* doc/c-mips.texi (MIPS Opts): Remove erroneous space after
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 87, 89, 91, 92, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33
34 #include <errno.h>
35 #include "gdb_string.h"
36
37 /* Flag indicating HP compilers were used; needed to correctly handle some
38 value operations with HP aCC code/runtime. */
39 extern int hp_som_som_object_present;
40
41 extern int overload_debug;
42 /* Local functions. */
43
44 static int typecmp (int staticp, struct type *t1[], value_ptr t2[]);
45
46 static CORE_ADDR find_function_addr (value_ptr, struct type **);
47 static value_ptr value_arg_coerce (value_ptr, struct type *, int);
48
49
50 static CORE_ADDR value_push (CORE_ADDR, value_ptr);
51
52 static value_ptr search_struct_field (char *, value_ptr, int,
53 struct type *, int);
54
55 static value_ptr search_struct_method (char *, value_ptr *,
56 value_ptr *,
57 int, int *, struct type *);
58
59 static int check_field_in (struct type *, const char *);
60
61 static CORE_ADDR allocate_space_in_inferior (int);
62
63 static value_ptr cast_into_complex (struct type *, value_ptr);
64
65 static struct fn_field *find_method_list (value_ptr * argp, char *method,
66 int offset, int *static_memfuncp,
67 struct type *type, int *num_fns,
68 struct type **basetype,
69 int *boffset);
70
71 void _initialize_valops (void);
72
73 #define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL)
74
75 /* Flag for whether we want to abandon failed expression evals by default. */
76
77 #if 0
78 static int auto_abandon = 0;
79 #endif
80
81 int overload_resolution = 0;
82
83 /* This boolean tells what gdb should do if a signal is received while in
84 a function called from gdb (call dummy). If set, gdb unwinds the stack
85 and restore the context to what as it was before the call.
86 The default is to stop in the frame where the signal was received. */
87
88 int unwind_on_signal_p = 0;
89 \f
90
91
92 /* Find the address of function name NAME in the inferior. */
93
94 value_ptr
95 find_function_in_inferior (name)
96 char *name;
97 {
98 register struct symbol *sym;
99 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
100 if (sym != NULL)
101 {
102 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
103 {
104 error ("\"%s\" exists in this program but is not a function.",
105 name);
106 }
107 return value_of_variable (sym, NULL);
108 }
109 else
110 {
111 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
112 if (msymbol != NULL)
113 {
114 struct type *type;
115 CORE_ADDR maddr;
116 type = lookup_pointer_type (builtin_type_char);
117 type = lookup_function_type (type);
118 type = lookup_pointer_type (type);
119 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
120 return value_from_pointer (type, maddr);
121 }
122 else
123 {
124 if (!target_has_execution)
125 error ("evaluation of this expression requires the target program to be active");
126 else
127 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
128 }
129 }
130 }
131
132 /* Allocate NBYTES of space in the inferior using the inferior's malloc
133 and return a value that is a pointer to the allocated space. */
134
135 value_ptr
136 value_allocate_space_in_inferior (len)
137 int len;
138 {
139 value_ptr blocklen;
140 register value_ptr val = find_function_in_inferior ("malloc");
141
142 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
143 val = call_function_by_hand (val, 1, &blocklen);
144 if (value_logical_not (val))
145 {
146 if (!target_has_execution)
147 error ("No memory available to program now: you need to start the target first");
148 else
149 error ("No memory available to program: call to malloc failed");
150 }
151 return val;
152 }
153
154 static CORE_ADDR
155 allocate_space_in_inferior (len)
156 int len;
157 {
158 return value_as_long (value_allocate_space_in_inferior (len));
159 }
160
161 /* Cast value ARG2 to type TYPE and return as a value.
162 More general than a C cast: accepts any two types of the same length,
163 and if ARG2 is an lvalue it can be cast into anything at all. */
164 /* In C++, casts may change pointer or object representations. */
165
166 value_ptr
167 value_cast (type, arg2)
168 struct type *type;
169 register value_ptr arg2;
170 {
171 register enum type_code code1;
172 register enum type_code code2;
173 register int scalar;
174 struct type *type2;
175
176 int convert_to_boolean = 0;
177
178 if (VALUE_TYPE (arg2) == type)
179 return arg2;
180
181 CHECK_TYPEDEF (type);
182 code1 = TYPE_CODE (type);
183 COERCE_REF (arg2);
184 type2 = check_typedef (VALUE_TYPE (arg2));
185
186 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
187 is treated like a cast to (TYPE [N])OBJECT,
188 where N is sizeof(OBJECT)/sizeof(TYPE). */
189 if (code1 == TYPE_CODE_ARRAY)
190 {
191 struct type *element_type = TYPE_TARGET_TYPE (type);
192 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
193 if (element_length > 0
194 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
195 {
196 struct type *range_type = TYPE_INDEX_TYPE (type);
197 int val_length = TYPE_LENGTH (type2);
198 LONGEST low_bound, high_bound, new_length;
199 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
200 low_bound = 0, high_bound = 0;
201 new_length = val_length / element_length;
202 if (val_length % element_length != 0)
203 warning ("array element type size does not divide object size in cast");
204 /* FIXME-type-allocation: need a way to free this type when we are
205 done with it. */
206 range_type = create_range_type ((struct type *) NULL,
207 TYPE_TARGET_TYPE (range_type),
208 low_bound,
209 new_length + low_bound - 1);
210 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
211 element_type, range_type);
212 return arg2;
213 }
214 }
215
216 if (current_language->c_style_arrays
217 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
218 arg2 = value_coerce_array (arg2);
219
220 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
221 arg2 = value_coerce_function (arg2);
222
223 type2 = check_typedef (VALUE_TYPE (arg2));
224 COERCE_VARYING_ARRAY (arg2, type2);
225 code2 = TYPE_CODE (type2);
226
227 if (code1 == TYPE_CODE_COMPLEX)
228 return cast_into_complex (type, arg2);
229 if (code1 == TYPE_CODE_BOOL)
230 {
231 code1 = TYPE_CODE_INT;
232 convert_to_boolean = 1;
233 }
234 if (code1 == TYPE_CODE_CHAR)
235 code1 = TYPE_CODE_INT;
236 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
237 code2 = TYPE_CODE_INT;
238
239 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
240 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
241
242 if (code1 == TYPE_CODE_STRUCT
243 && code2 == TYPE_CODE_STRUCT
244 && TYPE_NAME (type) != 0)
245 {
246 /* Look in the type of the source to see if it contains the
247 type of the target as a superclass. If so, we'll need to
248 offset the object in addition to changing its type. */
249 value_ptr v = search_struct_field (type_name_no_tag (type),
250 arg2, 0, type2, 1);
251 if (v)
252 {
253 VALUE_TYPE (v) = type;
254 return v;
255 }
256 }
257 if (code1 == TYPE_CODE_FLT && scalar)
258 return value_from_double (type, value_as_double (arg2));
259 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
260 || code1 == TYPE_CODE_RANGE)
261 && (scalar || code2 == TYPE_CODE_PTR))
262 {
263 LONGEST longest;
264
265 if (hp_som_som_object_present && /* if target compiled by HP aCC */
266 (code2 == TYPE_CODE_PTR))
267 {
268 unsigned int *ptr;
269 value_ptr retvalp;
270
271 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
272 {
273 /* With HP aCC, pointers to data members have a bias */
274 case TYPE_CODE_MEMBER:
275 retvalp = value_from_longest (type, value_as_long (arg2));
276 /* force evaluation */
277 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
278 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
279 return retvalp;
280
281 /* While pointers to methods don't really point to a function */
282 case TYPE_CODE_METHOD:
283 error ("Pointers to methods not supported with HP aCC");
284
285 default:
286 break; /* fall out and go to normal handling */
287 }
288 }
289 longest = value_as_long (arg2);
290 return value_from_longest (type, convert_to_boolean ?
291 (LONGEST) (longest ? 1 : 0) : longest);
292 }
293 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
294 code2 == TYPE_CODE_ENUM ||
295 code2 == TYPE_CODE_RANGE))
296 {
297 int ptr_bit = HOST_CHAR_BIT * TYPE_LENGTH (type);
298 LONGEST longest = value_as_long (arg2);
299 if (ptr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
300 {
301 if (longest >= ((LONGEST) 1 << ptr_bit)
302 || longest <= -((LONGEST) 1 << ptr_bit))
303 warning ("value truncated");
304 }
305 return value_from_longest (type, longest);
306 }
307 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
308 {
309 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
310 {
311 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
312 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
313 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
314 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
315 && !value_logical_not (arg2))
316 {
317 value_ptr v;
318
319 /* Look in the type of the source to see if it contains the
320 type of the target as a superclass. If so, we'll need to
321 offset the pointer rather than just change its type. */
322 if (TYPE_NAME (t1) != NULL)
323 {
324 v = search_struct_field (type_name_no_tag (t1),
325 value_ind (arg2), 0, t2, 1);
326 if (v)
327 {
328 v = value_addr (v);
329 VALUE_TYPE (v) = type;
330 return v;
331 }
332 }
333
334 /* Look in the type of the target to see if it contains the
335 type of the source as a superclass. If so, we'll need to
336 offset the pointer rather than just change its type.
337 FIXME: This fails silently with virtual inheritance. */
338 if (TYPE_NAME (t2) != NULL)
339 {
340 v = search_struct_field (type_name_no_tag (t2),
341 value_zero (t1, not_lval), 0, t1, 1);
342 if (v)
343 {
344 value_ptr v2 = value_ind (arg2);
345 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
346 + VALUE_OFFSET (v);
347
348 /* JYG: adjust the new pointer value and
349 embedded offset. */
350 v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v);
351 VALUE_EMBEDDED_OFFSET (v2) = 0;
352
353 v2 = value_addr (v2);
354 VALUE_TYPE (v2) = type;
355 return v2;
356 }
357 }
358 }
359 /* No superclass found, just fall through to change ptr type. */
360 }
361 VALUE_TYPE (arg2) = type;
362 VALUE_ENCLOSING_TYPE (arg2) = type; /* pai: chk_val */
363 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
364 return arg2;
365 }
366 else if (chill_varying_type (type))
367 {
368 struct type *range1, *range2, *eltype1, *eltype2;
369 value_ptr val;
370 int count1, count2;
371 LONGEST low_bound, high_bound;
372 char *valaddr, *valaddr_data;
373 /* For lint warning about eltype2 possibly uninitialized: */
374 eltype2 = NULL;
375 if (code2 == TYPE_CODE_BITSTRING)
376 error ("not implemented: converting bitstring to varying type");
377 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
378 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
379 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
380 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
381 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
382 error ("Invalid conversion to varying type");
383 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
384 range2 = TYPE_FIELD_TYPE (type2, 0);
385 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
386 count1 = -1;
387 else
388 count1 = high_bound - low_bound + 1;
389 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
390 count1 = -1, count2 = 0; /* To force error before */
391 else
392 count2 = high_bound - low_bound + 1;
393 if (count2 > count1)
394 error ("target varying type is too small");
395 val = allocate_value (type);
396 valaddr = VALUE_CONTENTS_RAW (val);
397 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
398 /* Set val's __var_length field to count2. */
399 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
400 count2);
401 /* Set the __var_data field to count2 elements copied from arg2. */
402 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
403 count2 * TYPE_LENGTH (eltype2));
404 /* Zero the rest of the __var_data field of val. */
405 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
406 (count1 - count2) * TYPE_LENGTH (eltype2));
407 return val;
408 }
409 else if (VALUE_LVAL (arg2) == lval_memory)
410 {
411 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
412 VALUE_BFD_SECTION (arg2));
413 }
414 else if (code1 == TYPE_CODE_VOID)
415 {
416 return value_zero (builtin_type_void, not_lval);
417 }
418 else
419 {
420 error ("Invalid cast.");
421 return 0;
422 }
423 }
424
425 /* Create a value of type TYPE that is zero, and return it. */
426
427 value_ptr
428 value_zero (type, lv)
429 struct type *type;
430 enum lval_type lv;
431 {
432 register value_ptr val = allocate_value (type);
433
434 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
435 VALUE_LVAL (val) = lv;
436
437 return val;
438 }
439
440 /* Return a value with type TYPE located at ADDR.
441
442 Call value_at only if the data needs to be fetched immediately;
443 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
444 value_at_lazy instead. value_at_lazy simply records the address of
445 the data and sets the lazy-evaluation-required flag. The lazy flag
446 is tested in the VALUE_CONTENTS macro, which is used if and when
447 the contents are actually required.
448
449 Note: value_at does *NOT* handle embedded offsets; perform such
450 adjustments before or after calling it. */
451
452 value_ptr
453 value_at (type, addr, sect)
454 struct type *type;
455 CORE_ADDR addr;
456 asection *sect;
457 {
458 register value_ptr val;
459
460 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
461 error ("Attempt to dereference a generic pointer.");
462
463 val = allocate_value (type);
464
465 if (GDB_TARGET_IS_D10V
466 && TYPE_CODE (type) == TYPE_CODE_PTR
467 && TYPE_TARGET_TYPE (type)
468 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
469 {
470 /* pointer to function */
471 unsigned long num;
472 unsigned short snum;
473 snum = read_memory_unsigned_integer (addr, 2);
474 num = D10V_MAKE_IADDR (snum);
475 store_address (VALUE_CONTENTS_RAW (val), 4, num);
476 }
477 else if (GDB_TARGET_IS_D10V
478 && TYPE_CODE (type) == TYPE_CODE_PTR)
479 {
480 /* pointer to data */
481 unsigned long num;
482 unsigned short snum;
483 snum = read_memory_unsigned_integer (addr, 2);
484 num = D10V_MAKE_DADDR (snum);
485 store_address (VALUE_CONTENTS_RAW (val), 4, num);
486 }
487 else
488 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
489
490 VALUE_LVAL (val) = lval_memory;
491 VALUE_ADDRESS (val) = addr;
492 VALUE_BFD_SECTION (val) = sect;
493
494 return val;
495 }
496
497 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
498
499 value_ptr
500 value_at_lazy (type, addr, sect)
501 struct type *type;
502 CORE_ADDR addr;
503 asection *sect;
504 {
505 register value_ptr val;
506
507 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
508 error ("Attempt to dereference a generic pointer.");
509
510 val = allocate_value (type);
511
512 VALUE_LVAL (val) = lval_memory;
513 VALUE_ADDRESS (val) = addr;
514 VALUE_LAZY (val) = 1;
515 VALUE_BFD_SECTION (val) = sect;
516
517 return val;
518 }
519
520 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
521 if the current data for a variable needs to be loaded into
522 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
523 clears the lazy flag to indicate that the data in the buffer is valid.
