* valops.c (hand_function_call): Replace #ifdef STACK_ALIGN with
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 87, 89, 91, 92, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33
34 #include <errno.h>
35 #include "gdb_string.h"
36
37 /* Flag indicating HP compilers were used; needed to correctly handle some
38 value operations with HP aCC code/runtime. */
39 extern int hp_som_som_object_present;
40
41 extern int overload_debug;
42 /* Local functions. */
43
44 static int typecmp PARAMS ((int staticp, struct type * t1[], value_ptr t2[]));
45
46 static CORE_ADDR find_function_addr PARAMS ((value_ptr, struct type **));
47 static value_ptr value_arg_coerce PARAMS ((value_ptr, struct type *, int));
48
49
50 static CORE_ADDR value_push PARAMS ((CORE_ADDR, value_ptr));
51
52 static value_ptr search_struct_field PARAMS ((char *, value_ptr, int,
53 struct type *, int));
54
55 static value_ptr search_struct_method PARAMS ((char *, value_ptr *,
56 value_ptr *,
57 int, int *, struct type *));
58
59 static int check_field_in PARAMS ((struct type *, const char *));
60
61 static CORE_ADDR allocate_space_in_inferior PARAMS ((int));
62
63 static value_ptr cast_into_complex PARAMS ((struct type *, value_ptr));
64
65 static struct fn_field *find_method_list PARAMS ((value_ptr * argp, char *method, int offset, int *static_memfuncp, struct type * type, int *num_fns, struct type ** basetype, int *boffset));
66
67 void _initialize_valops PARAMS ((void));
68
69 #define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL)
70
71 /* Flag for whether we want to abandon failed expression evals by default. */
72
73 #if 0
74 static int auto_abandon = 0;
75 #endif
76
77 int overload_resolution = 0;
78
79 /* This boolean tells what gdb should do if a signal is received while in
80 a function called from gdb (call dummy). If set, gdb unwinds the stack
81 and restore the context to what as it was before the call.
82 The default is to stop in the frame where the signal was received. */
83
84 int unwind_on_signal_p = 0;
85 \f
86
87
88 /* Find the address of function name NAME in the inferior. */
89
90 value_ptr
91 find_function_in_inferior (name)
92 char *name;
93 {
94 register struct symbol *sym;
95 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
96 if (sym != NULL)
97 {
98 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
99 {
100 error ("\"%s\" exists in this program but is not a function.",
101 name);
102 }
103 return value_of_variable (sym, NULL);
104 }
105 else
106 {
107 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
108 if (msymbol != NULL)
109 {
110 struct type *type;
111 CORE_ADDR maddr;
112 type = lookup_pointer_type (builtin_type_char);
113 type = lookup_function_type (type);
114 type = lookup_pointer_type (type);
115 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
116 return value_from_pointer (type, maddr);
117 }
118 else
119 {
120 if (!target_has_execution)
121 error ("evaluation of this expression requires the target program to be active");
122 else
123 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
124 }
125 }
126 }
127
128 /* Allocate NBYTES of space in the inferior using the inferior's malloc
129 and return a value that is a pointer to the allocated space. */
130
131 value_ptr
132 value_allocate_space_in_inferior (len)
133 int len;
134 {
135 value_ptr blocklen;
136 register value_ptr val = find_function_in_inferior ("malloc");
137
138 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
139 val = call_function_by_hand (val, 1, &blocklen);
140 if (value_logical_not (val))
141 {
142 if (!target_has_execution)
143 error ("No memory available to program now: you need to start the target first");
144 else
145 error ("No memory available to program: call to malloc failed");
146 }
147 return val;
148 }
149
150 static CORE_ADDR
151 allocate_space_in_inferior (len)
152 int len;
153 {
154 return value_as_long (value_allocate_space_in_inferior (len));
155 }
156
157 /* Cast value ARG2 to type TYPE and return as a value.
158 More general than a C cast: accepts any two types of the same length,
159 and if ARG2 is an lvalue it can be cast into anything at all. */
160 /* In C++, casts may change pointer or object representations. */
161
162 value_ptr
163 value_cast (type, arg2)
164 struct type *type;
165 register value_ptr arg2;
166 {
167 register enum type_code code1;
168 register enum type_code code2;
169 register int scalar;
170 struct type *type2;
171
172 int convert_to_boolean = 0;
173
174 if (VALUE_TYPE (arg2) == type)
175 return arg2;
176
177 CHECK_TYPEDEF (type);
178 code1 = TYPE_CODE (type);
179 COERCE_REF (arg2);
180 type2 = check_typedef (VALUE_TYPE (arg2));
181
182 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
183 is treated like a cast to (TYPE [N])OBJECT,
184 where N is sizeof(OBJECT)/sizeof(TYPE). */
185 if (code1 == TYPE_CODE_ARRAY)
186 {
187 struct type *element_type = TYPE_TARGET_TYPE (type);
188 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
189 if (element_length > 0
190 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
191 {
192 struct type *range_type = TYPE_INDEX_TYPE (type);
193 int val_length = TYPE_LENGTH (type2);
194 LONGEST low_bound, high_bound, new_length;
195 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
196 low_bound = 0, high_bound = 0;
197 new_length = val_length / element_length;
198 if (val_length % element_length != 0)
199 warning ("array element type size does not divide object size in cast");
200 /* FIXME-type-allocation: need a way to free this type when we are
201 done with it. */
202 range_type = create_range_type ((struct type *) NULL,
203 TYPE_TARGET_TYPE (range_type),
204 low_bound,
205 new_length + low_bound - 1);
206 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
207 element_type, range_type);
208 return arg2;
209 }
210 }
211
212 if (current_language->c_style_arrays
213 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
214 arg2 = value_coerce_array (arg2);
215
216 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
217 arg2 = value_coerce_function (arg2);
218
219 type2 = check_typedef (VALUE_TYPE (arg2));
220 COERCE_VARYING_ARRAY (arg2, type2);
221 code2 = TYPE_CODE (type2);
222
223 if (code1 == TYPE_CODE_COMPLEX)
224 return cast_into_complex (type, arg2);
225 if (code1 == TYPE_CODE_BOOL)
226 {
227 code1 = TYPE_CODE_INT;
228 convert_to_boolean = 1;
229 }
230 if (code1 == TYPE_CODE_CHAR)
231 code1 = TYPE_CODE_INT;
232 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
233 code2 = TYPE_CODE_INT;
234
235 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
236 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
237
238 if (code1 == TYPE_CODE_STRUCT
239 && code2 == TYPE_CODE_STRUCT
240 && TYPE_NAME (type) != 0)
241 {
242 /* Look in the type of the source to see if it contains the
243 type of the target as a superclass. If so, we'll need to
244 offset the object in addition to changing its type. */
245 value_ptr v = search_struct_field (type_name_no_tag (type),
246 arg2, 0, type2, 1);
247 if (v)
248 {
249 VALUE_TYPE (v) = type;
250 return v;
251 }
252 }
253 if (code1 == TYPE_CODE_FLT && scalar)
254 return value_from_double (type, value_as_double (arg2));
255 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
256 || code1 == TYPE_CODE_RANGE)
257 && (scalar || code2 == TYPE_CODE_PTR))
258 {
259 LONGEST longest;
260
261 if (hp_som_som_object_present && /* if target compiled by HP aCC */
262 (code2 == TYPE_CODE_PTR))
263 {
264 unsigned int *ptr;
265 value_ptr retvalp;
266
267 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
268 {
269 /* With HP aCC, pointers to data members have a bias */
270 case TYPE_CODE_MEMBER:
271 retvalp = value_from_longest (type, value_as_long (arg2));
272 ptr = (unsigned int *) VALUE_CONTENTS (retvalp); /* force evaluation */
273 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
274 return retvalp;
275
276 /* While pointers to methods don't really point to a function */
277 case TYPE_CODE_METHOD:
278 error ("Pointers to methods not supported with HP aCC");
279
280 default:
281 break; /* fall out and go to normal handling */
282 }
283 }
284 longest = value_as_long (arg2);
285 return value_from_longest (type, convert_to_boolean ? (LONGEST) (longest ? 1 : 0) : longest);
286 }
287 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
288 {
289 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
290 {
291 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
292 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
293 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
294 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
295 && !value_logical_not (arg2))
296 {
297 value_ptr v;
298
299 /* Look in the type of the source to see if it contains the
300 type of the target as a superclass. If so, we'll need to
301 offset the pointer rather than just change its type. */
302 if (TYPE_NAME (t1) != NULL)
303 {
304 v = search_struct_field (type_name_no_tag (t1),
305 value_ind (arg2), 0, t2, 1);
306 if (v)
307 {
308 v = value_addr (v);
309 VALUE_TYPE (v) = type;
310 return v;
311 }
312 }
313
314 /* Look in the type of the target to see if it contains the
315 type of the source as a superclass. If so, we'll need to
316 offset the pointer rather than just change its type.
317 FIXME: This fails silently with virtual inheritance. */
318 if (TYPE_NAME (t2) != NULL)
319 {
320 v = search_struct_field (type_name_no_tag (t2),
321 value_zero (t1, not_lval), 0, t1, 1);
322 if (v)
323 {
324 value_ptr v2 = value_ind (arg2);
325 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
326 + VALUE_OFFSET (v);
327
328 /* JYG: adjust the new pointer value and
329 embedded offset. */
330 v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v);
331 VALUE_EMBEDDED_OFFSET (v2) = 0;
332
333 v2 = value_addr (v2);
334 VALUE_TYPE (v2) = type;
335 return v2;
336 }
337 }
338 }
339 /* No superclass found, just fall through to change ptr type. */
340 }
341 VALUE_TYPE (arg2) = type;
342 VALUE_ENCLOSING_TYPE (arg2) = type; /* pai: chk_val */
343 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
344 return arg2;
345 }
346 else if (chill_varying_type (type))
347 {
348 struct type *range1, *range2, *eltype1, *eltype2;
349 value_ptr val;
350 int count1, count2;
351 LONGEST low_bound, high_bound;
352 char *valaddr, *valaddr_data;
353 /* For lint warning about eltype2 possibly uninitialized: */
354 eltype2 = NULL;
355 if (code2 == TYPE_CODE_BITSTRING)
356 error ("not implemented: converting bitstring to varying type");
357 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
358 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
359 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
360 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
361 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
362 error ("Invalid conversion to varying type");
363 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
364 range2 = TYPE_FIELD_TYPE (type2, 0);
365 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
366 count1 = -1;
367 else
368 count1 = high_bound - low_bound + 1;
369 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
370 count1 = -1, count2 = 0; /* To force error before */
371 else
372 count2 = high_bound - low_bound + 1;
373 if (count2 > count1)
374 error ("target varying type is too small");
375 val = allocate_value (type);
376 valaddr = VALUE_CONTENTS_RAW (val);
377 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
378 /* Set val's __var_length field to count2. */
379 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
380 count2);
381 /* Set the __var_data field to count2 elements copied from arg2. */
382 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
383 count2 * TYPE_LENGTH (eltype2));
384 /* Zero the rest of the __var_data field of val. */
385 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
386 (count1 - count2) * TYPE_LENGTH (eltype2));
387 return val;
388 }
389 else if (VALUE_LVAL (arg2) == lval_memory)
390 {
391 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
392 VALUE_BFD_SECTION (arg2));
393 }
394 else if (code1 == TYPE_CODE_VOID)
395 {
396 return value_zero (builtin_type_void, not_lval);
397 }
398 else
399 {
400 error ("Invalid cast.");
401 return 0;
402 }
403 }
404
405 /* Create a value of type TYPE that is zero, and return it. */
406
407 value_ptr
408 value_zero (type, lv)
409 struct type *type;
410 enum lval_type lv;
411 {
412 register value_ptr val = allocate_value (type);
413
414 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
415 VALUE_LVAL (val) = lv;
416
417 return val;
418 }
419
420 /* Return a value with type TYPE located at ADDR.
421
422 Call value_at only if the data needs to be fetched immediately;
423 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
424 value_at_lazy instead. value_at_lazy simply records the address of
425 the data and sets the lazy-evaluation-required flag. The lazy flag
426 is tested in the VALUE_CONTENTS macro, which is used if and when
427 the contents are actually required.
428
429 Note: value_at does *NOT* handle embedded offsets; perform such
430 adjustments before or after calling it. */
431
432 value_ptr
433 value_at (type, addr, sect)
434 struct type *type;
435 CORE_ADDR addr;
436 asection *sect;
437 {
438 register value_ptr val;
439
440 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
441 error ("Attempt to dereference a generic pointer.");
442
443 val = allocate_value (type);
444
445 if (GDB_TARGET_IS_D10V
446 && TYPE_CODE (type) == TYPE_CODE_PTR
447 && TYPE_TARGET_TYPE (type)
448 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
449 {
450 /* pointer to function */
451 unsigned long num;
452 unsigned short snum;
453 snum = read_memory_unsigned_integer (addr, 2);
454 num = D10V_MAKE_IADDR (snum);
455 store_address (VALUE_CONTENTS_RAW (val), 4, num);
456 }
457 else if (GDB_TARGET_IS_D10V
458 && TYPE_CODE (type) == TYPE_CODE_PTR)
459 {
460 /* pointer to data */
461 unsigned long num;
462 unsigned short snum;
463 snum = read_memory_unsigned_integer (addr, 2);
464 num = D10V_MAKE_DADDR (snum);
465 store_address (VALUE_CONTENTS_RAW (val), 4, num);
466 }
467 else
468 read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type), sect);
469
470 VALUE_LVAL (val) = lval_memory;
471 VALUE_ADDRESS (val) = addr;
472 VALUE_BFD_SECTION (val) = sect;
473
474 return val;
475 }
476
477 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
478
479 value_ptr
480 value_at_lazy (type, addr, sect)
481 struct type *type;
482 CORE_ADDR addr;
483 asection *sect;
484 {
485 register value_ptr val;
486
487 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
488 error ("Attempt to dereference a generic pointer.");
489
490 val = allocate_value (type);
491
492 VALUE_LVAL (val) = lval_memory;
493 VALUE_ADDRESS (val) = addr;
494 VALUE_LAZY (val) = 1;
495 VALUE_BFD_SECTION (val) = sect;
496
497 return val;
498 }
499
500 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
501 if the current data for a variable needs to be loaded into
502 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
503 clears the lazy flag to indicate that the data in the buffer is valid.
