CVS:
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30
31 #include <errno.h>
32
33 /* Local functions. */
34
35 static int
36 typecmp PARAMS ((int staticp, struct type *t1[], value t2[]));
37
38 static CORE_ADDR
39 find_function_addr PARAMS ((value, struct type **));
40
41 static CORE_ADDR
42 value_push PARAMS ((CORE_ADDR, value));
43
44 static CORE_ADDR
45 value_arg_push PARAMS ((CORE_ADDR, value));
46
47 static value
48 search_struct_field PARAMS ((char *, value, int, struct type *, int));
49
50 static value
51 search_struct_method PARAMS ((char *, value *, value *, int, int *,
52 struct type *));
53
54 static int
55 check_field_in PARAMS ((struct type *, const char *));
56
57 static CORE_ADDR
58 allocate_space_in_inferior PARAMS ((int));
59
60 \f
61 /* Allocate NBYTES of space in the inferior using the inferior's malloc
62 and return a value that is a pointer to the allocated space. */
63
64 static CORE_ADDR
65 allocate_space_in_inferior (len)
66 int len;
67 {
68 register value val;
69 register struct symbol *sym;
70 struct minimal_symbol *msymbol;
71 struct type *type;
72 value blocklen;
73 LONGEST maddr;
74
75 /* Find the address of malloc in the inferior. */
76
77 sym = lookup_symbol ("malloc", 0, VAR_NAMESPACE, 0, NULL);
78 if (sym != NULL)
79 {
80 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
81 {
82 error ("\"malloc\" exists in this program but is not a function.");
83 }
84 val = value_of_variable (sym, NULL);
85 }
86 else
87 {
88 msymbol = lookup_minimal_symbol ("malloc", (struct objfile *) NULL);
89 if (msymbol != NULL)
90 {
91 type = lookup_pointer_type (builtin_type_char);
92 type = lookup_function_type (type);
93 type = lookup_pointer_type (type);
94 maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol);
95 val = value_from_longest (type, maddr);
96 }
97 else
98 {
99 error ("evaluation of this expression requires the program to have a function \"malloc\".");
100 }
101 }
102
103 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
104 val = call_function_by_hand (val, 1, &blocklen);
105 if (value_logical_not (val))
106 {
107 error ("No memory available to program.");
108 }
109 return (value_as_long (val));
110 }
111
112 /* Cast value ARG2 to type TYPE and return as a value.
113 More general than a C cast: accepts any two types of the same length,
114 and if ARG2 is an lvalue it can be cast into anything at all. */
115 /* In C++, casts may change pointer or object representations. */
116
117 value
118 value_cast (type, arg2)
119 struct type *type;
120 register value arg2;
121 {
122 register enum type_code code1;
123 register enum type_code code2;
124 register int scalar;
125
126 /* Coerce arrays but not enums. Enums will work as-is
127 and coercing them would cause an infinite recursion. */
128 if (TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_ENUM)
129 COERCE_ARRAY (arg2);
130
131 code1 = TYPE_CODE (type);
132 code2 = TYPE_CODE (VALUE_TYPE (arg2));
133 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
134 || code2 == TYPE_CODE_ENUM);
135
136 if ( code1 == TYPE_CODE_STRUCT
137 && code2 == TYPE_CODE_STRUCT
138 && TYPE_NAME (type) != 0)
139 {
140 /* Look in the type of the source to see if it contains the
141 type of the target as a superclass. If so, we'll need to
142 offset the object in addition to changing its type. */
143 value v = search_struct_field (type_name_no_tag (type),
144 arg2, 0, VALUE_TYPE (arg2), 1);
145 if (v)
146 {
147 VALUE_TYPE (v) = type;
148 return v;
149 }
150 }
151 if (code1 == TYPE_CODE_FLT && scalar)
152 return value_from_double (type, value_as_double (arg2));
153 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM)
154 && (scalar || code2 == TYPE_CODE_PTR))
155 return value_from_longest (type, value_as_long (arg2));
156 else if (TYPE_LENGTH (type) == TYPE_LENGTH (VALUE_TYPE (arg2)))
157 {
158 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
159 {
160 /* Look in the type of the source to see if it contains the
161 type of the target as a superclass. If so, we'll need to
162 offset the pointer rather than just change its type. */
163 struct type *t1 = TYPE_TARGET_TYPE (type);
164 struct type *t2 = TYPE_TARGET_TYPE (VALUE_TYPE (arg2));
165 if ( TYPE_CODE (t1) == TYPE_CODE_STRUCT
166 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
167 && TYPE_NAME (t1) != 0) /* if name unknown, can't have supercl */
168 {
169 value v = search_struct_field (type_name_no_tag (t1),
170 value_ind (arg2), 0, t2, 1);
171 if (v)
172 {
173 v = value_addr (v);
174 VALUE_TYPE (v) = type;
175 return v;
176 }
177 }
178 /* No superclass found, just fall through to change ptr type. */
179 }
180 VALUE_TYPE (arg2) = type;
181 return arg2;
182 }
183 else if (VALUE_LVAL (arg2) == lval_memory)
184 {
185 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2));
186 }
187 else if (code1 == TYPE_CODE_VOID)
188 {
189 return value_zero (builtin_type_void, not_lval);
190 }
191 else
192 {
193 error ("Invalid cast.");
194 return 0;
195 }
196 }
197
198 /* Create a value of type TYPE that is zero, and return it. */
199
200 value
201 value_zero (type, lv)
202 struct type *type;
203 enum lval_type lv;
204 {
205 register value val = allocate_value (type);
206
207 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (type));
208 VALUE_LVAL (val) = lv;
209
210 return val;
211 }
212
213 /* Return a value with type TYPE located at ADDR.
214
215 Call value_at only if the data needs to be fetched immediately;
216 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
217 value_at_lazy instead. value_at_lazy simply records the address of
218 the data and sets the lazy-evaluation-required flag. The lazy flag
219 is tested in the VALUE_CONTENTS macro, which is used if and when
220 the contents are actually required. */
221
222 value
223 value_at (type, addr)
224 struct type *type;
225 CORE_ADDR addr;
226 {
227 register value val = allocate_value (type);
228
229 read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (type));
230
231 VALUE_LVAL (val) = lval_memory;
232 VALUE_ADDRESS (val) = addr;
233
234 return val;
235 }
236
237 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
238
239 value
240 value_at_lazy (type, addr)
241 struct type *type;
242 CORE_ADDR addr;
243 {
244 register value val = allocate_value (type);
245
246 VALUE_LVAL (val) = lval_memory;
247 VALUE_ADDRESS (val) = addr;
248 VALUE_LAZY (val) = 1;
249
250 return val;
251 }
252
253 /* Called only from the VALUE_CONTENTS macro, if the current data for
254 a variable needs to be loaded into VALUE_CONTENTS(VAL). Fetches the
255 data from the user's process, and clears the lazy flag to indicate
256 that the data in the buffer is valid.
