *
1285 value_of_variable (struct symbol *var, const struct block *b)
1286 {
1287 struct frame_info *frame = NULL;
1288
1289 if (symbol_read_needs_frame (var))
1290 frame = get_selected_frame (_("No frame selected."));
1291
1292 return read_var_value (var, b, frame);
1293 }
1294
1295 struct value *
1296 address_of_variable (struct symbol *var, const struct block *b)
1297 {
1298 struct type *type = SYMBOL_TYPE (var);
1299 struct value *val;
1300
1301 /* Evaluate it first; if the result is a memory address, we're fine.
1302 Lazy evaluation pays off here. */
1303
1304 val = value_of_variable (var, b);
1305 type = value_type (val);
1306
1307 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1308 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1309 {
1310 CORE_ADDR addr = value_address (val);
1311
1312 return value_from_pointer (lookup_pointer_type (type), addr);
1313 }
1314
1315 /* Not a memory address; check what the problem was. */
1316 switch (VALUE_LVAL (val))
1317 {
1318 case lval_register:
1319 {
1320 struct frame_info *frame;
1321 const char *regname;
1322
1323 frame = frame_find_by_id (VALUE_NEXT_FRAME_ID (val));
1324 gdb_assert (frame);
1325
1326 regname = gdbarch_register_name (get_frame_arch (frame),
1327 VALUE_REGNUM (val));
1328 gdb_assert (regname && *regname);
1329
1330 error (_("Address requested for identifier "
1331 "\"%s\" which is in register $%s"),
1332 SYMBOL_PRINT_NAME (var), regname);
1333 break;
1334 }
1335
1336 default:
1337 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1338 SYMBOL_PRINT_NAME (var));
1339 break;
1340 }
1341
1342 return val;
1343 }
1344
1345 /* Return one if VAL does not live in target memory, but should in order
1346 to operate on it. Otherwise return zero. */
1347
1348 int
1349 value_must_coerce_to_target (struct value *val)
1350 {
1351 struct type *valtype;
1352
1353 /* The only lval kinds which do not live in target memory. */
1354 if (VALUE_LVAL (val) != not_lval
1355 && VALUE_LVAL (val) != lval_internalvar
1356 && VALUE_LVAL (val) != lval_xcallable)
1357 return 0;
1358
1359 valtype = check_typedef (value_type (val));
1360
1361 switch (TYPE_CODE (valtype))
1362 {
1363 case TYPE_CODE_ARRAY:
1364 return TYPE_VECTOR (valtype) ? 0 : 1;
1365 case TYPE_CODE_STRING:
1366 return 1;
1367 default:
1368 return 0;
1369 }
1370 }
1371
1372 /* Make sure that VAL lives in target memory if it's supposed to. For
1373 instance, strings are constructed as character arrays in GDB's
1374 storage, and this function copies them to the target. */
1375
1376 struct value *
1377 value_coerce_to_target (struct value *val)
1378 {
1379 LONGEST length;
1380 CORE_ADDR addr;
1381
1382 if (!value_must_coerce_to_target (val))
1383 return val;
1384
1385 length = TYPE_LENGTH (check_typedef (value_type (val)));
1386 addr = allocate_space_in_inferior (length);
1387 write_memory (addr, value_contents (val), length);
1388 return value_at_lazy (value_type (val), addr);
1389 }
1390
1391 /* Given a value which is an array, return a value which is a pointer
1392 to its first element, regardless of whether or not the array has a
1393 nonzero lower bound.
1394
1395 FIXME: A previous comment here indicated that this routine should
1396 be substracting the array's lower bound. It's not clear to me that
1397 this is correct. Given an array subscripting operation, it would
1398 certainly work to do the adjustment here, essentially computing:
1399
1400 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1401
1402 However I believe a more appropriate and logical place to account
1403 for the lower bound is to do so in value_subscript, essentially
1404 computing:
1405
1406 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1407
1408 As further evidence consider what would happen with operations
1409 other than array subscripting, where the caller would get back a
1410 value that had an address somewhere before the actual first element
1411 of the array, and the information about the lower bound would be
1412 lost because of the coercion to pointer type. */
1413
1414 struct value *
1415 value_coerce_array (struct value *arg1)
1416 {
1417 struct type *type = check_typedef (value_type (arg1));
1418
1419 /* If the user tries to do something requiring a pointer with an
1420 array that has not yet been pushed to the target, then this would
1421 be a good time to do so. */
1422 arg1 = value_coerce_to_target (arg1);
1423
1424 if (VALUE_LVAL (arg1) != lval_memory)
1425 error (_("Attempt to take address of value not located in memory."));
1426
1427 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1428 value_address (arg1));
1429 }
1430
1431 /* Given a value which is a function, return a value which is a pointer
1432 to it. */
1433
1434 struct value *
1435 value_coerce_function (struct value *arg1)
1436 {
1437 struct value *retval;
1438
1439 if (VALUE_LVAL (arg1) != lval_memory)
1440 error (_("Attempt to take address of value not located in memory."));
1441
1442 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1443 value_address (arg1));
1444 return retval;
1445 }
1446
1447 /* Return a pointer value for the object for which ARG1 is the
1448 contents. */
1449
1450 struct value *
1451 value_addr (struct value *arg1)
1452 {
1453 struct value *arg2;
1454 struct type *type = check_typedef (value_type (arg1));
1455
1456 if (TYPE_IS_REFERENCE (type))
1457 {
1458 if (value_bits_synthetic_pointer (arg1, value_embedded_offset (arg1),
1459 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1460 arg1 = coerce_ref (arg1);
1461 else
1462 {
1463 /* Copy the value, but change the type from (T&) to (T*). We
1464 keep the same location information, which is efficient, and
1465 allows &(&X) to get the location containing the reference.
1466 Do the same to its enclosing type for consistency. */
1467 struct type *type_ptr
1468 = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1469 struct type *enclosing_type
1470 = check_typedef (value_enclosing_type (arg1));
1471 struct type *enclosing_type_ptr
1472 = lookup_pointer_type (TYPE_TARGET_TYPE (enclosing_type));
1473
1474 arg2 = value_copy (arg1);
1475 deprecated_set_value_type (arg2, type_ptr);
1476 set_value_enclosing_type (arg2, enclosing_type_ptr);
1477
1478 return arg2;
1479 }
1480 }
1481 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1482 return value_coerce_function (arg1);
1483
1484 /* If this is an array that has not yet been pushed to the target,
1485 then this would be a good time to force it to memory. */
1486 arg1 = value_coerce_to_target (arg1);
1487
1488 if (VALUE_LVAL (arg1) != lval_memory)
1489 error (_("Attempt to take address of value not located in memory."));
1490
1491 /* Get target memory address. */
1492 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1493 (value_address (arg1)
1494 + value_embedded_offset (arg1)));
1495
1496 /* This may be a pointer to a base subobject; so remember the
1497 full derived object's type ... */
1498 set_value_enclosing_type (arg2,
1499 lookup_pointer_type (value_enclosing_type (arg1)));
1500 /* ... and also the relative position of the subobject in the full
1501 object. */
1502 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1503 return arg2;
1504 }
1505
1506 /* Return a reference value for the object for which ARG1 is the
1507 contents. */
1508
1509 struct value *
1510 value_ref (struct value *arg1, enum type_code refcode)
1511 {
1512 struct value *arg2;
1513 struct type *type = check_typedef (value_type (arg1));
1514
1515 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
1516
1517 if ((TYPE_CODE (type) == TYPE_CODE_REF
1518 || TYPE_CODE (type) == TYPE_CODE_RVALUE_REF)
1519 && TYPE_CODE (type) == refcode)
1520 return arg1;
1521
1522 arg2 = value_addr (arg1);
1523 deprecated_set_value_type (arg2, lookup_reference_type (type, refcode));
1524 return arg2;
1525 }
1526
1527 /* Given a value of a pointer type, apply the C unary * operator to
1528 it. */
1529
1530 struct value *
1531 value_ind (struct value *arg1)
1532 {
1533 struct type *base_type;
1534 struct value *arg2;
1535
1536 arg1 = coerce_array (arg1);
1537
1538 base_type = check_typedef (value_type (arg1));
1539
1540 if (VALUE_LVAL (arg1) == lval_computed)
1541 {
1542 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1543
1544 if (funcs->indirect)
1545 {
1546 struct value *result = funcs->indirect (arg1);
1547
1548 if (result)
1549 return result;
1550 }
1551 }
1552
1553 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1554 {
1555 struct type *enc_type;
1556
1557 /* We may be pointing to something embedded in a larger object.
1558 Get the real type of the enclosing object. */
1559 enc_type = check_typedef (value_enclosing_type (arg1));
1560 enc_type = TYPE_TARGET_TYPE (enc_type);
1561
1562 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1563 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1564 /* For functions, go through find_function_addr, which knows
1565 how to handle function descriptors. */
1566 arg2 = value_at_lazy (enc_type,
1567 find_function_addr (arg1, NULL));
1568 else
1569 /* Retrieve the enclosing object pointed to. */
1570 arg2 = value_at_lazy (enc_type,
1571 (value_as_address (arg1)
1572 - value_pointed_to_offset (arg1)));
1573
1574 enc_type = value_type (arg2);
1575 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1576 }
1577
1578 error (_("Attempt to take contents of a non-pointer value."));
1579 }
1580 \f
1581 /* Create a value for an array by allocating space in GDB, copying the
1582 data into that space, and then setting up an array value.
1583
1584 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1585 is populated from the values passed in ELEMVEC.
1586
1587 The element type of the array is inherited from the type of the
1588 first element, and all elements must have the same size (though we
1589 don't currently enforce any restriction on their types). */
1590
1591 struct value *
1592 value_array (int lowbound, int highbound, struct value **elemvec)
1593 {
1594 int nelem;
1595 int idx;
1596 ULONGEST typelength;
1597 struct value *val;
1598 struct type *arraytype;
1599
1600 /* Validate that the bounds are reasonable and that each of the
1601 elements have the same size. */
1602
1603 nelem = highbound - lowbound + 1;
1604 if (nelem <= 0)
1605 {
1606 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1607 }
1608 typelength = type_length_units (value_enclosing_type (elemvec[0]));
1609 for (idx = 1; idx < nelem; idx++)
1610 {
1611 if (type_length_units (value_enclosing_type (elemvec[idx]))
1612 != typelength)
1613 {
1614 error (_("array elements must all be the same size"));
1615 }
1616 }
1617
1618 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1619 lowbound, highbound);
1620
1621 if (!current_language->c_style_arrays)
1622 {
1623 val = allocate_value (arraytype);
1624 for (idx = 0; idx < nelem; idx++)
1625 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1626 typelength);
1627 return val;
1628 }
1629
1630 /* Allocate space to store the array, and then initialize it by
1631 copying in each element. */
1632
1633 val = allocate_value (arraytype);
1634 for (idx = 0; idx < nelem; idx++)
1635 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1636 return val;
1637 }
1638
1639 struct value *
1640 value_cstring (const char *ptr, ssize_t len, struct type *char_type)
1641 {
1642 struct value *val;
1643 int lowbound = current_language->string_lower_bound;
1644 ssize_t highbound = len / TYPE_LENGTH (char_type);
1645 struct type *stringtype
1646 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1647
1648 val = allocate_value (stringtype);
1649 memcpy (value_contents_raw (val), ptr, len);
1650 return val;
1651 }
1652
1653 /* Create a value for a string constant by allocating space in the
1654 inferior, copying the data into that space, and returning the
1655 address with type TYPE_CODE_STRING. PTR points to the string
1656 constant data; LEN is number of characters.
