2003-01-02 Andrew Cagney <ac131313@redhat.com>
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
3 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "gdbcore.h"
30 #include "target.h"
31 #include "demangle.h"
32 #include "language.h"
33 #include "gdbcmd.h"
34 #include "regcache.h"
35 #include "cp-abi.h"
36
37 #include <errno.h>
38 #include "gdb_string.h"
39 #include "gdb_assert.h"
40
41 /* Flag indicating HP compilers were used; needed to correctly handle some
42 value operations with HP aCC code/runtime. */
43 extern int hp_som_som_object_present;
44
45 extern int overload_debug;
46 /* Local functions. */
47
48 static int typecmp (int staticp, int varargs, int nargs,
49 struct field t1[], struct value *t2[]);
50
51 static CORE_ADDR find_function_addr (struct value *, struct type **);
52 static struct value *value_arg_coerce (struct value *, struct type *, int);
53
54
55 static CORE_ADDR value_push (CORE_ADDR, struct value *);
56
57 static struct value *search_struct_field (char *, struct value *, int,
58 struct type *, int);
59
60 static struct value *search_struct_method (char *, struct value **,
61 struct value **,
62 int, int *, struct type *);
63
64 static int check_field_in (struct type *, const char *);
65
66 static CORE_ADDR allocate_space_in_inferior (int);
67
68 static struct value *cast_into_complex (struct type *, struct value *);
69
70 static struct fn_field *find_method_list (struct value ** argp, char *method,
71 int offset,
72 struct type *type, int *num_fns,
73 struct type **basetype,
74 int *boffset);
75
76 void _initialize_valops (void);
77
78 /* Flag for whether we want to abandon failed expression evals by default. */
79
80 #if 0
81 static int auto_abandon = 0;
82 #endif
83
84 int overload_resolution = 0;
85
86 /* This boolean tells what gdb should do if a signal is received while in
87 a function called from gdb (call dummy). If set, gdb unwinds the stack
88 and restore the context to what as it was before the call.
89 The default is to stop in the frame where the signal was received. */
90
91 int unwind_on_signal_p = 0;
92 \f
93
94
95 /* Find the address of function name NAME in the inferior. */
96
97 struct value *
98 find_function_in_inferior (const char *name)
99 {
100 register struct symbol *sym;
101 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
102 if (sym != NULL)
103 {
104 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
105 {
106 error ("\"%s\" exists in this program but is not a function.",
107 name);
108 }
109 return value_of_variable (sym, NULL);
110 }
111 else
112 {
113 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
114 if (msymbol != NULL)
115 {
116 struct type *type;
117 CORE_ADDR maddr;
118 type = lookup_pointer_type (builtin_type_char);
119 type = lookup_function_type (type);
120 type = lookup_pointer_type (type);
121 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
122 return value_from_pointer (type, maddr);
123 }
124 else
125 {
126 if (!target_has_execution)
127 error ("evaluation of this expression requires the target program to be active");
128 else
129 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
130 }
131 }
132 }
133
134 /* Allocate NBYTES of space in the inferior using the inferior's malloc
135 and return a value that is a pointer to the allocated space. */
136
137 struct value *
138 value_allocate_space_in_inferior (int len)
139 {
140 struct value *blocklen;
141 struct value *val = find_function_in_inferior (NAME_OF_MALLOC);
142
143 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
144 val = call_function_by_hand (val, 1, &blocklen);
145 if (value_logical_not (val))
146 {
147 if (!target_has_execution)
148 error ("No memory available to program now: you need to start the target first");
149 else
150 error ("No memory available to program: call to malloc failed");
151 }
152 return val;
153 }
154
155 static CORE_ADDR
156 allocate_space_in_inferior (int len)
157 {
158 return value_as_long (value_allocate_space_in_inferior (len));
159 }
160
161 /* Cast value ARG2 to type TYPE and return as a value.
162 More general than a C cast: accepts any two types of the same length,
163 and if ARG2 is an lvalue it can be cast into anything at all. */
164 /* In C++, casts may change pointer or object representations. */
165
166 struct value *
167 value_cast (struct type *type, struct value *arg2)
168 {
169 register enum type_code code1;
170 register enum type_code code2;
171 register int scalar;
172 struct type *type2;
173
174 int convert_to_boolean = 0;
175
176 if (VALUE_TYPE (arg2) == type)
177 return arg2;
178
179 CHECK_TYPEDEF (type);
180 code1 = TYPE_CODE (type);
181 COERCE_REF (arg2);
182 type2 = check_typedef (VALUE_TYPE (arg2));
183
184 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
185 is treated like a cast to (TYPE [N])OBJECT,
186 where N is sizeof(OBJECT)/sizeof(TYPE). */
187 if (code1 == TYPE_CODE_ARRAY)
188 {
189 struct type *element_type = TYPE_TARGET_TYPE (type);
190 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
191 if (element_length > 0
192 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
193 {
194 struct type *range_type = TYPE_INDEX_TYPE (type);
195 int val_length = TYPE_LENGTH (type2);
196 LONGEST low_bound, high_bound, new_length;
197 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
198 low_bound = 0, high_bound = 0;
199 new_length = val_length / element_length;
200 if (val_length % element_length != 0)
201 warning ("array element type size does not divide object size in cast");
202 /* FIXME-type-allocation: need a way to free this type when we are
203 done with it. */
204 range_type = create_range_type ((struct type *) NULL,
205 TYPE_TARGET_TYPE (range_type),
206 low_bound,
207 new_length + low_bound - 1);
208 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
209 element_type, range_type);
210 return arg2;
211 }
212 }
213
214 if (current_language->c_style_arrays
215 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
216 arg2 = value_coerce_array (arg2);
217
218 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
219 arg2 = value_coerce_function (arg2);
220
221 type2 = check_typedef (VALUE_TYPE (arg2));
222 COERCE_VARYING_ARRAY (arg2, type2);
223 code2 = TYPE_CODE (type2);
224
225 if (code1 == TYPE_CODE_COMPLEX)
226 return cast_into_complex (type, arg2);
227 if (code1 == TYPE_CODE_BOOL)
228 {
229 code1 = TYPE_CODE_INT;
230 convert_to_boolean = 1;
231 }
232 if (code1 == TYPE_CODE_CHAR)
233 code1 = TYPE_CODE_INT;
234 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
235 code2 = TYPE_CODE_INT;
236
237 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
238 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
239
240 if (code1 == TYPE_CODE_STRUCT
241 && code2 == TYPE_CODE_STRUCT
242 && TYPE_NAME (type) != 0)
243 {
244 /* Look in the type of the source to see if it contains the
245 type of the target as a superclass. If so, we'll need to
246 offset the object in addition to changing its type. */
247 struct value *v = search_struct_field (type_name_no_tag (type),
248 arg2, 0, type2, 1);
249 if (v)
250 {
251 VALUE_TYPE (v) = type;
252 return v;
253 }
254 }
255 if (code1 == TYPE_CODE_FLT && scalar)
256 return value_from_double (type, value_as_double (arg2));
257 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
258 || code1 == TYPE_CODE_RANGE)
259 && (scalar || code2 == TYPE_CODE_PTR))
260 {
261 LONGEST longest;
262
263 if (hp_som_som_object_present && /* if target compiled by HP aCC */
264 (code2 == TYPE_CODE_PTR))
265 {
266 unsigned int *ptr;
267 struct value *retvalp;
268
269 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
270 {
271 /* With HP aCC, pointers to data members have a bias */
272 case TYPE_CODE_MEMBER:
273 retvalp = value_from_longest (type, value_as_long (arg2));
274 /* force evaluation */
275 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
276 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
277 return retvalp;
278
279 /* While pointers to methods don't really point to a function */
280 case TYPE_CODE_METHOD:
281 error ("Pointers to methods not supported with HP aCC");
282
283 default:
284 break; /* fall out and go to normal handling */
285 }
286 }
287
288 /* When we cast pointers to integers, we mustn't use
289 POINTER_TO_ADDRESS to find the address the pointer
290 represents, as value_as_long would. GDB should evaluate
291 expressions just as the compiler would --- and the compiler
292 sees a cast as a simple reinterpretation of the pointer's
293 bits. */
294 if (code2 == TYPE_CODE_PTR)
295 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
296 TYPE_LENGTH (type2));
297 else
298 longest = value_as_long (arg2);
299 return value_from_longest (type, convert_to_boolean ?
300 (LONGEST) (longest ? 1 : 0) : longest);
301 }
302 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
303 code2 == TYPE_CODE_ENUM ||
304 code2 == TYPE_CODE_RANGE))
305 {
306 /* TYPE_LENGTH (type) is the length of a pointer, but we really
307 want the length of an address! -- we are really dealing with
308 addresses (i.e., gdb representations) not pointers (i.e.,
309 target representations) here.
310
311 This allows things like "print *(int *)0x01000234" to work
312 without printing a misleading message -- which would
313 otherwise occur when dealing with a target having two byte
314 pointers and four byte addresses. */
315
316 int addr_bit = TARGET_ADDR_BIT;
317
318 LONGEST longest = value_as_long (arg2);
319 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
320 {
321 if (longest >= ((LONGEST) 1 << addr_bit)
322 || longest <= -((LONGEST) 1 << addr_bit))
323 warning ("value truncated");
324 }
325 return value_from_longest (type, longest);
326 }
327 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
328 {
329 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
330 {
331 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
332 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
333 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
334 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
335 && !value_logical_not (arg2))
336 {
337 struct value *v;
338
339 /* Look in the type of the source to see if it contains the
340 type of the target as a superclass. If so, we'll need to
341 offset the pointer rather than just change its type. */
342 if (TYPE_NAME (t1) != NULL)
343 {
344 v = search_struct_field (type_name_no_tag (t1),
345 value_ind (arg2), 0, t2, 1);
346 if (v)
347 {
348 v = value_addr (v);
349 VALUE_TYPE (v) = type;
350 return v;
351 }
352 }
353
354 /* Look in the type of the target to see if it contains the
355 type of the source as a superclass. If so, we'll need to
356 offset the pointer rather than just change its type.
357 FIXME: This fails silently with virtual inheritance. */
358 if (TYPE_NAME (t2) != NULL)
359 {
360 v = search_struct_field (type_name_no_tag (t2),
361 value_zero (t1, not_lval), 0, t1, 1);
362 if (v)
363 {
364 CORE_ADDR addr2 = value_as_address (arg2);
365 addr2 -= (VALUE_ADDRESS (v)
366 + VALUE_OFFSET (v)
367 + VALUE_EMBEDDED_OFFSET (v));
368 return value_from_pointer (type, addr2);
369 }
370 }
371 }
372 /* No superclass found, just fall through to change ptr type. */
373 }
374 VALUE_TYPE (arg2) = type;
375 arg2 = value_change_enclosing_type (arg2, type);
376 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
377 return arg2;
378 }
379 else if (VALUE_LVAL (arg2) == lval_memory)
380 {
381 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
382 VALUE_BFD_SECTION (arg2));
383 }
384 else if (code1 == TYPE_CODE_VOID)
385 {
386 return value_zero (builtin_type_void, not_lval);
387 }
388 else
389 {
390 error ("Invalid cast.");
391 return 0;
392 }
393 }
394
395 /* Create a value of type TYPE that is zero, and return it. */
396
397 struct value *
398 value_zero (struct type *type, enum lval_type lv)
399 {
400 struct value *val = allocate_value (type);
401
402 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
403 VALUE_LVAL (val) = lv;
404
405 return val;
406 }
407
408 /* Return a value with type TYPE located at ADDR.
409
410 Call value_at only if the data needs to be fetched immediately;
411 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
412 value_at_lazy instead. value_at_lazy simply records the address of
413 the data and sets the lazy-evaluation-required flag. The lazy flag
414 is tested in the VALUE_CONTENTS macro, which is used if and when
415 the contents are actually required.
416
417 Note: value_at does *NOT* handle embedded offsets; perform such
418 adjustments before or after calling it. */
419
420 struct value *
421 value_at (struct type *type, CORE_ADDR addr, asection *sect)
422 {
423 struct value *val;
424
425 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
426 error ("Attempt to dereference a generic pointer.");
427
428 val = allocate_value (type);
429
430 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
431
432 VALUE_LVAL (val) = lval_memory;
433 VALUE_ADDRESS (val) = addr;
434 VALUE_BFD_SECTION (val) = sect;
435
436 return val;
437 }
438
439 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
440
441 struct value *
442 value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
443 {
444 struct value *val;
445
446 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
447 error ("Attempt to dereference a generic pointer.");
448
449 val = allocate_value (type);
450
451 VALUE_LVAL (val) = lval_memory;
452 VALUE_ADDRESS (val) = addr;
453 VALUE_LAZY (val) = 1;
454 VALUE_BFD_SECTION (val) = sect;
455
456 return val;
457 }
458
459 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
460 if the current data for a variable needs to be loaded into
461 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
462 clears the lazy flag to indicate that the data in the buffer is valid.
463
464 If the value is zero-length, we avoid calling read_memory, which would
465 abort. We mark the value as fetched anyway -- all 0 bytes of it.