257
258 If the value is zero-length, we avoid calling read_memory, which would
259 abort. We mark the value as fetched anyway -- all 0 bytes of it.
260
261 This function returns a value because it is used in the VALUE_CONTENTS
262 macro as part of an expression, where a void would not work. The
263 value is ignored. */
264
265 int
266 value_fetch_lazy (val)
267 register value val;
268 {
269 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
270
271 if (TYPE_LENGTH (VALUE_TYPE (val)))
272 read_memory (addr, VALUE_CONTENTS_RAW (val),
273 TYPE_LENGTH (VALUE_TYPE (val)));
274 VALUE_LAZY (val) = 0;
275 return 0;
276 }
277
278
279 /* Store the contents of FROMVAL into the location of TOVAL.
280 Return a new value with the location of TOVAL and contents of FROMVAL. */
281
282 value
283 value_assign (toval, fromval)
284 register value toval, fromval;
285 {
286 register struct type *type = VALUE_TYPE (toval);
287 register value val;
288 char raw_buffer[MAX_REGISTER_RAW_SIZE];
289 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
290 int use_buffer = 0;
291
292 COERCE_ARRAY (fromval);
293 COERCE_REF (toval);
294
295 if (VALUE_LVAL (toval) != lval_internalvar)
296 fromval = value_cast (type, fromval);
297
298 /* If TOVAL is a special machine register requiring conversion
299 of program values to a special raw format,
300 convert FROMVAL's contents now, with result in `raw_buffer',
301 and set USE_BUFFER to the number of bytes to write. */
302
303 if (VALUE_REGNO (toval) >= 0
304 && REGISTER_CONVERTIBLE (VALUE_REGNO (toval)))
305 {
306 int regno = VALUE_REGNO (toval);
307 if (VALUE_TYPE (fromval) != REGISTER_VIRTUAL_TYPE (regno))
308 fromval = value_cast (REGISTER_VIRTUAL_TYPE (regno), fromval);
309 memcpy (virtual_buffer, VALUE_CONTENTS (fromval),
310 REGISTER_VIRTUAL_SIZE (regno));
311 REGISTER_CONVERT_TO_RAW (regno, virtual_buffer, raw_buffer);
312 use_buffer = REGISTER_RAW_SIZE (regno);
313 }
314
315 switch (VALUE_LVAL (toval))
316 {
317 case lval_internalvar:
318 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
319 break;
320
321 case lval_internalvar_component:
322 set_internalvar_component (VALUE_INTERNALVAR (toval),
323 VALUE_OFFSET (toval),
324 VALUE_BITPOS (toval),
325 VALUE_BITSIZE (toval),
326 fromval);
327 break;
328
329 case lval_memory:
330 if (VALUE_BITSIZE (toval))
331 {
332 int v; /* FIXME, this won't work for large bitfields */
333 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
334 (char *) &v, sizeof v);
335 modify_field ((char *) &v, value_as_long (fromval),
336 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
337 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
338 (char *)&v, sizeof v);
339 }
340 else if (use_buffer)
341 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
342 raw_buffer, use_buffer);
343 else
344 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
345 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
346 break;
347
348 case lval_register:
349 if (VALUE_BITSIZE (toval))
350 {
351 int v;
352
353 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
354 (char *) &v, sizeof v);
355 modify_field ((char *) &v, value_as_long (fromval),
356 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
357 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
358 (char *) &v, sizeof v);
359 }
360 else if (use_buffer)
361 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
362 raw_buffer, use_buffer);
363 else
364 {
365 /* Do any conversion necessary when storing this type to more
366 than one register. */
367 #ifdef REGISTER_CONVERT_FROM_TYPE
368 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
369 REGISTER_CONVERT_FROM_TYPE(VALUE_REGNO (toval), type, raw_buffer);
370 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
371 raw_buffer, TYPE_LENGTH (type));
372 #else
373 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
374 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
375 #endif
376 }
377 break;
378
379 case lval_reg_frame_relative:
380 {
381 /* value is stored in a series of registers in the frame
382 specified by the structure. Copy that value out, modify
383 it, and copy it back in. */
384 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
385 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
386 int byte_offset = VALUE_OFFSET (toval) % reg_size;
387 int reg_offset = VALUE_OFFSET (toval) / reg_size;
388 int amount_copied;
389 char *buffer = (char *) alloca (amount_to_copy);
390 int regno;
391 FRAME frame;
392
393 /* Figure out which frame this is in currently. */
394 for (frame = get_current_frame ();
395 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
396 frame = get_prev_frame (frame))
397 ;
398
399 if (!frame)
400 error ("Value being assigned to is no longer active.");
401
402 amount_to_copy += (reg_size - amount_to_copy % reg_size);
403
404 /* Copy it out. */
405 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
406 amount_copied = 0);
407 amount_copied < amount_to_copy;
408 amount_copied += reg_size, regno++)
409 {
410 get_saved_register (buffer + amount_copied,
411 (int *)NULL, (CORE_ADDR *)NULL,
412 frame, regno, (enum lval_type *)NULL);
413 }
414
415 /* Modify what needs to be modified. */
416 if (VALUE_BITSIZE (toval))
417 modify_field (buffer + byte_offset,
418 value_as_long (fromval),
419 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
420 else if (use_buffer)
421 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
422 else
423 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
424 TYPE_LENGTH (type));
425
426 /* Copy it back. */
427 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
428 amount_copied = 0);
429 amount_copied < amount_to_copy;
430 amount_copied += reg_size, regno++)
431 {
432 enum lval_type lval;
433 CORE_ADDR addr;
434 int optim;
435
436 /* Just find out where to put it. */
437 get_saved_register ((char *)NULL,
438 &optim, &addr, frame, regno, &lval);
439
440 if (optim)
441 error ("Attempt to assign to a value that was optimized out.");
442 if (lval == lval_memory)
443 write_memory (addr, buffer + amount_copied, reg_size);
444 else if (lval == lval_register)
445 write_register_bytes (addr, buffer + amount_copied, reg_size);
446 else
447 error ("Attempt to assign to an unmodifiable value.");
448 }
449 }
450 break;
451
452
453 default:
454 error ("Left side of = operation is not an lvalue.");
455 }
456
457 /* Return a value just like TOVAL except with the contents of FROMVAL
458 (except in the case of the type if TOVAL is an internalvar). */
459
460 if (VALUE_LVAL (toval) == lval_internalvar
461 || VALUE_LVAL (toval) == lval_internalvar_component)
462 {
463 type = VALUE_TYPE (fromval);
464 }
465
466 val = allocate_value (type);
467 memcpy (val, toval, VALUE_CONTENTS_RAW (val) - (char *) val);
468 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
469 TYPE_LENGTH (type));
470 VALUE_TYPE (val) = type;
471
472 return val;
473 }
474
475 /* Extend a value VAL to COUNT repetitions of its type. */
476
477 value
478 value_repeat (arg1, count)
479 value arg1;
480 int count;
481 {
482 register value val;
483
484 if (VALUE_LVAL (arg1) != lval_memory)
485 error ("Only values in memory can be extended with '@'.");
486 if (count < 1)
487 error ("Invalid number %d of repetitions.", count);
488
489 val = allocate_repeat_value (VALUE_TYPE (arg1), count);
490
491 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
492 VALUE_CONTENTS_RAW (val),
493 TYPE_LENGTH (VALUE_TYPE (val)) * count);
494 VALUE_LVAL (val) = lval_memory;
495 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
496
497 return val;
498 }
499
500 value
501 value_of_variable (var, b)
502 struct symbol *var;
503 struct block *b;
504 {
505 value val;
506 FRAME fr;
507
508 if (b == NULL)
509 /* Use selected frame. */
510 fr = NULL;
511 else
512 {
513 fr = block_innermost_frame (b);
514 if (fr == NULL)
515 {
516 if (BLOCK_FUNCTION (b) != NULL
517 && SYMBOL_NAME (BLOCK_FUNCTION (b)) != NULL)
518 error ("No frame is currently executing in block %s.",
519 SYMBOL_NAME (BLOCK_FUNCTION (b)));
520 else
521 error ("No frame is currently executing in specified block");
522 }
523 }
524 val = read_var_value (var, fr);
525 if (val == 0)
526 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
527 return val;
528 }
529
530 /* Given a value which is an array, return a value which is a pointer to its
531 first element, regardless of whether or not the array has a nonzero lower
532 bound.