1657
1658 Note that string types are like array of char types with a lower
1659 bound of zero and an upper bound of LEN - 1. Also note that the
1660 string may contain embedded null bytes. */
1661
1662 struct value *
1663 value_string (const char *ptr, ssize_t len, struct type *char_type)
1664 {
1665 struct value *val;
1666 int lowbound = current_language->string_lower_bound;
1667 ssize_t highbound = len / TYPE_LENGTH (char_type);
1668 struct type *stringtype
1669 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1670
1671 val = allocate_value (stringtype);
1672 memcpy (value_contents_raw (val), ptr, len);
1673 return val;
1674 }
1675
1676 \f
1677 /* See if we can pass arguments in T2 to a function which takes
1678 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1679 a NULL-terminated vector. If some arguments need coercion of some
1680 sort, then the coerced values are written into T2. Return value is
1681 0 if the arguments could be matched, or the position at which they
1682 differ if not.
1683
1684 STATICP is nonzero if the T1 argument list came from a static
1685 member function. T2 will still include the ``this'' pointer, but
1686 it will be skipped.
1687
1688 For non-static member functions, we ignore the first argument,
1689 which is the type of the instance variable. This is because we
1690 want to handle calls with objects from derived classes. This is
1691 not entirely correct: we should actually check to make sure that a
1692 requested operation is type secure, shouldn't we? FIXME. */
1693
1694 static int
1695 typecmp (int staticp, int varargs, int nargs,
1696 struct field t1[], struct value *t2[])
1697 {
1698 int i;
1699
1700 if (t2 == 0)
1701 internal_error (__FILE__, __LINE__,
1702 _("typecmp: no argument list"));
1703
1704 /* Skip ``this'' argument if applicable. T2 will always include
1705 THIS. */
1706 if (staticp)
1707 t2 ++;
1708
1709 for (i = 0;
1710 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1711 i++)
1712 {
1713 struct type *tt1, *tt2;
1714
1715 if (!t2[i])
1716 return i + 1;
1717
1718 tt1 = check_typedef (t1[i].type);
1719 tt2 = check_typedef (value_type (t2[i]));
1720
1721 if (TYPE_IS_REFERENCE (tt1)
1722 /* We should be doing hairy argument matching, as below. */
1723 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1724 == TYPE_CODE (tt2)))
1725 {
1726 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1727 t2[i] = value_coerce_array (t2[i]);
1728 else
1729 t2[i] = value_ref (t2[i], TYPE_CODE (tt1));
1730 continue;
1731 }
1732
1733 /* djb - 20000715 - Until the new type structure is in the
1734 place, and we can attempt things like implicit conversions,
1735 we need to do this so you can take something like a map<const
1736 char *>, and properly access map["hello"], because the
1737 argument to [] will be a reference to a pointer to a char,
1738 and the argument will be a pointer to a char. */
1739 while (TYPE_IS_REFERENCE (tt1) || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1740 {
1741 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1742 }
1743 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1744 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1745 || TYPE_IS_REFERENCE (tt2))
1746 {
1747 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1748 }
1749 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1750 continue;
1751 /* Array to pointer is a `trivial conversion' according to the
1752 ARM. */
1753
1754 /* We should be doing much hairier argument matching (see
1755 section 13.2 of the ARM), but as a quick kludge, just check
1756 for the same type code. */
1757 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1758 return i + 1;
1759 }
1760 if (varargs || t2[i] == NULL)
1761 return 0;
1762 return i + 1;
1763 }
1764
1765 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1766 and *LAST_BOFFSET, and possibly throws an exception if the field
1767 search has yielded ambiguous results. */
1768
1769 static void
1770 update_search_result (struct value **result_ptr, struct value *v,
1771 LONGEST *last_boffset, LONGEST boffset,
1772 const char *name, struct type *type)
1773 {
1774 if (v != NULL)
1775 {
1776 if (*result_ptr != NULL
1777 /* The result is not ambiguous if all the classes that are
1778 found occupy the same space. */
1779 && *last_boffset != boffset)
1780 error (_("base class '%s' is ambiguous in type '%s'"),
1781 name, TYPE_SAFE_NAME (type));
1782 *result_ptr = v;
1783 *last_boffset = boffset;
1784 }
1785 }
1786
1787 /* A helper for search_struct_field. This does all the work; most
1788 arguments are as passed to search_struct_field. The result is
1789 stored in *RESULT_PTR, which must be initialized to NULL.
1790 OUTERMOST_TYPE is the type of the initial type passed to
1791 search_struct_field; this is used for error reporting when the
1792 lookup is ambiguous. */
1793
1794 static void
1795 do_search_struct_field (const char *name, struct value *arg1, LONGEST offset,
1796 struct type *type, int looking_for_baseclass,
1797 struct value **result_ptr,
1798 LONGEST *last_boffset,
1799 struct type *outermost_type)
1800 {
1801 int i;
1802 int nbases;
1803
1804 type = check_typedef (type);
1805 nbases = TYPE_N_BASECLASSES (type);
1806
1807 if (!looking_for_baseclass)
1808 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1809 {
1810 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1811
1812 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1813 {
1814 struct value *v;
1815
1816 if (field_is_static (&TYPE_FIELD (type, i)))
1817 v = value_static_field (type, i);
1818 else
1819 v = value_primitive_field (arg1, offset, i, type);
1820 *result_ptr = v;
1821 return;
1822 }
1823
1824 if (t_field_name
1825 && t_field_name[0] == '\0')
1826 {
1827 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1828
1829 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1830 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1831 {
1832 /* Look for a match through the fields of an anonymous
1833 union, or anonymous struct. C++ provides anonymous
1834 unions.
1835
1836 In the GNU Chill (now deleted from GDB)
1837 implementation of variant record types, each
1838 <alternative field> has an (anonymous) union type,
1839 each member of the union represents a <variant
1840 alternative>. Each <variant alternative> is
1841 represented as a struct, with a member for each
1842 <variant field>. */
1843
1844 struct value *v = NULL;
1845 LONGEST new_offset = offset;
1846
1847 /* This is pretty gross. In G++, the offset in an
1848 anonymous union is relative to the beginning of the
1849 enclosing struct. In the GNU Chill (now deleted
1850 from GDB) implementation of variant records, the
1851 bitpos is zero in an anonymous union field, so we
1852 have to add the offset of the union here. */
1853 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1854 || (TYPE_NFIELDS (field_type) > 0
1855 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1856 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1857
1858 do_search_struct_field (name, arg1, new_offset,
1859 field_type,
1860 looking_for_baseclass, &v,
1861 last_boffset,
1862 outermost_type);
1863 if (v)
1864 {
1865 *result_ptr = v;
1866 return;
1867 }
1868 }
1869 }
1870 }
1871
1872 for (i = 0; i < nbases; i++)
1873 {
1874 struct value *v = NULL;
1875 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1876 /* If we are looking for baseclasses, this is what we get when
1877 we hit them. But it could happen that the base part's member
1878 name is not yet filled in. */
1879 int found_baseclass = (looking_for_baseclass
1880 && TYPE_BASECLASS_NAME (type, i) != NULL
1881 && (strcmp_iw (name,
1882 TYPE_BASECLASS_NAME (type,
1883 i)) == 0));
1884 LONGEST boffset = value_embedded_offset (arg1) + offset;
1885
1886 if (BASETYPE_VIA_VIRTUAL (type, i))
1887 {
1888 struct value *v2;
1889
1890 boffset = baseclass_offset (type, i,
1891 value_contents_for_printing (arg1),
1892 value_embedded_offset (arg1) + offset,
1893 value_address (arg1),
1894 arg1);
1895
1896 /* The virtual base class pointer might have been clobbered
1897 by the user program. Make sure that it still points to a
1898 valid memory location. */
1899
1900 boffset += value_embedded_offset (arg1) + offset;
1901 if (boffset < 0
1902 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1903 {
1904 CORE_ADDR base_addr;
1905
1906 base_addr = value_address (arg1) + boffset;
1907 v2 = value_at_lazy (basetype, base_addr);
1908 if (target_read_memory (base_addr,
1909 value_contents_raw (v2),
1910 TYPE_LENGTH (value_type (v2))) != 0)
1911 error (_("virtual baseclass botch"));
1912 }
1913 else
1914 {
1915 v2 = value_copy (arg1);
1916 deprecated_set_value_type (v2, basetype);
1917 set_value_embedded_offset (v2, boffset);
1918 }
1919
1920 if (found_baseclass)
1921 v = v2;
1922 else
1923 {
1924 do_search_struct_field (name, v2, 0,
1925 TYPE_BASECLASS (type, i),
1926 looking_for_baseclass,
1927 result_ptr, last_boffset,
1928 outermost_type);
1929 }
1930 }
1931 else if (found_baseclass)
1932 v = value_primitive_field (arg1, offset, i, type);
1933 else
1934 {
1935 do_search_struct_field (name, arg1,
1936 offset + TYPE_BASECLASS_BITPOS (type,
1937 i) / 8,
1938 basetype, looking_for_baseclass,
1939 result_ptr, last_boffset,
1940 outermost_type);
1941 }
1942
1943 update_search_result (result_ptr, v, last_boffset,
1944 boffset, name, outermost_type);
1945 }
1946 }
1947
1948 /* Helper function used by value_struct_elt to recurse through
1949 baseclasses. Look for a field NAME in ARG1. Search in it assuming
1950 it has (class) type TYPE. If found, return value, else return NULL.
1951
1952 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1953 fields, look for a baseclass named NAME. */
1954
1955 static struct value *
1956 search_struct_field (const char *name, struct value *arg1,
1957 struct type *type, int looking_for_baseclass)
1958 {
1959 struct value *result = NULL;
1960 LONGEST boffset = 0;
1961
1962 do_search_struct_field (name, arg1, 0, type, looking_for_baseclass,
1963 &result, &boffset, type);
1964 return result;
1965 }
1966
1967 /* Helper function used by value_struct_elt to recurse through
1968 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1969 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1970 TYPE.
