import gdb-1999-07-05 snapshot
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 87, 89, 91, 92, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "target.h"
29 #include "demangle.h"
30 #include "language.h"
31 #include "gdbcmd.h"
32
33 #include <errno.h>
34 #include "gdb_string.h"
35
36 /* Default to coercing float to double in function calls only when there is
37 no prototype. Otherwise on targets where the debug information is incorrect
38 for either the prototype or non-prototype case, we can force it by defining
39 COERCE_FLOAT_TO_DOUBLE in the target configuration file. */
40
41 #ifndef COERCE_FLOAT_TO_DOUBLE
42 #define COERCE_FLOAT_TO_DOUBLE (param_type == NULL)
43 #endif
44
45 /* Flag indicating HP compilers were used; needed to correctly handle some
46 value operations with HP aCC code/runtime. */
47 extern int hp_som_som_object_present;
48
49
50 /* Local functions. */
51
52 static int typecmp PARAMS ((int staticp, struct type *t1[], value_ptr t2[]));
53
54 static CORE_ADDR find_function_addr PARAMS ((value_ptr, struct type **));
55 static value_ptr value_arg_coerce PARAMS ((value_ptr, struct type *, int));
56
57
58 static CORE_ADDR value_push PARAMS ((CORE_ADDR, value_ptr));
59
60 static value_ptr search_struct_field PARAMS ((char *, value_ptr, int,
61 struct type *, int));
62
63 static value_ptr search_struct_field_aux PARAMS ((char *, value_ptr, int,
64 struct type *, int, int *, char *,
65 struct type **));
66
67 static value_ptr search_struct_method PARAMS ((char *, value_ptr *,
68 value_ptr *,
69 int, int *, struct type *));
70
71 static int check_field_in PARAMS ((struct type *, const char *));
72
73 static CORE_ADDR allocate_space_in_inferior PARAMS ((int));
74
75 static value_ptr cast_into_complex PARAMS ((struct type *, value_ptr));
76
77 static struct fn_field *find_method_list PARAMS ((value_ptr *argp, char * method, int offset, int * static_memfuncp, struct type * type, int * num_fns, struct type ** basetype, int * boffset));
78
79 void _initialize_valops PARAMS ((void));
80
81 #define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL)
82
83 /* Flag for whether we want to abandon failed expression evals by default. */
84
85 #if 0
86 static int auto_abandon = 0;
87 #endif
88
89 int overload_resolution = 0;
90
91
92 \f
93 /* Find the address of function name NAME in the inferior. */
94
95 value_ptr
96 find_function_in_inferior (name)
97 char *name;
98 {
99 register struct symbol *sym;
100 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
101 if (sym != NULL)
102 {
103 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
104 {
105 error ("\"%s\" exists in this program but is not a function.",
106 name);
107 }
108 return value_of_variable (sym, NULL);
109 }
110 else
111 {
112 struct minimal_symbol *msymbol = lookup_minimal_symbol(name, NULL, NULL);
113 if (msymbol != NULL)
114 {
115 struct type *type;
116 LONGEST maddr;
117 type = lookup_pointer_type (builtin_type_char);
118 type = lookup_function_type (type);
119 type = lookup_pointer_type (type);
120 maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol);
121 return value_from_longest (type, maddr);
122 }
123 else
124 {
125 if (!target_has_execution)
126 error ("evaluation of this expression requires the target program to be active");
127 else
128 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
129 }
130 }
131 }
132
133 /* Allocate NBYTES of space in the inferior using the inferior's malloc
134 and return a value that is a pointer to the allocated space. */
135
136 value_ptr
137 value_allocate_space_in_inferior (len)
138 int len;
139 {
140 value_ptr blocklen;
141 register value_ptr val = find_function_in_inferior ("malloc");
142
143 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
144 val = call_function_by_hand (val, 1, &blocklen);
145 if (value_logical_not (val))
146 {
147 if (!target_has_execution)
148 error ("No memory available to program now: you need to start the target first");
149 else
150 error ("No memory available to program: call to malloc failed");
151 }
152 return val;
153 }
154
155 static CORE_ADDR
156 allocate_space_in_inferior (len)
157 int len;
158 {
159 return value_as_long (value_allocate_space_in_inferior (len));
160 }
161
162 /* Cast value ARG2 to type TYPE and return as a value.
163 More general than a C cast: accepts any two types of the same length,
164 and if ARG2 is an lvalue it can be cast into anything at all. */
165 /* In C++, casts may change pointer or object representations. */
166
167 value_ptr
168 value_cast (type, arg2)
169 struct type *type;
170 register value_ptr arg2;
171 {
172 register enum type_code code1;
173 register enum type_code code2;
174 register int scalar;
175 struct type *type2;
176
177 int convert_to_boolean = 0;
178
179 if (VALUE_TYPE (arg2) == type)
180 return arg2;
181
182 CHECK_TYPEDEF (type);
183 code1 = TYPE_CODE (type);
184 COERCE_REF(arg2);
185 type2 = check_typedef (VALUE_TYPE (arg2));
186
187 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
188 is treated like a cast to (TYPE [N])OBJECT,
189 where N is sizeof(OBJECT)/sizeof(TYPE). */
190 if (code1 == TYPE_CODE_ARRAY)
191 {
192 struct type *element_type = TYPE_TARGET_TYPE (type);
193 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
194 if (element_length > 0
195 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
196 {
197 struct type *range_type = TYPE_INDEX_TYPE (type);
198 int val_length = TYPE_LENGTH (type2);
199 LONGEST low_bound, high_bound, new_length;
200 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
201 low_bound = 0, high_bound = 0;
202 new_length = val_length / element_length;
203 if (val_length % element_length != 0)
204 warning("array element type size does not divide object size in cast");
205 /* FIXME-type-allocation: need a way to free this type when we are
206 done with it. */
207 range_type = create_range_type ((struct type *) NULL,
208 TYPE_TARGET_TYPE (range_type),
209 low_bound,
210 new_length + low_bound - 1);
211 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
212 element_type, range_type);
213 return arg2;
214 }
215 }
216
217 if (current_language->c_style_arrays
218 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
219 arg2 = value_coerce_array (arg2);
220
221 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
222 arg2 = value_coerce_function (arg2);
223
224 type2 = check_typedef (VALUE_TYPE (arg2));
225 COERCE_VARYING_ARRAY (arg2, type2);
226 code2 = TYPE_CODE (type2);
227
228 if (code1 == TYPE_CODE_COMPLEX)
229 return cast_into_complex (type, arg2);
230 if (code1 == TYPE_CODE_BOOL)
231 {
232 code1 = TYPE_CODE_INT;
233 convert_to_boolean = 1;
234 }
235 if (code1 == TYPE_CODE_CHAR)
236 code1 = TYPE_CODE_INT;
237 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
238 code2 = TYPE_CODE_INT;
239
240 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
241 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
242
243 if ( code1 == TYPE_CODE_STRUCT
244 && code2 == TYPE_CODE_STRUCT
245 && TYPE_NAME (type) != 0)
246 {
247 /* Look in the type of the source to see if it contains the
248 type of the target as a superclass. If so, we'll need to
249 offset the object in addition to changing its type. */
250 value_ptr v = search_struct_field (type_name_no_tag (type),
251 arg2, 0, type2, 1);
252 if (v)
253 {
254 VALUE_TYPE (v) = type;
255 return v;
256 }
257 }
258 if (code1 == TYPE_CODE_FLT && scalar)
259 return value_from_double (type, value_as_double (arg2));
260 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
261 || code1 == TYPE_CODE_RANGE)
262 && (scalar || code2 == TYPE_CODE_PTR))
263 {
264 LONGEST longest;
265
266 if (hp_som_som_object_present && /* if target compiled by HP aCC */
267 (code2 == TYPE_CODE_PTR))
268 {
269 unsigned int * ptr;
270 value_ptr retvalp;
271
272 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
273 {
274 /* With HP aCC, pointers to data members have a bias */
275 case TYPE_CODE_MEMBER:
276 retvalp = value_from_longest (type, value_as_long (arg2));
277 ptr = (unsigned int *) VALUE_CONTENTS (retvalp); /* force evaluation */
278 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
279 return retvalp;
280
281 /* While pointers to methods don't really point to a function */
282 case TYPE_CODE_METHOD:
283 error ("Pointers to methods not supported with HP aCC");
284
285 default:
286 break; /* fall out and go to normal handling */
287 }
288 }
289 longest = value_as_long (arg2);
290 return value_from_longest (type, convert_to_boolean ? (LONGEST) (longest ? 1 : 0) : longest);
291 }
292 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
293 {
294 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
295 {
296 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
297 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
298 if ( TYPE_CODE (t1) == TYPE_CODE_STRUCT
299 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
300 && !value_logical_not (arg2))
301 {
302 value_ptr v;
303
304 /* Look in the type of the source to see if it contains the
305 type of the target as a superclass. If so, we'll need to
306 offset the pointer rather than just change its type. */
307 if (TYPE_NAME (t1) != NULL)
308 {
309 v = search_struct_field (type_name_no_tag (t1),
310 value_ind (arg2), 0, t2, 1);
311 if (v)
312 {
313 v = value_addr (v);
314 VALUE_TYPE (v) = type;
315 return v;
316 }
317 }
318
319 /* Look in the type of the target to see if it contains the
320 type of the source as a superclass. If so, we'll need to
321 offset the pointer rather than just change its type.
322 FIXME: This fails silently with virtual inheritance. */
323 if (TYPE_NAME (t2) != NULL)
324 {
325 v = search_struct_field (type_name_no_tag (t2),
326 value_zero (t1, not_lval), 0, t1, 1);
327 if (v)
328 {
329 value_ptr v2 = value_ind (arg2);
330 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
331 + VALUE_OFFSET (v);
332 v2 = value_addr (v2);
333 VALUE_TYPE (v2) = type;
334 return v2;
335 }
336 }
337 }
338 /* No superclass found, just fall through to change ptr type. */
339 }
340 VALUE_TYPE (arg2) = type;
341 VALUE_ENCLOSING_TYPE (arg2) = type; /* pai: chk_val */
342 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
343 return arg2;
344 }
345 else if (chill_varying_type (type))
346 {
347 struct type *range1, *range2, *eltype1, *eltype2;
348 value_ptr val;
349 int count1, count2;
350 LONGEST low_bound, high_bound;
351 char *valaddr, *valaddr_data;
352 /* For lint warning about eltype2 possibly uninitialized: */
353 eltype2 = NULL;
354 if (code2 == TYPE_CODE_BITSTRING)
355 error ("not implemented: converting bitstring to varying type");
356 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
357 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
358 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
359 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
360 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
361 error ("Invalid conversion to varying type");
362 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
363 range2 = TYPE_FIELD_TYPE (type2, 0);
364 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
365 count1 = -1;
366 else
367 count1 = high_bound - low_bound + 1;
368 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
369 count1 = -1, count2 = 0; /* To force error before */
370 else
371 count2 = high_bound - low_bound + 1;
372 if (count2 > count1)
373 error ("target varying type is too small");
374 val = allocate_value (type);
375 valaddr = VALUE_CONTENTS_RAW (val);
376 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
377 /* Set val's __var_length field to count2. */
378 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
379 count2);
380 /* Set the __var_data field to count2 elements copied from arg2. */
381 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
382 count2 * TYPE_LENGTH (eltype2));
383 /* Zero the rest of the __var_data field of val. */
384 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
385 (count1 - count2) * TYPE_LENGTH (eltype2));
386 return val;
387 }
388 else if (VALUE_LVAL (arg2) == lval_memory)
389 {
390 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
391 VALUE_BFD_SECTION (arg2));
392 }
393 else if (code1 == TYPE_CODE_VOID)
394 {
395 return value_zero (builtin_type_void, not_lval);
396 }
397 else
398 {
399 error ("Invalid cast.");
400 return 0;
401 }
402 }
403
404 /* Create a value of type TYPE that is zero, and return it. */
405
406 value_ptr
407 value_zero (type, lv)
408 struct type *type;
409 enum lval_type lv;
410 {
411 register value_ptr val = allocate_value (type);
412
413 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
414 VALUE_LVAL (val) = lv;
415
416 return val;
417 }
418
419 /* Return a value with type TYPE located at ADDR.
420
421 Call value_at only if the data needs to be fetched immediately;
422 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
423 value_at_lazy instead. value_at_lazy simply records the address of
424 the data and sets the lazy-evaluation-required flag. The lazy flag
425 is tested in the VALUE_CONTENTS macro, which is used if and when
426 the contents are actually required.
