2003-03-30 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
3 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "gdbcore.h"
30 #include "target.h"
31 #include "demangle.h"
32 #include "language.h"
33 #include "gdbcmd.h"
34 #include "regcache.h"
35 #include "cp-abi.h"
36 #include "block.h"
37
38 #include <errno.h>
39 #include "gdb_string.h"
40 #include "gdb_assert.h"
41
42 /* Flag indicating HP compilers were used; needed to correctly handle some
43 value operations with HP aCC code/runtime. */
44 extern int hp_som_som_object_present;
45
46 extern int overload_debug;
47 /* Local functions. */
48
49 static int typecmp (int staticp, int varargs, int nargs,
50 struct field t1[], struct value *t2[]);
51
52 static CORE_ADDR find_function_addr (struct value *, struct type **);
53 static struct value *value_arg_coerce (struct value *, struct type *, int);
54
55
56 static CORE_ADDR value_push (CORE_ADDR, struct value *);
57
58 static struct value *search_struct_field (char *, struct value *, int,
59 struct type *, int);
60
61 static struct value *search_struct_method (char *, struct value **,
62 struct value **,
63 int, int *, struct type *);
64
65 static int check_field_in (struct type *, const char *);
66
67 static CORE_ADDR allocate_space_in_inferior (int);
68
69 static struct value *cast_into_complex (struct type *, struct value *);
70
71 static struct fn_field *find_method_list (struct value ** argp, char *method,
72 int offset,
73 struct type *type, int *num_fns,
74 struct type **basetype,
75 int *boffset);
76
77 void _initialize_valops (void);
78
79 /* Flag for whether we want to abandon failed expression evals by default. */
80
81 #if 0
82 static int auto_abandon = 0;
83 #endif
84
85 int overload_resolution = 0;
86
87 /* This boolean tells what gdb should do if a signal is received while in
88 a function called from gdb (call dummy). If set, gdb unwinds the stack
89 and restore the context to what as it was before the call.
90 The default is to stop in the frame where the signal was received. */
91
92 int unwind_on_signal_p = 0;
93
94 /* How you should pass arguments to a function depends on whether it
95 was defined in K&R style or prototype style. If you define a
96 function using the K&R syntax that takes a `float' argument, then
97 callers must pass that argument as a `double'. If you define the
98 function using the prototype syntax, then you must pass the
99 argument as a `float', with no promotion.
100
101 Unfortunately, on certain older platforms, the debug info doesn't
102 indicate reliably how each function was defined. A function type's
103 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
104 defined in prototype style. When calling a function whose
105 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults this flag to decide
106 what to do.
107
108 For modern targets, it is proper to assume that, if the prototype
109 flag is clear, that can be trusted: `float' arguments should be
110 promoted to `double'. For some older targets, if the prototype
111 flag is clear, that doesn't tell us anything. The default is to
112 trust the debug information; the user can override this behavior
113 with "set coerce-float-to-double 0". */
114
115 static int coerce_float_to_double;
116 \f
117
118 /* Find the address of function name NAME in the inferior. */
119
120 struct value *
121 find_function_in_inferior (const char *name)
122 {
123 register struct symbol *sym;
124 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
125 if (sym != NULL)
126 {
127 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
128 {
129 error ("\"%s\" exists in this program but is not a function.",
130 name);
131 }
132 return value_of_variable (sym, NULL);
133 }
134 else
135 {
136 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
137 if (msymbol != NULL)
138 {
139 struct type *type;
140 CORE_ADDR maddr;
141 type = lookup_pointer_type (builtin_type_char);
142 type = lookup_function_type (type);
143 type = lookup_pointer_type (type);
144 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
145 return value_from_pointer (type, maddr);
146 }
147 else
148 {
149 if (!target_has_execution)
150 error ("evaluation of this expression requires the target program to be active");
151 else
152 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
153 }
154 }
155 }
156
157 /* Allocate NBYTES of space in the inferior using the inferior's malloc
158 and return a value that is a pointer to the allocated space. */
159
160 struct value *
161 value_allocate_space_in_inferior (int len)
162 {
163 struct value *blocklen;
164 struct value *val = find_function_in_inferior (NAME_OF_MALLOC);
165
166 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
167 val = call_function_by_hand (val, 1, &blocklen);
168 if (value_logical_not (val))
169 {
170 if (!target_has_execution)
171 error ("No memory available to program now: you need to start the target first");
172 else
173 error ("No memory available to program: call to malloc failed");
174 }
175 return val;
176 }
177
178 static CORE_ADDR
179 allocate_space_in_inferior (int len)
180 {
181 return value_as_long (value_allocate_space_in_inferior (len));
182 }
183
184 /* Cast value ARG2 to type TYPE and return as a value.
185 More general than a C cast: accepts any two types of the same length,
186 and if ARG2 is an lvalue it can be cast into anything at all. */
187 /* In C++, casts may change pointer or object representations. */
188
189 struct value *
190 value_cast (struct type *type, struct value *arg2)
191 {
192 register enum type_code code1;
193 register enum type_code code2;
194 register int scalar;
195 struct type *type2;
196
197 int convert_to_boolean = 0;
198
199 if (VALUE_TYPE (arg2) == type)
200 return arg2;
201
202 CHECK_TYPEDEF (type);
203 code1 = TYPE_CODE (type);
204 COERCE_REF (arg2);
205 type2 = check_typedef (VALUE_TYPE (arg2));
206
207 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
208 is treated like a cast to (TYPE [N])OBJECT,
209 where N is sizeof(OBJECT)/sizeof(TYPE). */
210 if (code1 == TYPE_CODE_ARRAY)
211 {
212 struct type *element_type = TYPE_TARGET_TYPE (type);
213 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
214 if (element_length > 0
215 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
216 {
217 struct type *range_type = TYPE_INDEX_TYPE (type);
218 int val_length = TYPE_LENGTH (type2);
219 LONGEST low_bound, high_bound, new_length;
220 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
221 low_bound = 0, high_bound = 0;
222 new_length = val_length / element_length;
223 if (val_length % element_length != 0)
224 warning ("array element type size does not divide object size in cast");
225 /* FIXME-type-allocation: need a way to free this type when we are
226 done with it. */
227 range_type = create_range_type ((struct type *) NULL,
228 TYPE_TARGET_TYPE (range_type),
229 low_bound,
230 new_length + low_bound - 1);
231 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
232 element_type, range_type);
233 return arg2;
234 }
235 }
236
237 if (current_language->c_style_arrays
238 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
239 arg2 = value_coerce_array (arg2);
240
241 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
242 arg2 = value_coerce_function (arg2);
243
244 type2 = check_typedef (VALUE_TYPE (arg2));
245 COERCE_VARYING_ARRAY (arg2, type2);
246 code2 = TYPE_CODE (type2);
247
248 if (code1 == TYPE_CODE_COMPLEX)
249 return cast_into_complex (type, arg2);
250 if (code1 == TYPE_CODE_BOOL)
251 {
252 code1 = TYPE_CODE_INT;
253 convert_to_boolean = 1;
254 }
255 if (code1 == TYPE_CODE_CHAR)
256 code1 = TYPE_CODE_INT;
257 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
258 code2 = TYPE_CODE_INT;
259
260 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
261 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
262
263 if (code1 == TYPE_CODE_STRUCT
264 && code2 == TYPE_CODE_STRUCT
265 && TYPE_NAME (type) != 0)
266 {
267 /* Look in the type of the source to see if it contains the
268 type of the target as a superclass. If so, we'll need to
269 offset the object in addition to changing its type. */
270 struct value *v = search_struct_field (type_name_no_tag (type),
271 arg2, 0, type2, 1);
272 if (v)
273 {
274 VALUE_TYPE (v) = type;
275 return v;
276 }
277 }
278 if (code1 == TYPE_CODE_FLT && scalar)
279 return value_from_double (type, value_as_double (arg2));
280 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
281 || code1 == TYPE_CODE_RANGE)
282 && (scalar || code2 == TYPE_CODE_PTR))
283 {
284 LONGEST longest;
285
286 if (hp_som_som_object_present && /* if target compiled by HP aCC */
287 (code2 == TYPE_CODE_PTR))
288 {
289 unsigned int *ptr;
290 struct value *retvalp;
291
292 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
293 {
294 /* With HP aCC, pointers to data members have a bias */
295 case TYPE_CODE_MEMBER:
296 retvalp = value_from_longest (type, value_as_long (arg2));
297 /* force evaluation */
298 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
299 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
300 return retvalp;
301
302 /* While pointers to methods don't really point to a function */
303 case TYPE_CODE_METHOD:
304 error ("Pointers to methods not supported with HP aCC");
305
306 default:
307 break; /* fall out and go to normal handling */
308 }
309 }
310
311 /* When we cast pointers to integers, we mustn't use
312 POINTER_TO_ADDRESS to find the address the pointer
313 represents, as value_as_long would. GDB should evaluate
314 expressions just as the compiler would --- and the compiler
315 sees a cast as a simple reinterpretation of the pointer's
316 bits. */
317 if (code2 == TYPE_CODE_PTR)
318 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
319 TYPE_LENGTH (type2));
320 else
321 longest = value_as_long (arg2);
322 return value_from_longest (type, convert_to_boolean ?
323 (LONGEST) (longest ? 1 : 0) : longest);
324 }
325 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
326 code2 == TYPE_CODE_ENUM ||
327 code2 == TYPE_CODE_RANGE))
328 {
329 /* TYPE_LENGTH (type) is the length of a pointer, but we really
330 want the length of an address! -- we are really dealing with
331 addresses (i.e., gdb representations) not pointers (i.e.,
332 target representations) here.
333
334 This allows things like "print *(int *)0x01000234" to work
335 without printing a misleading message -- which would
336 otherwise occur when dealing with a target having two byte
337 pointers and four byte addresses. */
338
339 int addr_bit = TARGET_ADDR_BIT;
340
341 LONGEST longest = value_as_long (arg2);
342 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
343 {
344 if (longest >= ((LONGEST) 1 << addr_bit)
345 || longest <= -((LONGEST) 1 << addr_bit))
346 warning ("value truncated");
347 }
348 return value_from_longest (type, longest);
349 }
350 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
351 {
352 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
353 {
354 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
355 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
356 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
357 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
358 && !value_logical_not (arg2))
359 {
360 struct value *v;
361
362 /* Look in the type of the source to see if it contains the
363 type of the target as a superclass. If so, we'll need to
364 offset the pointer rather than just change its type. */
365 if (TYPE_NAME (t1) != NULL)
366 {
367 v = search_struct_field (type_name_no_tag (t1),
368 value_ind (arg2), 0, t2, 1);
369 if (v)
370 {
371 v = value_addr (v);
372 VALUE_TYPE (v) = type;
373 return v;
374 }
375 }
376
377 /* Look in the type of the target to see if it contains the
378 type of the source as a superclass. If so, we'll need to
379 offset the pointer rather than just change its type.
380 FIXME: This fails silently with virtual inheritance. */
381 if (TYPE_NAME (t2) != NULL)
382 {
383 v = search_struct_field (type_name_no_tag (t2),
384 value_zero (t1, not_lval), 0, t1, 1);
385 if (v)
386 {
387 CORE_ADDR addr2 = value_as_address (arg2);
388 addr2 -= (VALUE_ADDRESS (v)
389 + VALUE_OFFSET (v)
390 + VALUE_EMBEDDED_OFFSET (v));
391 return value_from_pointer (type, addr2);
392 }
393 }
394 }
395 /* No superclass found, just fall through to change ptr type. */
396 }
397 VALUE_TYPE (arg2) = type;
398 arg2 = value_change_enclosing_type (arg2, type);
399 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
400 return arg2;
401 }
402 else if (VALUE_LVAL (arg2) == lval_memory)
403 {
404 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
405 VALUE_BFD_SECTION (arg2));
406 }
407 else if (code1 == TYPE_CODE_VOID)
408 {
409 return value_zero (builtin_type_void, not_lval);
410 }
411 else
412 {
413 error ("Invalid cast.");
414 return 0;
415 }
416 }
417
418 /* Create a value of type TYPE that is zero, and return it. */
419
420 struct value *
421 value_zero (struct type *type, enum lval_type lv)
422 {
423 struct value *val = allocate_value (type);
424
425 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
426 VALUE_LVAL (val) = lv;
427
428 return val;
429 }
430
431 /* Return a value with type TYPE located at ADDR.