1971
1972 If found, return value, else if name matched and args not return
1973 (value) -1, else return NULL. */
1974
1975 static struct value *
1976 search_struct_method (const char *name, struct value **arg1p,
1977 struct value **args, LONGEST offset,
1978 int *static_memfuncp, struct type *type)
1979 {
1980 int i;
1981 struct value *v;
1982 int name_matched = 0;
1983 char dem_opname[64];
1984
1985 type = check_typedef (type);
1986 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1987 {
1988 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1989
1990 /* FIXME! May need to check for ARM demangling here. */
1991 if (startswith (t_field_name, "__") ||
1992 startswith (t_field_name, "op") ||
1993 startswith (t_field_name, "type"))
1994 {
1995 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
1996 t_field_name = dem_opname;
1997 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
1998 t_field_name = dem_opname;
1999 }
2000 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2001 {
2002 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2003 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2004
2005 name_matched = 1;
2006 check_stub_method_group (type, i);
2007 if (j > 0 && args == 0)
2008 error (_("cannot resolve overloaded method "
2009 "`%s': no arguments supplied"), name);
2010 else if (j == 0 && args == 0)
2011 {
2012 v = value_fn_field (arg1p, f, j, type, offset);
2013 if (v != NULL)
2014 return v;
2015 }
2016 else
2017 while (j >= 0)
2018 {
2019 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2020 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2021 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2022 TYPE_FN_FIELD_ARGS (f, j), args))
2023 {
2024 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2025 return value_virtual_fn_field (arg1p, f, j,
2026 type, offset);
2027 if (TYPE_FN_FIELD_STATIC_P (f, j)
2028 && static_memfuncp)
2029 *static_memfuncp = 1;
2030 v = value_fn_field (arg1p, f, j, type, offset);
2031 if (v != NULL)
2032 return v;
2033 }
2034 j--;
2035 }
2036 }
2037 }
2038
2039 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2040 {
2041 LONGEST base_offset;
2042 LONGEST this_offset;
2043
2044 if (BASETYPE_VIA_VIRTUAL (type, i))
2045 {
2046 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2047 struct value *base_val;
2048 const gdb_byte *base_valaddr;
2049
2050 /* The virtual base class pointer might have been
2051 clobbered by the user program. Make sure that it
2052 still points to a valid memory location. */
2053
2054 if (offset < 0 || offset >= TYPE_LENGTH (type))
2055 {
2056 CORE_ADDR address;
2057
2058 gdb::byte_vector tmp (TYPE_LENGTH (baseclass));
2059 address = value_address (*arg1p);
2060
2061 if (target_read_memory (address + offset,
2062 tmp.data (), TYPE_LENGTH (baseclass)) != 0)
2063 error (_("virtual baseclass botch"));
2064
2065 base_val = value_from_contents_and_address (baseclass,
2066 tmp.data (),
2067 address + offset);
2068 base_valaddr = value_contents_for_printing (base_val);
2069 this_offset = 0;
2070 }
2071 else
2072 {
2073 base_val = *arg1p;
2074 base_valaddr = value_contents_for_printing (*arg1p);
2075 this_offset = offset;
2076 }
2077
2078 base_offset = baseclass_offset (type, i, base_valaddr,
2079 this_offset, value_address (base_val),
2080 base_val);
2081 }
2082 else
2083 {
2084 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2085 }
2086 v = search_struct_method (name, arg1p, args, base_offset + offset,
2087 static_memfuncp, TYPE_BASECLASS (type, i));
2088 if (v == (struct value *) - 1)
2089 {
2090 name_matched = 1;
2091 }
2092 else if (v)
2093 {
2094 /* FIXME-bothner: Why is this commented out? Why is it here? */
2095 /* *arg1p = arg1_tmp; */
2096 return v;
2097 }
2098 }
2099 if (name_matched)
2100 return (struct value *) - 1;
2101 else
2102 return NULL;
2103 }
2104
2105 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2106 extract the component named NAME from the ultimate target
2107 structure/union and return it as a value with its appropriate type.
2108 ERR is used in the error message if *ARGP's type is wrong.
2109
2110 C++: ARGS is a list of argument types to aid in the selection of
2111 an appropriate method. Also, handle derived types.
2112
2113 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2114 where the truthvalue of whether the function that was resolved was
2115 a static member function or not is stored.
2116
2117 ERR is an error message to be printed in case the field is not
2118 found. */
2119
2120 struct value *
2121 value_struct_elt (struct value **argp, struct value **args,
2122 const char *name, int *static_memfuncp, const char *err)
2123 {
2124 struct type *t;
2125 struct value *v;
2126
2127 *argp = coerce_array (*argp);
2128
2129 t = check_typedef (value_type (*argp));
2130
2131 /* Follow pointers until we get to a non-pointer. */
2132
2133 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2134 {
2135 *argp = value_ind (*argp);
2136 /* Don't coerce fn pointer to fn and then back again! */
2137 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2138 *argp = coerce_array (*argp);
2139 t = check_typedef (value_type (*argp));
2140 }
2141
2142 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2143 && TYPE_CODE (t) != TYPE_CODE_UNION)
2144 error (_("Attempt to extract a component of a value that is not a %s."),
2145 err);
2146
2147 /* Assume it's not, unless we see that it is. */
2148 if (static_memfuncp)
2149 *static_memfuncp = 0;
2150
2151 if (!args)
2152 {
2153 /* if there are no arguments ...do this... */
2154
2155 /* Try as a field first, because if we succeed, there is less
2156 work to be done. */
2157 v = search_struct_field (name, *argp, t, 0);
2158 if (v)
2159 return v;
2160
2161 /* C++: If it was not found as a data field, then try to
2162 return it as a pointer to a method. */
2163 v = search_struct_method (name, argp, args, 0,
2164 static_memfuncp, t);
2165
2166 if (v == (struct value *) - 1)
2167 error (_("Cannot take address of method %s."), name);
2168 else if (v == 0)
2169 {
2170 if (TYPE_NFN_FIELDS (t))
2171 error (_("There is no member or method named %s."), name);
2172 else
2173 error (_("There is no member named %s."), name);
2174 }
2175 return v;
2176 }
2177
2178 v = search_struct_method (name, argp, args, 0,
2179 static_memfuncp, t);
2180
2181 if (v == (struct value *) - 1)
2182 {
2183 error (_("One of the arguments you tried to pass to %s could not "
2184 "be converted to what the function wants."), name);
2185 }
2186 else if (v == 0)
2187 {
2188 /* See if user tried to invoke data as function. If so, hand it
2189 back. If it's not callable (i.e., a pointer to function),
2190 gdb should give an error. */
2191 v = search_struct_field (name, *argp, t, 0);
2192 /* If we found an ordinary field, then it is not a method call.
2193 So, treat it as if it were a static member function. */
2194 if (v && static_memfuncp)
2195 *static_memfuncp = 1;
2196 }
2197
2198 if (!v)
2199 throw_error (NOT_FOUND_ERROR,
2200 _("Structure has no component named %s."), name);
2201 return v;
2202 }
2203
2204 /* Given *ARGP, a value of type structure or union, or a pointer/reference
2205 to a structure or union, extract and return its component (field) of
2206 type FTYPE at the specified BITPOS.
2207 Throw an exception on error. */
2208
2209 struct value *
2210 value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
2211 const char *err)
2212 {
2213 struct type *t;
2214 int i;
2215
2216 *argp = coerce_array (*argp);
2217
2218 t = check_typedef (value_type (*argp));
2219
2220 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2221 {
2222 *argp = value_ind (*argp);
2223 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2224 *argp = coerce_array (*argp);
2225 t = check_typedef (value_type (*argp));
2226 }
2227
2228 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2229 && TYPE_CODE (t) != TYPE_CODE_UNION)
2230 error (_("Attempt to extract a component of a value that is not a %s."),
2231 err);
2232
2233 for (i = TYPE_N_BASECLASSES (t); i < TYPE_NFIELDS (t); i++)
2234 {
2235 if (!field_is_static (&TYPE_FIELD (t, i))
2236 && bitpos == TYPE_FIELD_BITPOS (t, i)
2237 && types_equal (ftype, TYPE_FIELD_TYPE (t, i)))
2238 return value_primitive_field (*argp, 0, i, t);
2239 }
2240
2241 error (_("No field with matching bitpos and type."));
2242
2243 /* Never hit. */
2244 return NULL;
2245 }
2246
2247 /* See value.h. */
2248
2249 int
2250 value_union_variant (struct type *union_type, const gdb_byte *contents)
2251 {
2252 gdb_assert (TYPE_CODE (union_type) == TYPE_CODE_UNION
2253 && TYPE_FLAG_DISCRIMINATED_UNION (union_type));
2254
2255 struct dynamic_prop *discriminant_prop
2256 = get_dyn_prop (DYN_PROP_DISCRIMINATED, union_type);
2257 gdb_assert (discriminant_prop != nullptr);
2258
2259 struct discriminant_info *info
2260 = (struct discriminant_info *) discriminant_prop->data.baton;
2261 gdb_assert (info != nullptr);
2262
2263 /* If this is a univariant union, just return the sole field. */
2264 if (TYPE_NFIELDS (union_type) == 1)
2265 return 0;
2266 /* This should only happen for univariants, which we already dealt
2267 with. */
2268 gdb_assert (info->discriminant_index != -1);
2269
2270 /* Compute the discriminant. Note that unpack_field_as_long handles
2271 sign extension when necessary, as does the DWARF reader -- so
2272 signed discriminants will be handled correctly despite the use of
2273 an unsigned type here. */
2274 ULONGEST discriminant = unpack_field_as_long (union_type, contents,
2275 info->discriminant_index);
2276
2277 for (int i = 0; i < TYPE_NFIELDS (union_type); ++i)
2278 {
2279 if (i != info->default_index
2280 && i != info->discriminant_index
2281 && discriminant == info->discriminants[i])
2282 return i;
2283 }
2284
2285 if (info->default_index == -1)
2286 error (_("Could not find variant corresponding to discriminant %s"),
2287 pulongest (discriminant));
2288 return info->default_index;
2289 }
2290
2291 /* Search through the methods of an object (and its bases) to find a
2292 specified method. Return a reference to the fn_field list METHODS of
2293 overloaded instances defined in the source language. If available
2294 and matching, a vector of matching xmethods defined in extension
2295 languages are also returned in XMETHODS.
2296
2297 Helper function for value_find_oload_list.
2298 ARGP is a pointer to a pointer to a value (the object).
2299 METHOD is a string containing the method name.
2300 OFFSET is the offset within the value.
2301 TYPE is the assumed type of the object.
2302 METHODS is a pointer to the matching overloaded instances defined
2303 in the source language. Since this is a recursive function,
2304 *METHODS should be set to NULL when calling this function.