466
467 This function returns a value because it is used in the VALUE_CONTENTS
468 macro as part of an expression, where a void would not work. The
469 value is ignored. */
470
471 int
472 value_fetch_lazy (struct value *val)
473 {
474 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
475 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
476
477 struct type *type = VALUE_TYPE (val);
478 if (length)
479 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
480
481 VALUE_LAZY (val) = 0;
482 return 0;
483 }
484
485
486 /* Store the contents of FROMVAL into the location of TOVAL.
487 Return a new value with the location of TOVAL and contents of FROMVAL. */
488
489 struct value *
490 value_assign (struct value *toval, struct value *fromval)
491 {
492 register struct type *type;
493 struct value *val;
494 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
495 int use_buffer = 0;
496
497 if (!toval->modifiable)
498 error ("Left operand of assignment is not a modifiable lvalue.");
499
500 COERCE_REF (toval);
501
502 type = VALUE_TYPE (toval);
503 if (VALUE_LVAL (toval) != lval_internalvar)
504 fromval = value_cast (type, fromval);
505 else
506 COERCE_ARRAY (fromval);
507 CHECK_TYPEDEF (type);
508
509 /* If TOVAL is a special machine register requiring conversion
510 of program values to a special raw format,
511 convert FROMVAL's contents now, with result in `raw_buffer',
512 and set USE_BUFFER to the number of bytes to write. */
513
514 if (VALUE_REGNO (toval) >= 0)
515 {
516 int regno = VALUE_REGNO (toval);
517 if (CONVERT_REGISTER_P (regno))
518 {
519 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
520 VALUE_TO_REGISTER (fromtype, regno, VALUE_CONTENTS (fromval), raw_buffer);
521 use_buffer = REGISTER_RAW_SIZE (regno);
522 }
523 }
524
525 switch (VALUE_LVAL (toval))
526 {
527 case lval_internalvar:
528 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
529 val = value_copy (VALUE_INTERNALVAR (toval)->value);
530 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
531 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
532 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
533 return val;
534
535 case lval_internalvar_component:
536 set_internalvar_component (VALUE_INTERNALVAR (toval),
537 VALUE_OFFSET (toval),
538 VALUE_BITPOS (toval),
539 VALUE_BITSIZE (toval),
540 fromval);
541 break;
542
543 case lval_memory:
544 {
545 char *dest_buffer;
546 CORE_ADDR changed_addr;
547 int changed_len;
548
549 if (VALUE_BITSIZE (toval))
550 {
551 char buffer[sizeof (LONGEST)];
552 /* We assume that the argument to read_memory is in units of
553 host chars. FIXME: Is that correct? */
554 changed_len = (VALUE_BITPOS (toval)
555 + VALUE_BITSIZE (toval)
556 + HOST_CHAR_BIT - 1)
557 / HOST_CHAR_BIT;
558
559 if (changed_len > (int) sizeof (LONGEST))
560 error ("Can't handle bitfields which don't fit in a %d bit word.",
561 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
562
563 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
564 buffer, changed_len);
565 modify_field (buffer, value_as_long (fromval),
566 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
567 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
568 dest_buffer = buffer;
569 }
570 else if (use_buffer)
571 {
572 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
573 changed_len = use_buffer;
574 dest_buffer = raw_buffer;
575 }
576 else
577 {
578 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
579 changed_len = TYPE_LENGTH (type);
580 dest_buffer = VALUE_CONTENTS (fromval);
581 }
582
583 write_memory (changed_addr, dest_buffer, changed_len);
584 if (memory_changed_hook)
585 memory_changed_hook (changed_addr, changed_len);
586 target_changed_event ();
587 }
588 break;
589
590 case lval_reg_frame_relative:
591 case lval_register:
592 {
593 struct frame_id old_frame;
594 /* value is stored in a series of registers in the frame
595 specified by the structure. Copy that value out, modify
596 it, and copy it back in. */
597 int amount_copied;
598 int amount_to_copy;
599 char *buffer;
600 int value_reg;
601 int reg_offset;
602 int byte_offset;
603 int regno;
604 struct frame_info *frame;
605
606 /* Since modifying a register can trash the frame chain, we
607 save the old frame and then restore the new frame
608 afterwards. */
609 old_frame = get_frame_id (deprecated_selected_frame);
610
611 /* Figure out which frame this is in currently. */
612 if (VALUE_LVAL (toval) == lval_register)
613 {
614 frame = get_current_frame ();
615 value_reg = VALUE_REGNO (toval);
616 }
617 else
618 {
619 for (frame = get_current_frame ();
620 frame && get_frame_base (frame) != VALUE_FRAME (toval);
621 frame = get_prev_frame (frame))
622 ;
623 value_reg = VALUE_FRAME_REGNUM (toval);
624 }
625
626 if (!frame)
627 error ("Value being assigned to is no longer active.");
628
629 /* Locate the first register that falls in the value that
630 needs to be transfered. Compute the offset of the value in
631 that register. */
632 {
633 int offset;
634 for (reg_offset = value_reg, offset = 0;
635 offset + REGISTER_RAW_SIZE (reg_offset) <= VALUE_OFFSET (toval);
636 reg_offset++);
637 byte_offset = VALUE_OFFSET (toval) - offset;
638 }
639
640 /* Compute the number of register aligned values that need to
641 be copied. */
642 if (VALUE_BITSIZE (toval))
643 amount_to_copy = byte_offset + 1;
644 else
645 amount_to_copy = byte_offset + TYPE_LENGTH (type);
646
647 /* And a bounce buffer. Be slightly over generous. */
648 buffer = (char *) alloca (amount_to_copy
649 + MAX_REGISTER_RAW_SIZE);
650
651 /* Copy it in. */
652 for (regno = reg_offset, amount_copied = 0;
653 amount_copied < amount_to_copy;
654 amount_copied += REGISTER_RAW_SIZE (regno), regno++)
655 {
656 frame_register_read (frame, regno, buffer + amount_copied);
657 }
658
659 /* Modify what needs to be modified. */
660 if (VALUE_BITSIZE (toval))
661 {
662 modify_field (buffer + byte_offset,
663 value_as_long (fromval),
664 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
665 }
666 else if (use_buffer)
667 {
668 memcpy (buffer + VALUE_OFFSET (toval), raw_buffer, use_buffer);
669 }
670 else
671 {
672 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
673 TYPE_LENGTH (type));
674 /* Do any conversion necessary when storing this type to
675 more than one register. */
676 #ifdef REGISTER_CONVERT_FROM_TYPE
677 REGISTER_CONVERT_FROM_TYPE (value_reg, type,
678 (buffer + byte_offset));
679 #endif
680 }
681
682 /* Copy it out. */
683 for (regno = reg_offset, amount_copied = 0;
684 amount_copied < amount_to_copy;
685 amount_copied += REGISTER_RAW_SIZE (regno), regno++)
686 {
687 enum lval_type lval;
688 CORE_ADDR addr;
689 int optim;
690 int realnum;
691
692 /* Just find out where to put it. */
693 frame_register (frame, regno, &optim, &lval, &addr, &realnum,
694 NULL);
695
696 if (optim)
697 error ("Attempt to assign to a value that was optimized out.");
698 if (lval == lval_memory)
699 write_memory (addr, buffer + amount_copied,
700 REGISTER_RAW_SIZE (regno));
701 else if (lval == lval_register)
702 regcache_cooked_write (current_regcache, realnum,
703 (buffer + amount_copied));
704 else
705 error ("Attempt to assign to an unmodifiable value.");
706 }
707
708 if (register_changed_hook)
709 register_changed_hook (-1);
710 target_changed_event ();
711
712 /* Assigning to the stack pointer, frame pointer, and other
713 (architecture and calling convention specific) registers
714 may cause the frame cache to be out of date. We just do
715 this on all assignments to registers for simplicity; I
716 doubt the slowdown matters. */
717 reinit_frame_cache ();
718
719 /* Having destoroyed the frame cache, restore the selected
720 frame. */
721 /* FIXME: cagney/2002-11-02: There has to be a better way of
722 doing this. Instead of constantly saving/restoring the
723 frame. Why not create a get_selected_frame() function
724 that, having saved the selected frame's ID can
725 automatically re-find the previously selected frame
726 automatically. */
727 {
728 struct frame_info *fi = frame_find_by_id (old_frame);
729 if (fi != NULL)
730 select_frame (fi);
731 }
732 }
733 break;
734
735
736 default:
737 error ("Left operand of assignment is not an lvalue.");
738 }
739
740 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
741 If the field is signed, and is negative, then sign extend. */
742 if ((VALUE_BITSIZE (toval) > 0)
743 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
744 {
745 LONGEST fieldval = value_as_long (fromval);
746 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
747
748 fieldval &= valmask;
749 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
750 fieldval |= ~valmask;
751
752 fromval = value_from_longest (type, fieldval);
753 }
754
755 val = value_copy (toval);
756 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
757 TYPE_LENGTH (type));
758 VALUE_TYPE (val) = type;
759 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
760 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
761 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
762
763 return val;
764 }
765
766 /* Extend a value VAL to COUNT repetitions of its type. */
767
768 struct value *
769 value_repeat (struct value *arg1, int count)
770 {
771 struct value *val;
772
773 if (VALUE_LVAL (arg1) != lval_memory)
774 error ("Only values in memory can be extended with '@'.");
775 if (count < 1)
776 error ("Invalid number %d of repetitions.", count);
777
778 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
779
780 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
781 VALUE_CONTENTS_ALL_RAW (val),
782 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
783 VALUE_LVAL (val) = lval_memory;
784 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
785
786 return val;
787 }
788
789 struct value *
790 value_of_variable (struct symbol *var, struct block *b)
791 {
792 struct value *val;
793 struct frame_info *frame = NULL;
794
795 if (!b)
796 frame = NULL; /* Use selected frame. */
797 else if (symbol_read_needs_frame (var))
798 {
799 frame = block_innermost_frame (b);
800 if (!frame)
801 {
802 if (BLOCK_FUNCTION (b)
803 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
804 error ("No frame is currently executing in block %s.",
805 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
806 else
807 error ("No frame is currently executing in specified block");
808 }
809 }
810
811 val = read_var_value (var, frame);
812 if (!val)
813 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
814
815 return val;
816 }
817
818 /* Given a value which is an array, return a value which is a pointer to its
819 first element, regardless of whether or not the array has a nonzero lower
820 bound.
821
822 FIXME: A previous comment here indicated that this routine should be
823 substracting the array's lower bound. It's not clear to me that this
824 is correct. Given an array subscripting operation, it would certainly
825 work to do the adjustment here, essentially computing:
826
827 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
828
829 However I believe a more appropriate and logical place to account for
830 the lower bound is to do so in value_subscript, essentially computing:
831
832 (&array[0] + ((index - lowerbound) * sizeof array[0]))
833
834 As further evidence consider what would happen with operations other
835 than array subscripting, where the caller would get back a value that
836 had an address somewhere before the actual first element of the array,
837 and the information about the lower bound would be lost because of
838 the coercion to pointer type.
839 */
840
841 struct value *
842 value_coerce_array (struct value *arg1)
843 {
844 register struct type *type = check_typedef (VALUE_TYPE (arg1));
845
846 if (VALUE_LVAL (arg1) != lval_memory)
847 error ("Attempt to take address of value not located in memory.");
848
849 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
850 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
851 }
852
853 /* Given a value which is a function, return a value which is a pointer
854 to it. */
855
856 struct value *
857 value_coerce_function (struct value *arg1)
858 {
859 struct value *retval;
860
861 if (VALUE_LVAL (arg1) != lval_memory)
862 error ("Attempt to take address of value not located in memory.");
863
864 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
865 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
866 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
867 return retval;
868 }
869
870 /* Return a pointer value for the object for which ARG1 is the contents. */
871
872 struct value *
873 value_addr (struct value *arg1)
874 {
875 struct value *arg2;
876
877 struct type *type = check_typedef (VALUE_TYPE (arg1));
878 if (TYPE_CODE (type) == TYPE_CODE_REF)
879 {
880 /* Copy the value, but change the type from (T&) to (T*).
881 We keep the same location information, which is efficient,
882 and allows &(&X) to get the location containing the reference. */
883 arg2 = value_copy (arg1);
884 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
885 return arg2;
886 }
887 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
888 return value_coerce_function (arg1);
889
890 if (VALUE_LVAL (arg1) != lval_memory)
891 error ("Attempt to take address of value not located in memory.");
892
893 /* Get target memory address */
894 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
895 (VALUE_ADDRESS (arg1)
896 + VALUE_OFFSET (arg1)
897 + VALUE_EMBEDDED_OFFSET (arg1)));
898
899 /* This may be a pointer to a base subobject; so remember the
900 full derived object's type ... */
901 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
902 /* ... and also the relative position of the subobject in the full object */
903 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
904 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
905 return arg2;
906 }
907
908 /* Given a value of a pointer type, apply the C unary * operator to it. */
909
910 struct value *
911 value_ind (struct value *arg1)
912 {
913 struct type *base_type;
914 struct value *arg2;
915
916 COERCE_ARRAY (arg1);
917
918 base_type = check_typedef (VALUE_TYPE (arg1));
919
920 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
921 error ("not implemented: member types in value_ind");
922
923 /* Allow * on an integer so we can cast it to whatever we want.