533
534 FIXME: A previous comment here indicated that this routine should be
535 substracting the array's lower bound. It's not clear to me that this
536 is correct. Given an array subscripting operation, it would certainly
537 work to do the adjustment here, essentially computing:
538
539 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
540
541 However I believe a more appropriate and logical place to account for
542 the lower bound is to do so in value_subscript, essentially computing:
543
544 (&array[0] + ((index - lowerbound) * sizeof array[0]))
545
546 As further evidence consider what would happen with operations other
547 than array subscripting, where the caller would get back a value that
548 had an address somewhere before the actual first element of the array,
549 and the information about the lower bound would be lost because of
550 the coercion to pointer type.
551 */
552
553 value
554 value_coerce_array (arg1)
555 value arg1;
556 {
557 register struct type *type;
558
559 if (VALUE_LVAL (arg1) != lval_memory)
560 error ("Attempt to take address of value not located in memory.");
561
562 /* Get type of elements. */
563 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_ARRAY)
564 type = TYPE_TARGET_TYPE (VALUE_TYPE (arg1));
565 else
566 /* A phony array made by value_repeat.
567 Its type is the type of the elements, not an array type. */
568 type = VALUE_TYPE (arg1);
569
570 return value_from_longest (lookup_pointer_type (type),
571 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
572 }
573
574 /* Given a value which is a function, return a value which is a pointer
575 to it. */
576
577 value
578 value_coerce_function (arg1)
579 value arg1;
580 {
581
582 if (VALUE_LVAL (arg1) != lval_memory)
583 error ("Attempt to take address of value not located in memory.");
584
585 return value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
586 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
587 }
588
589 /* Return a pointer value for the object for which ARG1 is the contents. */
590
591 value
592 value_addr (arg1)
593 value arg1;
594 {
595 struct type *type = VALUE_TYPE (arg1);
596 if (TYPE_CODE (type) == TYPE_CODE_REF)
597 {
598 /* Copy the value, but change the type from (T&) to (T*).
599 We keep the same location information, which is efficient,
600 and allows &(&X) to get the location containing the reference. */
601 value arg2 = value_copy (arg1);
602 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
603 return arg2;
604 }
605 if (VALUE_REPEATED (arg1)
606 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
607 return value_coerce_array (arg1);
608 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
609 return value_coerce_function (arg1);
610
611 if (VALUE_LVAL (arg1) != lval_memory)
612 error ("Attempt to take address of value not located in memory.");
613
614 return value_from_longest (lookup_pointer_type (type),
615 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
616 }
617
618 /* Given a value of a pointer type, apply the C unary * operator to it. */
619
620 value
621 value_ind (arg1)
622 value arg1;
623 {
624 COERCE_ARRAY (arg1);
625
626 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_MEMBER)
627 error ("not implemented: member types in value_ind");
628
629 /* Allow * on an integer so we can cast it to whatever we want.
630 This returns an int, which seems like the most C-like thing
631 to do. "long long" variables are rare enough that
632 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
633 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_INT)
634 return value_at (builtin_type_int,
635 (CORE_ADDR) value_as_long (arg1));
636 else if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR)
637 return value_at_lazy (TYPE_TARGET_TYPE (VALUE_TYPE (arg1)),
638 value_as_pointer (arg1));
639 error ("Attempt to take contents of a non-pointer value.");
640 return 0; /* For lint -- never reached */
641 }
642 \f
643 /* Pushing small parts of stack frames. */
644
645 /* Push one word (the size of object that a register holds). */
646
647 CORE_ADDR
648 push_word (sp, word)
649 CORE_ADDR sp;
650 REGISTER_TYPE word;
651 {
652 register int len = sizeof (REGISTER_TYPE);
653 char buffer[MAX_REGISTER_RAW_SIZE];
654
655 store_unsigned_integer (buffer, len, word);
656 #if 1 INNER_THAN 2
657 sp -= len;
658 write_memory (sp, buffer, len);
659 #else /* stack grows upward */
660 write_memory (sp, buffer, len);
661 sp += len;
662 #endif /* stack grows upward */
663
664 return sp;
665 }
666
667 /* Push LEN bytes with data at BUFFER. */
668
669 CORE_ADDR
670 push_bytes (sp, buffer, len)
671 CORE_ADDR sp;
672 char *buffer;
673 int len;
674 {
675 #if 1 INNER_THAN 2
676 sp -= len;
677 write_memory (sp, buffer, len);
678 #else /* stack grows upward */
679 write_memory (sp, buffer, len);
680 sp += len;
681 #endif /* stack grows upward */
682
683 return sp;
684 }
685
686 /* Push onto the stack the specified value VALUE. */
687
688 static CORE_ADDR
689 value_push (sp, arg)
690 register CORE_ADDR sp;
691 value arg;
692 {
693 register int len = TYPE_LENGTH (VALUE_TYPE (arg));
694
695 #if 1 INNER_THAN 2
696 sp -= len;
697 write_memory (sp, VALUE_CONTENTS (arg), len);
698 #else /* stack grows upward */
699 write_memory (sp, VALUE_CONTENTS (arg), len);
700 sp += len;
701 #endif /* stack grows upward */
702
703 return sp;
704 }
705
706 /* Perform the standard coercions that are specified
707 for arguments to be passed to C functions. */
708
709 value
710 value_arg_coerce (arg)
711 value arg;
712 {
713 register struct type *type;
714
715 /* FIXME: We should coerce this according to the prototype (if we have
716 one). Right now we do a little bit of this in typecmp(), but that
717 doesn't always get called. For example, if passing a ref to a function
718 without a prototype, we probably should de-reference it. Currently
719 we don't. */
720
721 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_ENUM)
722 arg = value_cast (builtin_type_unsigned_int, arg);
723
724 #if 1 /* FIXME: This is only a temporary patch. -fnf */
725 if (VALUE_REPEATED (arg)
726 || TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_ARRAY)
727 arg = value_coerce_array (arg);
728 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FUNC)
729 arg = value_coerce_function (arg);
730 #endif
731
732 type = VALUE_TYPE (arg);
733
734 if (TYPE_CODE (type) == TYPE_CODE_INT
735 && TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
736 return value_cast (builtin_type_int, arg);
737
738 if (TYPE_CODE (type) == TYPE_CODE_FLT
739 && TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
740 return value_cast (builtin_type_double, arg);
741
742 return arg;
743 }
744
745 /* Push the value ARG, first coercing it as an argument
746 to a C function. */
747
748 static CORE_ADDR
749 value_arg_push (sp, arg)
750 register CORE_ADDR sp;
751 value arg;
752 {
753 return value_push (sp, value_arg_coerce (arg));
754 }
755
756 /* Determine a function's address and its return type from its value.