524
525 If the value is zero-length, we avoid calling read_memory, which would
526 abort. We mark the value as fetched anyway -- all 0 bytes of it.
527
528 This function returns a value because it is used in the VALUE_CONTENTS
529 macro as part of an expression, where a void would not work. The
530 value is ignored. */
531
532 int
533 value_fetch_lazy (val)
534 register value_ptr val;
535 {
536 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
537 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
538
539 struct type *type = VALUE_TYPE (val);
540 if (GDB_TARGET_IS_D10V
541 && TYPE_CODE (type) == TYPE_CODE_PTR
542 && TYPE_TARGET_TYPE (type)
543 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
544 {
545 /* pointer to function */
546 unsigned long num;
547 unsigned short snum;
548 snum = read_memory_unsigned_integer (addr, 2);
549 num = D10V_MAKE_IADDR (snum);
550 store_address (VALUE_CONTENTS_RAW (val), 4, num);
551 }
552 else if (GDB_TARGET_IS_D10V
553 && TYPE_CODE (type) == TYPE_CODE_PTR)
554 {
555 /* pointer to data */
556 unsigned long num;
557 unsigned short snum;
558 snum = read_memory_unsigned_integer (addr, 2);
559 num = D10V_MAKE_DADDR (snum);
560 store_address (VALUE_CONTENTS_RAW (val), 4, num);
561 }
562 else if (length)
563 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
564
565 VALUE_LAZY (val) = 0;
566 return 0;
567 }
568
569
570 /* Store the contents of FROMVAL into the location of TOVAL.
571 Return a new value with the location of TOVAL and contents of FROMVAL. */
572
573 value_ptr
574 value_assign (toval, fromval)
575 register value_ptr toval, fromval;
576 {
577 register struct type *type;
578 register value_ptr val;
579 char raw_buffer[MAX_REGISTER_RAW_SIZE];
580 int use_buffer = 0;
581
582 if (!toval->modifiable)
583 error ("Left operand of assignment is not a modifiable lvalue.");
584
585 COERCE_REF (toval);
586
587 type = VALUE_TYPE (toval);
588 if (VALUE_LVAL (toval) != lval_internalvar)
589 fromval = value_cast (type, fromval);
590 else
591 COERCE_ARRAY (fromval);
592 CHECK_TYPEDEF (type);
593
594 /* If TOVAL is a special machine register requiring conversion
595 of program values to a special raw format,
596 convert FROMVAL's contents now, with result in `raw_buffer',
597 and set USE_BUFFER to the number of bytes to write. */
598
599 if (VALUE_REGNO (toval) >= 0)
600 {
601 int regno = VALUE_REGNO (toval);
602 if (REGISTER_CONVERTIBLE (regno))
603 {
604 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
605 REGISTER_CONVERT_TO_RAW (fromtype, regno,
606 VALUE_CONTENTS (fromval), raw_buffer);
607 use_buffer = REGISTER_RAW_SIZE (regno);
608 }
609 }
610
611 switch (VALUE_LVAL (toval))
612 {
613 case lval_internalvar:
614 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
615 val = value_copy (VALUE_INTERNALVAR (toval)->value);
616 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
617 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
618 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
619 return val;
620
621 case lval_internalvar_component:
622 set_internalvar_component (VALUE_INTERNALVAR (toval),
623 VALUE_OFFSET (toval),
624 VALUE_BITPOS (toval),
625 VALUE_BITSIZE (toval),
626 fromval);
627 break;
628
629 case lval_memory:
630 {
631 char *dest_buffer;
632 CORE_ADDR changed_addr;
633 int changed_len;
634
635 if (VALUE_BITSIZE (toval))
636 {
637 char buffer[sizeof (LONGEST)];
638 /* We assume that the argument to read_memory is in units of
639 host chars. FIXME: Is that correct? */
640 changed_len = (VALUE_BITPOS (toval)
641 + VALUE_BITSIZE (toval)
642 + HOST_CHAR_BIT - 1)
643 / HOST_CHAR_BIT;
644
645 if (changed_len > (int) sizeof (LONGEST))
646 error ("Can't handle bitfields which don't fit in a %d bit word.",
647 sizeof (LONGEST) * HOST_CHAR_BIT);
648
649 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
650 buffer, changed_len);
651 modify_field (buffer, value_as_long (fromval),
652 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
653 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
654 dest_buffer = buffer;
655 }
656 else if (use_buffer)
657 {
658 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
659 changed_len = use_buffer;
660 dest_buffer = raw_buffer;
661 }
662 else
663 {
664 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
665 changed_len = TYPE_LENGTH (type);
666 dest_buffer = VALUE_CONTENTS (fromval);
667 }
668
669 write_memory (changed_addr, dest_buffer, changed_len);
670 if (memory_changed_hook)
671 memory_changed_hook (changed_addr, changed_len);
672 }
673 break;
674
675 case lval_register:
676 if (VALUE_BITSIZE (toval))
677 {
678 char buffer[sizeof (LONGEST)];
679 int len =
680 REGISTER_RAW_SIZE (VALUE_REGNO (toval)) - VALUE_OFFSET (toval);
681
682 if (len > (int) sizeof (LONGEST))
683 error ("Can't handle bitfields in registers larger than %d bits.",
684 sizeof (LONGEST) * HOST_CHAR_BIT);
685
686 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
687 > len * HOST_CHAR_BIT)
688 /* Getting this right would involve being very careful about
689 byte order. */
690 error ("Can't assign to bitfields that cross register "
691 "boundaries.");
692
693 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
694 buffer, len);
695 modify_field (buffer, value_as_long (fromval),
696 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
697 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
698 buffer, len);
699 }
700 else if (use_buffer)
701 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
702 raw_buffer, use_buffer);
703 else
704 {
705 /* Do any conversion necessary when storing this type to more
706 than one register. */
707 #ifdef REGISTER_CONVERT_FROM_TYPE
708 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
709 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
710 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
711 raw_buffer, TYPE_LENGTH (type));
712 #else
713 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
714 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
715 #endif
716 }
717 /* Assigning to the stack pointer, frame pointer, and other
718 (architecture and calling convention specific) registers may
719 cause the frame cache to be out of date. We just do this
720 on all assignments to registers for simplicity; I doubt the slowdown
721 matters. */
722 reinit_frame_cache ();
723 break;
724
725 case lval_reg_frame_relative:
726 {
727 /* value is stored in a series of registers in the frame
728 specified by the structure. Copy that value out, modify
729 it, and copy it back in. */
730 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
731 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
732 int byte_offset = VALUE_OFFSET (toval) % reg_size;
733 int reg_offset = VALUE_OFFSET (toval) / reg_size;
734 int amount_copied;
735
736 /* Make the buffer large enough in all cases. */
737 char *buffer = (char *) alloca (amount_to_copy
738 + sizeof (LONGEST)
739 + MAX_REGISTER_RAW_SIZE);
740
741 int regno;
742 struct frame_info *frame;
743
744 /* Figure out which frame this is in currently. */
745 for (frame = get_current_frame ();
746 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
747 frame = get_prev_frame (frame))
748 ;
749
750 if (!frame)
751 error ("Value being assigned to is no longer active.");
752
753 amount_to_copy += (reg_size - amount_to_copy % reg_size);
754
755 /* Copy it out. */
756 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
757 amount_copied = 0);
758 amount_copied < amount_to_copy;
759 amount_copied += reg_size, regno++)
760 {
761 get_saved_register (buffer + amount_copied,
762 (int *) NULL, (CORE_ADDR *) NULL,
763 frame, regno, (enum lval_type *) NULL);
764 }
765
766 /* Modify what needs to be modified. */
767 if (VALUE_BITSIZE (toval))
768 modify_field (buffer + byte_offset,
769 value_as_long (fromval),
770 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
771 else if (use_buffer)
772 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
773 else
774 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
775 TYPE_LENGTH (type));
776
777 /* Copy it back. */
778 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
779 amount_copied = 0);
780 amount_copied < amount_to_copy;
781 amount_copied += reg_size, regno++)
782 {
783 enum lval_type lval;
784 CORE_ADDR addr;
785 int optim;
786
787 /* Just find out where to put it. */
788 get_saved_register ((char *) NULL,
789 &optim, &addr, frame, regno, &lval);
790
791 if (optim)
792 error ("Attempt to assign to a value that was optimized out.");
793 if (lval == lval_memory)
794 write_memory (addr, buffer + amount_copied, reg_size);
795 else if (lval == lval_register)
796 write_register_bytes (addr, buffer + amount_copied, reg_size);
797 else
798 error ("Attempt to assign to an unmodifiable value.");
799 }
800
801 if (register_changed_hook)
802 register_changed_hook (-1);
803 }
804 break;
805
806
807 default:
808 error ("Left operand of assignment is not an lvalue.");
809 }
810
811 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
812 If the field is signed, and is negative, then sign extend. */
813 if ((VALUE_BITSIZE (toval) > 0)
814 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
815 {
816 LONGEST fieldval = value_as_long (fromval);
817 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
818
819 fieldval &= valmask;
820 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
821 fieldval |= ~valmask;
822
823 fromval = value_from_longest (type, fieldval);
824 }
825
826 val = value_copy (toval);
827 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
828 TYPE_LENGTH (type));
829 VALUE_TYPE (val) = type;
830 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
831 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
832 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
833
834 return val;
835 }
836
837 /* Extend a value VAL to COUNT repetitions of its type. */
838
839 value_ptr
840 value_repeat (arg1, count)
841 value_ptr arg1;
842 int count;
843 {
844 register value_ptr val;
845
846 if (VALUE_LVAL (arg1) != lval_memory)
847 error ("Only values in memory can be extended with '@'.");
848 if (count < 1)
849 error ("Invalid number %d of repetitions.", count);
850
851 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
852
853 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
854 VALUE_CONTENTS_ALL_RAW (val),
855 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
856 VALUE_LVAL (val) = lval_memory;
857 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
858
859 return val;
860 }
861
862 value_ptr
863 value_of_variable (var, b)
864 struct symbol *var;
865 struct block *b;
866 {
867 value_ptr val;
868 struct frame_info *frame = NULL;
869
870 if (!b)
871 frame = NULL; /* Use selected frame. */
872 else if (symbol_read_needs_frame (var))
873 {
874 frame = block_innermost_frame (b);
875 if (!frame)
876 {
877 if (BLOCK_FUNCTION (b)
878 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
879 error ("No frame is currently executing in block %s.",
880 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
881 else
882 error ("No frame is currently executing in specified block");
883 }
884 }
885
886 val = read_var_value (var, frame);
887 if (!val)
888 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
889
890 return val;
891 }
892
893 /* Given a value which is an array, return a value which is a pointer to its
894 first element, regardless of whether or not the array has a nonzero lower
895 bound.
896
897 FIXME: A previous comment here indicated that this routine should be
898 substracting the array's lower bound. It's not clear to me that this
899 is correct. Given an array subscripting operation, it would certainly
900 work to do the adjustment here, essentially computing:
901
902 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
903
904 However I believe a more appropriate and logical place to account for
905 the lower bound is to do so in value_subscript, essentially computing:
906
907 (&array[0] + ((index - lowerbound) * sizeof array[0]))
908
909 As further evidence consider what would happen with operations other
910 than array subscripting, where the caller would get back a value that
911 had an address somewhere before the actual first element of the array,
912 and the information about the lower bound would be lost because of
913 the coercion to pointer type.
914 */
915
916 value_ptr
917 value_coerce_array (arg1)
918 value_ptr arg1;
919 {
920 register struct type *type = check_typedef (VALUE_TYPE (arg1));
921
922 if (VALUE_LVAL (arg1) != lval_memory)
923 error ("Attempt to take address of value not located in memory.");
924
925 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
926 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
927 }
928
929 /* Given a value which is a function, return a value which is a pointer
930 to it. */
931
932 value_ptr
933 value_coerce_function (arg1)
934 value_ptr arg1;
935 {
936 value_ptr retval;
937
938 if (VALUE_LVAL (arg1) != lval_memory)
939 error ("Attempt to take address of value not located in memory.");
940
941 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
942 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
943 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
944 return retval;
945 }
946
947 /* Return a pointer value for the object for which ARG1 is the contents. */
948
949 value_ptr
950 value_addr (arg1)
951 value_ptr arg1;
952 {
953 value_ptr arg2;
954
955 struct type *type = check_typedef (VALUE_TYPE (arg1));
956 if (TYPE_CODE (type) == TYPE_CODE_REF)
957 {
958 /* Copy the value, but change the type from (T&) to (T*).
959 We keep the same location information, which is efficient,
960 and allows &(&X) to get the location containing the reference. */
961 arg2 = value_copy (arg1);
962 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
963 return arg2;
964 }
965 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
966 return value_coerce_function (arg1);
967
968 if (VALUE_LVAL (arg1) != lval_memory)
969 error ("Attempt to take address of value not located in memory.");
970
971 /* Get target memory address */
972 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
973 (VALUE_ADDRESS (arg1)
974 + VALUE_OFFSET (arg1)
975 + VALUE_EMBEDDED_OFFSET (arg1)));
976
977 /* This may be a pointer to a base subobject; so remember the
978 full derived object's type ... */
979 VALUE_ENCLOSING_TYPE (arg2) = lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1));
980 /* ... and also the relative position of the subobject in the full object */
981 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
982 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
983 return arg2;
984 }
985
986 /* Given a value of a pointer type, apply the C unary * operator to it. */
987
988 value_ptr
989 value_ind (arg1)
990 value_ptr arg1;
991 {
992 struct type *base_type;
993 value_ptr arg2;
994
995 COERCE_ARRAY (arg1);
996
997 base_type = check_typedef (VALUE_TYPE (arg1));
998
999 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
1000 error ("not implemented: member types in value_ind");
1001
1002 /* Allow * on an integer so we can cast it to whatever we want.