504
505 If the value is zero-length, we avoid calling read_memory, which would
506 abort. We mark the value as fetched anyway -- all 0 bytes of it.
507
508 This function returns a value because it is used in the VALUE_CONTENTS
509 macro as part of an expression, where a void would not work. The
510 value is ignored. */
511
512 int
513 value_fetch_lazy (val)
514 register value_ptr val;
515 {
516 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
517 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
518
519 struct type *type = VALUE_TYPE (val);
520 if (GDB_TARGET_IS_D10V
521 && TYPE_CODE (type) == TYPE_CODE_PTR
522 && TYPE_TARGET_TYPE (type)
523 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
524 {
525 /* pointer to function */
526 unsigned long num;
527 unsigned short snum;
528 snum = read_memory_unsigned_integer (addr, 2);
529 num = D10V_MAKE_IADDR (snum);
530 store_address (VALUE_CONTENTS_RAW (val), 4, num);
531 }
532 else if (GDB_TARGET_IS_D10V
533 && TYPE_CODE (type) == TYPE_CODE_PTR)
534 {
535 /* pointer to data */
536 unsigned long num;
537 unsigned short snum;
538 snum = read_memory_unsigned_integer (addr, 2);
539 num = D10V_MAKE_DADDR (snum);
540 store_address (VALUE_CONTENTS_RAW (val), 4, num);
541 }
542 else if (length)
543 read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), length,
544 VALUE_BFD_SECTION (val));
545 VALUE_LAZY (val) = 0;
546 return 0;
547 }
548
549
550 /* Store the contents of FROMVAL into the location of TOVAL.
551 Return a new value with the location of TOVAL and contents of FROMVAL. */
552
553 value_ptr
554 value_assign (toval, fromval)
555 register value_ptr toval, fromval;
556 {
557 register struct type *type;
558 register value_ptr val;
559 char raw_buffer[MAX_REGISTER_RAW_SIZE];
560 int use_buffer = 0;
561
562 if (!toval->modifiable)
563 error ("Left operand of assignment is not a modifiable lvalue.");
564
565 COERCE_REF (toval);
566
567 type = VALUE_TYPE (toval);
568 if (VALUE_LVAL (toval) != lval_internalvar)
569 fromval = value_cast (type, fromval);
570 else
571 COERCE_ARRAY (fromval);
572 CHECK_TYPEDEF (type);
573
574 /* If TOVAL is a special machine register requiring conversion
575 of program values to a special raw format,
576 convert FROMVAL's contents now, with result in `raw_buffer',
577 and set USE_BUFFER to the number of bytes to write. */
578
579 if (VALUE_REGNO (toval) >= 0)
580 {
581 int regno = VALUE_REGNO (toval);
582 if (REGISTER_CONVERTIBLE (regno))
583 {
584 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
585 REGISTER_CONVERT_TO_RAW (fromtype, regno,
586 VALUE_CONTENTS (fromval), raw_buffer);
587 use_buffer = REGISTER_RAW_SIZE (regno);
588 }
589 }
590
591 switch (VALUE_LVAL (toval))
592 {
593 case lval_internalvar:
594 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
595 val = value_copy (VALUE_INTERNALVAR (toval)->value);
596 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
597 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
598 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
599 return val;
600
601 case lval_internalvar_component:
602 set_internalvar_component (VALUE_INTERNALVAR (toval),
603 VALUE_OFFSET (toval),
604 VALUE_BITPOS (toval),
605 VALUE_BITSIZE (toval),
606 fromval);
607 break;
608
609 case lval_memory:
610 {
611 char *dest_buffer;
612 CORE_ADDR changed_addr;
613 int changed_len;
614
615 if (VALUE_BITSIZE (toval))
616 {
617 char buffer[sizeof (LONGEST)];
618 /* We assume that the argument to read_memory is in units of
619 host chars. FIXME: Is that correct? */
620 changed_len = (VALUE_BITPOS (toval)
621 + VALUE_BITSIZE (toval)
622 + HOST_CHAR_BIT - 1)
623 / HOST_CHAR_BIT;
624
625 if (changed_len > (int) sizeof (LONGEST))
626 error ("Can't handle bitfields which don't fit in a %d bit word.",
627 sizeof (LONGEST) * HOST_CHAR_BIT);
628
629 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
630 buffer, changed_len);
631 modify_field (buffer, value_as_long (fromval),
632 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
633 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
634 dest_buffer = buffer;
635 }
636 else if (use_buffer)
637 {
638 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
639 changed_len = use_buffer;
640 dest_buffer = raw_buffer;
641 }
642 else
643 {
644 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
645 changed_len = TYPE_LENGTH (type);
646 dest_buffer = VALUE_CONTENTS (fromval);
647 }
648
649 write_memory (changed_addr, dest_buffer, changed_len);
650 if (memory_changed_hook)
651 memory_changed_hook (changed_addr, changed_len);
652 }
653 break;
654
655 case lval_register:
656 if (VALUE_BITSIZE (toval))
657 {
658 char buffer[sizeof (LONGEST)];
659 int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval));
660
661 if (len > (int) sizeof (LONGEST))
662 error ("Can't handle bitfields in registers larger than %d bits.",
663 sizeof (LONGEST) * HOST_CHAR_BIT);
664
665 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
666 > len * HOST_CHAR_BIT)
667 /* Getting this right would involve being very careful about
668 byte order. */
669 error ("Can't assign to bitfields that cross register "
670 "boundaries.");
671
672 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
673 buffer, len);
674 modify_field (buffer, value_as_long (fromval),
675 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
676 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
677 buffer, len);
678 }
679 else if (use_buffer)
680 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
681 raw_buffer, use_buffer);
682 else
683 {
684 /* Do any conversion necessary when storing this type to more
685 than one register. */
686 #ifdef REGISTER_CONVERT_FROM_TYPE
687 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
688 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
689 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
690 raw_buffer, TYPE_LENGTH (type));
691 #else
692 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
693 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
694 #endif
695 }
696 /* Assigning to the stack pointer, frame pointer, and other
697 (architecture and calling convention specific) registers may
698 cause the frame cache to be out of date. We just do this
699 on all assignments to registers for simplicity; I doubt the slowdown
700 matters. */
701 reinit_frame_cache ();
702 break;
703
704 case lval_reg_frame_relative:
705 {
706 /* value is stored in a series of registers in the frame
707 specified by the structure. Copy that value out, modify
708 it, and copy it back in. */
709 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
710 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
711 int byte_offset = VALUE_OFFSET (toval) % reg_size;
712 int reg_offset = VALUE_OFFSET (toval) / reg_size;
713 int amount_copied;
714
715 /* Make the buffer large enough in all cases. */
716 char *buffer = (char *) alloca (amount_to_copy
717 + sizeof (LONGEST)
718 + MAX_REGISTER_RAW_SIZE);
719
720 int regno;
721 struct frame_info *frame;
722
723 /* Figure out which frame this is in currently. */
724 for (frame = get_current_frame ();
725 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
726 frame = get_prev_frame (frame))
727 ;
728
729 if (!frame)
730 error ("Value being assigned to is no longer active.");
731
732 amount_to_copy += (reg_size - amount_to_copy % reg_size);
733
734 /* Copy it out. */
735 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
736 amount_copied = 0);
737 amount_copied < amount_to_copy;
738 amount_copied += reg_size, regno++)
739 {
740 get_saved_register (buffer + amount_copied,
741 (int *) NULL, (CORE_ADDR *) NULL,
742 frame, regno, (enum lval_type *) NULL);
743 }
744
745 /* Modify what needs to be modified. */
746 if (VALUE_BITSIZE (toval))
747 modify_field (buffer + byte_offset,
748 value_as_long (fromval),
749 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
750 else if (use_buffer)
751 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
752 else
753 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
754 TYPE_LENGTH (type));
755
756 /* Copy it back. */
757 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
758 amount_copied = 0);
759 amount_copied < amount_to_copy;
760 amount_copied += reg_size, regno++)
761 {
762 enum lval_type lval;
763 CORE_ADDR addr;
764 int optim;
765
766 /* Just find out where to put it. */
767 get_saved_register ((char *) NULL,
768 &optim, &addr, frame, regno, &lval);
769
770 if (optim)
771 error ("Attempt to assign to a value that was optimized out.");
772 if (lval == lval_memory)
773 write_memory (addr, buffer + amount_copied, reg_size);
774 else if (lval == lval_register)
775 write_register_bytes (addr, buffer + amount_copied, reg_size);
776 else
777 error ("Attempt to assign to an unmodifiable value.");
778 }
779
780 if (register_changed_hook)
781 register_changed_hook (-1);
782 }
783 break;
784
785
786 default:
787 error ("Left operand of assignment is not an lvalue.");
788 }
789
790 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
791 If the field is signed, and is negative, then sign extend. */
792 if ((VALUE_BITSIZE (toval) > 0)
793 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
794 {
795 LONGEST fieldval = value_as_long (fromval);
796 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
797
798 fieldval &= valmask;
799 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
800 fieldval |= ~valmask;
801
802 fromval = value_from_longest (type, fieldval);
803 }
804
805 val = value_copy (toval);
806 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
807 TYPE_LENGTH (type));
808 VALUE_TYPE (val) = type;
809 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
810 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
811 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
812
813 return val;
814 }
815
816 /* Extend a value VAL to COUNT repetitions of its type. */
817
818 value_ptr
819 value_repeat (arg1, count)
820 value_ptr arg1;
821 int count;
822 {
823 register value_ptr val;
824
825 if (VALUE_LVAL (arg1) != lval_memory)
826 error ("Only values in memory can be extended with '@'.");
827 if (count < 1)
828 error ("Invalid number %d of repetitions.", count);
829
830 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
831
832 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
833 VALUE_CONTENTS_ALL_RAW (val),
834 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
835 VALUE_LVAL (val) = lval_memory;
836 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
837
838 return val;
839 }
840
841 value_ptr
842 value_of_variable (var, b)
843 struct symbol *var;
844 struct block *b;
845 {
846 value_ptr val;
847 struct frame_info *frame = NULL;
848
849 if (!b)
850 frame = NULL; /* Use selected frame. */
851 else if (symbol_read_needs_frame (var))
852 {
853 frame = block_innermost_frame (b);
854 if (!frame)
855 {
856 if (BLOCK_FUNCTION (b)
857 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
858 error ("No frame is currently executing in block %s.",
859 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
860 else
861 error ("No frame is currently executing in specified block");
862 }
863 }
864
865 val = read_var_value (var, frame);
866 if (!val)
867 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
868
869 return val;
870 }
871
872 /* Given a value which is an array, return a value which is a pointer to its
873 first element, regardless of whether or not the array has a nonzero lower
874 bound.
875
876 FIXME: A previous comment here indicated that this routine should be
877 substracting the array's lower bound. It's not clear to me that this
878 is correct. Given an array subscripting operation, it would certainly
879 work to do the adjustment here, essentially computing:
880
881 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
882
883 However I believe a more appropriate and logical place to account for
884 the lower bound is to do so in value_subscript, essentially computing:
885
886 (&array[0] + ((index - lowerbound) * sizeof array[0]))
887
888 As further evidence consider what would happen with operations other
889 than array subscripting, where the caller would get back a value that
890 had an address somewhere before the actual first element of the array,
891 and the information about the lower bound would be lost because of
892 the coercion to pointer type.
893 */
894
895 value_ptr
896 value_coerce_array (arg1)
897 value_ptr arg1;
898 {
899 register struct type *type = check_typedef (VALUE_TYPE (arg1));
900
901 if (VALUE_LVAL (arg1) != lval_memory)
902 error ("Attempt to take address of value not located in memory.");
903
904 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
905 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
906 }
907
908 /* Given a value which is a function, return a value which is a pointer
909 to it. */
910
911 value_ptr
912 value_coerce_function (arg1)
913 value_ptr arg1;
914 {
915 value_ptr retval;
916
917 if (VALUE_LVAL (arg1) != lval_memory)
918 error ("Attempt to take address of value not located in memory.");
919
920 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
921 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
922 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
923 return retval;
924 }
925
926 /* Return a pointer value for the object for which ARG1 is the contents. */
927
928 value_ptr
929 value_addr (arg1)
930 value_ptr arg1;
931 {
932 value_ptr arg2;
933
934 struct type *type = check_typedef (VALUE_TYPE (arg1));
935 if (TYPE_CODE (type) == TYPE_CODE_REF)
936 {
937 /* Copy the value, but change the type from (T&) to (T*).
938 We keep the same location information, which is efficient,
939 and allows &(&X) to get the location containing the reference. */
940 arg2 = value_copy (arg1);
941 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
942 return arg2;
943 }
944 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
945 return value_coerce_function (arg1);
946
947 if (VALUE_LVAL (arg1) != lval_memory)
948 error ("Attempt to take address of value not located in memory.");
949
950 /* Get target memory address */
951 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
952 (VALUE_ADDRESS (arg1)
953 + VALUE_OFFSET (arg1)
954 + VALUE_EMBEDDED_OFFSET (arg1)));
955
956 /* This may be a pointer to a base subobject; so remember the
957 full derived object's type ... */
958 VALUE_ENCLOSING_TYPE (arg2) = lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1));
959 /* ... and also the relative position of the subobject in the full object */
960 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
961 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
962 return arg2;
963 }
964
965 /* Given a value of a pointer type, apply the C unary * operator to it. */
966
967 value_ptr
968 value_ind (arg1)
969 value_ptr arg1;
970 {
971 struct type *base_type;
972 value_ptr arg2;
973
974 COERCE_ARRAY (arg1);
975
976 base_type = check_typedef (VALUE_TYPE (arg1));
977
978 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
979 error ("not implemented: member types in value_ind");
980
981 /* Allow * on an integer so we can cast it to whatever we want.