432
433 Call value_at only if the data needs to be fetched immediately;
434 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
435 value_at_lazy instead. value_at_lazy simply records the address of
436 the data and sets the lazy-evaluation-required flag. The lazy flag
437 is tested in the VALUE_CONTENTS macro, which is used if and when
438 the contents are actually required.
439
440 Note: value_at does *NOT* handle embedded offsets; perform such
441 adjustments before or after calling it. */
442
443 struct value *
444 value_at (struct type *type, CORE_ADDR addr, asection *sect)
445 {
446 struct value *val;
447
448 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
449 error ("Attempt to dereference a generic pointer.");
450
451 val = allocate_value (type);
452
453 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
454
455 VALUE_LVAL (val) = lval_memory;
456 VALUE_ADDRESS (val) = addr;
457 VALUE_BFD_SECTION (val) = sect;
458
459 return val;
460 }
461
462 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
463
464 struct value *
465 value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
466 {
467 struct value *val;
468
469 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
470 error ("Attempt to dereference a generic pointer.");
471
472 val = allocate_value (type);
473
474 VALUE_LVAL (val) = lval_memory;
475 VALUE_ADDRESS (val) = addr;
476 VALUE_LAZY (val) = 1;
477 VALUE_BFD_SECTION (val) = sect;
478
479 return val;
480 }
481
482 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
483 if the current data for a variable needs to be loaded into
484 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
485 clears the lazy flag to indicate that the data in the buffer is valid.
486
487 If the value is zero-length, we avoid calling read_memory, which would
488 abort. We mark the value as fetched anyway -- all 0 bytes of it.
489
490 This function returns a value because it is used in the VALUE_CONTENTS
491 macro as part of an expression, where a void would not work. The
492 value is ignored. */
493
494 int
495 value_fetch_lazy (struct value *val)
496 {
497 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
498 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
499
500 struct type *type = VALUE_TYPE (val);
501 if (length)
502 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
503
504 VALUE_LAZY (val) = 0;
505 return 0;
506 }
507
508
509 /* Store the contents of FROMVAL into the location of TOVAL.
510 Return a new value with the location of TOVAL and contents of FROMVAL. */
511
512 struct value *
513 value_assign (struct value *toval, struct value *fromval)
514 {
515 register struct type *type;
516 struct value *val;
517 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
518 int use_buffer = 0;
519 struct frame_id old_frame;
520
521 if (!toval->modifiable)
522 error ("Left operand of assignment is not a modifiable lvalue.");
523
524 COERCE_REF (toval);
525
526 type = VALUE_TYPE (toval);
527 if (VALUE_LVAL (toval) != lval_internalvar)
528 fromval = value_cast (type, fromval);
529 else
530 COERCE_ARRAY (fromval);
531 CHECK_TYPEDEF (type);
532
533 /* If TOVAL is a special machine register requiring conversion
534 of program values to a special raw format,
535 convert FROMVAL's contents now, with result in `raw_buffer',
536 and set USE_BUFFER to the number of bytes to write. */
537
538 if (VALUE_REGNO (toval) >= 0)
539 {
540 int regno = VALUE_REGNO (toval);
541 if (CONVERT_REGISTER_P (regno))
542 {
543 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
544 VALUE_TO_REGISTER (fromtype, regno, VALUE_CONTENTS (fromval), raw_buffer);
545 use_buffer = REGISTER_RAW_SIZE (regno);
546 }
547 }
548
549 /* Since modifying a register can trash the frame chain, and modifying memory
550 can trash the frame cache, we save the old frame and then restore the new
551 frame afterwards. */
552 old_frame = get_frame_id (deprecated_selected_frame);
553
554 switch (VALUE_LVAL (toval))
555 {
556 case lval_internalvar:
557 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
558 val = value_copy (VALUE_INTERNALVAR (toval)->value);
559 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
560 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
561 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
562 return val;
563
564 case lval_internalvar_component:
565 set_internalvar_component (VALUE_INTERNALVAR (toval),
566 VALUE_OFFSET (toval),
567 VALUE_BITPOS (toval),
568 VALUE_BITSIZE (toval),
569 fromval);
570 break;
571
572 case lval_memory:
573 {
574 char *dest_buffer;
575 CORE_ADDR changed_addr;
576 int changed_len;
577
578 if (VALUE_BITSIZE (toval))
579 {
580 char buffer[sizeof (LONGEST)];
581 /* We assume that the argument to read_memory is in units of
582 host chars. FIXME: Is that correct? */
583 changed_len = (VALUE_BITPOS (toval)
584 + VALUE_BITSIZE (toval)
585 + HOST_CHAR_BIT - 1)
586 / HOST_CHAR_BIT;
587
588 if (changed_len > (int) sizeof (LONGEST))
589 error ("Can't handle bitfields which don't fit in a %d bit word.",
590 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
591
592 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
593 buffer, changed_len);
594 modify_field (buffer, value_as_long (fromval),
595 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
596 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
597 dest_buffer = buffer;
598 }
599 else if (use_buffer)
600 {
601 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
602 changed_len = use_buffer;
603 dest_buffer = raw_buffer;
604 }
605 else
606 {
607 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
608 changed_len = TYPE_LENGTH (type);
609 dest_buffer = VALUE_CONTENTS (fromval);
610 }
611
612 write_memory (changed_addr, dest_buffer, changed_len);
613 if (memory_changed_hook)
614 memory_changed_hook (changed_addr, changed_len);
615 target_changed_event ();
616 }
617 break;
618
619 case lval_reg_frame_relative:
620 case lval_register:
621 {
622 /* value is stored in a series of registers in the frame
623 specified by the structure. Copy that value out, modify
624 it, and copy it back in. */
625 int amount_copied;
626 int amount_to_copy;
627 char *buffer;
628 int value_reg;
629 int reg_offset;
630 int byte_offset;
631 int regno;
632 struct frame_info *frame;
633
634 /* Figure out which frame this is in currently. */
635 if (VALUE_LVAL (toval) == lval_register)
636 {
637 frame = get_current_frame ();
638 value_reg = VALUE_REGNO (toval);
639 }
640 else
641 {
642 for (frame = get_current_frame ();
643 frame && get_frame_base (frame) != VALUE_FRAME (toval);
644 frame = get_prev_frame (frame))
645 ;
646 value_reg = VALUE_FRAME_REGNUM (toval);
647 }
648
649 if (!frame)
650 error ("Value being assigned to is no longer active.");
651
652 /* Locate the first register that falls in the value that
653 needs to be transfered. Compute the offset of the value in
654 that register. */
655 {
656 int offset;
657 for (reg_offset = value_reg, offset = 0;
658 offset + REGISTER_RAW_SIZE (reg_offset) <= VALUE_OFFSET (toval);
659 reg_offset++);
660 byte_offset = VALUE_OFFSET (toval) - offset;
661 }
662
663 /* Compute the number of register aligned values that need to
664 be copied. */
665 if (VALUE_BITSIZE (toval))
666 amount_to_copy = byte_offset + 1;
667 else
668 amount_to_copy = byte_offset + TYPE_LENGTH (type);
669
670 /* And a bounce buffer. Be slightly over generous. */
671 buffer = (char *) alloca (amount_to_copy
672 + MAX_REGISTER_RAW_SIZE);
673
674 /* Copy it in. */
675 for (regno = reg_offset, amount_copied = 0;
676 amount_copied < amount_to_copy;
677 amount_copied += REGISTER_RAW_SIZE (regno), regno++)
678 {
679 frame_register_read (frame, regno, buffer + amount_copied);
680 }
681
682 /* Modify what needs to be modified. */
683 if (VALUE_BITSIZE (toval))
684 {
685 modify_field (buffer + byte_offset,
686 value_as_long (fromval),
687 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
688 }
689 else if (use_buffer)
690 {
691 memcpy (buffer + VALUE_OFFSET (toval), raw_buffer, use_buffer);
692 }
693 else
694 {
695 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
696 TYPE_LENGTH (type));
697 /* Do any conversion necessary when storing this type to
698 more than one register. */
699 #ifdef REGISTER_CONVERT_FROM_TYPE
700 REGISTER_CONVERT_FROM_TYPE (value_reg, type,
701 (buffer + byte_offset));
702 #endif
703 }
704
705 /* Copy it out. */
706 for (regno = reg_offset, amount_copied = 0;
707 amount_copied < amount_to_copy;
708 amount_copied += REGISTER_RAW_SIZE (regno), regno++)
709 {
710 enum lval_type lval;
711 CORE_ADDR addr;
712 int optim;
713 int realnum;
714
715 /* Just find out where to put it. */
716 frame_register (frame, regno, &optim, &lval, &addr, &realnum,
717 NULL);
718
719 if (optim)
720 error ("Attempt to assign to a value that was optimized out.");
721 if (lval == lval_memory)
722 write_memory (addr, buffer + amount_copied,
723 REGISTER_RAW_SIZE (regno));
724 else if (lval == lval_register)
725 regcache_cooked_write (current_regcache, realnum,
726 (buffer + amount_copied));
727 else
728 error ("Attempt to assign to an unmodifiable value.");
729 }
730
731 if (register_changed_hook)
732 register_changed_hook (-1);
733 target_changed_event ();
734
735 }
736 break;
737
738
739 default:
740 error ("Left operand of assignment is not an lvalue.");
741 }
742
743 /* Assigning to the stack pointer, frame pointer, and other
744 (architecture and calling convention specific) registers may
745 cause the frame cache to be out of date. Assigning to memory
746 also can. We just do this on all assignments to registers or
747 memory, for simplicity's sake; I doubt the slowdown matters. */
748 switch (VALUE_LVAL (toval))
749 {
750 case lval_memory:
751 case lval_register:
752 case lval_reg_frame_relative:
753
754 reinit_frame_cache ();
755
756 /* Having destoroyed the frame cache, restore the selected frame. */
757
758 /* FIXME: cagney/2002-11-02: There has to be a better way of
759 doing this. Instead of constantly saving/restoring the
760 frame. Why not create a get_selected_frame() function that,
761 having saved the selected frame's ID can automatically
762 re-find the previously selected frame automatically. */
763
764 {
765 struct frame_info *fi = frame_find_by_id (old_frame);
766 if (fi != NULL)
767 select_frame (fi);
768 }
769
770 break;
771 default:
772 break;
773 }
774
775 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
776 If the field is signed, and is negative, then sign extend. */
777 if ((VALUE_BITSIZE (toval) > 0)
778 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
779 {
780 LONGEST fieldval = value_as_long (fromval);
781 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
782
783 fieldval &= valmask;
784 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
785 fieldval |= ~valmask;
786
787 fromval = value_from_longest (type, fieldval);
788 }
789
790 val = value_copy (toval);
791 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
792 TYPE_LENGTH (type));
793 VALUE_TYPE (val) = type;
794 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
795 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
796 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
797
798 return val;
799 }
800
801 /* Extend a value VAL to COUNT repetitions of its type. */
802
803 struct value *
804 value_repeat (struct value *arg1, int count)
805 {
806 struct value *val;
807
808 if (VALUE_LVAL (arg1) != lval_memory)
809 error ("Only values in memory can be extended with '@'.");
810 if (count < 1)
811 error ("Invalid number %d of repetitions.", count);
812
813 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
814
815 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
816 VALUE_CONTENTS_ALL_RAW (val),
817 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
818 VALUE_LVAL (val) = lval_memory;
819 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
820
821 return val;
822 }
823
824 struct value *
825 value_of_variable (struct symbol *var, struct block *b)
826 {
827 struct value *val;
828 struct frame_info *frame = NULL;
829
830 if (!b)
831 frame = NULL; /* Use selected frame. */
832 else if (symbol_read_needs_frame (var))
833 {
834 frame = block_innermost_frame (b);
835 if (!frame)
836 {
837 if (BLOCK_FUNCTION (b)
838 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
839 error ("No frame is currently executing in block %s.",
840 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
841 else
842 error ("No frame is currently executing in specified block");
843 }
844 }
845
846 val = read_var_value (var, frame);
847 if (!val)
848 error ("Address of symbol \"%s\" is unknown.", SYMBOL_PRINT_NAME (var));
849
850 return val;
851 }
852
853 /* Given a value which is an array, return a value which is a pointer to its
854 first element, regardless of whether or not the array has a nonzero lower
855 bound.