1003 This returns an int, which seems like the most C-like thing
1004 to do. "long long" variables are rare enough that
1005 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
1006 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
1007 return value_at (builtin_type_int,
1008 (CORE_ADDR) value_as_long (arg1),
1009 VALUE_BFD_SECTION (arg1));
1010 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1011 {
1012 struct type *enc_type;
1013 /* We may be pointing to something embedded in a larger object */
1014 /* Get the real type of the enclosing object */
1015 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
1016 enc_type = TYPE_TARGET_TYPE (enc_type);
1017 /* Retrieve the enclosing object pointed to */
1018 arg2 = value_at_lazy (enc_type,
1019 value_as_pointer (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
1020 VALUE_BFD_SECTION (arg1));
1021 /* Re-adjust type */
1022 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
1023 /* Add embedding info */
1024 VALUE_ENCLOSING_TYPE (arg2) = enc_type;
1025 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
1026
1027 /* We may be pointing to an object of some derived type */
1028 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1029 return arg2;
1030 }
1031
1032 error ("Attempt to take contents of a non-pointer value.");
1033 return 0; /* For lint -- never reached */
1034 }
1035 \f
1036 /* Pushing small parts of stack frames. */
1037
1038 /* Push one word (the size of object that a register holds). */
1039
1040 CORE_ADDR
1041 push_word (sp, word)
1042 CORE_ADDR sp;
1043 ULONGEST word;
1044 {
1045 register int len = REGISTER_SIZE;
1046 char buffer[MAX_REGISTER_RAW_SIZE];
1047
1048 store_unsigned_integer (buffer, len, word);
1049 if (INNER_THAN (1, 2))
1050 {
1051 /* stack grows downward */
1052 sp -= len;
1053 write_memory (sp, buffer, len);
1054 }
1055 else
1056 {
1057 /* stack grows upward */
1058 write_memory (sp, buffer, len);
1059 sp += len;
1060 }
1061
1062 return sp;
1063 }
1064
1065 /* Push LEN bytes with data at BUFFER. */
1066
1067 CORE_ADDR
1068 push_bytes (sp, buffer, len)
1069 CORE_ADDR sp;
1070 char *buffer;
1071 int len;
1072 {
1073 if (INNER_THAN (1, 2))
1074 {
1075 /* stack grows downward */
1076 sp -= len;
1077 write_memory (sp, buffer, len);
1078 }
1079 else
1080 {
1081 /* stack grows upward */
1082 write_memory (sp, buffer, len);
1083 sp += len;
1084 }
1085
1086 return sp;
1087 }
1088
1089 #ifndef PARM_BOUNDARY
1090 #define PARM_BOUNDARY (0)
1091 #endif
1092
1093 /* Push onto the stack the specified value VALUE. Pad it correctly for
1094 it to be an argument to a function. */
1095
1096 static CORE_ADDR
1097 value_push (sp, arg)
1098 register CORE_ADDR sp;
1099 value_ptr arg;
1100 {
1101 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1102 register int container_len = len;
1103 register int offset;
1104
1105 /* How big is the container we're going to put this value in? */
1106 if (PARM_BOUNDARY)
1107 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1108 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1109
1110 /* Are we going to put it at the high or low end of the container? */
1111 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1112 offset = container_len - len;
1113 else
1114 offset = 0;
1115
1116 if (INNER_THAN (1, 2))
1117 {
1118 /* stack grows downward */
1119 sp -= container_len;
1120 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1121 }
1122 else
1123 {
1124 /* stack grows upward */
1125 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1126 sp += container_len;
1127 }
1128
1129 return sp;
1130 }
1131
1132 #ifndef PUSH_ARGUMENTS
1133 #define PUSH_ARGUMENTS default_push_arguments
1134 #endif
1135
1136 CORE_ADDR
1137 default_push_arguments (nargs, args, sp, struct_return, struct_addr)
1138 int nargs;
1139 value_ptr *args;
1140 CORE_ADDR sp;
1141 int struct_return;
1142 CORE_ADDR struct_addr;
1143 {
1144 /* ASSERT ( !struct_return); */
1145 int i;
1146 for (i = nargs - 1; i >= 0; i--)
1147 sp = value_push (sp, args[i]);
1148 return sp;
1149 }
1150
1151
1152 /* A default function for COERCE_FLOAT_TO_DOUBLE: do the coercion only
1153 when we don't have any type for the argument at hand. This occurs
1154 when we have no debug info, or when passing varargs.
1155
1156 This is an annoying default: the rule the compiler follows is to do
1157 the standard promotions whenever there is no prototype in scope,
1158 and almost all targets want this behavior. But there are some old
1159 architectures which want this odd behavior. If you want to go
1160 through them all and fix them, please do. Modern gdbarch-style
1161 targets may find it convenient to use standard_coerce_float_to_double. */
1162 int
1163 default_coerce_float_to_double (struct type *formal, struct type *actual)
1164 {
1165 return formal == NULL;
1166 }
1167
1168
1169 /* Always coerce floats to doubles when there is no prototype in scope.
1170 If your architecture follows the standard type promotion rules for
1171 calling unprototyped functions, your gdbarch init function can pass
1172 this function to set_gdbarch_coerce_float_to_double to use its logic. */
1173 int
1174 standard_coerce_float_to_double (struct type *formal, struct type *actual)
1175 {
1176 return 1;
1177 }
1178
1179
1180 /* Perform the standard coercions that are specified
1181 for arguments to be passed to C functions.
1182
1183 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1184 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1185
1186 static value_ptr
1187 value_arg_coerce (arg, param_type, is_prototyped)
1188 value_ptr arg;
1189 struct type *param_type;
1190 int is_prototyped;
1191 {
1192 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1193 register struct type *type
1194 = param_type ? check_typedef (param_type) : arg_type;
1195
1196 switch (TYPE_CODE (type))
1197 {
1198 case TYPE_CODE_REF:
1199 if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
1200 {
1201 arg = value_addr (arg);
1202 VALUE_TYPE (arg) = param_type;
1203 return arg;
1204 }
1205 break;
1206 case TYPE_CODE_INT:
1207 case TYPE_CODE_CHAR:
1208 case TYPE_CODE_BOOL:
1209 case TYPE_CODE_ENUM:
1210 /* If we don't have a prototype, coerce to integer type if necessary. */
1211 if (!is_prototyped)
1212 {
1213 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1214 type = builtin_type_int;
1215 }
1216 /* Currently all target ABIs require at least the width of an integer
1217 type for an argument. We may have to conditionalize the following
1218 type coercion for future targets. */
1219 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1220 type = builtin_type_int;
1221 break;
1222 case TYPE_CODE_FLT:
1223 /* FIXME: We should always convert floats to doubles in the
1224 non-prototyped case. As many debugging formats include
1225 no information about prototyping, we have to live with
1226 COERCE_FLOAT_TO_DOUBLE for now. */
1227 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
1228 {
1229 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1230 type = builtin_type_double;
1231 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1232 type = builtin_type_long_double;
1233 }
1234 break;
1235 case TYPE_CODE_FUNC:
1236 type = lookup_pointer_type (type);
1237 break;
1238 case TYPE_CODE_ARRAY:
1239 if (current_language->c_style_arrays)
1240 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1241 break;
1242 case TYPE_CODE_UNDEF:
1243 case TYPE_CODE_PTR:
1244 case TYPE_CODE_STRUCT:
1245 case TYPE_CODE_UNION:
1246 case TYPE_CODE_VOID:
1247 case TYPE_CODE_SET:
1248 case TYPE_CODE_RANGE:
1249 case TYPE_CODE_STRING:
1250 case TYPE_CODE_BITSTRING:
1251 case TYPE_CODE_ERROR:
1252 case TYPE_CODE_MEMBER:
1253 case TYPE_CODE_METHOD:
1254 case TYPE_CODE_COMPLEX:
1255 default:
1256 break;
1257 }
1258
1259 return value_cast (type, arg);
1260 }
1261
1262 /* Determine a function's address and its return type from its value.
1263 Calls error() if the function is not valid for calling. */
1264
1265 static CORE_ADDR
1266 find_function_addr (function, retval_type)
1267 value_ptr function;
1268 struct type **retval_type;
1269 {
1270 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1271 register enum type_code code = TYPE_CODE (ftype);
1272 struct type *value_type;
1273 CORE_ADDR funaddr;
1274
1275 /* If it's a member function, just look at the function
1276 part of it. */
1277
1278 /* Determine address to call. */
1279 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1280 {
1281 funaddr = VALUE_ADDRESS (function);
1282 value_type = TYPE_TARGET_TYPE (ftype);
1283 }
1284 else if (code == TYPE_CODE_PTR)
1285 {
1286 funaddr = value_as_pointer (function);
1287 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1288 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1289 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1290 {
1291 #ifdef CONVERT_FROM_FUNC_PTR_ADDR
1292 /* FIXME: This is a workaround for the unusual function
1293 pointer representation on the RS/6000, see comment
1294 in config/rs6000/tm-rs6000.h */
1295 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1296 #endif
1297 value_type = TYPE_TARGET_TYPE (ftype);
1298 }
1299 else
1300 value_type = builtin_type_int;
1301 }
1302 else if (code == TYPE_CODE_INT)
1303 {
1304 /* Handle the case of functions lacking debugging info.
1305 Their values are characters since their addresses are char */
1306 if (TYPE_LENGTH (ftype) == 1)
1307 funaddr = value_as_pointer (value_addr (function));
1308 else
1309 /* Handle integer used as address of a function. */
1310 funaddr = (CORE_ADDR) value_as_long (function);
1311
1312 value_type = builtin_type_int;
1313 }
1314 else
1315 error ("Invalid data type for function to be called.");
1316
1317 *retval_type = value_type;
1318 return funaddr;
1319 }
1320
1321 /* All this stuff with a dummy frame may seem unnecessarily complicated
1322 (why not just save registers in GDB?). The purpose of pushing a dummy
1323 frame which looks just like a real frame is so that if you call a
1324 function and then hit a breakpoint (get a signal, etc), "backtrace"
1325 will look right. Whether the backtrace needs to actually show the
1326 stack at the time the inferior function was called is debatable, but
1327 it certainly needs to not display garbage. So if you are contemplating
1328 making dummy frames be different from normal frames, consider that. */
1329
1330 /* Perform a function call in the inferior.
1331 ARGS is a vector of values of arguments (NARGS of them).
1332 FUNCTION is a value, the function to be called.
1333 Returns a value representing what the function returned.
1334 May fail to return, if a breakpoint or signal is hit
1335 during the execution of the function.
1336
1337 ARGS is modified to contain coerced values. */
1338
1339 static value_ptr hand_function_call (value_ptr function, int nargs,
1340 value_ptr * args);
1341 static value_ptr
1342 hand_function_call (function, nargs, args)
1343 value_ptr function;
1344 int nargs;
1345 value_ptr *args;
1346 {
1347 register CORE_ADDR sp;
1348 register int i;
1349 int rc;
1350 CORE_ADDR start_sp;
1351 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1352 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1353 and remove any extra bytes which might exist because ULONGEST is
1354 bigger than REGISTER_SIZE.
1355
1356 NOTE: This is pretty wierd, as the call dummy is actually a
1357 sequence of instructions. But CISC machines will have
1358 to pack the instructions into REGISTER_SIZE units (and
1359 so will RISC machines for which INSTRUCTION_SIZE is not
1360 REGISTER_SIZE).
1361
1362 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1363 target byte order. */
1364
1365 static ULONGEST *dummy;
1366 int sizeof_dummy1;
1367 char *dummy1;
1368 CORE_ADDR old_sp;
1369 struct type *value_type;
1370 unsigned char struct_return;
1371 CORE_ADDR struct_addr = 0;
1372 struct inferior_status *inf_status;
1373 struct cleanup *old_chain;
1374 CORE_ADDR funaddr;
1375 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1376 CORE_ADDR real_pc;
1377 struct type *param_type = NULL;
1378 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1379
1380 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1381 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1382 dummy1 = alloca (sizeof_dummy1);
1383 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1384
1385 if (!target_has_execution)
1386 noprocess ();
1387
1388 inf_status = save_inferior_status (1);
1389 old_chain = make_cleanup_restore_inferior_status (inf_status);
1390
1391 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1392 (and POP_FRAME for restoring them). (At least on most machines)
1393 they are saved on the stack in the inferior. */
1394 PUSH_DUMMY_FRAME;
1395
1396 old_sp = sp = read_sp ();
1397
1398 if (INNER_THAN (1, 2))
1399 {
1400 /* Stack grows down */
1401 sp -= sizeof_dummy1;
1402 start_sp = sp;
1403 }
1404 else
1405 {
1406 /* Stack grows up */
1407 start_sp = sp;
1408 sp += sizeof_dummy1;
1409 }
1410
1411 funaddr = find_function_addr (function, &value_type);
1412 CHECK_TYPEDEF (value_type);
1413
1414 {
1415 struct block *b = block_for_pc (funaddr);
1416 /* If compiled without -g, assume GCC 2. */
1417 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1418 }
1419
1420 /* Are we returning a value using a structure return or a normal
1421 value return? */
1422
1423 struct_return = using_struct_return (function, funaddr, value_type,
1424 using_gcc);
1425
1426 /* Create a call sequence customized for this function
1427 and the number of arguments for it. */
1428 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1429 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1430 REGISTER_SIZE,
1431 (ULONGEST) dummy[i]);
1432
1433 #ifdef GDB_TARGET_IS_HPPA
1434 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1435 value_type, using_gcc);
1436 #else
1437 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1438 value_type, using_gcc);
1439 real_pc = start_sp;
1440 #endif
1441
1442 if (CALL_DUMMY_LOCATION == ON_STACK)
1443 {
1444 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1445 }
1446
1447 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1448 {
1449 /* Convex Unix prohibits executing in the stack segment. */
1450 /* Hope there is empty room at the top of the text segment. */
1451 extern CORE_ADDR text_end;
1452 static int checked = 0;
1453 if (!checked)
1454 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1455 if (read_memory_integer (start_sp, 1) != 0)
1456 error ("text segment full -- no place to put call");
1457 checked = 1;
1458 sp = old_sp;
1459 real_pc = text_end - sizeof_dummy1;
1460 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1461 }
1462
1463 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1464 {
1465 extern CORE_ADDR text_end;
1466 int errcode;
1467 sp = old_sp;
1468 real_pc = text_end;
1469 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1470 if (errcode != 0)
1471 error ("Cannot write text segment -- call_function failed");
1472 }
1473
1474 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1475 {
1476 real_pc = funaddr;
1477 }
1478
1479 #ifdef lint
1480 sp = old_sp; /* It really is used, for some ifdef's... */
1481 #endif
1482
1483 if (nargs < TYPE_NFIELDS (ftype))
1484 error ("too few arguments in function call");
1485
1486 for (i = nargs - 1; i >= 0; i--)
1487 {
1488 /* If we're off the end of the known arguments, do the standard
1489 promotions. FIXME: if we had a prototype, this should only
1490 be allowed if ... were present. */
1491 if (i >= TYPE_NFIELDS (ftype))
1492 args[i] = value_arg_coerce (args[i], NULL, 0);
1493
1494 else
1495 {
1496 int is_prototyped = TYPE_FLAGS (ftype) & TYPE_FLAG_PROTOTYPED;
1497 param_type = TYPE_FIELD_TYPE (ftype, i);
1498
1499 args[i] = value_arg_coerce (args[i], param_type, is_prototyped);
1500 }
1501
1502 /*elz: this code is to handle the case in which the function to be called
1503 has a pointer to function as parameter and the corresponding actual argument
1504 is the address of a function and not a pointer to function variable.