427
428 Note: value_at does *NOT* handle embedded offsets; perform such
429 adjustments before or after calling it. */
430
431 value_ptr
432 value_at (type, addr, sect)
433 struct type *type;
434 CORE_ADDR addr;
435 asection *sect;
436 {
437 register value_ptr val;
438
439 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
440 error ("Attempt to dereference a generic pointer.");
441
442 val = allocate_value (type);
443
444 if (GDB_TARGET_IS_D10V
445 && TYPE_CODE (type) == TYPE_CODE_PTR
446 && TYPE_TARGET_TYPE (type)
447 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
448 {
449 /* pointer to function */
450 unsigned long num;
451 unsigned short snum;
452 snum = read_memory_unsigned_integer (addr, 2);
453 num = D10V_MAKE_IADDR (snum);
454 store_address (VALUE_CONTENTS_RAW (val), 4, num);
455 }
456 else if (GDB_TARGET_IS_D10V
457 && TYPE_CODE(type) == TYPE_CODE_PTR)
458 {
459 /* pointer to data */
460 unsigned long num;
461 unsigned short snum;
462 snum = read_memory_unsigned_integer (addr, 2);
463 num = D10V_MAKE_DADDR (snum);
464 store_address (VALUE_CONTENTS_RAW (val), 4, num);
465 }
466 else
467 read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type), sect);
468
469 VALUE_LVAL (val) = lval_memory;
470 VALUE_ADDRESS (val) = addr;
471 VALUE_BFD_SECTION (val) = sect;
472
473 return val;
474 }
475
476 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
477
478 value_ptr
479 value_at_lazy (type, addr, sect)
480 struct type *type;
481 CORE_ADDR addr;
482 asection *sect;
483 {
484 register value_ptr val;
485
486 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
487 error ("Attempt to dereference a generic pointer.");
488
489 val = allocate_value (type);
490
491 VALUE_LVAL (val) = lval_memory;
492 VALUE_ADDRESS (val) = addr;
493 VALUE_LAZY (val) = 1;
494 VALUE_BFD_SECTION (val) = sect;
495
496 return val;
497 }
498
499 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
500 if the current data for a variable needs to be loaded into
501 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
502 clears the lazy flag to indicate that the data in the buffer is valid.
503
504 If the value is zero-length, we avoid calling read_memory, which would
505 abort. We mark the value as fetched anyway -- all 0 bytes of it.
506
507 This function returns a value because it is used in the VALUE_CONTENTS
508 macro as part of an expression, where a void would not work. The
509 value is ignored. */
510
511 int
512 value_fetch_lazy (val)
513 register value_ptr val;
514 {
515 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
516 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
517
518 struct type *type = VALUE_TYPE(val);
519 if (GDB_TARGET_IS_D10V
520 && TYPE_CODE (type) == TYPE_CODE_PTR
521 && TYPE_TARGET_TYPE (type)
522 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
523 {
524 /* pointer to function */
525 unsigned long num;
526 unsigned short snum;
527 snum = read_memory_unsigned_integer (addr, 2);
528 num = D10V_MAKE_IADDR(snum);
529 store_address ( VALUE_CONTENTS_RAW (val), 4, num);
530 }
531 else if (GDB_TARGET_IS_D10V
532 && TYPE_CODE(type) == TYPE_CODE_PTR)
533 {
534 /* pointer to data */
535 unsigned long num;
536 unsigned short snum;
537 snum = read_memory_unsigned_integer (addr, 2);
538 num = D10V_MAKE_DADDR(snum);
539 store_address ( VALUE_CONTENTS_RAW (val), 4, num);
540 }
541 else if (length)
542 read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), length,
543 VALUE_BFD_SECTION (val));
544 VALUE_LAZY (val) = 0;
545 return 0;
546 }
547
548
549 /* Store the contents of FROMVAL into the location of TOVAL.
550 Return a new value with the location of TOVAL and contents of FROMVAL. */
551
552 value_ptr
553 value_assign (toval, fromval)
554 register value_ptr toval, fromval;
555 {
556 register struct type *type;
557 register value_ptr val;
558 char raw_buffer[MAX_REGISTER_RAW_SIZE];
559 int use_buffer = 0;
560
561 if (!toval->modifiable)
562 error ("Left operand of assignment is not a modifiable lvalue.");
563
564 COERCE_REF (toval);
565
566 type = VALUE_TYPE (toval);
567 if (VALUE_LVAL (toval) != lval_internalvar)
568 fromval = value_cast (type, fromval);
569 else
570 COERCE_ARRAY (fromval);
571 CHECK_TYPEDEF (type);
572
573 /* If TOVAL is a special machine register requiring conversion
574 of program values to a special raw format,
575 convert FROMVAL's contents now, with result in `raw_buffer',
576 and set USE_BUFFER to the number of bytes to write. */
577
578 if (VALUE_REGNO (toval) >= 0)
579 {
580 int regno = VALUE_REGNO (toval);
581 if (REGISTER_CONVERTIBLE (regno))
582 {
583 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
584 REGISTER_CONVERT_TO_RAW (fromtype, regno,
585 VALUE_CONTENTS (fromval), raw_buffer);
586 use_buffer = REGISTER_RAW_SIZE (regno);
587 }
588 }
589
590 switch (VALUE_LVAL (toval))
591 {
592 case lval_internalvar:
593 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
594 val = value_copy (VALUE_INTERNALVAR (toval)->value);
595 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
596 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
597 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
598 return val;
599
600 case lval_internalvar_component:
601 set_internalvar_component (VALUE_INTERNALVAR (toval),
602 VALUE_OFFSET (toval),
603 VALUE_BITPOS (toval),
604 VALUE_BITSIZE (toval),
605 fromval);
606 break;
607
608 case lval_memory:
609 {
610 char *dest_buffer;
611 CORE_ADDR changed_addr;
612 int changed_len;
613
614 if (VALUE_BITSIZE (toval))
615 {
616 char buffer[sizeof (LONGEST)];
617 /* We assume that the argument to read_memory is in units of
618 host chars. FIXME: Is that correct? */
619 changed_len = (VALUE_BITPOS (toval)
620 + VALUE_BITSIZE (toval)
621 + HOST_CHAR_BIT - 1)
622 / HOST_CHAR_BIT;
623
624 if (changed_len > (int) sizeof (LONGEST))
625 error ("Can't handle bitfields which don't fit in a %d bit word.",
626 sizeof (LONGEST) * HOST_CHAR_BIT);
627
628 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
629 buffer, changed_len);
630 modify_field (buffer, value_as_long (fromval),
631 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
632 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
633 dest_buffer = buffer;
634 }
635 else if (use_buffer)
636 {
637 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
638 changed_len = use_buffer;
639 dest_buffer = raw_buffer;
640 }
641 else
642 {
643 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
644 changed_len = TYPE_LENGTH (type);
645 dest_buffer = VALUE_CONTENTS (fromval);
646 }
647
648 write_memory (changed_addr, dest_buffer, changed_len);
649 if (memory_changed_hook)
650 memory_changed_hook (changed_addr, changed_len);
651 }
652 break;
653
654 case lval_register:
655 if (VALUE_BITSIZE (toval))
656 {
657 char buffer[sizeof (LONGEST)];
658 int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval));
659
660 if (len > (int) sizeof (LONGEST))
661 error ("Can't handle bitfields in registers larger than %d bits.",
662 sizeof (LONGEST) * HOST_CHAR_BIT);
663
664 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
665 > len * HOST_CHAR_BIT)
666 /* Getting this right would involve being very careful about
667 byte order. */
668 error ("\
669 Can't handle bitfield which doesn't fit in a single register.");
670
671 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
672 buffer, len);
673 modify_field (buffer, value_as_long (fromval),
674 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
675 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
676 buffer, len);
677 }
678 else if (use_buffer)
679 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
680 raw_buffer, use_buffer);
681 else
682 {
683 /* Do any conversion necessary when storing this type to more
684 than one register. */
685 #ifdef REGISTER_CONVERT_FROM_TYPE
686 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
687 REGISTER_CONVERT_FROM_TYPE(VALUE_REGNO (toval), type, raw_buffer);
688 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
689 raw_buffer, TYPE_LENGTH (type));
690 #else
691 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
692 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
693 #endif
694 }
695 /* Assigning to the stack pointer, frame pointer, and other
696 (architecture and calling convention specific) registers may
697 cause the frame cache to be out of date. We just do this
698 on all assignments to registers for simplicity; I doubt the slowdown
699 matters. */
700 reinit_frame_cache ();
701 break;
702
703 case lval_reg_frame_relative:
704 {
705 /* value is stored in a series of registers in the frame
706 specified by the structure. Copy that value out, modify
707 it, and copy it back in. */
708 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
709 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
710 int byte_offset = VALUE_OFFSET (toval) % reg_size;
711 int reg_offset = VALUE_OFFSET (toval) / reg_size;
712 int amount_copied;
713
714 /* Make the buffer large enough in all cases. */
715 char *buffer = (char *) alloca (amount_to_copy
716 + sizeof (LONGEST)
717 + MAX_REGISTER_RAW_SIZE);
718
719 int regno;
720 struct frame_info *frame;
721
722 /* Figure out which frame this is in currently. */
723 for (frame = get_current_frame ();
724 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
725 frame = get_prev_frame (frame))
726 ;
727
728 if (!frame)
729 error ("Value being assigned to is no longer active.");
730
731 amount_to_copy += (reg_size - amount_to_copy % reg_size);
732
733 /* Copy it out. */
734 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
735 amount_copied = 0);
736 amount_copied < amount_to_copy;
737 amount_copied += reg_size, regno++)
738 {
739 get_saved_register (buffer + amount_copied,
740 (int *)NULL, (CORE_ADDR *)NULL,
741 frame, regno, (enum lval_type *)NULL);
742 }
743
744 /* Modify what needs to be modified. */
745 if (VALUE_BITSIZE (toval))
746 modify_field (buffer + byte_offset,
747 value_as_long (fromval),
748 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
749 else if (use_buffer)
750 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
751 else
752 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
753 TYPE_LENGTH (type));
754
755 /* Copy it back. */
756 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
757 amount_copied = 0);
758 amount_copied < amount_to_copy;
759 amount_copied += reg_size, regno++)
760 {
761 enum lval_type lval;
762 CORE_ADDR addr;
763 int optim;
764
765 /* Just find out where to put it. */
766 get_saved_register ((char *)NULL,
767 &optim, &addr, frame, regno, &lval);
768
769 if (optim)
770 error ("Attempt to assign to a value that was optimized out.");
771 if (lval == lval_memory)
772 write_memory (addr, buffer + amount_copied, reg_size);
773 else if (lval == lval_register)
774 write_register_bytes (addr, buffer + amount_copied, reg_size);
775 else
776 error ("Attempt to assign to an unmodifiable value.");
777 }
778
779 if (register_changed_hook)
780 register_changed_hook (-1);
781 }
782 break;
783
784
785 default:
786 error ("Left operand of assignment is not an lvalue.");
787 }
788
789 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
790 If the field is signed, and is negative, then sign extend. */
791 if ((VALUE_BITSIZE (toval) > 0)
792 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
793 {
794 LONGEST fieldval = value_as_long (fromval);
795 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
796
797 fieldval &= valmask;
798 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
799 fieldval |= ~valmask;
800
801 fromval = value_from_longest (type, fieldval);
802 }
803
804 val = value_copy (toval);
805 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
806 TYPE_LENGTH (type));
807 VALUE_TYPE (val) = type;
808 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
809 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
810 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
811
812 return val;
813 }
814
815 /* Extend a value VAL to COUNT repetitions of its type. */
816
817 value_ptr
818 value_repeat (arg1, count)
819 value_ptr arg1;
820 int count;
821 {
822 register value_ptr val;
823
824 if (VALUE_LVAL (arg1) != lval_memory)
825 error ("Only values in memory can be extended with '@'.");
826 if (count < 1)
827 error ("Invalid number %d of repetitions.", count);
828
829 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
830
831 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
832 VALUE_CONTENTS_ALL_RAW (val),
833 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
834 VALUE_LVAL (val) = lval_memory;
835 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
836
837 return val;
838 }
839
840 value_ptr
841 value_of_variable (var, b)
842 struct symbol *var;
843 struct block *b;
844 {
845 value_ptr val;
846 struct frame_info *frame = NULL;
847
848 if (!b)
849 frame = NULL; /* Use selected frame. */
850 else if (symbol_read_needs_frame (var))
851 {
852 frame = block_innermost_frame (b);
853 if (!frame)
854 {
855 if (BLOCK_FUNCTION (b)
856 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
857 error ("No frame is currently executing in block %s.",
858 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
859 else
860 error ("No frame is currently executing in specified block");
861 }
862 }
863
864 val = read_var_value (var, frame);
865 if (!val)
866 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
867
868 return val;
869 }
870
871 /* Given a value which is an array, return a value which is a pointer to its
872 first element, regardless of whether or not the array has a nonzero lower
873 bound.
874
875 FIXME: A previous comment here indicated that this routine should be
876 substracting the array's lower bound. It's not clear to me that this
877 is correct. Given an array subscripting operation, it would certainly
878 work to do the adjustment here, essentially computing:
879
880 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
881
882 However I believe a more appropriate and logical place to account for
883 the lower bound is to do so in value_subscript, essentially computing:
884
885 (&array[0] + ((index - lowerbound) * sizeof array[0]))
886
887 As further evidence consider what would happen with operations other
888 than array subscripting, where the caller would get back a value that
889 had an address somewhere before the actual first element of the array,
890 and the information about the lower bound would be lost because of
891 the coercion to pointer type.
892 */
893
894 value_ptr
895 value_coerce_array (arg1)
896 value_ptr arg1;
897 {
898 register struct type *type = check_typedef (VALUE_TYPE (arg1));
899
900 if (VALUE_LVAL (arg1) != lval_memory)
901 error ("Attempt to take address of value not located in memory.");
902
903 return value_from_longest (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
904 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
905 }
906
907 /* Given a value which is a function, return a value which is a pointer
908 to it. */
909
910 value_ptr
911 value_coerce_function (arg1)
912 value_ptr arg1;
913 {
914 value_ptr retval;
915
916 if (VALUE_LVAL (arg1) != lval_memory)
917 error ("Attempt to take address of value not located in memory.");
918
919 retval = value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
920 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
921 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
922 return retval;
923 }
924
925 /* Return a pointer value for the object for which ARG1 is the contents. */
926
927 value_ptr
928 value_addr (arg1)
929 value_ptr arg1;
930 {
931 value_ptr arg2;
932
933 struct type *type = check_typedef (VALUE_TYPE (arg1));
934 if (TYPE_CODE (type) == TYPE_CODE_REF)
935 {
936 /* Copy the value, but change the type from (T&) to (T*).