2305 NUM_FNS is the number of overloaded instances. *NUM_FNS should be set to
2306 0 when calling this function.
2307 XMETHODS is the vector of matching xmethod workers. *XMETHODS
2308 should also be set to NULL when calling this function.
2309 BASETYPE is set to the actual type of the subobject where the
2310 method is found.
2311 BOFFSET is the offset of the base subobject where the method is found. */
2312
2313 static void
2314 find_method_list (struct value **argp, const char *method,
2315 LONGEST offset, struct type *type,
2316 gdb::array_view<fn_field> *methods,
2317 std::vector<xmethod_worker_up> *xmethods,
2318 struct type **basetype, LONGEST *boffset)
2319 {
2320 int i;
2321 struct fn_field *f = NULL;
2322
2323 gdb_assert (methods != NULL && xmethods != NULL);
2324 type = check_typedef (type);
2325
2326 /* First check in object itself.
2327 This function is called recursively to search through base classes.
2328 If there is a source method match found at some stage, then we need not
2329 look for source methods in consequent recursive calls. */
2330 if (methods->empty ())
2331 {
2332 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2333 {
2334 /* pai: FIXME What about operators and type conversions? */
2335 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2336
2337 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2338 {
2339 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2340 f = TYPE_FN_FIELDLIST1 (type, i);
2341 *methods = gdb::make_array_view (f, len);
2342
2343 *basetype = type;
2344 *boffset = offset;
2345
2346 /* Resolve any stub methods. */
2347 check_stub_method_group (type, i);
2348
2349 break;
2350 }
2351 }
2352 }
2353
2354 /* Unlike source methods, xmethods can be accumulated over successive
2355 recursive calls. In other words, an xmethod named 'm' in a class
2356 will not hide an xmethod named 'm' in its base class(es). We want
2357 it to be this way because xmethods are after all convenience functions
2358 and hence there is no point restricting them with something like method
2359 hiding. Moreover, if hiding is done for xmethods as well, then we will
2360 have to provide a mechanism to un-hide (like the 'using' construct). */
2361 get_matching_xmethod_workers (type, method, xmethods);
2362
2363 /* If source methods are not found in current class, look for them in the
2364 base classes. We also have to go through the base classes to gather
2365 extension methods. */
2366 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2367 {
2368 LONGEST base_offset;
2369
2370 if (BASETYPE_VIA_VIRTUAL (type, i))
2371 {
2372 base_offset = baseclass_offset (type, i,
2373 value_contents_for_printing (*argp),
2374 value_offset (*argp) + offset,
2375 value_address (*argp), *argp);
2376 }
2377 else /* Non-virtual base, simply use bit position from debug
2378 info. */
2379 {
2380 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2381 }
2382
2383 find_method_list (argp, method, base_offset + offset,
2384 TYPE_BASECLASS (type, i), methods,
2385 xmethods, basetype, boffset);
2386 }
2387 }
2388
2389 /* Return the list of overloaded methods of a specified name. The methods
2390 could be those GDB finds in the binary, or xmethod. Methods found in
2391 the binary are returned in METHODS, and xmethods are returned in
2392 XMETHODS.
2393
2394 ARGP is a pointer to a pointer to a value (the object).
2395 METHOD is the method name.
2396 OFFSET is the offset within the value contents.
2397 METHODS is the list of matching overloaded instances defined in
2398 the source language.
2399 XMETHODS is the vector of matching xmethod workers defined in
2400 extension languages.
2401 BASETYPE is set to the type of the base subobject that defines the
2402 method.
2403 BOFFSET is the offset of the base subobject which defines the method. */
2404
2405 static void
2406 value_find_oload_method_list (struct value **argp, const char *method,
2407 LONGEST offset,
2408 gdb::array_view<fn_field> *methods,
2409 std::vector<xmethod_worker_up> *xmethods,
2410 struct type **basetype, LONGEST *boffset)
2411 {
2412 struct type *t;
2413
2414 t = check_typedef (value_type (*argp));
2415
2416 /* Code snarfed from value_struct_elt. */
2417 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2418 {
2419 *argp = value_ind (*argp);
2420 /* Don't coerce fn pointer to fn and then back again! */
2421 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2422 *argp = coerce_array (*argp);
2423 t = check_typedef (value_type (*argp));
2424 }
2425
2426 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2427 && TYPE_CODE (t) != TYPE_CODE_UNION)
2428 error (_("Attempt to extract a component of a "
2429 "value that is not a struct or union"));
2430
2431 gdb_assert (methods != NULL && xmethods != NULL);
2432
2433 /* Clear the lists. */
2434 *methods = {};
2435 xmethods->clear ();
2436
2437 find_method_list (argp, method, 0, t, methods, xmethods,
2438 basetype, boffset);
2439 }
2440
2441 /* Given an array of arguments (ARGS) (which includes an entry for
2442 "this" in the case of C++ methods), the NAME of a function, and
2443 whether it's a method or not (METHOD), find the best function that
2444 matches on the argument types according to the overload resolution
2445 rules.
2446
2447 METHOD can be one of three values:
2448 NON_METHOD for non-member functions.
2449 METHOD: for member functions.
2450 BOTH: used for overload resolution of operators where the
2451 candidates are expected to be either member or non member
2452 functions. In this case the first argument ARGTYPES
2453 (representing 'this') is expected to be a reference to the
2454 target object, and will be dereferenced when attempting the
2455 non-member search.
2456
2457 In the case of class methods, the parameter OBJ is an object value
2458 in which to search for overloaded methods.
2459
2460 In the case of non-method functions, the parameter FSYM is a symbol
2461 corresponding to one of the overloaded functions.
2462
2463 Return value is an integer: 0 -> good match, 10 -> debugger applied
2464 non-standard coercions, 100 -> incompatible.
2465
2466 If a method is being searched for, VALP will hold the value.
2467 If a non-method is being searched for, SYMP will hold the symbol
2468 for it.
2469
2470 If a method is being searched for, and it is a static method,
2471 then STATICP will point to a non-zero value.
2472
2473 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2474 ADL overload candidates when performing overload resolution for a fully
2475 qualified name.
2476
2477 If NOSIDE is EVAL_AVOID_SIDE_EFFECTS, then OBJP's memory cannot be
2478 read while picking the best overload match (it may be all zeroes and thus
2479 not have a vtable pointer), in which case skip virtual function lookup.
2480 This is ok as typically EVAL_AVOID_SIDE_EFFECTS is only used to determine
2481 the result type.
2482
2483 Note: This function does *not* check the value of
2484 overload_resolution. Caller must check it to see whether overload
2485 resolution is permitted. */
2486
2487 int
2488 find_overload_match (gdb::array_view<value *> args,
2489 const char *name, enum oload_search_type method,
2490 struct value **objp, struct symbol *fsym,
2491 struct value **valp, struct symbol **symp,
2492 int *staticp, const int no_adl,
2493 const enum noside noside)
2494 {
2495 struct value *obj = (objp ? *objp : NULL);
2496 struct type *obj_type = obj ? value_type (obj) : NULL;
2497 /* Index of best overloaded function. */
2498 int func_oload_champ = -1;
2499 int method_oload_champ = -1;
2500 int src_method_oload_champ = -1;
2501 int ext_method_oload_champ = -1;
2502
2503 /* The measure for the current best match. */
2504 badness_vector method_badness;
2505 badness_vector func_badness;
2506 badness_vector ext_method_badness;
2507 badness_vector src_method_badness;
2508
2509 struct value *temp = obj;
2510 /* For methods, the list of overloaded methods. */
2511 gdb::array_view<fn_field> methods;
2512 /* For non-methods, the list of overloaded function symbols. */
2513 std::vector<symbol *> functions;
2514 /* For xmethods, the vector of xmethod workers. */
2515 std::vector<xmethod_worker_up> xmethods;
2516 struct type *basetype = NULL;
2517 LONGEST boffset;
2518
2519 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2520
2521 const char *obj_type_name = NULL;
2522 const char *func_name = NULL;
2523 gdb::unique_xmalloc_ptr<char> temp_func;
2524 enum oload_classification match_quality;
2525 enum oload_classification method_match_quality = INCOMPATIBLE;
2526 enum oload_classification src_method_match_quality = INCOMPATIBLE;
2527 enum oload_classification ext_method_match_quality = INCOMPATIBLE;
2528 enum oload_classification func_match_quality = INCOMPATIBLE;
2529
2530 /* Get the list of overloaded methods or functions. */
2531 if (method == METHOD || method == BOTH)
2532 {
2533 gdb_assert (obj);
2534
2535 /* OBJ may be a pointer value rather than the object itself. */
2536 obj = coerce_ref (obj);
2537 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2538 obj = coerce_ref (value_ind (obj));
2539 obj_type_name = TYPE_NAME (value_type (obj));
2540
2541 /* First check whether this is a data member, e.g. a pointer to
2542 a function. */
2543 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2544 {
2545 *valp = search_struct_field (name, obj,
2546 check_typedef (value_type (obj)), 0);
2547 if (*valp)
2548 {
2549 *staticp = 1;
2550 do_cleanups (all_cleanups);
2551 return 0;
2552 }
2553 }
2554
2555 /* Retrieve the list of methods with the name NAME. */
2556 value_find_oload_method_list (&temp, name, 0, &methods,
2557 &xmethods, &basetype, &boffset);
2558 /* If this is a method only search, and no methods were found
2559 the search has failed. */
2560 if (method == METHOD && methods.empty () && xmethods.empty ())
2561 error (_("Couldn't find method %s%s%s"),
2562 obj_type_name,
2563 (obj_type_name && *obj_type_name) ? "::" : "",
2564 name);
2565 /* If we are dealing with stub method types, they should have
2566 been resolved by find_method_list via
2567 value_find_oload_method_list above. */
2568 if (!methods.empty ())
2569 {
2570 gdb_assert (TYPE_SELF_TYPE (methods[0].type) != NULL);
2571
2572 src_method_oload_champ
2573 = find_oload_champ (args,
2574 methods.size (),
2575 methods.data (), NULL, NULL,
2576 &src_method_badness);
2577
2578 src_method_match_quality = classify_oload_match
2579 (src_method_badness, args.size (),
2580 oload_method_static_p (methods.data (), src_method_oload_champ));
2581 }
2582
2583 if (!xmethods.empty ())
2584 {
2585 ext_method_oload_champ
2586 = find_oload_champ (args,
2587 xmethods.size (),
2588 NULL, xmethods.data (), NULL,
2589 &ext_method_badness);
2590 ext_method_match_quality = classify_oload_match (ext_method_badness,
2591 args.size (), 0);
2592 }
2593
2594 if (src_method_oload_champ >= 0 && ext_method_oload_champ >= 0)
2595 {
2596 switch (compare_badness (ext_method_badness, src_method_badness))
2597 {
2598 case 0: /* Src method and xmethod are equally good. */
2599 /* If src method and xmethod are equally good, then
2600 xmethod should be the winner. Hence, fall through to the
2601 case where a xmethod is better than the source
2602 method, except when the xmethod match quality is
2603 non-standard. */
2604 /* FALLTHROUGH */
2605 case 1: /* Src method and ext method are incompatible. */
2606 /* If ext method match is not standard, then let source method
2607 win. Otherwise, fallthrough to let xmethod win. */
2608 if (ext_method_match_quality != STANDARD)
2609 {
2610 method_oload_champ = src_method_oload_champ;
2611 method_badness = src_method_badness;
2612 ext_method_oload_champ = -1;
2613 method_match_quality = src_method_match_quality;
2614 break;
2615 }
2616 /* FALLTHROUGH */
2617 case 2: /* Ext method is champion. */
2618 method_oload_champ = ext_method_oload_champ;
2619 method_badness = ext_method_badness;
2620 src_method_oload_champ = -1;
2621 method_match_quality = ext_method_match_quality;
2622 break;
2623 case 3: /* Src method is champion. */
2624 method_oload_champ = src_method_oload_champ;
2625 method_badness = src_method_badness;
2626 ext_method_oload_champ = -1;
2627 method_match_quality = src_method_match_quality;
2628 break;
2629 default:
2630 gdb_assert_not_reached ("Unexpected overload comparison "
2631 "result");
2632 break;
2633 }
2634 }
2635 else if (src_method_oload_champ >= 0)
2636 {
2637 method_oload_champ = src_method_oload_champ;
2638 method_badness = src_method_badness;
2639 method_match_quality = src_method_match_quality;
2640 }
2641 else if (ext_method_oload_champ >= 0)
2642 {
2643 method_oload_champ = ext_method_oload_champ;
2644 method_badness = ext_method_badness;
2645 method_match_quality = ext_method_match_quality;
2646 }
2647 }
2648
2649 if (method == NON_METHOD || method == BOTH)
2650 {
2651 const char *qualified_name = NULL;
2652
2653 /* If the overload match is being search for both as a method
2654 and non member function, the first argument must now be
2655 dereferenced. */
2656 if (method == BOTH)
2657 args[0] = value_ind (args[0]);
2658
2659 if (fsym)
2660 {
2661 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2662
2663 /* If we have a function with a C++ name, try to extract just
2664 the function part. Do not try this for non-functions (e.g.