856
857 FIXME: A previous comment here indicated that this routine should be
858 substracting the array's lower bound. It's not clear to me that this
859 is correct. Given an array subscripting operation, it would certainly
860 work to do the adjustment here, essentially computing:
861
862 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
863
864 However I believe a more appropriate and logical place to account for
865 the lower bound is to do so in value_subscript, essentially computing:
866
867 (&array[0] + ((index - lowerbound) * sizeof array[0]))
868
869 As further evidence consider what would happen with operations other
870 than array subscripting, where the caller would get back a value that
871 had an address somewhere before the actual first element of the array,
872 and the information about the lower bound would be lost because of
873 the coercion to pointer type.
874 */
875
876 struct value *
877 value_coerce_array (struct value *arg1)
878 {
879 register struct type *type = check_typedef (VALUE_TYPE (arg1));
880
881 if (VALUE_LVAL (arg1) != lval_memory)
882 error ("Attempt to take address of value not located in memory.");
883
884 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
885 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
886 }
887
888 /* Given a value which is a function, return a value which is a pointer
889 to it. */
890
891 struct value *
892 value_coerce_function (struct value *arg1)
893 {
894 struct value *retval;
895
896 if (VALUE_LVAL (arg1) != lval_memory)
897 error ("Attempt to take address of value not located in memory.");
898
899 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
900 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
901 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
902 return retval;
903 }
904
905 /* Return a pointer value for the object for which ARG1 is the contents. */
906
907 struct value *
908 value_addr (struct value *arg1)
909 {
910 struct value *arg2;
911
912 struct type *type = check_typedef (VALUE_TYPE (arg1));
913 if (TYPE_CODE (type) == TYPE_CODE_REF)
914 {
915 /* Copy the value, but change the type from (T&) to (T*).
916 We keep the same location information, which is efficient,
917 and allows &(&X) to get the location containing the reference. */
918 arg2 = value_copy (arg1);
919 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
920 return arg2;
921 }
922 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
923 return value_coerce_function (arg1);
924
925 if (VALUE_LVAL (arg1) != lval_memory)
926 error ("Attempt to take address of value not located in memory.");
927
928 /* Get target memory address */
929 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
930 (VALUE_ADDRESS (arg1)
931 + VALUE_OFFSET (arg1)
932 + VALUE_EMBEDDED_OFFSET (arg1)));
933
934 /* This may be a pointer to a base subobject; so remember the
935 full derived object's type ... */
936 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
937 /* ... and also the relative position of the subobject in the full object */
938 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
939 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
940 return arg2;
941 }
942
943 /* Given a value of a pointer type, apply the C unary * operator to it. */
944
945 struct value *
946 value_ind (struct value *arg1)
947 {
948 struct type *base_type;
949 struct value *arg2;
950
951 COERCE_ARRAY (arg1);
952
953 base_type = check_typedef (VALUE_TYPE (arg1));
954
955 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
956 error ("not implemented: member types in value_ind");
957
958 /* Allow * on an integer so we can cast it to whatever we want.
959 This returns an int, which seems like the most C-like thing
960 to do. "long long" variables are rare enough that
961 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
962 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
963 return value_at_lazy (builtin_type_int,
964 (CORE_ADDR) value_as_long (arg1),
965 VALUE_BFD_SECTION (arg1));
966 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
967 {
968 struct type *enc_type;
969 /* We may be pointing to something embedded in a larger object */
970 /* Get the real type of the enclosing object */
971 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
972 enc_type = TYPE_TARGET_TYPE (enc_type);
973 /* Retrieve the enclosing object pointed to */
974 arg2 = value_at_lazy (enc_type,
975 value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
976 VALUE_BFD_SECTION (arg1));
977 /* Re-adjust type */
978 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
979 /* Add embedding info */
980 arg2 = value_change_enclosing_type (arg2, enc_type);
981 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
982
983 /* We may be pointing to an object of some derived type */
984 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
985 return arg2;
986 }
987
988 error ("Attempt to take contents of a non-pointer value.");
989 return 0; /* For lint -- never reached */
990 }
991 \f
992 /* Pushing small parts of stack frames. */
993
994 /* Push one word (the size of object that a register holds). */
995
996 CORE_ADDR
997 push_word (CORE_ADDR sp, ULONGEST word)
998 {
999 register int len = REGISTER_SIZE;
1000 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
1001
1002 store_unsigned_integer (buffer, len, word);
1003 if (INNER_THAN (1, 2))
1004 {
1005 /* stack grows downward */
1006 sp -= len;
1007 write_memory (sp, buffer, len);
1008 }
1009 else
1010 {
1011 /* stack grows upward */
1012 write_memory (sp, buffer, len);
1013 sp += len;
1014 }
1015
1016 return sp;
1017 }
1018
1019 /* Push LEN bytes with data at BUFFER. */
1020
1021 CORE_ADDR
1022 push_bytes (CORE_ADDR sp, char *buffer, int len)
1023 {
1024 if (INNER_THAN (1, 2))
1025 {
1026 /* stack grows downward */
1027 sp -= len;
1028 write_memory (sp, buffer, len);
1029 }
1030 else
1031 {
1032 /* stack grows upward */
1033 write_memory (sp, buffer, len);
1034 sp += len;
1035 }
1036
1037 return sp;
1038 }
1039
1040 #ifndef PARM_BOUNDARY
1041 #define PARM_BOUNDARY (0)
1042 #endif
1043
1044 /* Push onto the stack the specified value VALUE. Pad it correctly for
1045 it to be an argument to a function. */
1046
1047 static CORE_ADDR
1048 value_push (register CORE_ADDR sp, struct value *arg)
1049 {
1050 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1051 register int container_len = len;
1052 register int offset;
1053
1054 /* How big is the container we're going to put this value in? */
1055 if (PARM_BOUNDARY)
1056 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1057 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1058
1059 /* Are we going to put it at the high or low end of the container? */
1060 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1061 offset = container_len - len;
1062 else
1063 offset = 0;
1064
1065 if (INNER_THAN (1, 2))
1066 {
1067 /* stack grows downward */
1068 sp -= container_len;
1069 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1070 }
1071 else
1072 {
1073 /* stack grows upward */
1074 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1075 sp += container_len;
1076 }
1077
1078 return sp;
1079 }
1080
1081 CORE_ADDR
1082 legacy_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1083 int struct_return, CORE_ADDR struct_addr)
1084 {
1085 /* ASSERT ( !struct_return); */
1086 int i;
1087 for (i = nargs - 1; i >= 0; i--)
1088 sp = value_push (sp, args[i]);
1089 return sp;
1090 }
1091
1092 /* Perform the standard coercions that are specified
1093 for arguments to be passed to C functions.
1094
1095 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1096 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1097
1098 static struct value *
1099 value_arg_coerce (struct value *arg, struct type *param_type,
1100 int is_prototyped)
1101 {
1102 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1103 register struct type *type
1104 = param_type ? check_typedef (param_type) : arg_type;
1105
1106 switch (TYPE_CODE (type))
1107 {
1108 case TYPE_CODE_REF:
1109 if (TYPE_CODE (arg_type) != TYPE_CODE_REF
1110 && TYPE_CODE (arg_type) != TYPE_CODE_PTR)
1111 {
1112 arg = value_addr (arg);
1113 VALUE_TYPE (arg) = param_type;
1114 return arg;
1115 }
1116 break;
1117 case TYPE_CODE_INT:
1118 case TYPE_CODE_CHAR:
1119 case TYPE_CODE_BOOL:
1120 case TYPE_CODE_ENUM:
1121 /* If we don't have a prototype, coerce to integer type if necessary. */
1122 if (!is_prototyped)
1123 {
1124 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1125 type = builtin_type_int;
1126 }
1127 /* Currently all target ABIs require at least the width of an integer
1128 type for an argument. We may have to conditionalize the following
1129 type coercion for future targets. */
1130 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1131 type = builtin_type_int;
1132 break;
1133 case TYPE_CODE_FLT:
1134 if (!is_prototyped && coerce_float_to_double)
1135 {
1136 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1137 type = builtin_type_double;
1138 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1139 type = builtin_type_long_double;
1140 }
1141 break;
1142 case TYPE_CODE_FUNC:
1143 type = lookup_pointer_type (type);
1144 break;
1145 case TYPE_CODE_ARRAY:
1146 /* Arrays are coerced to pointers to their first element, unless
1147 they are vectors, in which case we want to leave them alone,
1148 because they are passed by value. */
1149 if (current_language->c_style_arrays)
1150 if (!TYPE_VECTOR (type))
1151 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1152 break;
1153 case TYPE_CODE_UNDEF:
1154 case TYPE_CODE_PTR:
1155 case TYPE_CODE_STRUCT:
1156 case TYPE_CODE_UNION:
1157 case TYPE_CODE_VOID:
1158 case TYPE_CODE_SET:
1159 case TYPE_CODE_RANGE:
1160 case TYPE_CODE_STRING:
1161 case TYPE_CODE_BITSTRING:
1162 case TYPE_CODE_ERROR:
1163 case TYPE_CODE_MEMBER:
1164 case TYPE_CODE_METHOD:
1165 case TYPE_CODE_COMPLEX:
1166 default:
1167 break;
1168 }
1169
1170 return value_cast (type, arg);
1171 }
1172
1173 /* Determine a function's address and its return type from its value.
1174 Calls error() if the function is not valid for calling. */
1175
1176 static CORE_ADDR
1177 find_function_addr (struct value *function, struct type **retval_type)
1178 {
1179 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1180 register enum type_code code = TYPE_CODE (ftype);
1181 struct type *value_type;
1182 CORE_ADDR funaddr;
1183
1184 /* If it's a member function, just look at the function
1185 part of it. */
1186
1187 /* Determine address to call. */
1188 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1189 {
1190 funaddr = VALUE_ADDRESS (function);
1191 value_type = TYPE_TARGET_TYPE (ftype);
1192 }
1193 else if (code == TYPE_CODE_PTR)
1194 {
1195 funaddr = value_as_address (function);
1196 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1197 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1198 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1199 {
1200 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1201 value_type = TYPE_TARGET_TYPE (ftype);
1202 }
1203 else
1204 value_type = builtin_type_int;
1205 }
1206 else if (code == TYPE_CODE_INT)
1207 {
1208 /* Handle the case of functions lacking debugging info.
1209 Their values are characters since their addresses are char */
1210 if (TYPE_LENGTH (ftype) == 1)
1211 funaddr = value_as_address (value_addr (function));
1212 else
1213 /* Handle integer used as address of a function. */
1214 funaddr = (CORE_ADDR) value_as_long (function);
1215
1216 value_type = builtin_type_int;
1217 }
1218 else
1219 error ("Invalid data type for function to be called.");
1220
1221 *retval_type = value_type;
1222 return funaddr;
1223 }
1224
1225 /* All this stuff with a dummy frame may seem unnecessarily complicated
1226 (why not just save registers in GDB?). The purpose of pushing a dummy
1227 frame which looks just like a real frame is so that if you call a
1228 function and then hit a breakpoint (get a signal, etc), "backtrace"
1229 will look right. Whether the backtrace needs to actually show the
1230 stack at the time the inferior function was called is debatable, but
1231 it certainly needs to not display garbage. So if you are contemplating
1232 making dummy frames be different from normal frames, consider that. */
1233
1234 /* Perform a function call in the inferior.
1235 ARGS is a vector of values of arguments (NARGS of them).
1236 FUNCTION is a value, the function to be called.
1237 Returns a value representing what the function returned.
1238 May fail to return, if a breakpoint or signal is hit
1239 during the execution of the function.
1240
1241 ARGS is modified to contain coerced values. */
1242
1243 static struct value *
1244 hand_function_call (struct value *function, int nargs, struct value **args)
1245 {
1246 register CORE_ADDR sp;
1247 register int i;
1248 int rc;
1249 CORE_ADDR start_sp;
1250 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1251 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1252 and remove any extra bytes which might exist because ULONGEST is
1253 bigger than REGISTER_SIZE.