924 This returns an int, which seems like the most C-like thing
925 to do. "long long" variables are rare enough that
926 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
927 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
928 return value_at_lazy (builtin_type_int,
929 (CORE_ADDR) value_as_long (arg1),
930 VALUE_BFD_SECTION (arg1));
931 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
932 {
933 struct type *enc_type;
934 /* We may be pointing to something embedded in a larger object */
935 /* Get the real type of the enclosing object */
936 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
937 enc_type = TYPE_TARGET_TYPE (enc_type);
938 /* Retrieve the enclosing object pointed to */
939 arg2 = value_at_lazy (enc_type,
940 value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
941 VALUE_BFD_SECTION (arg1));
942 /* Re-adjust type */
943 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
944 /* Add embedding info */
945 arg2 = value_change_enclosing_type (arg2, enc_type);
946 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
947
948 /* We may be pointing to an object of some derived type */
949 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
950 return arg2;
951 }
952
953 error ("Attempt to take contents of a non-pointer value.");
954 return 0; /* For lint -- never reached */
955 }
956 \f
957 /* Pushing small parts of stack frames. */
958
959 /* Push one word (the size of object that a register holds). */
960
961 CORE_ADDR
962 push_word (CORE_ADDR sp, ULONGEST word)
963 {
964 register int len = REGISTER_SIZE;
965 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
966
967 store_unsigned_integer (buffer, len, word);
968 if (INNER_THAN (1, 2))
969 {
970 /* stack grows downward */
971 sp -= len;
972 write_memory (sp, buffer, len);
973 }
974 else
975 {
976 /* stack grows upward */
977 write_memory (sp, buffer, len);
978 sp += len;
979 }
980
981 return sp;
982 }
983
984 /* Push LEN bytes with data at BUFFER. */
985
986 CORE_ADDR
987 push_bytes (CORE_ADDR sp, char *buffer, int len)
988 {
989 if (INNER_THAN (1, 2))
990 {
991 /* stack grows downward */
992 sp -= len;
993 write_memory (sp, buffer, len);
994 }
995 else
996 {
997 /* stack grows upward */
998 write_memory (sp, buffer, len);
999 sp += len;
1000 }
1001
1002 return sp;
1003 }
1004
1005 #ifndef PARM_BOUNDARY
1006 #define PARM_BOUNDARY (0)
1007 #endif
1008
1009 /* Push onto the stack the specified value VALUE. Pad it correctly for
1010 it to be an argument to a function. */
1011
1012 static CORE_ADDR
1013 value_push (register CORE_ADDR sp, struct value *arg)
1014 {
1015 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1016 register int container_len = len;
1017 register int offset;
1018
1019 /* How big is the container we're going to put this value in? */
1020 if (PARM_BOUNDARY)
1021 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1022 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1023
1024 /* Are we going to put it at the high or low end of the container? */
1025 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1026 offset = container_len - len;
1027 else
1028 offset = 0;
1029
1030 if (INNER_THAN (1, 2))
1031 {
1032 /* stack grows downward */
1033 sp -= container_len;
1034 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1035 }
1036 else
1037 {
1038 /* stack grows upward */
1039 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1040 sp += container_len;
1041 }
1042
1043 return sp;
1044 }
1045
1046 CORE_ADDR
1047 default_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1048 int struct_return, CORE_ADDR struct_addr)
1049 {
1050 /* ASSERT ( !struct_return); */
1051 int i;
1052 for (i = nargs - 1; i >= 0; i--)
1053 sp = value_push (sp, args[i]);
1054 return sp;
1055 }
1056
1057
1058 /* Functions to use for the COERCE_FLOAT_TO_DOUBLE gdbarch method.
1059
1060 How you should pass arguments to a function depends on whether it
1061 was defined in K&R style or prototype style. If you define a
1062 function using the K&R syntax that takes a `float' argument, then
1063 callers must pass that argument as a `double'. If you define the
1064 function using the prototype syntax, then you must pass the
1065 argument as a `float', with no promotion.
1066
1067 Unfortunately, on certain older platforms, the debug info doesn't
1068 indicate reliably how each function was defined. A function type's
1069 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
1070 defined in prototype style. When calling a function whose
1071 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults the
1072 COERCE_FLOAT_TO_DOUBLE gdbarch method to decide what to do.
1073
1074 For modern targets, it is proper to assume that, if the prototype
1075 flag is clear, that can be trusted: `float' arguments should be
1076 promoted to `double'. You should register the function
1077 `standard_coerce_float_to_double' to get this behavior.
1078
1079 For some older targets, if the prototype flag is clear, that
1080 doesn't tell us anything. So we guess that, if we don't have a
1081 type for the formal parameter (i.e., the first argument to
1082 COERCE_FLOAT_TO_DOUBLE is null), then we should promote it;
1083 otherwise, we should leave it alone. The function
1084 `default_coerce_float_to_double' provides this behavior; it is the
1085 default value, for compatibility with older configurations. */
1086 int
1087 default_coerce_float_to_double (struct type *formal, struct type *actual)
1088 {
1089 return formal == NULL;
1090 }
1091
1092
1093 int
1094 standard_coerce_float_to_double (struct type *formal, struct type *actual)
1095 {
1096 return 1;
1097 }
1098
1099
1100 /* Perform the standard coercions that are specified
1101 for arguments to be passed to C functions.
1102
1103 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1104 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1105
1106 static struct value *
1107 value_arg_coerce (struct value *arg, struct type *param_type,
1108 int is_prototyped)
1109 {
1110 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1111 register struct type *type
1112 = param_type ? check_typedef (param_type) : arg_type;
1113
1114 switch (TYPE_CODE (type))
1115 {
1116 case TYPE_CODE_REF:
1117 if (TYPE_CODE (arg_type) != TYPE_CODE_REF
1118 && TYPE_CODE (arg_type) != TYPE_CODE_PTR)
1119 {
1120 arg = value_addr (arg);
1121 VALUE_TYPE (arg) = param_type;
1122 return arg;
1123 }
1124 break;
1125 case TYPE_CODE_INT:
1126 case TYPE_CODE_CHAR:
1127 case TYPE_CODE_BOOL:
1128 case TYPE_CODE_ENUM:
1129 /* If we don't have a prototype, coerce to integer type if necessary. */
1130 if (!is_prototyped)
1131 {
1132 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1133 type = builtin_type_int;
1134 }
1135 /* Currently all target ABIs require at least the width of an integer
1136 type for an argument. We may have to conditionalize the following
1137 type coercion for future targets. */
1138 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1139 type = builtin_type_int;
1140 break;
1141 case TYPE_CODE_FLT:
1142 /* FIXME: We should always convert floats to doubles in the
1143 non-prototyped case. As many debugging formats include
1144 no information about prototyping, we have to live with
1145 COERCE_FLOAT_TO_DOUBLE for now. */
1146 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
1147 {
1148 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1149 type = builtin_type_double;
1150 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1151 type = builtin_type_long_double;
1152 }
1153 break;
1154 case TYPE_CODE_FUNC:
1155 type = lookup_pointer_type (type);
1156 break;
1157 case TYPE_CODE_ARRAY:
1158 /* Arrays are coerced to pointers to their first element, unless
1159 they are vectors, in which case we want to leave them alone,
1160 because they are passed by value. */
1161 if (current_language->c_style_arrays)
1162 if (!TYPE_VECTOR (type))
1163 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1164 break;
1165 case TYPE_CODE_UNDEF:
1166 case TYPE_CODE_PTR:
1167 case TYPE_CODE_STRUCT:
1168 case TYPE_CODE_UNION:
1169 case TYPE_CODE_VOID:
1170 case TYPE_CODE_SET:
1171 case TYPE_CODE_RANGE:
1172 case TYPE_CODE_STRING:
1173 case TYPE_CODE_BITSTRING:
1174 case TYPE_CODE_ERROR:
1175 case TYPE_CODE_MEMBER:
1176 case TYPE_CODE_METHOD:
1177 case TYPE_CODE_COMPLEX:
1178 default:
1179 break;
1180 }
1181
1182 return value_cast (type, arg);
1183 }
1184
1185 /* Determine a function's address and its return type from its value.
1186 Calls error() if the function is not valid for calling. */
1187
1188 static CORE_ADDR
1189 find_function_addr (struct value *function, struct type **retval_type)
1190 {
1191 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1192 register enum type_code code = TYPE_CODE (ftype);
1193 struct type *value_type;
1194 CORE_ADDR funaddr;
1195
1196 /* If it's a member function, just look at the function
1197 part of it. */
1198
1199 /* Determine address to call. */
1200 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1201 {
1202 funaddr = VALUE_ADDRESS (function);
1203 value_type = TYPE_TARGET_TYPE (ftype);
1204 }
1205 else if (code == TYPE_CODE_PTR)
1206 {
1207 funaddr = value_as_address (function);
1208 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1209 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1210 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1211 {
1212 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1213 value_type = TYPE_TARGET_TYPE (ftype);
1214 }
1215 else
1216 value_type = builtin_type_int;
1217 }
1218 else if (code == TYPE_CODE_INT)
1219 {
1220 /* Handle the case of functions lacking debugging info.
1221 Their values are characters since their addresses are char */
1222 if (TYPE_LENGTH (ftype) == 1)
1223 funaddr = value_as_address (value_addr (function));
1224 else
1225 /* Handle integer used as address of a function. */
1226 funaddr = (CORE_ADDR) value_as_long (function);
1227
1228 value_type = builtin_type_int;
1229 }
1230 else
1231 error ("Invalid data type for function to be called.");
1232
1233 *retval_type = value_type;
1234 return funaddr;
1235 }
1236
1237 /* All this stuff with a dummy frame may seem unnecessarily complicated
1238 (why not just save registers in GDB?). The purpose of pushing a dummy
1239 frame which looks just like a real frame is so that if you call a
1240 function and then hit a breakpoint (get a signal, etc), "backtrace"
1241 will look right. Whether the backtrace needs to actually show the
1242 stack at the time the inferior function was called is debatable, but
1243 it certainly needs to not display garbage. So if you are contemplating
1244 making dummy frames be different from normal frames, consider that. */
1245
1246 /* Perform a function call in the inferior.
1247 ARGS is a vector of values of arguments (NARGS of them).
1248 FUNCTION is a value, the function to be called.
1249 Returns a value representing what the function returned.
1250 May fail to return, if a breakpoint or signal is hit
1251 during the execution of the function.
1252
1253 ARGS is modified to contain coerced values. */
1254
1255 static struct value *
1256 hand_function_call (struct value *function, int nargs, struct value **args)
1257 {
1258 register CORE_ADDR sp;
1259 register int i;
1260 int rc;
1261 CORE_ADDR start_sp;
1262 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1263 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1264 and remove any extra bytes which might exist because ULONGEST is
1265 bigger than REGISTER_SIZE.
1266
1267 NOTE: This is pretty wierd, as the call dummy is actually a
1268 sequence of instructions. But CISC machines will have
1269 to pack the instructions into REGISTER_SIZE units (and
1270 so will RISC machines for which INSTRUCTION_SIZE is not
1271 REGISTER_SIZE).
1272
1273 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1274 target byte order. */
1275
1276 static ULONGEST *dummy;
1277 int sizeof_dummy1;
1278 char *dummy1;
1279 CORE_ADDR old_sp;
1280 struct type *value_type;
1281 unsigned char struct_return;
1282 CORE_ADDR struct_addr = 0;
1283 struct regcache *retbuf;
1284 struct cleanup *retbuf_cleanup;
1285 struct inferior_status *inf_status;
1286 struct cleanup *inf_status_cleanup;
1287 CORE_ADDR funaddr;
1288 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1289 CORE_ADDR real_pc;
1290 struct type *param_type = NULL;
1291 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1292 int n_method_args = 0;
1293
1294 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1295 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1296 dummy1 = alloca (sizeof_dummy1);
1297 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1298
1299 if (!target_has_execution)
1300 noprocess ();
1301
1302 /* Create a cleanup chain that contains the retbuf (buffer
1303 containing the register values). This chain is create BEFORE the
1304 inf_status chain so that the inferior status can cleaned up
1305 (restored or discarded) without having the retbuf freed. */
1306 retbuf = regcache_xmalloc (current_gdbarch);
1307 retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
1308
1309 /* A cleanup for the inferior status. Create this AFTER the retbuf
1310 so that this can be discarded or applied without interfering with
1311 the regbuf. */
1312 inf_status = save_inferior_status (1);
1313 inf_status_cleanup = make_cleanup_restore_inferior_status (inf_status);
1314
1315 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1316 (and POP_FRAME for restoring them). (At least on most machines)
1317 they are saved on the stack in the inferior. */
1318 PUSH_DUMMY_FRAME;
1319
1320 old_sp = read_sp ();
1321
1322 /* Ensure that the initial SP is correctly aligned. */
1323 if (gdbarch_frame_align_p (current_gdbarch))
1324 {
1325 /* NOTE: cagney/2002-09-18:
1326
1327 On a RISC architecture, a void parameterless generic dummy
1328 frame (i.e., no parameters, no result) typically does not
1329 need to push anything the stack and hence can leave SP and
1330 FP. Similarly, a framelss (possibly leaf) function does not
1331 push anything on the stack and, hence, that too can leave FP
1332 and SP unchanged. As a consequence, a sequence of void
1333 parameterless generic dummy frame calls to frameless
1334 functions will create a sequence of effectively identical
1335 frames (SP, FP and TOS and PC the same). This, not
1336 suprisingly, results in what appears to be a stack in an
1337 infinite loop --- when GDB tries to find a generic dummy
1338 frame on the internal dummy frame stack, it will always find
1339 the first one.