1505 In aCC compiled code, the calls through pointers to functions (in the body
1506 of the function called by hand) are made via $$dyncall_external which
1507 requires some registers setting, this is taken care of if we call
1508 via a function pointer variable, but not via a function address.
1509 In cc this is not a problem. */
1510
1511 if (using_gcc == 0)
1512 if (param_type)
1513 /* if this parameter is a pointer to function */
1514 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1515 if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
1516 /* elz: FIXME here should go the test about the compiler used
1517 to compile the target. We want to issue the error
1518 message only if the compiler used was HP's aCC.
1519 If we used HP's cc, then there is no problem and no need
1520 to return at this point */
1521 if (using_gcc == 0) /* && compiler == aCC */
1522 /* go see if the actual parameter is a variable of type
1523 pointer to function or just a function */
1524 if (args[i]->lval == not_lval)
1525 {
1526 char *arg_name;
1527 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1528 error ("\
1529 You cannot use function <%s> as argument. \n\
1530 You must use a pointer to function type variable. Command ignored.", arg_name);
1531 }
1532 }
1533
1534 if (REG_STRUCT_HAS_ADDR_P ())
1535 {
1536 /* This is a machine like the sparc, where we may need to pass a
1537 pointer to the structure, not the structure itself. */
1538 for (i = nargs - 1; i >= 0; i--)
1539 {
1540 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1541 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1542 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1543 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1544 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1545 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1546 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1547 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1548 && TYPE_LENGTH (arg_type) > 8)
1549 )
1550 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1551 {
1552 CORE_ADDR addr;
1553 int len; /* = TYPE_LENGTH (arg_type); */
1554 int aligned_len;
1555 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1556 len = TYPE_LENGTH (arg_type);
1557
1558 if (STACK_ALIGN_P ())
1559 /* MVS 11/22/96: I think at least some of this
1560 stack_align code is really broken. Better to let
1561 PUSH_ARGUMENTS adjust the stack in a target-defined
1562 manner. */
1563 aligned_len = STACK_ALIGN (len);
1564 else
1565 aligned_len = len;
1566 if (INNER_THAN (1, 2))
1567 {
1568 /* stack grows downward */
1569 sp -= aligned_len;
1570 }
1571 else
1572 {
1573 /* The stack grows up, so the address of the thing
1574 we push is the stack pointer before we push it. */
1575 addr = sp;
1576 }
1577 /* Push the structure. */
1578 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1579 if (INNER_THAN (1, 2))
1580 {
1581 /* The stack grows down, so the address of the thing
1582 we push is the stack pointer after we push it. */
1583 addr = sp;
1584 }
1585 else
1586 {
1587 /* stack grows upward */
1588 sp += aligned_len;
1589 }
1590 /* The value we're going to pass is the address of the
1591 thing we just pushed. */
1592 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1593 (LONGEST) addr); */
1594 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1595 addr);
1596 }
1597 }
1598 }
1599
1600
1601 /* Reserve space for the return structure to be written on the
1602 stack, if necessary */
1603
1604 if (struct_return)
1605 {
1606 int len = TYPE_LENGTH (value_type);
1607 if (STACK_ALIGN_P ())
1608 /* MVS 11/22/96: I think at least some of this stack_align
1609 code is really broken. Better to let PUSH_ARGUMENTS adjust
1610 the stack in a target-defined manner. */
1611 len = STACK_ALIGN (len);
1612 if (INNER_THAN (1, 2))
1613 {
1614 /* stack grows downward */
1615 sp -= len;
1616 struct_addr = sp;
1617 }
1618 else
1619 {
1620 /* stack grows upward */
1621 struct_addr = sp;
1622 sp += len;
1623 }
1624 }
1625
1626 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1627 on other architectures. This is because all the alignment is taken care
1628 of in the above code (ifdef REG_STRUCT_HAS_ADDR) and in
1629 hppa_push_arguments */
1630 #ifndef NO_EXTRA_ALIGNMENT_NEEDED
1631
1632 /* MVS 11/22/96: I think at least some of this stack_align code is
1633 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1634 a target-defined manner. */
1635 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1636 {
1637 /* If stack grows down, we must leave a hole at the top. */
1638 int len = 0;
1639
1640 for (i = nargs - 1; i >= 0; i--)
1641 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1642 if (CALL_DUMMY_STACK_ADJUST_P)
1643 len += CALL_DUMMY_STACK_ADJUST;
1644 sp -= STACK_ALIGN (len) - len;
1645 }
1646 #endif /* NO_EXTRA_ALIGNMENT_NEEDED */
1647
1648 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1649
1650 #ifdef PUSH_RETURN_ADDRESS /* for targets that use no CALL_DUMMY */
1651 /* There are a number of targets now which actually don't write any
1652 CALL_DUMMY instructions into the target, but instead just save the
1653 machine state, push the arguments, and jump directly to the callee
1654 function. Since this doesn't actually involve executing a JSR/BSR
1655 instruction, the return address must be set up by hand, either by
1656 pushing onto the stack or copying into a return-address register
1657 as appropriate. Formerly this has been done in PUSH_ARGUMENTS,
1658 but that's overloading its functionality a bit, so I'm making it
1659 explicit to do it here. */
1660 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1661 #endif /* PUSH_RETURN_ADDRESS */
1662
1663 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
1664 {
1665 /* If stack grows up, we must leave a hole at the bottom, note
1666 that sp already has been advanced for the arguments! */
1667 if (CALL_DUMMY_STACK_ADJUST_P)
1668 sp += CALL_DUMMY_STACK_ADJUST;
1669 sp = STACK_ALIGN (sp);
1670 }
1671
1672 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1673 anything here! */
1674 /* MVS 11/22/96: I think at least some of this stack_align code is
1675 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1676 a target-defined manner. */
1677 if (CALL_DUMMY_STACK_ADJUST_P)
1678 if (INNER_THAN (1, 2))
1679 {
1680 /* stack grows downward */
1681 sp -= CALL_DUMMY_STACK_ADJUST;
1682 }
1683
1684 /* Store the address at which the structure is supposed to be
1685 written. Note that this (and the code which reserved the space
1686 above) assumes that gcc was used to compile this function. Since
1687 it doesn't cost us anything but space and if the function is pcc
1688 it will ignore this value, we will make that assumption.
1689
1690 Also note that on some machines (like the sparc) pcc uses a
1691 convention like gcc's. */
1692
1693 if (struct_return)
1694 STORE_STRUCT_RETURN (struct_addr, sp);
1695
1696 /* Write the stack pointer. This is here because the statements above
1697 might fool with it. On SPARC, this write also stores the register
1698 window into the right place in the new stack frame, which otherwise
1699 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1700 write_sp (sp);
1701
1702 if (SAVE_DUMMY_FRAME_TOS_P ())
1703 SAVE_DUMMY_FRAME_TOS (sp);
1704
1705 {
1706 char retbuf[REGISTER_BYTES];
1707 char *name;
1708 struct symbol *symbol;
1709
1710 name = NULL;
1711 symbol = find_pc_function (funaddr);
1712 if (symbol)
1713 {
1714 name = SYMBOL_SOURCE_NAME (symbol);
1715 }
1716 else
1717 {
1718 /* Try the minimal symbols. */
1719 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1720
1721 if (msymbol)
1722 {
1723 name = SYMBOL_SOURCE_NAME (msymbol);
1724 }
1725 }
1726 if (name == NULL)
1727 {
1728 char format[80];
1729 sprintf (format, "at %s", local_hex_format ());
1730 name = alloca (80);
1731 /* FIXME-32x64: assumes funaddr fits in a long. */
1732 sprintf (name, format, (unsigned long) funaddr);
1733 }
1734
1735 /* Execute the stack dummy routine, calling FUNCTION.
1736 When it is done, discard the empty frame
1737 after storing the contents of all regs into retbuf. */
1738 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1739
1740 if (rc == 1)
1741 {
1742 /* We stopped inside the FUNCTION because of a random signal.
1743 Further execution of the FUNCTION is not allowed. */
1744
1745 if (unwind_on_signal_p)
1746 {
1747 /* The user wants the context restored. */
1748
1749 /* We must get back to the frame we were before the dummy call. */
1750 POP_FRAME;
1751
1752 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1753 a C++ name with arguments and stuff. */
1754 error ("\
1755 The program being debugged was signaled while in a function called from GDB.\n\
1756 GDB has restored the context to what it was before the call.\n\
1757 To change this behavior use \"set unwindonsignal off\"\n\
1758 Evaluation of the expression containing the function (%s) will be abandoned.",
1759 name);
1760 }
1761 else
1762 {
1763 /* The user wants to stay in the frame where we stopped (default).*/
1764
1765 /* If we did the cleanups, we would print a spurious error
1766 message (Unable to restore previously selected frame),
1767 would write the registers from the inf_status (which is
1768 wrong), and would do other wrong things. */
1769 discard_cleanups (old_chain);
1770 discard_inferior_status (inf_status);
1771
1772 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1773 a C++ name with arguments and stuff. */
1774 error ("\
1775 The program being debugged was signaled while in a function called from GDB.\n\
1776 GDB remains in the frame where the signal was received.\n\
1777 To change this behavior use \"set unwindonsignal on\"\n\
1778 Evaluation of the expression containing the function (%s) will be abandoned.",
1779 name);
1780 }
1781 }
1782
1783 if (rc == 2)
1784 {
1785 /* We hit a breakpoint inside the FUNCTION. */
1786
1787 /* If we did the cleanups, we would print a spurious error
1788 message (Unable to restore previously selected frame),
1789 would write the registers from the inf_status (which is
1790 wrong), and would do other wrong things. */
1791 discard_cleanups (old_chain);
1792 discard_inferior_status (inf_status);
1793
1794 /* The following error message used to say "The expression
1795 which contained the function call has been discarded." It
1796 is a hard concept to explain in a few words. Ideally, GDB
1797 would be able to resume evaluation of the expression when
1798 the function finally is done executing. Perhaps someday
1799 this will be implemented (it would not be easy). */
1800
1801 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1802 a C++ name with arguments and stuff. */
1803 error ("\
1804 The program being debugged stopped while in a function called from GDB.\n\
1805 When the function (%s) is done executing, GDB will silently\n\
1806 stop (instead of continuing to evaluate the expression containing\n\
1807 the function call).", name);
1808 }
1809
1810 /* If we get here the called FUNCTION run to completion. */
1811 do_cleanups (old_chain);
1812
1813 /* Figure out the value returned by the function. */
1814 /* elz: I defined this new macro for the hppa architecture only.
1815 this gives us a way to get the value returned by the function from the stack,
1816 at the same address we told the function to put it.
1817 We cannot assume on the pa that r28 still contains the address of the returned
1818 structure. Usually this will be overwritten by the callee.
1819 I don't know about other architectures, so I defined this macro
1820 */
1821
1822 #ifdef VALUE_RETURNED_FROM_STACK
1823 if (struct_return)
1824 return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1825 #endif
1826
1827 return value_being_returned (value_type, retbuf, struct_return);
1828 }
1829 }
1830
1831 value_ptr
1832 call_function_by_hand (function, nargs, args)
1833 value_ptr function;
1834 int nargs;
1835 value_ptr *args;
1836 {
1837 if (CALL_DUMMY_P)
1838 {
1839 return hand_function_call (function, nargs, args);
1840 }
1841 else
1842 {
1843 error ("Cannot invoke functions on this machine.");
1844 }
1845 }
1846 \f
1847
1848
1849 /* Create a value for an array by allocating space in the inferior, copying
1850 the data into that space, and then setting up an array value.
1851
1852 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1853 populated from the values passed in ELEMVEC.
1854
1855 The element type of the array is inherited from the type of the
1856 first element, and all elements must have the same size (though we
1857 don't currently enforce any restriction on their types). */
1858
1859 value_ptr
1860 value_array (lowbound, highbound, elemvec)
1861 int lowbound;
1862 int highbound;
1863 value_ptr *elemvec;
1864 {
1865 int nelem;
1866 int idx;
1867 unsigned int typelength;
1868 value_ptr val;
1869 struct type *rangetype;
1870 struct type *arraytype;
1871 CORE_ADDR addr;
1872
1873 /* Validate that the bounds are reasonable and that each of the elements
1874 have the same size. */
1875
1876 nelem = highbound - lowbound + 1;
1877 if (nelem <= 0)
1878 {
1879 error ("bad array bounds (%d, %d)", lowbound, highbound);
1880 }
1881 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1882 for (idx = 1; idx < nelem; idx++)
1883 {
1884 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1885 {
1886 error ("array elements must all be the same size");
1887 }
1888 }
1889
1890 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1891 lowbound, highbound);
1892 arraytype = create_array_type ((struct type *) NULL,
1893 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1894
1895 if (!current_language->c_style_arrays)
1896 {
1897 val = allocate_value (arraytype);
1898 for (idx = 0; idx < nelem; idx++)
1899 {
1900 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1901 VALUE_CONTENTS_ALL (elemvec[idx]),
1902 typelength);
1903 }
1904 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1905 return val;
1906 }
1907
1908 /* Allocate space to store the array in the inferior, and then initialize
1909 it by copying in each element. FIXME: Is it worth it to create a
1910 local buffer in which to collect each value and then write all the
1911 bytes in one operation? */
1912
1913 addr = allocate_space_in_inferior (nelem * typelength);
1914 for (idx = 0; idx < nelem; idx++)
1915 {
1916 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1917 typelength);
1918 }
1919
1920 /* Create the array type and set up an array value to be evaluated lazily. */
1921
1922 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1923 return (val);
1924 }
1925
1926 /* Create a value for a string constant by allocating space in the inferior,
1927 copying the data into that space, and returning the address with type
1928 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1929 of characters.