982 This returns an int, which seems like the most C-like thing
983 to do. "long long" variables are rare enough that
984 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
985 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
986 return value_at (builtin_type_int,
987 (CORE_ADDR) value_as_long (arg1),
988 VALUE_BFD_SECTION (arg1));
989 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
990 {
991 struct type *enc_type;
992 /* We may be pointing to something embedded in a larger object */
993 /* Get the real type of the enclosing object */
994 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
995 enc_type = TYPE_TARGET_TYPE (enc_type);
996 /* Retrieve the enclosing object pointed to */
997 arg2 = value_at_lazy (enc_type,
998 value_as_pointer (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
999 VALUE_BFD_SECTION (arg1));
1000 /* Re-adjust type */
1001 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
1002 /* Add embedding info */
1003 VALUE_ENCLOSING_TYPE (arg2) = enc_type;
1004 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
1005
1006 /* We may be pointing to an object of some derived type */
1007 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1008 return arg2;
1009 }
1010
1011 error ("Attempt to take contents of a non-pointer value.");
1012 return 0; /* For lint -- never reached */
1013 }
1014 \f
1015 /* Pushing small parts of stack frames. */
1016
1017 /* Push one word (the size of object that a register holds). */
1018
1019 CORE_ADDR
1020 push_word (sp, word)
1021 CORE_ADDR sp;
1022 ULONGEST word;
1023 {
1024 register int len = REGISTER_SIZE;
1025 char buffer[MAX_REGISTER_RAW_SIZE];
1026
1027 store_unsigned_integer (buffer, len, word);
1028 if (INNER_THAN (1, 2))
1029 {
1030 /* stack grows downward */
1031 sp -= len;
1032 write_memory (sp, buffer, len);
1033 }
1034 else
1035 {
1036 /* stack grows upward */
1037 write_memory (sp, buffer, len);
1038 sp += len;
1039 }
1040
1041 return sp;
1042 }
1043
1044 /* Push LEN bytes with data at BUFFER. */
1045
1046 CORE_ADDR
1047 push_bytes (sp, buffer, len)
1048 CORE_ADDR sp;
1049 char *buffer;
1050 int len;
1051 {
1052 if (INNER_THAN (1, 2))
1053 {
1054 /* stack grows downward */
1055 sp -= len;
1056 write_memory (sp, buffer, len);
1057 }
1058 else
1059 {
1060 /* stack grows upward */
1061 write_memory (sp, buffer, len);
1062 sp += len;
1063 }
1064
1065 return sp;
1066 }
1067
1068 #ifndef PARM_BOUNDARY
1069 #define PARM_BOUNDARY (0)
1070 #endif
1071
1072 /* Push onto the stack the specified value VALUE. Pad it correctly for
1073 it to be an argument to a function. */
1074
1075 static CORE_ADDR
1076 value_push (sp, arg)
1077 register CORE_ADDR sp;
1078 value_ptr arg;
1079 {
1080 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1081 register int container_len = len;
1082 register int offset;
1083
1084 /* How big is the container we're going to put this value in? */
1085 if (PARM_BOUNDARY)
1086 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1087 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1088
1089 /* Are we going to put it at the high or low end of the container? */
1090 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1091 offset = container_len - len;
1092 else
1093 offset = 0;
1094
1095 if (INNER_THAN (1, 2))
1096 {
1097 /* stack grows downward */
1098 sp -= container_len;
1099 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1100 }
1101 else
1102 {
1103 /* stack grows upward */
1104 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1105 sp += container_len;
1106 }
1107
1108 return sp;
1109 }
1110
1111 #ifndef PUSH_ARGUMENTS
1112 #define PUSH_ARGUMENTS default_push_arguments
1113 #endif
1114
1115 CORE_ADDR
1116 default_push_arguments (nargs, args, sp, struct_return, struct_addr)
1117 int nargs;
1118 value_ptr *args;
1119 CORE_ADDR sp;
1120 int struct_return;
1121 CORE_ADDR struct_addr;
1122 {
1123 /* ASSERT ( !struct_return); */
1124 int i;
1125 for (i = nargs - 1; i >= 0; i--)
1126 sp = value_push (sp, args[i]);
1127 return sp;
1128 }
1129
1130
1131 /* A default function for COERCE_FLOAT_TO_DOUBLE: do the coercion only
1132 when we don't have any type for the argument at hand. This occurs
1133 when we have no debug info, or when passing varargs.
1134
1135 This is an annoying default: the rule the compiler follows is to do
1136 the standard promotions whenever there is no prototype in scope,
1137 and almost all targets want this behavior. But there are some old
1138 architectures which want this odd behavior. If you want to go
1139 through them all and fix them, please do. Modern gdbarch-style
1140 targets may find it convenient to use standard_coerce_float_to_double. */
1141 int
1142 default_coerce_float_to_double (struct type *formal, struct type *actual)
1143 {
1144 return formal == NULL;
1145 }
1146
1147
1148 /* Always coerce floats to doubles when there is no prototype in scope.
1149 If your architecture follows the standard type promotion rules for
1150 calling unprototyped functions, your gdbarch init function can pass
1151 this function to set_gdbarch_coerce_float_to_double to use its logic. */
1152 int
1153 standard_coerce_float_to_double (struct type *formal, struct type *actual)
1154 {
1155 return 1;
1156 }
1157
1158
1159 /* Perform the standard coercions that are specified
1160 for arguments to be passed to C functions.
1161
1162 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1163 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1164
1165 static value_ptr
1166 value_arg_coerce (arg, param_type, is_prototyped)
1167 value_ptr arg;
1168 struct type *param_type;
1169 int is_prototyped;
1170 {
1171 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1172 register struct type *type
1173 = param_type ? check_typedef (param_type) : arg_type;
1174
1175 switch (TYPE_CODE (type))
1176 {
1177 case TYPE_CODE_REF:
1178 if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
1179 {
1180 arg = value_addr (arg);
1181 VALUE_TYPE (arg) = param_type;
1182 return arg;
1183 }
1184 break;
1185 case TYPE_CODE_INT:
1186 case TYPE_CODE_CHAR:
1187 case TYPE_CODE_BOOL:
1188 case TYPE_CODE_ENUM:
1189 /* If we don't have a prototype, coerce to integer type if necessary. */
1190 if (!is_prototyped)
1191 {
1192 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1193 type = builtin_type_int;
1194 }
1195 /* Currently all target ABIs require at least the width of an integer
1196 type for an argument. We may have to conditionalize the following
1197 type coercion for future targets. */
1198 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1199 type = builtin_type_int;
1200 break;
1201 case TYPE_CODE_FLT:
1202 /* FIXME: We should always convert floats to doubles in the
1203 non-prototyped case. As many debugging formats include
1204 no information about prototyping, we have to live with
1205 COERCE_FLOAT_TO_DOUBLE for now. */
1206 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
1207 {
1208 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1209 type = builtin_type_double;
1210 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1211 type = builtin_type_long_double;
1212 }
1213 break;
1214 case TYPE_CODE_FUNC:
1215 type = lookup_pointer_type (type);
1216 break;
1217 case TYPE_CODE_ARRAY:
1218 if (current_language->c_style_arrays)
1219 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1220 break;
1221 case TYPE_CODE_UNDEF:
1222 case TYPE_CODE_PTR:
1223 case TYPE_CODE_STRUCT:
1224 case TYPE_CODE_UNION:
1225 case TYPE_CODE_VOID:
1226 case TYPE_CODE_SET:
1227 case TYPE_CODE_RANGE:
1228 case TYPE_CODE_STRING:
1229 case TYPE_CODE_BITSTRING:
1230 case TYPE_CODE_ERROR:
1231 case TYPE_CODE_MEMBER:
1232 case TYPE_CODE_METHOD:
1233 case TYPE_CODE_COMPLEX:
1234 default:
1235 break;
1236 }
1237
1238 return value_cast (type, arg);
1239 }
1240
1241 /* Determine a function's address and its return type from its value.
1242 Calls error() if the function is not valid for calling. */
1243
1244 static CORE_ADDR
1245 find_function_addr (function, retval_type)
1246 value_ptr function;
1247 struct type **retval_type;
1248 {
1249 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1250 register enum type_code code = TYPE_CODE (ftype);
1251 struct type *value_type;
1252 CORE_ADDR funaddr;
1253
1254 /* If it's a member function, just look at the function
1255 part of it. */
1256
1257 /* Determine address to call. */
1258 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1259 {
1260 funaddr = VALUE_ADDRESS (function);
1261 value_type = TYPE_TARGET_TYPE (ftype);
1262 }
1263 else if (code == TYPE_CODE_PTR)
1264 {
1265 funaddr = value_as_pointer (function);
1266 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1267 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1268 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1269 {
1270 #ifdef CONVERT_FROM_FUNC_PTR_ADDR
1271 /* FIXME: This is a workaround for the unusual function
1272 pointer representation on the RS/6000, see comment
1273 in config/rs6000/tm-rs6000.h */
1274 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1275 #endif
1276 value_type = TYPE_TARGET_TYPE (ftype);
1277 }
1278 else
1279 value_type = builtin_type_int;
1280 }
1281 else if (code == TYPE_CODE_INT)
1282 {
1283 /* Handle the case of functions lacking debugging info.
1284 Their values are characters since their addresses are char */
1285 if (TYPE_LENGTH (ftype) == 1)
1286 funaddr = value_as_pointer (value_addr (function));
1287 else
1288 /* Handle integer used as address of a function. */
1289 funaddr = (CORE_ADDR) value_as_long (function);
1290
1291 value_type = builtin_type_int;
1292 }
1293 else
1294 error ("Invalid data type for function to be called.");
1295
1296 *retval_type = value_type;
1297 return funaddr;
1298 }
1299
1300 /* All this stuff with a dummy frame may seem unnecessarily complicated
1301 (why not just save registers in GDB?). The purpose of pushing a dummy
1302 frame which looks just like a real frame is so that if you call a
1303 function and then hit a breakpoint (get a signal, etc), "backtrace"
1304 will look right. Whether the backtrace needs to actually show the
1305 stack at the time the inferior function was called is debatable, but
1306 it certainly needs to not display garbage. So if you are contemplating
1307 making dummy frames be different from normal frames, consider that. */
1308
1309 /* Perform a function call in the inferior.
1310 ARGS is a vector of values of arguments (NARGS of them).
1311 FUNCTION is a value, the function to be called.
1312 Returns a value representing what the function returned.
1313 May fail to return, if a breakpoint or signal is hit
1314 during the execution of the function.
1315
1316 ARGS is modified to contain coerced values. */
1317
1318 static value_ptr hand_function_call PARAMS ((value_ptr function, int nargs, value_ptr * args));
1319 static value_ptr
1320 hand_function_call (function, nargs, args)
1321 value_ptr function;
1322 int nargs;
1323 value_ptr *args;
1324 {
1325 register CORE_ADDR sp;
1326 register int i;
1327 int rc;
1328 CORE_ADDR start_sp;
1329 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1330 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1331 and remove any extra bytes which might exist because ULONGEST is
1332 bigger than REGISTER_SIZE.
1333
1334 NOTE: This is pretty wierd, as the call dummy is actually a
1335 sequence of instructions. But CISC machines will have
1336 to pack the instructions into REGISTER_SIZE units (and
1337 so will RISC machines for which INSTRUCTION_SIZE is not
1338 REGISTER_SIZE).
1339
1340 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1341 target byte order. */
1342
1343 static ULONGEST *dummy;
1344 int sizeof_dummy1;
1345 char *dummy1;
1346 CORE_ADDR old_sp;
1347 struct type *value_type;
1348 unsigned char struct_return;
1349 CORE_ADDR struct_addr = 0;
1350 struct inferior_status *inf_status;
1351 struct cleanup *old_chain;
1352 CORE_ADDR funaddr;
1353 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1354 CORE_ADDR real_pc;
1355 struct type *param_type = NULL;
1356 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1357
1358 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1359 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1360 dummy1 = alloca (sizeof_dummy1);
1361 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1362
1363 if (!target_has_execution)
1364 noprocess ();
1365
1366 inf_status = save_inferior_status (1);
1367 old_chain = make_cleanup ((make_cleanup_func) restore_inferior_status,
1368 inf_status);
1369
1370 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1371 (and POP_FRAME for restoring them). (At least on most machines)
1372 they are saved on the stack in the inferior. */
1373 PUSH_DUMMY_FRAME;
1374
1375 old_sp = sp = read_sp ();
1376
1377 if (INNER_THAN (1, 2))
1378 {
1379 /* Stack grows down */
1380 sp -= sizeof_dummy1;
1381 start_sp = sp;
1382 }
1383 else
1384 {
1385 /* Stack grows up */
1386 start_sp = sp;
1387 sp += sizeof_dummy1;
1388 }
1389
1390 funaddr = find_function_addr (function, &value_type);
1391 CHECK_TYPEDEF (value_type);
1392
1393 {
1394 struct block *b = block_for_pc (funaddr);
1395 /* If compiled without -g, assume GCC 2. */
1396 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1397 }
1398
1399 /* Are we returning a value using a structure return or a normal
1400 value return? */
1401
1402 struct_return = using_struct_return (function, funaddr, value_type,
1403 using_gcc);
1404
1405 /* Create a call sequence customized for this function
1406 and the number of arguments for it. */
1407 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1408 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1409 REGISTER_SIZE,
1410 (ULONGEST) dummy[i]);
1411
1412 #ifdef GDB_TARGET_IS_HPPA
1413 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1414 value_type, using_gcc);
1415 #else
1416 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1417 value_type, using_gcc);
1418 real_pc = start_sp;
1419 #endif
1420
1421 if (CALL_DUMMY_LOCATION == ON_STACK)
1422 {
1423 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1424 }
1425
1426 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1427 {
1428 /* Convex Unix prohibits executing in the stack segment. */
1429 /* Hope there is empty room at the top of the text segment. */
1430 extern CORE_ADDR text_end;
1431 static int checked = 0;
1432 if (!checked)
1433 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1434 if (read_memory_integer (start_sp, 1) != 0)
1435 error ("text segment full -- no place to put call");
1436 checked = 1;
1437 sp = old_sp;
1438 real_pc = text_end - sizeof_dummy1;
1439 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1440 }
1441
1442 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1443 {
1444 extern CORE_ADDR text_end;
1445 int errcode;
1446 sp = old_sp;
1447 real_pc = text_end;
1448 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1449 if (errcode != 0)
1450 error ("Cannot write text segment -- call_function failed");
1451 }
1452
1453 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1454 {
1455 real_pc = funaddr;
1456 }
1457
1458 #ifdef lint
1459 sp = old_sp; /* It really is used, for some ifdef's... */
1460 #endif
1461
1462 if (nargs < TYPE_NFIELDS (ftype))
1463 error ("too few arguments in function call");
1464
1465 for (i = nargs - 1; i >= 0; i--)
1466 {
1467 /* If we're off the end of the known arguments, do the standard
1468 promotions. FIXME: if we had a prototype, this should only
1469 be allowed if ... were present. */
1470 if (i >= TYPE_NFIELDS (ftype))
1471 args[i] = value_arg_coerce (args[i], NULL, 0);
1472
1473 else
1474 {
1475 int is_prototyped = TYPE_FLAGS (ftype) & TYPE_FLAG_PROTOTYPED;
1476 param_type = TYPE_FIELD_TYPE (ftype, i);
1477
1478 args[i] = value_arg_coerce (args[i], param_type, is_prototyped);
1479 }
1480
1481 /*elz: this code is to handle the case in which the function to be called
1482 has a pointer to function as parameter and the corresponding actual argument
1483 is the address of a function and not a pointer to function variable.