1340
1341 To avoid this problem, the code below always grows the stack.
1342 That way, two dummy frames can never be identical. It does
1343 burn a few bytes of stack but that is a small price to pay
1344 :-). */
1345 sp = gdbarch_frame_align (current_gdbarch, old_sp);
1346 if (sp == old_sp)
1347 {
1348 if (INNER_THAN (1, 2))
1349 /* Stack grows down. */
1350 sp = gdbarch_frame_align (current_gdbarch, old_sp - 1);
1351 else
1352 /* Stack grows up. */
1353 sp = gdbarch_frame_align (current_gdbarch, old_sp + 1);
1354 }
1355 gdb_assert ((INNER_THAN (1, 2) && sp <= old_sp)
1356 || (INNER_THAN (2, 1) && sp >= old_sp));
1357 }
1358 else
1359 /* FIXME: cagney/2002-09-18: Hey, you loose! Who knows how badly
1360 aligned the SP is! Further, per comment above, if the generic
1361 dummy frame ends up empty (because nothing is pushed) GDB won't
1362 be able to correctly perform back traces. If a target is
1363 having trouble with backtraces, first thing to do is add
1364 FRAME_ALIGN() to its architecture vector. After that, try
1365 adding SAVE_DUMMY_FRAME_TOS() and modifying FRAME_CHAIN so that
1366 when the next outer frame is a generic dummy, it returns the
1367 current frame's base. */
1368 sp = old_sp;
1369
1370 if (INNER_THAN (1, 2))
1371 {
1372 /* Stack grows down */
1373 sp -= sizeof_dummy1;
1374 start_sp = sp;
1375 }
1376 else
1377 {
1378 /* Stack grows up */
1379 start_sp = sp;
1380 sp += sizeof_dummy1;
1381 }
1382
1383 /* NOTE: cagney/2002-09-10: Don't bother re-adjusting the stack
1384 after allocating space for the call dummy. A target can specify
1385 a SIZEOF_DUMMY1 (via SIZEOF_CALL_DUMMY_WORDS) such that all local
1386 alignment requirements are met. */
1387
1388 funaddr = find_function_addr (function, &value_type);
1389 CHECK_TYPEDEF (value_type);
1390
1391 {
1392 struct block *b = block_for_pc (funaddr);
1393 /* If compiled without -g, assume GCC 2. */
1394 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1395 }
1396
1397 /* Are we returning a value using a structure return or a normal
1398 value return? */
1399
1400 struct_return = using_struct_return (function, funaddr, value_type,
1401 using_gcc);
1402
1403 /* Create a call sequence customized for this function
1404 and the number of arguments for it. */
1405 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1406 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1407 REGISTER_SIZE,
1408 (ULONGEST) dummy[i]);
1409
1410 #ifdef GDB_TARGET_IS_HPPA
1411 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1412 value_type, using_gcc);
1413 #else
1414 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1415 value_type, using_gcc);
1416 real_pc = start_sp;
1417 #endif
1418
1419 if (CALL_DUMMY_LOCATION == ON_STACK)
1420 {
1421 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1422 if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES)
1423 generic_save_call_dummy_addr (start_sp, start_sp + sizeof_dummy1);
1424 }
1425
1426 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1427 {
1428 /* Convex Unix prohibits executing in the stack segment. */
1429 /* Hope there is empty room at the top of the text segment. */
1430 extern CORE_ADDR text_end;
1431 static int checked = 0;
1432 if (!checked)
1433 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1434 if (read_memory_integer (start_sp, 1) != 0)
1435 error ("text segment full -- no place to put call");
1436 checked = 1;
1437 sp = old_sp;
1438 real_pc = text_end - sizeof_dummy1;
1439 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1440 if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES)
1441 generic_save_call_dummy_addr (real_pc, real_pc + sizeof_dummy1);
1442 }
1443
1444 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1445 {
1446 extern CORE_ADDR text_end;
1447 int errcode;
1448 sp = old_sp;
1449 real_pc = text_end;
1450 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1451 if (errcode != 0)
1452 error ("Cannot write text segment -- call_function failed");
1453 if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES)
1454 generic_save_call_dummy_addr (real_pc, real_pc + sizeof_dummy1);
1455 }
1456
1457 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1458 {
1459 real_pc = funaddr;
1460 if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES)
1461 /* NOTE: cagney/2002-04-13: The entry point is going to be
1462 modified with a single breakpoint. */
1463 generic_save_call_dummy_addr (CALL_DUMMY_ADDRESS (),
1464 CALL_DUMMY_ADDRESS () + 1);
1465 }
1466
1467 #ifdef lint
1468 sp = old_sp; /* It really is used, for some ifdef's... */
1469 #endif
1470
1471 if (nargs < TYPE_NFIELDS (ftype))
1472 error ("too few arguments in function call");
1473
1474 for (i = nargs - 1; i >= 0; i--)
1475 {
1476 int prototyped;
1477
1478 /* FIXME drow/2002-05-31: Should just always mark methods as
1479 prototyped. Can we respect TYPE_VARARGS? Probably not. */
1480 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1481 prototyped = 1;
1482 else
1483 prototyped = TYPE_PROTOTYPED (ftype);
1484
1485 if (i < TYPE_NFIELDS (ftype))
1486 args[i] = value_arg_coerce (args[i], TYPE_FIELD_TYPE (ftype, i),
1487 prototyped);
1488 else
1489 args[i] = value_arg_coerce (args[i], NULL, 0);
1490
1491 /*elz: this code is to handle the case in which the function to be called
1492 has a pointer to function as parameter and the corresponding actual argument
1493 is the address of a function and not a pointer to function variable.
1494 In aCC compiled code, the calls through pointers to functions (in the body
1495 of the function called by hand) are made via $$dyncall_external which
1496 requires some registers setting, this is taken care of if we call
1497 via a function pointer variable, but not via a function address.
1498 In cc this is not a problem. */
1499
1500 if (using_gcc == 0)
1501 if (param_type && TYPE_CODE (ftype) != TYPE_CODE_METHOD)
1502 /* if this parameter is a pointer to function */
1503 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1504 if (TYPE_CODE (TYPE_TARGET_TYPE (param_type)) == TYPE_CODE_FUNC)
1505 /* elz: FIXME here should go the test about the compiler used
1506 to compile the target. We want to issue the error
1507 message only if the compiler used was HP's aCC.
1508 If we used HP's cc, then there is no problem and no need
1509 to return at this point */
1510 if (using_gcc == 0) /* && compiler == aCC */
1511 /* go see if the actual parameter is a variable of type
1512 pointer to function or just a function */
1513 if (args[i]->lval == not_lval)
1514 {
1515 char *arg_name;
1516 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1517 error ("\
1518 You cannot use function <%s> as argument. \n\
1519 You must use a pointer to function type variable. Command ignored.", arg_name);
1520 }
1521 }
1522
1523 if (REG_STRUCT_HAS_ADDR_P ())
1524 {
1525 /* This is a machine like the sparc, where we may need to pass a
1526 pointer to the structure, not the structure itself. */
1527 for (i = nargs - 1; i >= 0; i--)
1528 {
1529 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1530 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1531 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1532 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1533 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1534 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1535 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1536 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1537 && TYPE_LENGTH (arg_type) > 8)
1538 )
1539 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1540 {
1541 CORE_ADDR addr;
1542 int len; /* = TYPE_LENGTH (arg_type); */
1543 int aligned_len;
1544 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1545 len = TYPE_LENGTH (arg_type);
1546
1547 if (STACK_ALIGN_P ())
1548 /* MVS 11/22/96: I think at least some of this
1549 stack_align code is really broken. Better to let
1550 PUSH_ARGUMENTS adjust the stack in a target-defined
1551 manner. */
1552 aligned_len = STACK_ALIGN (len);
1553 else
1554 aligned_len = len;
1555 if (INNER_THAN (1, 2))
1556 {
1557 /* stack grows downward */
1558 sp -= aligned_len;
1559 /* ... so the address of the thing we push is the
1560 stack pointer after we push it. */
1561 addr = sp;
1562 }
1563 else
1564 {
1565 /* The stack grows up, so the address of the thing
1566 we push is the stack pointer before we push it. */
1567 addr = sp;
1568 sp += aligned_len;
1569 }
1570 /* Push the structure. */
1571 write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
1572 /* The value we're going to pass is the address of the
1573 thing we just pushed. */
1574 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1575 (LONGEST) addr); */
1576 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1577 addr);
1578 }
1579 }
1580 }
1581
1582
1583 /* Reserve space for the return structure to be written on the
1584 stack, if necessary. Make certain that the value is correctly
1585 aligned. */
1586
1587 if (struct_return)
1588 {
1589 int len = TYPE_LENGTH (value_type);
1590 if (STACK_ALIGN_P ())
1591 /* MVS 11/22/96: I think at least some of this stack_align
1592 code is really broken. Better to let PUSH_ARGUMENTS adjust
1593 the stack in a target-defined manner. */
1594 len = STACK_ALIGN (len);
1595 if (INNER_THAN (1, 2))
1596 {
1597 /* Stack grows downward. Align STRUCT_ADDR and SP after
1598 making space for the return value. */
1599 sp -= len;
1600 if (gdbarch_frame_align_p (current_gdbarch))
1601 sp = gdbarch_frame_align (current_gdbarch, sp);
1602 struct_addr = sp;
1603 }
1604 else
1605 {
1606 /* Stack grows upward. Align the frame, allocate space, and
1607 then again, re-align the frame??? */
1608 if (gdbarch_frame_align_p (current_gdbarch))
1609 sp = gdbarch_frame_align (current_gdbarch, sp);
1610 struct_addr = sp;
1611 sp += len;
1612 if (gdbarch_frame_align_p (current_gdbarch))
1613 sp = gdbarch_frame_align (current_gdbarch, sp);
1614 }
1615 }
1616
1617 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1618 on other architectures. This is because all the alignment is
1619 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1620 in hppa_push_arguments */
1621 if (EXTRA_STACK_ALIGNMENT_NEEDED)
1622 {
1623 /* MVS 11/22/96: I think at least some of this stack_align code
1624 is really broken. Better to let PUSH_ARGUMENTS adjust the
1625 stack in a target-defined manner. */
1626 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1627 {
1628 /* If stack grows down, we must leave a hole at the top. */
1629 int len = 0;
1630
1631 for (i = nargs - 1; i >= 0; i--)
1632 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1633 if (CALL_DUMMY_STACK_ADJUST_P)
1634 len += CALL_DUMMY_STACK_ADJUST;
1635 sp -= STACK_ALIGN (len) - len;
1636 }
1637 }
1638
1639 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1640
1641 if (PUSH_RETURN_ADDRESS_P ())
1642 /* for targets that use no CALL_DUMMY */
1643 /* There are a number of targets now which actually don't write
1644 any CALL_DUMMY instructions into the target, but instead just
1645 save the machine state, push the arguments, and jump directly
1646 to the callee function. Since this doesn't actually involve
1647 executing a JSR/BSR instruction, the return address must be set
1648 up by hand, either by pushing onto the stack or copying into a
1649 return-address register as appropriate. Formerly this has been
1650 done in PUSH_ARGUMENTS, but that's overloading its
1651 functionality a bit, so I'm making it explicit to do it here. */
1652 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1653
1654 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
1655 {
1656 /* If stack grows up, we must leave a hole at the bottom, note
1657 that sp already has been advanced for the arguments! */
1658 if (CALL_DUMMY_STACK_ADJUST_P)
1659 sp += CALL_DUMMY_STACK_ADJUST;
1660 sp = STACK_ALIGN (sp);
1661 }
1662
1663 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1664 anything here! */
1665 /* MVS 11/22/96: I think at least some of this stack_align code is
1666 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1667 a target-defined manner. */
1668 if (CALL_DUMMY_STACK_ADJUST_P)
1669 if (INNER_THAN (1, 2))
1670 {
1671 /* stack grows downward */
1672 sp -= CALL_DUMMY_STACK_ADJUST;
1673 }
1674
1675 /* Store the address at which the structure is supposed to be
1676 written. Note that this (and the code which reserved the space
1677 above) assumes that gcc was used to compile this function. Since
1678 it doesn't cost us anything but space and if the function is pcc
1679 it will ignore this value, we will make that assumption.
1680
1681 Also note that on some machines (like the sparc) pcc uses a
1682 convention like gcc's. */
1683
1684 if (struct_return)
1685 STORE_STRUCT_RETURN (struct_addr, sp);
1686
1687 /* Write the stack pointer. This is here because the statements above
1688 might fool with it. On SPARC, this write also stores the register
1689 window into the right place in the new stack frame, which otherwise
1690 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1691 write_sp (sp);
1692
1693 if (SAVE_DUMMY_FRAME_TOS_P ())
1694 SAVE_DUMMY_FRAME_TOS (sp);
1695
1696 {
1697 char *name;
1698 struct symbol *symbol;
1699
1700 name = NULL;
1701 symbol = find_pc_function (funaddr);
1702 if (symbol)
1703 {
1704 name = SYMBOL_SOURCE_NAME (symbol);
1705 }
1706 else
1707 {
1708 /* Try the minimal symbols. */
1709 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1710
1711 if (msymbol)
1712 {
1713 name = SYMBOL_SOURCE_NAME (msymbol);
1714 }
1715 }
1716 if (name == NULL)
1717 {
1718 char format[80];
1719 sprintf (format, "at %s", local_hex_format ());
1720 name = alloca (80);
1721 /* FIXME-32x64: assumes funaddr fits in a long. */
1722 sprintf (name, format, (unsigned long) funaddr);
1723 }
1724
1725 /* Execute the stack dummy routine, calling FUNCTION.