757 Calls error() if the function is not valid for calling. */
758
759 static CORE_ADDR
760 find_function_addr (function, retval_type)
761 value function;
762 struct type **retval_type;
763 {
764 register struct type *ftype = VALUE_TYPE (function);
765 register enum type_code code = TYPE_CODE (ftype);
766 struct type *value_type;
767 CORE_ADDR funaddr;
768
769 /* If it's a member function, just look at the function
770 part of it. */
771
772 /* Determine address to call. */
773 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
774 {
775 funaddr = VALUE_ADDRESS (function);
776 value_type = TYPE_TARGET_TYPE (ftype);
777 }
778 else if (code == TYPE_CODE_PTR)
779 {
780 funaddr = value_as_pointer (function);
781 if (TYPE_CODE (TYPE_TARGET_TYPE (ftype)) == TYPE_CODE_FUNC
782 || TYPE_CODE (TYPE_TARGET_TYPE (ftype)) == TYPE_CODE_METHOD)
783 value_type = TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype));
784 else
785 value_type = builtin_type_int;
786 }
787 else if (code == TYPE_CODE_INT)
788 {
789 /* Handle the case of functions lacking debugging info.
790 Their values are characters since their addresses are char */
791 if (TYPE_LENGTH (ftype) == 1)
792 funaddr = value_as_pointer (value_addr (function));
793 else
794 /* Handle integer used as address of a function. */
795 funaddr = (CORE_ADDR) value_as_long (function);
796
797 value_type = builtin_type_int;
798 }
799 else
800 error ("Invalid data type for function to be called.");
801
802 *retval_type = value_type;
803 return funaddr;
804 }
805
806 #if defined (CALL_DUMMY)
807 /* All this stuff with a dummy frame may seem unnecessarily complicated
808 (why not just save registers in GDB?). The purpose of pushing a dummy
809 frame which looks just like a real frame is so that if you call a
810 function and then hit a breakpoint (get a signal, etc), "backtrace"
811 will look right. Whether the backtrace needs to actually show the
812 stack at the time the inferior function was called is debatable, but
813 it certainly needs to not display garbage. So if you are contemplating
814 making dummy frames be different from normal frames, consider that. */
815
816 /* Perform a function call in the inferior.
817 ARGS is a vector of values of arguments (NARGS of them).
818 FUNCTION is a value, the function to be called.
819 Returns a value representing what the function returned.
820 May fail to return, if a breakpoint or signal is hit
821 during the execution of the function. */
822
823 value
824 call_function_by_hand (function, nargs, args)
825 value function;
826 int nargs;
827 value *args;
828 {
829 register CORE_ADDR sp;
830 register int i;
831 CORE_ADDR start_sp;
832 /* CALL_DUMMY is an array of words (REGISTER_TYPE), but each word
833 is in host byte order. It is switched to target byte order before calling
834 FIX_CALL_DUMMY. */
835 static REGISTER_TYPE dummy[] = CALL_DUMMY;
836 REGISTER_TYPE dummy1[sizeof dummy / sizeof (REGISTER_TYPE)];
837 CORE_ADDR old_sp;
838 struct type *value_type;
839 unsigned char struct_return;
840 CORE_ADDR struct_addr;
841 struct inferior_status inf_status;
842 struct cleanup *old_chain;
843 CORE_ADDR funaddr;
844 int using_gcc;
845 CORE_ADDR real_pc;
846
847 if (!target_has_execution)
848 noprocess();
849
850 save_inferior_status (&inf_status, 1);
851 old_chain = make_cleanup (restore_inferior_status, &inf_status);
852
853 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
854 (and POP_FRAME for restoring them). (At least on most machines)
855 they are saved on the stack in the inferior. */
856 PUSH_DUMMY_FRAME;
857
858 old_sp = sp = read_sp ();
859
860 #if 1 INNER_THAN 2 /* Stack grows down */
861 sp -= sizeof dummy;
862 start_sp = sp;
863 #else /* Stack grows up */
864 start_sp = sp;
865 sp += sizeof dummy;
866 #endif
867
868 funaddr = find_function_addr (function, &value_type);
869
870 {
871 struct block *b = block_for_pc (funaddr);
872 /* If compiled without -g, assume GCC. */
873 using_gcc = b == NULL || BLOCK_GCC_COMPILED (b);
874 }
875
876 /* Are we returning a value using a structure return or a normal
877 value return? */
878
879 struct_return = using_struct_return (function, funaddr, value_type,
880 using_gcc);
881
882 /* Create a call sequence customized for this function
883 and the number of arguments for it. */
884 for (i = 0; i < sizeof dummy / sizeof (REGISTER_TYPE); i++)
885 store_unsigned_integer (&dummy1[i], sizeof (REGISTER_TYPE),
886 (unsigned LONGEST)dummy[i]);
887
888 #ifdef GDB_TARGET_IS_HPPA
889 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
890 value_type, using_gcc);
891 #else
892 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
893 value_type, using_gcc);
894 real_pc = start_sp;
895 #endif
896
897 #if CALL_DUMMY_LOCATION == ON_STACK
898 write_memory (start_sp, (char *)dummy1, sizeof dummy);
899
900 #else /* Not on stack. */
901 #if CALL_DUMMY_LOCATION == BEFORE_TEXT_END
902 /* Convex Unix prohibits executing in the stack segment. */
903 /* Hope there is empty room at the top of the text segment. */
904 {
905 extern CORE_ADDR text_end;
906 static checked = 0;
907 if (!checked)
908 for (start_sp = text_end - sizeof dummy; start_sp < text_end; ++start_sp)
909 if (read_memory_integer (start_sp, 1) != 0)
910 error ("text segment full -- no place to put call");
911 checked = 1;
912 sp = old_sp;
913 real_pc = text_end - sizeof dummy;
914 write_memory (real_pc, (char *)dummy1, sizeof dummy);
915 }
916 #else /* After text_end. */
917 {
918 extern CORE_ADDR text_end;
919 int errcode;
920 sp = old_sp;
921 real_pc = text_end;
922 errcode = target_write_memory (real_pc, (char *)dummy1, sizeof dummy);
923 if (errcode != 0)
924 error ("Cannot write text segment -- call_function failed");
925 }
926 #endif /* After text_end. */
927 #endif /* Not on stack. */
928
929 #ifdef lint