937 We keep the same location information, which is efficient,
938 and allows &(&X) to get the location containing the reference. */
939 arg2 = value_copy (arg1);
940 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
941 return arg2;
942 }
943 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
944 return value_coerce_function (arg1);
945
946 if (VALUE_LVAL (arg1) != lval_memory)
947 error ("Attempt to take address of value not located in memory.");
948
949 /* Get target memory address */
950 arg2 = value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
951 (LONGEST) (VALUE_ADDRESS (arg1)
952 + VALUE_OFFSET (arg1)
953 + VALUE_EMBEDDED_OFFSET (arg1)));
954
955 /* This may be a pointer to a base subobject; so remember the
956 full derived object's type ... */
957 VALUE_ENCLOSING_TYPE (arg2) = lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1));
958 /* ... and also the relative position of the subobject in the full object */
959 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
960 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
961 return arg2;
962 }
963
964 /* Given a value of a pointer type, apply the C unary * operator to it. */
965
966 value_ptr
967 value_ind (arg1)
968 value_ptr arg1;
969 {
970 struct type *base_type;
971 value_ptr arg2;
972 value_ptr real_val;
973
974 COERCE_ARRAY (arg1);
975
976 base_type = check_typedef (VALUE_TYPE (arg1));
977
978 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
979 error ("not implemented: member types in value_ind");
980
981 /* Allow * on an integer so we can cast it to whatever we want.
982 This returns an int, which seems like the most C-like thing
983 to do. "long long" variables are rare enough that
984 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
985 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
986 return value_at (builtin_type_int,
987 (CORE_ADDR) value_as_long (arg1),
988 VALUE_BFD_SECTION (arg1));
989 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
990 {
991 struct type *enc_type;
992 /* We may be pointing to something embedded in a larger object */
993 /* Get the real type of the enclosing object */
994 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
995 enc_type = TYPE_TARGET_TYPE (enc_type);
996 /* Retrieve the enclosing object pointed to */
997 arg2 = value_at_lazy (enc_type,
998 value_as_pointer (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
999 VALUE_BFD_SECTION (arg1));
1000 /* Re-adjust type */
1001 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
1002 /* Add embedding info */
1003 VALUE_ENCLOSING_TYPE (arg2) = enc_type;
1004 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
1005
1006 /* We may be pointing to an object of some derived type */
1007 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1008 return arg2;
1009 }
1010
1011 error ("Attempt to take contents of a non-pointer value.");
1012 return 0; /* For lint -- never reached */
1013 }
1014 \f
1015 /* Pushing small parts of stack frames. */
1016
1017 /* Push one word (the size of object that a register holds). */
1018
1019 CORE_ADDR
1020 push_word (sp, word)
1021 CORE_ADDR sp;
1022 ULONGEST word;
1023 {
1024 register int len = REGISTER_SIZE;
1025 char buffer[MAX_REGISTER_RAW_SIZE];
1026
1027 store_unsigned_integer (buffer, len, word);
1028 if (INNER_THAN (1, 2))
1029 {
1030 /* stack grows downward */
1031 sp -= len;
1032 write_memory (sp, buffer, len);
1033 }
1034 else
1035 {
1036 /* stack grows upward */
1037 write_memory (sp, buffer, len);
1038 sp += len;
1039 }
1040
1041 return sp;
1042 }
1043
1044 /* Push LEN bytes with data at BUFFER. */
1045
1046 CORE_ADDR
1047 push_bytes (sp, buffer, len)
1048 CORE_ADDR sp;
1049 char *buffer;
1050 int len;
1051 {
1052 if (INNER_THAN (1, 2))
1053 {
1054 /* stack grows downward */
1055 sp -= len;
1056 write_memory (sp, buffer, len);
1057 }
1058 else
1059 {
1060 /* stack grows upward */
1061 write_memory (sp, buffer, len);
1062 sp += len;
1063 }
1064
1065 return sp;
1066 }
1067
1068 /* Push onto the stack the specified value VALUE. */
1069
1070 static CORE_ADDR
1071 value_push (sp, arg)
1072 register CORE_ADDR sp;
1073 value_ptr arg;
1074 {
1075 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1076
1077 if (INNER_THAN (1, 2))
1078 {
1079 /* stack grows downward */
1080 sp -= len;
1081 write_memory (sp, VALUE_CONTENTS_ALL (arg), len);
1082 }
1083 else
1084 {
1085 /* stack grows upward */
1086 write_memory (sp, VALUE_CONTENTS_ALL (arg), len);
1087 sp += len;
1088 }
1089
1090 return sp;
1091 }
1092
1093 #ifndef PUSH_ARGUMENTS
1094 #define PUSH_ARGUMENTS default_push_arguments
1095 #endif
1096
1097 CORE_ADDR
1098 default_push_arguments (nargs, args, sp, struct_return, struct_addr)
1099 int nargs;
1100 value_ptr *args;
1101 CORE_ADDR sp;
1102 int struct_return;
1103 CORE_ADDR struct_addr;
1104 {
1105 /* ASSERT ( !struct_return); */
1106 int i;
1107 for (i = nargs - 1; i >= 0; i--)
1108 sp = value_push (sp, args[i]);
1109 return sp;
1110 }
1111
1112
1113 /* Perform the standard coercions that are specified
1114 for arguments to be passed to C functions.
1115
1116 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1117 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1118
1119 static value_ptr
1120 value_arg_coerce (arg, param_type, is_prototyped)
1121 value_ptr arg;
1122 struct type *param_type;
1123 int is_prototyped;
1124 {
1125 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1126 register struct type *type
1127 = param_type ? check_typedef (param_type) : arg_type;
1128
1129 switch (TYPE_CODE (type))
1130 {
1131 case TYPE_CODE_REF:
1132 if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
1133 {
1134 arg = value_addr (arg);
1135 VALUE_TYPE (arg) = param_type;
1136 return arg;
1137 }
1138 break;
1139 case TYPE_CODE_INT:
1140 case TYPE_CODE_CHAR:
1141 case TYPE_CODE_BOOL:
1142 case TYPE_CODE_ENUM:
1143 /* If we don't have a prototype, coerce to integer type if necessary. */
1144 if (!is_prototyped)
1145 {
1146 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1147 type = builtin_type_int;
1148 }
1149 /* Currently all target ABIs require at least the width of an integer
1150 type for an argument. We may have to conditionalize the following
1151 type coercion for future targets. */
1152 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1153 type = builtin_type_int;
1154 break;
1155 case TYPE_CODE_FLT:
1156 /* FIXME: We should always convert floats to doubles in the
1157 non-prototyped case. As many debugging formats include
1158 no information about prototyping, we have to live with
1159 COERCE_FLOAT_TO_DOUBLE for now. */
1160 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE)
1161 {
1162 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1163 type = builtin_type_double;
1164 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1165 type = builtin_type_long_double;
1166 }
1167 break;
1168 case TYPE_CODE_FUNC:
1169 type = lookup_pointer_type (type);
1170 break;
1171 case TYPE_CODE_ARRAY:
1172 if (current_language->c_style_arrays)
1173 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1174 break;
1175 case TYPE_CODE_UNDEF:
1176 case TYPE_CODE_PTR:
1177 case TYPE_CODE_STRUCT:
1178 case TYPE_CODE_UNION:
1179 case TYPE_CODE_VOID:
1180 case TYPE_CODE_SET:
1181 case TYPE_CODE_RANGE:
1182 case TYPE_CODE_STRING:
1183 case TYPE_CODE_BITSTRING:
1184 case TYPE_CODE_ERROR:
1185 case TYPE_CODE_MEMBER:
1186 case TYPE_CODE_METHOD:
1187 case TYPE_CODE_COMPLEX:
1188 default:
1189 break;
1190 }
1191
1192 return value_cast (type, arg);
1193 }
1194
1195 /* Determine a function's address and its return type from its value.
1196 Calls error() if the function is not valid for calling. */
1197
1198 static CORE_ADDR
1199 find_function_addr (function, retval_type)
1200 value_ptr function;
1201 struct type **retval_type;
1202 {
1203 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1204 register enum type_code code = TYPE_CODE (ftype);
1205 struct type *value_type;
1206 CORE_ADDR funaddr;
1207
1208 /* If it's a member function, just look at the function
1209 part of it. */
1210
1211 /* Determine address to call. */
1212 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1213 {
1214 funaddr = VALUE_ADDRESS (function);
1215 value_type = TYPE_TARGET_TYPE (ftype);
1216 }
1217 else if (code == TYPE_CODE_PTR)
1218 {
1219 funaddr = value_as_pointer (function);
1220 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1221 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1222 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1223 {
1224 #ifdef CONVERT_FROM_FUNC_PTR_ADDR
1225 /* FIXME: This is a workaround for the unusual function
1226 pointer representation on the RS/6000, see comment
1227 in config/rs6000/tm-rs6000.h */
1228 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1229 #endif
1230 value_type = TYPE_TARGET_TYPE (ftype);
1231 }
1232 else
1233 value_type = builtin_type_int;
1234 }
1235 else if (code == TYPE_CODE_INT)
1236 {
1237 /* Handle the case of functions lacking debugging info.
1238 Their values are characters since their addresses are char */
1239 if (TYPE_LENGTH (ftype) == 1)
1240 funaddr = value_as_pointer (value_addr (function));
1241 else
1242 /* Handle integer used as address of a function. */
1243 funaddr = (CORE_ADDR) value_as_long (function);
1244
1245 value_type = builtin_type_int;
1246 }
1247 else
1248 error ("Invalid data type for function to be called.");
1249
1250 *retval_type = value_type;
1251 return funaddr;
1252 }
1253
1254 /* All this stuff with a dummy frame may seem unnecessarily complicated
1255 (why not just save registers in GDB?). The purpose of pushing a dummy
1256 frame which looks just like a real frame is so that if you call a
1257 function and then hit a breakpoint (get a signal, etc), "backtrace"
1258 will look right. Whether the backtrace needs to actually show the
1259 stack at the time the inferior function was called is debatable, but
1260 it certainly needs to not display garbage. So if you are contemplating
1261 making dummy frames be different from normal frames, consider that. */
1262
1263 /* Perform a function call in the inferior.
1264 ARGS is a vector of values of arguments (NARGS of them).
1265 FUNCTION is a value, the function to be called.
1266 Returns a value representing what the function returned.
1267 May fail to return, if a breakpoint or signal is hit
1268 during the execution of the function.
1269
1270 ARGS is modified to contain coerced values. */
1271
1272 static value_ptr hand_function_call PARAMS ((value_ptr function, int nargs, value_ptr *args));
1273 static value_ptr
1274 hand_function_call (function, nargs, args)
1275 value_ptr function;
1276 int nargs;
1277 value_ptr *args;
1278 {
1279 register CORE_ADDR sp;
1280 register int i;
1281 CORE_ADDR start_sp;
1282 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1283 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1284 and remove any extra bytes which might exist because ULONGEST is
1285 bigger than REGISTER_SIZE.