1930 Note that string types are like array of char types with a lower bound of
1931 zero and an upper bound of LEN - 1. Also note that the string may contain
1932 embedded null bytes. */
1933
1934 value_ptr
1935 value_string (ptr, len)
1936 char *ptr;
1937 int len;
1938 {
1939 value_ptr val;
1940 int lowbound = current_language->string_lower_bound;
1941 struct type *rangetype = create_range_type ((struct type *) NULL,
1942 builtin_type_int,
1943 lowbound, len + lowbound - 1);
1944 struct type *stringtype
1945 = create_string_type ((struct type *) NULL, rangetype);
1946 CORE_ADDR addr;
1947
1948 if (current_language->c_style_arrays == 0)
1949 {
1950 val = allocate_value (stringtype);
1951 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1952 return val;
1953 }
1954
1955
1956 /* Allocate space to store the string in the inferior, and then
1957 copy LEN bytes from PTR in gdb to that address in the inferior. */
1958
1959 addr = allocate_space_in_inferior (len);
1960 write_memory (addr, ptr, len);
1961
1962 val = value_at_lazy (stringtype, addr, NULL);
1963 return (val);
1964 }
1965
1966 value_ptr
1967 value_bitstring (ptr, len)
1968 char *ptr;
1969 int len;
1970 {
1971 value_ptr val;
1972 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1973 0, len - 1);
1974 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1975 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1976 val = allocate_value (type);
1977 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1978 return val;
1979 }
1980 \f
1981 /* See if we can pass arguments in T2 to a function which takes arguments
1982 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1983 arguments need coercion of some sort, then the coerced values are written
1984 into T2. Return value is 0 if the arguments could be matched, or the
1985 position at which they differ if not.
1986
1987 STATICP is nonzero if the T1 argument list came from a
1988 static member function.
1989
1990 For non-static member functions, we ignore the first argument,
1991 which is the type of the instance variable. This is because we want
1992 to handle calls with objects from derived classes. This is not
1993 entirely correct: we should actually check to make sure that a
1994 requested operation is type secure, shouldn't we? FIXME. */
1995
1996 static int
1997 typecmp (staticp, t1, t2)
1998 int staticp;
1999 struct type *t1[];
2000 value_ptr t2[];
2001 {
2002 int i;
2003
2004 if (t2 == 0)
2005 return 1;
2006 if (staticp && t1 == 0)
2007 return t2[1] != 0;
2008 if (t1 == 0)
2009 return 1;
2010 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID)
2011 return 0;
2012 if (t1[!staticp] == 0)
2013 return 0;
2014 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
2015 {
2016 struct type *tt1, *tt2;
2017 if (!t2[i])
2018 return i + 1;
2019 tt1 = check_typedef (t1[i]);
2020 tt2 = check_typedef (VALUE_TYPE (t2[i]));
2021 if (TYPE_CODE (tt1) == TYPE_CODE_REF
2022 /* We should be doing hairy argument matching, as below. */
2023 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
2024 {
2025 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
2026 t2[i] = value_coerce_array (t2[i]);
2027 else
2028 t2[i] = value_addr (t2[i]);
2029 continue;
2030 }
2031
2032 while (TYPE_CODE (tt1) == TYPE_CODE_PTR
2033 && (TYPE_CODE (tt2) == TYPE_CODE_ARRAY
2034 || TYPE_CODE (tt2) == TYPE_CODE_PTR))
2035 {
2036 tt1 = check_typedef (TYPE_TARGET_TYPE (tt1));
2037 tt2 = check_typedef (TYPE_TARGET_TYPE (tt2));
2038 }
2039 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
2040 continue;
2041 /* Array to pointer is a `trivial conversion' according to the ARM. */
2042
2043 /* We should be doing much hairier argument matching (see section 13.2
2044 of the ARM), but as a quick kludge, just check for the same type
2045 code. */
2046 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
2047 return i + 1;
2048 }
2049 if (!t1[i])
2050 return 0;
2051 return t2[i] ? i + 1 : 0;
2052 }
2053
2054 /* Helper function used by value_struct_elt to recurse through baseclasses.
2055 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2056 and search in it assuming it has (class) type TYPE.
2057 If found, return value, else return NULL.
2058
2059 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2060 look for a baseclass named NAME. */
2061
2062 static value_ptr
2063 search_struct_field (name, arg1, offset, type, looking_for_baseclass)
2064 char *name;
2065 register value_ptr arg1;
2066 int offset;
2067 register struct type *type;
2068 int looking_for_baseclass;
2069 {
2070 int i;
2071 int nbases = TYPE_N_BASECLASSES (type);
2072
2073 CHECK_TYPEDEF (type);
2074
2075 if (!looking_for_baseclass)
2076 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2077 {
2078 char *t_field_name = TYPE_FIELD_NAME (type, i);
2079
2080 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2081 {
2082 value_ptr v;
2083 if (TYPE_FIELD_STATIC (type, i))
2084 v = value_static_field (type, i);
2085 else
2086 v = value_primitive_field (arg1, offset, i, type);
2087 if (v == 0)
2088 error ("there is no field named %s", name);
2089 return v;
2090 }
2091
2092 if (t_field_name
2093 && (t_field_name[0] == '\0'
2094 || (TYPE_CODE (type) == TYPE_CODE_UNION
2095 && (strcmp_iw (t_field_name, "else") == 0))))
2096 {
2097 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2098 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2099 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2100 {
2101 /* Look for a match through the fields of an anonymous union,
2102 or anonymous struct. C++ provides anonymous unions.
2103
2104 In the GNU Chill implementation of variant record types,
2105 each <alternative field> has an (anonymous) union type,
2106 each member of the union represents a <variant alternative>.
2107 Each <variant alternative> is represented as a struct,
2108 with a member for each <variant field>. */
2109
2110 value_ptr v;
2111 int new_offset = offset;
2112
2113 /* This is pretty gross. In G++, the offset in an anonymous
2114 union is relative to the beginning of the enclosing struct.
2115 In the GNU Chill implementation of variant records,
2116 the bitpos is zero in an anonymous union field, so we
2117 have to add the offset of the union here. */
2118 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2119 || (TYPE_NFIELDS (field_type) > 0
2120 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2121 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2122
2123 v = search_struct_field (name, arg1, new_offset, field_type,
2124 looking_for_baseclass);
2125 if (v)
2126 return v;
2127 }
2128 }
2129 }
2130
2131 for (i = 0; i < nbases; i++)
2132 {
2133 value_ptr v;
2134 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2135 /* If we are looking for baseclasses, this is what we get when we
2136 hit them. But it could happen that the base part's member name
2137 is not yet filled in. */
2138 int found_baseclass = (looking_for_baseclass
2139 && TYPE_BASECLASS_NAME (type, i) != NULL
2140 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2141
2142 if (BASETYPE_VIA_VIRTUAL (type, i))
2143 {
2144 int boffset;
2145 value_ptr v2 = allocate_value (basetype);
2146
2147 boffset = baseclass_offset (type, i,
2148 VALUE_CONTENTS (arg1) + offset,
2149 VALUE_ADDRESS (arg1)
2150 + VALUE_OFFSET (arg1) + offset);
2151 if (boffset == -1)
2152 error ("virtual baseclass botch");
2153
2154 /* The virtual base class pointer might have been clobbered by the
2155 user program. Make sure that it still points to a valid memory
2156 location. */
2157
2158 boffset += offset;
2159 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2160 {
2161 CORE_ADDR base_addr;
2162
2163 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2164 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2165 TYPE_LENGTH (basetype)) != 0)
2166 error ("virtual baseclass botch");
2167 VALUE_LVAL (v2) = lval_memory;
2168 VALUE_ADDRESS (v2) = base_addr;
2169 }
2170 else
2171 {
2172 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2173 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2174 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2175 if (VALUE_LAZY (arg1))
2176 VALUE_LAZY (v2) = 1;
2177 else
2178 memcpy (VALUE_CONTENTS_RAW (v2),
2179 VALUE_CONTENTS_RAW (arg1) + boffset,
2180 TYPE_LENGTH (basetype));
2181 }
2182
2183 if (found_baseclass)
2184 return v2;
2185 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2186 looking_for_baseclass);
2187 }
2188 else if (found_baseclass)
2189 v = value_primitive_field (arg1, offset, i, type);
2190 else
2191 v = search_struct_field (name, arg1,
2192 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2193 basetype, looking_for_baseclass);
2194 if (v)
2195 return v;
2196 }
2197 return NULL;
2198 }
2199
2200
2201 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2202 * in an object pointed to by VALADDR (on the host), assumed to be of
2203 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2204 * looking (in case VALADDR is the contents of an enclosing object).
2205 *
2206 * This routine recurses on the primary base of the derived class because
2207 * the virtual base entries of the primary base appear before the other
2208 * virtual base entries.
2209 *
2210 * If the virtual base is not found, a negative integer is returned.
2211 * The magnitude of the negative integer is the number of entries in
2212 * the virtual table to skip over (entries corresponding to various
2213 * ancestral classes in the chain of primary bases).
2214 *
2215 * Important: This assumes the HP / Taligent C++ runtime
2216 * conventions. Use baseclass_offset() instead to deal with g++
2217 * conventions. */
2218
2219 void
2220 find_rt_vbase_offset (type, basetype, valaddr, offset, boffset_p, skip_p)
2221 struct type *type;
2222 struct type *basetype;
2223 char *valaddr;
2224 int offset;
2225 int *boffset_p;
2226 int *skip_p;
2227 {
2228 int boffset; /* offset of virtual base */
2229 int index; /* displacement to use in virtual table */
2230 int skip;
2231
2232 value_ptr vp;
2233 CORE_ADDR vtbl; /* the virtual table pointer */
2234 struct type *pbc; /* the primary base class */
2235
2236 /* Look for the virtual base recursively in the primary base, first.
2237 * This is because the derived class object and its primary base
2238 * subobject share the primary virtual table. */
2239
2240 boffset = 0;
2241 pbc = TYPE_PRIMARY_BASE (type);
2242 if (pbc)
2243 {
2244 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2245 if (skip < 0)
2246 {
2247 *boffset_p = boffset;
2248 *skip_p = -1;
2249 return;
2250 }
2251 }
2252 else
2253 skip = 0;
2254
2255
2256 /* Find the index of the virtual base according to HP/Taligent
2257 runtime spec. (Depth-first, left-to-right.) */
2258 index = virtual_base_index_skip_primaries (basetype, type);
2259
2260 if (index < 0)
2261 {
2262 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2263 *boffset_p = 0;
2264 return;
2265 }
2266
2267 /* pai: FIXME -- 32x64 possible problem */
2268 /* First word (4 bytes) in object layout is the vtable pointer */
2269 vtbl = *(CORE_ADDR *) (valaddr + offset);
2270
2271 /* Before the constructor is invoked, things are usually zero'd out. */
2272 if (vtbl == 0)
2273 error ("Couldn't find virtual table -- object may not be constructed yet.");
2274
2275
2276 /* Find virtual base's offset -- jump over entries for primary base
2277 * ancestors, then use the index computed above. But also adjust by
2278 * HP_ACC_VBASE_START for the vtable slots before the start of the
2279 * virtual base entries. Offset is negative -- virtual base entries
2280 * appear _before_ the address point of the virtual table. */
2281
2282 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2283 & use long type */
2284
2285 /* epstein : FIXME -- added param for overlay section. May not be correct */
2286 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2287 boffset = value_as_long (vp);
2288 *skip_p = -1;
2289 *boffset_p = boffset;
2290 return;
2291 }
2292
2293
2294 /* Helper function used by value_struct_elt to recurse through baseclasses.
2295 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2296 and search in it assuming it has (class) type TYPE.