930 sp = old_sp; /* It really is used, for some ifdef's... */
931 #endif
932
933 #ifdef STACK_ALIGN
934 /* If stack grows down, we must leave a hole at the top. */
935 {
936 int len = 0;
937
938 /* Reserve space for the return structure to be written on the
939 stack, if necessary */
940
941 if (struct_return)
942 len += TYPE_LENGTH (value_type);
943
944 for (i = nargs - 1; i >= 0; i--)
945 len += TYPE_LENGTH (VALUE_TYPE (value_arg_coerce (args[i])));
946 #ifdef CALL_DUMMY_STACK_ADJUST
947 len += CALL_DUMMY_STACK_ADJUST;
948 #endif
949 #if 1 INNER_THAN 2
950 sp -= STACK_ALIGN (len) - len;
951 #else
952 sp += STACK_ALIGN (len) - len;
953 #endif
954 }
955 #endif /* STACK_ALIGN */
956
957 /* Reserve space for the return structure to be written on the
958 stack, if necessary */
959
960 if (struct_return)
961 {
962 #if 1 INNER_THAN 2
963 sp -= TYPE_LENGTH (value_type);
964 struct_addr = sp;
965 #else
966 struct_addr = sp;
967 sp += TYPE_LENGTH (value_type);
968 #endif
969 }
970
971 #if defined (REG_STRUCT_HAS_ADDR)
972 {
973 /* This is a machine like the sparc, where we need to pass a pointer
974 to the structure, not the structure itself. */
975 if (REG_STRUCT_HAS_ADDR (using_gcc))
976 for (i = nargs - 1; i >= 0; i--)
977 if (TYPE_CODE (VALUE_TYPE (args[i])) == TYPE_CODE_STRUCT)
978 {
979 CORE_ADDR addr;
980 #if !(1 INNER_THAN 2)
981 /* The stack grows up, so the address of the thing we push
982 is the stack pointer before we push it. */
983 addr = sp;
984 #endif
985 /* Push the structure. */
986 sp = value_push (sp, args[i]);
987 #if 1 INNER_THAN 2
988 /* The stack grows down, so the address of the thing we push
989 is the stack pointer after we push it. */
990 addr = sp;
991 #endif
992 /* The value we're going to pass is the address of the thing
993 we just pushed. */
994 args[i] = value_from_longest (lookup_pointer_type (value_type),
995 (LONGEST) addr);
996 }
997 }
998 #endif /* REG_STRUCT_HAS_ADDR. */
999
1000 #ifdef PUSH_ARGUMENTS
1001 PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr);
1002 #else /* !PUSH_ARGUMENTS */
1003 for (i = nargs - 1; i >= 0; i--)
1004 sp = value_arg_push (sp, args[i]);
1005 #endif /* !PUSH_ARGUMENTS */
1006
1007 #ifdef CALL_DUMMY_STACK_ADJUST
1008 #if 1 INNER_THAN 2
1009 sp -= CALL_DUMMY_STACK_ADJUST;
1010 #else
1011 sp += CALL_DUMMY_STACK_ADJUST;
1012 #endif
1013 #endif /* CALL_DUMMY_STACK_ADJUST */
1014
1015 /* Store the address at which the structure is supposed to be
1016 written. Note that this (and the code which reserved the space
1017 above) assumes that gcc was used to compile this function. Since
1018 it doesn't cost us anything but space and if the function is pcc
1019 it will ignore this value, we will make that assumption.
1020
1021 Also note that on some machines (like the sparc) pcc uses a
1022 convention like gcc's. */
1023
1024 if (struct_return)
1025 STORE_STRUCT_RETURN (struct_addr, sp);
1026
1027 /* Write the stack pointer. This is here because the statements above
1028 might fool with it. On SPARC, this write also stores the register
1029 window into the right place in the new stack frame, which otherwise
1030 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1031 write_sp (sp);
1032
1033 {
1034 char retbuf[REGISTER_BYTES];
1035 char *name;
1036 struct symbol *symbol;
1037
1038 name = NULL;
1039 symbol = find_pc_function (funaddr);
1040 if (symbol)
1041 {
1042 name = SYMBOL_SOURCE_NAME (symbol);
1043 }
1044 else
1045 {
1046 /* Try the minimal symbols. */
1047 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1048
1049 if (msymbol)
1050 {
1051 name = SYMBOL_SOURCE_NAME (msymbol);
1052 }
1053 }
1054 if (name == NULL)
1055 {
1056 char format[80];
1057 sprintf (format, "at %s", local_hex_format ());
1058 name = alloca (80);
1059 sprintf (name, format, funaddr);
1060 }
1061
1062 /* Execute the stack dummy routine, calling FUNCTION.
1063 When it is done, discard the empty frame
1064 after storing the contents of all regs into retbuf. */
1065 if (run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf))
1066 {
1067 /* We stopped somewhere besides the call dummy. */
1068
1069 /* If we did the cleanups, we would print a spurious error message
1070 (Unable to restore previously selected frame), would write the
1071 registers from the inf_status (which is wrong), and would do other
1072 wrong things (like set stop_bpstat to the wrong thing). */
1073 discard_cleanups (old_chain);
1074 /* Prevent memory leak. */
1075 bpstat_clear (&inf_status.stop_bpstat);
1076
1077 /* The following error message used to say "The expression
1078 which contained the function call has been discarded." It
1079 is a hard concept to explain in a few words. Ideally, GDB
1080 would be able to resume evaluation of the expression when
1081 the function finally is done executing. Perhaps someday
1082 this will be implemented (it would not be easy). */
1083
1084 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1085 a C++ name with arguments and stuff. */
1086 error ("\
1087 The program being debugged stopped while in a function called from GDB.\n\
1088 When the function (%s) is done executing, GDB will silently\n\
1089 stop (instead of continuing to evaluate the expression containing\n\
1090 the function call).", name);
1091 }
1092
1093 do_cleanups (old_chain);
1094
1095 /* Figure out the value returned by the function. */
1096 return value_being_returned (value_type, retbuf, struct_return);
1097 }
1098 }
1099 #else /* no CALL_DUMMY. */
1100 value
1101 call_function_by_hand (function, nargs, args)
1102 value function;
1103 int nargs;
1104 value *args;
1105 {
1106 error ("Cannot invoke functions on this machine.");
1107 }
1108 #endif /* no CALL_DUMMY. */
1109
1110 \f
1111 /* Create a value for an array by allocating space in the inferior, copying
1112 the data into that space, and then setting up an array value.