1286
1287 NOTE: This is pretty wierd, as the call dummy is actually a
1288 sequence of instructions. But CISC machines will have
1289 to pack the instructions into REGISTER_SIZE units (and
1290 so will RISC machines for which INSTRUCTION_SIZE is not
1291 REGISTER_SIZE).
1292
1293 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1294 target byte order. */
1295
1296 static ULONGEST *dummy;
1297 int sizeof_dummy1;
1298 char *dummy1;
1299 CORE_ADDR old_sp;
1300 struct type *value_type;
1301 unsigned char struct_return;
1302 CORE_ADDR struct_addr = 0;
1303 struct inferior_status *inf_status;
1304 struct cleanup *old_chain;
1305 CORE_ADDR funaddr;
1306 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1307 CORE_ADDR real_pc;
1308 struct type *param_type = NULL;
1309 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1310
1311 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1312 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1313 dummy1 = alloca (sizeof_dummy1);
1314 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1315
1316 if (!target_has_execution)
1317 noprocess();
1318
1319 inf_status = save_inferior_status (1);
1320 old_chain = make_cleanup ((make_cleanup_func) restore_inferior_status,
1321 inf_status);
1322
1323 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1324 (and POP_FRAME for restoring them). (At least on most machines)
1325 they are saved on the stack in the inferior. */
1326 PUSH_DUMMY_FRAME;
1327
1328 old_sp = sp = read_sp ();
1329
1330 if (INNER_THAN (1, 2))
1331 {
1332 /* Stack grows down */
1333 sp -= sizeof_dummy1;
1334 start_sp = sp;
1335 }
1336 else
1337 {
1338 /* Stack grows up */
1339 start_sp = sp;
1340 sp += sizeof_dummy1;
1341 }
1342
1343 funaddr = find_function_addr (function, &value_type);
1344 CHECK_TYPEDEF (value_type);
1345
1346 {
1347 struct block *b = block_for_pc (funaddr);
1348 /* If compiled without -g, assume GCC 2. */
1349 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1350 }
1351
1352 /* Are we returning a value using a structure return or a normal
1353 value return? */
1354
1355 struct_return = using_struct_return (function, funaddr, value_type,
1356 using_gcc);
1357
1358 /* Create a call sequence customized for this function
1359 and the number of arguments for it. */
1360 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1361 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1362 REGISTER_SIZE,
1363 (ULONGEST)dummy[i]);
1364
1365 #ifdef GDB_TARGET_IS_HPPA
1366 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1367 value_type, using_gcc);
1368 #else
1369 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1370 value_type, using_gcc);
1371 real_pc = start_sp;
1372 #endif
1373
1374 if (CALL_DUMMY_LOCATION == ON_STACK)
1375 {
1376 write_memory (start_sp, (char *)dummy1, sizeof_dummy1);
1377 }
1378
1379 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1380 {
1381 /* Convex Unix prohibits executing in the stack segment. */
1382 /* Hope there is empty room at the top of the text segment. */
1383 extern CORE_ADDR text_end;
1384 static int checked = 0;
1385 if (!checked)
1386 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1387 if (read_memory_integer (start_sp, 1) != 0)
1388 error ("text segment full -- no place to put call");
1389 checked = 1;
1390 sp = old_sp;
1391 real_pc = text_end - sizeof_dummy1;
1392 write_memory (real_pc, (char *)dummy1, sizeof_dummy1);
1393 }
1394
1395 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1396 {
1397 extern CORE_ADDR text_end;
1398 int errcode;
1399 sp = old_sp;
1400 real_pc = text_end;
1401 errcode = target_write_memory (real_pc, (char *)dummy1, sizeof_dummy1);
1402 if (errcode != 0)
1403 error ("Cannot write text segment -- call_function failed");
1404 }
1405
1406 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1407 {
1408 real_pc = funaddr;
1409 }
1410
1411 #ifdef lint
1412 sp = old_sp; /* It really is used, for some ifdef's... */
1413 #endif
1414
1415 if (nargs < TYPE_NFIELDS (ftype))
1416 error ("too few arguments in function call");
1417
1418 for (i = nargs - 1; i >= 0; i--)
1419 {
1420 /* If we're off the end of the known arguments, do the standard
1421 promotions. FIXME: if we had a prototype, this should only
1422 be allowed if ... were present. */
1423 if (i >= TYPE_NFIELDS (ftype))
1424 args[i] = value_arg_coerce (args[i], NULL, 0);
1425
1426 else
1427 {
1428 int is_prototyped = TYPE_FLAGS (ftype) & TYPE_FLAG_PROTOTYPED;
1429 param_type = TYPE_FIELD_TYPE (ftype, i);
1430
1431 args[i] = value_arg_coerce (args[i], param_type, is_prototyped);
1432 }
1433
1434 /*elz: this code is to handle the case in which the function to be called
1435 has a pointer to function as parameter and the corresponding actual argument
1436 is the address of a function and not a pointer to function variable.
1437 In aCC compiled code, the calls through pointers to functions (in the body
1438 of the function called by hand) are made via $$dyncall_external which
1439 requires some registers setting, this is taken care of if we call
1440 via a function pointer variable, but not via a function address.
1441 In cc this is not a problem. */
1442
1443 if (using_gcc == 0)
1444 if (param_type)
1445 /* if this parameter is a pointer to function*/
1446 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1447 if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
1448 /* elz: FIXME here should go the test about the compiler used
1449 to compile the target. We want to issue the error
1450 message only if the compiler used was HP's aCC.
1451 If we used HP's cc, then there is no problem and no need
1452 to return at this point */
1453 if (using_gcc == 0) /* && compiler == aCC*/
1454 /* go see if the actual parameter is a variable of type
1455 pointer to function or just a function */
1456 if (args[i]->lval == not_lval)
1457 {
1458 char *arg_name;
1459 if (find_pc_partial_function((CORE_ADDR)args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1460 error("\
1461 You cannot use function <%s> as argument. \n\
1462 You must use a pointer to function type variable. Command ignored.", arg_name);
1463 }
1464 }
1465
1466 #if defined (REG_STRUCT_HAS_ADDR)
1467 {
1468 /* This is a machine like the sparc, where we may need to pass a pointer
1469 to the structure, not the structure itself. */
1470 for (i = nargs - 1; i >= 0; i--)
1471 {
1472 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1473 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1474 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1475 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1476 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1477 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1478 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1479 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1480 && TYPE_LENGTH (arg_type) > 8)
1481 )
1482 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1483 {
1484 CORE_ADDR addr;
1485 int len; /* = TYPE_LENGTH (arg_type); */
1486 int aligned_len;
1487 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1488 len = TYPE_LENGTH (arg_type);
1489
1490 #ifdef STACK_ALIGN
1491 /* MVS 11/22/96: I think at least some of this stack_align code is
1492 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1493 a target-defined manner. */
1494 aligned_len = STACK_ALIGN (len);
1495 #else
1496 aligned_len = len;
1497 #endif
1498 if (INNER_THAN (1, 2))
1499 {
1500 /* stack grows downward */
1501 sp -= aligned_len;
1502 }
1503 else
1504 {
1505 /* The stack grows up, so the address of the thing we push
1506 is the stack pointer before we push it. */
1507 addr = sp;
1508 }
1509 /* Push the structure. */
1510 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1511 if (INNER_THAN (1, 2))
1512 {
1513 /* The stack grows down, so the address of the thing we push
1514 is the stack pointer after we push it. */
1515 addr = sp;
1516 }
1517 else
1518 {
1519 /* stack grows upward */
1520 sp += aligned_len;
1521 }
1522 /* The value we're going to pass is the address of the thing
1523 we just pushed. */
1524 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1525 (LONGEST) addr);*/
1526 args[i] = value_from_longest (lookup_pointer_type (arg_type),
1527 (LONGEST) addr);
1528 }
1529 }
1530 }
1531 #endif /* REG_STRUCT_HAS_ADDR. */
1532
1533 /* Reserve space for the return structure to be written on the
1534 stack, if necessary */
1535
1536 if (struct_return)
1537 {
1538 int len = TYPE_LENGTH (value_type);
1539 #ifdef STACK_ALIGN
1540 /* MVS 11/22/96: I think at least some of this stack_align code is
1541 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1542 a target-defined manner. */
1543 len = STACK_ALIGN (len);
1544 #endif
1545 if (INNER_THAN (1, 2))
1546 {
1547 /* stack grows downward */
1548 sp -= len;
1549 struct_addr = sp;
1550 }
1551 else
1552 {
1553 /* stack grows upward */
1554 struct_addr = sp;
1555 sp += len;
1556 }
1557 }
1558
1559 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1560 on other architectures. This is because all the alignment is taken care
1561 of in the above code (ifdef REG_STRUCT_HAS_ADDR) and in
1562 hppa_push_arguments*/
1563 #ifndef NO_EXTRA_ALIGNMENT_NEEDED
1564
1565 #if defined(STACK_ALIGN)
1566 /* MVS 11/22/96: I think at least some of this stack_align code is
1567 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1568 a target-defined manner. */
1569 if (INNER_THAN (1, 2))
1570 {
1571 /* If stack grows down, we must leave a hole at the top. */
1572 int len = 0;
1573
1574 for (i = nargs - 1; i >= 0; i--)
1575 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1576 if (CALL_DUMMY_STACK_ADJUST_P)
1577 len += CALL_DUMMY_STACK_ADJUST;
1578 sp -= STACK_ALIGN (len) - len;
1579 }
1580 #endif /* STACK_ALIGN */
1581 #endif /* NO_EXTRA_ALIGNMENT_NEEDED */
1582
1583 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1584
1585 #ifdef PUSH_RETURN_ADDRESS /* for targets that use no CALL_DUMMY */
1586 /* There are a number of targets now which actually don't write any
1587 CALL_DUMMY instructions into the target, but instead just save the
1588 machine state, push the arguments, and jump directly to the callee
1589 function. Since this doesn't actually involve executing a JSR/BSR
1590 instruction, the return address must be set up by hand, either by
1591 pushing onto the stack or copying into a return-address register
1592 as appropriate. Formerly this has been done in PUSH_ARGUMENTS,
1593 but that's overloading its functionality a bit, so I'm making it
1594 explicit to do it here. */
1595 sp = PUSH_RETURN_ADDRESS(real_pc, sp);
1596 #endif /* PUSH_RETURN_ADDRESS */
1597
1598 #if defined(STACK_ALIGN)
1599 if (! INNER_THAN (1, 2))
1600 {
1601 /* If stack grows up, we must leave a hole at the bottom, note
1602 that sp already has been advanced for the arguments! */
1603 if (CALL_DUMMY_STACK_ADJUST_P)
1604 sp += CALL_DUMMY_STACK_ADJUST;
1605 sp = STACK_ALIGN (sp);
1606 }
1607 #endif /* STACK_ALIGN */
1608
1609 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1610 anything here! */
1611 /* MVS 11/22/96: I think at least some of this stack_align code is
1612 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1613 a target-defined manner. */
1614 if (CALL_DUMMY_STACK_ADJUST_P)
1615 if (INNER_THAN (1, 2))
1616 {
1617 /* stack grows downward */
1618 sp -= CALL_DUMMY_STACK_ADJUST;
1619 }
1620
1621 /* Store the address at which the structure is supposed to be
1622 written. Note that this (and the code which reserved the space
1623 above) assumes that gcc was used to compile this function. Since
1624 it doesn't cost us anything but space and if the function is pcc
1625 it will ignore this value, we will make that assumption.
1626
1627 Also note that on some machines (like the sparc) pcc uses a
1628 convention like gcc's. */
1629
1630 if (struct_return)
1631 STORE_STRUCT_RETURN (struct_addr, sp);
1632
1633 /* Write the stack pointer. This is here because the statements above
1634 might fool with it. On SPARC, this write also stores the register
1635 window into the right place in the new stack frame, which otherwise
1636 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1637 write_sp (sp);
1638
1639 #ifdef SAVE_DUMMY_FRAME_TOS
1640 SAVE_DUMMY_FRAME_TOS (sp);
1641 #endif
1642
1643 {
1644 char retbuf[REGISTER_BYTES];
1645 char *name;
1646 struct symbol *symbol;
1647
1648 name = NULL;
1649 symbol = find_pc_function (funaddr);
1650 if (symbol)
1651 {
1652 name = SYMBOL_SOURCE_NAME (symbol);
1653 }
1654 else
1655 {
1656 /* Try the minimal symbols. */
1657 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1658
1659 if (msymbol)
1660 {
1661 name = SYMBOL_SOURCE_NAME (msymbol);
1662 }
1663 }
1664 if (name == NULL)
1665 {
1666 char format[80];
1667 sprintf (format, "at %s", local_hex_format ());
1668 name = alloca (80);
1669 /* FIXME-32x64: assumes funaddr fits in a long. */
1670 sprintf (name, format, (unsigned long) funaddr);
1671 }
1672
1673 /* Execute the stack dummy routine, calling FUNCTION.
1674 When it is done, discard the empty frame
1675 after storing the contents of all regs into retbuf. */
1676 if (run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf))
1677 {
1678 /* We stopped somewhere besides the call dummy. */
1679
1680 /* If we did the cleanups, we would print a spurious error
1681 message (Unable to restore previously selected frame),
1682 would write the registers from the inf_status (which is
1683 wrong), and would do other wrong things. */
1684 discard_cleanups (old_chain);
1685 discard_inferior_status (inf_status);
1686
1687 /* The following error message used to say "The expression
1688 which contained the function call has been discarded." It
1689 is a hard concept to explain in a few words. Ideally, GDB
1690 would be able to resume evaluation of the expression when
1691 the function finally is done executing. Perhaps someday
1692 this will be implemented (it would not be easy). */
1693
1694 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1695 a C++ name with arguments and stuff. */
1696 error ("\
1697 The program being debugged stopped while in a function called from GDB.\n\
1698 When the function (%s) is done executing, GDB will silently\n\
1699 stop (instead of continuing to evaluate the expression containing\n\
1700 the function call).", name);
1701 }
1702
1703 do_cleanups (old_chain);
1704
1705 /* Figure out the value returned by the function. */
1706 /* elz: I defined this new macro for the hppa architecture only.
1707 this gives us a way to get the value returned by the function from the stack,
1708 at the same address we told the function to put it.
1709 We cannot assume on the pa that r28 still contains the address of the returned
1710 structure. Usually this will be overwritten by the callee.
1711 I don't know about other architectures, so I defined this macro
1712 */
1713
1714 #ifdef VALUE_RETURNED_FROM_STACK
1715 if (struct_return)
1716 return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1717 #endif
1718
1719 return value_being_returned (value_type, retbuf, struct_return);
1720 }
1721 }
1722
1723 value_ptr
1724 call_function_by_hand (function, nargs, args)
1725 value_ptr function;
1726 int nargs;
1727 value_ptr *args;
1728 {
1729 if (CALL_DUMMY_P)
1730 {
1731 return hand_function_call (function, nargs, args);
1732 }
1733 else
1734 {
1735 error ("Cannot invoke functions on this machine.");
1736 }
1737 }
1738
1739
1740 \f
1741 /* Create a value for an array by allocating space in the inferior, copying
1742 the data into that space, and then setting up an array value.
1743
1744 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1745 populated from the values passed in ELEMVEC.