1726 When it is done, discard the empty frame
1727 after storing the contents of all regs into retbuf. */
1728 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1729
1730 if (rc == 1)
1731 {
1732 /* We stopped inside the FUNCTION because of a random signal.
1733 Further execution of the FUNCTION is not allowed. */
1734
1735 if (unwind_on_signal_p)
1736 {
1737 /* The user wants the context restored. */
1738
1739 /* We must get back to the frame we were before the dummy call. */
1740 POP_FRAME;
1741
1742 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1743 a C++ name with arguments and stuff. */
1744 error ("\
1745 The program being debugged was signaled while in a function called from GDB.\n\
1746 GDB has restored the context to what it was before the call.\n\
1747 To change this behavior use \"set unwindonsignal off\"\n\
1748 Evaluation of the expression containing the function (%s) will be abandoned.",
1749 name);
1750 }
1751 else
1752 {
1753 /* The user wants to stay in the frame where we stopped (default).*/
1754
1755 /* If we restored the inferior status (via the cleanup),
1756 we would print a spurious error message (Unable to
1757 restore previously selected frame), would write the
1758 registers from the inf_status (which is wrong), and
1759 would do other wrong things. */
1760 discard_cleanups (inf_status_cleanup);
1761 discard_inferior_status (inf_status);
1762
1763 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1764 a C++ name with arguments and stuff. */
1765 error ("\
1766 The program being debugged was signaled while in a function called from GDB.\n\
1767 GDB remains in the frame where the signal was received.\n\
1768 To change this behavior use \"set unwindonsignal on\"\n\
1769 Evaluation of the expression containing the function (%s) will be abandoned.",
1770 name);
1771 }
1772 }
1773
1774 if (rc == 2)
1775 {
1776 /* We hit a breakpoint inside the FUNCTION. */
1777
1778 /* If we restored the inferior status (via the cleanup), we
1779 would print a spurious error message (Unable to restore
1780 previously selected frame), would write the registers from
1781 the inf_status (which is wrong), and would do other wrong
1782 things. */
1783 discard_cleanups (inf_status_cleanup);
1784 discard_inferior_status (inf_status);
1785
1786 /* The following error message used to say "The expression
1787 which contained the function call has been discarded." It
1788 is a hard concept to explain in a few words. Ideally, GDB
1789 would be able to resume evaluation of the expression when
1790 the function finally is done executing. Perhaps someday
1791 this will be implemented (it would not be easy). */
1792
1793 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1794 a C++ name with arguments and stuff. */
1795 error ("\
1796 The program being debugged stopped while in a function called from GDB.\n\
1797 When the function (%s) is done executing, GDB will silently\n\
1798 stop (instead of continuing to evaluate the expression containing\n\
1799 the function call).", name);
1800 }
1801
1802 /* If we get here the called FUNCTION run to completion. */
1803
1804 /* Restore the inferior status, via its cleanup. At this stage,
1805 leave the RETBUF alone. */
1806 do_cleanups (inf_status_cleanup);
1807
1808 /* Figure out the value returned by the function. */
1809 /* elz: I defined this new macro for the hppa architecture only.
1810 this gives us a way to get the value returned by the function
1811 from the stack, at the same address we told the function to put
1812 it. We cannot assume on the pa that r28 still contains the
1813 address of the returned structure. Usually this will be
1814 overwritten by the callee. I don't know about other
1815 architectures, so I defined this macro */
1816 #ifdef VALUE_RETURNED_FROM_STACK
1817 if (struct_return)
1818 {
1819 do_cleanups (retbuf_cleanup);
1820 return VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1821 }
1822 #endif
1823 /* NOTE: cagney/2002-09-10: Only when the stack has been correctly
1824 aligned (using frame_align()) do we can trust STRUCT_ADDR and
1825 fetch the return value direct from the stack. This lack of
1826 trust comes about because legacy targets have a nasty habit of
1827 silently, and local to PUSH_ARGUMENTS(), moving STRUCT_ADDR.
1828 For such targets, just hope that value_being_returned() can
1829 find the adjusted value. */
1830 if (struct_return && gdbarch_frame_align_p (current_gdbarch))
1831 {
1832 struct value *retval = value_at (value_type, struct_addr, NULL);
1833 do_cleanups (retbuf_cleanup);
1834 return retval;
1835 }
1836 else
1837 {
1838 struct value *retval = value_being_returned (value_type, retbuf,
1839 struct_return);
1840 do_cleanups (retbuf_cleanup);
1841 return retval;
1842 }
1843 }
1844 }
1845
1846 struct value *
1847 call_function_by_hand (struct value *function, int nargs, struct value **args)
1848 {
1849 if (CALL_DUMMY_P)
1850 {
1851 return hand_function_call (function, nargs, args);
1852 }
1853 else
1854 {
1855 error ("Cannot invoke functions on this machine.");
1856 }
1857 }
1858 \f
1859
1860
1861 /* Create a value for an array by allocating space in the inferior, copying
1862 the data into that space, and then setting up an array value.
1863
1864 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1865 populated from the values passed in ELEMVEC.
1866
1867 The element type of the array is inherited from the type of the
1868 first element, and all elements must have the same size (though we
1869 don't currently enforce any restriction on their types). */
1870
1871 struct value *
1872 value_array (int lowbound, int highbound, struct value **elemvec)
1873 {
1874 int nelem;
1875 int idx;
1876 unsigned int typelength;
1877 struct value *val;
1878 struct type *rangetype;
1879 struct type *arraytype;
1880 CORE_ADDR addr;
1881
1882 /* Validate that the bounds are reasonable and that each of the elements
1883 have the same size. */
1884
1885 nelem = highbound - lowbound + 1;
1886 if (nelem <= 0)
1887 {
1888 error ("bad array bounds (%d, %d)", lowbound, highbound);
1889 }
1890 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1891 for (idx = 1; idx < nelem; idx++)
1892 {
1893 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1894 {
1895 error ("array elements must all be the same size");
1896 }
1897 }
1898
1899 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1900 lowbound, highbound);
1901 arraytype = create_array_type ((struct type *) NULL,
1902 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1903
1904 if (!current_language->c_style_arrays)
1905 {
1906 val = allocate_value (arraytype);
1907 for (idx = 0; idx < nelem; idx++)
1908 {
1909 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1910 VALUE_CONTENTS_ALL (elemvec[idx]),
1911 typelength);
1912 }
1913 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1914 return val;
1915 }
1916
1917 /* Allocate space to store the array in the inferior, and then initialize
1918 it by copying in each element. FIXME: Is it worth it to create a
1919 local buffer in which to collect each value and then write all the
1920 bytes in one operation? */
1921
1922 addr = allocate_space_in_inferior (nelem * typelength);
1923 for (idx = 0; idx < nelem; idx++)
1924 {
1925 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1926 typelength);
1927 }
1928
1929 /* Create the array type and set up an array value to be evaluated lazily. */
1930
1931 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1932 return (val);
1933 }
1934
1935 /* Create a value for a string constant by allocating space in the inferior,
1936 copying the data into that space, and returning the address with type
1937 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1938 of characters.
1939 Note that string types are like array of char types with a lower bound of
1940 zero and an upper bound of LEN - 1. Also note that the string may contain
1941 embedded null bytes. */
1942
1943 struct value *
1944 value_string (char *ptr, int len)
1945 {
1946 struct value *val;
1947 int lowbound = current_language->string_lower_bound;
1948 struct type *rangetype = create_range_type ((struct type *) NULL,
1949 builtin_type_int,
1950 lowbound, len + lowbound - 1);
1951 struct type *stringtype
1952 = create_string_type ((struct type *) NULL, rangetype);
1953 CORE_ADDR addr;
1954
1955 if (current_language->c_style_arrays == 0)
1956 {
1957 val = allocate_value (stringtype);
1958 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1959 return val;
1960 }
1961
1962
1963 /* Allocate space to store the string in the inferior, and then
1964 copy LEN bytes from PTR in gdb to that address in the inferior. */
1965
1966 addr = allocate_space_in_inferior (len);
1967 write_memory (addr, ptr, len);
1968
1969 val = value_at_lazy (stringtype, addr, NULL);
1970 return (val);
1971 }
1972
1973 struct value *
1974 value_bitstring (char *ptr, int len)
1975 {
1976 struct value *val;
1977 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1978 0, len - 1);
1979 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1980 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1981 val = allocate_value (type);
1982 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1983 return val;
1984 }
1985 \f
1986 /* See if we can pass arguments in T2 to a function which takes arguments
1987 of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
1988 vector. If some arguments need coercion of some sort, then the coerced
1989 values are written into T2. Return value is 0 if the arguments could be
1990 matched, or the position at which they differ if not.
1991
1992 STATICP is nonzero if the T1 argument list came from a
1993 static member function. T2 will still include the ``this'' pointer,
1994 but it will be skipped.
1995
1996 For non-static member functions, we ignore the first argument,
1997 which is the type of the instance variable. This is because we want
1998 to handle calls with objects from derived classes. This is not
1999 entirely correct: we should actually check to make sure that a
2000 requested operation is type secure, shouldn't we? FIXME. */
2001
2002 static int
2003 typecmp (int staticp, int varargs, int nargs,
2004 struct field t1[], struct value *t2[])
2005 {
2006 int i;
2007
2008 if (t2 == 0)
2009 internal_error (__FILE__, __LINE__, "typecmp: no argument list");
2010
2011 /* Skip ``this'' argument if applicable. T2 will always include THIS. */
2012 if (staticp)
2013 t2 ++;
2014
2015 for (i = 0;
2016 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
2017 i++)
2018 {
2019 struct type *tt1, *tt2;
2020
2021 if (!t2[i])
2022 return i + 1;
2023
2024 tt1 = check_typedef (t1[i].type);
2025 tt2 = check_typedef (VALUE_TYPE (t2[i]));
2026
2027 if (TYPE_CODE (tt1) == TYPE_CODE_REF
2028 /* We should be doing hairy argument matching, as below. */
2029 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
2030 {
2031 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
2032 t2[i] = value_coerce_array (t2[i]);
2033 else
2034 t2[i] = value_addr (t2[i]);
2035 continue;
2036 }
2037
2038 /* djb - 20000715 - Until the new type structure is in the
2039 place, and we can attempt things like implicit conversions,
2040 we need to do this so you can take something like a map<const
2041 char *>, and properly access map["hello"], because the
2042 argument to [] will be a reference to a pointer to a char,
2043 and the argument will be a pointer to a char. */
2044 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
2045 TYPE_CODE (tt1) == TYPE_CODE_PTR)
2046 {
2047 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
2048 }
2049 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
2050 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
2051 TYPE_CODE(tt2) == TYPE_CODE_REF)
2052 {
2053 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
2054 }
2055 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
2056 continue;
2057 /* Array to pointer is a `trivial conversion' according to the ARM. */
2058
2059 /* We should be doing much hairier argument matching (see section 13.2
2060 of the ARM), but as a quick kludge, just check for the same type
2061 code. */
2062 if (TYPE_CODE (t1[i].type) != TYPE_CODE (VALUE_TYPE (t2[i])))
2063 return i + 1;
2064 }
2065 if (varargs || t2[i] == NULL)
2066 return 0;
2067 return i + 1;
2068 }
2069
2070 /* Helper function used by value_struct_elt to recurse through baseclasses.
2071 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2072 and search in it assuming it has (class) type TYPE.
2073 If found, return value, else return NULL.
2074
2075 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2076 look for a baseclass named NAME. */
2077
2078 static struct value *
2079 search_struct_field (char *name, struct value *arg1, int offset,
2080 register struct type *type, int looking_for_baseclass)
2081 {
2082 int i;
2083 int nbases = TYPE_N_BASECLASSES (type);
2084
2085 CHECK_TYPEDEF (type);
2086
2087 if (!looking_for_baseclass)
2088 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2089 {
2090 char *t_field_name = TYPE_FIELD_NAME (type, i);
2091
2092 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2093 {
2094 struct value *v;
2095 if (TYPE_FIELD_STATIC (type, i))
2096 {
2097 v = value_static_field (type, i);
2098 if (v == 0)
2099 error ("field %s is nonexistent or has been optimised out",
2100 name);
2101 }
2102 else
2103 {
2104 v = value_primitive_field (arg1, offset, i, type);
2105 if (v == 0)
2106 error ("there is no field named %s", name);
2107 }
2108 return v;
2109 }
2110
2111 if (t_field_name
2112 && (t_field_name[0] == '\0'
2113 || (TYPE_CODE (type) == TYPE_CODE_UNION
2114 && (strcmp_iw (t_field_name, "else") == 0))))
2115 {
2116 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2117 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2118 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2119 {
2120 /* Look for a match through the fields of an anonymous union,
2121 or anonymous struct. C++ provides anonymous unions.