1113
1114 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1115 populated from the values passed in ELEMVEC.
1116
1117 The element type of the array is inherited from the type of the
1118 first element, and all elements must have the same size (though we
1119 don't currently enforce any restriction on their types). */
1120
1121 value
1122 value_array (lowbound, highbound, elemvec)
1123 int lowbound;
1124 int highbound;
1125 value *elemvec;
1126 {
1127 int nelem;
1128 int idx;
1129 int typelength;
1130 value val;
1131 struct type *rangetype;
1132 struct type *arraytype;
1133 CORE_ADDR addr;
1134
1135 /* Validate that the bounds are reasonable and that each of the elements
1136 have the same size. */
1137
1138 nelem = highbound - lowbound + 1;
1139 if (nelem <= 0)
1140 {
1141 error ("bad array bounds (%d, %d)", lowbound, highbound);
1142 }
1143 typelength = TYPE_LENGTH (VALUE_TYPE (elemvec[0]));
1144 for (idx = 0; idx < nelem; idx++)
1145 {
1146 if (TYPE_LENGTH (VALUE_TYPE (elemvec[idx])) != typelength)
1147 {
1148 error ("array elements must all be the same size");
1149 }
1150 }
1151
1152 /* Allocate space to store the array in the inferior, and then initialize
1153 it by copying in each element. FIXME: Is it worth it to create a
1154 local buffer in which to collect each value and then write all the
1155 bytes in one operation? */
1156
1157 addr = allocate_space_in_inferior (nelem * typelength);
1158 for (idx = 0; idx < nelem; idx++)
1159 {
1160 write_memory (addr + (idx * typelength), VALUE_CONTENTS (elemvec[idx]),
1161 typelength);
1162 }
1163
1164 /* Create the array type and set up an array value to be evaluated lazily. */
1165
1166 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1167 lowbound, highbound);
1168 arraytype = create_array_type ((struct type *) NULL,
1169 VALUE_TYPE (elemvec[0]), rangetype);
1170 val = value_at_lazy (arraytype, addr);
1171 return (val);
1172 }
1173
1174 /* Create a value for a string constant by allocating space in the inferior,
1175 copying the data into that space, and returning the address with type
1176 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1177 of characters.
1178 Note that string types are like array of char types with a lower bound of
1179 zero and an upper bound of LEN - 1. Also note that the string may contain
1180 embedded null bytes. */
1181
1182 value
1183 value_string (ptr, len)
1184 char *ptr;
1185 int len;
1186 {
1187 value val;
1188 struct type *rangetype;
1189 struct type *stringtype;
1190 CORE_ADDR addr;
1191
1192 /* Allocate space to store the string in the inferior, and then
1193 copy LEN bytes from PTR in gdb to that address in the inferior. */
1194
1195 addr = allocate_space_in_inferior (len);
1196 write_memory (addr, ptr, len);
1197
1198 /* Create the string type and set up a string value to be evaluated
1199 lazily. */
1200
1201 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1202 0, len - 1);
1203 stringtype = create_string_type ((struct type *) NULL, rangetype);
1204 val = value_at_lazy (stringtype, addr);
1205 return (val);
1206 }
1207 \f
1208 /* See if we can pass arguments in T2 to a function which takes arguments
1209 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1210 arguments need coercion of some sort, then the coerced values are written
1211 into T2. Return value is 0 if the arguments could be matched, or the
1212 position at which they differ if not.
1213
1214 STATICP is nonzero if the T1 argument list came from a
1215 static member function.
1216
1217 For non-static member functions, we ignore the first argument,
1218 which is the type of the instance variable. This is because we want
1219 to handle calls with objects from derived classes. This is not
1220 entirely correct: we should actually check to make sure that a
1221 requested operation is type secure, shouldn't we? FIXME. */
1222
1223 static int
1224 typecmp (staticp, t1, t2)
1225 int staticp;
1226 struct type *t1[];
1227 value t2[];
1228 {
1229 int i;
1230
1231 if (t2 == 0)
1232 return 1;
1233 if (staticp && t1 == 0)
1234 return t2[1] != 0;
1235 if (t1 == 0)
1236 return 1;
1237 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID) return 0;
1238 if (t1[!staticp] == 0) return 0;
1239 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1240 {
1241 if (! t2[i])
1242 return i+1;
1243 if (TYPE_CODE (t1[i]) == TYPE_CODE_REF
1244 /* We should be doing hairy argument matching, as below. */
1245 && (TYPE_CODE (TYPE_TARGET_TYPE (t1[i]))
1246 == TYPE_CODE (VALUE_TYPE (t2[i]))))
1247 {
1248 t2[i] = value_addr (t2[i]);
1249 continue;
1250 }
1251
1252 if (TYPE_CODE (t1[i]) == TYPE_CODE_PTR
1253 && TYPE_CODE (VALUE_TYPE (t2[i])) == TYPE_CODE_ARRAY)
1254 /* Array to pointer is a `trivial conversion' according to the ARM. */
1255 continue;
1256
1257 /* We should be doing much hairier argument matching (see section 13.2
1258 of the ARM), but as a quick kludge, just check for the same type
1259 code. */
1260 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
1261 return i+1;
1262 }
1263 if (!t1[i]) return 0;
1264 return t2[i] ? i+1 : 0;
1265 }
1266
1267 /* Helper function used by value_struct_elt to recurse through baseclasses.
1268 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1269 and search in it assuming it has (class) type TYPE.
1270 If found, return value, else return NULL.
1271
1272 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
1273 look for a baseclass named NAME. */
1274
1275 static value
1276 search_struct_field (name, arg1, offset, type, looking_for_baseclass)
1277 char *name;
1278 register value arg1;
1279 int offset;
1280 register struct type *type;
1281 int looking_for_baseclass;
1282 {
1283 int i;
1284
1285 check_stub_type (type);
1286
1287 if (! looking_for_baseclass)
1288 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1289 {
1290 char *t_field_name = TYPE_FIELD_NAME (type, i);
1291
1292 if (t_field_name && STREQ (t_field_name, name))
1293 {
1294 value v;
1295 if (TYPE_FIELD_STATIC (type, i))
1296 {
1297 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, i);
1298 struct symbol *sym =
1299 lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
1300 if (sym == NULL)
1301 error ("Internal error: could not find physical static variable named %s",
1302 phys_name);
1303 v = value_at (TYPE_FIELD_TYPE (type, i),
1304 (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym));
1305 }
1306 else
1307 v = value_primitive_field (arg1, offset, i, type);
1308 if (v == 0)
1309 error("there is no field named %s", name);
1310 return v;
1311 }
1312 }
1313
1314 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1315 {
1316 value v;
1317 /* If we are looking for baseclasses, this is what we get when we
1318 hit them. But it could happen that the base part's member name
1319 is not yet filled in. */
1320 int found_baseclass = (looking_for_baseclass
1321 && TYPE_BASECLASS_NAME (type, i) != NULL
1322 && STREQ (name, TYPE_BASECLASS_NAME (type, i)));
1323
1324 if (BASETYPE_VIA_VIRTUAL (type, i))
1325 {
1326 value v2;
1327 /* Fix to use baseclass_offset instead. FIXME */
1328 baseclass_addr (type, i, VALUE_CONTENTS (arg1) + offset,
1329 &v2, (int *)NULL);
1330 if (v2 == 0)
1331 error ("virtual baseclass botch");
1332 if (found_baseclass)
1333 return v2;
1334 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
1335 looking_for_baseclass);
1336 }
1337 else if (found_baseclass)
1338 v = value_primitive_field (arg1, offset, i, type);
1339 else
1340 v = search_struct_field (name, arg1,
1341 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
1342 TYPE_BASECLASS (type, i),
1343 looking_for_baseclass);
1344 if (v) return v;
1345 }
1346 return NULL;
1347 }
1348
1349 /* Helper function used by value_struct_elt to recurse through baseclasses.