1746
1747 The element type of the array is inherited from the type of the
1748 first element, and all elements must have the same size (though we
1749 don't currently enforce any restriction on their types). */
1750
1751 value_ptr
1752 value_array (lowbound, highbound, elemvec)
1753 int lowbound;
1754 int highbound;
1755 value_ptr *elemvec;
1756 {
1757 int nelem;
1758 int idx;
1759 unsigned int typelength;
1760 value_ptr val;
1761 struct type *rangetype;
1762 struct type *arraytype;
1763 CORE_ADDR addr;
1764
1765 /* Validate that the bounds are reasonable and that each of the elements
1766 have the same size. */
1767
1768 nelem = highbound - lowbound + 1;
1769 if (nelem <= 0)
1770 {
1771 error ("bad array bounds (%d, %d)", lowbound, highbound);
1772 }
1773 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1774 for (idx = 1; idx < nelem; idx++)
1775 {
1776 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1777 {
1778 error ("array elements must all be the same size");
1779 }
1780 }
1781
1782 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1783 lowbound, highbound);
1784 arraytype = create_array_type ((struct type *) NULL,
1785 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1786
1787 if (!current_language->c_style_arrays)
1788 {
1789 val = allocate_value (arraytype);
1790 for (idx = 0; idx < nelem; idx++)
1791 {
1792 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1793 VALUE_CONTENTS_ALL (elemvec[idx]),
1794 typelength);
1795 }
1796 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1797 return val;
1798 }
1799
1800 /* Allocate space to store the array in the inferior, and then initialize
1801 it by copying in each element. FIXME: Is it worth it to create a
1802 local buffer in which to collect each value and then write all the
1803 bytes in one operation? */
1804
1805 addr = allocate_space_in_inferior (nelem * typelength);
1806 for (idx = 0; idx < nelem; idx++)
1807 {
1808 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1809 typelength);
1810 }
1811
1812 /* Create the array type and set up an array value to be evaluated lazily. */
1813
1814 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1815 return (val);
1816 }
1817
1818 /* Create a value for a string constant by allocating space in the inferior,
1819 copying the data into that space, and returning the address with type
1820 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1821 of characters.
1822 Note that string types are like array of char types with a lower bound of
1823 zero and an upper bound of LEN - 1. Also note that the string may contain
1824 embedded null bytes. */
1825
1826 value_ptr
1827 value_string (ptr, len)
1828 char *ptr;
1829 int len;
1830 {
1831 value_ptr val;
1832 int lowbound = current_language->string_lower_bound;
1833 struct type *rangetype = create_range_type ((struct type *) NULL,
1834 builtin_type_int,
1835 lowbound, len + lowbound - 1);
1836 struct type *stringtype
1837 = create_string_type ((struct type *) NULL, rangetype);
1838 CORE_ADDR addr;
1839
1840 if (current_language->c_style_arrays == 0)
1841 {
1842 val = allocate_value (stringtype);
1843 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1844 return val;
1845 }
1846
1847
1848 /* Allocate space to store the string in the inferior, and then
1849 copy LEN bytes from PTR in gdb to that address in the inferior. */
1850
1851 addr = allocate_space_in_inferior (len);
1852 write_memory (addr, ptr, len);
1853
1854 val = value_at_lazy (stringtype, addr, NULL);
1855 return (val);
1856 }
1857
1858 value_ptr
1859 value_bitstring (ptr, len)
1860 char *ptr;
1861 int len;
1862 {
1863 value_ptr val;
1864 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1865 0, len - 1);
1866 struct type *type = create_set_type ((struct type*) NULL, domain_type);
1867 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1868 val = allocate_value (type);
1869 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1870 return val;
1871 }
1872 \f
1873 /* See if we can pass arguments in T2 to a function which takes arguments
1874 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1875 arguments need coercion of some sort, then the coerced values are written
1876 into T2. Return value is 0 if the arguments could be matched, or the
1877 position at which they differ if not.
1878
1879 STATICP is nonzero if the T1 argument list came from a
1880 static member function.
1881
1882 For non-static member functions, we ignore the first argument,
1883 which is the type of the instance variable. This is because we want
1884 to handle calls with objects from derived classes. This is not
1885 entirely correct: we should actually check to make sure that a
1886 requested operation is type secure, shouldn't we? FIXME. */
1887
1888 static int
1889 typecmp (staticp, t1, t2)
1890 int staticp;
1891 struct type *t1[];
1892 value_ptr t2[];
1893 {
1894 int i;
1895
1896 if (t2 == 0)
1897 return 1;
1898 if (staticp && t1 == 0)
1899 return t2[1] != 0;
1900 if (t1 == 0)
1901 return 1;
1902 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID) return 0;
1903 if (t1[!staticp] == 0) return 0;
1904 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1905 {
1906 struct type *tt1, *tt2;
1907 if (! t2[i])
1908 return i+1;
1909 tt1 = check_typedef (t1[i]);
1910 tt2 = check_typedef (VALUE_TYPE(t2[i]));
1911 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1912 /* We should be doing hairy argument matching, as below. */
1913 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1914 {
1915 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1916 t2[i] = value_coerce_array (t2[i]);
1917 else
1918 t2[i] = value_addr (t2[i]);
1919 continue;
1920 }
1921
1922 while (TYPE_CODE (tt1) == TYPE_CODE_PTR
1923 && ( TYPE_CODE (tt2) == TYPE_CODE_ARRAY
1924 || TYPE_CODE (tt2) == TYPE_CODE_PTR))
1925 {
1926 tt1 = check_typedef (TYPE_TARGET_TYPE(tt1));
1927 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1928 }
1929 if (TYPE_CODE(tt1) == TYPE_CODE(tt2)) continue;
1930 /* Array to pointer is a `trivial conversion' according to the ARM. */
1931
1932 /* We should be doing much hairier argument matching (see section 13.2
1933 of the ARM), but as a quick kludge, just check for the same type
1934 code. */
1935 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
1936 return i+1;
1937 }
1938 if (!t1[i]) return 0;
1939 return t2[i] ? i+1 : 0;
1940 }
1941
1942 /* Helper function used by value_struct_elt to recurse through baseclasses.
1943 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1944 and search in it assuming it has (class) type TYPE.
1945 If found, return value, else return NULL.
1946
1947 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
1948 look for a baseclass named NAME. */
1949
1950 static value_ptr
1951 search_struct_field (name, arg1, offset, type, looking_for_baseclass)
1952 char *name;
1953 register value_ptr arg1;
1954 int offset;
1955 register struct type *type;
1956 int looking_for_baseclass;
1957 {
1958 int i;
1959 int nbases = TYPE_N_BASECLASSES (type);
1960
1961 CHECK_TYPEDEF (type);
1962
1963 if (! looking_for_baseclass)
1964 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1965 {
1966 char *t_field_name = TYPE_FIELD_NAME (type, i);
1967
1968 if (t_field_name && STREQ (t_field_name, name))
1969 {
1970 value_ptr v;
1971 if (TYPE_FIELD_STATIC (type, i))
1972 v = value_static_field (type, i);
1973 else
1974 v = value_primitive_field (arg1, offset, i, type);
1975 if (v == 0)
1976 error("there is no field named %s", name);
1977 return v;
1978 }
1979
1980 if (t_field_name
1981 && (t_field_name[0] == '\0'
1982 || (TYPE_CODE (type) == TYPE_CODE_UNION
1983 && STREQ (t_field_name, "else"))))
1984 {
1985 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1986 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1987 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1988 {
1989 /* Look for a match through the fields of an anonymous union,
1990 or anonymous struct. C++ provides anonymous unions.
1991
1992 In the GNU Chill implementation of variant record types,
1993 each <alternative field> has an (anonymous) union type,
1994 each member of the union represents a <variant alternative>.
1995 Each <variant alternative> is represented as a struct,
1996 with a member for each <variant field>. */
1997
1998 value_ptr v;
1999 int new_offset = offset;
2000
2001 /* This is pretty gross. In G++, the offset in an anonymous
2002 union is relative to the beginning of the enclosing struct.
2003 In the GNU Chill implementation of variant records,
2004 the bitpos is zero in an anonymous union field, so we
2005 have to add the offset of the union here. */
2006 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2007 || (TYPE_NFIELDS (field_type) > 0
2008 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2009 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2010
2011 v = search_struct_field (name, arg1, new_offset, field_type,
2012 looking_for_baseclass);
2013 if (v)
2014 return v;
2015 }
2016 }
2017 }
2018
2019 for (i = 0; i < nbases; i++)
2020 {
2021 value_ptr v;
2022 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2023 /* If we are looking for baseclasses, this is what we get when we
2024 hit them. But it could happen that the base part's member name
2025 is not yet filled in. */
2026 int found_baseclass = (looking_for_baseclass
2027 && TYPE_BASECLASS_NAME (type, i) != NULL
2028 && STREQ (name, TYPE_BASECLASS_NAME (type, i)));
2029
2030 if (BASETYPE_VIA_VIRTUAL (type, i))
2031 {
2032 int boffset;
2033 value_ptr v2 = allocate_value (basetype);
2034
2035 boffset = baseclass_offset (type, i,
2036 VALUE_CONTENTS (arg1) + offset,
2037 VALUE_ADDRESS (arg1)
2038 + VALUE_OFFSET (arg1) + offset);
2039 if (boffset == -1)
2040 error ("virtual baseclass botch");
2041
2042 /* The virtual base class pointer might have been clobbered by the
2043 user program. Make sure that it still points to a valid memory
2044 location. */
2045
2046 boffset += offset;
2047 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2048 {
2049 CORE_ADDR base_addr;
2050
2051 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2052 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2053 TYPE_LENGTH (basetype)) != 0)
2054 error ("virtual baseclass botch");
2055 VALUE_LVAL (v2) = lval_memory;
2056 VALUE_ADDRESS (v2) = base_addr;
2057 }
2058 else
2059 {
2060 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2061 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2062 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2063 if (VALUE_LAZY (arg1))
2064 VALUE_LAZY (v2) = 1;
2065 else
2066 memcpy (VALUE_CONTENTS_RAW (v2),
2067 VALUE_CONTENTS_RAW (arg1) + boffset,
2068 TYPE_LENGTH (basetype));
2069 }
2070
2071 if (found_baseclass)
2072 return v2;
2073 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2074 looking_for_baseclass);
2075 }
2076 else if (found_baseclass)
2077 v = value_primitive_field (arg1, offset, i, type);
2078 else
2079 v = search_struct_field (name, arg1,
2080 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2081 basetype, looking_for_baseclass);
2082 if (v) return v;
2083 }
2084 return NULL;
2085 }
2086
2087
2088 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2089 * in an object pointed to by VALADDR (on the host), assumed to be of
2090 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2091 * looking (in case VALADDR is the contents of an enclosing object).
2092 *
2093 * This routine recurses on the primary base of the derived class because
2094 * the virtual base entries of the primary base appear before the other
2095 * virtual base entries.
2096 *
2097 * If the virtual base is not found, a negative integer is returned.
2098 * The magnitude of the negative integer is the number of entries in
2099 * the virtual table to skip over (entries corresponding to various
2100 * ancestral classes in the chain of primary bases).
2101 *
2102 * Important: This assumes the HP / Taligent C++ runtime
2103 * conventions. Use baseclass_offset() instead to deal with g++
2104 * conventions. */
2105
2106 void
2107 find_rt_vbase_offset(type, basetype, valaddr, offset, boffset_p, skip_p)
2108 struct type * type;
2109 struct type * basetype;
2110 char * valaddr;
2111 int offset;
2112 int * boffset_p;
2113 int * skip_p;
2114 {
2115 int boffset; /* offset of virtual base */
2116 int index; /* displacement to use in virtual table */
2117 int skip;
2118
2119 value_ptr vp;
2120 CORE_ADDR vtbl; /* the virtual table pointer */
2121 struct type * pbc; /* the primary base class */
2122
2123 /* Look for the virtual base recursively in the primary base, first.
2124 * This is because the derived class object and its primary base
2125 * subobject share the primary virtual table. */
2126
2127 boffset = 0;
2128 pbc = TYPE_PRIMARY_BASE(type);
2129 if (pbc)
2130 {
2131 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2132 if (skip < 0)
2133 {
2134 *boffset_p = boffset;
2135 *skip_p = -1;
2136 return;
2137 }
2138 }
2139 else
2140 skip = 0;
2141
2142
2143 /* Find the index of the virtual base according to HP/Taligent
2144 runtime spec. (Depth-first, left-to-right.) */
2145 index = virtual_base_index_skip_primaries (basetype, type);
2146
2147 if (index < 0) {
2148 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2149 *boffset_p = 0;
2150 return;
2151 }
2152
2153 /* pai: FIXME -- 32x64 possible problem */
2154 /* First word (4 bytes) in object layout is the vtable pointer */
2155 vtbl = * (CORE_ADDR *) (valaddr + offset);
2156
2157 /* Before the constructor is invoked, things are usually zero'd out. */
2158 if (vtbl == 0)
2159 error ("Couldn't find virtual table -- object may not be constructed yet.");
2160
2161
2162 /* Find virtual base's offset -- jump over entries for primary base
2163 * ancestors, then use the index computed above. But also adjust by
2164 * HP_ACC_VBASE_START for the vtable slots before the start of the
2165 * virtual base entries. Offset is negative -- virtual base entries
2166 * appear _before_ the address point of the virtual table. */
2167
2168 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2169 & use long type */
2170
2171 /* epstein : FIXME -- added param for overlay section. May not be correct */
2172 vp = value_at (builtin_type_int, vtbl + 4 * (- skip - index - HP_ACC_VBASE_START), NULL);
2173 boffset = value_as_long (vp);
2174 *skip_p = -1;
2175 *boffset_p = boffset;
2176 return;
2177 }
2178
2179
2180 /* Helper function used by value_struct_elt to recurse through baseclasses.