2122
2123 In the GNU Chill (now deleted from GDB)
2124 implementation of variant record types, each
2125 <alternative field> has an (anonymous) union type,
2126 each member of the union represents a <variant
2127 alternative>. Each <variant alternative> is
2128 represented as a struct, with a member for each
2129 <variant field>. */
2130
2131 struct value *v;
2132 int new_offset = offset;
2133
2134 /* This is pretty gross. In G++, the offset in an
2135 anonymous union is relative to the beginning of the
2136 enclosing struct. In the GNU Chill (now deleted
2137 from GDB) implementation of variant records, the
2138 bitpos is zero in an anonymous union field, so we
2139 have to add the offset of the union here. */
2140 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2141 || (TYPE_NFIELDS (field_type) > 0
2142 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2143 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2144
2145 v = search_struct_field (name, arg1, new_offset, field_type,
2146 looking_for_baseclass);
2147 if (v)
2148 return v;
2149 }
2150 }
2151 }
2152
2153 for (i = 0; i < nbases; i++)
2154 {
2155 struct value *v;
2156 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2157 /* If we are looking for baseclasses, this is what we get when we
2158 hit them. But it could happen that the base part's member name
2159 is not yet filled in. */
2160 int found_baseclass = (looking_for_baseclass
2161 && TYPE_BASECLASS_NAME (type, i) != NULL
2162 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2163
2164 if (BASETYPE_VIA_VIRTUAL (type, i))
2165 {
2166 int boffset;
2167 struct value *v2 = allocate_value (basetype);
2168
2169 boffset = baseclass_offset (type, i,
2170 VALUE_CONTENTS (arg1) + offset,
2171 VALUE_ADDRESS (arg1)
2172 + VALUE_OFFSET (arg1) + offset);
2173 if (boffset == -1)
2174 error ("virtual baseclass botch");
2175
2176 /* The virtual base class pointer might have been clobbered by the
2177 user program. Make sure that it still points to a valid memory
2178 location. */
2179
2180 boffset += offset;
2181 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2182 {
2183 CORE_ADDR base_addr;
2184
2185 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2186 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2187 TYPE_LENGTH (basetype)) != 0)
2188 error ("virtual baseclass botch");
2189 VALUE_LVAL (v2) = lval_memory;
2190 VALUE_ADDRESS (v2) = base_addr;
2191 }
2192 else
2193 {
2194 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2195 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2196 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2197 if (VALUE_LAZY (arg1))
2198 VALUE_LAZY (v2) = 1;
2199 else
2200 memcpy (VALUE_CONTENTS_RAW (v2),
2201 VALUE_CONTENTS_RAW (arg1) + boffset,
2202 TYPE_LENGTH (basetype));
2203 }
2204
2205 if (found_baseclass)
2206 return v2;
2207 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2208 looking_for_baseclass);
2209 }
2210 else if (found_baseclass)
2211 v = value_primitive_field (arg1, offset, i, type);
2212 else
2213 v = search_struct_field (name, arg1,
2214 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2215 basetype, looking_for_baseclass);
2216 if (v)
2217 return v;
2218 }
2219 return NULL;
2220 }
2221
2222
2223 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2224 * in an object pointed to by VALADDR (on the host), assumed to be of
2225 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2226 * looking (in case VALADDR is the contents of an enclosing object).
2227 *
2228 * This routine recurses on the primary base of the derived class because
2229 * the virtual base entries of the primary base appear before the other
2230 * virtual base entries.
2231 *
2232 * If the virtual base is not found, a negative integer is returned.
2233 * The magnitude of the negative integer is the number of entries in
2234 * the virtual table to skip over (entries corresponding to various
2235 * ancestral classes in the chain of primary bases).
2236 *
2237 * Important: This assumes the HP / Taligent C++ runtime
2238 * conventions. Use baseclass_offset() instead to deal with g++
2239 * conventions. */
2240
2241 void
2242 find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2243 int offset, int *boffset_p, int *skip_p)
2244 {
2245 int boffset; /* offset of virtual base */
2246 int index; /* displacement to use in virtual table */
2247 int skip;
2248
2249 struct value *vp;
2250 CORE_ADDR vtbl; /* the virtual table pointer */
2251 struct type *pbc; /* the primary base class */
2252
2253 /* Look for the virtual base recursively in the primary base, first.
2254 * This is because the derived class object and its primary base
2255 * subobject share the primary virtual table. */
2256
2257 boffset = 0;
2258 pbc = TYPE_PRIMARY_BASE (type);
2259 if (pbc)
2260 {
2261 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2262 if (skip < 0)
2263 {
2264 *boffset_p = boffset;
2265 *skip_p = -1;
2266 return;
2267 }
2268 }
2269 else
2270 skip = 0;
2271
2272
2273 /* Find the index of the virtual base according to HP/Taligent
2274 runtime spec. (Depth-first, left-to-right.) */
2275 index = virtual_base_index_skip_primaries (basetype, type);
2276
2277 if (index < 0)
2278 {
2279 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2280 *boffset_p = 0;
2281 return;
2282 }
2283
2284 /* pai: FIXME -- 32x64 possible problem */
2285 /* First word (4 bytes) in object layout is the vtable pointer */
2286 vtbl = *(CORE_ADDR *) (valaddr + offset);
2287
2288 /* Before the constructor is invoked, things are usually zero'd out. */
2289 if (vtbl == 0)
2290 error ("Couldn't find virtual table -- object may not be constructed yet.");
2291
2292
2293 /* Find virtual base's offset -- jump over entries for primary base
2294 * ancestors, then use the index computed above. But also adjust by
2295 * HP_ACC_VBASE_START for the vtable slots before the start of the
2296 * virtual base entries. Offset is negative -- virtual base entries
2297 * appear _before_ the address point of the virtual table. */
2298
2299 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2300 & use long type */
2301
2302 /* epstein : FIXME -- added param for overlay section. May not be correct */
2303 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2304 boffset = value_as_long (vp);
2305 *skip_p = -1;
2306 *boffset_p = boffset;
2307 return;
2308 }
2309
2310
2311 /* Helper function used by value_struct_elt to recurse through baseclasses.
2312 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2313 and search in it assuming it has (class) type TYPE.
2314 If found, return value, else if name matched and args not return (value)-1,
2315 else return NULL. */
2316
2317 static struct value *
2318 search_struct_method (char *name, struct value **arg1p,
2319 struct value **args, int offset,
2320 int *static_memfuncp, register struct type *type)
2321 {
2322 int i;
2323 struct value *v;
2324 int name_matched = 0;
2325 char dem_opname[64];
2326
2327 CHECK_TYPEDEF (type);
2328 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2329 {
2330 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2331 /* FIXME! May need to check for ARM demangling here */
2332 if (strncmp (t_field_name, "__", 2) == 0 ||
2333 strncmp (t_field_name, "op", 2) == 0 ||
2334 strncmp (t_field_name, "type", 4) == 0)
2335 {
2336 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2337 t_field_name = dem_opname;
2338 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2339 t_field_name = dem_opname;
2340 }
2341 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2342 {
2343 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2344 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2345 name_matched = 1;
2346
2347 check_stub_method_group (type, i);
2348 if (j > 0 && args == 0)
2349 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2350 else if (j == 0 && args == 0)
2351 {
2352 v = value_fn_field (arg1p, f, j, type, offset);
2353 if (v != NULL)
2354 return v;
2355 }
2356 else
2357 while (j >= 0)
2358 {
2359 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2360 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2361 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2362 TYPE_FN_FIELD_ARGS (f, j), args))
2363 {
2364 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2365 return value_virtual_fn_field (arg1p, f, j, type, offset);
2366 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2367 *static_memfuncp = 1;
2368 v = value_fn_field (arg1p, f, j, type, offset);
2369 if (v != NULL)
2370 return v;
2371 }
2372 j--;
2373 }
2374 }
2375 }
2376
2377 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2378 {
2379 int base_offset;
2380
2381 if (BASETYPE_VIA_VIRTUAL (type, i))
2382 {
2383 if (TYPE_HAS_VTABLE (type))
2384 {
2385 /* HP aCC compiled type, search for virtual base offset
2386 according to HP/Taligent runtime spec. */
2387 int skip;
2388 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2389 VALUE_CONTENTS_ALL (*arg1p),
2390 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2391 &base_offset, &skip);
2392 if (skip >= 0)
2393 error ("Virtual base class offset not found in vtable");
2394 }
2395 else
2396 {
2397 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2398 char *base_valaddr;
2399
2400 /* The virtual base class pointer might have been clobbered by the
2401 user program. Make sure that it still points to a valid memory
2402 location. */
2403
2404 if (offset < 0 || offset >= TYPE_LENGTH (type))
2405 {
2406 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2407 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2408 + VALUE_OFFSET (*arg1p) + offset,
2409 base_valaddr,
2410 TYPE_LENGTH (baseclass)) != 0)
2411 error ("virtual baseclass botch");
2412 }
2413 else
2414 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2415
2416 base_offset =
2417 baseclass_offset (type, i, base_valaddr,
2418 VALUE_ADDRESS (*arg1p)
2419 + VALUE_OFFSET (*arg1p) + offset);
2420 if (base_offset == -1)
2421 error ("virtual baseclass botch");
2422 }
2423 }
2424 else
2425 {
2426 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2427 }
2428 v = search_struct_method (name, arg1p, args, base_offset + offset,
2429 static_memfuncp, TYPE_BASECLASS (type, i));
2430 if (v == (struct value *) - 1)
2431 {
2432 name_matched = 1;
2433 }
2434 else if (v)
2435 {
2436 /* FIXME-bothner: Why is this commented out? Why is it here? */
2437 /* *arg1p = arg1_tmp; */
2438 return v;
2439 }
2440 }
2441 if (name_matched)
2442 return (struct value *) - 1;
2443 else
2444 return NULL;
2445 }
2446
2447 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2448 extract the component named NAME from the ultimate target structure/union
2449 and return it as a value with its appropriate type.
2450 ERR is used in the error message if *ARGP's type is wrong.
2451
2452 C++: ARGS is a list of argument types to aid in the selection of
2453 an appropriate method. Also, handle derived types.
2454
2455 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2456 where the truthvalue of whether the function that was resolved was
2457 a static member function or not is stored.
2458
2459 ERR is an error message to be printed in case the field is not found. */
2460
2461 struct value *
2462 value_struct_elt (struct value **argp, struct value **args,
2463 char *name, int *static_memfuncp, char *err)
2464 {
2465 register struct type *t;
2466 struct value *v;
2467
2468 COERCE_ARRAY (*argp);
2469
2470 t = check_typedef (VALUE_TYPE (*argp));
2471
2472 /* Follow pointers until we get to a non-pointer. */
2473
2474 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2475 {
2476 *argp = value_ind (*argp);
2477 /* Don't coerce fn pointer to fn and then back again! */
2478 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2479 COERCE_ARRAY (*argp);
2480 t = check_typedef (VALUE_TYPE (*argp));
2481 }
2482
2483 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2484 error ("not implemented: member type in value_struct_elt");
2485
2486 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2487 && TYPE_CODE (t) != TYPE_CODE_UNION)
2488 error ("Attempt to extract a component of a value that is not a %s.", err);
2489
2490 /* Assume it's not, unless we see that it is. */
2491 if (static_memfuncp)
2492 *static_memfuncp = 0;
2493
2494 if (!args)
2495 {
2496 /* if there are no arguments ...do this... */
2497
2498 /* Try as a field first, because if we succeed, there
2499 is less work to be done. */
2500 v = search_struct_field (name, *argp, 0, t, 0);
2501 if (v)
2502 return v;
2503
2504 /* C++: If it was not found as a data field, then try to
2505 return it as a pointer to a method. */
2506
2507 if (destructor_name_p (name, t))
2508 error ("Cannot get value of destructor");
2509
2510 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2511
2512 if (v == (struct value *) - 1)
2513 error ("Cannot take address of a method");
2514 else if (v == 0)
2515 {
2516 if (TYPE_NFN_FIELDS (t))
2517 error ("There is no member or method named %s.", name);
2518 else
2519 error ("There is no member named %s.", name);
2520 }
2521 return v;
2522 }
2523
2524 if (destructor_name_p (name, t))
2525 {
2526 if (!args[1])
2527 {
2528 /* Destructors are a special case. */
2529 int m_index, f_index;
2530
2531 v = NULL;
2532 if (get_destructor_fn_field (t, &m_index, &f_index))
2533 {
2534 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2535 f_index, NULL, 0);
2536 }
2537 if (v == NULL)
2538 error ("could not find destructor function named %s.", name);
2539 else
2540 return v;
2541 }
2542 else
2543 {
2544 error ("destructor should not have any argument");
2545 }
2546 }
2547 else
2548 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2549
2550 if (v == (struct value *) - 1)
2551 {
2552 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
2553 }
2554 else if (v == 0)
2555 {
2556 /* See if user tried to invoke data as function. If so,
2557 hand it back. If it's not callable (i.e., a pointer to function),
2558 gdb should give an error. */
2559 v = search_struct_field (name, *argp, 0, t, 0);
2560 }
2561
2562 if (!v)
2563 error ("Structure has no component named %s.", name);
2564 return v;
2565 }
2566
2567 /* Search through the methods of an object (and its bases)
2568 * to find a specified method. Return the pointer to the
2569 * fn_field list of overloaded instances.
2570 * Helper function for value_find_oload_list.