1350 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1351 and search in it assuming it has (class) type TYPE.
1352 If found, return value, else if name matched and args not return -1,
1353 else return NULL. */
1354
1355 static value
1356 search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
1357 char *name;
1358 register value *arg1p, *args;
1359 int offset, *static_memfuncp;
1360 register struct type *type;
1361 {
1362 int i;
1363 static int name_matched = 0;
1364
1365 check_stub_type (type);
1366 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1367 {
1368 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1369 if (t_field_name && STREQ (t_field_name, name))
1370 {
1371 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1372 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1373 name_matched = 1;
1374
1375 if (j > 0 && args == 0)
1376 error ("cannot resolve overloaded method `%s'", name);
1377 while (j >= 0)
1378 {
1379 if (TYPE_FN_FIELD_STUB (f, j))
1380 check_stub_method (type, i, j);
1381 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1382 TYPE_FN_FIELD_ARGS (f, j), args))
1383 {
1384 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1385 return (value)value_virtual_fn_field (arg1p, f, j, type, offset);
1386 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
1387 *static_memfuncp = 1;
1388 return (value)value_fn_field (arg1p, f, j, type, offset);
1389 }
1390 j--;
1391 }
1392 }
1393 }
1394
1395 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1396 {
1397 value v;
1398 int base_offset;
1399
1400 if (BASETYPE_VIA_VIRTUAL (type, i))
1401 {
1402 base_offset = baseclass_offset (type, i, *arg1p, offset);
1403 if (base_offset == -1)
1404 error ("virtual baseclass botch");
1405 }
1406 else
1407 {
1408 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1409 }
1410 v = search_struct_method (name, arg1p, args, base_offset + offset,
1411 static_memfuncp, TYPE_BASECLASS (type, i));
1412 if (v == -1)
1413 {
1414 name_matched = 1;
1415 }
1416 else if (v)
1417 {
1418 /* FIXME-bothner: Why is this commented out? Why is it here? */
1419 /* *arg1p = arg1_tmp;*/
1420 return v;
1421 }
1422 }
1423 if (name_matched) return -1;
1424 else return NULL;
1425 }
1426
1427 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1428 extract the component named NAME from the ultimate target structure/union
1429 and return it as a value with its appropriate type.
1430 ERR is used in the error message if *ARGP's type is wrong.
1431
1432 C++: ARGS is a list of argument types to aid in the selection of
1433 an appropriate method. Also, handle derived types.
1434
1435 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1436 where the truthvalue of whether the function that was resolved was
1437 a static member function or not is stored.
1438
1439 ERR is an error message to be printed in case the field is not found. */
1440
1441 value
1442 value_struct_elt (argp, args, name, static_memfuncp, err)
1443 register value *argp, *args;
1444 char *name;
1445 int *static_memfuncp;
1446 char *err;
1447 {
1448 register struct type *t;
1449 value v;
1450
1451 COERCE_ARRAY (*argp);
1452
1453 t = VALUE_TYPE (*argp);
1454
1455 /* Follow pointers until we get to a non-pointer. */
1456
1457 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1458 {
1459 *argp = value_ind (*argp);
1460 /* Don't coerce fn pointer to fn and then back again! */
1461 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
1462 COERCE_ARRAY (*argp);
1463 t = VALUE_TYPE (*argp);
1464 }
1465
1466 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1467 error ("not implemented: member type in value_struct_elt");
1468
1469 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1470 && TYPE_CODE (t) != TYPE_CODE_UNION)
1471 error ("Attempt to extract a component of a value that is not a %s.", err);
1472
1473 /* Assume it's not, unless we see that it is. */
1474 if (static_memfuncp)
1475 *static_memfuncp =0;
1476
1477 if (!args)
1478 {
1479 /* if there are no arguments ...do this... */
1480
1481 /* Try as a field first, because if we succeed, there
1482 is less work to be done. */
1483 v = search_struct_field (name, *argp, 0, t, 0);
1484 if (v)
1485 return v;
1486
1487 /* C++: If it was not found as a data field, then try to
1488 return it as a pointer to a method. */
1489
1490 if (destructor_name_p (name, t))
1491 error ("Cannot get value of destructor");
1492
1493 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1494
1495 if (v == 0)
1496 {
1497 if (TYPE_NFN_FIELDS (t))
1498 error ("There is no member or method named %s.", name);
1499 else
1500 error ("There is no member named %s.", name);
1501 }
1502 return v;
1503 }
1504
1505 if (destructor_name_p (name, t))
1506 {
1507 if (!args[1])
1508 {
1509 /* destructors are a special case. */
1510 return (value)value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, 0),
1511 TYPE_FN_FIELDLIST_LENGTH (t, 0),
1512 0, 0);
1513 }
1514 else
1515 {
1516 error ("destructor should not have any argument");
1517 }
1518 }
1519 else
1520 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1521
1522 if (v == -1)
1523 {
1524 error("Argument list of %s mismatch with component in the structure.", name);
1525 }
1526 else if (v == 0)
1527 {
1528 /* See if user tried to invoke data as function. If so,
1529 hand it back. If it's not callable (i.e., a pointer to function),
1530 gdb should give an error. */
1531 v = search_struct_field (name, *argp, 0, t, 0);
1532 }
1533
1534 if (!v)
1535 error ("Structure has no component named %s.", name);
1536 return v;
1537 }
1538
1539 /* C++: return 1 is NAME is a legitimate name for the destructor
1540 of type TYPE. If TYPE does not have a destructor, or
1541 if NAME is inappropriate for TYPE, an error is signaled. */
1542 int
1543 destructor_name_p (name, type)
1544 const char *name;
1545 const struct type *type;
1546 {
1547 /* destructors are a special case. */
1548
1549 if (name[0] == '~')
1550 {
1551 char *dname = type_name_no_tag (type);
1552 if (!STREQ (dname, name+1))
1553 error ("name of destructor must equal name of class");
1554 else
1555 return 1;
1556 }
1557 return 0;
1558 }
1559
1560 /* Helper function for check_field: Given TYPE, a structure/union,
1561 return 1 if the component named NAME from the ultimate
1562 target structure/union is defined, otherwise, return 0. */
1563
1564 static int
1565 check_field_in (type, name)
1566 register struct type *type;
1567 const char *name;
1568 {
1569 register int i;
1570
1571 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1572 {
1573 char *t_field_name = TYPE_FIELD_NAME (type, i);
1574 if (t_field_name && STREQ (t_field_name, name))
1575 return 1;