1484 In aCC compiled code, the calls through pointers to functions (in the body
1485 of the function called by hand) are made via $$dyncall_external which
1486 requires some registers setting, this is taken care of if we call
1487 via a function pointer variable, but not via a function address.
1488 In cc this is not a problem. */
1489
1490 if (using_gcc == 0)
1491 if (param_type)
1492 /* if this parameter is a pointer to function */
1493 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1494 if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
1495 /* elz: FIXME here should go the test about the compiler used
1496 to compile the target. We want to issue the error
1497 message only if the compiler used was HP's aCC.
1498 If we used HP's cc, then there is no problem and no need
1499 to return at this point */
1500 if (using_gcc == 0) /* && compiler == aCC */
1501 /* go see if the actual parameter is a variable of type
1502 pointer to function or just a function */
1503 if (args[i]->lval == not_lval)
1504 {
1505 char *arg_name;
1506 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1507 error ("\
1508 You cannot use function <%s> as argument. \n\
1509 You must use a pointer to function type variable. Command ignored.", arg_name);
1510 }
1511 }
1512
1513 #if defined (REG_STRUCT_HAS_ADDR)
1514 {
1515 /* This is a machine like the sparc, where we may need to pass a pointer
1516 to the structure, not the structure itself. */
1517 for (i = nargs - 1; i >= 0; i--)
1518 {
1519 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1520 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1521 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1522 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1523 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1524 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1525 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1526 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1527 && TYPE_LENGTH (arg_type) > 8)
1528 )
1529 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1530 {
1531 CORE_ADDR addr;
1532 int len; /* = TYPE_LENGTH (arg_type); */
1533 int aligned_len;
1534 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1535 len = TYPE_LENGTH (arg_type);
1536
1537 if (STACK_ALIGN_P ())
1538 /* MVS 11/22/96: I think at least some of this
1539 stack_align code is really broken. Better to let
1540 PUSH_ARGUMENTS adjust the stack in a target-defined
1541 manner. */
1542 aligned_len = STACK_ALIGN (len);
1543 else
1544 aligned_len = len;
1545 if (INNER_THAN (1, 2))
1546 {
1547 /* stack grows downward */
1548 sp -= aligned_len;
1549 }
1550 else
1551 {
1552 /* The stack grows up, so the address of the thing we push
1553 is the stack pointer before we push it. */
1554 addr = sp;
1555 }
1556 /* Push the structure. */
1557 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1558 if (INNER_THAN (1, 2))
1559 {
1560 /* The stack grows down, so the address of the thing we push
1561 is the stack pointer after we push it. */
1562 addr = sp;
1563 }
1564 else
1565 {
1566 /* stack grows upward */
1567 sp += aligned_len;
1568 }
1569 /* The value we're going to pass is the address of the thing
1570 we just pushed. */
1571 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1572 (LONGEST) addr); */
1573 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1574 addr);
1575 }
1576 }
1577 }
1578 #endif /* REG_STRUCT_HAS_ADDR. */
1579
1580 /* Reserve space for the return structure to be written on the
1581 stack, if necessary */
1582
1583 if (struct_return)
1584 {
1585 int len = TYPE_LENGTH (value_type);
1586 if (STACK_ALIGN_P ())
1587 /* MVS 11/22/96: I think at least some of this stack_align
1588 code is really broken. Better to let PUSH_ARGUMENTS adjust
1589 the stack in a target-defined manner. */
1590 len = STACK_ALIGN (len);
1591 if (INNER_THAN (1, 2))
1592 {
1593 /* stack grows downward */
1594 sp -= len;
1595 struct_addr = sp;
1596 }
1597 else
1598 {
1599 /* stack grows upward */
1600 struct_addr = sp;
1601 sp += len;
1602 }
1603 }
1604
1605 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1606 on other architectures. This is because all the alignment is taken care
1607 of in the above code (ifdef REG_STRUCT_HAS_ADDR) and in
1608 hppa_push_arguments */
1609 #ifndef NO_EXTRA_ALIGNMENT_NEEDED
1610
1611 /* MVS 11/22/96: I think at least some of this stack_align code is
1612 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1613 a target-defined manner. */
1614 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1615 {
1616 /* If stack grows down, we must leave a hole at the top. */
1617 int len = 0;
1618
1619 for (i = nargs - 1; i >= 0; i--)
1620 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1621 if (CALL_DUMMY_STACK_ADJUST_P)
1622 len += CALL_DUMMY_STACK_ADJUST;
1623 sp -= STACK_ALIGN (len) - len;
1624 }
1625 #endif /* NO_EXTRA_ALIGNMENT_NEEDED */
1626
1627 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1628
1629 #ifdef PUSH_RETURN_ADDRESS /* for targets that use no CALL_DUMMY */
1630 /* There are a number of targets now which actually don't write any
1631 CALL_DUMMY instructions into the target, but instead just save the
1632 machine state, push the arguments, and jump directly to the callee
1633 function. Since this doesn't actually involve executing a JSR/BSR
1634 instruction, the return address must be set up by hand, either by
1635 pushing onto the stack or copying into a return-address register
1636 as appropriate. Formerly this has been done in PUSH_ARGUMENTS,
1637 but that's overloading its functionality a bit, so I'm making it
1638 explicit to do it here. */
1639 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1640 #endif /* PUSH_RETURN_ADDRESS */
1641
1642 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
1643 {
1644 /* If stack grows up, we must leave a hole at the bottom, note
1645 that sp already has been advanced for the arguments! */
1646 if (CALL_DUMMY_STACK_ADJUST_P)
1647 sp += CALL_DUMMY_STACK_ADJUST;
1648 sp = STACK_ALIGN (sp);
1649 }
1650
1651 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1652 anything here! */
1653 /* MVS 11/22/96: I think at least some of this stack_align code is
1654 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1655 a target-defined manner. */
1656 if (CALL_DUMMY_STACK_ADJUST_P)
1657 if (INNER_THAN (1, 2))
1658 {
1659 /* stack grows downward */
1660 sp -= CALL_DUMMY_STACK_ADJUST;
1661 }
1662
1663 /* Store the address at which the structure is supposed to be
1664 written. Note that this (and the code which reserved the space
1665 above) assumes that gcc was used to compile this function. Since
1666 it doesn't cost us anything but space and if the function is pcc
1667 it will ignore this value, we will make that assumption.
1668
1669 Also note that on some machines (like the sparc) pcc uses a
1670 convention like gcc's. */
1671
1672 if (struct_return)
1673 STORE_STRUCT_RETURN (struct_addr, sp);
1674
1675 /* Write the stack pointer. This is here because the statements above
1676 might fool with it. On SPARC, this write also stores the register
1677 window into the right place in the new stack frame, which otherwise
1678 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1679 write_sp (sp);
1680
1681 #ifdef SAVE_DUMMY_FRAME_TOS
1682 SAVE_DUMMY_FRAME_TOS (sp);
1683 #endif
1684
1685 {
1686 char retbuf[REGISTER_BYTES];
1687 char *name;
1688 struct symbol *symbol;
1689
1690 name = NULL;
1691 symbol = find_pc_function (funaddr);
1692 if (symbol)
1693 {
1694 name = SYMBOL_SOURCE_NAME (symbol);
1695 }
1696 else
1697 {
1698 /* Try the minimal symbols. */
1699 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1700
1701 if (msymbol)
1702 {
1703 name = SYMBOL_SOURCE_NAME (msymbol);
1704 }
1705 }
1706 if (name == NULL)
1707 {
1708 char format[80];
1709 sprintf (format, "at %s", local_hex_format ());
1710 name = alloca (80);
1711 /* FIXME-32x64: assumes funaddr fits in a long. */
1712 sprintf (name, format, (unsigned long) funaddr);
1713 }
1714
1715 /* Execute the stack dummy routine, calling FUNCTION.
1716 When it is done, discard the empty frame
1717 after storing the contents of all regs into retbuf. */
1718 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1719
1720 if (rc == 1)
1721 {
1722 /* We stopped inside the FUNCTION because of a random signal.
1723 Further execution of the FUNCTION is not allowed. */
1724
1725 if (unwind_on_signal_p)
1726 {
1727 /* The user wants the context restored. */
1728
1729 /* We must get back to the frame we were before the dummy call. */
1730 POP_FRAME;
1731
1732 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1733 a C++ name with arguments and stuff. */
1734 error ("\
1735 The program being debugged was signaled while in a function called from GDB.\n\
1736 GDB has restored the context to what it was before the call.\n\
1737 To change this behavior use \"set unwindonsignal off\"\n\
1738 Evaluation of the expression containing the function (%s) will be abandoned.",
1739 name);
1740 }
1741 else
1742 {
1743 /* The user wants to stay in the frame where we stopped (default).*/
1744
1745 /* If we did the cleanups, we would print a spurious error
1746 message (Unable to restore previously selected frame),
1747 would write the registers from the inf_status (which is
1748 wrong), and would do other wrong things. */
1749 discard_cleanups (old_chain);
1750 discard_inferior_status (inf_status);
1751
1752 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1753 a C++ name with arguments and stuff. */
1754 error ("\
1755 The program being debugged was signaled while in a function called from GDB.\n\
1756 GDB remains in the frame where the signal was received.\n\
1757 To change this behavior use \"set unwindonsignal on\"\n\
1758 Evaluation of the expression containing the function (%s) will be abandoned.",
1759 name);
1760 }
1761 }
1762
1763 if (rc == 2)
1764 {
1765 /* We hit a breakpoint inside the FUNCTION. */
1766
1767 /* If we did the cleanups, we would print a spurious error
1768 message (Unable to restore previously selected frame),
1769 would write the registers from the inf_status (which is
1770 wrong), and would do other wrong things. */
1771 discard_cleanups (old_chain);
1772 discard_inferior_status (inf_status);
1773
1774 /* The following error message used to say "The expression
1775 which contained the function call has been discarded." It
1776 is a hard concept to explain in a few words. Ideally, GDB
1777 would be able to resume evaluation of the expression when
1778 the function finally is done executing. Perhaps someday
1779 this will be implemented (it would not be easy). */
1780
1781 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1782 a C++ name with arguments and stuff. */
1783 error ("\
1784 The program being debugged stopped while in a function called from GDB.\n\
1785 When the function (%s) is done executing, GDB will silently\n\
1786 stop (instead of continuing to evaluate the expression containing\n\
1787 the function call).", name);
1788 }
1789
1790 /* If we get here the called FUNCTION run to completion. */
1791 do_cleanups (old_chain);
1792
1793 /* Figure out the value returned by the function. */
1794 /* elz: I defined this new macro for the hppa architecture only.
1795 this gives us a way to get the value returned by the function from the stack,
1796 at the same address we told the function to put it.
1797 We cannot assume on the pa that r28 still contains the address of the returned
1798 structure. Usually this will be overwritten by the callee.
1799 I don't know about other architectures, so I defined this macro
1800 */
1801
1802 #ifdef VALUE_RETURNED_FROM_STACK
1803 if (struct_return)
1804 return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1805 #endif
1806
1807 return value_being_returned (value_type, retbuf, struct_return);
1808 }
1809 }
1810
1811 value_ptr
1812 call_function_by_hand (function, nargs, args)
1813 value_ptr function;
1814 int nargs;
1815 value_ptr *args;
1816 {
1817 if (CALL_DUMMY_P)
1818 {
1819 return hand_function_call (function, nargs, args);
1820 }
1821 else
1822 {
1823 error ("Cannot invoke functions on this machine.");
1824 }
1825 }
1826 \f
1827
1828
1829 /* Create a value for an array by allocating space in the inferior, copying
1830 the data into that space, and then setting up an array value.
1831
1832 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1833 populated from the values passed in ELEMVEC.
1834
1835 The element type of the array is inherited from the type of the
1836 first element, and all elements must have the same size (though we
1837 don't currently enforce any restriction on their types). */
1838
1839 value_ptr
1840 value_array (lowbound, highbound, elemvec)
1841 int lowbound;
1842 int highbound;
1843 value_ptr *elemvec;
1844 {
1845 int nelem;
1846 int idx;
1847 unsigned int typelength;
1848 value_ptr val;
1849 struct type *rangetype;
1850 struct type *arraytype;
1851 CORE_ADDR addr;
1852
1853 /* Validate that the bounds are reasonable and that each of the elements
1854 have the same size. */
1855
1856 nelem = highbound - lowbound + 1;
1857 if (nelem <= 0)
1858 {
1859 error ("bad array bounds (%d, %d)", lowbound, highbound);
1860 }
1861 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1862 for (idx = 1; idx < nelem; idx++)
1863 {
1864 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1865 {
1866 error ("array elements must all be the same size");
1867 }
1868 }
1869
1870 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1871 lowbound, highbound);
1872 arraytype = create_array_type ((struct type *) NULL,
1873 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1874
1875 if (!current_language->c_style_arrays)
1876 {
1877 val = allocate_value (arraytype);
1878 for (idx = 0; idx < nelem; idx++)
1879 {
1880 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1881 VALUE_CONTENTS_ALL (elemvec[idx]),
1882 typelength);
1883 }
1884 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1885 return val;
1886 }
1887
1888 /* Allocate space to store the array in the inferior, and then initialize
1889 it by copying in each element. FIXME: Is it worth it to create a
1890 local buffer in which to collect each value and then write all the
1891 bytes in one operation? */
1892
1893 addr = allocate_space_in_inferior (nelem * typelength);
1894 for (idx = 0; idx < nelem; idx++)
1895 {
1896 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1897 typelength);
1898 }
1899
1900 /* Create the array type and set up an array value to be evaluated lazily. */
1901
1902 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1903 return (val);
1904 }
1905
1906 /* Create a value for a string constant by allocating space in the inferior,
1907 copying the data into that space, and returning the address with type
1908 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1909 of characters.