2571 * ARGP is a pointer to a pointer to a value (the object)
2572 * METHOD is a string containing the method name
2573 * OFFSET is the offset within the value
2574 * TYPE is the assumed type of the object
2575 * NUM_FNS is the number of overloaded instances
2576 * BASETYPE is set to the actual type of the subobject where the method is found
2577 * BOFFSET is the offset of the base subobject where the method is found */
2578
2579 static struct fn_field *
2580 find_method_list (struct value **argp, char *method, int offset,
2581 struct type *type, int *num_fns,
2582 struct type **basetype, int *boffset)
2583 {
2584 int i;
2585 struct fn_field *f;
2586 CHECK_TYPEDEF (type);
2587
2588 *num_fns = 0;
2589
2590 /* First check in object itself */
2591 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2592 {
2593 /* pai: FIXME What about operators and type conversions? */
2594 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2595 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2596 {
2597 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2598 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2599
2600 *num_fns = len;
2601 *basetype = type;
2602 *boffset = offset;
2603
2604 /* Resolve any stub methods. */
2605 check_stub_method_group (type, i);
2606
2607 return f;
2608 }
2609 }
2610
2611 /* Not found in object, check in base subobjects */
2612 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2613 {
2614 int base_offset;
2615 if (BASETYPE_VIA_VIRTUAL (type, i))
2616 {
2617 if (TYPE_HAS_VTABLE (type))
2618 {
2619 /* HP aCC compiled type, search for virtual base offset
2620 * according to HP/Taligent runtime spec. */
2621 int skip;
2622 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2623 VALUE_CONTENTS_ALL (*argp),
2624 offset + VALUE_EMBEDDED_OFFSET (*argp),
2625 &base_offset, &skip);
2626 if (skip >= 0)
2627 error ("Virtual base class offset not found in vtable");
2628 }
2629 else
2630 {
2631 /* probably g++ runtime model */
2632 base_offset = VALUE_OFFSET (*argp) + offset;
2633 base_offset =
2634 baseclass_offset (type, i,
2635 VALUE_CONTENTS (*argp) + base_offset,
2636 VALUE_ADDRESS (*argp) + base_offset);
2637 if (base_offset == -1)
2638 error ("virtual baseclass botch");
2639 }
2640 }
2641 else
2642 /* non-virtual base, simply use bit position from debug info */
2643 {
2644 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2645 }
2646 f = find_method_list (argp, method, base_offset + offset,
2647 TYPE_BASECLASS (type, i), num_fns, basetype,
2648 boffset);
2649 if (f)
2650 return f;
2651 }
2652 return NULL;
2653 }
2654
2655 /* Return the list of overloaded methods of a specified name.
2656 * ARGP is a pointer to a pointer to a value (the object)
2657 * METHOD is the method name
2658 * OFFSET is the offset within the value contents
2659 * NUM_FNS is the number of overloaded instances
2660 * BASETYPE is set to the type of the base subobject that defines the method
2661 * BOFFSET is the offset of the base subobject which defines the method */
2662
2663 struct fn_field *
2664 value_find_oload_method_list (struct value **argp, char *method, int offset,
2665 int *num_fns, struct type **basetype,
2666 int *boffset)
2667 {
2668 struct type *t;
2669
2670 t = check_typedef (VALUE_TYPE (*argp));
2671
2672 /* code snarfed from value_struct_elt */
2673 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2674 {
2675 *argp = value_ind (*argp);
2676 /* Don't coerce fn pointer to fn and then back again! */
2677 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2678 COERCE_ARRAY (*argp);
2679 t = check_typedef (VALUE_TYPE (*argp));
2680 }
2681
2682 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2683 error ("Not implemented: member type in value_find_oload_lis");
2684
2685 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2686 && TYPE_CODE (t) != TYPE_CODE_UNION)
2687 error ("Attempt to extract a component of a value that is not a struct or union");
2688
2689 return find_method_list (argp, method, 0, t, num_fns, basetype, boffset);
2690 }
2691
2692 /* Given an array of argument types (ARGTYPES) (which includes an
2693 entry for "this" in the case of C++ methods), the number of
2694 arguments NARGS, the NAME of a function whether it's a method or
2695 not (METHOD), and the degree of laxness (LAX) in conforming to
2696 overload resolution rules in ANSI C++, find the best function that
2697 matches on the argument types according to the overload resolution
2698 rules.
2699
2700 In the case of class methods, the parameter OBJ is an object value
2701 in which to search for overloaded methods.
2702
2703 In the case of non-method functions, the parameter FSYM is a symbol
2704 corresponding to one of the overloaded functions.
2705
2706 Return value is an integer: 0 -> good match, 10 -> debugger applied
2707 non-standard coercions, 100 -> incompatible.
2708
2709 If a method is being searched for, VALP will hold the value.
2710 If a non-method is being searched for, SYMP will hold the symbol for it.
2711
2712 If a method is being searched for, and it is a static method,
2713 then STATICP will point to a non-zero value.
2714
2715 Note: This function does *not* check the value of
2716 overload_resolution. Caller must check it to see whether overload
2717 resolution is permitted.
2718 */
2719
2720 int
2721 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
2722 int lax, struct value **objp, struct symbol *fsym,
2723 struct value **valp, struct symbol **symp, int *staticp)
2724 {
2725 int nparms;
2726 struct type **parm_types;
2727 int champ_nparms = 0;
2728 struct value *obj = (objp ? *objp : NULL);
2729
2730 short oload_champ = -1; /* Index of best overloaded function */
2731 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2732 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2733 short oload_ambig_champ = -1; /* 2nd contender for best match */
2734 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2735 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2736
2737 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2738 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2739
2740 struct value *temp = obj;
2741 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2742 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2743 int num_fns = 0; /* Number of overloaded instances being considered */
2744 struct type *basetype = NULL;
2745 int boffset;
2746 register int jj;
2747 register int ix;
2748 int static_offset;
2749 struct cleanup *cleanups = NULL;
2750
2751 char *obj_type_name = NULL;
2752 char *func_name = NULL;
2753
2754 /* Get the list of overloaded methods or functions */
2755 if (method)
2756 {
2757 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2758 /* Hack: evaluate_subexp_standard often passes in a pointer
2759 value rather than the object itself, so try again */
2760 if ((!obj_type_name || !*obj_type_name) &&
2761 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2762 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2763
2764 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2765 &num_fns,
2766 &basetype, &boffset);
2767 if (!fns_ptr || !num_fns)
2768 error ("Couldn't find method %s%s%s",
2769 obj_type_name,
2770 (obj_type_name && *obj_type_name) ? "::" : "",
2771 name);
2772 /* If we are dealing with stub method types, they should have
2773 been resolved by find_method_list via value_find_oload_method_list
2774 above. */
2775 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2776 }
2777 else
2778 {
2779 int i = -1;
2780 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2781
2782 /* If the name is NULL this must be a C-style function.
2783 Just return the same symbol. */
2784 if (!func_name)
2785 {
2786 *symp = fsym;
2787 return 0;
2788 }
2789
2790 oload_syms = make_symbol_overload_list (fsym);
2791 cleanups = make_cleanup (xfree, oload_syms);
2792 while (oload_syms[++i])
2793 num_fns++;
2794 if (!num_fns)
2795 error ("Couldn't find function %s", func_name);
2796 }
2797
2798 oload_champ_bv = NULL;
2799
2800 /* Consider each candidate in turn */
2801 for (ix = 0; ix < num_fns; ix++)
2802 {
2803 static_offset = 0;
2804 if (method)
2805 {
2806 if (TYPE_FN_FIELD_STATIC_P (fns_ptr, ix))
2807 static_offset = 1;
2808 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2809 }
2810 else
2811 {
2812 /* If it's not a method, this is the proper place */
2813 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2814 }
2815
2816 /* Prepare array of parameter types */
2817 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2818 for (jj = 0; jj < nparms; jj++)
2819 parm_types[jj] = (method
2820 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2821 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2822
2823 /* Compare parameter types to supplied argument types. Skip THIS for
2824 static methods. */
2825 bv = rank_function (parm_types, nparms, arg_types + static_offset,
2826 nargs - static_offset);
2827
2828 if (!oload_champ_bv)
2829 {
2830 oload_champ_bv = bv;
2831 oload_champ = 0;
2832 champ_nparms = nparms;
2833 }
2834 else
2835 /* See whether current candidate is better or worse than previous best */
2836 switch (compare_badness (bv, oload_champ_bv))
2837 {
2838 case 0:
2839 oload_ambiguous = 1; /* top two contenders are equally good */
2840 oload_ambig_champ = ix;
2841 break;
2842 case 1:
2843 oload_ambiguous = 2; /* incomparable top contenders */
2844 oload_ambig_champ = ix;
2845 break;
2846 case 2:
2847 oload_champ_bv = bv; /* new champion, record details */
2848 oload_ambiguous = 0;
2849 oload_champ = ix;
2850 oload_ambig_champ = -1;
2851 champ_nparms = nparms;
2852 break;
2853 case 3:
2854 default:
2855 break;
2856 }
2857 xfree (parm_types);
2858 if (overload_debug)
2859 {
2860 if (method)
2861 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2862 else
2863 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2864 for (jj = 0; jj < nargs - static_offset; jj++)
2865 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2866 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2867 }
2868 } /* end loop over all candidates */
2869 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2870 if they have the exact same goodness. This is because there is no
2871 way to differentiate based on return type, which we need to in
2872 cases like overloads of .begin() <It's both const and non-const> */
2873 #if 0
2874 if (oload_ambiguous)
2875 {
2876 if (method)
2877 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2878 obj_type_name,
2879 (obj_type_name && *obj_type_name) ? "::" : "",
2880 name);
2881 else
2882 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2883 func_name);
2884 }
2885 #endif
2886
2887 /* Check how bad the best match is. */
2888 static_offset = 0;
2889 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2890 static_offset = 1;
2891 for (ix = 1; ix <= nargs - static_offset; ix++)
2892 {
2893 if (oload_champ_bv->rank[ix] >= 100)
2894 oload_incompatible = 1; /* truly mismatched types */
2895
2896 else if (oload_champ_bv->rank[ix] >= 10)
2897 oload_non_standard = 1; /* non-standard type conversions needed */
2898 }
2899 if (oload_incompatible)
2900 {
2901 if (method)
2902 error ("Cannot resolve method %s%s%s to any overloaded instance",
2903 obj_type_name,
2904 (obj_type_name && *obj_type_name) ? "::" : "",
2905 name);
2906 else
2907 error ("Cannot resolve function %s to any overloaded instance",
2908 func_name);
2909 }
2910 else if (oload_non_standard)
2911 {
2912 if (method)
2913 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2914 obj_type_name,
2915 (obj_type_name && *obj_type_name) ? "::" : "",
2916 name);
2917 else
2918 warning ("Using non-standard conversion to match function %s to supplied arguments",
2919 func_name);
2920 }
2921
2922 if (method)
2923 {
2924 if (staticp && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2925 *staticp = 1;
2926 else if (staticp)
2927 *staticp = 0;
2928 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2929 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2930 else
2931 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2932 }
2933 else
2934 {
2935 *symp = oload_syms[oload_champ];
2936 xfree (func_name);
2937 }
2938
2939 if (objp)
2940 {
2941 if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR
2942 && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR)
2943 {
2944 temp = value_addr (temp);
2945 }
2946 *objp = temp;
2947 }
2948 if (cleanups != NULL)
2949 do_cleanups (cleanups);
2950
2951 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2952 }
2953
2954 /* C++: return 1 is NAME is a legitimate name for the destructor
2955 of type TYPE. If TYPE does not have a destructor, or
2956 if NAME is inappropriate for TYPE, an error is signaled. */
2957 int
2958 destructor_name_p (const char *name, const struct type *type)
2959 {
2960 /* destructors are a special case. */
2961
2962 if (name[0] == '~')
2963 {
2964 char *dname = type_name_no_tag (type);
2965 char *cp = strchr (dname, '<');
2966 unsigned int len;
2967
2968 /* Do not compare the template part for template classes. */
2969 if (cp == NULL)
2970 len = strlen (dname);
2971 else
2972 len = cp - dname;
2973 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2974 error ("name of destructor must equal name of class");
2975 else
2976 return 1;
2977 }
2978 return 0;
2979 }
2980
2981 /* Helper function for check_field: Given TYPE, a structure/union,
2982 return 1 if the component named NAME from the ultimate
2983 target structure/union is defined, otherwise, return 0. */
2984
2985 static int
2986 check_field_in (register struct type *type, const char *name)
2987 {
2988 register int i;
2989
2990 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2991 {
2992 char *t_field_name = TYPE_FIELD_NAME (type, i);
2993 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2994 return 1;
2995 }
2996
2997 /* C++: If it was not found as a data field, then try to
2998 return it as a pointer to a method. */
2999
3000 /* Destructors are a special case. */
3001 if (destructor_name_p (name, type))
3002 {
3003 int m_index, f_index;
3004
3005 return get_destructor_fn_field (type, &m_index, &f_index);
3006 }
3007
3008 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
3009 {
3010 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
3011 return 1;
3012 }
3013
3014 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3015 if (check_field_in (TYPE_BASECLASS (type, i), name))
3016 return 1;
3017
3018 return 0;
3019 }
3020
3021
3022 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
3023 return 1 if the component named NAME from the ultimate
3024 target structure/union is defined, otherwise, return 0. */
3025
3026 int
3027 check_field (struct value *arg1, const char *name)
3028 {
3029 register struct type *t;
3030
3031 COERCE_ARRAY (arg1);
3032