2181 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2182 and search in it assuming it has (class) type TYPE.
2183 If found, return value, else if name matched and args not return (value)-1,
2184 else return NULL. */
2185
2186 static value_ptr
2187 search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
2188 char *name;
2189 register value_ptr *arg1p, *args;
2190 int offset, *static_memfuncp;
2191 register struct type *type;
2192 {
2193 int i;
2194 value_ptr v;
2195 int name_matched = 0;
2196 char dem_opname[64];
2197
2198 CHECK_TYPEDEF (type);
2199 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2200 {
2201 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2202 /* FIXME! May need to check for ARM demangling here */
2203 if (strncmp(t_field_name, "__", 2)==0 ||
2204 strncmp(t_field_name, "op", 2)==0 ||
2205 strncmp(t_field_name, "type", 4)==0 )
2206 {
2207 if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI))
2208 t_field_name = dem_opname;
2209 else if (cplus_demangle_opname(t_field_name, dem_opname, 0))
2210 t_field_name = dem_opname;
2211 }
2212 if (t_field_name && STREQ (t_field_name, name))
2213 {
2214 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2215 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2216 name_matched = 1;
2217
2218 if (j > 0 && args == 0)
2219 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2220 while (j >= 0)
2221 {
2222 if (TYPE_FN_FIELD_STUB (f, j))
2223 check_stub_method (type, i, j);
2224 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2225 TYPE_FN_FIELD_ARGS (f, j), args))
2226 {
2227 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2228 return value_virtual_fn_field (arg1p, f, j, type, offset);
2229 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2230 *static_memfuncp = 1;
2231 v = value_fn_field (arg1p, f, j, type, offset);
2232 if (v != NULL) return v;
2233 }
2234 j--;
2235 }
2236 }
2237 }
2238
2239 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2240 {
2241 int base_offset;
2242
2243 if (BASETYPE_VIA_VIRTUAL (type, i))
2244 {
2245 if (TYPE_HAS_VTABLE (type))
2246 {
2247 /* HP aCC compiled type, search for virtual base offset
2248 according to HP/Taligent runtime spec. */
2249 int skip;
2250 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2251 VALUE_CONTENTS_ALL (*arg1p),
2252 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2253 &base_offset, &skip);
2254 if (skip >= 0)
2255 error ("Virtual base class offset not found in vtable");
2256 }
2257 else
2258 {
2259 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2260 char *base_valaddr;
2261
2262 /* The virtual base class pointer might have been clobbered by the
2263 user program. Make sure that it still points to a valid memory
2264 location. */
2265
2266 if (offset < 0 || offset >= TYPE_LENGTH (type))
2267 {
2268 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2269 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2270 + VALUE_OFFSET (*arg1p) + offset,
2271 base_valaddr,
2272 TYPE_LENGTH (baseclass)) != 0)
2273 error ("virtual baseclass botch");
2274 }
2275 else
2276 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2277
2278 base_offset =
2279 baseclass_offset (type, i, base_valaddr,
2280 VALUE_ADDRESS (*arg1p)
2281 + VALUE_OFFSET (*arg1p) + offset);
2282 if (base_offset == -1)
2283 error ("virtual baseclass botch");
2284 }
2285 }
2286 else
2287 {
2288 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2289 }
2290 v = search_struct_method (name, arg1p, args, base_offset + offset,
2291 static_memfuncp, TYPE_BASECLASS (type, i));
2292 if (v == (value_ptr) -1)
2293 {
2294 name_matched = 1;
2295 }
2296 else if (v)
2297 {
2298 /* FIXME-bothner: Why is this commented out? Why is it here? */
2299 /* *arg1p = arg1_tmp;*/
2300 return v;
2301 }
2302 }
2303 if (name_matched) return (value_ptr) -1;
2304 else return NULL;
2305 }
2306
2307 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2308 extract the component named NAME from the ultimate target structure/union
2309 and return it as a value with its appropriate type.
2310 ERR is used in the error message if *ARGP's type is wrong.
2311
2312 C++: ARGS is a list of argument types to aid in the selection of
2313 an appropriate method. Also, handle derived types.
2314
2315 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2316 where the truthvalue of whether the function that was resolved was
2317 a static member function or not is stored.
2318
2319 ERR is an error message to be printed in case the field is not found. */
2320
2321 value_ptr
2322 value_struct_elt (argp, args, name, static_memfuncp, err)
2323 register value_ptr *argp, *args;
2324 char *name;
2325 int *static_memfuncp;
2326 char *err;
2327 {
2328 register struct type *t;
2329 value_ptr v;
2330
2331 COERCE_ARRAY (*argp);
2332
2333 t = check_typedef (VALUE_TYPE (*argp));
2334
2335 /* Follow pointers until we get to a non-pointer. */
2336
2337 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2338 {
2339 *argp = value_ind (*argp);
2340 /* Don't coerce fn pointer to fn and then back again! */
2341 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2342 COERCE_ARRAY (*argp);
2343 t = check_typedef (VALUE_TYPE (*argp));
2344 }
2345
2346 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2347 error ("not implemented: member type in value_struct_elt");
2348
2349 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
2350 && TYPE_CODE (t) != TYPE_CODE_UNION)
2351 error ("Attempt to extract a component of a value that is not a %s.", err);
2352
2353 /* Assume it's not, unless we see that it is. */
2354 if (static_memfuncp)
2355 *static_memfuncp =0;
2356
2357 if (!args)
2358 {
2359 /* if there are no arguments ...do this... */
2360
2361 /* Try as a field first, because if we succeed, there
2362 is less work to be done. */
2363 v = search_struct_field (name, *argp, 0, t, 0);
2364 if (v)
2365 return v;
2366
2367 /* C++: If it was not found as a data field, then try to
2368 return it as a pointer to a method. */
2369
2370 if (destructor_name_p (name, t))
2371 error ("Cannot get value of destructor");
2372
2373 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2374
2375 if (v == (value_ptr) -1)
2376 error ("Cannot take address of a method");
2377 else if (v == 0)
2378 {
2379 if (TYPE_NFN_FIELDS (t))
2380 error ("There is no member or method named %s.", name);
2381 else
2382 error ("There is no member named %s.", name);
2383 }
2384 return v;
2385 }
2386
2387 if (destructor_name_p (name, t))
2388 {
2389 if (!args[1])
2390 {
2391 /* Destructors are a special case. */
2392 int m_index, f_index;
2393
2394 v = NULL;
2395 if (get_destructor_fn_field (t, &m_index, &f_index))
2396 {
2397 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2398 f_index, NULL, 0);
2399 }
2400 if (v == NULL)
2401 error ("could not find destructor function named %s.", name);
2402 else
2403 return v;
2404 }
2405 else
2406 {
2407 error ("destructor should not have any argument");
2408 }
2409 }
2410 else
2411 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2412
2413 if (v == (value_ptr) -1)
2414 {
2415 error("Argument list of %s mismatch with component in the structure.", name);
2416 }
2417 else if (v == 0)
2418 {
2419 /* See if user tried to invoke data as function. If so,
2420 hand it back. If it's not callable (i.e., a pointer to function),
2421 gdb should give an error. */
2422 v = search_struct_field (name, *argp, 0, t, 0);
2423 }
2424
2425 if (!v)
2426 error ("Structure has no component named %s.", name);
2427 return v;
2428 }
2429
2430 /* Search through the methods of an object (and its bases)
2431 * to find a specified method. Return the pointer to the
2432 * fn_field list of overloaded instances.
2433 * Helper function for value_find_oload_list.
2434 * ARGP is a pointer to a pointer to a value (the object)
2435 * METHOD is a string containing the method name
2436 * OFFSET is the offset within the value
2437 * STATIC_MEMFUNCP is set if the method is static
2438 * TYPE is the assumed type of the object
2439 * NUM_FNS is the number of overloaded instances
2440 * BASETYPE is set to the actual type of the subobject where the method is found
2441 * BOFFSET is the offset of the base subobject where the method is found */
2442
2443 static struct fn_field *
2444 find_method_list (argp, method, offset, static_memfuncp, type, num_fns, basetype, boffset)
2445 value_ptr *argp;
2446 char * method;
2447 int offset;
2448 int * static_memfuncp;
2449 struct type * type;
2450 int * num_fns;
2451 struct type ** basetype;
2452 int * boffset;
2453 {
2454 int i;
2455 struct fn_field * f;
2456 CHECK_TYPEDEF (type);
2457
2458 *num_fns = 0;
2459
2460 /* First check in object itself */
2461 for (i = TYPE_NFN_FIELDS (type) -1; i >= 0; i--)
2462 {
2463 /* pai: FIXME What about operators and type conversions? */
2464 char * fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2465 if (fn_field_name && STREQ (fn_field_name, method))
2466 {
2467 *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
2468 *basetype = type;
2469 *boffset = offset;
2470 return TYPE_FN_FIELDLIST1 (type, i);
2471 }
2472 }
2473
2474 /* Not found in object, check in base subobjects */
2475 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2476 {
2477 int base_offset;
2478 if (BASETYPE_VIA_VIRTUAL (type, i))
2479 {
2480 if (TYPE_HAS_VTABLE (type))
2481 {
2482 /* HP aCC compiled type, search for virtual base offset
2483 * according to HP/Taligent runtime spec. */
2484 int skip;
2485 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2486 VALUE_CONTENTS_ALL (*argp),
2487 offset + VALUE_EMBEDDED_OFFSET (*argp),
2488 &base_offset, &skip);
2489 if (skip >= 0)
2490 error ("Virtual base class offset not found in vtable");
2491 }
2492 else
2493 {
2494 /* probably g++ runtime model */
2495 base_offset = VALUE_OFFSET (*argp) + offset;
2496 base_offset =
2497 baseclass_offset (type, i,
2498 VALUE_CONTENTS (*argp) + base_offset,
2499 VALUE_ADDRESS (*argp) + base_offset);
2500 if (base_offset == -1)
2501 error ("virtual baseclass botch");
2502 }
2503 }
2504 else /* non-virtual base, simply use bit position from debug info */
2505 {
2506 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2507 }
2508 f = find_method_list (argp, method, base_offset + offset,
2509 static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
2510 if (f)
2511 return f;
2512 }
2513 return NULL;
2514 }
2515
2516 /* Return the list of overloaded methods of a specified name.
2517 * ARGP is a pointer to a pointer to a value (the object)
2518 * METHOD is the method name
2519 * OFFSET is the offset within the value contents
2520 * STATIC_MEMFUNCP is set if the method is static
2521 * NUM_FNS is the number of overloaded instances
2522 * BASETYPE is set to the type of the base subobject that defines the method
2523 * BOFFSET is the offset of the base subobject which defines the method */
2524
2525 struct fn_field *
2526 value_find_oload_method_list (argp, method, offset, static_memfuncp, num_fns, basetype, boffset)
2527 value_ptr *argp;
2528 char * method;
2529 int offset;
2530 int * static_memfuncp;
2531 int * num_fns;
2532 struct type ** basetype;
2533 int * boffset;
2534 {
2535 struct type * t;
2536 value_ptr v;
2537
2538 t = check_typedef (VALUE_TYPE (*argp));
2539
2540 /* code snarfed from value_struct_elt */
2541 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2542 {
2543 *argp = value_ind (*argp);
2544 /* Don't coerce fn pointer to fn and then back again! */
2545 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2546 COERCE_ARRAY (*argp);
2547 t = check_typedef (VALUE_TYPE (*argp));
2548 }
2549
2550 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2551 error ("Not implemented: member type in value_find_oload_lis");
2552
2553 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
2554 && TYPE_CODE (t) != TYPE_CODE_UNION)
2555 error ("Attempt to extract a component of a value that is not a struct or union");
2556
2557 /* Assume it's not static, unless we see that it is. */
2558 if (static_memfuncp)
2559 *static_memfuncp =0;
2560
2561 return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
2562
2563 }
2564
2565 /* Given an array of argument types (ARGTYPES) (which includes an
2566 entry for "this" in the case of C++ methods), the number of
2567 arguments NARGS, the NAME of a function whether it's a method or
2568 not (METHOD), and the degree of laxness (LAX) in conforming to
2569 overload resolution rules in ANSI C++, find the best function that
2570 matches on the argument types according to the overload resolution
2571 rules.
2572
2573 In the case of class methods, the parameter OBJ is an object value
2574 in which to search for overloaded methods.
2575
2576 In the case of non-method functions, the parameter FSYM is a symbol
2577 corresponding to one of the overloaded functions.
2578
2579 Return value is an integer: 0 -> good match, 10 -> debugger applied
2580 non-standard coercions, 100 -> incompatible.
2581
2582 If a method is being searched for, VALP will hold the value.
2583 If a non-method is being searched for, SYMP will hold the symbol for it.
2584
2585 If a method is being searched for, and it is a static method,
2586 then STATICP will point to a non-zero value.
2587
2588 Note: This function does *not* check the value of
2589 overload_resolution. Caller must check it to see whether overload
2590 resolution is permitted.