1910 Note that string types are like array of char types with a lower bound of
1911 zero and an upper bound of LEN - 1. Also note that the string may contain
1912 embedded null bytes. */
1913
1914 value_ptr
1915 value_string (ptr, len)
1916 char *ptr;
1917 int len;
1918 {
1919 value_ptr val;
1920 int lowbound = current_language->string_lower_bound;
1921 struct type *rangetype = create_range_type ((struct type *) NULL,
1922 builtin_type_int,
1923 lowbound, len + lowbound - 1);
1924 struct type *stringtype
1925 = create_string_type ((struct type *) NULL, rangetype);
1926 CORE_ADDR addr;
1927
1928 if (current_language->c_style_arrays == 0)
1929 {
1930 val = allocate_value (stringtype);
1931 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1932 return val;
1933 }
1934
1935
1936 /* Allocate space to store the string in the inferior, and then
1937 copy LEN bytes from PTR in gdb to that address in the inferior. */
1938
1939 addr = allocate_space_in_inferior (len);
1940 write_memory (addr, ptr, len);
1941
1942 val = value_at_lazy (stringtype, addr, NULL);
1943 return (val);
1944 }
1945
1946 value_ptr
1947 value_bitstring (ptr, len)
1948 char *ptr;
1949 int len;
1950 {
1951 value_ptr val;
1952 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1953 0, len - 1);
1954 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1955 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1956 val = allocate_value (type);
1957 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1958 return val;
1959 }
1960 \f
1961 /* See if we can pass arguments in T2 to a function which takes arguments
1962 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1963 arguments need coercion of some sort, then the coerced values are written
1964 into T2. Return value is 0 if the arguments could be matched, or the
1965 position at which they differ if not.
1966
1967 STATICP is nonzero if the T1 argument list came from a
1968 static member function.
1969
1970 For non-static member functions, we ignore the first argument,
1971 which is the type of the instance variable. This is because we want
1972 to handle calls with objects from derived classes. This is not
1973 entirely correct: we should actually check to make sure that a
1974 requested operation is type secure, shouldn't we? FIXME. */
1975
1976 static int
1977 typecmp (staticp, t1, t2)
1978 int staticp;
1979 struct type *t1[];
1980 value_ptr t2[];
1981 {
1982 int i;
1983
1984 if (t2 == 0)
1985 return 1;
1986 if (staticp && t1 == 0)
1987 return t2[1] != 0;
1988 if (t1 == 0)
1989 return 1;
1990 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID)
1991 return 0;
1992 if (t1[!staticp] == 0)
1993 return 0;
1994 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1995 {
1996 struct type *tt1, *tt2;
1997 if (!t2[i])
1998 return i + 1;
1999 tt1 = check_typedef (t1[i]);
2000 tt2 = check_typedef (VALUE_TYPE (t2[i]));
2001 if (TYPE_CODE (tt1) == TYPE_CODE_REF
2002 /* We should be doing hairy argument matching, as below. */
2003 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
2004 {
2005 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
2006 t2[i] = value_coerce_array (t2[i]);
2007 else
2008 t2[i] = value_addr (t2[i]);
2009 continue;
2010 }
2011
2012 while (TYPE_CODE (tt1) == TYPE_CODE_PTR
2013 && (TYPE_CODE (tt2) == TYPE_CODE_ARRAY
2014 || TYPE_CODE (tt2) == TYPE_CODE_PTR))
2015 {
2016 tt1 = check_typedef (TYPE_TARGET_TYPE (tt1));
2017 tt2 = check_typedef (TYPE_TARGET_TYPE (tt2));
2018 }
2019 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
2020 continue;
2021 /* Array to pointer is a `trivial conversion' according to the ARM. */
2022
2023 /* We should be doing much hairier argument matching (see section 13.2
2024 of the ARM), but as a quick kludge, just check for the same type
2025 code. */
2026 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
2027 return i + 1;
2028 }
2029 if (!t1[i])
2030 return 0;
2031 return t2[i] ? i + 1 : 0;
2032 }
2033
2034 /* Helper function used by value_struct_elt to recurse through baseclasses.
2035 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2036 and search in it assuming it has (class) type TYPE.
2037 If found, return value, else return NULL.
2038
2039 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2040 look for a baseclass named NAME. */
2041
2042 static value_ptr
2043 search_struct_field (name, arg1, offset, type, looking_for_baseclass)
2044 char *name;
2045 register value_ptr arg1;
2046 int offset;
2047 register struct type *type;
2048 int looking_for_baseclass;
2049 {
2050 int i;
2051 int nbases = TYPE_N_BASECLASSES (type);
2052
2053 CHECK_TYPEDEF (type);
2054
2055 if (!looking_for_baseclass)
2056 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2057 {
2058 char *t_field_name = TYPE_FIELD_NAME (type, i);
2059
2060 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2061 {
2062 value_ptr v;
2063 if (TYPE_FIELD_STATIC (type, i))
2064 v = value_static_field (type, i);
2065 else
2066 v = value_primitive_field (arg1, offset, i, type);
2067 if (v == 0)
2068 error ("there is no field named %s", name);
2069 return v;
2070 }
2071
2072 if (t_field_name
2073 && (t_field_name[0] == '\0'
2074 || (TYPE_CODE (type) == TYPE_CODE_UNION
2075 && (strcmp_iw (t_field_name, "else") == 0))))
2076 {
2077 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2078 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2079 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2080 {
2081 /* Look for a match through the fields of an anonymous union,
2082 or anonymous struct. C++ provides anonymous unions.
2083
2084 In the GNU Chill implementation of variant record types,
2085 each <alternative field> has an (anonymous) union type,
2086 each member of the union represents a <variant alternative>.
2087 Each <variant alternative> is represented as a struct,
2088 with a member for each <variant field>. */
2089
2090 value_ptr v;
2091 int new_offset = offset;
2092
2093 /* This is pretty gross. In G++, the offset in an anonymous
2094 union is relative to the beginning of the enclosing struct.
2095 In the GNU Chill implementation of variant records,
2096 the bitpos is zero in an anonymous union field, so we
2097 have to add the offset of the union here. */
2098 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2099 || (TYPE_NFIELDS (field_type) > 0
2100 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2101 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2102
2103 v = search_struct_field (name, arg1, new_offset, field_type,
2104 looking_for_baseclass);
2105 if (v)
2106 return v;
2107 }
2108 }
2109 }
2110
2111 for (i = 0; i < nbases; i++)
2112 {
2113 value_ptr v;
2114 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2115 /* If we are looking for baseclasses, this is what we get when we
2116 hit them. But it could happen that the base part's member name
2117 is not yet filled in. */
2118 int found_baseclass = (looking_for_baseclass
2119 && TYPE_BASECLASS_NAME (type, i) != NULL
2120 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2121
2122 if (BASETYPE_VIA_VIRTUAL (type, i))
2123 {
2124 int boffset;
2125 value_ptr v2 = allocate_value (basetype);
2126
2127 boffset = baseclass_offset (type, i,
2128 VALUE_CONTENTS (arg1) + offset,
2129 VALUE_ADDRESS (arg1)
2130 + VALUE_OFFSET (arg1) + offset);
2131 if (boffset == -1)
2132 error ("virtual baseclass botch");
2133
2134 /* The virtual base class pointer might have been clobbered by the
2135 user program. Make sure that it still points to a valid memory
2136 location. */
2137
2138 boffset += offset;
2139 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2140 {
2141 CORE_ADDR base_addr;
2142
2143 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2144 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2145 TYPE_LENGTH (basetype)) != 0)
2146 error ("virtual baseclass botch");
2147 VALUE_LVAL (v2) = lval_memory;
2148 VALUE_ADDRESS (v2) = base_addr;
2149 }
2150 else
2151 {
2152 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2153 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2154 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2155 if (VALUE_LAZY (arg1))
2156 VALUE_LAZY (v2) = 1;
2157 else
2158 memcpy (VALUE_CONTENTS_RAW (v2),
2159 VALUE_CONTENTS_RAW (arg1) + boffset,
2160 TYPE_LENGTH (basetype));
2161 }
2162
2163 if (found_baseclass)
2164 return v2;
2165 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2166 looking_for_baseclass);
2167 }
2168 else if (found_baseclass)
2169 v = value_primitive_field (arg1, offset, i, type);
2170 else
2171 v = search_struct_field (name, arg1,
2172 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2173 basetype, looking_for_baseclass);
2174 if (v)
2175 return v;
2176 }
2177 return NULL;
2178 }
2179
2180
2181 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2182 * in an object pointed to by VALADDR (on the host), assumed to be of
2183 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2184 * looking (in case VALADDR is the contents of an enclosing object).
2185 *
2186 * This routine recurses on the primary base of the derived class because
2187 * the virtual base entries of the primary base appear before the other
2188 * virtual base entries.
2189 *
2190 * If the virtual base is not found, a negative integer is returned.
2191 * The magnitude of the negative integer is the number of entries in
2192 * the virtual table to skip over (entries corresponding to various
2193 * ancestral classes in the chain of primary bases).
2194 *
2195 * Important: This assumes the HP / Taligent C++ runtime
2196 * conventions. Use baseclass_offset() instead to deal with g++
2197 * conventions. */
2198
2199 void
2200 find_rt_vbase_offset (type, basetype, valaddr, offset, boffset_p, skip_p)
2201 struct type *type;
2202 struct type *basetype;
2203 char *valaddr;
2204 int offset;
2205 int *boffset_p;
2206 int *skip_p;
2207 {
2208 int boffset; /* offset of virtual base */
2209 int index; /* displacement to use in virtual table */
2210 int skip;
2211
2212 value_ptr vp;
2213 CORE_ADDR vtbl; /* the virtual table pointer */
2214 struct type *pbc; /* the primary base class */
2215
2216 /* Look for the virtual base recursively in the primary base, first.
2217 * This is because the derived class object and its primary base
2218 * subobject share the primary virtual table. */
2219
2220 boffset = 0;
2221 pbc = TYPE_PRIMARY_BASE (type);
2222 if (pbc)
2223 {
2224 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2225 if (skip < 0)
2226 {
2227 *boffset_p = boffset;
2228 *skip_p = -1;
2229 return;
2230 }
2231 }
2232 else
2233 skip = 0;
2234
2235
2236 /* Find the index of the virtual base according to HP/Taligent
2237 runtime spec. (Depth-first, left-to-right.) */
2238 index = virtual_base_index_skip_primaries (basetype, type);
2239
2240 if (index < 0)
2241 {
2242 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2243 *boffset_p = 0;
2244 return;
2245 }
2246
2247 /* pai: FIXME -- 32x64 possible problem */
2248 /* First word (4 bytes) in object layout is the vtable pointer */
2249 vtbl = *(CORE_ADDR *) (valaddr + offset);
2250
2251 /* Before the constructor is invoked, things are usually zero'd out. */
2252 if (vtbl == 0)
2253 error ("Couldn't find virtual table -- object may not be constructed yet.");
2254
2255
2256 /* Find virtual base's offset -- jump over entries for primary base
2257 * ancestors, then use the index computed above. But also adjust by
2258 * HP_ACC_VBASE_START for the vtable slots before the start of the
2259 * virtual base entries. Offset is negative -- virtual base entries
2260 * appear _before_ the address point of the virtual table. */
2261
2262 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2263 & use long type */
2264
2265 /* epstein : FIXME -- added param for overlay section. May not be correct */
2266 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2267 boffset = value_as_long (vp);
2268 *skip_p = -1;
2269 *boffset_p = boffset;
2270 return;
2271 }
2272
2273
2274 /* Helper function used by value_struct_elt to recurse through baseclasses.
2275 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2276 and search in it assuming it has (class) type TYPE.
2277 If found, return value, else if name matched and args not return (value)-1,
2278 else return NULL. */
2279
2280 static value_ptr
2281 search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
2282 char *name;
2283 register value_ptr *arg1p, *args;
2284 int offset, *static_memfuncp;
2285 register struct type *type;
2286 {
2287 int i;
2288 value_ptr v;
2289 int name_matched = 0;
2290 char dem_opname[64];
2291
2292 CHECK_TYPEDEF (type);
2293 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2294 {
2295 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2296 /* FIXME! May need to check for ARM demangling here */
2297 if (strncmp (t_field_name, "__", 2) == 0 ||
2298 strncmp (t_field_name, "op", 2) == 0 ||
2299 strncmp (t_field_name, "type", 4) == 0)
2300 {
2301 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2302 t_field_name = dem_opname;
2303 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2304 t_field_name = dem_opname;
2305 }
2306 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2307 {
2308 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2309 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2310 name_matched = 1;
2311
2312 if (j > 0 && args == 0)
2313 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2314 while (j >= 0)
2315 {
2316 if (TYPE_FN_FIELD_STUB (f, j))
2317 check_stub_method (type, i, j);
2318 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2319 TYPE_FN_FIELD_ARGS (f, j), args))
2320 {
2321 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2322 return value_virtual_fn_field (arg1p, f, j, type, offset);
2323 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2324 *static_memfuncp = 1;
2325 v = value_fn_field (arg1p, f, j, type, offset);
2326 if (v != NULL)
2327 return v;
2328 }
2329 j--;
2330 }
2331 }
2332 }
2333
2334 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2335 {
2336 int base_offset;
2337
2338 if (BASETYPE_VIA_VIRTUAL (type, i))
2339 {
2340 if (TYPE_HAS_VTABLE (type))
2341 {
2342 /* HP aCC compiled type, search for virtual base offset
2343 according to HP/Taligent runtime spec. */
2344 int skip;
2345 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2346 VALUE_CONTENTS_ALL (*arg1p),
2347 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2348 &base_offset, &skip);
2349 if (skip >= 0)
2350 error ("Virtual base class offset not found in vtable");
2351 }
2352 else
2353 {
2354 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2355 char *base_valaddr;
2356
2357 /* The virtual base class pointer might have been clobbered by the
2358 user program. Make sure that it still points to a valid memory
2359 location. */
2360
2361 if (offset < 0 || offset >= TYPE_LENGTH (type))
2362 {
2363 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2364 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2365 + VALUE_OFFSET (*arg1p) + offset,
2366 base_valaddr,
2367 TYPE_LENGTH (baseclass)) != 0)
2368 error ("virtual baseclass botch");
2369 }
2370 else
2371 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2372
2373 base_offset =
2374 baseclass_offset (type, i, base_valaddr,
2375 VALUE_ADDRESS (*arg1p)
2376 + VALUE_OFFSET (*arg1p) + offset);
2377 if (base_offset == -1)
2378 error ("virtual baseclass botch");
2379 }
2380 }
2381 else
2382 {
2383 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2384 }
2385 v = search_struct_method (name, arg1p, args, base_offset + offset,
2386 static_memfuncp, TYPE_BASECLASS (type, i));
2387 if (v == (value_ptr) - 1)
2388 {
2389 name_matched = 1;
2390 }
2391 else if (v)
2392 {
2393 /* FIXME-bothner: Why is this commented out? Why is it here? */
2394 /* *arg1p = arg1_tmp; */
2395 return v;
2396 }
2397 }
2398 if (name_matched)
2399 return (value_ptr) - 1;
2400 else
2401 return NULL;
2402 }
2403
2404 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2405 extract the component named NAME from the ultimate target structure/union
2406 and return it as a value with its appropriate type.