3033 t = VALUE_TYPE (arg1);
3034
3035 /* Follow pointers until we get to a non-pointer. */
3036
3037 for (;;)
3038 {
3039 CHECK_TYPEDEF (t);
3040 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
3041 break;
3042 t = TYPE_TARGET_TYPE (t);
3043 }
3044
3045 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
3046 error ("not implemented: member type in check_field");
3047
3048 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3049 && TYPE_CODE (t) != TYPE_CODE_UNION)
3050 error ("Internal error: `this' is not an aggregate");
3051
3052 return check_field_in (t, name);
3053 }
3054
3055 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3056 return the address of this member as a "pointer to member"
3057 type. If INTYPE is non-null, then it will be the type
3058 of the member we are looking for. This will help us resolve
3059 "pointers to member functions". This function is used
3060 to resolve user expressions of the form "DOMAIN::NAME". */
3061
3062 struct value *
3063 value_struct_elt_for_reference (struct type *domain, int offset,
3064 struct type *curtype, char *name,
3065 struct type *intype)
3066 {
3067 register struct type *t = curtype;
3068 register int i;
3069 struct value *v;
3070
3071 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3072 && TYPE_CODE (t) != TYPE_CODE_UNION)
3073 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3074
3075 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3076 {
3077 char *t_field_name = TYPE_FIELD_NAME (t, i);
3078
3079 if (t_field_name && STREQ (t_field_name, name))
3080 {
3081 if (TYPE_FIELD_STATIC (t, i))
3082 {
3083 v = value_static_field (t, i);
3084 if (v == NULL)
3085 error ("static field %s has been optimized out",
3086 name);
3087 return v;
3088 }
3089 if (TYPE_FIELD_PACKED (t, i))
3090 error ("pointers to bitfield members not allowed");
3091
3092 return value_from_longest
3093 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3094 domain)),
3095 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3096 }
3097 }
3098
3099 /* C++: If it was not found as a data field, then try to
3100 return it as a pointer to a method. */
3101
3102 /* Destructors are a special case. */
3103 if (destructor_name_p (name, t))
3104 {
3105 error ("member pointers to destructors not implemented yet");
3106 }
3107
3108 /* Perform all necessary dereferencing. */
3109 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3110 intype = TYPE_TARGET_TYPE (intype);
3111
3112 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3113 {
3114 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3115 char dem_opname[64];
3116
3117 if (strncmp (t_field_name, "__", 2) == 0 ||
3118 strncmp (t_field_name, "op", 2) == 0 ||
3119 strncmp (t_field_name, "type", 4) == 0)
3120 {
3121 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3122 t_field_name = dem_opname;
3123 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3124 t_field_name = dem_opname;
3125 }
3126 if (t_field_name && STREQ (t_field_name, name))
3127 {
3128 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3129 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3130
3131 check_stub_method_group (t, i);
3132
3133 if (intype == 0 && j > 1)
3134 error ("non-unique member `%s' requires type instantiation", name);
3135 if (intype)
3136 {
3137 while (j--)
3138 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3139 break;
3140 if (j < 0)
3141 error ("no member function matches that type instantiation");
3142 }
3143 else
3144 j = 0;
3145
3146 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3147 {
3148 return value_from_longest
3149 (lookup_reference_type
3150 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3151 domain)),
3152 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3153 }
3154 else
3155 {
3156 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3157 0, VAR_NAMESPACE, 0, NULL);
3158 if (s == NULL)
3159 {
3160 v = 0;
3161 }
3162 else
3163 {
3164 v = read_var_value (s, 0);
3165 #if 0
3166 VALUE_TYPE (v) = lookup_reference_type
3167 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3168 domain));
3169 #endif
3170 }
3171 return v;
3172 }
3173 }
3174 }
3175 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3176 {
3177 struct value *v;
3178 int base_offset;
3179
3180 if (BASETYPE_VIA_VIRTUAL (t, i))
3181 base_offset = 0;
3182 else
3183 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3184 v = value_struct_elt_for_reference (domain,
3185 offset + base_offset,
3186 TYPE_BASECLASS (t, i),
3187 name,
3188 intype);
3189 if (v)
3190 return v;
3191 }
3192 return 0;
3193 }
3194
3195
3196 /* Given a pointer value V, find the real (RTTI) type
3197 of the object it points to.
3198 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3199 and refer to the values computed for the object pointed to. */
3200
3201 struct type *
3202 value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
3203 {
3204 struct value *target;
3205
3206 target = value_ind (v);
3207
3208 return value_rtti_type (target, full, top, using_enc);
3209 }
3210
3211 /* Given a value pointed to by ARGP, check its real run-time type, and
3212 if that is different from the enclosing type, create a new value
3213 using the real run-time type as the enclosing type (and of the same
3214 type as ARGP) and return it, with the embedded offset adjusted to
3215 be the correct offset to the enclosed object
3216 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3217 parameters, computed by value_rtti_type(). If these are available,
3218 they can be supplied and a second call to value_rtti_type() is avoided.
3219 (Pass RTYPE == NULL if they're not available */
3220
3221 struct value *
3222 value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
3223 int xusing_enc)
3224 {
3225 struct type *real_type;
3226 int full = 0;
3227 int top = -1;
3228 int using_enc = 0;
3229 struct value *new_val;
3230
3231 if (rtype)
3232 {
3233 real_type = rtype;
3234 full = xfull;
3235 top = xtop;
3236 using_enc = xusing_enc;
3237 }
3238 else
3239 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3240
3241 /* If no RTTI data, or if object is already complete, do nothing */
3242 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3243 return argp;
3244
3245 /* If we have the full object, but for some reason the enclosing
3246 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3247 if (full)
3248 {
3249 argp = value_change_enclosing_type (argp, real_type);
3250 return argp;
3251 }
3252
3253 /* Check if object is in memory */
3254 if (VALUE_LVAL (argp) != lval_memory)
3255 {
3256 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3257
3258 return argp;
3259 }
3260
3261 /* All other cases -- retrieve the complete object */
3262 /* Go back by the computed top_offset from the beginning of the object,
3263 adjusting for the embedded offset of argp if that's what value_rtti_type
3264 used for its computation. */
3265 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3266 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3267 VALUE_BFD_SECTION (argp));
3268 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3269 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3270 return new_val;
3271 }
3272
3273
3274
3275
3276 /* Return the value of the local variable, if one exists.
3277 Flag COMPLAIN signals an error if the request is made in an
3278 inappropriate context. */
3279
3280 struct value *
3281 value_of_local (const char *name, int complain)
3282 {
3283 struct symbol *func, *sym;
3284 struct block *b;
3285 int i;
3286 struct value * ret;
3287
3288 if (deprecated_selected_frame == 0)
3289 {
3290 if (complain)
3291 error ("no frame selected");
3292 else
3293 return 0;
3294 }
3295
3296 func = get_frame_function (deprecated_selected_frame);
3297 if (!func)
3298 {
3299 if (complain)
3300 error ("no `%s' in nameless context", name);
3301 else
3302 return 0;
3303 }
3304
3305 b = SYMBOL_BLOCK_VALUE (func);
3306 i = BLOCK_NSYMS (b);
3307 if (i <= 0)
3308 {
3309 if (complain)
3310 error ("no args, no `%s'", name);
3311 else
3312 return 0;
3313 }
3314
3315 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3316 symbol instead of the LOC_ARG one (if both exist). */
3317 sym = lookup_block_symbol (b, name, NULL, VAR_NAMESPACE);
3318 if (sym == NULL)
3319 {
3320 if (complain)
3321 error ("current stack frame does not contain a variable named `%s'", name);
3322 else
3323 return NULL;
3324 }
3325
3326 ret = read_var_value (sym, deprecated_selected_frame);
3327 if (ret == 0 && complain)
3328 error ("`%s' argument unreadable", name);
3329 return ret;
3330 }
3331
3332 /* C++/Objective-C: return the value of the class instance variable,
3333 if one exists. Flag COMPLAIN signals an error if the request is
3334 made in an inappropriate context. */
3335
3336 struct value *
3337 value_of_this (int complain)
3338 {
3339 if (current_language->la_language == language_objc)
3340 return value_of_local ("self", complain);
3341 else
3342 return value_of_local ("this", complain);
3343 }
3344
3345 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3346 long, starting at LOWBOUND. The result has the same lower bound as
3347 the original ARRAY. */
3348
3349 struct value *
3350 value_slice (struct value *array, int lowbound, int length)
3351 {
3352 struct type *slice_range_type, *slice_type, *range_type;
3353 LONGEST lowerbound, upperbound;
3354 struct value *slice;
3355 struct type *array_type;
3356 array_type = check_typedef (VALUE_TYPE (array));
3357 COERCE_VARYING_ARRAY (array, array_type);
3358 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3359 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3360 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3361 error ("cannot take slice of non-array");
3362 range_type = TYPE_INDEX_TYPE (array_type);
3363 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3364 error ("slice from bad array or bitstring");
3365 if (lowbound < lowerbound || length < 0
3366 || lowbound + length - 1 > upperbound)
3367 error ("slice out of range");
3368 /* FIXME-type-allocation: need a way to free this type when we are
3369 done with it. */
3370 slice_range_type = create_range_type ((struct type *) NULL,
3371 TYPE_TARGET_TYPE (range_type),
3372 lowbound, lowbound + length - 1);
3373 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3374 {
3375 int i;
3376 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3377 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3378 slice = value_zero (slice_type, not_lval);
3379 for (i = 0; i < length; i++)
3380 {
3381 int element = value_bit_index (array_type,
3382 VALUE_CONTENTS (array),
3383 lowbound + i);
3384 if (element < 0)
3385 error ("internal error accessing bitstring");
3386 else if (element > 0)
3387 {
3388 int j = i % TARGET_CHAR_BIT;
3389 if (BITS_BIG_ENDIAN)
3390 j = TARGET_CHAR_BIT - 1 - j;
3391 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3392 }
3393 }
3394 /* We should set the address, bitssize, and bitspos, so the clice
3395 can be used on the LHS, but that may require extensions to
3396 value_assign. For now, just leave as a non_lval. FIXME. */
3397 }
3398 else
3399 {
3400 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3401 LONGEST offset
3402 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3403 slice_type = create_array_type ((struct type *) NULL, element_type,
3404 slice_range_type);
3405 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3406 slice = allocate_value (slice_type);
3407 if (VALUE_LAZY (array))
3408 VALUE_LAZY (slice) = 1;
3409 else
3410 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3411 TYPE_LENGTH (slice_type));
3412 if (VALUE_LVAL (array) == lval_internalvar)
3413 VALUE_LVAL (slice) = lval_internalvar_component;
3414 else
3415 VALUE_LVAL (slice) = VALUE_LVAL (array);
3416 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3417 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3418 }
3419 return slice;
3420 }
3421
3422 /* Create a value for a FORTRAN complex number. Currently most of
3423 the time values are coerced to COMPLEX*16 (i.e. a complex number
3424 composed of 2 doubles. This really should be a smarter routine
3425 that figures out precision inteligently as opposed to assuming
3426 doubles. FIXME: fmb */
3427
3428 struct value *
3429 value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
3430 {
3431 struct value *val;
3432 struct type *real_type = TYPE_TARGET_TYPE (type);
3433
3434 val = allocate_value (type);
3435 arg1 = value_cast (real_type, arg1);
3436 arg2 = value_cast (real_type, arg2);
3437
3438 memcpy (VALUE_CONTENTS_RAW (val),
3439 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3440 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3441 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3442 return val;
3443 }
3444
3445 /* Cast a value into the appropriate complex data type. */
3446
3447 static struct value *
3448 cast_into_complex (struct type *type, struct value *val)
3449 {
3450 struct type *real_type = TYPE_TARGET_TYPE (type);
3451 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3452 {
3453 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3454 struct value *re_val = allocate_value (val_real_type);
3455 struct value *im_val = allocate_value (val_real_type);
3456
3457 memcpy (VALUE_CONTENTS_RAW (re_val),
3458 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3459 memcpy (VALUE_CONTENTS_RAW (im_val),
3460 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3461 TYPE_LENGTH (val_real_type));
3462
3463 return value_literal_complex (re_val, im_val, type);
3464 }
3465 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3466 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3467 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3468 else
3469 error ("cannot cast non-number to complex");
3470 }
3471
3472 void
3473 _initialize_valops (void)
3474 {
3475 #if 0
3476 add_show_from_set
3477 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3478 "Set automatic abandonment of expressions upon failure.",
3479 &setlist),
3480 &showlist);
3481 #endif
3482
3483 add_show_from_set
3484 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3485 "Set overload resolution in evaluating C++ functions.",
3486 &setlist),
3487 &showlist);
3488 overload_resolution = 1;
3489
3490 add_show_from_set (
3491 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3492 (char *) &unwind_on_signal_p,
3493 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3494 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3495 is received while in a function called from gdb (call dummy). If set, gdb\n\
3496 unwinds the stack and restore the context to what as it was before the call.\n\
3497 The default is to stop in the frame where the signal was received.", &setlist),
3498 &showlist);
3499 }
This page took 0.107042 seconds and 5 git commands to generate.