2297 If found, return value, else if name matched and args not return (value)-1,
2298 else return NULL. */
2299
2300 static value_ptr
2301 search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
2302 char *name;
2303 register value_ptr *arg1p, *args;
2304 int offset, *static_memfuncp;
2305 register struct type *type;
2306 {
2307 int i;
2308 value_ptr v;
2309 int name_matched = 0;
2310 char dem_opname[64];
2311
2312 CHECK_TYPEDEF (type);
2313 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2314 {
2315 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2316 /* FIXME! May need to check for ARM demangling here */
2317 if (strncmp (t_field_name, "__", 2) == 0 ||
2318 strncmp (t_field_name, "op", 2) == 0 ||
2319 strncmp (t_field_name, "type", 4) == 0)
2320 {
2321 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2322 t_field_name = dem_opname;
2323 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2324 t_field_name = dem_opname;
2325 }
2326 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2327 {
2328 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2329 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2330 name_matched = 1;
2331
2332 if (j > 0 && args == 0)
2333 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2334 while (j >= 0)
2335 {
2336 if (TYPE_FN_FIELD_STUB (f, j))
2337 check_stub_method (type, i, j);
2338 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2339 TYPE_FN_FIELD_ARGS (f, j), args))
2340 {
2341 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2342 return value_virtual_fn_field (arg1p, f, j, type, offset);
2343 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2344 *static_memfuncp = 1;
2345 v = value_fn_field (arg1p, f, j, type, offset);
2346 if (v != NULL)
2347 return v;
2348 }
2349 j--;
2350 }
2351 }
2352 }
2353
2354 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2355 {
2356 int base_offset;
2357
2358 if (BASETYPE_VIA_VIRTUAL (type, i))
2359 {
2360 if (TYPE_HAS_VTABLE (type))
2361 {
2362 /* HP aCC compiled type, search for virtual base offset
2363 according to HP/Taligent runtime spec. */
2364 int skip;
2365 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2366 VALUE_CONTENTS_ALL (*arg1p),
2367 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2368 &base_offset, &skip);
2369 if (skip >= 0)
2370 error ("Virtual base class offset not found in vtable");
2371 }
2372 else
2373 {
2374 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2375 char *base_valaddr;
2376
2377 /* The virtual base class pointer might have been clobbered by the
2378 user program. Make sure that it still points to a valid memory
2379 location. */
2380
2381 if (offset < 0 || offset >= TYPE_LENGTH (type))
2382 {
2383 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2384 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2385 + VALUE_OFFSET (*arg1p) + offset,
2386 base_valaddr,
2387 TYPE_LENGTH (baseclass)) != 0)
2388 error ("virtual baseclass botch");
2389 }
2390 else
2391 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2392
2393 base_offset =
2394 baseclass_offset (type, i, base_valaddr,
2395 VALUE_ADDRESS (*arg1p)
2396 + VALUE_OFFSET (*arg1p) + offset);
2397 if (base_offset == -1)
2398 error ("virtual baseclass botch");
2399 }
2400 }
2401 else
2402 {
2403 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2404 }
2405 v = search_struct_method (name, arg1p, args, base_offset + offset,
2406 static_memfuncp, TYPE_BASECLASS (type, i));
2407 if (v == (value_ptr) - 1)
2408 {
2409 name_matched = 1;
2410 }
2411 else if (v)
2412 {
2413 /* FIXME-bothner: Why is this commented out? Why is it here? */
2414 /* *arg1p = arg1_tmp; */
2415 return v;
2416 }
2417 }
2418 if (name_matched)
2419 return (value_ptr) - 1;
2420 else
2421 return NULL;
2422 }
2423
2424 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2425 extract the component named NAME from the ultimate target structure/union
2426 and return it as a value with its appropriate type.
2427 ERR is used in the error message if *ARGP's type is wrong.
2428
2429 C++: ARGS is a list of argument types to aid in the selection of
2430 an appropriate method. Also, handle derived types.
2431
2432 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2433 where the truthvalue of whether the function that was resolved was
2434 a static member function or not is stored.
2435
2436 ERR is an error message to be printed in case the field is not found. */
2437
2438 value_ptr
2439 value_struct_elt (argp, args, name, static_memfuncp, err)
2440 register value_ptr *argp, *args;
2441 char *name;
2442 int *static_memfuncp;
2443 char *err;
2444 {
2445 register struct type *t;
2446 value_ptr v;
2447
2448 COERCE_ARRAY (*argp);
2449
2450 t = check_typedef (VALUE_TYPE (*argp));
2451
2452 /* Follow pointers until we get to a non-pointer. */
2453
2454 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2455 {
2456 *argp = value_ind (*argp);
2457 /* Don't coerce fn pointer to fn and then back again! */
2458 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2459 COERCE_ARRAY (*argp);
2460 t = check_typedef (VALUE_TYPE (*argp));
2461 }
2462
2463 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2464 error ("not implemented: member type in value_struct_elt");
2465
2466 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2467 && TYPE_CODE (t) != TYPE_CODE_UNION)
2468 error ("Attempt to extract a component of a value that is not a %s.", err);
2469
2470 /* Assume it's not, unless we see that it is. */
2471 if (static_memfuncp)
2472 *static_memfuncp = 0;
2473
2474 if (!args)
2475 {
2476 /* if there are no arguments ...do this... */
2477
2478 /* Try as a field first, because if we succeed, there
2479 is less work to be done. */
2480 v = search_struct_field (name, *argp, 0, t, 0);
2481 if (v)
2482 return v;
2483
2484 /* C++: If it was not found as a data field, then try to
2485 return it as a pointer to a method. */
2486
2487 if (destructor_name_p (name, t))
2488 error ("Cannot get value of destructor");
2489
2490 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2491
2492 if (v == (value_ptr) - 1)
2493 error ("Cannot take address of a method");
2494 else if (v == 0)
2495 {
2496 if (TYPE_NFN_FIELDS (t))
2497 error ("There is no member or method named %s.", name);
2498 else
2499 error ("There is no member named %s.", name);
2500 }
2501 return v;
2502 }
2503
2504 if (destructor_name_p (name, t))
2505 {
2506 if (!args[1])
2507 {
2508 /* Destructors are a special case. */
2509 int m_index, f_index;
2510
2511 v = NULL;
2512 if (get_destructor_fn_field (t, &m_index, &f_index))
2513 {
2514 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2515 f_index, NULL, 0);
2516 }
2517 if (v == NULL)
2518 error ("could not find destructor function named %s.", name);
2519 else
2520 return v;
2521 }
2522 else
2523 {
2524 error ("destructor should not have any argument");
2525 }
2526 }
2527 else
2528 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2529
2530 if (v == (value_ptr) - 1)
2531 {
2532 error ("Argument list of %s mismatch with component in the structure.", name);
2533 }
2534 else if (v == 0)
2535 {
2536 /* See if user tried to invoke data as function. If so,
2537 hand it back. If it's not callable (i.e., a pointer to function),
2538 gdb should give an error. */
2539 v = search_struct_field (name, *argp, 0, t, 0);
2540 }
2541
2542 if (!v)
2543 error ("Structure has no component named %s.", name);
2544 return v;
2545 }
2546
2547 /* Search through the methods of an object (and its bases)
2548 * to find a specified method. Return the pointer to the
2549 * fn_field list of overloaded instances.
2550 * Helper function for value_find_oload_list.
2551 * ARGP is a pointer to a pointer to a value (the object)
2552 * METHOD is a string containing the method name
2553 * OFFSET is the offset within the value
2554 * STATIC_MEMFUNCP is set if the method is static
2555 * TYPE is the assumed type of the object
2556 * NUM_FNS is the number of overloaded instances
2557 * BASETYPE is set to the actual type of the subobject where the method is found
2558 * BOFFSET is the offset of the base subobject where the method is found */
2559
2560 static struct fn_field *
2561 find_method_list (argp, method, offset, static_memfuncp, type, num_fns, basetype, boffset)
2562 value_ptr *argp;
2563 char *method;
2564 int offset;
2565 int *static_memfuncp;
2566 struct type *type;
2567 int *num_fns;
2568 struct type **basetype;
2569 int *boffset;
2570 {
2571 int i;
2572 struct fn_field *f;
2573 CHECK_TYPEDEF (type);
2574
2575 *num_fns = 0;
2576
2577 /* First check in object itself */
2578 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2579 {
2580 /* pai: FIXME What about operators and type conversions? */
2581 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2582 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2583 {
2584 *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
2585 *basetype = type;
2586 *boffset = offset;
2587 return TYPE_FN_FIELDLIST1 (type, i);
2588 }
2589 }
2590
2591 /* Not found in object, check in base subobjects */
2592 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2593 {
2594 int base_offset;
2595 if (BASETYPE_VIA_VIRTUAL (type, i))
2596 {
2597 if (TYPE_HAS_VTABLE (type))
2598 {
2599 /* HP aCC compiled type, search for virtual base offset
2600 * according to HP/Taligent runtime spec. */
2601 int skip;
2602 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2603 VALUE_CONTENTS_ALL (*argp),
2604 offset + VALUE_EMBEDDED_OFFSET (*argp),
2605 &base_offset, &skip);
2606 if (skip >= 0)
2607 error ("Virtual base class offset not found in vtable");
2608 }
2609 else
2610 {
2611 /* probably g++ runtime model */
2612 base_offset = VALUE_OFFSET (*argp) + offset;
2613 base_offset =
2614 baseclass_offset (type, i,
2615 VALUE_CONTENTS (*argp) + base_offset,
2616 VALUE_ADDRESS (*argp) + base_offset);
2617 if (base_offset == -1)
2618 error ("virtual baseclass botch");
2619 }
2620 }
2621 else
2622 /* non-virtual base, simply use bit position from debug info */
2623 {
2624 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2625 }
2626 f = find_method_list (argp, method, base_offset + offset,
2627 static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
2628 if (f)
2629 return f;
2630 }
2631 return NULL;
2632 }
2633
2634 /* Return the list of overloaded methods of a specified name.
2635 * ARGP is a pointer to a pointer to a value (the object)
2636 * METHOD is the method name
2637 * OFFSET is the offset within the value contents
2638 * STATIC_MEMFUNCP is set if the method is static
2639 * NUM_FNS is the number of overloaded instances
2640 * BASETYPE is set to the type of the base subobject that defines the method
2641 * BOFFSET is the offset of the base subobject which defines the method */
2642
2643 struct fn_field *
2644 value_find_oload_method_list (argp, method, offset, static_memfuncp, num_fns, basetype, boffset)
2645 value_ptr *argp;
2646 char *method;
2647 int offset;
2648 int *static_memfuncp;
2649 int *num_fns;
2650 struct type **basetype;
2651 int *boffset;
2652 {
2653 struct type *t;
2654
2655 t = check_typedef (VALUE_TYPE (*argp));
2656
2657 /* code snarfed from value_struct_elt */
2658 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2659 {
2660 *argp = value_ind (*argp);
2661 /* Don't coerce fn pointer to fn and then back again! */
2662 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2663 COERCE_ARRAY (*argp);
2664 t = check_typedef (VALUE_TYPE (*argp));
2665 }
2666
2667 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2668 error ("Not implemented: member type in value_find_oload_lis");
2669
2670 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2671 && TYPE_CODE (t) != TYPE_CODE_UNION)
2672 error ("Attempt to extract a component of a value that is not a struct or union");
2673
2674 /* Assume it's not static, unless we see that it is. */
2675 if (static_memfuncp)
2676 *static_memfuncp = 0;
2677
2678 return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
2679
2680 }
2681
2682 /* Given an array of argument types (ARGTYPES) (which includes an
2683 entry for "this" in the case of C++ methods), the number of
2684 arguments NARGS, the NAME of a function whether it's a method or
2685 not (METHOD), and the degree of laxness (LAX) in conforming to
2686 overload resolution rules in ANSI C++, find the best function that
2687 matches on the argument types according to the overload resolution
2688 rules.
2689
2690 In the case of class methods, the parameter OBJ is an object value
2691 in which to search for overloaded methods.
2692
2693 In the case of non-method functions, the parameter FSYM is a symbol
2694 corresponding to one of the overloaded functions.
2695
2696 Return value is an integer: 0 -> good match, 10 -> debugger applied
2697 non-standard coercions, 100 -> incompatible.
2698
2699 If a method is being searched for, VALP will hold the value.
2700 If a non-method is being searched for, SYMP will hold the symbol for it.
2701
2702 If a method is being searched for, and it is a static method,
2703 then STATICP will point to a non-zero value.
2704
2705 Note: This function does *not* check the value of
2706 overload_resolution. Caller must check it to see whether overload
2707 resolution is permitted.
2708 */
2709
2710 int
2711 find_overload_match (arg_types, nargs, name, method, lax, obj, fsym, valp, symp, staticp)
2712 struct type **arg_types;
2713 int nargs;
2714 char *name;
2715 int method;
2716 int lax;
2717 value_ptr obj;
2718 struct symbol *fsym;
2719 value_ptr *valp;
2720 struct symbol **symp;
2721 int *staticp;
2722 {
2723 int nparms;
2724 struct type **parm_types;
2725 int champ_nparms = 0;
2726
2727 short oload_champ = -1; /* Index of best overloaded function */
2728 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2729 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2730 short oload_ambig_champ = -1; /* 2nd contender for best match */
2731 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2732 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2733
2734 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2735 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2736
2737 value_ptr temp = obj;
2738 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2739 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2740 int num_fns = 0; /* Number of overloaded instances being considered */
2741 struct type *basetype = NULL;
2742 int boffset;
2743 register int jj;
2744 register int ix;
2745
2746 char *obj_type_name = NULL;
2747 char *func_name = NULL;
2748
2749 /* Get the list of overloaded methods or functions */
2750 if (method)
2751 {
2752 int i;
2753 int len;
2754 struct type *domain;
2755 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2756 /* Hack: evaluate_subexp_standard often passes in a pointer
2757 value rather than the object itself, so try again */
2758 if ((!obj_type_name || !*obj_type_name) &&
2759 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2760 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2761
2762 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2763 staticp,
2764 &num_fns,
2765 &basetype, &boffset);
2766 if (!fns_ptr || !num_fns)
2767 error ("Couldn't find method %s%s%s",
2768 obj_type_name,
2769 (obj_type_name && *obj_type_name) ? "::" : "",
2770 name);
2771 domain = TYPE_DOMAIN_TYPE (fns_ptr[0].type);
2772 len = TYPE_NFN_FIELDS (domain);
2773 /* NOTE: dan/2000-03-10: This stuff is for STABS, which won't
2774 give us the info we need directly in the types. We have to
2775 use the method stub conversion to get it. Be aware that this
2776 is by no means perfect, and if you use STABS, please move to
2777 DWARF-2, or something like it, because trying to improve
2778 overloading using STABS is really a waste of time. */
2779 for (i = 0; i < len; i++)
2780 {
2781 int j;
2782 struct fn_field *f = TYPE_FN_FIELDLIST1 (domain, i);
2783 int len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
2784
2785 for (j = 0; j < len2; j++)
2786 {
2787 if (TYPE_FN_FIELD_STUB (f, j) && (!strcmp_iw (TYPE_FN_FIELDLIST_NAME (domain,i),name)))
2788 check_stub_method (domain, i, j);
2789 }
2790 }
2791 }
2792 else
2793 {
2794 int i = -1;
2795 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2796
2797 /* If the name is NULL this must be a C-style function.