2665 function pointers). */
2666 if (qualified_name
2667 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2668 == TYPE_CODE_FUNC)
2669 {
2670 temp_func = cp_func_name (qualified_name);
2671
2672 /* If cp_func_name did not remove anything, the name of the
2673 symbol did not include scope or argument types - it was
2674 probably a C-style function. */
2675 if (temp_func != nullptr)
2676 {
2677 if (strcmp (temp_func.get (), qualified_name) == 0)
2678 func_name = NULL;
2679 else
2680 func_name = temp_func.get ();
2681 }
2682 }
2683 }
2684 else
2685 {
2686 func_name = name;
2687 qualified_name = name;
2688 }
2689
2690 /* If there was no C++ name, this must be a C-style function or
2691 not a function at all. Just return the same symbol. Do the
2692 same if cp_func_name fails for some reason. */
2693 if (func_name == NULL)
2694 {
2695 *symp = fsym;
2696 do_cleanups (all_cleanups);
2697 return 0;
2698 }
2699
2700 func_oload_champ = find_oload_champ_namespace (args,
2701 func_name,
2702 qualified_name,
2703 &functions,
2704 &func_badness,
2705 no_adl);
2706
2707 if (func_oload_champ >= 0)
2708 func_match_quality = classify_oload_match (func_badness,
2709 args.size (), 0);
2710 }
2711
2712 /* Did we find a match ? */
2713 if (method_oload_champ == -1 && func_oload_champ == -1)
2714 throw_error (NOT_FOUND_ERROR,
2715 _("No symbol \"%s\" in current context."),
2716 name);
2717
2718 /* If we have found both a method match and a function
2719 match, find out which one is better, and calculate match
2720 quality. */
2721 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2722 {
2723 switch (compare_badness (func_badness, method_badness))
2724 {
2725 case 0: /* Top two contenders are equally good. */
2726 /* FIXME: GDB does not support the general ambiguous case.
2727 All candidates should be collected and presented the
2728 user. */
2729 error (_("Ambiguous overload resolution"));
2730 break;
2731 case 1: /* Incomparable top contenders. */
2732 /* This is an error incompatible candidates
2733 should not have been proposed. */
2734 error (_("Internal error: incompatible "
2735 "overload candidates proposed"));
2736 break;
2737 case 2: /* Function champion. */
2738 method_oload_champ = -1;
2739 match_quality = func_match_quality;
2740 break;
2741 case 3: /* Method champion. */
2742 func_oload_champ = -1;
2743 match_quality = method_match_quality;
2744 break;
2745 default:
2746 error (_("Internal error: unexpected overload comparison result"));
2747 break;
2748 }
2749 }
2750 else
2751 {
2752 /* We have either a method match or a function match. */
2753 if (method_oload_champ >= 0)
2754 match_quality = method_match_quality;
2755 else
2756 match_quality = func_match_quality;
2757 }
2758
2759 if (match_quality == INCOMPATIBLE)
2760 {
2761 if (method == METHOD)
2762 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2763 obj_type_name,
2764 (obj_type_name && *obj_type_name) ? "::" : "",
2765 name);
2766 else
2767 error (_("Cannot resolve function %s to any overloaded instance"),
2768 func_name);
2769 }
2770 else if (match_quality == NON_STANDARD)
2771 {
2772 if (method == METHOD)
2773 warning (_("Using non-standard conversion to match "
2774 "method %s%s%s to supplied arguments"),
2775 obj_type_name,
2776 (obj_type_name && *obj_type_name) ? "::" : "",
2777 name);
2778 else
2779 warning (_("Using non-standard conversion to match "
2780 "function %s to supplied arguments"),
2781 func_name);
2782 }
2783
2784 if (staticp != NULL)
2785 *staticp = oload_method_static_p (methods.data (), method_oload_champ);
2786
2787 if (method_oload_champ >= 0)
2788 {
2789 if (src_method_oload_champ >= 0)
2790 {
2791 if (TYPE_FN_FIELD_VIRTUAL_P (methods, method_oload_champ)
2792 && noside != EVAL_AVOID_SIDE_EFFECTS)
2793 {
2794 *valp = value_virtual_fn_field (&temp, methods.data (),
2795 method_oload_champ, basetype,
2796 boffset);
2797 }
2798 else
2799 *valp = value_fn_field (&temp, methods.data (),
2800 method_oload_champ, basetype, boffset);
2801 }
2802 else
2803 *valp = value_from_xmethod
2804 (std::move (xmethods[ext_method_oload_champ]));
2805 }
2806 else
2807 *symp = functions[func_oload_champ];
2808
2809 if (objp)
2810 {
2811 struct type *temp_type = check_typedef (value_type (temp));
2812 struct type *objtype = check_typedef (obj_type);
2813
2814 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2815 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2816 || TYPE_IS_REFERENCE (objtype)))
2817 {
2818 temp = value_addr (temp);
2819 }
2820 *objp = temp;
2821 }
2822
2823 do_cleanups (all_cleanups);
2824
2825 switch (match_quality)
2826 {
2827 case INCOMPATIBLE:
2828 return 100;
2829 case NON_STANDARD:
2830 return 10;
2831 default: /* STANDARD */
2832 return 0;
2833 }
2834 }
2835
2836 /* Find the best overload match, searching for FUNC_NAME in namespaces
2837 contained in QUALIFIED_NAME until it either finds a good match or
2838 runs out of namespaces. It stores the overloaded functions in
2839 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. If NO_ADL,
2840 argument dependent lookup is not performned. */
2841
2842 static int
2843 find_oload_champ_namespace (gdb::array_view<value *> args,
2844 const char *func_name,
2845 const char *qualified_name,
2846 std::vector<symbol *> *oload_syms,
2847 badness_vector *oload_champ_bv,
2848 const int no_adl)
2849 {
2850 int oload_champ;
2851
2852 find_oload_champ_namespace_loop (args,
2853 func_name,
2854 qualified_name, 0,
2855 oload_syms, oload_champ_bv,
2856 &oload_champ,
2857 no_adl);
2858
2859 return oload_champ;
2860 }
2861
2862 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2863 how deep we've looked for namespaces, and the champ is stored in
2864 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2865 if it isn't. Other arguments are the same as in
2866 find_oload_champ_namespace. */
2867
2868 static int
2869 find_oload_champ_namespace_loop (gdb::array_view<value *> args,
2870 const char *func_name,
2871 const char *qualified_name,
2872 int namespace_len,
2873 std::vector<symbol *> *oload_syms,
2874 badness_vector *oload_champ_bv,
2875 int *oload_champ,
2876 const int no_adl)
2877 {
2878 int next_namespace_len = namespace_len;
2879 int searched_deeper = 0;
2880 int new_oload_champ;
2881 char *new_namespace;
2882
2883 if (next_namespace_len != 0)
2884 {
2885 gdb_assert (qualified_name[next_namespace_len] == ':');
2886 next_namespace_len += 2;
2887 }
2888 next_namespace_len +=
2889 cp_find_first_component (qualified_name + next_namespace_len);
2890
2891 /* First, see if we have a deeper namespace we can search in.