1254
1255 NOTE: This is pretty wierd, as the call dummy is actually a
1256 sequence of instructions. But CISC machines will have
1257 to pack the instructions into REGISTER_SIZE units (and
1258 so will RISC machines for which INSTRUCTION_SIZE is not
1259 REGISTER_SIZE).
1260
1261 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1262 target byte order. */
1263
1264 static ULONGEST *dummy;
1265 int sizeof_dummy1;
1266 char *dummy1;
1267 CORE_ADDR dummy_addr;
1268 CORE_ADDR old_sp;
1269 struct type *value_type;
1270 unsigned char struct_return;
1271 CORE_ADDR struct_addr = 0;
1272 struct regcache *retbuf;
1273 struct cleanup *retbuf_cleanup;
1274 struct inferior_status *inf_status;
1275 struct cleanup *inf_status_cleanup;
1276 CORE_ADDR funaddr;
1277 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1278 CORE_ADDR real_pc;
1279 struct type *param_type = NULL;
1280 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1281 int n_method_args = 0;
1282
1283 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1284 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1285 dummy1 = alloca (sizeof_dummy1);
1286 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1287
1288 if (!target_has_execution)
1289 noprocess ();
1290
1291 /* Create a cleanup chain that contains the retbuf (buffer
1292 containing the register values). This chain is create BEFORE the
1293 inf_status chain so that the inferior status can cleaned up
1294 (restored or discarded) without having the retbuf freed. */
1295 retbuf = regcache_xmalloc (current_gdbarch);
1296 retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
1297
1298 /* A cleanup for the inferior status. Create this AFTER the retbuf
1299 so that this can be discarded or applied without interfering with
1300 the regbuf. */
1301 inf_status = save_inferior_status (1);
1302 inf_status_cleanup = make_cleanup_restore_inferior_status (inf_status);
1303
1304 if (DEPRECATED_PUSH_DUMMY_FRAME_P ())
1305 {
1306 /* DEPRECATED_PUSH_DUMMY_FRAME is responsible for saving the
1307 inferior registers (and frame_pop() for restoring them). (At
1308 least on most machines) they are saved on the stack in the
1309 inferior. */
1310 DEPRECATED_PUSH_DUMMY_FRAME;
1311 }
1312 else
1313 {
1314 /* FIXME: cagney/2003-02-26: Step zero of this little tinker is
1315 to extract the generic dummy frame code from the architecture
1316 vector. Hence this direct call.
1317
1318 A follow-on change is to modify this interface so that it takes
1319 thread OR frame OR tpid as a parameter, and returns a dummy
1320 frame handle. The handle can then be used further down as a
1321 parameter SAVE_DUMMY_FRAME_TOS. Hmm, thinking about it, since
1322 everything is ment to be using generic dummy frames, why not
1323 even use some of the dummy frame code to here - do a regcache
1324 dup and then pass the duped regcache, along with all the other
1325 stuff, at one single point.
1326
1327 In fact, you can even save the structure's return address in the
1328 dummy frame and fix one of those nasty lost struct return edge
1329 conditions. */
1330 generic_push_dummy_frame ();
1331 }
1332
1333 old_sp = read_sp ();
1334
1335 /* Ensure that the initial SP is correctly aligned. */
1336 if (gdbarch_frame_align_p (current_gdbarch))
1337 {
1338 /* NOTE: cagney/2002-09-18:
1339
1340 On a RISC architecture, a void parameterless generic dummy
1341 frame (i.e., no parameters, no result) typically does not
1342 need to push anything the stack and hence can leave SP and
1343 FP. Similarly, a framelss (possibly leaf) function does not
1344 push anything on the stack and, hence, that too can leave FP
1345 and SP unchanged. As a consequence, a sequence of void
1346 parameterless generic dummy frame calls to frameless
1347 functions will create a sequence of effectively identical
1348 frames (SP, FP and TOS and PC the same). This, not
1349 suprisingly, results in what appears to be a stack in an
1350 infinite loop --- when GDB tries to find a generic dummy
1351 frame on the internal dummy frame stack, it will always find
1352 the first one.
1353
1354 To avoid this problem, the code below always grows the stack.
1355 That way, two dummy frames can never be identical. It does
1356 burn a few bytes of stack but that is a small price to pay
1357 :-). */
1358 sp = gdbarch_frame_align (current_gdbarch, old_sp);
1359 if (sp == old_sp)
1360 {
1361 if (INNER_THAN (1, 2))
1362 /* Stack grows down. */
1363 sp = gdbarch_frame_align (current_gdbarch, old_sp - 1);
1364 else
1365 /* Stack grows up. */
1366 sp = gdbarch_frame_align (current_gdbarch, old_sp + 1);
1367 }
1368 gdb_assert ((INNER_THAN (1, 2) && sp <= old_sp)
1369 || (INNER_THAN (2, 1) && sp >= old_sp));
1370 }
1371 else
1372 /* FIXME: cagney/2002-09-18: Hey, you loose! Who knows how badly
1373 aligned the SP is! Further, per comment above, if the generic
1374 dummy frame ends up empty (because nothing is pushed) GDB won't
1375 be able to correctly perform back traces. If a target is
1376 having trouble with backtraces, first thing to do is add
1377 FRAME_ALIGN() to its architecture vector. After that, try
1378 adding SAVE_DUMMY_FRAME_TOS() and modifying
1379 DEPRECATED_FRAME_CHAIN so that when the next outer frame is a
1380 generic dummy, it returns the current frame's base. */
1381 sp = old_sp;
1382
1383 if (INNER_THAN (1, 2))
1384 {
1385 /* Stack grows down */
1386 sp -= sizeof_dummy1;
1387 start_sp = sp;
1388 }
1389 else
1390 {
1391 /* Stack grows up */
1392 start_sp = sp;
1393 sp += sizeof_dummy1;
1394 }
1395
1396 /* NOTE: cagney/2002-09-10: Don't bother re-adjusting the stack
1397 after allocating space for the call dummy. A target can specify
1398 a SIZEOF_DUMMY1 (via SIZEOF_CALL_DUMMY_WORDS) such that all local
1399 alignment requirements are met. */
1400
1401 funaddr = find_function_addr (function, &value_type);
1402 CHECK_TYPEDEF (value_type);
1403
1404 {
1405 struct block *b = block_for_pc (funaddr);
1406 /* If compiled without -g, assume GCC 2. */
1407 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1408 }
1409
1410 /* Are we returning a value using a structure return or a normal
1411 value return? */
1412
1413 struct_return = using_struct_return (function, funaddr, value_type,
1414 using_gcc);
1415
1416 /* Create a call sequence customized for this function
1417 and the number of arguments for it. */
1418 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1419 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1420 REGISTER_SIZE,
1421 (ULONGEST) dummy[i]);
1422
1423 #ifdef GDB_TARGET_IS_HPPA
1424 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1425 value_type, using_gcc);
1426 #else
1427 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1428 value_type, using_gcc);
1429 real_pc = start_sp;
1430 #endif
1431
1432 switch (CALL_DUMMY_LOCATION)
1433 {
1434 case ON_STACK:
1435 dummy_addr = start_sp;
1436 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1437 if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES)
1438 generic_save_call_dummy_addr (start_sp, start_sp + sizeof_dummy1);
1439 break;
1440 case AT_ENTRY_POINT:
1441 real_pc = funaddr;
1442 dummy_addr = CALL_DUMMY_ADDRESS ();
1443 if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES)
1444 /* NOTE: cagney/2002-04-13: The entry point is going to be
1445 modified with a single breakpoint. */
1446 generic_save_call_dummy_addr (CALL_DUMMY_ADDRESS (),
1447 CALL_DUMMY_ADDRESS () + 1);
1448 break;
1449 default:
1450 internal_error (__FILE__, __LINE__, "bad switch");
1451 }
1452
1453 #ifdef lint
1454 sp = old_sp; /* It really is used, for some ifdef's... */
1455 #endif
1456
1457 if (nargs < TYPE_NFIELDS (ftype))
1458 error ("too few arguments in function call");
1459
1460 for (i = nargs - 1; i >= 0; i--)
1461 {
1462 int prototyped;
1463
1464 /* FIXME drow/2002-05-31: Should just always mark methods as
1465 prototyped. Can we respect TYPE_VARARGS? Probably not. */
1466 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1467 prototyped = 1;
1468 else
1469 prototyped = TYPE_PROTOTYPED (ftype);
1470
1471 if (i < TYPE_NFIELDS (ftype))
1472 args[i] = value_arg_coerce (args[i], TYPE_FIELD_TYPE (ftype, i),
1473 prototyped);
1474 else
1475 args[i] = value_arg_coerce (args[i], NULL, 0);
1476
1477 /*elz: this code is to handle the case in which the function to be called
1478 has a pointer to function as parameter and the corresponding actual argument
1479 is the address of a function and not a pointer to function variable.
1480 In aCC compiled code, the calls through pointers to functions (in the body
1481 of the function called by hand) are made via $$dyncall_external which
1482 requires some registers setting, this is taken care of if we call
1483 via a function pointer variable, but not via a function address.
1484 In cc this is not a problem. */
1485
1486 if (using_gcc == 0)
1487 if (param_type && TYPE_CODE (ftype) != TYPE_CODE_METHOD)
1488 /* if this parameter is a pointer to function */
1489 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1490 if (TYPE_CODE (TYPE_TARGET_TYPE (param_type)) == TYPE_CODE_FUNC)
1491 /* elz: FIXME here should go the test about the compiler used
1492 to compile the target. We want to issue the error
1493 message only if the compiler used was HP's aCC.