1576 }
1577
1578 /* C++: If it was not found as a data field, then try to
1579 return it as a pointer to a method. */
1580
1581 /* Destructors are a special case. */
1582 if (destructor_name_p (name, type))
1583 return 1;
1584
1585 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1586 {
1587 if (STREQ (TYPE_FN_FIELDLIST_NAME (type, i), name))
1588 return 1;
1589 }
1590
1591 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1592 if (check_field_in (TYPE_BASECLASS (type, i), name))
1593 return 1;
1594
1595 return 0;
1596 }
1597
1598
1599 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
1600 return 1 if the component named NAME from the ultimate
1601 target structure/union is defined, otherwise, return 0. */
1602
1603 int
1604 check_field (arg1, name)
1605 register value arg1;
1606 const char *name;
1607 {
1608 register struct type *t;
1609
1610 COERCE_ARRAY (arg1);
1611
1612 t = VALUE_TYPE (arg1);
1613
1614 /* Follow pointers until we get to a non-pointer. */
1615
1616 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1617 t = TYPE_TARGET_TYPE (t);
1618
1619 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1620 error ("not implemented: member type in check_field");
1621
1622 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1623 && TYPE_CODE (t) != TYPE_CODE_UNION)
1624 error ("Internal error: `this' is not an aggregate");
1625
1626 return check_field_in (t, name);
1627 }
1628
1629 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
1630 return the address of this member as a "pointer to member"
1631 type. If INTYPE is non-null, then it will be the type
1632 of the member we are looking for. This will help us resolve
1633 "pointers to member functions". This function is used
1634 to resolve user expressions of the form "DOMAIN::NAME". */
1635
1636 value
1637 value_struct_elt_for_reference (domain, offset, curtype, name, intype)
1638 struct type *domain, *curtype, *intype;
1639 int offset;
1640 char *name;
1641 {
1642 register struct type *t = curtype;
1643 register int i;
1644 value v;
1645
1646 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1647 && TYPE_CODE (t) != TYPE_CODE_UNION)
1648 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
1649
1650 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
1651 {
1652 char *t_field_name = TYPE_FIELD_NAME (t, i);
1653
1654 if (t_field_name && STREQ (t_field_name, name))
1655 {
1656 if (TYPE_FIELD_STATIC (t, i))
1657 {
1658 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (t, i);
1659 struct symbol *sym =
1660 lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
1661 if (sym == NULL)
1662 error ("Internal error: could not find physical static variable named %s",
1663 phys_name);
1664 return value_at (SYMBOL_TYPE (sym),
1665 (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym));
1666 }
1667 if (TYPE_FIELD_PACKED (t, i))
1668 error ("pointers to bitfield members not allowed");
1669
1670 return value_from_longest
1671 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
1672 domain)),
1673 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
1674 }
1675 }
1676
1677 /* C++: If it was not found as a data field, then try to
1678 return it as a pointer to a method. */
1679
1680 /* Destructors are a special case. */
1681 if (destructor_name_p (name, t))
1682 {
1683 error ("member pointers to destructors not implemented yet");
1684 }
1685
1686 /* Perform all necessary dereferencing. */
1687 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
1688 intype = TYPE_TARGET_TYPE (intype);
1689
1690 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
1691 {
1692 if (STREQ (TYPE_FN_FIELDLIST_NAME (t, i), name))
1693 {
1694 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
1695 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
1696
1697 if (intype == 0 && j > 1)
1698 error ("non-unique member `%s' requires type instantiation", name);
1699 if (intype)
1700 {
1701 while (j--)
1702 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
1703 break;
1704 if (j < 0)
1705 error ("no member function matches that type instantiation");
1706 }
1707 else
1708 j = 0;
1709
1710 if (TYPE_FN_FIELD_STUB (f, j))
1711 check_stub_method (t, i, j);
1712 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1713 {
1714 return value_from_longest
1715 (lookup_reference_type
1716 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
1717 domain)),
1718 (LONGEST) METHOD_PTR_FROM_VOFFSET
1719 (TYPE_FN_FIELD_VOFFSET (f, j)));
1720 }
1721 else
1722 {
1723 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
1724 0, VAR_NAMESPACE, 0, NULL);
1725 if (s == NULL)
1726 {
1727 v = 0;
1728 }
1729 else
1730 {
1731 v = read_var_value (s, 0);
1732 #if 0
1733 VALUE_TYPE (v) = lookup_reference_type
1734 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
1735 domain));
1736 #endif
1737 }
1738 return v;
1739 }
1740 }
1741 }
1742 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
1743 {
1744 value v;
1745 int base_offset;
1746
1747 if (BASETYPE_VIA_VIRTUAL (t, i))
1748 base_offset = 0;
1749 else
1750 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
1751 v = value_struct_elt_for_reference (domain,
1752 offset + base_offset,
1753 TYPE_BASECLASS (t, i),
1754 name,
1755 intype);
1756 if (v)
1757 return v;
1758 }
1759 return 0;
1760 }
1761
1762 /* C++: return the value of the class instance variable, if one exists.
1763 Flag COMPLAIN signals an error if the request is made in an
1764 inappropriate context. */
1765 value
1766 value_of_this (complain)
1767 int complain;
1768 {
1769 extern FRAME selected_frame;
1770 struct symbol *func, *sym;
1771 struct block *b;
1772 int i;
1773 static const char funny_this[] = "this";
1774 value this;
1775
1776 if (selected_frame == 0)
1777 if (complain)
1778 error ("no frame selected");
1779 else return 0;
1780
1781 func = get_frame_function (selected_frame);
1782 if (!func)
1783 {
1784 if (complain)
1785 error ("no `this' in nameless context");
1786 else return 0;
1787 }
1788
1789 b = SYMBOL_BLOCK_VALUE (func);
1790 i = BLOCK_NSYMS (b);
1791 if (i <= 0)
1792 if (complain)
1793 error ("no args, no `this'");
1794 else return 0;
1795
1796 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
1797 symbol instead of the LOC_ARG one (if both exist). */
1798 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
1799 if (sym == NULL)
1800 {
1801 if (complain)
1802 error ("current stack frame not in method");
1803 else
1804 return NULL;
1805 }
1806
1807 this = read_var_value (sym, selected_frame);
1808 if (this == 0 && complain)
1809 error ("`this' argument at unknown address");
1810 return this;
1811 }
This page took 0.069217 seconds and 5 git commands to generate.