2892 If we get a good match there, use it. */
2893
2894 if (qualified_name[next_namespace_len] == ':')
2895 {
2896 searched_deeper = 1;
2897
2898 if (find_oload_champ_namespace_loop (args,
2899 func_name, qualified_name,
2900 next_namespace_len,
2901 oload_syms, oload_champ_bv,
2902 oload_champ, no_adl))
2903 {
2904 return 1;
2905 }
2906 };
2907
2908 /* If we reach here, either we're in the deepest namespace or we
2909 didn't find a good match in a deeper namespace. But, in the
2910 latter case, we still have a bad match in a deeper namespace;
2911 note that we might not find any match at all in the current
2912 namespace. (There's always a match in the deepest namespace,
2913 because this overload mechanism only gets called if there's a
2914 function symbol to start off with.) */
2915
2916 new_namespace = (char *) alloca (namespace_len + 1);
2917 strncpy (new_namespace, qualified_name, namespace_len);
2918 new_namespace[namespace_len] = '\0';
2919
2920 std::vector<symbol *> new_oload_syms
2921 = make_symbol_overload_list (func_name, new_namespace);
2922
2923 /* If we have reached the deepest level perform argument
2924 determined lookup. */
2925 if (!searched_deeper && !no_adl)
2926 {
2927 int ix;
2928 struct type **arg_types;
2929
2930 /* Prepare list of argument types for overload resolution. */
2931 arg_types = (struct type **)
2932 alloca (args.size () * (sizeof (struct type *)));
2933 for (ix = 0; ix < args.size (); ix++)
2934 arg_types[ix] = value_type (args[ix]);
2935 add_symbol_overload_list_adl ({arg_types, args.size ()}, func_name,
2936 &new_oload_syms);
2937 }
2938
2939 badness_vector new_oload_champ_bv;
2940 new_oload_champ = find_oload_champ (args,
2941 new_oload_syms.size (),
2942 NULL, NULL, new_oload_syms.data (),
2943 &new_oload_champ_bv);
2944
2945 /* Case 1: We found a good match. Free earlier matches (if any),
2946 and return it. Case 2: We didn't find a good match, but we're
2947 not the deepest function. Then go with the bad match that the
2948 deeper function found. Case 3: We found a bad match, and we're
2949 the deepest function. Then return what we found, even though
2950 it's a bad match. */
2951
2952 if (new_oload_champ != -1
2953 && classify_oload_match (new_oload_champ_bv, args.size (), 0) == STANDARD)
2954 {
2955 *oload_syms = std::move (new_oload_syms);
2956 *oload_champ = new_oload_champ;
2957 *oload_champ_bv = std::move (new_oload_champ_bv);
2958 return 1;
2959 }
2960 else if (searched_deeper)
2961 {
2962 return 0;
2963 }
2964 else
2965 {
2966 *oload_syms = std::move (new_oload_syms);
2967 *oload_champ = new_oload_champ;
2968 *oload_champ_bv = std::move (new_oload_champ_bv);
2969 return 0;
2970 }
2971 }
2972
2973 /* Look for a function to take ARGS. Find the best match from among
2974 the overloaded methods or functions given by METHODS or FUNCTIONS
2975 or XMETHODS, respectively. One, and only one of METHODS, FUNCTIONS
2976 and XMETHODS can be non-NULL.
2977
2978 NUM_FNS is the length of the array pointed at by METHODS, FUNCTIONS
2979 or XMETHODS, whichever is non-NULL.
2980
2981 Return the index of the best match; store an indication of the
2982 quality of the match in OLOAD_CHAMP_BV. */
2983
2984 static int
2985 find_oload_champ (gdb::array_view<value *> args,
2986 size_t num_fns,
2987 fn_field *methods,
2988 xmethod_worker_up *xmethods,
2989 symbol **functions,
2990 badness_vector *oload_champ_bv)
2991 {
2992 /* A measure of how good an overloaded instance is. */
2993 badness_vector bv;
2994 /* Index of best overloaded function. */
2995 int oload_champ = -1;
2996 /* Current ambiguity state for overload resolution. */
2997 int oload_ambiguous = 0;
2998 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2999
3000 /* A champion can be found among methods alone, or among functions
3001 alone, or in xmethods alone, but not in more than one of these
3002 groups. */
3003 gdb_assert ((methods != NULL) + (functions != NULL) + (xmethods != NULL)
3004 == 1);
3005
3006 /* Consider each candidate in turn. */
3007 for (size_t ix = 0; ix < num_fns; ix++)
3008 {
3009 int jj;
3010 int static_offset = 0;
3011 std::vector<type *> parm_types;
3012
3013 if (xmethods != NULL)
3014 parm_types = xmethods[ix]->get_arg_types ();
3015 else
3016 {
3017 size_t nparms;
3018
3019 if (methods != NULL)
3020 {
3021 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (methods, ix));
3022 static_offset = oload_method_static_p (methods, ix);
3023 }
3024 else
3025 nparms = TYPE_NFIELDS (SYMBOL_TYPE (functions[ix]));
3026
3027 parm_types.reserve (nparms);
3028 for (jj = 0; jj < nparms; jj++)
3029 {
3030 type *t = (methods != NULL
3031 ? (TYPE_FN_FIELD_ARGS (methods, ix)[jj].type)
3032 : TYPE_FIELD_TYPE (SYMBOL_TYPE (functions[ix]),
3033 jj));
3034 parm_types.push_back (t);
3035 }
3036 }
3037
3038 /* Compare parameter types to supplied argument types. Skip
3039 THIS for static methods. */
3040 bv = rank_function (parm_types,
3041 args.slice (static_offset));
3042
3043 if (oload_champ_bv->empty ())
3044 {
3045 *oload_champ_bv = std::move (bv);
3046 oload_champ = 0;
3047 }
3048 else /* See whether current candidate is better or worse than
3049 previous best. */
3050 switch (compare_badness (bv, *oload_champ_bv))
3051 {
3052 case 0: /* Top two contenders are equally good. */
3053 oload_ambiguous = 1;
3054 break;
3055 case 1: /* Incomparable top contenders. */
3056 oload_ambiguous = 2;
3057 break;
3058 case 2: /* New champion, record details. */
3059 *oload_champ_bv = std::move (bv);
3060 oload_ambiguous = 0;
3061 oload_champ = ix;
3062 break;
3063 case 3:
3064 default:
3065 break;
3066 }
3067 if (overload_debug)
3068 {
3069 if (methods != NULL)
3070 fprintf_filtered (gdb_stderr,
3071 "Overloaded method instance %s, # of parms %d\n",
3072 methods[ix].physname, (int) parm_types.size ());
3073 else if (xmethods != NULL)
3074 fprintf_filtered (gdb_stderr,
3075 "Xmethod worker, # of parms %d\n",
3076 (int) parm_types.size ());
3077 else
3078 fprintf_filtered (gdb_stderr,
3079 "Overloaded function instance "
3080 "%s # of parms %d\n",
3081 SYMBOL_DEMANGLED_NAME (functions[ix]),
3082 (int) parm_types.size ());
3083 for (jj = 0; jj < args.size () - static_offset; jj++)
3084 fprintf_filtered (gdb_stderr,
3085 "...Badness @ %d : %d\n",
3086 jj, bv[jj].rank);
3087 fprintf_filtered (gdb_stderr, "Overload resolution "
3088 "champion is %d, ambiguous? %d\n",
3089 oload_champ, oload_ambiguous);
3090 }
3091 }
3092
3093 return oload_champ;
3094 }
3095
3096 /* Return 1 if we're looking at a static method, 0 if we're looking at
3097 a non-static method or a function that isn't a method. */
3098
3099 static int
3100 oload_method_static_p (struct fn_field *fns_ptr, int index)
3101 {
3102 if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3103 return 1;
3104 else
3105 return 0;
3106 }
3107
3108 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3109
3110 static enum oload_classification
3111 classify_oload_match (const badness_vector &oload_champ_bv,
3112 int nargs,
3113 int static_offset)
3114 {
3115 int ix;
3116 enum oload_classification worst = STANDARD;
3117
3118 for (ix = 1; ix <= nargs - static_offset; ix++)
3119 {
3120 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3121 or worse return INCOMPATIBLE. */
3122 if (compare_ranks (oload_champ_bv[ix],
3123 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3124 return INCOMPATIBLE; /* Truly mismatched types. */
3125 /* Otherwise If this conversion is as bad as
3126 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3127 else if (compare_ranks (oload_champ_bv[ix],
3128 NS_POINTER_CONVERSION_BADNESS) <= 0)
3129 worst = NON_STANDARD; /* Non-standard type conversions
3130 needed. */
3131 }
3132
3133 /* If no INCOMPATIBLE classification was found, return the worst one
3134 that was found (if any). */
3135 return worst;
3136 }
3137
3138 /* C++: return 1 is NAME is a legitimate name for the destructor of
3139 type TYPE. If TYPE does not have a destructor, or if NAME is
3140 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3141 have CHECK_TYPEDEF applied, this function will apply it itself. */
3142
3143 int
3144 destructor_name_p (const char *name, struct type *type)
3145 {
3146 if (name[0] == '~')
3147 {
3148 const char *dname = type_name_or_error (type);
3149 const char *cp = strchr (dname, '<');
3150 unsigned int len;
3151
3152 /* Do not compare the template part for template classes. */
3153 if (cp == NULL)
3154 len = strlen (dname);
3155 else
3156 len = cp - dname;
3157 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3158 error (_("name of destructor must equal name of class"));
3159 else
3160 return 1;
3161 }
3162 return 0;
3163 }
3164
3165 /* Find an enum constant named NAME in TYPE. TYPE must be an "enum
3166 class". If the name is found, return a value representing it;
3167 otherwise throw an exception. */
3168
3169 static struct value *
3170 enum_constant_from_type (struct type *type, const char *name)
3171 {
3172 int i;
3173 int name_len = strlen (name);
3174
3175 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ENUM
3176 && TYPE_DECLARED_CLASS (type));
3177
3178 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); ++i)
3179 {
3180 const char *fname = TYPE_FIELD_NAME (type, i);
3181 int len;
3182
3183 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_ENUMVAL
3184 || fname == NULL)
3185 continue;
3186
3187 /* Look for the trailing "::NAME", since enum class constant
3188 names are qualified here. */
3189 len = strlen (fname);
3190 if (len + 2 >= name_len
3191 && fname[len - name_len - 2] == ':'
3192 && fname[len - name_len - 1] == ':'
3193 && strcmp (&fname[len - name_len], name) == 0)
3194 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, i));
3195 }
3196
3197 error (_("no constant named \"%s\" in enum \"%s\""),
3198 name, TYPE_NAME (type));
3199 }
3200
3201 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3202 return the appropriate member (or the address of the member, if
3203 WANT_ADDRESS). This function is used to resolve user expressions
3204 of the form "DOMAIN::NAME". For more details on what happens, see
3205 the comment before value_struct_elt_for_reference. */
3206
3207 struct value *
3208 value_aggregate_elt (struct type *curtype, const char *name,
3209 struct type *expect_type, int want_address,
3210 enum noside noside)
3211 {
3212 switch (TYPE_CODE (curtype))
3213 {
3214 case TYPE_CODE_STRUCT:
3215 case TYPE_CODE_UNION:
3216 return value_struct_elt_for_reference (curtype, 0, curtype,
3217 name, expect_type,
3218 want_address, noside);
3219 case TYPE_CODE_NAMESPACE:
3220 return value_namespace_elt (curtype, name,
3221 want_address, noside);
3222
3223 case TYPE_CODE_ENUM:
3224 return enum_constant_from_type (curtype, name);
3225
3226 default:
3227 internal_error (__FILE__, __LINE__,
3228 _("non-aggregate type in value_aggregate_elt"));
3229 }
3230 }
3231
3232 /* Compares the two method/function types T1 and T2 for "equality"
3233 with respect to the methods' parameters. If the types of the
3234 two parameter lists are the same, returns 1; 0 otherwise. This
3235 comparison may ignore any artificial parameters in T1 if
3236 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3237 the first artificial parameter in T1, assumed to be a 'this' pointer.