1494 If we used HP's cc, then there is no problem and no need
1495 to return at this point */
1496 if (using_gcc == 0) /* && compiler == aCC */
1497 /* go see if the actual parameter is a variable of type
1498 pointer to function or just a function */
1499 if (args[i]->lval == not_lval)
1500 {
1501 char *arg_name;
1502 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1503 error ("\
1504 You cannot use function <%s> as argument. \n\
1505 You must use a pointer to function type variable. Command ignored.", arg_name);
1506 }
1507 }
1508
1509 if (REG_STRUCT_HAS_ADDR_P ())
1510 {
1511 /* This is a machine like the sparc, where we may need to pass a
1512 pointer to the structure, not the structure itself. */
1513 for (i = nargs - 1; i >= 0; i--)
1514 {
1515 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1516 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1517 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1518 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1519 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1520 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1521 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1522 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1523 && TYPE_LENGTH (arg_type) > 8)
1524 )
1525 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1526 {
1527 CORE_ADDR addr;
1528 int len; /* = TYPE_LENGTH (arg_type); */
1529 int aligned_len;
1530 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1531 len = TYPE_LENGTH (arg_type);
1532
1533 if (STACK_ALIGN_P ())
1534 /* MVS 11/22/96: I think at least some of this
1535 stack_align code is really broken. Better to let
1536 PUSH_ARGUMENTS adjust the stack in a target-defined
1537 manner. */
1538 aligned_len = STACK_ALIGN (len);
1539 else
1540 aligned_len = len;
1541 if (INNER_THAN (1, 2))
1542 {
1543 /* stack grows downward */
1544 sp -= aligned_len;
1545 /* ... so the address of the thing we push is the
1546 stack pointer after we push it. */
1547 addr = sp;
1548 }
1549 else
1550 {
1551 /* The stack grows up, so the address of the thing
1552 we push is the stack pointer before we push it. */
1553 addr = sp;
1554 sp += aligned_len;
1555 }
1556 /* Push the structure. */
1557 write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
1558 /* The value we're going to pass is the address of the
1559 thing we just pushed. */
1560 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1561 (LONGEST) addr); */
1562 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1563 addr);
1564 }
1565 }
1566 }
1567
1568
1569 /* Reserve space for the return structure to be written on the
1570 stack, if necessary. Make certain that the value is correctly
1571 aligned. */
1572
1573 if (struct_return)
1574 {
1575 int len = TYPE_LENGTH (value_type);
1576 if (STACK_ALIGN_P ())
1577 /* NOTE: cagney/2003-03-22: Should rely on frame align, rather
1578 than stack align to force the alignment of the stack. */
1579 len = STACK_ALIGN (len);
1580 if (INNER_THAN (1, 2))
1581 {
1582 /* Stack grows downward. Align STRUCT_ADDR and SP after
1583 making space for the return value. */
1584 sp -= len;
1585 if (gdbarch_frame_align_p (current_gdbarch))
1586 sp = gdbarch_frame_align (current_gdbarch, sp);
1587 struct_addr = sp;
1588 }
1589 else
1590 {
1591 /* Stack grows upward. Align the frame, allocate space, and
1592 then again, re-align the frame??? */
1593 if (gdbarch_frame_align_p (current_gdbarch))
1594 sp = gdbarch_frame_align (current_gdbarch, sp);
1595 struct_addr = sp;
1596 sp += len;
1597 if (gdbarch_frame_align_p (current_gdbarch))
1598 sp = gdbarch_frame_align (current_gdbarch, sp);
1599 }
1600 }
1601
1602 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1603 on other architectures. This is because all the alignment is
1604 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1605 in hppa_push_arguments */
1606 /* NOTE: cagney/2003-03-24: The below code is very broken. Given an
1607 odd sized parameter the below will mis-align the stack. As was
1608 suggested back in '96, better to let PUSH_ARGUMENTS handle it. */
1609 if (DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED)
1610 {
1611 /* MVS 11/22/96: I think at least some of this stack_align code
1612 is really broken. Better to let push_dummy_call() adjust the
1613 stack in a target-defined manner. */
1614 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1615 {
1616 /* If stack grows down, we must leave a hole at the top. */
1617 int len = 0;
1618
1619 for (i = nargs - 1; i >= 0; i--)
1620 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1621 if (DEPRECATED_CALL_DUMMY_STACK_ADJUST_P ())
1622 len += DEPRECATED_CALL_DUMMY_STACK_ADJUST;
1623 sp -= STACK_ALIGN (len) - len;
1624 }
1625 }
1626
1627 /* Create the dummy stack frame. Pass in the call dummy address as,
1628 presumably, the ABI code knows where, in the call dummy, the
1629 return address should be pointed. */
1630 if (gdbarch_push_dummy_call_p (current_gdbarch))
1631 /* When there is no push_dummy_call method, should this code
1632 simply error out. That would the implementation of this method
1633 for all ABIs (which is probably a good thing). */
1634 sp = gdbarch_push_dummy_call (current_gdbarch, current_regcache,
1635 dummy_addr, nargs, args, sp, struct_return,
1636 struct_addr);
1637 else if (DEPRECATED_PUSH_ARGUMENTS_P ())
1638 /* Keep old targets working. */
1639 sp = DEPRECATED_PUSH_ARGUMENTS (nargs, args, sp, struct_return,
1640 struct_addr);
1641 else
1642 sp = legacy_push_arguments (nargs, args, sp, struct_return, struct_addr);
1643
1644 if (DEPRECATED_PUSH_RETURN_ADDRESS_P ())
1645 /* for targets that use no CALL_DUMMY */
1646 /* There are a number of targets now which actually don't write
1647 any CALL_DUMMY instructions into the target, but instead just
1648 save the machine state, push the arguments, and jump directly
1649 to the callee function. Since this doesn't actually involve
1650 executing a JSR/BSR instruction, the return address must be set
1651 up by hand, either by pushing onto the stack or copying into a
1652 return-address register as appropriate. Formerly this has been
1653 done in PUSH_ARGUMENTS, but that's overloading its
1654 functionality a bit, so I'm making it explicit to do it here. */
1655 sp = DEPRECATED_PUSH_RETURN_ADDRESS (real_pc, sp);
1656
1657 /* NOTE: cagney/2003-03-23: Diable this code when there is a
1658 push_dummy_call() method. Since that method will have already
1659 handled any alignment issues, the code below is entirely
1660 redundant. */
1661 if (!gdbarch_push_dummy_call_p (current_gdbarch)
1662 && STACK_ALIGN_P () && !INNER_THAN (1, 2))
1663 {
1664 /* If stack grows up, we must leave a hole at the bottom, note
1665 that sp already has been advanced for the arguments! */
1666 if (DEPRECATED_CALL_DUMMY_STACK_ADJUST_P ())
1667 sp += DEPRECATED_CALL_DUMMY_STACK_ADJUST;
1668 sp = STACK_ALIGN (sp);
1669 }
1670
1671 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1672 anything here! */
1673 /* MVS 11/22/96: I think at least some of this stack_align code is
1674 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1675 a target-defined manner. */
1676 if (DEPRECATED_CALL_DUMMY_STACK_ADJUST_P ())
1677 if (INNER_THAN (1, 2))
1678 {
1679 /* stack grows downward */
1680 sp -= DEPRECATED_CALL_DUMMY_STACK_ADJUST;
1681 }
1682
1683 /* Store the address at which the structure is supposed to be
1684 written. */
1685 /* NOTE: 2003-03-24: Since PUSH_ARGUMENTS can (and typically does)
1686 store the struct return address, this call is entirely redundant. */
1687 if (struct_return && DEPRECATED_STORE_STRUCT_RETURN_P ())
1688 DEPRECATED_STORE_STRUCT_RETURN (struct_addr, sp);
1689
1690 /* Write the stack pointer. This is here because the statements above
1691 might fool with it. On SPARC, this write also stores the register
1692 window into the right place in the new stack frame, which otherwise
1693 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1694 /* NOTE: cagney/2003-03-23: Disable this code when there is a
1695 push_dummy_call() method. Since that method will have already
1696 stored the stack pointer (as part of creating the fake call
1697 frame), and none of the code following that code adjusts the
1698 stack-pointer value, the below call is entirely redundant. */
1699 if (DEPRECATED_DUMMY_WRITE_SP_P ())
1700 DEPRECATED_DUMMY_WRITE_SP (sp);
1701
1702 if (SAVE_DUMMY_FRAME_TOS_P ())
1703 SAVE_DUMMY_FRAME_TOS (sp);
1704
1705 {
1706 char *name;
1707 struct symbol *symbol;
1708
1709 name = NULL;
1710 symbol = find_pc_function (funaddr);
1711 if (symbol)
1712 {
1713 name = SYMBOL_PRINT_NAME (symbol);
1714 }
1715 else
1716 {
1717 /* Try the minimal symbols. */
1718 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1719
1720 if (msymbol)
1721 {
1722 name = SYMBOL_PRINT_NAME (msymbol);
1723 }
1724 }
1725 if (name == NULL)
1726 {
1727 char format[80];
1728 sprintf (format, "at %s", local_hex_format ());
1729 name = alloca (80);
1730 /* FIXME-32x64: assumes funaddr fits in a long. */
1731 sprintf (name, format, (unsigned long) funaddr);
1732 }
1733
1734 /* Execute the stack dummy routine, calling FUNCTION.
1735 When it is done, discard the empty frame
1736 after storing the contents of all regs into retbuf. */
1737 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1738
1739 if (rc == 1)
1740 {
1741 /* We stopped inside the FUNCTION because of a random signal.
1742 Further execution of the FUNCTION is not allowed. */
1743
1744 if (unwind_on_signal_p)
1745 {
1746 /* The user wants the context restored. */
1747
1748 /* We must get back to the frame we were before the dummy
1749 call. */
1750 frame_pop (get_current_frame ());
1751
1752 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1753 a C++ name with arguments and stuff. */
1754 error ("\
1755 The program being debugged was signaled while in a function called from GDB.\n\
1756 GDB has restored the context to what it was before the call.\n\
1757 To change this behavior use \"set unwindonsignal off\"\n\
1758 Evaluation of the expression containing the function (%s) will be abandoned.",
1759 name);
1760 }
1761 else
1762 {
1763 /* The user wants to stay in the frame where we stopped (default).*/
1764
1765 /* If we restored the inferior status (via the cleanup),
1766 we would print a spurious error message (Unable to
1767 restore previously selected frame), would write the
1768 registers from the inf_status (which is wrong), and
1769 would do other wrong things. */
1770 discard_cleanups (inf_status_cleanup);
1771 discard_inferior_status (inf_status);
1772
1773 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1774 a C++ name with arguments and stuff. */
1775 error ("\
1776 The program being debugged was signaled while in a function called from GDB.\n\
1777 GDB remains in the frame where the signal was received.\n\
1778 To change this behavior use \"set unwindonsignal on\"\n\
1779 Evaluation of the expression containing the function (%s) will be abandoned.",
1780 name);
1781 }
1782 }
1783
1784 if (rc == 2)
1785 {
1786 /* We hit a breakpoint inside the FUNCTION. */
1787
1788 /* If we restored the inferior status (via the cleanup), we
1789 would print a spurious error message (Unable to restore
1790 previously selected frame), would write the registers from
1791 the inf_status (which is wrong), and would do other wrong
1792 things. */
1793 discard_cleanups (inf_status_cleanup);
1794 discard_inferior_status (inf_status);
1795
1796 /* The following error message used to say "The expression
1797 which contained the function call has been discarded." It
1798 is a hard concept to explain in a few words. Ideally, GDB
1799 would be able to resume evaluation of the expression when
1800 the function finally is done executing. Perhaps someday
1801 this will be implemented (it would not be easy). */
1802
1803 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1804 a C++ name with arguments and stuff. */
1805 error ("\
1806 The program being debugged stopped while in a function called from GDB.\n\
1807 When the function (%s) is done executing, GDB will silently\n\
1808 stop (instead of continuing to evaluate the expression containing\n\
1809 the function call).", name);
1810 }
1811
1812 /* If we get here the called FUNCTION run to completion. */
1813
1814 /* Restore the inferior status, via its cleanup. At this stage,
1815 leave the RETBUF alone. */
1816 do_cleanups (inf_status_cleanup);
1817
1818 /* Figure out the value returned by the function. */
1819 /* elz: I defined this new macro for the hppa architecture only.
1820 this gives us a way to get the value returned by the function
1821 from the stack, at the same address we told the function to put
1822 it. We cannot assume on the pa that r28 still contains the
1823 address of the returned structure. Usually this will be
1824 overwritten by the callee. I don't know about other
1825 architectures, so I defined this macro */
1826 #ifdef VALUE_RETURNED_FROM_STACK
1827 if (struct_return)
1828 {
1829 do_cleanups (retbuf_cleanup);
1830 return VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1831 }
1832 #endif
1833 /* NOTE: cagney/2002-09-10: Only when the stack has been correctly
1834 aligned (using frame_align()) do we can trust STRUCT_ADDR and
1835 fetch the return value direct from the stack. This lack of
1836 trust comes about because legacy targets have a nasty habit of
1837 silently, and local to PUSH_ARGUMENTS(), moving STRUCT_ADDR.
1838 For such targets, just hope that value_being_returned() can
1839 find the adjusted value. */
1840 if (struct_return && gdbarch_frame_align_p (current_gdbarch))
1841 {
1842 struct value *retval = value_at (value_type, struct_addr, NULL);
1843 do_cleanups (retbuf_cleanup);
1844 return retval;
1845 }
1846 else
1847 {
1848 struct value *retval = value_being_returned (value_type, retbuf,
1849 struct_return);
1850 do_cleanups (retbuf_cleanup);
1851 return retval;
1852 }
1853 }
1854 }
1855
1856 struct value *
1857 call_function_by_hand (struct value *function, int nargs, struct value **args)
1858 {
1859 if (CALL_DUMMY_P)
1860 {
1861 return hand_function_call (function, nargs, args);
1862 }
1863 else
1864 {
1865 error ("Cannot invoke functions on this machine.");
1866 }
1867 }
1868 \f
1869
1870
1871 /* Create a value for an array by allocating space in the inferior, copying
1872 the data into that space, and then setting up an array value.
1873
1874 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1875 populated from the values passed in ELEMVEC.
1876
1877 The element type of the array is inherited from the type of the
1878 first element, and all elements must have the same size (though we
1879 don't currently enforce any restriction on their types). */
1880
1881 struct value *
1882 value_array (int lowbound, int highbound, struct value **elemvec)
1883 {
1884 int nelem;
1885 int idx;
1886 unsigned int typelength;
1887 struct value *val;
1888 struct type *rangetype;
1889 struct type *arraytype;
1890 CORE_ADDR addr;
1891
1892 /* Validate that the bounds are reasonable and that each of the elements
1893 have the same size. */
1894
1895 nelem = highbound - lowbound + 1;
1896 if (nelem <= 0)
1897 {
1898 error ("bad array bounds (%d, %d)", lowbound, highbound);
1899 }
1900 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1901 for (idx = 1; idx < nelem; idx++)
1902 {
1903 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1904 {
1905 error ("array elements must all be the same size");
1906 }
1907 }
1908
1909 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1910 lowbound, highbound);
1911 arraytype = create_array_type ((struct type *) NULL,
1912 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1913
1914 if (!current_language->c_style_arrays)
1915 {
1916 val = allocate_value (arraytype);
1917 for (idx = 0; idx < nelem; idx++)
1918 {
1919 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1920 VALUE_CONTENTS_ALL (elemvec[idx]),
1921 typelength);
1922 }
1923 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1924 return val;
1925 }
1926
1927 /* Allocate space to store the array in the inferior, and then initialize
1928 it by copying in each element. FIXME: Is it worth it to create a
1929 local buffer in which to collect each value and then write all the
1930 bytes in one operation? */
1931
1932 addr = allocate_space_in_inferior (nelem * typelength);
1933 for (idx = 0; idx < nelem; idx++)
1934 {
1935 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1936 typelength);
1937 }
1938
1939 /* Create the array type and set up an array value to be evaluated lazily. */
1940
1941 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1942 return (val);
1943 }
1944
1945 /* Create a value for a string constant by allocating space in the inferior,
1946 copying the data into that space, and returning the address with type
1947 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1948 of characters.