2798 Just return the same symbol. */
2799 if (!func_name)
2800 {
2801 *symp = fsym;
2802 return 0;
2803 }
2804
2805 oload_syms = make_symbol_overload_list (fsym);
2806 while (oload_syms[++i])
2807 num_fns++;
2808 if (!num_fns)
2809 error ("Couldn't find function %s", func_name);
2810 }
2811
2812 oload_champ_bv = NULL;
2813
2814 /* Consider each candidate in turn */
2815 for (ix = 0; ix < num_fns; ix++)
2816 {
2817 if (method)
2818 {
2819 /* For static member functions, we won't have a this pointer, but nothing
2820 else seems to handle them right now, so we just pretend ourselves */
2821 nparms=0;
2822
2823 if (TYPE_FN_FIELD_ARGS(fns_ptr,ix))
2824 {
2825 while (TYPE_CODE(TYPE_FN_FIELD_ARGS(fns_ptr,ix)[nparms]) != TYPE_CODE_VOID)
2826 nparms++;
2827 }
2828 }
2829 else
2830 {
2831 /* If it's not a method, this is the proper place */
2832 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2833 }
2834
2835 /* Prepare array of parameter types */
2836 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2837 for (jj = 0; jj < nparms; jj++)
2838 parm_types[jj] = (method
2839 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj])
2840 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2841
2842 /* Compare parameter types to supplied argument types */
2843 bv = rank_function (parm_types, nparms, arg_types, nargs);
2844
2845 if (!oload_champ_bv)
2846 {
2847 oload_champ_bv = bv;
2848 oload_champ = 0;
2849 champ_nparms = nparms;
2850 }
2851 else
2852 /* See whether current candidate is better or worse than previous best */
2853 switch (compare_badness (bv, oload_champ_bv))
2854 {
2855 case 0:
2856 oload_ambiguous = 1; /* top two contenders are equally good */
2857 oload_ambig_champ = ix;
2858 break;
2859 case 1:
2860 oload_ambiguous = 2; /* incomparable top contenders */
2861 oload_ambig_champ = ix;
2862 break;
2863 case 2:
2864 oload_champ_bv = bv; /* new champion, record details */
2865 oload_ambiguous = 0;
2866 oload_champ = ix;
2867 oload_ambig_champ = -1;
2868 champ_nparms = nparms;
2869 break;
2870 case 3:
2871 default:
2872 break;
2873 }
2874 free (parm_types);
2875 if (overload_debug)
2876 {
2877 if (method)
2878 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2879 else
2880 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2881 for (jj = 0; jj < nargs; jj++)
2882 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2883 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2884 }
2885 } /* end loop over all candidates */
2886 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2887 if they have the exact same goodness. This is because there is no
2888 way to differentiate based on return type, which we need to in
2889 cases like overloads of .begin() <It's both const and non-const> */
2890 #if 0
2891 if (oload_ambiguous)
2892 {
2893 if (method)
2894 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2895 obj_type_name,
2896 (obj_type_name && *obj_type_name) ? "::" : "",
2897 name);
2898 else
2899 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2900 func_name);
2901 }
2902 #endif
2903
2904 /* Check how bad the best match is */
2905 for (ix = 1; ix <= nargs; ix++)
2906 {
2907 if (oload_champ_bv->rank[ix] >= 100)
2908 oload_incompatible = 1; /* truly mismatched types */
2909
2910 else if (oload_champ_bv->rank[ix] >= 10)
2911 oload_non_standard = 1; /* non-standard type conversions needed */
2912 }
2913 if (oload_incompatible)
2914 {
2915 if (method)
2916 error ("Cannot resolve method %s%s%s to any overloaded instance",
2917 obj_type_name,
2918 (obj_type_name && *obj_type_name) ? "::" : "",
2919 name);
2920 else
2921 error ("Cannot resolve function %s to any overloaded instance",
2922 func_name);
2923 }
2924 else if (oload_non_standard)
2925 {
2926 if (method)
2927 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2928 obj_type_name,
2929 (obj_type_name && *obj_type_name) ? "::" : "",
2930 name);
2931 else
2932 warning ("Using non-standard conversion to match function %s to supplied arguments",
2933 func_name);
2934 }
2935
2936 if (method)
2937 {
2938 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2939 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2940 else
2941 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2942 }
2943 else
2944 {
2945 *symp = oload_syms[oload_champ];
2946 free (func_name);
2947 }
2948
2949 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2950 }
2951
2952 /* C++: return 1 is NAME is a legitimate name for the destructor
2953 of type TYPE. If TYPE does not have a destructor, or
2954 if NAME is inappropriate for TYPE, an error is signaled. */
2955 int
2956 destructor_name_p (name, type)
2957 const char *name;
2958 const struct type *type;
2959 {
2960 /* destructors are a special case. */
2961
2962 if (name[0] == '~')
2963 {
2964 char *dname = type_name_no_tag (type);
2965 char *cp = strchr (dname, '<');
2966 unsigned int len;
2967
2968 /* Do not compare the template part for template classes. */
2969 if (cp == NULL)
2970 len = strlen (dname);
2971 else
2972 len = cp - dname;
2973 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2974 error ("name of destructor must equal name of class");
2975 else
2976 return 1;
2977 }
2978 return 0;
2979 }
2980
2981 /* Helper function for check_field: Given TYPE, a structure/union,
2982 return 1 if the component named NAME from the ultimate
2983 target structure/union is defined, otherwise, return 0. */
2984
2985 static int
2986 check_field_in (type, name)
2987 register struct type *type;
2988 const char *name;
2989 {
2990 register int i;
2991
2992 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2993 {
2994 char *t_field_name = TYPE_FIELD_NAME (type, i);
2995 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2996 return 1;
2997 }
2998
2999 /* C++: If it was not found as a data field, then try to
3000 return it as a pointer to a method. */
3001
3002 /* Destructors are a special case. */
3003 if (destructor_name_p (name, type))
3004 {
3005 int m_index, f_index;
3006
3007 return get_destructor_fn_field (type, &m_index, &f_index);
3008 }
3009
3010 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
3011 {
3012 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
3013 return 1;
3014 }
3015
3016 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3017 if (check_field_in (TYPE_BASECLASS (type, i), name))
3018 return 1;
3019
3020 return 0;
3021 }
3022
3023
3024 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
3025 return 1 if the component named NAME from the ultimate
3026 target structure/union is defined, otherwise, return 0. */
3027
3028 int
3029 check_field (arg1, name)
3030 register value_ptr arg1;
3031 const char *name;
3032 {
3033 register struct type *t;
3034
3035 COERCE_ARRAY (arg1);
3036
3037 t = VALUE_TYPE (arg1);
3038
3039 /* Follow pointers until we get to a non-pointer. */
3040
3041 for (;;)
3042 {
3043 CHECK_TYPEDEF (t);
3044 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
3045 break;
3046 t = TYPE_TARGET_TYPE (t);
3047 }
3048
3049 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
3050 error ("not implemented: member type in check_field");
3051
3052 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3053 && TYPE_CODE (t) != TYPE_CODE_UNION)
3054 error ("Internal error: `this' is not an aggregate");
3055
3056 return check_field_in (t, name);
3057 }
3058
3059 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3060 return the address of this member as a "pointer to member"
3061 type. If INTYPE is non-null, then it will be the type
3062 of the member we are looking for. This will help us resolve
3063 "pointers to member functions". This function is used
3064 to resolve user expressions of the form "DOMAIN::NAME". */
3065
3066 value_ptr
3067 value_struct_elt_for_reference (domain, offset, curtype, name, intype)
3068 struct type *domain, *curtype, *intype;
3069 int offset;
3070 char *name;
3071 {
3072 register struct type *t = curtype;
3073 register int i;
3074 value_ptr v;
3075
3076 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3077 && TYPE_CODE (t) != TYPE_CODE_UNION)
3078 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3079
3080 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3081 {
3082 char *t_field_name = TYPE_FIELD_NAME (t, i);
3083
3084 if (t_field_name && STREQ (t_field_name, name))
3085 {
3086 if (TYPE_FIELD_STATIC (t, i))
3087 {
3088 v = value_static_field (t, i);
3089 if (v == NULL)
3090 error ("Internal error: could not find static variable %s",
3091 name);
3092 return v;
3093 }
3094 if (TYPE_FIELD_PACKED (t, i))
3095 error ("pointers to bitfield members not allowed");
3096
3097 return value_from_longest
3098 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3099 domain)),
3100 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3101 }
3102 }
3103
3104 /* C++: If it was not found as a data field, then try to
3105 return it as a pointer to a method. */
3106
3107 /* Destructors are a special case. */
3108 if (destructor_name_p (name, t))
3109 {
3110 error ("member pointers to destructors not implemented yet");
3111 }
3112
3113 /* Perform all necessary dereferencing. */
3114 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3115 intype = TYPE_TARGET_TYPE (intype);
3116
3117 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3118 {
3119 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3120 char dem_opname[64];
3121
3122 if (strncmp (t_field_name, "__", 2) == 0 ||
3123 strncmp (t_field_name, "op", 2) == 0 ||
3124 strncmp (t_field_name, "type", 4) == 0)
3125 {
3126 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3127 t_field_name = dem_opname;
3128 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3129 t_field_name = dem_opname;
3130 }
3131 if (t_field_name && STREQ (t_field_name, name))
3132 {
3133 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3134 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3135
3136 if (intype == 0 && j > 1)
3137 error ("non-unique member `%s' requires type instantiation", name);
3138 if (intype)
3139 {
3140 while (j--)
3141 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3142 break;
3143 if (j < 0)
3144 error ("no member function matches that type instantiation");
3145 }
3146 else
3147 j = 0;
3148
3149 if (TYPE_FN_FIELD_STUB (f, j))
3150 check_stub_method (t, i, j);
3151 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3152 {
3153 return value_from_longest
3154 (lookup_reference_type
3155 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3156 domain)),
3157 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3158 }
3159 else
3160 {
3161 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3162 0, VAR_NAMESPACE, 0, NULL);
3163 if (s == NULL)
3164 {
3165 v = 0;
3166 }
3167 else
3168 {
3169 v = read_var_value (s, 0);
3170 #if 0
3171 VALUE_TYPE (v) = lookup_reference_type
3172 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3173 domain));
3174 #endif
3175 }
3176 return v;
3177 }
3178 }
3179 }
3180 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3181 {
3182 value_ptr v;
3183 int base_offset;
3184
3185 if (BASETYPE_VIA_VIRTUAL (t, i))
3186 base_offset = 0;
3187 else
3188 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3189 v = value_struct_elt_for_reference (domain,
3190 offset + base_offset,
3191 TYPE_BASECLASS (t, i),
3192 name,
3193 intype);
3194 if (v)
3195 return v;
3196 }
3197 return 0;
3198 }
3199
3200
3201 /* Find the real run-time type of a value using RTTI.
3202 * V is a pointer to the value.
3203 * A pointer to the struct type entry of the run-time type
3204 * is returneed.
3205 * FULL is a flag that is set only if the value V includes
3206 * the entire contents of an object of the RTTI type.
3207 * TOP is the offset to the top of the enclosing object of
3208 * the real run-time type. This offset may be for the embedded
3209 * object, or for the enclosing object of V.
3210 * USING_ENC is the flag that distinguishes the two cases.
3211 * If it is 1, then the offset is for the enclosing object,
3212 * otherwise for the embedded object.
3213 *
3214 */
3215
3216 struct type *
3217 value_rtti_type (v, full, top, using_enc)
3218 value_ptr v;
3219 int *full;
3220 int *top;
3221 int *using_enc;
3222 {
3223 struct type *known_type;
3224 struct type *rtti_type;
3225 CORE_ADDR coreptr;
3226 value_ptr vp;
3227 int using_enclosing = 0;
3228 long top_offset = 0;
3229 char rtti_type_name[256];
3230
3231 if (full)
3232 *full = 0;
3233 if (top)
3234 *top = -1;
3235 if (using_enc)
3236 *using_enc = 0;
3237
3238 /* Get declared type */
3239 known_type = VALUE_TYPE (v);
3240 CHECK_TYPEDEF (known_type);
3241 /* RTTI works only or class objects */
3242 if (TYPE_CODE (known_type) != TYPE_CODE_CLASS)
3243 return NULL;
3244 if (TYPE_HAS_VTABLE(known_type))
3245 {
3246 /* If neither the declared type nor the enclosing type of the
3247 * value structure has a HP ANSI C++ style virtual table,
3248 * we can't do anything. */
3249 if (!TYPE_HAS_VTABLE (known_type))
3250 {
3251 known_type = VALUE_ENCLOSING_TYPE (v);
3252 CHECK_TYPEDEF (known_type);
3253 if ((TYPE_CODE (known_type) != TYPE_CODE_CLASS) ||
3254 !TYPE_HAS_VTABLE (known_type))
3255 return NULL; /* No RTTI, or not HP-compiled types */
3256 CHECK_TYPEDEF (known_type);
3257 using_enclosing = 1;
3258 }
3259
3260 if (using_enclosing && using_enc)
3261 *using_enc = 1;
3262
3263 /* First get the virtual table address */
3264 coreptr = *(CORE_ADDR *) ((VALUE_CONTENTS_ALL (v))
3265 + VALUE_OFFSET (v)
3266 + (using_enclosing ? 0 : VALUE_EMBEDDED_OFFSET (v)));
3267 if (coreptr == 0)
3268 return NULL; /* return silently -- maybe called on gdb-generated value */
3269
3270 /* Fetch the top offset of the object */
3271 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3272 vp = value_at (builtin_type_int,
3273 coreptr + 4 * HP_ACC_TOP_OFFSET_OFFSET,
3274 VALUE_BFD_SECTION (v));
3275 top_offset = value_as_long (vp);
3276 if (top)
3277 *top = top_offset;
3278
3279 /* Fetch the typeinfo pointer */
3280 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3281 vp = value_at (builtin_type_int, coreptr + 4 * HP_ACC_TYPEINFO_OFFSET, VALUE_BFD_SECTION (v));
3282 /* Indirect through the typeinfo pointer and retrieve the pointer
3283 * to the string name */
3284 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
3285 if (!coreptr)
3286 error ("Retrieved null typeinfo pointer in trying to determine run-time type");
3287 vp = value_at (builtin_type_int, coreptr + 4, VALUE_BFD_SECTION (v)); /* 4 -> offset of name field */
3288 /* FIXME possible 32x64 problem */
3289
3290 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
3291
3292 read_memory_string (coreptr, rtti_type_name, 256);
3293
3294 if (strlen (rtti_type_name) == 0)
3295 error ("Retrieved null type name from typeinfo");
3296
3297 /* search for type */
3298 rtti_type = lookup_typename (rtti_type_name, (struct block *) 0, 1);
3299
3300 if (!rtti_type)
3301 error ("Could not find run-time type: invalid type name %s in typeinfo??", rtti_type_name);
3302 CHECK_TYPEDEF (rtti_type);
3303 #if 0
3304 printf ("RTTI type name %s, tag %s, full? %d\n", TYPE_NAME (rtti_type), TYPE_TAG_NAME (rtti_type), full ? *full : -1);
3305 #endif
3306 /* Check whether we have the entire object */
3307 if (full /* Non-null pointer passed */
3308 &&
3309 /* Either we checked on the whole object in hand and found the
3310 top offset to be zero */
3311 (((top_offset == 0) &&
3312 using_enclosing &&
3313 TYPE_LENGTH (known_type) == TYPE_LENGTH (rtti_type))
3314 ||
3315 /* Or we checked on the embedded object and top offset was the
3316 same as the embedded offset */
3317 ((top_offset == VALUE_EMBEDDED_OFFSET (v)) &&
3318 !using_enclosing &&
3319 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (v)) == TYPE_LENGTH (rtti_type))))
3320
3321 *full = 1;
3322 }
3323 else
3324 /*
3325 Right now this is G++ RTTI. Plan on this changing in the
3326 future as i get around to setting the vtables properly for G++
3327 compiled stuff. Also, i'll be using the type info functions,
3328 which are always right. Deal with it until then.