3238
3239 The type T2 is expected to have come from make_params (in eval.c). */
3240
3241 static int
3242 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3243 {
3244 int start = 0;
3245
3246 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3247 ++start;
3248
3249 /* If skipping artificial fields, find the first real field
3250 in T1. */
3251 if (skip_artificial)
3252 {
3253 while (start < TYPE_NFIELDS (t1)
3254 && TYPE_FIELD_ARTIFICIAL (t1, start))
3255 ++start;
3256 }
3257
3258 /* Now compare parameters. */
3259
3260 /* Special case: a method taking void. T1 will contain no
3261 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3262 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3263 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3264 return 1;
3265
3266 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3267 {
3268 int i;
3269
3270 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3271 {
3272 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3273 TYPE_FIELD_TYPE (t2, i), NULL),
3274 EXACT_MATCH_BADNESS) != 0)
3275 return 0;
3276 }
3277
3278 return 1;
3279 }
3280
3281 return 0;
3282 }
3283
3284 /* C++: Given an aggregate type VT, and a class type CLS, search
3285 recursively for CLS using value V; If found, store the offset
3286 which is either fetched from the virtual base pointer if CLS
3287 is virtual or accumulated offset of its parent classes if
3288 CLS is non-virtual in *BOFFS, set ISVIRT to indicate if CLS
3289 is virtual, and return true. If not found, return false. */
3290
3291 static bool
3292 get_baseclass_offset (struct type *vt, struct type *cls,
3293 struct value *v, int *boffs, bool *isvirt)
3294 {
3295 for (int i = 0; i < TYPE_N_BASECLASSES (vt); i++)
3296 {
3297 struct type *t = TYPE_FIELD_TYPE (vt, i);
3298 if (types_equal (t, cls))
3299 {
3300 if (BASETYPE_VIA_VIRTUAL (vt, i))
3301 {
3302 const gdb_byte *adr = value_contents_for_printing (v);
3303 *boffs = baseclass_offset (vt, i, adr, value_offset (v),
3304 value_as_long (v), v);
3305 *isvirt = true;
3306 }
3307 else
3308 *isvirt = false;
3309 return true;
3310 }
3311
3312 if (get_baseclass_offset (check_typedef (t), cls, v, boffs, isvirt))
3313 {
3314 if (*isvirt == false) /* Add non-virtual base offset. */
3315 {
3316 const gdb_byte *adr = value_contents_for_printing (v);
3317 *boffs += baseclass_offset (vt, i, adr, value_offset (v),
3318 value_as_long (v), v);
3319 }
3320 return true;
3321 }
3322 }
3323
3324 return false;
3325 }
3326
3327 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3328 return the address of this member as a "pointer to member" type.
3329 If INTYPE is non-null, then it will be the type of the member we
3330 are looking for. This will help us resolve "pointers to member
3331 functions". This function is used to resolve user expressions of
3332 the form "DOMAIN::NAME". */
3333
3334 static struct value *
3335 value_struct_elt_for_reference (struct type *domain, int offset,
3336 struct type *curtype, const char *name,
3337 struct type *intype,
3338 int want_address,
3339 enum noside noside)
3340 {
3341 struct type *t = check_typedef (curtype);
3342 int i;
3343 struct value *result;
3344
3345 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3346 && TYPE_CODE (t) != TYPE_CODE_UNION)
3347 error (_("Internal error: non-aggregate type "
3348 "to value_struct_elt_for_reference"));
3349
3350 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3351 {
3352 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3353
3354 if (t_field_name && strcmp (t_field_name, name) == 0)
3355 {
3356 if (field_is_static (&TYPE_FIELD (t, i)))
3357 {
3358 struct value *v = value_static_field (t, i);
3359 if (want_address)
3360 v = value_addr (v);
3361 return v;
3362 }
3363 if (TYPE_FIELD_PACKED (t, i))
3364 error (_("pointers to bitfield members not allowed"));
3365
3366 if (want_address)
3367 return value_from_longest
3368 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3369 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3370 else if (noside != EVAL_NORMAL)
3371 return allocate_value (TYPE_FIELD_TYPE (t, i));
3372 else
3373 {
3374 /* Try to evaluate NAME as a qualified name with implicit
3375 this pointer. In this case, attempt to return the
3376 equivalent to `this->*(&TYPE::NAME)'. */
3377 struct value *v = value_of_this_silent (current_language);
3378 if (v != NULL)
3379 {
3380 struct value *ptr, *this_v = v;
3381 long mem_offset;
3382 struct type *type, *tmp;
3383
3384 ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
3385 type = check_typedef (value_type (ptr));
3386 gdb_assert (type != NULL
3387 && TYPE_CODE (type) == TYPE_CODE_MEMBERPTR);
3388 tmp = lookup_pointer_type (TYPE_SELF_TYPE (type));
3389 v = value_cast_pointers (tmp, v, 1);
3390 mem_offset = value_as_long (ptr);
3391 if (domain != curtype)
3392 {
3393 /* Find class offset of type CURTYPE from either its
3394 parent type DOMAIN or the type of implied this. */
3395 int boff = 0;
3396 bool isvirt = false;
3397 if (get_baseclass_offset (domain, curtype, v, &boff,
3398 &isvirt))
3399 mem_offset += boff;
3400 else
3401 {
3402 struct type *p = check_typedef (value_type (this_v));
3403 p = check_typedef (TYPE_TARGET_TYPE (p));
3404 if (get_baseclass_offset (p, curtype, this_v,
3405 &boff, &isvirt))
3406 mem_offset += boff;
3407 }
3408 }
3409 tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type));
3410 result = value_from_pointer (tmp,
3411 value_as_long (v) + mem_offset);
3412 return value_ind (result);
3413 }
3414
3415 error (_("Cannot reference non-static field \"%s\""), name);
3416 }
3417 }
3418 }
3419
3420 /* C++: If it was not found as a data field, then try to return it
3421 as a pointer to a method. */
3422
3423 /* Perform all necessary dereferencing. */
3424 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3425 intype = TYPE_TARGET_TYPE (intype);
3426
3427 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3428 {
3429 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3430 char dem_opname[64];
3431
3432 if (startswith (t_field_name, "__")
3433 || startswith (t_field_name, "op")
3434 || startswith (t_field_name, "type"))
3435 {
3436 if (cplus_demangle_opname (t_field_name,
3437 dem_opname, DMGL_ANSI))
3438 t_field_name = dem_opname;
3439 else if (cplus_demangle_opname (t_field_name,
3440 dem_opname, 0))
3441 t_field_name = dem_opname;
3442 }
3443 if (t_field_name && strcmp (t_field_name, name) == 0)
3444 {
3445 int j;
3446 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3447 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3448
3449 check_stub_method_group (t, i);
3450
3451 if (intype)
3452 {
3453 for (j = 0; j < len; ++j)
3454 {
3455 if (TYPE_CONST (intype) != TYPE_FN_FIELD_CONST (f, j))
3456 continue;
3457 if (TYPE_VOLATILE (intype) != TYPE_FN_FIELD_VOLATILE (f, j))
3458 continue;
3459
3460 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3461 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3462 intype, 1))
3463 break;
3464 }
3465
3466 if (j == len)
3467 error (_("no member function matches "
3468 "that type instantiation"));
3469 }
3470 else
3471 {
3472 int ii;
3473
3474 j = -1;
3475 for (ii = 0; ii < len; ++ii)
3476 {
3477 /* Skip artificial methods. This is necessary if,
3478 for example, the user wants to "print
3479 subclass::subclass" with only one user-defined
3480 constructor. There is no ambiguity in this case.
3481 We are careful here to allow artificial methods
3482 if they are the unique result. */
3483 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3484 {
3485 if (j == -1)
3486 j = ii;
3487 continue;
3488 }
3489
3490 /* Desired method is ambiguous if more than one
3491 method is defined. */
3492 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3493 error (_("non-unique member `%s' requires "
3494 "type instantiation"), name);
3495
3496 j = ii;
3497 }
3498
3499 if (j == -1)
3500 error (_("no matching member function"));
3501 }
3502
3503 if (TYPE_FN_FIELD_STATIC_P (f, j))
3504 {
3505 struct symbol *s =
3506 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3507 0, VAR_DOMAIN, 0).symbol;
3508
3509 if (s == NULL)
3510 return NULL;
3511
3512 if (want_address)
3513 return value_addr (read_var_value (s, 0, 0));
3514 else
3515 return read_var_value (s, 0, 0);
3516 }
3517
3518 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3519 {
3520 if (want_address)
3521 {
3522 result = allocate_value
3523 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3524 cplus_make_method_ptr (value_type (result),
3525 value_contents_writeable (result),
3526 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3527 }
3528 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3529 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3530 else
3531 error (_("Cannot reference virtual member function \"%s\""),
3532 name);
3533 }
3534 else
3535 {
3536 struct symbol *s =
3537 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3538 0, VAR_DOMAIN, 0).symbol;
3539
3540 if (s == NULL)
3541 return NULL;
3542
3543 struct value *v = read_var_value (s, 0, 0);
3544 if (!want_address)
3545 result = v;
3546 else
3547 {
3548 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3549 cplus_make_method_ptr (value_type (result),
3550 value_contents_writeable (result),
3551 value_address (v), 0);
3552 }
3553 }
3554 return result;
3555 }
3556 }
3557 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3558 {
3559 struct value *v;
3560 int base_offset;
3561
3562 if (BASETYPE_VIA_VIRTUAL (t, i))
3563 base_offset = 0;
3564 else
3565 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3566 v = value_struct_elt_for_reference (domain,
3567 offset + base_offset,
3568 TYPE_BASECLASS (t, i),
3569 name, intype,
3570 want_address, noside);
3571 if (v)
3572 return v;
3573 }
3574
3575 /* As a last chance, pretend that CURTYPE is a namespace, and look
3576 it up that way; this (frequently) works for types nested inside
3577 classes. */
3578
3579 return value_maybe_namespace_elt (curtype, name,
3580 want_address, noside);
3581 }
3582
3583 /* C++: Return the member NAME of the namespace given by the type
3584 CURTYPE. */
3585
3586 static struct value *
3587 value_namespace_elt (const struct type *curtype,
3588 const char *name, int want_address,
3589 enum noside noside)
3590 {
3591 struct value *retval = value_maybe_namespace_elt (curtype, name,
3592 want_address,
3593 noside);
3594
3595 if (retval == NULL)
3596 error (_("No symbol \"%s\" in namespace \"%s\"."),
3597 name, TYPE_NAME (curtype));
3598
3599 return retval;
3600 }
3601
3602 /* A helper function used by value_namespace_elt and
3603 value_struct_elt_for_reference. It looks up NAME inside the
3604 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3605 is a class and NAME refers to a type in CURTYPE itself (as opposed
3606 to, say, some base class of CURTYPE). */
3607
3608 static struct value *
3609 value_maybe_namespace_elt (const struct type *curtype,
3610 const char *name, int want_address,
3611 enum noside noside)
3612 {
3613 const char *namespace_name = TYPE_NAME (curtype);
3614 struct block_symbol sym;
3615 struct value *result;
3616
3617 sym = cp_lookup_symbol_namespace (namespace_name, name,
3618 get_selected_block (0), VAR_DOMAIN);
3619
3620 if (sym.symbol == NULL)
3621 return NULL;
3622 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3623 && (SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF))
3624 result = allocate_value (SYMBOL_TYPE (sym.symbol));
3625 else
3626 result = value_of_variable (sym.symbol, sym.block);
3627
3628 if (want_address)
3629 result = value_addr (result);
3630
3631 return result;
3632 }
3633
3634 /* Given a pointer or a reference value V, find its real (RTTI) type.