2407 ERR is used in the error message if *ARGP's type is wrong.
2408
2409 C++: ARGS is a list of argument types to aid in the selection of
2410 an appropriate method. Also, handle derived types.
2411
2412 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2413 where the truthvalue of whether the function that was resolved was
2414 a static member function or not is stored.
2415
2416 ERR is an error message to be printed in case the field is not found. */
2417
2418 value_ptr
2419 value_struct_elt (argp, args, name, static_memfuncp, err)
2420 register value_ptr *argp, *args;
2421 char *name;
2422 int *static_memfuncp;
2423 char *err;
2424 {
2425 register struct type *t;
2426 value_ptr v;
2427
2428 COERCE_ARRAY (*argp);
2429
2430 t = check_typedef (VALUE_TYPE (*argp));
2431
2432 /* Follow pointers until we get to a non-pointer. */
2433
2434 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2435 {
2436 *argp = value_ind (*argp);
2437 /* Don't coerce fn pointer to fn and then back again! */
2438 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2439 COERCE_ARRAY (*argp);
2440 t = check_typedef (VALUE_TYPE (*argp));
2441 }
2442
2443 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2444 error ("not implemented: member type in value_struct_elt");
2445
2446 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2447 && TYPE_CODE (t) != TYPE_CODE_UNION)
2448 error ("Attempt to extract a component of a value that is not a %s.", err);
2449
2450 /* Assume it's not, unless we see that it is. */
2451 if (static_memfuncp)
2452 *static_memfuncp = 0;
2453
2454 if (!args)
2455 {
2456 /* if there are no arguments ...do this... */
2457
2458 /* Try as a field first, because if we succeed, there
2459 is less work to be done. */
2460 v = search_struct_field (name, *argp, 0, t, 0);
2461 if (v)
2462 return v;
2463
2464 /* C++: If it was not found as a data field, then try to
2465 return it as a pointer to a method. */
2466
2467 if (destructor_name_p (name, t))
2468 error ("Cannot get value of destructor");
2469
2470 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2471
2472 if (v == (value_ptr) - 1)
2473 error ("Cannot take address of a method");
2474 else if (v == 0)
2475 {
2476 if (TYPE_NFN_FIELDS (t))
2477 error ("There is no member or method named %s.", name);
2478 else
2479 error ("There is no member named %s.", name);
2480 }
2481 return v;
2482 }
2483
2484 if (destructor_name_p (name, t))
2485 {
2486 if (!args[1])
2487 {
2488 /* Destructors are a special case. */
2489 int m_index, f_index;
2490
2491 v = NULL;
2492 if (get_destructor_fn_field (t, &m_index, &f_index))
2493 {
2494 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2495 f_index, NULL, 0);
2496 }
2497 if (v == NULL)
2498 error ("could not find destructor function named %s.", name);
2499 else
2500 return v;
2501 }
2502 else
2503 {
2504 error ("destructor should not have any argument");
2505 }
2506 }
2507 else
2508 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2509
2510 if (v == (value_ptr) - 1)
2511 {
2512 error ("Argument list of %s mismatch with component in the structure.", name);
2513 }
2514 else if (v == 0)
2515 {
2516 /* See if user tried to invoke data as function. If so,
2517 hand it back. If it's not callable (i.e., a pointer to function),
2518 gdb should give an error. */
2519 v = search_struct_field (name, *argp, 0, t, 0);
2520 }
2521
2522 if (!v)
2523 error ("Structure has no component named %s.", name);
2524 return v;
2525 }
2526
2527 /* Search through the methods of an object (and its bases)
2528 * to find a specified method. Return the pointer to the
2529 * fn_field list of overloaded instances.
2530 * Helper function for value_find_oload_list.
2531 * ARGP is a pointer to a pointer to a value (the object)
2532 * METHOD is a string containing the method name
2533 * OFFSET is the offset within the value
2534 * STATIC_MEMFUNCP is set if the method is static
2535 * TYPE is the assumed type of the object
2536 * NUM_FNS is the number of overloaded instances
2537 * BASETYPE is set to the actual type of the subobject where the method is found
2538 * BOFFSET is the offset of the base subobject where the method is found */
2539
2540 static struct fn_field *
2541 find_method_list (argp, method, offset, static_memfuncp, type, num_fns, basetype, boffset)
2542 value_ptr *argp;
2543 char *method;
2544 int offset;
2545 int *static_memfuncp;
2546 struct type *type;
2547 int *num_fns;
2548 struct type **basetype;
2549 int *boffset;
2550 {
2551 int i;
2552 struct fn_field *f;
2553 CHECK_TYPEDEF (type);
2554
2555 *num_fns = 0;
2556
2557 /* First check in object itself */
2558 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2559 {
2560 /* pai: FIXME What about operators and type conversions? */
2561 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2562 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2563 {
2564 *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
2565 *basetype = type;
2566 *boffset = offset;
2567 return TYPE_FN_FIELDLIST1 (type, i);
2568 }
2569 }
2570
2571 /* Not found in object, check in base subobjects */
2572 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2573 {
2574 int base_offset;
2575 if (BASETYPE_VIA_VIRTUAL (type, i))
2576 {
2577 if (TYPE_HAS_VTABLE (type))
2578 {
2579 /* HP aCC compiled type, search for virtual base offset
2580 * according to HP/Taligent runtime spec. */
2581 int skip;
2582 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2583 VALUE_CONTENTS_ALL (*argp),
2584 offset + VALUE_EMBEDDED_OFFSET (*argp),
2585 &base_offset, &skip);
2586 if (skip >= 0)
2587 error ("Virtual base class offset not found in vtable");
2588 }
2589 else
2590 {
2591 /* probably g++ runtime model */
2592 base_offset = VALUE_OFFSET (*argp) + offset;
2593 base_offset =
2594 baseclass_offset (type, i,
2595 VALUE_CONTENTS (*argp) + base_offset,
2596 VALUE_ADDRESS (*argp) + base_offset);
2597 if (base_offset == -1)
2598 error ("virtual baseclass botch");
2599 }
2600 }
2601 else
2602 /* non-virtual base, simply use bit position from debug info */
2603 {
2604 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2605 }
2606 f = find_method_list (argp, method, base_offset + offset,
2607 static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
2608 if (f)
2609 return f;
2610 }
2611 return NULL;
2612 }
2613
2614 /* Return the list of overloaded methods of a specified name.
2615 * ARGP is a pointer to a pointer to a value (the object)
2616 * METHOD is the method name
2617 * OFFSET is the offset within the value contents
2618 * STATIC_MEMFUNCP is set if the method is static
2619 * NUM_FNS is the number of overloaded instances
2620 * BASETYPE is set to the type of the base subobject that defines the method
2621 * BOFFSET is the offset of the base subobject which defines the method */
2622
2623 struct fn_field *
2624 value_find_oload_method_list (argp, method, offset, static_memfuncp, num_fns, basetype, boffset)
2625 value_ptr *argp;
2626 char *method;
2627 int offset;
2628 int *static_memfuncp;
2629 int *num_fns;
2630 struct type **basetype;
2631 int *boffset;
2632 {
2633 struct type *t;
2634
2635 t = check_typedef (VALUE_TYPE (*argp));
2636
2637 /* code snarfed from value_struct_elt */
2638 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2639 {
2640 *argp = value_ind (*argp);
2641 /* Don't coerce fn pointer to fn and then back again! */
2642 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2643 COERCE_ARRAY (*argp);
2644 t = check_typedef (VALUE_TYPE (*argp));
2645 }
2646
2647 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2648 error ("Not implemented: member type in value_find_oload_lis");
2649
2650 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2651 && TYPE_CODE (t) != TYPE_CODE_UNION)
2652 error ("Attempt to extract a component of a value that is not a struct or union");
2653
2654 /* Assume it's not static, unless we see that it is. */
2655 if (static_memfuncp)
2656 *static_memfuncp = 0;
2657
2658 return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
2659
2660 }
2661
2662 /* Given an array of argument types (ARGTYPES) (which includes an
2663 entry for "this" in the case of C++ methods), the number of
2664 arguments NARGS, the NAME of a function whether it's a method or
2665 not (METHOD), and the degree of laxness (LAX) in conforming to
2666 overload resolution rules in ANSI C++, find the best function that
2667 matches on the argument types according to the overload resolution
2668 rules.
2669
2670 In the case of class methods, the parameter OBJ is an object value
2671 in which to search for overloaded methods.
2672
2673 In the case of non-method functions, the parameter FSYM is a symbol
2674 corresponding to one of the overloaded functions.
2675
2676 Return value is an integer: 0 -> good match, 10 -> debugger applied
2677 non-standard coercions, 100 -> incompatible.
2678
2679 If a method is being searched for, VALP will hold the value.
2680 If a non-method is being searched for, SYMP will hold the symbol for it.
2681
2682 If a method is being searched for, and it is a static method,
2683 then STATICP will point to a non-zero value.
2684
2685 Note: This function does *not* check the value of
2686 overload_resolution. Caller must check it to see whether overload
2687 resolution is permitted.
2688 */
2689
2690 int
2691 find_overload_match (arg_types, nargs, name, method, lax, obj, fsym, valp, symp, staticp)
2692 struct type **arg_types;
2693 int nargs;
2694 char *name;
2695 int method;
2696 int lax;
2697 value_ptr obj;
2698 struct symbol *fsym;
2699 value_ptr *valp;
2700 struct symbol **symp;
2701 int *staticp;
2702 {
2703 int nparms;
2704 struct type **parm_types;
2705 int champ_nparms = 0;
2706
2707 short oload_champ = -1; /* Index of best overloaded function */
2708 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2709 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2710 short oload_ambig_champ = -1; /* 2nd contender for best match */
2711 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2712 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2713
2714 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2715 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2716
2717 value_ptr temp = obj;
2718 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2719 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2720 int num_fns = 0; /* Number of overloaded instances being considered */
2721 struct type *basetype = NULL;
2722 int boffset;
2723 register int jj;
2724 register int ix;
2725
2726 char *obj_type_name = NULL;
2727 char *func_name = NULL;
2728
2729 /* Get the list of overloaded methods or functions */
2730 if (method)
2731 {
2732 int i;
2733 int len;
2734 struct type *domain;
2735 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2736 /* Hack: evaluate_subexp_standard often passes in a pointer
2737 value rather than the object itself, so try again */
2738 if ((!obj_type_name || !*obj_type_name) &&
2739 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2740 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2741
2742 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2743 staticp,
2744 &num_fns,
2745 &basetype, &boffset);
2746 if (!fns_ptr || !num_fns)
2747 error ("Couldn't find method %s%s%s",
2748 obj_type_name,
2749 (obj_type_name && *obj_type_name) ? "::" : "",
2750 name);
2751 domain = TYPE_DOMAIN_TYPE (fns_ptr[0].type);
2752 len = TYPE_NFN_FIELDS (domain);
2753 /* NOTE: dan/2000-03-10: This stuff is for STABS, which won't
2754 give us the info we need directly in the types. We have to
2755 use the method stub conversion to get it. Be aware that this
2756 is by no means perfect, and if you use STABS, please move to
2757 DWARF-2, or something like it, because trying to improve
2758 overloading using STABS is really a waste of time. */
2759 for (i = 0; i < len; i++)
2760 {
2761 int j;
2762 struct fn_field *f = TYPE_FN_FIELDLIST1 (domain, i);
2763 int len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
2764
2765 for (j = 0; j < len2; j++)
2766 {
2767 if (TYPE_FN_FIELD_STUB (f, j) && (!strcmp_iw (TYPE_FN_FIELDLIST_NAME (domain,i),name)))
2768 check_stub_method (domain, i, j);
2769 }
2770 }
2771 }
2772 else
2773 {
2774 int i = -1;
2775 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2776
2777 /* If the name is NULL this must be a C-style function.