2591 */
2592
2593 int
2594 find_overload_match (arg_types, nargs, name, method, lax, obj, fsym, valp, symp, staticp)
2595 struct type ** arg_types;
2596 int nargs;
2597 char * name;
2598 int method;
2599 int lax;
2600 value_ptr obj;
2601 struct symbol * fsym;
2602 value_ptr * valp;
2603 struct symbol ** symp;
2604 int * staticp;
2605 {
2606 int nparms;
2607 struct type ** parm_types;
2608 int champ_nparms = 0;
2609
2610 short oload_champ = -1; /* Index of best overloaded function */
2611 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2612 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2613 short oload_ambig_champ = -1; /* 2nd contender for best match */
2614 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2615 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2616
2617 struct badness_vector * bv; /* A measure of how good an overloaded instance is */
2618 struct badness_vector * oload_champ_bv = NULL; /* The measure for the current best match */
2619
2620 value_ptr temp = obj;
2621 struct fn_field * fns_ptr = NULL; /* For methods, the list of overloaded methods */
2622 struct symbol ** oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2623 int num_fns = 0; /* Number of overloaded instances being considered */
2624 struct type * basetype = NULL;
2625 int boffset;
2626 register int jj;
2627 register int ix;
2628
2629 char * obj_type_name = NULL;
2630 char * func_name = NULL;
2631
2632 /* Get the list of overloaded methods or functions */
2633 if (method)
2634 {
2635 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2636 /* Hack: evaluate_subexp_standard often passes in a pointer
2637 value rather than the object itself, so try again */
2638 if ((!obj_type_name || !*obj_type_name) &&
2639 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2640 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2641
2642 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2643 staticp,
2644 &num_fns,
2645 &basetype, &boffset);
2646 if (!fns_ptr || !num_fns)
2647 error ("Couldn't find method %s%s%s",
2648 obj_type_name,
2649 (obj_type_name && *obj_type_name) ? "::" : "",
2650 name);
2651 }
2652 else
2653 {
2654 int i = -1;
2655 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2656
2657 oload_syms = make_symbol_overload_list (fsym);
2658 while (oload_syms[++i])
2659 num_fns++;
2660 if (!num_fns)
2661 error ("Couldn't find function %s", func_name);
2662 }
2663
2664 oload_champ_bv = NULL;
2665
2666 /* Consider each candidate in turn */
2667 for (ix = 0; ix < num_fns; ix++)
2668 {
2669 int jj;
2670
2671 /* Number of parameters for current candidate */
2672 nparms = method ? TYPE_NFIELDS (fns_ptr[ix].type)
2673 : TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2674
2675 /* Prepare array of parameter types */
2676 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2677 for (jj = 0; jj < nparms; jj++)
2678 parm_types[jj] = method ? TYPE_FIELD_TYPE (fns_ptr[ix].type, jj)
2679 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj);
2680
2681 /* Compare parameter types to supplied argument types */
2682 bv = rank_function (parm_types, nparms, arg_types, nargs);
2683
2684 if (!oload_champ_bv)
2685 {
2686 oload_champ_bv = bv;
2687 oload_champ = 0;
2688 champ_nparms = nparms;
2689 }
2690 else
2691 /* See whether current candidate is better or worse than previous best */
2692 switch (compare_badness (bv, oload_champ_bv))
2693 {
2694 case 0:
2695 oload_ambiguous = 1; /* top two contenders are equally good */
2696 oload_ambig_champ = ix;
2697 break;
2698 case 1:
2699 oload_ambiguous = 2; /* incomparable top contenders */
2700 oload_ambig_champ = ix;
2701 break;
2702 case 2:
2703 oload_champ_bv = bv; /* new champion, record details */
2704 oload_ambiguous = 0;
2705 oload_champ = ix;
2706 oload_ambig_champ = -1;
2707 champ_nparms = nparms;
2708 break;
2709 case 3:
2710 default:
2711 break;
2712 }
2713 free (parm_types);
2714 #ifdef DEBUG_OLOAD
2715 if (method)
2716 printf("Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2717 else
2718 printf("Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME(oload_syms[ix]),nparms);
2719 for (jj = 0; jj <= nargs; jj++)
2720 printf("...Badness @ %d : %d\n", jj, bv->rank[jj]);
2721 printf("Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2722 #endif
2723 } /* end loop over all candidates */
2724
2725 if (oload_ambiguous)
2726 {
2727 if (method)
2728 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2729 obj_type_name,
2730 (obj_type_name && *obj_type_name) ? "::" : "",
2731 name);
2732 else
2733 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2734 func_name);
2735 }
2736
2737 /* Check how bad the best match is */
2738 for (ix = 1; ix <= nargs; ix++)
2739 {
2740 switch (oload_champ_bv->rank[ix])
2741 {
2742 case 10:
2743 oload_non_standard = 1; /* non-standard type conversions needed */
2744 break;
2745 case 100:
2746 oload_incompatible = 1; /* truly mismatched types */
2747 break;
2748 }
2749 }
2750 if (oload_incompatible)
2751 {
2752 if (method)
2753 error ("Cannot resolve method %s%s%s to any overloaded instance",
2754 obj_type_name,
2755 (obj_type_name && *obj_type_name) ? "::" : "",
2756 name);
2757 else
2758 error ("Cannot resolve function %s to any overloaded instance",
2759 func_name);
2760 }
2761 else if (oload_non_standard)
2762 {
2763 if (method)
2764 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2765 obj_type_name,
2766 (obj_type_name && *obj_type_name) ? "::" : "",
2767 name);
2768 else
2769 warning ("Using non-standard conversion to match function %s to supplied arguments",
2770 func_name);
2771 }
2772
2773 if (method)
2774 {
2775 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2776 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2777 else
2778 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2779 }
2780 else
2781 {
2782 *symp = oload_syms[oload_champ];
2783 free (func_name);
2784 }
2785
2786 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2787 }
2788
2789 /* C++: return 1 is NAME is a legitimate name for the destructor
2790 of type TYPE. If TYPE does not have a destructor, or
2791 if NAME is inappropriate for TYPE, an error is signaled. */
2792 int
2793 destructor_name_p (name, type)
2794 const char *name;
2795 const struct type *type;
2796 {
2797 /* destructors are a special case. */
2798
2799 if (name[0] == '~')
2800 {
2801 char *dname = type_name_no_tag (type);
2802 char *cp = strchr (dname, '<');
2803 unsigned int len;
2804
2805 /* Do not compare the template part for template classes. */
2806 if (cp == NULL)
2807 len = strlen (dname);
2808 else
2809 len = cp - dname;
2810 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2811 error ("name of destructor must equal name of class");
2812 else
2813 return 1;
2814 }
2815 return 0;
2816 }
2817
2818 /* Helper function for check_field: Given TYPE, a structure/union,
2819 return 1 if the component named NAME from the ultimate
2820 target structure/union is defined, otherwise, return 0. */
2821
2822 static int
2823 check_field_in (type, name)
2824 register struct type *type;
2825 const char *name;
2826 {
2827 register int i;
2828
2829 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2830 {
2831 char *t_field_name = TYPE_FIELD_NAME (type, i);
2832 if (t_field_name && STREQ (t_field_name, name))
2833 return 1;
2834 }
2835
2836 /* C++: If it was not found as a data field, then try to
2837 return it as a pointer to a method. */
2838
2839 /* Destructors are a special case. */
2840 if (destructor_name_p (name, type))
2841 {
2842 int m_index, f_index;
2843
2844 return get_destructor_fn_field (type, &m_index, &f_index);
2845 }
2846
2847 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2848 {
2849 if (STREQ (TYPE_FN_FIELDLIST_NAME (type, i), name))
2850 return 1;
2851 }
2852
2853 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2854 if (check_field_in (TYPE_BASECLASS (type, i), name))
2855 return 1;
2856
2857 return 0;
2858 }
2859
2860
2861 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2862 return 1 if the component named NAME from the ultimate
2863 target structure/union is defined, otherwise, return 0. */
2864
2865 int
2866 check_field (arg1, name)
2867 register value_ptr arg1;
2868 const char *name;
2869 {
2870 register struct type *t;
2871
2872 COERCE_ARRAY (arg1);
2873
2874 t = VALUE_TYPE (arg1);
2875
2876 /* Follow pointers until we get to a non-pointer. */
2877
2878 for (;;)
2879 {
2880 CHECK_TYPEDEF (t);
2881 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2882 break;
2883 t = TYPE_TARGET_TYPE (t);
2884 }
2885
2886 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2887 error ("not implemented: member type in check_field");
2888
2889 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
2890 && TYPE_CODE (t) != TYPE_CODE_UNION)
2891 error ("Internal error: `this' is not an aggregate");
2892
2893 return check_field_in (t, name);
2894 }
2895
2896 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2897 return the address of this member as a "pointer to member"
2898 type. If INTYPE is non-null, then it will be the type
2899 of the member we are looking for. This will help us resolve
2900 "pointers to member functions". This function is used
2901 to resolve user expressions of the form "DOMAIN::NAME". */
2902
2903 value_ptr
2904 value_struct_elt_for_reference (domain, offset, curtype, name, intype)
2905 struct type *domain, *curtype, *intype;
2906 int offset;
2907 char *name;
2908 {
2909 register struct type *t = curtype;
2910 register int i;
2911 value_ptr v;
2912
2913 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
2914 && TYPE_CODE (t) != TYPE_CODE_UNION)
2915 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
2916
2917 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2918 {
2919 char *t_field_name = TYPE_FIELD_NAME (t, i);
2920
2921 if (t_field_name && STREQ (t_field_name, name))
2922 {
2923 if (TYPE_FIELD_STATIC (t, i))
2924 {
2925 v = value_static_field (t, i);
2926 if (v == NULL)
2927 error ("Internal error: could not find static variable %s",
2928 name);
2929 return v;
2930 }
2931 if (TYPE_FIELD_PACKED (t, i))
2932 error ("pointers to bitfield members not allowed");
2933
2934 return value_from_longest
2935 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
2936 domain)),
2937 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2938 }
2939 }
2940
2941 /* C++: If it was not found as a data field, then try to
2942 return it as a pointer to a method. */
2943
2944 /* Destructors are a special case. */
2945 if (destructor_name_p (name, t))
2946 {
2947 error ("member pointers to destructors not implemented yet");
2948 }
2949
2950 /* Perform all necessary dereferencing. */
2951 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2952 intype = TYPE_TARGET_TYPE (intype);
2953
2954 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2955 {
2956 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2957 char dem_opname[64];
2958
2959 if (strncmp(t_field_name, "__", 2)==0 ||
2960 strncmp(t_field_name, "op", 2)==0 ||
2961 strncmp(t_field_name, "type", 4)==0 )
2962 {
2963 if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI))
2964 t_field_name = dem_opname;
2965 else if (cplus_demangle_opname(t_field_name, dem_opname, 0))
2966 t_field_name = dem_opname;
2967 }
2968 if (t_field_name && STREQ (t_field_name, name))
2969 {
2970 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
2971 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
2972
2973 if (intype == 0 && j > 1)
2974 error ("non-unique member `%s' requires type instantiation", name);
2975 if (intype)
2976 {
2977 while (j--)
2978 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
2979 break;
2980 if (j < 0)
2981 error ("no member function matches that type instantiation");
2982 }
2983 else
2984 j = 0;
2985
2986 if (TYPE_FN_FIELD_STUB (f, j))
2987 check_stub_method (t, i, j);
2988 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2989 {
2990 return value_from_longest
2991 (lookup_reference_type
2992 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
2993 domain)),
2994 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
2995 }
2996 else
2997 {
2998 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2999 0, VAR_NAMESPACE, 0, NULL);
3000 if (s == NULL)
3001 {
3002 v = 0;
3003 }
3004 else
3005 {
3006 v = read_var_value (s, 0);
3007 #if 0
3008 VALUE_TYPE (v) = lookup_reference_type
3009 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3010 domain));
3011 #endif
3012 }
3013 return v;
3014 }
3015 }
3016 }
3017 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3018 {
3019 value_ptr v;
3020 int base_offset;
3021
3022 if (BASETYPE_VIA_VIRTUAL (t, i))
3023 base_offset = 0;
3024 else
3025 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3026 v = value_struct_elt_for_reference (domain,
3027 offset + base_offset,
3028 TYPE_BASECLASS (t, i),
3029 name,
3030 intype);
3031 if (v)
3032 return v;
3033 }
3034 return 0;
3035 }
3036
3037
3038 /* Find the real run-time type of a value using RTTI.
3039 * V is a pointer to the value.
3040 * A pointer to the struct type entry of the run-time type
3041 * is returneed.
3042 * FULL is a flag that is set only if the value V includes
3043 * the entire contents of an object of the RTTI type.
3044 * TOP is the offset to the top of the enclosing object of
3045 * the real run-time type. This offset may be for the embedded
3046 * object, or for the enclosing object of V.
3047 * USING_ENC is the flag that distinguishes the two cases.
3048 * If it is 1, then the offset is for the enclosing object,
3049 * otherwise for the embedded object.