3635
3636 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3637 and refer to the values computed for the object pointed to. */
3638
3639 struct type *
3640 value_rtti_indirect_type (struct value *v, int *full,
3641 LONGEST *top, int *using_enc)
3642 {
3643 struct value *target = NULL;
3644 struct type *type, *real_type, *target_type;
3645
3646 type = value_type (v);
3647 type = check_typedef (type);
3648 if (TYPE_IS_REFERENCE (type))
3649 target = coerce_ref (v);
3650 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3651 {
3652
3653 TRY
3654 {
3655 target = value_ind (v);
3656 }
3657 CATCH (except, RETURN_MASK_ERROR)
3658 {
3659 if (except.error == MEMORY_ERROR)
3660 {
3661 /* value_ind threw a memory error. The pointer is NULL or
3662 contains an uninitialized value: we can't determine any
3663 type. */
3664 return NULL;
3665 }
3666 throw_exception (except);
3667 }
3668 END_CATCH
3669 }
3670 else
3671 return NULL;
3672
3673 real_type = value_rtti_type (target, full, top, using_enc);
3674
3675 if (real_type)
3676 {
3677 /* Copy qualifiers to the referenced object. */
3678 target_type = value_type (target);
3679 real_type = make_cv_type (TYPE_CONST (target_type),
3680 TYPE_VOLATILE (target_type), real_type, NULL);
3681 if (TYPE_IS_REFERENCE (type))
3682 real_type = lookup_reference_type (real_type, TYPE_CODE (type));
3683 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3684 real_type = lookup_pointer_type (real_type);
3685 else
3686 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3687
3688 /* Copy qualifiers to the pointer/reference. */
3689 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3690 real_type, NULL);
3691 }
3692
3693 return real_type;
3694 }
3695
3696 /* Given a value pointed to by ARGP, check its real run-time type, and
3697 if that is different from the enclosing type, create a new value
3698 using the real run-time type as the enclosing type (and of the same
3699 type as ARGP) and return it, with the embedded offset adjusted to
3700 be the correct offset to the enclosed object. RTYPE is the type,
3701 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3702 by value_rtti_type(). If these are available, they can be supplied
3703 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3704 NULL if they're not available. */
3705
3706 struct value *
3707 value_full_object (struct value *argp,
3708 struct type *rtype,
3709 int xfull, int xtop,
3710 int xusing_enc)
3711 {
3712 struct type *real_type;
3713 int full = 0;
3714 LONGEST top = -1;
3715 int using_enc = 0;
3716 struct value *new_val;
3717
3718 if (rtype)
3719 {
3720 real_type = rtype;
3721 full = xfull;
3722 top = xtop;
3723 using_enc = xusing_enc;
3724 }
3725 else
3726 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3727
3728 /* If no RTTI data, or if object is already complete, do nothing. */
3729 if (!real_type || real_type == value_enclosing_type (argp))
3730 return argp;
3731
3732 /* In a destructor we might see a real type that is a superclass of
3733 the object's type. In this case it is better to leave the object
3734 as-is. */
3735 if (full
3736 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3737 return argp;
3738
3739 /* If we have the full object, but for some reason the enclosing
3740 type is wrong, set it. */
3741 /* pai: FIXME -- sounds iffy */
3742 if (full)
3743 {
3744 argp = value_copy (argp);
3745 set_value_enclosing_type (argp, real_type);
3746 return argp;
3747 }
3748
3749 /* Check if object is in memory. */
3750 if (VALUE_LVAL (argp) != lval_memory)
3751 {
3752 warning (_("Couldn't retrieve complete object of RTTI "
3753 "type %s; object may be in register(s)."),
3754 TYPE_NAME (real_type));
3755
3756 return argp;
3757 }
3758
3759 /* All other cases -- retrieve the complete object. */
3760 /* Go back by the computed top_offset from the beginning of the
3761 object, adjusting for the embedded offset of argp if that's what
3762 value_rtti_type used for its computation. */
3763 new_val = value_at_lazy (real_type, value_address (argp) - top +
3764 (using_enc ? 0 : value_embedded_offset (argp)));
3765 deprecated_set_value_type (new_val, value_type (argp));
3766 set_value_embedded_offset (new_val, (using_enc
3767 ? top + value_embedded_offset (argp)
3768 : top));
3769 return new_val;
3770 }
3771
3772
3773 /* Return the value of the local variable, if one exists. Throw error
3774 otherwise, such as if the request is made in an inappropriate context. */
3775
3776 struct value *
3777 value_of_this (const struct language_defn *lang)
3778 {
3779 struct block_symbol sym;
3780 const struct block *b;
3781 struct frame_info *frame;
3782
3783 if (!lang->la_name_of_this)
3784 error (_("no `this' in current language"));
3785
3786 frame = get_selected_frame (_("no frame selected"));
3787
3788 b = get_frame_block (frame, NULL);
3789
3790 sym = lookup_language_this (lang, b);
3791 if (sym.symbol == NULL)
3792 error (_("current stack frame does not contain a variable named `%s'"),
3793 lang->la_name_of_this);
3794
3795 return read_var_value (sym.symbol, sym.block, frame);
3796 }
3797
3798 /* Return the value of the local variable, if one exists. Return NULL
3799 otherwise. Never throw error. */
3800
3801 struct value *
3802 value_of_this_silent (const struct language_defn *lang)
3803 {
3804 struct value *ret = NULL;
3805
3806 TRY
3807 {
3808 ret = value_of_this (lang);
3809 }
3810 CATCH (except, RETURN_MASK_ERROR)
3811 {
3812 }
3813 END_CATCH
3814
3815 return ret;
3816 }
3817
3818 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3819 elements long, starting at LOWBOUND. The result has the same lower
3820 bound as the original ARRAY. */
3821
3822 struct value *
3823 value_slice (struct value *array, int lowbound, int length)
3824 {
3825 struct type *slice_range_type, *slice_type, *range_type;
3826 LONGEST lowerbound, upperbound;
3827 struct value *slice;
3828 struct type *array_type;
3829
3830 array_type = check_typedef (value_type (array));
3831 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3832 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
3833 error (_("cannot take slice of non-array"));
3834
3835 range_type = TYPE_INDEX_TYPE (array_type);
3836 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3837 error (_("slice from bad array or bitstring"));
3838
3839 if (lowbound < lowerbound || length < 0
3840 || lowbound + length - 1 > upperbound)
3841 error (_("slice out of range"));
3842
3843 /* FIXME-type-allocation: need a way to free this type when we are
3844 done with it. */
3845 slice_range_type = create_static_range_type ((struct type *) NULL,
3846 TYPE_TARGET_TYPE (range_type),
3847 lowbound,
3848 lowbound + length - 1);
3849
3850 {
3851 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3852 LONGEST offset
3853 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3854
3855 slice_type = create_array_type ((struct type *) NULL,
3856 element_type,
3857 slice_range_type);
3858 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3859
3860 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3861 slice = allocate_value_lazy (slice_type);
3862 else
3863 {
3864 slice = allocate_value (slice_type);
3865 value_contents_copy (slice, 0, array, offset,
3866 type_length_units (slice_type));
3867 }
3868
3869 set_value_component_location (slice, array);
3870 set_value_offset (slice, value_offset (array) + offset);
3871 }
3872
3873 return slice;
3874 }
3875
3876 /* Create a value for a FORTRAN complex number. Currently most of the
3877 time values are coerced to COMPLEX*16 (i.e. a complex number
3878 composed of 2 doubles. This really should be a smarter routine
3879 that figures out precision inteligently as opposed to assuming
3880 doubles. FIXME: fmb */
3881
3882 struct value *
3883 value_literal_complex (struct value *arg1,
3884 struct value *arg2,
3885 struct type *type)
3886 {
3887 struct value *val;
3888 struct type *real_type = TYPE_TARGET_TYPE (type);
3889
3890 val = allocate_value (type);
3891 arg1 = value_cast (real_type, arg1);
3892 arg2 = value_cast (real_type, arg2);
3893
3894 memcpy (value_contents_raw (val),
3895 value_contents (arg1), TYPE_LENGTH (real_type));
3896 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3897 value_contents (arg2), TYPE_LENGTH (real_type));
3898 return val;
3899 }
3900
3901 /* Cast a value into the appropriate complex data type. */
3902
3903 static struct value *
3904 cast_into_complex (struct type *type, struct value *val)
3905 {
3906 struct type *real_type = TYPE_TARGET_TYPE (type);
3907
3908 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3909 {
3910 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3911 struct value *re_val = allocate_value (val_real_type);
3912 struct value *im_val = allocate_value (val_real_type);
3913
3914 memcpy (value_contents_raw (re_val),
3915 value_contents (val), TYPE_LENGTH (val_real_type));
3916 memcpy (value_contents_raw (im_val),
3917 value_contents (val) + TYPE_LENGTH (val_real_type),
3918 TYPE_LENGTH (val_real_type));
3919
3920 return value_literal_complex (re_val, im_val, type);
3921 }
3922 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3923 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3924 return value_literal_complex (val,
3925 value_zero (real_type, not_lval),
3926 type);
3927 else
3928 error (_("cannot cast non-number to complex"));
3929 }
3930
3931 void
3932 _initialize_valops (void)
3933 {
3934 add_setshow_boolean_cmd ("overload-resolution", class_support,
3935 &overload_resolution, _("\
3936 Set overload resolution in evaluating C++ functions."), _("\
3937 Show overload resolution in evaluating C++ functions."),
3938 NULL, NULL,
3939 show_overload_resolution,
3940 &setlist, &showlist);
3941 overload_resolution = 1;
3942 }
This page took 0.119702 seconds and 5 git commands to generate.