3329 */
3330 {
3331 CORE_ADDR vtbl;
3332 struct minimal_symbol *minsym;
3333 struct symbol *sym;
3334 char *demangled_name;
3335 struct type *btype;
3336 /* If the type has no vptr fieldno, try to get it filled in */
3337 if (TYPE_VPTR_FIELDNO(known_type) < 0)
3338 fill_in_vptr_fieldno(known_type);
3339
3340 /* If we still can't find one, give up */
3341 if (TYPE_VPTR_FIELDNO(known_type) < 0)
3342 return NULL;
3343
3344 /* Make sure our basetype and known type match, otherwise, cast
3345 so we can get at the vtable properly.
3346 */
3347 btype = TYPE_VPTR_BASETYPE (known_type);
3348 CHECK_TYPEDEF (btype);
3349 if (btype != known_type )
3350 {
3351 v = value_cast (btype, v);
3352 if (using_enc)
3353 *using_enc=1;
3354 }
3355 /*
3356 We can't use value_ind here, because it would want to use RTTI, and
3357 we'd waste a bunch of time figuring out we already know the type.
3358 Besides, we don't care about the type, just the actual pointer
3359 */
3360 if (VALUE_ADDRESS (value_field (v, TYPE_VPTR_FIELDNO (known_type))) == 0)
3361 return NULL;
3362
3363 /*
3364 If we are enclosed by something that isn't us, adjust the
3365 address properly and set using_enclosing.
3366 */
3367 if (VALUE_ENCLOSING_TYPE(v) != VALUE_TYPE(v))
3368 {
3369 value_ptr tempval;
3370 tempval=value_field(v,TYPE_VPTR_FIELDNO(known_type));
3371 VALUE_ADDRESS(tempval)+=(TYPE_BASECLASS_BITPOS(known_type,TYPE_VPTR_FIELDNO(known_type))/8);
3372 vtbl=value_as_pointer(tempval);
3373 using_enclosing=1;
3374 }
3375 else
3376 {
3377 vtbl=value_as_pointer(value_field(v,TYPE_VPTR_FIELDNO(known_type)));
3378 using_enclosing=0;
3379 }
3380
3381 /* Try to find a symbol that is the vtable */
3382 minsym=lookup_minimal_symbol_by_pc(vtbl);
3383 if (minsym==NULL || (demangled_name=SYMBOL_NAME(minsym))==NULL || !VTBL_PREFIX_P(demangled_name))
3384 return NULL;
3385
3386 /* If we just skip the prefix, we get screwed by namespaces */
3387 demangled_name=cplus_demangle(demangled_name,DMGL_PARAMS|DMGL_ANSI);
3388 *(strchr(demangled_name,' '))=0;
3389
3390 /* Lookup the type for the name */
3391 rtti_type=lookup_typename(demangled_name, (struct block *)0,1);
3392
3393 if (rtti_type==NULL)
3394 return NULL;
3395
3396 if (TYPE_N_BASECLASSES(rtti_type) > 1 && full && (*full) != 1)
3397 {
3398 if (top)
3399 *top=TYPE_BASECLASS_BITPOS(rtti_type,TYPE_VPTR_FIELDNO(rtti_type))/8;
3400 if (top && ((*top) >0))
3401 {
3402 if (TYPE_LENGTH(rtti_type) > TYPE_LENGTH(known_type))
3403 {
3404 if (full)
3405 *full=0;
3406 }
3407 else
3408 {
3409 if (full)
3410 *full=1;
3411 }
3412 }
3413 }
3414 else
3415 {
3416 if (full)
3417 *full=1;
3418 }
3419 if (using_enc)
3420 *using_enc=using_enclosing;
3421 }
3422 return rtti_type;
3423 }
3424
3425 /* Given a pointer value V, find the real (RTTI) type
3426 of the object it points to.
3427 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3428 and refer to the values computed for the object pointed to. */
3429
3430 struct type *
3431 value_rtti_target_type (v, full, top, using_enc)
3432 value_ptr v;
3433 int *full;
3434 int *top;
3435 int *using_enc;
3436 {
3437 value_ptr target;
3438
3439 target = value_ind (v);
3440
3441 return value_rtti_type (target, full, top, using_enc);
3442 }
3443
3444 /* Given a value pointed to by ARGP, check its real run-time type, and
3445 if that is different from the enclosing type, create a new value
3446 using the real run-time type as the enclosing type (and of the same
3447 type as ARGP) and return it, with the embedded offset adjusted to
3448 be the correct offset to the enclosed object
3449 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3450 parameters, computed by value_rtti_type(). If these are available,
3451 they can be supplied and a second call to value_rtti_type() is avoided.
3452 (Pass RTYPE == NULL if they're not available */
3453
3454 value_ptr
3455 value_full_object (argp, rtype, xfull, xtop, xusing_enc)
3456 value_ptr argp;
3457 struct type *rtype;
3458 int xfull;
3459 int xtop;
3460 int xusing_enc;
3461
3462 {
3463 struct type *real_type;
3464 int full = 0;
3465 int top = -1;
3466 int using_enc = 0;
3467 value_ptr new_val;
3468
3469 if (rtype)
3470 {
3471 real_type = rtype;
3472 full = xfull;
3473 top = xtop;
3474 using_enc = xusing_enc;
3475 }
3476 else
3477 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3478
3479 /* If no RTTI data, or if object is already complete, do nothing */
3480 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3481 return argp;
3482
3483 /* If we have the full object, but for some reason the enclosing
3484 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3485 if (full)
3486 {
3487 VALUE_ENCLOSING_TYPE (argp) = real_type;
3488 return argp;
3489 }
3490
3491 /* Check if object is in memory */
3492 if (VALUE_LVAL (argp) != lval_memory)
3493 {
3494 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3495
3496 return argp;
3497 }
3498
3499 /* All other cases -- retrieve the complete object */
3500 /* Go back by the computed top_offset from the beginning of the object,
3501 adjusting for the embedded offset of argp if that's what value_rtti_type
3502 used for its computation. */
3503 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3504 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3505 VALUE_BFD_SECTION (argp));
3506 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3507 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3508 return new_val;
3509 }
3510
3511
3512
3513
3514 /* C++: return the value of the class instance variable, if one exists.
3515 Flag COMPLAIN signals an error if the request is made in an
3516 inappropriate context. */
3517
3518 value_ptr
3519 value_of_this (complain)
3520 int complain;
3521 {
3522 struct symbol *func, *sym;
3523 struct block *b;
3524 int i;
3525 static const char funny_this[] = "this";
3526 value_ptr this;
3527
3528 if (selected_frame == 0)
3529 {
3530 if (complain)
3531 error ("no frame selected");
3532 else
3533 return 0;
3534 }
3535
3536 func = get_frame_function (selected_frame);
3537 if (!func)
3538 {
3539 if (complain)
3540 error ("no `this' in nameless context");
3541 else
3542 return 0;
3543 }
3544
3545 b = SYMBOL_BLOCK_VALUE (func);
3546 i = BLOCK_NSYMS (b);
3547 if (i <= 0)
3548 {
3549 if (complain)
3550 error ("no args, no `this'");
3551 else
3552 return 0;
3553 }
3554
3555 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3556 symbol instead of the LOC_ARG one (if both exist). */
3557 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
3558 if (sym == NULL)
3559 {
3560 if (complain)
3561 error ("current stack frame not in method");
3562 else
3563 return NULL;
3564 }
3565
3566 this = read_var_value (sym, selected_frame);
3567 if (this == 0 && complain)
3568 error ("`this' argument at unknown address");
3569 return this;
3570 }
3571
3572 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3573 long, starting at LOWBOUND. The result has the same lower bound as
3574 the original ARRAY. */
3575
3576 value_ptr
3577 value_slice (array, lowbound, length)
3578 value_ptr array;
3579 int lowbound, length;
3580 {
3581 struct type *slice_range_type, *slice_type, *range_type;
3582 LONGEST lowerbound, upperbound, offset;
3583 value_ptr slice;
3584 struct type *array_type;
3585 array_type = check_typedef (VALUE_TYPE (array));
3586 COERCE_VARYING_ARRAY (array, array_type);
3587 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3588 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3589 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3590 error ("cannot take slice of non-array");
3591 range_type = TYPE_INDEX_TYPE (array_type);
3592 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3593 error ("slice from bad array or bitstring");
3594 if (lowbound < lowerbound || length < 0
3595 || lowbound + length - 1 > upperbound
3596 /* Chill allows zero-length strings but not arrays. */
3597 || (current_language->la_language == language_chill
3598 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3599 error ("slice out of range");
3600 /* FIXME-type-allocation: need a way to free this type when we are
3601 done with it. */
3602 slice_range_type = create_range_type ((struct type *) NULL,
3603 TYPE_TARGET_TYPE (range_type),
3604 lowbound, lowbound + length - 1);
3605 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3606 {
3607 int i;
3608 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3609 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3610 slice = value_zero (slice_type, not_lval);
3611 for (i = 0; i < length; i++)
3612 {
3613 int element = value_bit_index (array_type,
3614 VALUE_CONTENTS (array),
3615 lowbound + i);
3616 if (element < 0)
3617 error ("internal error accessing bitstring");
3618 else if (element > 0)
3619 {
3620 int j = i % TARGET_CHAR_BIT;
3621 if (BITS_BIG_ENDIAN)
3622 j = TARGET_CHAR_BIT - 1 - j;
3623 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3624 }
3625 }
3626 /* We should set the address, bitssize, and bitspos, so the clice
3627 can be used on the LHS, but that may require extensions to
3628 value_assign. For now, just leave as a non_lval. FIXME. */
3629 }
3630 else
3631 {
3632 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3633 offset
3634 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3635 slice_type = create_array_type ((struct type *) NULL, element_type,
3636 slice_range_type);
3637 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3638 slice = allocate_value (slice_type);
3639 if (VALUE_LAZY (array))
3640 VALUE_LAZY (slice) = 1;
3641 else
3642 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3643 TYPE_LENGTH (slice_type));
3644 if (VALUE_LVAL (array) == lval_internalvar)
3645 VALUE_LVAL (slice) = lval_internalvar_component;
3646 else
3647 VALUE_LVAL (slice) = VALUE_LVAL (array);
3648 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3649 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3650 }
3651 return slice;
3652 }
3653
3654 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3655 value as a fixed-length array. */
3656
3657 value_ptr
3658 varying_to_slice (varray)
3659 value_ptr varray;
3660 {
3661 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3662 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3663 VALUE_CONTENTS (varray)
3664 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3665 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3666 }
3667
3668 /* Create a value for a FORTRAN complex number. Currently most of
3669 the time values are coerced to COMPLEX*16 (i.e. a complex number
3670 composed of 2 doubles. This really should be a smarter routine
3671 that figures out precision inteligently as opposed to assuming
3672 doubles. FIXME: fmb */
3673
3674 value_ptr
3675 value_literal_complex (arg1, arg2, type)
3676 value_ptr arg1;
3677 value_ptr arg2;
3678 struct type *type;
3679 {
3680 register value_ptr val;
3681 struct type *real_type = TYPE_TARGET_TYPE (type);
3682
3683 val = allocate_value (type);
3684 arg1 = value_cast (real_type, arg1);
3685 arg2 = value_cast (real_type, arg2);
3686
3687 memcpy (VALUE_CONTENTS_RAW (val),
3688 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3689 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3690 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3691 return val;
3692 }
3693
3694 /* Cast a value into the appropriate complex data type. */
3695
3696 static value_ptr
3697 cast_into_complex (type, val)
3698 struct type *type;
3699 register value_ptr val;
3700 {
3701 struct type *real_type = TYPE_TARGET_TYPE (type);
3702 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3703 {
3704 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3705 value_ptr re_val = allocate_value (val_real_type);
3706 value_ptr im_val = allocate_value (val_real_type);
3707
3708 memcpy (VALUE_CONTENTS_RAW (re_val),
3709 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3710 memcpy (VALUE_CONTENTS_RAW (im_val),
3711 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3712 TYPE_LENGTH (val_real_type));
3713
3714 return value_literal_complex (re_val, im_val, type);
3715 }
3716 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3717 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3718 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3719 else
3720 error ("cannot cast non-number to complex");
3721 }
3722
3723 void
3724 _initialize_valops ()
3725 {
3726 #if 0
3727 add_show_from_set
3728 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3729 "Set automatic abandonment of expressions upon failure.",
3730 &setlist),
3731 &showlist);
3732 #endif
3733
3734 add_show_from_set
3735 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3736 "Set overload resolution in evaluating C++ functions.",
3737 &setlist),
3738 &showlist);
3739 overload_resolution = 1;
3740
3741 add_show_from_set (
3742 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3743 (char *) &unwind_on_signal_p,
3744 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3745 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3746 is received while in a function called from gdb (call dummy). If set, gdb\n\
3747 unwinds the stack and restore the context to what as it was before the call.\n\
3748 The default is to stop in the frame where the signal was received.", &setlist),
3749 &showlist);
3750 }
This page took 0.166205 seconds and 5 git commands to generate.