1949 Note that string types are like array of char types with a lower bound of
1950 zero and an upper bound of LEN - 1. Also note that the string may contain
1951 embedded null bytes. */
1952
1953 struct value *
1954 value_string (char *ptr, int len)
1955 {
1956 struct value *val;
1957 int lowbound = current_language->string_lower_bound;
1958 struct type *rangetype = create_range_type ((struct type *) NULL,
1959 builtin_type_int,
1960 lowbound, len + lowbound - 1);
1961 struct type *stringtype
1962 = create_string_type ((struct type *) NULL, rangetype);
1963 CORE_ADDR addr;
1964
1965 if (current_language->c_style_arrays == 0)
1966 {
1967 val = allocate_value (stringtype);
1968 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1969 return val;
1970 }
1971
1972
1973 /* Allocate space to store the string in the inferior, and then
1974 copy LEN bytes from PTR in gdb to that address in the inferior. */
1975
1976 addr = allocate_space_in_inferior (len);
1977 write_memory (addr, ptr, len);
1978
1979 val = value_at_lazy (stringtype, addr, NULL);
1980 return (val);
1981 }
1982
1983 struct value *
1984 value_bitstring (char *ptr, int len)
1985 {
1986 struct value *val;
1987 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1988 0, len - 1);
1989 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1990 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1991 val = allocate_value (type);
1992 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1993 return val;
1994 }
1995 \f
1996 /* See if we can pass arguments in T2 to a function which takes arguments
1997 of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
1998 vector. If some arguments need coercion of some sort, then the coerced
1999 values are written into T2. Return value is 0 if the arguments could be
2000 matched, or the position at which they differ if not.
2001
2002 STATICP is nonzero if the T1 argument list came from a
2003 static member function. T2 will still include the ``this'' pointer,
2004 but it will be skipped.
2005
2006 For non-static member functions, we ignore the first argument,
2007 which is the type of the instance variable. This is because we want
2008 to handle calls with objects from derived classes. This is not
2009 entirely correct: we should actually check to make sure that a
2010 requested operation is type secure, shouldn't we? FIXME. */
2011
2012 static int
2013 typecmp (int staticp, int varargs, int nargs,
2014 struct field t1[], struct value *t2[])
2015 {
2016 int i;
2017
2018 if (t2 == 0)
2019 internal_error (__FILE__, __LINE__, "typecmp: no argument list");
2020
2021 /* Skip ``this'' argument if applicable. T2 will always include THIS. */
2022 if (staticp)
2023 t2 ++;
2024
2025 for (i = 0;
2026 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
2027 i++)
2028 {
2029 struct type *tt1, *tt2;
2030
2031 if (!t2[i])
2032 return i + 1;
2033
2034 tt1 = check_typedef (t1[i].type);
2035 tt2 = check_typedef (VALUE_TYPE (t2[i]));
2036
2037 if (TYPE_CODE (tt1) == TYPE_CODE_REF
2038 /* We should be doing hairy argument matching, as below. */
2039 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
2040 {
2041 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
2042 t2[i] = value_coerce_array (t2[i]);
2043 else
2044 t2[i] = value_addr (t2[i]);
2045 continue;
2046 }
2047
2048 /* djb - 20000715 - Until the new type structure is in the
2049 place, and we can attempt things like implicit conversions,
2050 we need to do this so you can take something like a map<const
2051 char *>, and properly access map["hello"], because the
2052 argument to [] will be a reference to a pointer to a char,
2053 and the argument will be a pointer to a char. */
2054 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
2055 TYPE_CODE (tt1) == TYPE_CODE_PTR)
2056 {
2057 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
2058 }
2059 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
2060 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
2061 TYPE_CODE(tt2) == TYPE_CODE_REF)
2062 {
2063 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
2064 }
2065 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
2066 continue;
2067 /* Array to pointer is a `trivial conversion' according to the ARM. */
2068
2069 /* We should be doing much hairier argument matching (see section 13.2
2070 of the ARM), but as a quick kludge, just check for the same type
2071 code. */
2072 if (TYPE_CODE (t1[i].type) != TYPE_CODE (VALUE_TYPE (t2[i])))
2073 return i + 1;
2074 }
2075 if (varargs || t2[i] == NULL)
2076 return 0;
2077 return i + 1;
2078 }
2079
2080 /* Helper function used by value_struct_elt to recurse through baseclasses.
2081 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2082 and search in it assuming it has (class) type TYPE.
2083 If found, return value, else return NULL.
2084
2085 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2086 look for a baseclass named NAME. */
2087
2088 static struct value *
2089 search_struct_field (char *name, struct value *arg1, int offset,
2090 register struct type *type, int looking_for_baseclass)
2091 {
2092 int i;
2093 int nbases = TYPE_N_BASECLASSES (type);
2094
2095 CHECK_TYPEDEF (type);
2096
2097 if (!looking_for_baseclass)
2098 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2099 {
2100 char *t_field_name = TYPE_FIELD_NAME (type, i);
2101
2102 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2103 {
2104 struct value *v;
2105 if (TYPE_FIELD_STATIC (type, i))
2106 {
2107 v = value_static_field (type, i);
2108 if (v == 0)
2109 error ("field %s is nonexistent or has been optimised out",
2110 name);
2111 }
2112 else
2113 {
2114 v = value_primitive_field (arg1, offset, i, type);
2115 if (v == 0)
2116 error ("there is no field named %s", name);
2117 }
2118 return v;
2119 }
2120
2121 if (t_field_name
2122 && (t_field_name[0] == '\0'
2123 || (TYPE_CODE (type) == TYPE_CODE_UNION
2124 && (strcmp_iw (t_field_name, "else") == 0))))
2125 {
2126 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2127 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2128 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2129 {
2130 /* Look for a match through the fields of an anonymous union,
2131 or anonymous struct. C++ provides anonymous unions.
2132
2133 In the GNU Chill (now deleted from GDB)
2134 implementation of variant record types, each
2135 <alternative field> has an (anonymous) union type,
2136 each member of the union represents a <variant
2137 alternative>. Each <variant alternative> is
2138 represented as a struct, with a member for each
2139 <variant field>. */
2140
2141 struct value *v;
2142 int new_offset = offset;
2143
2144 /* This is pretty gross. In G++, the offset in an
2145 anonymous union is relative to the beginning of the
2146 enclosing struct. In the GNU Chill (now deleted
2147 from GDB) implementation of variant records, the
2148 bitpos is zero in an anonymous union field, so we
2149 have to add the offset of the union here. */
2150 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2151 || (TYPE_NFIELDS (field_type) > 0
2152 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2153 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2154
2155 v = search_struct_field (name, arg1, new_offset, field_type,
2156 looking_for_baseclass);
2157 if (v)
2158 return v;
2159 }
2160 }
2161 }
2162
2163 for (i = 0; i < nbases; i++)
2164 {
2165 struct value *v;
2166 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2167 /* If we are looking for baseclasses, this is what we get when we
2168 hit them. But it could happen that the base part's member name
2169 is not yet filled in. */
2170 int found_baseclass = (looking_for_baseclass
2171 && TYPE_BASECLASS_NAME (type, i) != NULL
2172 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2173
2174 if (BASETYPE_VIA_VIRTUAL (type, i))
2175 {
2176 int boffset;
2177 struct value *v2 = allocate_value (basetype);
2178
2179 boffset = baseclass_offset (type, i,
2180 VALUE_CONTENTS (arg1) + offset,
2181 VALUE_ADDRESS (arg1)
2182 + VALUE_OFFSET (arg1) + offset);
2183 if (boffset == -1)
2184 error ("virtual baseclass botch");
2185
2186 /* The virtual base class pointer might have been clobbered by the
2187 user program. Make sure that it still points to a valid memory
2188 location. */
2189
2190 boffset += offset;
2191 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2192 {
2193 CORE_ADDR base_addr;
2194
2195 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2196 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2197 TYPE_LENGTH (basetype)) != 0)
2198 error ("virtual baseclass botch");
2199 VALUE_LVAL (v2) = lval_memory;
2200 VALUE_ADDRESS (v2) = base_addr;
2201 }
2202 else
2203 {
2204 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2205 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2206 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2207 if (VALUE_LAZY (arg1))
2208 VALUE_LAZY (v2) = 1;
2209 else
2210 memcpy (VALUE_CONTENTS_RAW (v2),
2211 VALUE_CONTENTS_RAW (arg1) + boffset,
2212 TYPE_LENGTH (basetype));
2213 }
2214
2215 if (found_baseclass)
2216 return v2;
2217 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2218 looking_for_baseclass);
2219 }
2220 else if (found_baseclass)
2221 v = value_primitive_field (arg1, offset, i, type);
2222 else
2223 v = search_struct_field (name, arg1,
2224 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2225 basetype, looking_for_baseclass);
2226 if (v)
2227 return v;
2228 }
2229 return NULL;
2230 }
2231
2232
2233 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2234 * in an object pointed to by VALADDR (on the host), assumed to be of
2235 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2236 * looking (in case VALADDR is the contents of an enclosing object).
2237 *
2238 * This routine recurses on the primary base of the derived class because
2239 * the virtual base entries of the primary base appear before the other
2240 * virtual base entries.
2241 *
2242 * If the virtual base is not found, a negative integer is returned.
2243 * The magnitude of the negative integer is the number of entries in
2244 * the virtual table to skip over (entries corresponding to various
2245 * ancestral classes in the chain of primary bases).
2246 *
2247 * Important: This assumes the HP / Taligent C++ runtime
2248 * conventions. Use baseclass_offset() instead to deal with g++
2249 * conventions. */
2250
2251 void
2252 find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2253 int offset, int *boffset_p, int *skip_p)
2254 {
2255 int boffset; /* offset of virtual base */
2256 int index; /* displacement to use in virtual table */
2257 int skip;
2258
2259 struct value *vp;
2260 CORE_ADDR vtbl; /* the virtual table pointer */
2261 struct type *pbc; /* the primary base class */
2262
2263 /* Look for the virtual base recursively in the primary base, first.
2264 * This is because the derived class object and its primary base
2265 * subobject share the primary virtual table. */
2266
2267 boffset = 0;
2268 pbc = TYPE_PRIMARY_BASE (type);
2269 if (pbc)
2270 {
2271 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2272 if (skip < 0)
2273 {
2274 *boffset_p = boffset;
2275 *skip_p = -1;
2276 return;
2277 }
2278 }
2279 else
2280 skip = 0;
2281
2282
2283 /* Find the index of the virtual base according to HP/Taligent
2284 runtime spec. (Depth-first, left-to-right.) */
2285 index = virtual_base_index_skip_primaries (basetype, type);
2286
2287 if (index < 0)
2288 {
2289 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2290 *boffset_p = 0;
2291 return;
2292 }
2293
2294 /* pai: FIXME -- 32x64 possible problem */
2295 /* First word (4 bytes) in object layout is the vtable pointer */
2296 vtbl = *(CORE_ADDR *) (valaddr + offset);
2297
2298 /* Before the constructor is invoked, things are usually zero'd out. */
2299 if (vtbl == 0)
2300 error ("Couldn't find virtual table -- object may not be constructed yet.");
2301
2302
2303 /* Find virtual base's offset -- jump over entries for primary base
2304 * ancestors, then use the index computed above. But also adjust by
2305 * HP_ACC_VBASE_START for the vtable slots before the start of the
2306 * virtual base entries. Offset is negative -- virtual base entries
2307 * appear _before_ the address point of the virtual table. */
2308
2309 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2310 & use long type */
2311
2312 /* epstein : FIXME -- added param for overlay section. May not be correct */
2313 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2314 boffset = value_as_long (vp);
2315 *skip_p = -1;
2316 *boffset_p = boffset;
2317 return;
2318 }
2319
2320
2321 /* Helper function used by value_struct_elt to recurse through baseclasses.