3050 *
3051 * This currently works only for RTTI information generated
3052 * by the HP ANSI C++ compiler (aCC). g++ today (1997-06-10)
3053 * does not appear to support RTTI. This function returns a
3054 * NULL value for objects in the g++ runtime model. */
3055
3056 struct type *
3057 value_rtti_type (v, full, top, using_enc)
3058 value_ptr v;
3059 int * full;
3060 int * top;
3061 int * using_enc;
3062 {
3063 struct type * known_type;
3064 struct type * rtti_type;
3065 CORE_ADDR coreptr;
3066 value_ptr vp;
3067 int using_enclosing = 0;
3068 long top_offset = 0;
3069 char rtti_type_name[256];
3070
3071 if (full)
3072 *full = 0;
3073 if (top)
3074 *top = -1;
3075 if (using_enc)
3076 *using_enc = 0;
3077
3078 /* Get declared type */
3079 known_type = VALUE_TYPE (v);
3080 CHECK_TYPEDEF (known_type);
3081 /* RTTI works only or class objects */
3082 if (TYPE_CODE (known_type) != TYPE_CODE_CLASS)
3083 return NULL;
3084
3085 /* If neither the declared type nor the enclosing type of the
3086 * value structure has a HP ANSI C++ style virtual table,
3087 * we can't do anything. */
3088 if (!TYPE_HAS_VTABLE (known_type))
3089 {
3090 known_type = VALUE_ENCLOSING_TYPE (v);
3091 CHECK_TYPEDEF (known_type);
3092 if ((TYPE_CODE (known_type) != TYPE_CODE_CLASS) ||
3093 !TYPE_HAS_VTABLE (known_type))
3094 return NULL; /* No RTTI, or not HP-compiled types */
3095 CHECK_TYPEDEF (known_type);
3096 using_enclosing = 1;
3097 }
3098
3099 if (using_enclosing && using_enc)
3100 *using_enc = 1;
3101
3102 /* First get the virtual table address */
3103 coreptr = * (CORE_ADDR *) ((VALUE_CONTENTS_ALL (v))
3104 + VALUE_OFFSET (v)
3105 + (using_enclosing ? 0 : VALUE_EMBEDDED_OFFSET (v)));
3106 if (coreptr == 0)
3107 return NULL; /* return silently -- maybe called on gdb-generated value */
3108
3109 /* Fetch the top offset of the object */
3110 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3111 vp = value_at (builtin_type_int,
3112 coreptr + 4 * HP_ACC_TOP_OFFSET_OFFSET,
3113 VALUE_BFD_SECTION (v));
3114 top_offset = value_as_long (vp);
3115 if (top)
3116 *top = top_offset;
3117
3118 /* Fetch the typeinfo pointer */
3119 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3120 vp = value_at (builtin_type_int, coreptr + 4 * HP_ACC_TYPEINFO_OFFSET, VALUE_BFD_SECTION (v));
3121 /* Indirect through the typeinfo pointer and retrieve the pointer
3122 * to the string name */
3123 coreptr = * (CORE_ADDR *) (VALUE_CONTENTS (vp));
3124 if (!coreptr)
3125 error ("Retrieved null typeinfo pointer in trying to determine run-time type");
3126 vp = value_at (builtin_type_int, coreptr + 4, VALUE_BFD_SECTION (v)); /* 4 -> offset of name field */
3127 /* FIXME possible 32x64 problem */
3128
3129 coreptr = * (CORE_ADDR *) (VALUE_CONTENTS (vp));
3130
3131 read_memory_string (coreptr, rtti_type_name, 256);
3132
3133 if (strlen (rtti_type_name) == 0)
3134 error ("Retrieved null type name from typeinfo");
3135
3136 /* search for type */
3137 rtti_type = lookup_typename (rtti_type_name, (struct block *) 0, 1);
3138
3139 if (!rtti_type)
3140 error ("Could not find run-time type: invalid type name %s in typeinfo??", rtti_type_name);
3141 CHECK_TYPEDEF (rtti_type);
3142
3143 #if 0 /* debugging*/
3144 printf("RTTI type name %s, tag %s, full? %d\n", TYPE_NAME (rtti_type), TYPE_TAG_NAME (rtti_type), full ? *full : -1);
3145 #endif
3146
3147 /* Check whether we have the entire object */
3148 if (full /* Non-null pointer passed */
3149
3150 &&
3151 /* Either we checked on the whole object in hand and found the
3152 top offset to be zero */
3153 (((top_offset == 0) &&
3154 using_enclosing &&
3155 TYPE_LENGTH (known_type) == TYPE_LENGTH (rtti_type))
3156 ||
3157 /* Or we checked on the embedded object and top offset was the
3158 same as the embedded offset */
3159 ((top_offset == VALUE_EMBEDDED_OFFSET (v)) &&
3160 !using_enclosing &&
3161 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (v)) == TYPE_LENGTH (rtti_type))))
3162
3163 *full = 1;
3164
3165 return rtti_type;
3166 }
3167
3168 /* Given a pointer value V, find the real (RTTI) type
3169 of the object it points to.
3170 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3171 and refer to the values computed for the object pointed to. */
3172
3173 struct type *
3174 value_rtti_target_type (v, full, top, using_enc)
3175 value_ptr v;
3176 int * full;
3177 int * top;
3178 int * using_enc;
3179 {
3180 value_ptr target;
3181
3182 target = value_ind (v);
3183
3184 return value_rtti_type (target, full, top, using_enc);
3185 }
3186
3187 /* Given a value pointed to by ARGP, check its real run-time type, and
3188 if that is different from the enclosing type, create a new value
3189 using the real run-time type as the enclosing type (and of the same
3190 type as ARGP) and return it, with the embedded offset adjusted to
3191 be the correct offset to the enclosed object
3192 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3193 parameters, computed by value_rtti_type(). If these are available,
3194 they can be supplied and a second call to value_rtti_type() is avoided.
3195 (Pass RTYPE == NULL if they're not available */
3196
3197 value_ptr
3198 value_full_object (argp, rtype, xfull, xtop, xusing_enc)
3199 value_ptr argp;
3200 struct type * rtype;
3201 int xfull;
3202 int xtop;
3203 int xusing_enc;
3204
3205 {
3206 struct type * real_type;
3207 int full = 0;
3208 int top = -1;
3209 int using_enc = 0;
3210 value_ptr new_val;
3211
3212 if (rtype)
3213 {
3214 real_type = rtype;
3215 full = xfull;
3216 top = xtop;
3217 using_enc = xusing_enc;
3218 }
3219 else
3220 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3221
3222 /* If no RTTI data, or if object is already complete, do nothing */
3223 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3224 return argp;
3225
3226 /* If we have the full object, but for some reason the enclosing
3227 type is wrong, set it */ /* pai: FIXME -- sounds iffy */
3228 if (full)
3229 {
3230 VALUE_ENCLOSING_TYPE (argp) = real_type;
3231 return argp;
3232 }
3233
3234 /* Check if object is in memory */
3235 if (VALUE_LVAL (argp) != lval_memory)
3236 {
3237 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3238
3239 return argp;
3240 }
3241
3242 /* All other cases -- retrieve the complete object */
3243 /* Go back by the computed top_offset from the beginning of the object,
3244 adjusting for the embedded offset of argp if that's what value_rtti_type
3245 used for its computation. */
3246 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3247 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3248 VALUE_BFD_SECTION (argp));
3249 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3250 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3251 return new_val;
3252 }
3253
3254
3255
3256
3257 /* C++: return the value of the class instance variable, if one exists.
3258 Flag COMPLAIN signals an error if the request is made in an
3259 inappropriate context. */
3260
3261 value_ptr
3262 value_of_this (complain)
3263 int complain;
3264 {
3265 struct symbol *func, *sym;
3266 struct block *b;
3267 int i;
3268 static const char funny_this[] = "this";
3269 value_ptr this;
3270
3271 if (selected_frame == 0)
3272 {
3273 if (complain)
3274 error ("no frame selected");
3275 else return 0;
3276 }
3277
3278 func = get_frame_function (selected_frame);
3279 if (!func)
3280 {
3281 if (complain)
3282 error ("no `this' in nameless context");
3283 else return 0;
3284 }
3285
3286 b = SYMBOL_BLOCK_VALUE (func);
3287 i = BLOCK_NSYMS (b);
3288 if (i <= 0)
3289 {
3290 if (complain)
3291 error ("no args, no `this'");
3292 else return 0;
3293 }
3294
3295 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3296 symbol instead of the LOC_ARG one (if both exist). */
3297 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
3298 if (sym == NULL)
3299 {
3300 if (complain)
3301 error ("current stack frame not in method");
3302 else
3303 return NULL;
3304 }
3305
3306 this = read_var_value (sym, selected_frame);
3307 if (this == 0 && complain)
3308 error ("`this' argument at unknown address");
3309 return this;
3310 }
3311
3312 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3313 long, starting at LOWBOUND. The result has the same lower bound as
3314 the original ARRAY. */
3315
3316 value_ptr
3317 value_slice (array, lowbound, length)
3318 value_ptr array;
3319 int lowbound, length;
3320 {
3321 struct type *slice_range_type, *slice_type, *range_type;
3322 LONGEST lowerbound, upperbound, offset;
3323 value_ptr slice;
3324 struct type *array_type;
3325 array_type = check_typedef (VALUE_TYPE (array));
3326 COERCE_VARYING_ARRAY (array, array_type);
3327 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3328 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3329 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3330 error ("cannot take slice of non-array");
3331 range_type = TYPE_INDEX_TYPE (array_type);
3332 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3333 error ("slice from bad array or bitstring");
3334 if (lowbound < lowerbound || length < 0
3335 || lowbound + length - 1 > upperbound
3336 /* Chill allows zero-length strings but not arrays. */
3337 || (current_language->la_language == language_chill
3338 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3339 error ("slice out of range");
3340 /* FIXME-type-allocation: need a way to free this type when we are
3341 done with it. */
3342 slice_range_type = create_range_type ((struct type*) NULL,
3343 TYPE_TARGET_TYPE (range_type),
3344 lowbound, lowbound + length - 1);
3345 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3346 {
3347 int i;
3348 slice_type = create_set_type ((struct type*) NULL, slice_range_type);
3349 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3350 slice = value_zero (slice_type, not_lval);
3351 for (i = 0; i < length; i++)
3352 {
3353 int element = value_bit_index (array_type,
3354 VALUE_CONTENTS (array),
3355 lowbound + i);
3356 if (element < 0)
3357 error ("internal error accessing bitstring");
3358 else if (element > 0)
3359 {
3360 int j = i % TARGET_CHAR_BIT;
3361 if (BITS_BIG_ENDIAN)
3362 j = TARGET_CHAR_BIT - 1 - j;
3363 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3364 }
3365 }
3366 /* We should set the address, bitssize, and bitspos, so the clice
3367 can be used on the LHS, but that may require extensions to
3368 value_assign. For now, just leave as a non_lval. FIXME. */
3369 }
3370 else
3371 {
3372 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3373 offset
3374 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3375 slice_type = create_array_type ((struct type*) NULL, element_type,
3376 slice_range_type);
3377 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3378 slice = allocate_value (slice_type);
3379 if (VALUE_LAZY (array))
3380 VALUE_LAZY (slice) = 1;
3381 else
3382 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3383 TYPE_LENGTH (slice_type));
3384 if (VALUE_LVAL (array) == lval_internalvar)
3385 VALUE_LVAL (slice) = lval_internalvar_component;
3386 else
3387 VALUE_LVAL (slice) = VALUE_LVAL (array);
3388 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3389 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3390 }
3391 return slice;
3392 }
3393
3394 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3395 value as a fixed-length array. */
3396
3397 value_ptr
3398 varying_to_slice (varray)
3399 value_ptr varray;
3400 {
3401 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3402 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3403 VALUE_CONTENTS (varray)
3404 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3405 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3406 }
3407
3408 /* Create a value for a FORTRAN complex number. Currently most of
3409 the time values are coerced to COMPLEX*16 (i.e. a complex number
3410 composed of 2 doubles. This really should be a smarter routine
3411 that figures out precision inteligently as opposed to assuming
3412 doubles. FIXME: fmb */
3413
3414 value_ptr
3415 value_literal_complex (arg1, arg2, type)
3416 value_ptr arg1;
3417 value_ptr arg2;
3418 struct type *type;
3419 {
3420 register value_ptr val;
3421 struct type *real_type = TYPE_TARGET_TYPE (type);
3422
3423 val = allocate_value (type);
3424 arg1 = value_cast (real_type, arg1);
3425 arg2 = value_cast (real_type, arg2);
3426
3427 memcpy (VALUE_CONTENTS_RAW (val),
3428 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3429 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3430 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3431 return val;
3432 }
3433
3434 /* Cast a value into the appropriate complex data type. */
3435
3436 static value_ptr
3437 cast_into_complex (type, val)
3438 struct type *type;
3439 register value_ptr val;
3440 {
3441 struct type *real_type = TYPE_TARGET_TYPE (type);
3442 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3443 {
3444 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3445 value_ptr re_val = allocate_value (val_real_type);
3446 value_ptr im_val = allocate_value (val_real_type);
3447
3448 memcpy (VALUE_CONTENTS_RAW (re_val),
3449 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3450 memcpy (VALUE_CONTENTS_RAW (im_val),
3451 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3452 TYPE_LENGTH (val_real_type));
3453
3454 return value_literal_complex (re_val, im_val, type);
3455 }
3456 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3457 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3458 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3459 else
3460 error ("cannot cast non-number to complex");
3461 }
3462
3463 void
3464 _initialize_valops ()
3465 {
3466 #if 0
3467 add_show_from_set
3468 (add_set_cmd ("abandon", class_support, var_boolean, (char *)&auto_abandon,
3469 "Set automatic abandonment of expressions upon failure.",
3470 &setlist),
3471 &showlist);
3472 #endif
3473
3474 add_show_from_set
3475 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *)&overload_resolution,
3476 "Set overload resolution in evaluating C++ functions.",
3477 &setlist),
3478 &showlist);
3479 overload_resolution = 1;
3480
3481 }
This page took 0.178677 seconds and 5 git commands to generate.