2778 Just return the same symbol. */
2779 if (!func_name)
2780 {
2781 *symp = fsym;
2782 return 0;
2783 }
2784
2785 oload_syms = make_symbol_overload_list (fsym);
2786 while (oload_syms[++i])
2787 num_fns++;
2788 if (!num_fns)
2789 error ("Couldn't find function %s", func_name);
2790 }
2791
2792 oload_champ_bv = NULL;
2793
2794 /* Consider each candidate in turn */
2795 for (ix = 0; ix < num_fns; ix++)
2796 {
2797 if (method)
2798 {
2799 /* For static member functions, we won't have a this pointer, but nothing
2800 else seems to handle them right now, so we just pretend ourselves */
2801 nparms=0;
2802
2803 if (TYPE_FN_FIELD_ARGS(fns_ptr,ix))
2804 {
2805 while (TYPE_CODE(TYPE_FN_FIELD_ARGS(fns_ptr,ix)[nparms]) != TYPE_CODE_VOID)
2806 nparms++;
2807 }
2808 }
2809 else
2810 {
2811 /* If it's not a method, this is the proper place */
2812 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2813 }
2814
2815 /* Prepare array of parameter types */
2816 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2817 for (jj = 0; jj < nparms; jj++)
2818 parm_types[jj] = (method
2819 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj])
2820 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2821
2822 /* Compare parameter types to supplied argument types */
2823 bv = rank_function (parm_types, nparms, arg_types, nargs);
2824
2825 if (!oload_champ_bv)
2826 {
2827 oload_champ_bv = bv;
2828 oload_champ = 0;
2829 champ_nparms = nparms;
2830 }
2831 else
2832 /* See whether current candidate is better or worse than previous best */
2833 switch (compare_badness (bv, oload_champ_bv))
2834 {
2835 case 0:
2836 oload_ambiguous = 1; /* top two contenders are equally good */
2837 oload_ambig_champ = ix;
2838 break;
2839 case 1:
2840 oload_ambiguous = 2; /* incomparable top contenders */
2841 oload_ambig_champ = ix;
2842 break;
2843 case 2:
2844 oload_champ_bv = bv; /* new champion, record details */
2845 oload_ambiguous = 0;
2846 oload_champ = ix;
2847 oload_ambig_champ = -1;
2848 champ_nparms = nparms;
2849 break;
2850 case 3:
2851 default:
2852 break;
2853 }
2854 free (parm_types);
2855 if (overload_debug)
2856 {
2857 if (method)
2858 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2859 else
2860 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2861 for (jj = 0; jj < nargs; jj++)
2862 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2863 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2864 }
2865 } /* end loop over all candidates */
2866 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2867 if they have the exact same goodness. This is because there is no
2868 way to differentiate based on return type, which we need to in
2869 cases like overloads of .begin() <It's both const and non-const> */
2870 #if 0
2871 if (oload_ambiguous)
2872 {
2873 if (method)
2874 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2875 obj_type_name,
2876 (obj_type_name && *obj_type_name) ? "::" : "",
2877 name);
2878 else
2879 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2880 func_name);
2881 }
2882 #endif
2883
2884 /* Check how bad the best match is */
2885 for (ix = 1; ix <= nargs; ix++)
2886 {
2887 switch (oload_champ_bv->rank[ix])
2888 {
2889 case 10:
2890 oload_non_standard = 1; /* non-standard type conversions needed */
2891 break;
2892 case 100:
2893 oload_incompatible = 1; /* truly mismatched types */
2894 break;
2895 }
2896 }
2897 if (oload_incompatible)
2898 {
2899 if (method)
2900 error ("Cannot resolve method %s%s%s to any overloaded instance",
2901 obj_type_name,
2902 (obj_type_name && *obj_type_name) ? "::" : "",
2903 name);
2904 else
2905 error ("Cannot resolve function %s to any overloaded instance",
2906 func_name);
2907 }
2908 else if (oload_non_standard)
2909 {
2910 if (method)
2911 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2912 obj_type_name,
2913 (obj_type_name && *obj_type_name) ? "::" : "",
2914 name);
2915 else
2916 warning ("Using non-standard conversion to match function %s to supplied arguments",
2917 func_name);
2918 }
2919
2920 if (method)
2921 {
2922 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2923 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2924 else
2925 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2926 }
2927 else
2928 {
2929 *symp = oload_syms[oload_champ];
2930 free (func_name);
2931 }
2932
2933 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2934 }
2935
2936 /* C++: return 1 is NAME is a legitimate name for the destructor
2937 of type TYPE. If TYPE does not have a destructor, or
2938 if NAME is inappropriate for TYPE, an error is signaled. */
2939 int
2940 destructor_name_p (name, type)
2941 const char *name;
2942 const struct type *type;
2943 {
2944 /* destructors are a special case. */
2945
2946 if (name[0] == '~')
2947 {
2948 char *dname = type_name_no_tag (type);
2949 char *cp = strchr (dname, '<');
2950 unsigned int len;
2951
2952 /* Do not compare the template part for template classes. */
2953 if (cp == NULL)
2954 len = strlen (dname);
2955 else
2956 len = cp - dname;
2957 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2958 error ("name of destructor must equal name of class");
2959 else
2960 return 1;
2961 }
2962 return 0;
2963 }
2964
2965 /* Helper function for check_field: Given TYPE, a structure/union,
2966 return 1 if the component named NAME from the ultimate
2967 target structure/union is defined, otherwise, return 0. */
2968
2969 static int
2970 check_field_in (type, name)
2971 register struct type *type;
2972 const char *name;
2973 {
2974 register int i;
2975
2976 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2977 {
2978 char *t_field_name = TYPE_FIELD_NAME (type, i);
2979 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2980 return 1;
2981 }
2982
2983 /* C++: If it was not found as a data field, then try to
2984 return it as a pointer to a method. */
2985
2986 /* Destructors are a special case. */
2987 if (destructor_name_p (name, type))
2988 {
2989 int m_index, f_index;
2990
2991 return get_destructor_fn_field (type, &m_index, &f_index);
2992 }
2993
2994 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2995 {
2996 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2997 return 1;
2998 }
2999
3000 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3001 if (check_field_in (TYPE_BASECLASS (type, i), name))
3002 return 1;
3003
3004 return 0;
3005 }
3006
3007
3008 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
3009 return 1 if the component named NAME from the ultimate
3010 target structure/union is defined, otherwise, return 0. */
3011
3012 int
3013 check_field (arg1, name)
3014 register value_ptr arg1;
3015 const char *name;
3016 {
3017 register struct type *t;
3018
3019 COERCE_ARRAY (arg1);
3020
3021 t = VALUE_TYPE (arg1);
3022
3023 /* Follow pointers until we get to a non-pointer. */
3024
3025 for (;;)
3026 {
3027 CHECK_TYPEDEF (t);
3028 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
3029 break;
3030 t = TYPE_TARGET_TYPE (t);
3031 }
3032
3033 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
3034 error ("not implemented: member type in check_field");
3035
3036 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3037 && TYPE_CODE (t) != TYPE_CODE_UNION)
3038 error ("Internal error: `this' is not an aggregate");
3039
3040 return check_field_in (t, name);
3041 }
3042
3043 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3044 return the address of this member as a "pointer to member"
3045 type. If INTYPE is non-null, then it will be the type
3046 of the member we are looking for. This will help us resolve
3047 "pointers to member functions". This function is used
3048 to resolve user expressions of the form "DOMAIN::NAME". */
3049
3050 value_ptr
3051 value_struct_elt_for_reference (domain, offset, curtype, name, intype)
3052 struct type *domain, *curtype, *intype;
3053 int offset;
3054 char *name;
3055 {
3056 register struct type *t = curtype;
3057 register int i;
3058 value_ptr v;
3059
3060 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3061 && TYPE_CODE (t) != TYPE_CODE_UNION)
3062 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3063
3064 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3065 {
3066 char *t_field_name = TYPE_FIELD_NAME (t, i);
3067
3068 if (t_field_name && STREQ (t_field_name, name))
3069 {
3070 if (TYPE_FIELD_STATIC (t, i))
3071 {
3072 v = value_static_field (t, i);
3073 if (v == NULL)
3074 error ("Internal error: could not find static variable %s",
3075 name);
3076 return v;
3077 }
3078 if (TYPE_FIELD_PACKED (t, i))
3079 error ("pointers to bitfield members not allowed");
3080
3081 return value_from_longest
3082 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3083 domain)),
3084 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3085 }
3086 }
3087
3088 /* C++: If it was not found as a data field, then try to
3089 return it as a pointer to a method. */
3090
3091 /* Destructors are a special case. */
3092 if (destructor_name_p (name, t))
3093 {
3094 error ("member pointers to destructors not implemented yet");
3095 }
3096
3097 /* Perform all necessary dereferencing. */
3098 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3099 intype = TYPE_TARGET_TYPE (intype);
3100
3101 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3102 {
3103 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3104 char dem_opname[64];
3105
3106 if (strncmp (t_field_name, "__", 2) == 0 ||
3107 strncmp (t_field_name, "op", 2) == 0 ||
3108 strncmp (t_field_name, "type", 4) == 0)
3109 {
3110 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3111 t_field_name = dem_opname;
3112 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3113 t_field_name = dem_opname;
3114 }
3115 if (t_field_name && STREQ (t_field_name, name))
3116 {
3117 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3118 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3119
3120 if (intype == 0 && j > 1)
3121 error ("non-unique member `%s' requires type instantiation", name);
3122 if (intype)
3123 {
3124 while (j--)
3125 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3126 break;
3127 if (j < 0)
3128 error ("no member function matches that type instantiation");
3129 }
3130 else
3131 j = 0;
3132
3133 if (TYPE_FN_FIELD_STUB (f, j))
3134 check_stub_method (t, i, j);
3135 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3136 {
3137 return value_from_longest
3138 (lookup_reference_type
3139 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3140 domain)),
3141 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3142 }
3143 else
3144 {
3145 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3146 0, VAR_NAMESPACE, 0, NULL);
3147 if (s == NULL)
3148 {
3149 v = 0;
3150 }
3151 else
3152 {
3153 v = read_var_value (s, 0);
3154 #if 0
3155 VALUE_TYPE (v) = lookup_reference_type
3156 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3157 domain));
3158 #endif
3159 }
3160 return v;
3161 }
3162 }
3163 }
3164 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3165 {
3166 value_ptr v;
3167 int base_offset;
3168
3169 if (BASETYPE_VIA_VIRTUAL (t, i))
3170 base_offset = 0;
3171 else
3172 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3173 v = value_struct_elt_for_reference (domain,
3174 offset + base_offset,
3175 TYPE_BASECLASS (t, i),
3176 name,
3177 intype);
3178 if (v)
3179 return v;
3180 }
3181 return 0;
3182 }
3183
3184
3185 /* Find the real run-time type of a value using RTTI.
3186 * V is a pointer to the value.
3187 * A pointer to the struct type entry of the run-time type
3188 * is returneed.
3189 * FULL is a flag that is set only if the value V includes
3190 * the entire contents of an object of the RTTI type.
3191 * TOP is the offset to the top of the enclosing object of
3192 * the real run-time type. This offset may be for the embedded
3193 * object, or for the enclosing object of V.
3194 * USING_ENC is the flag that distinguishes the two cases.
3195 * If it is 1, then the offset is for the enclosing object,
3196 * otherwise for the embedded object.
3197 *
3198 */
3199
3200 struct type *
3201 value_rtti_type (v, full, top, using_enc)
3202 value_ptr v;
3203 int *full;
3204 int *top;
3205 int *using_enc;
3206 {
3207 struct type *known_type;
3208 struct type *rtti_type;
3209 CORE_ADDR coreptr;
3210 value_ptr vp;
3211 int using_enclosing = 0;
3212 long top_offset = 0;
3213 char rtti_type_name[256];
3214
3215 if (full)
3216 *full = 0;
3217 if (top)
3218 *top = -1;
3219 if (using_enc)
3220 *using_enc = 0;
3221
3222 /* Get declared type */
3223 known_type = VALUE_TYPE (v);
3224 CHECK_TYPEDEF (known_type);
3225 /* RTTI works only or class objects */
3226 if (TYPE_CODE (known_type) != TYPE_CODE_CLASS)
3227 return NULL;
3228 if (TYPE_HAS_VTABLE(known_type))
3229 {
3230 /* If neither the declared type nor the enclosing type of the
3231 * value structure has a HP ANSI C++ style virtual table,
3232 * we can't do anything. */
3233 if (!TYPE_HAS_VTABLE (known_type))
3234 {
3235 known_type = VALUE_ENCLOSING_TYPE (v);
3236 CHECK_TYPEDEF (known_type);
3237 if ((TYPE_CODE (known_type) != TYPE_CODE_CLASS) ||
3238 !TYPE_HAS_VTABLE (known_type))
3239 return NULL; /* No RTTI, or not HP-compiled types */
3240 CHECK_TYPEDEF (known_type);
3241 using_enclosing = 1;
3242 }
3243
3244 if (using_enclosing && using_enc)
3245 *using_enc = 1;
3246
3247 /* First get the virtual table address */
3248 coreptr = *(CORE_ADDR *) ((VALUE_CONTENTS_ALL (v))
3249 + VALUE_OFFSET (v)
3250 + (using_enclosing ? 0 : VALUE_EMBEDDED_OFFSET (v)));
3251 if (coreptr == 0)
3252 return NULL; /* return silently -- maybe called on gdb-generated value */
3253
3254 /* Fetch the top offset of the object */
3255 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3256 vp = value_at (builtin_type_int,
3257 coreptr + 4 * HP_ACC_TOP_OFFSET_OFFSET,
3258 VALUE_BFD_SECTION (v));
3259 top_offset = value_as_long (vp);
3260 if (top)
3261 *top = top_offset;
3262
3263 /* Fetch the typeinfo pointer */
3264 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3265 vp = value_at (builtin_type_int, coreptr + 4 * HP_ACC_TYPEINFO_OFFSET, VALUE_BFD_SECTION (v));
3266 /* Indirect through the typeinfo pointer and retrieve the pointer
3267 * to the string name */
3268 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
3269 if (!coreptr)
3270 error ("Retrieved null typeinfo pointer in trying to determine run-time type");
3271 vp = value_at (builtin_type_int, coreptr + 4, VALUE_BFD_SECTION (v)); /* 4 -> offset of name field */
3272 /* FIXME possible 32x64 problem */
3273
3274 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
3275
3276 read_memory_string (coreptr, rtti_type_name, 256);
3277
3278 if (strlen (rtti_type_name) == 0)
3279 error ("Retrieved null type name from typeinfo");
3280
3281 /* search for type */
3282 rtti_type = lookup_typename (rtti_type_name, (struct block *) 0, 1);
3283
3284 if (!rtti_type)
3285 error ("Could not find run-time type: invalid type name %s in typeinfo??", rtti_type_name);
3286 CHECK_TYPEDEF (rtti_type);
3287 #if 0
3288 printf ("RTTI type name %s, tag %s, full? %d\n", TYPE_NAME (rtti_type), TYPE_TAG_NAME (rtti_type), full ? *full : -1);
3289 #endif
3290 /* Check whether we have the entire object */
3291 if (full /* Non-null pointer passed */
3292 &&
3293 /* Either we checked on the whole object in hand and found the
3294 top offset to be zero */
3295 (((top_offset == 0) &&
3296 using_enclosing &&
3297 TYPE_LENGTH (known_type) == TYPE_LENGTH (rtti_type))
3298 ||
3299 /* Or we checked on the embedded object and top offset was the
3300 same as the embedded offset */
3301 ((top_offset == VALUE_EMBEDDED_OFFSET (v)) &&
3302 !using_enclosing &&
3303 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (v)) == TYPE_LENGTH (rtti_type))))
3304
3305 *full = 1;
3306 }
3307 else
3308 /*
3309 Right now this is G++ RTTI. Plan on this changing in the
3310 future as i get around to setting the vtables properly for G++
3311 compiled stuff. Also, i'll be using the type info functions,
3312 which are always right. Deal with it until then.