2322 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2323 and search in it assuming it has (class) type TYPE.
2324 If found, return value, else if name matched and args not return (value)-1,
2325 else return NULL. */
2326
2327 static struct value *
2328 search_struct_method (char *name, struct value **arg1p,
2329 struct value **args, int offset,
2330 int *static_memfuncp, register struct type *type)
2331 {
2332 int i;
2333 struct value *v;
2334 int name_matched = 0;
2335 char dem_opname[64];
2336
2337 CHECK_TYPEDEF (type);
2338 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2339 {
2340 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2341 /* FIXME! May need to check for ARM demangling here */
2342 if (strncmp (t_field_name, "__", 2) == 0 ||
2343 strncmp (t_field_name, "op", 2) == 0 ||
2344 strncmp (t_field_name, "type", 4) == 0)
2345 {
2346 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2347 t_field_name = dem_opname;
2348 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2349 t_field_name = dem_opname;
2350 }
2351 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2352 {
2353 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2354 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2355 name_matched = 1;
2356
2357 check_stub_method_group (type, i);
2358 if (j > 0 && args == 0)
2359 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2360 else if (j == 0 && args == 0)
2361 {
2362 v = value_fn_field (arg1p, f, j, type, offset);
2363 if (v != NULL)
2364 return v;
2365 }
2366 else
2367 while (j >= 0)
2368 {
2369 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2370 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2371 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2372 TYPE_FN_FIELD_ARGS (f, j), args))
2373 {
2374 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2375 return value_virtual_fn_field (arg1p, f, j, type, offset);
2376 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2377 *static_memfuncp = 1;
2378 v = value_fn_field (arg1p, f, j, type, offset);
2379 if (v != NULL)
2380 return v;
2381 }
2382 j--;
2383 }
2384 }
2385 }
2386
2387 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2388 {
2389 int base_offset;
2390
2391 if (BASETYPE_VIA_VIRTUAL (type, i))
2392 {
2393 if (TYPE_HAS_VTABLE (type))
2394 {
2395 /* HP aCC compiled type, search for virtual base offset
2396 according to HP/Taligent runtime spec. */
2397 int skip;
2398 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2399 VALUE_CONTENTS_ALL (*arg1p),
2400 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2401 &base_offset, &skip);
2402 if (skip >= 0)
2403 error ("Virtual base class offset not found in vtable");
2404 }
2405 else
2406 {
2407 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2408 char *base_valaddr;
2409
2410 /* The virtual base class pointer might have been clobbered by the
2411 user program. Make sure that it still points to a valid memory
2412 location. */
2413
2414 if (offset < 0 || offset >= TYPE_LENGTH (type))
2415 {
2416 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2417 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2418 + VALUE_OFFSET (*arg1p) + offset,
2419 base_valaddr,
2420 TYPE_LENGTH (baseclass)) != 0)
2421 error ("virtual baseclass botch");
2422 }
2423 else
2424 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2425
2426 base_offset =
2427 baseclass_offset (type, i, base_valaddr,
2428 VALUE_ADDRESS (*arg1p)
2429 + VALUE_OFFSET (*arg1p) + offset);
2430 if (base_offset == -1)
2431 error ("virtual baseclass botch");
2432 }
2433 }
2434 else
2435 {
2436 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2437 }
2438 v = search_struct_method (name, arg1p, args, base_offset + offset,
2439 static_memfuncp, TYPE_BASECLASS (type, i));
2440 if (v == (struct value *) - 1)
2441 {
2442 name_matched = 1;
2443 }
2444 else if (v)
2445 {
2446 /* FIXME-bothner: Why is this commented out? Why is it here? */
2447 /* *arg1p = arg1_tmp; */
2448 return v;
2449 }
2450 }
2451 if (name_matched)
2452 return (struct value *) - 1;
2453 else
2454 return NULL;
2455 }
2456
2457 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2458 extract the component named NAME from the ultimate target structure/union
2459 and return it as a value with its appropriate type.
2460 ERR is used in the error message if *ARGP's type is wrong.
2461
2462 C++: ARGS is a list of argument types to aid in the selection of
2463 an appropriate method. Also, handle derived types.
2464
2465 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2466 where the truthvalue of whether the function that was resolved was
2467 a static member function or not is stored.
2468
2469 ERR is an error message to be printed in case the field is not found. */
2470
2471 struct value *
2472 value_struct_elt (struct value **argp, struct value **args,
2473 char *name, int *static_memfuncp, char *err)
2474 {
2475 register struct type *t;
2476 struct value *v;
2477
2478 COERCE_ARRAY (*argp);
2479
2480 t = check_typedef (VALUE_TYPE (*argp));
2481
2482 /* Follow pointers until we get to a non-pointer. */
2483
2484 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2485 {
2486 *argp = value_ind (*argp);
2487 /* Don't coerce fn pointer to fn and then back again! */
2488 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2489 COERCE_ARRAY (*argp);
2490 t = check_typedef (VALUE_TYPE (*argp));
2491 }
2492
2493 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2494 error ("not implemented: member type in value_struct_elt");
2495
2496 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2497 && TYPE_CODE (t) != TYPE_CODE_UNION)
2498 error ("Attempt to extract a component of a value that is not a %s.", err);
2499
2500 /* Assume it's not, unless we see that it is. */
2501 if (static_memfuncp)
2502 *static_memfuncp = 0;
2503
2504 if (!args)
2505 {
2506 /* if there are no arguments ...do this... */
2507
2508 /* Try as a field first, because if we succeed, there
2509 is less work to be done. */
2510 v = search_struct_field (name, *argp, 0, t, 0);
2511 if (v)
2512 return v;
2513
2514 /* C++: If it was not found as a data field, then try to
2515 return it as a pointer to a method. */
2516
2517 if (destructor_name_p (name, t))
2518 error ("Cannot get value of destructor");
2519
2520 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2521
2522 if (v == (struct value *) - 1)
2523 error ("Cannot take address of a method");
2524 else if (v == 0)
2525 {
2526 if (TYPE_NFN_FIELDS (t))
2527 error ("There is no member or method named %s.", name);
2528 else
2529 error ("There is no member named %s.", name);
2530 }
2531 return v;
2532 }
2533
2534 if (destructor_name_p (name, t))
2535 {
2536 if (!args[1])
2537 {
2538 /* Destructors are a special case. */
2539 int m_index, f_index;
2540
2541 v = NULL;
2542 if (get_destructor_fn_field (t, &m_index, &f_index))
2543 {
2544 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2545 f_index, NULL, 0);
2546 }
2547 if (v == NULL)
2548 error ("could not find destructor function named %s.", name);
2549 else
2550 return v;
2551 }
2552 else
2553 {
2554 error ("destructor should not have any argument");
2555 }
2556 }
2557 else
2558 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2559
2560 if (v == (struct value *) - 1)
2561 {
2562 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
2563 }
2564 else if (v == 0)
2565 {
2566 /* See if user tried to invoke data as function. If so,
2567 hand it back. If it's not callable (i.e., a pointer to function),
2568 gdb should give an error. */
2569 v = search_struct_field (name, *argp, 0, t, 0);
2570 }
2571
2572 if (!v)
2573 error ("Structure has no component named %s.", name);
2574 return v;
2575 }
2576
2577 /* Search through the methods of an object (and its bases)
2578 * to find a specified method. Return the pointer to the
2579 * fn_field list of overloaded instances.
2580 * Helper function for value_find_oload_list.
2581 * ARGP is a pointer to a pointer to a value (the object)
2582 * METHOD is a string containing the method name
2583 * OFFSET is the offset within the value
2584 * TYPE is the assumed type of the object
2585 * NUM_FNS is the number of overloaded instances
2586 * BASETYPE is set to the actual type of the subobject where the method is found
2587 * BOFFSET is the offset of the base subobject where the method is found */
2588
2589 static struct fn_field *
2590 find_method_list (struct value **argp, char *method, int offset,
2591 struct type *type, int *num_fns,
2592 struct type **basetype, int *boffset)
2593 {
2594 int i;
2595 struct fn_field *f;
2596 CHECK_TYPEDEF (type);
2597
2598 *num_fns = 0;
2599
2600 /* First check in object itself */
2601 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2602 {
2603 /* pai: FIXME What about operators and type conversions? */
2604 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2605 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2606 {
2607 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2608 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2609
2610 *num_fns = len;
2611 *basetype = type;
2612 *boffset = offset;
2613
2614 /* Resolve any stub methods. */
2615 check_stub_method_group (type, i);
2616
2617 return f;
2618 }
2619 }
2620
2621 /* Not found in object, check in base subobjects */
2622 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2623 {
2624 int base_offset;
2625 if (BASETYPE_VIA_VIRTUAL (type, i))
2626 {
2627 if (TYPE_HAS_VTABLE (type))
2628 {
2629 /* HP aCC compiled type, search for virtual base offset
2630 * according to HP/Taligent runtime spec. */
2631 int skip;
2632 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2633 VALUE_CONTENTS_ALL (*argp),
2634 offset + VALUE_EMBEDDED_OFFSET (*argp),
2635 &base_offset, &skip);
2636 if (skip >= 0)
2637 error ("Virtual base class offset not found in vtable");
2638 }
2639 else
2640 {
2641 /* probably g++ runtime model */
2642 base_offset = VALUE_OFFSET (*argp) + offset;
2643 base_offset =
2644 baseclass_offset (type, i,
2645 VALUE_CONTENTS (*argp) + base_offset,
2646 VALUE_ADDRESS (*argp) + base_offset);
2647 if (base_offset == -1)
2648 error ("virtual baseclass botch");
2649 }
2650 }
2651 else
2652 /* non-virtual base, simply use bit position from debug info */
2653 {
2654 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2655 }
2656 f = find_method_list (argp, method, base_offset + offset,
2657 TYPE_BASECLASS (type, i), num_fns, basetype,
2658 boffset);
2659 if (f)
2660 return f;
2661 }
2662 return NULL;
2663 }
2664
2665 /* Return the list of overloaded methods of a specified name.
2666 * ARGP is a pointer to a pointer to a value (the object)
2667 * METHOD is the method name
2668 * OFFSET is the offset within the value contents
2669 * NUM_FNS is the number of overloaded instances
2670 * BASETYPE is set to the type of the base subobject that defines the method
2671 * BOFFSET is the offset of the base subobject which defines the method */
2672
2673 struct fn_field *
2674 value_find_oload_method_list (struct value **argp, char *method, int offset,
2675 int *num_fns, struct type **basetype,
2676 int *boffset)
2677 {
2678 struct type *t;
2679
2680 t = check_typedef (VALUE_TYPE (*argp));
2681
2682 /* code snarfed from value_struct_elt */
2683 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2684 {
2685 *argp = value_ind (*argp);
2686 /* Don't coerce fn pointer to fn and then back again! */
2687 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2688 COERCE_ARRAY (*argp);
2689 t = check_typedef (VALUE_TYPE (*argp));
2690 }
2691
2692 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2693 error ("Not implemented: member type in value_find_oload_lis");
2694
2695 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2696 && TYPE_CODE (t) != TYPE_CODE_UNION)
2697 error ("Attempt to extract a component of a value that is not a struct or union");
2698
2699 return find_method_list (argp, method, 0, t, num_fns, basetype, boffset);
2700 }
2701
2702 /* Given an array of argument types (ARGTYPES) (which includes an
2703 entry for "this" in the case of C++ methods), the number of
2704 arguments NARGS, the NAME of a function whether it's a method or
2705 not (METHOD), and the degree of laxness (LAX) in conforming to
2706 overload resolution rules in ANSI C++, find the best function that
2707 matches on the argument types according to the overload resolution
2708 rules.
2709
2710 In the case of class methods, the parameter OBJ is an object value
2711 in which to search for overloaded methods.
2712
2713 In the case of non-method functions, the parameter FSYM is a symbol
2714 corresponding to one of the overloaded functions.
2715
2716 Return value is an integer: 0 -> good match, 10 -> debugger applied
2717 non-standard coercions, 100 -> incompatible.