3313 */
3314 {
3315 CORE_ADDR vtbl;
3316 struct minimal_symbol *minsym;
3317 struct symbol *sym;
3318 char *demangled_name;
3319 struct type *btype;
3320 /* If the type has no vptr fieldno, try to get it filled in */
3321 if (TYPE_VPTR_FIELDNO(known_type) < 0)
3322 fill_in_vptr_fieldno(known_type);
3323
3324 /* If we still can't find one, give up */
3325 if (TYPE_VPTR_FIELDNO(known_type) < 0)
3326 return NULL;
3327
3328 /* Make sure our basetype and known type match, otherwise, cast
3329 so we can get at the vtable properly.
3330 */
3331 btype = TYPE_VPTR_BASETYPE (known_type);
3332 CHECK_TYPEDEF (btype);
3333 if (btype != known_type )
3334 {
3335 v = value_cast (btype, v);
3336 if (using_enc)
3337 *using_enc=1;
3338 }
3339 /*
3340 We can't use value_ind here, because it would want to use RTTI, and
3341 we'd waste a bunch of time figuring out we already know the type.
3342 Besides, we don't care about the type, just the actual pointer
3343 */
3344 if (VALUE_ADDRESS (value_field (v, TYPE_VPTR_FIELDNO (known_type))) == 0)
3345 return NULL;
3346
3347 /*
3348 If we are enclosed by something that isn't us, adjust the
3349 address properly and set using_enclosing.
3350 */
3351 if (VALUE_ENCLOSING_TYPE(v) != VALUE_TYPE(v))
3352 {
3353 value_ptr tempval;
3354 tempval=value_field(v,TYPE_VPTR_FIELDNO(known_type));
3355 VALUE_ADDRESS(tempval)+=(TYPE_BASECLASS_BITPOS(known_type,TYPE_VPTR_FIELDNO(known_type))/8);
3356 vtbl=value_as_pointer(tempval);
3357 using_enclosing=1;
3358 }
3359 else
3360 {
3361 vtbl=value_as_pointer(value_field(v,TYPE_VPTR_FIELDNO(known_type)));
3362 using_enclosing=0;
3363 }
3364
3365 /* Try to find a symbol that is the vtable */
3366 minsym=lookup_minimal_symbol_by_pc(vtbl);
3367 if (minsym==NULL || (demangled_name=SYMBOL_NAME(minsym))==NULL || !VTBL_PREFIX_P(demangled_name))
3368 return NULL;
3369
3370 /* If we just skip the prefix, we get screwed by namespaces */
3371 demangled_name=cplus_demangle(demangled_name,DMGL_PARAMS|DMGL_ANSI);
3372 *(strchr(demangled_name,' '))=0;
3373
3374 /* Lookup the type for the name */
3375 rtti_type=lookup_typename(demangled_name, (struct block *)0,1);
3376
3377 if (rtti_type==NULL)
3378 return NULL;
3379
3380 if (TYPE_N_BASECLASSES(rtti_type) > 1 && full && (*full) != 1)
3381 {
3382 if (top)
3383 *top=TYPE_BASECLASS_BITPOS(rtti_type,TYPE_VPTR_FIELDNO(rtti_type))/8;
3384 if (top && ((*top) >0))
3385 {
3386 if (TYPE_LENGTH(rtti_type) > TYPE_LENGTH(known_type))
3387 {
3388 if (full)
3389 *full=0;
3390 }
3391 else
3392 {
3393 if (full)
3394 *full=1;
3395 }
3396 }
3397 }
3398 else
3399 {
3400 if (full)
3401 *full=1;
3402 }
3403 if (using_enc)
3404 *using_enc=using_enclosing;
3405 }
3406 return rtti_type;
3407 }
3408
3409 /* Given a pointer value V, find the real (RTTI) type
3410 of the object it points to.
3411 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3412 and refer to the values computed for the object pointed to. */
3413
3414 struct type *
3415 value_rtti_target_type (v, full, top, using_enc)
3416 value_ptr v;
3417 int *full;
3418 int *top;
3419 int *using_enc;
3420 {
3421 value_ptr target;
3422
3423 target = value_ind (v);
3424
3425 return value_rtti_type (target, full, top, using_enc);
3426 }
3427
3428 /* Given a value pointed to by ARGP, check its real run-time type, and
3429 if that is different from the enclosing type, create a new value
3430 using the real run-time type as the enclosing type (and of the same
3431 type as ARGP) and return it, with the embedded offset adjusted to
3432 be the correct offset to the enclosed object
3433 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3434 parameters, computed by value_rtti_type(). If these are available,
3435 they can be supplied and a second call to value_rtti_type() is avoided.
3436 (Pass RTYPE == NULL if they're not available */
3437
3438 value_ptr
3439 value_full_object (argp, rtype, xfull, xtop, xusing_enc)
3440 value_ptr argp;
3441 struct type *rtype;
3442 int xfull;
3443 int xtop;
3444 int xusing_enc;
3445
3446 {
3447 struct type *real_type;
3448 int full = 0;
3449 int top = -1;
3450 int using_enc = 0;
3451 value_ptr new_val;
3452
3453 if (rtype)
3454 {
3455 real_type = rtype;
3456 full = xfull;
3457 top = xtop;
3458 using_enc = xusing_enc;
3459 }
3460 else
3461 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3462
3463 /* If no RTTI data, or if object is already complete, do nothing */
3464 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3465 return argp;
3466
3467 /* If we have the full object, but for some reason the enclosing
3468 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3469 if (full)
3470 {
3471 VALUE_ENCLOSING_TYPE (argp) = real_type;
3472 return argp;
3473 }
3474
3475 /* Check if object is in memory */
3476 if (VALUE_LVAL (argp) != lval_memory)
3477 {
3478 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3479
3480 return argp;
3481 }
3482
3483 /* All other cases -- retrieve the complete object */
3484 /* Go back by the computed top_offset from the beginning of the object,
3485 adjusting for the embedded offset of argp if that's what value_rtti_type
3486 used for its computation. */
3487 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3488 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3489 VALUE_BFD_SECTION (argp));
3490 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3491 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3492 return new_val;
3493 }
3494
3495
3496
3497
3498 /* C++: return the value of the class instance variable, if one exists.
3499 Flag COMPLAIN signals an error if the request is made in an
3500 inappropriate context. */
3501
3502 value_ptr
3503 value_of_this (complain)
3504 int complain;
3505 {
3506 struct symbol *func, *sym;
3507 struct block *b;
3508 int i;
3509 static const char funny_this[] = "this";
3510 value_ptr this;
3511
3512 if (selected_frame == 0)
3513 {
3514 if (complain)
3515 error ("no frame selected");
3516 else
3517 return 0;
3518 }
3519
3520 func = get_frame_function (selected_frame);
3521 if (!func)
3522 {
3523 if (complain)
3524 error ("no `this' in nameless context");
3525 else
3526 return 0;
3527 }
3528
3529 b = SYMBOL_BLOCK_VALUE (func);
3530 i = BLOCK_NSYMS (b);
3531 if (i <= 0)
3532 {
3533 if (complain)
3534 error ("no args, no `this'");
3535 else
3536 return 0;
3537 }
3538
3539 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3540 symbol instead of the LOC_ARG one (if both exist). */
3541 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
3542 if (sym == NULL)
3543 {
3544 if (complain)
3545 error ("current stack frame not in method");
3546 else
3547 return NULL;
3548 }
3549
3550 this = read_var_value (sym, selected_frame);
3551 if (this == 0 && complain)
3552 error ("`this' argument at unknown address");
3553 return this;
3554 }
3555
3556 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3557 long, starting at LOWBOUND. The result has the same lower bound as
3558 the original ARRAY. */
3559
3560 value_ptr
3561 value_slice (array, lowbound, length)
3562 value_ptr array;
3563 int lowbound, length;
3564 {
3565 struct type *slice_range_type, *slice_type, *range_type;
3566 LONGEST lowerbound, upperbound, offset;
3567 value_ptr slice;
3568 struct type *array_type;
3569 array_type = check_typedef (VALUE_TYPE (array));
3570 COERCE_VARYING_ARRAY (array, array_type);
3571 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3572 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3573 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3574 error ("cannot take slice of non-array");
3575 range_type = TYPE_INDEX_TYPE (array_type);
3576 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3577 error ("slice from bad array or bitstring");
3578 if (lowbound < lowerbound || length < 0
3579 || lowbound + length - 1 > upperbound
3580 /* Chill allows zero-length strings but not arrays. */
3581 || (current_language->la_language == language_chill
3582 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3583 error ("slice out of range");
3584 /* FIXME-type-allocation: need a way to free this type when we are
3585 done with it. */
3586 slice_range_type = create_range_type ((struct type *) NULL,
3587 TYPE_TARGET_TYPE (range_type),
3588 lowbound, lowbound + length - 1);
3589 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3590 {
3591 int i;
3592 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3593 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3594 slice = value_zero (slice_type, not_lval);
3595 for (i = 0; i < length; i++)
3596 {
3597 int element = value_bit_index (array_type,
3598 VALUE_CONTENTS (array),
3599 lowbound + i);
3600 if (element < 0)
3601 error ("internal error accessing bitstring");
3602 else if (element > 0)
3603 {
3604 int j = i % TARGET_CHAR_BIT;
3605 if (BITS_BIG_ENDIAN)
3606 j = TARGET_CHAR_BIT - 1 - j;
3607 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3608 }
3609 }
3610 /* We should set the address, bitssize, and bitspos, so the clice
3611 can be used on the LHS, but that may require extensions to
3612 value_assign. For now, just leave as a non_lval. FIXME. */
3613 }
3614 else
3615 {
3616 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3617 offset
3618 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3619 slice_type = create_array_type ((struct type *) NULL, element_type,
3620 slice_range_type);
3621 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3622 slice = allocate_value (slice_type);
3623 if (VALUE_LAZY (array))
3624 VALUE_LAZY (slice) = 1;
3625 else
3626 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3627 TYPE_LENGTH (slice_type));
3628 if (VALUE_LVAL (array) == lval_internalvar)
3629 VALUE_LVAL (slice) = lval_internalvar_component;
3630 else
3631 VALUE_LVAL (slice) = VALUE_LVAL (array);
3632 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3633 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3634 }
3635 return slice;
3636 }
3637
3638 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3639 value as a fixed-length array. */
3640
3641 value_ptr
3642 varying_to_slice (varray)
3643 value_ptr varray;
3644 {
3645 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3646 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3647 VALUE_CONTENTS (varray)
3648 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3649 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3650 }
3651
3652 /* Create a value for a FORTRAN complex number. Currently most of
3653 the time values are coerced to COMPLEX*16 (i.e. a complex number
3654 composed of 2 doubles. This really should be a smarter routine
3655 that figures out precision inteligently as opposed to assuming
3656 doubles. FIXME: fmb */
3657
3658 value_ptr
3659 value_literal_complex (arg1, arg2, type)
3660 value_ptr arg1;
3661 value_ptr arg2;
3662 struct type *type;
3663 {
3664 register value_ptr val;
3665 struct type *real_type = TYPE_TARGET_TYPE (type);
3666
3667 val = allocate_value (type);
3668 arg1 = value_cast (real_type, arg1);
3669 arg2 = value_cast (real_type, arg2);
3670
3671 memcpy (VALUE_CONTENTS_RAW (val),
3672 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3673 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3674 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3675 return val;
3676 }
3677
3678 /* Cast a value into the appropriate complex data type. */
3679
3680 static value_ptr
3681 cast_into_complex (type, val)
3682 struct type *type;
3683 register value_ptr val;
3684 {
3685 struct type *real_type = TYPE_TARGET_TYPE (type);
3686 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3687 {
3688 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3689 value_ptr re_val = allocate_value (val_real_type);
3690 value_ptr im_val = allocate_value (val_real_type);
3691
3692 memcpy (VALUE_CONTENTS_RAW (re_val),
3693 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3694 memcpy (VALUE_CONTENTS_RAW (im_val),
3695 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3696 TYPE_LENGTH (val_real_type));
3697
3698 return value_literal_complex (re_val, im_val, type);
3699 }
3700 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3701 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3702 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3703 else
3704 error ("cannot cast non-number to complex");
3705 }
3706
3707 void
3708 _initialize_valops ()
3709 {
3710 #if 0
3711 add_show_from_set
3712 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3713 "Set automatic abandonment of expressions upon failure.",
3714 &setlist),
3715 &showlist);
3716 #endif
3717
3718 add_show_from_set
3719 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3720 "Set overload resolution in evaluating C++ functions.",
3721 &setlist),
3722 &showlist);
3723 overload_resolution = 1;
3724
3725 add_show_from_set (
3726 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3727 (char *) &unwind_on_signal_p,
3728 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3729 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3730 is received while in a function called from gdb (call dummy). If set, gdb\n\
3731 unwinds the stack and restore the context to what as it was before the call.\n\
3732 The default is to stop in the frame where the signal was received.", &setlist),
3733 &showlist);
3734 }
This page took 0.162067 seconds and 5 git commands to generate.