2718
2719 If a method is being searched for, VALP will hold the value.
2720 If a non-method is being searched for, SYMP will hold the symbol for it.
2721
2722 If a method is being searched for, and it is a static method,
2723 then STATICP will point to a non-zero value.
2724
2725 Note: This function does *not* check the value of
2726 overload_resolution. Caller must check it to see whether overload
2727 resolution is permitted.
2728 */
2729
2730 int
2731 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
2732 int lax, struct value **objp, struct symbol *fsym,
2733 struct value **valp, struct symbol **symp, int *staticp)
2734 {
2735 int nparms;
2736 struct type **parm_types;
2737 int champ_nparms = 0;
2738 struct value *obj = (objp ? *objp : NULL);
2739
2740 short oload_champ = -1; /* Index of best overloaded function */
2741 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2742 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2743 short oload_ambig_champ = -1; /* 2nd contender for best match */
2744 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2745 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2746
2747 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2748 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2749
2750 struct value *temp = obj;
2751 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2752 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2753 int num_fns = 0; /* Number of overloaded instances being considered */
2754 struct type *basetype = NULL;
2755 int boffset;
2756 register int jj;
2757 register int ix;
2758 int static_offset;
2759 struct cleanup *cleanups = NULL;
2760
2761 char *obj_type_name = NULL;
2762 char *func_name = NULL;
2763
2764 /* Get the list of overloaded methods or functions */
2765 if (method)
2766 {
2767 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2768 /* Hack: evaluate_subexp_standard often passes in a pointer
2769 value rather than the object itself, so try again */
2770 if ((!obj_type_name || !*obj_type_name) &&
2771 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2772 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2773
2774 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2775 &num_fns,
2776 &basetype, &boffset);
2777 if (!fns_ptr || !num_fns)
2778 error ("Couldn't find method %s%s%s",
2779 obj_type_name,
2780 (obj_type_name && *obj_type_name) ? "::" : "",
2781 name);
2782 /* If we are dealing with stub method types, they should have
2783 been resolved by find_method_list via value_find_oload_method_list
2784 above. */
2785 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2786 }
2787 else
2788 {
2789 int i = -1;
2790 func_name = cplus_demangle (DEPRECATED_SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2791
2792 /* If the name is NULL this must be a C-style function.
2793 Just return the same symbol. */
2794 if (!func_name)
2795 {
2796 *symp = fsym;
2797 return 0;
2798 }
2799
2800 oload_syms = make_symbol_overload_list (fsym);
2801 cleanups = make_cleanup (xfree, oload_syms);
2802 while (oload_syms[++i])
2803 num_fns++;
2804 if (!num_fns)
2805 error ("Couldn't find function %s", func_name);
2806 }
2807
2808 oload_champ_bv = NULL;
2809
2810 /* Consider each candidate in turn */
2811 for (ix = 0; ix < num_fns; ix++)
2812 {
2813 static_offset = 0;
2814 if (method)
2815 {
2816 if (TYPE_FN_FIELD_STATIC_P (fns_ptr, ix))
2817 static_offset = 1;
2818 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2819 }
2820 else
2821 {
2822 /* If it's not a method, this is the proper place */
2823 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2824 }
2825
2826 /* Prepare array of parameter types */
2827 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2828 for (jj = 0; jj < nparms; jj++)
2829 parm_types[jj] = (method
2830 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2831 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2832
2833 /* Compare parameter types to supplied argument types. Skip THIS for
2834 static methods. */
2835 bv = rank_function (parm_types, nparms, arg_types + static_offset,
2836 nargs - static_offset);
2837
2838 if (!oload_champ_bv)
2839 {
2840 oload_champ_bv = bv;
2841 oload_champ = 0;
2842 champ_nparms = nparms;
2843 }
2844 else
2845 /* See whether current candidate is better or worse than previous best */
2846 switch (compare_badness (bv, oload_champ_bv))
2847 {
2848 case 0:
2849 oload_ambiguous = 1; /* top two contenders are equally good */
2850 oload_ambig_champ = ix;
2851 break;
2852 case 1:
2853 oload_ambiguous = 2; /* incomparable top contenders */
2854 oload_ambig_champ = ix;
2855 break;
2856 case 2:
2857 oload_champ_bv = bv; /* new champion, record details */
2858 oload_ambiguous = 0;
2859 oload_champ = ix;
2860 oload_ambig_champ = -1;
2861 champ_nparms = nparms;
2862 break;
2863 case 3:
2864 default:
2865 break;
2866 }
2867 xfree (parm_types);
2868 if (overload_debug)
2869 {
2870 if (method)
2871 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2872 else
2873 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2874 for (jj = 0; jj < nargs - static_offset; jj++)
2875 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2876 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2877 }
2878 } /* end loop over all candidates */
2879 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2880 if they have the exact same goodness. This is because there is no
2881 way to differentiate based on return type, which we need to in
2882 cases like overloads of .begin() <It's both const and non-const> */
2883 #if 0
2884 if (oload_ambiguous)
2885 {
2886 if (method)
2887 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2888 obj_type_name,
2889 (obj_type_name && *obj_type_name) ? "::" : "",
2890 name);
2891 else
2892 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2893 func_name);
2894 }
2895 #endif
2896
2897 /* Check how bad the best match is. */
2898 static_offset = 0;
2899 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2900 static_offset = 1;
2901 for (ix = 1; ix <= nargs - static_offset; ix++)
2902 {
2903 if (oload_champ_bv->rank[ix] >= 100)
2904 oload_incompatible = 1; /* truly mismatched types */
2905
2906 else if (oload_champ_bv->rank[ix] >= 10)
2907 oload_non_standard = 1; /* non-standard type conversions needed */
2908 }
2909 if (oload_incompatible)
2910 {
2911 if (method)
2912 error ("Cannot resolve method %s%s%s to any overloaded instance",
2913 obj_type_name,
2914 (obj_type_name && *obj_type_name) ? "::" : "",
2915 name);
2916 else
2917 error ("Cannot resolve function %s to any overloaded instance",
2918 func_name);
2919 }
2920 else if (oload_non_standard)
2921 {
2922 if (method)
2923 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2924 obj_type_name,
2925 (obj_type_name && *obj_type_name) ? "::" : "",
2926 name);
2927 else
2928 warning ("Using non-standard conversion to match function %s to supplied arguments",
2929 func_name);
2930 }
2931
2932 if (method)
2933 {
2934 if (staticp && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2935 *staticp = 1;
2936 else if (staticp)
2937 *staticp = 0;
2938 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2939 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2940 else
2941 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2942 }
2943 else
2944 {
2945 *symp = oload_syms[oload_champ];
2946 xfree (func_name);
2947 }
2948
2949 if (objp)
2950 {
2951 if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR
2952 && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR)
2953 {
2954 temp = value_addr (temp);
2955 }
2956 *objp = temp;
2957 }
2958 if (cleanups != NULL)
2959 do_cleanups (cleanups);
2960
2961 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2962 }
2963
2964 /* C++: return 1 is NAME is a legitimate name for the destructor
2965 of type TYPE. If TYPE does not have a destructor, or
2966 if NAME is inappropriate for TYPE, an error is signaled. */
2967 int
2968 destructor_name_p (const char *name, const struct type *type)
2969 {
2970 /* destructors are a special case. */
2971
2972 if (name[0] == '~')
2973 {
2974 char *dname = type_name_no_tag (type);
2975 char *cp = strchr (dname, '<');
2976 unsigned int len;
2977
2978 /* Do not compare the template part for template classes. */
2979 if (cp == NULL)
2980 len = strlen (dname);
2981 else
2982 len = cp - dname;
2983 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2984 error ("name of destructor must equal name of class");
2985 else
2986 return 1;
2987 }
2988 return 0;
2989 }
2990
2991 /* Helper function for check_field: Given TYPE, a structure/union,
2992 return 1 if the component named NAME from the ultimate
2993 target structure/union is defined, otherwise, return 0. */
2994
2995 static int
2996 check_field_in (register struct type *type, const char *name)
2997 {
2998 register int i;
2999
3000 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
3001 {
3002 char *t_field_name = TYPE_FIELD_NAME (type, i);
3003 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
3004 return 1;
3005 }
3006
3007 /* C++: If it was not found as a data field, then try to
3008 return it as a pointer to a method. */
3009
3010 /* Destructors are a special case. */
3011 if (destructor_name_p (name, type))
3012 {
3013 int m_index, f_index;
3014
3015 return get_destructor_fn_field (type, &m_index, &f_index);
3016 }
3017
3018 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
3019 {
3020 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
3021 return 1;
3022 }
3023
3024 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3025 if (check_field_in (TYPE_BASECLASS (type, i), name))
3026 return 1;
3027
3028 return 0;
3029 }
3030
3031
3032 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
3033 return 1 if the component named NAME from the ultimate
3034 target structure/union is defined, otherwise, return 0. */
3035
3036 int
3037 check_field (struct value *arg1, const char *name)
3038 {
3039 register struct type *t;
3040
3041 COERCE_ARRAY (arg1);
3042
3043 t = VALUE_TYPE (arg1);
3044
3045 /* Follow pointers until we get to a non-pointer. */
3046
3047 for (;;)
3048 {
3049 CHECK_TYPEDEF (t);
3050 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
3051 break;
3052 t = TYPE_TARGET_TYPE (t);
3053 }
3054
3055 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
3056 error ("not implemented: member type in check_field");
3057
3058 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3059 && TYPE_CODE (t) != TYPE_CODE_UNION)
3060 error ("Internal error: `this' is not an aggregate");
3061
3062 return check_field_in (t, name);
3063 }
3064
3065 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3066 return the address of this member as a "pointer to member"
3067 type. If INTYPE is non-null, then it will be the type
3068 of the member we are looking for. This will help us resolve
3069 "pointers to member functions". This function is used
3070 to resolve user expressions of the form "DOMAIN::NAME". */
3071
3072 struct value *
3073 value_struct_elt_for_reference (struct type *domain, int offset,
3074 struct type *curtype, char *name,
3075 struct type *intype)
3076 {
3077 register struct type *t = curtype;
3078 register int i;
3079 struct value *v;
3080
3081 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3082 && TYPE_CODE (t) != TYPE_CODE_UNION)
3083 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3084
3085 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3086 {
3087 char *t_field_name = TYPE_FIELD_NAME (t, i);
3088
3089 if (t_field_name && STREQ (t_field_name, name))
3090 {
3091 if (TYPE_FIELD_STATIC (t, i))
3092 {
3093 v = value_static_field (t, i);
3094 if (v == NULL)
3095 error ("static field %s has been optimized out",
3096 name);
3097 return v;
3098 }
3099 if (TYPE_FIELD_PACKED (t, i))
3100 error ("pointers to bitfield members not allowed");
3101
3102 return value_from_longest
3103 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3104 domain)),
3105 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3106 }
3107 }
3108
3109 /* C++: If it was not found as a data field, then try to
3110 return it as a pointer to a method. */
3111
3112 /* Destructors are a special case. */
3113 if (destructor_name_p (name, t))
3114 {
3115 error ("member pointers to destructors not implemented yet");
3116 }
3117
3118 /* Perform all necessary dereferencing. */
3119 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3120 intype = TYPE_TARGET_TYPE (intype);
3121
3122 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3123 {
3124 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3125 char dem_opname[64];
3126
3127 if (strncmp (t_field_name, "__", 2) == 0 ||
3128 strncmp (t_field_name, "op", 2) == 0 ||
3129 strncmp (t_field_name, "type", 4) == 0)
3130 {
3131 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3132 t_field_name = dem_opname;
3133 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3134 t_field_name = dem_opname;
3135 }
3136 if (t_field_name && STREQ (t_field_name, name))
3137 {
3138 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3139 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3140
3141 check_stub_method_group (t, i);
3142
3143 if (intype == 0 && j > 1)
3144 error ("non-unique member `%s' requires type instantiation", name);
3145 if (intype)
3146 {
3147 while (j--)
3148 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3149 break;
3150 if (j < 0)
3151 error ("no member function matches that type instantiation");
3152 }
3153 else
3154 j = 0;
3155
3156 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3157 {
3158 return value_from_longest
3159 (lookup_reference_type
3160 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3161 domain)),
3162 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3163 }
3164 else
3165 {
3166 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3167 0, VAR_NAMESPACE, 0, NULL);
3168 if (s == NULL)
3169 {
3170 v = 0;
3171 }
3172 else
3173 {
3174 v = read_var_value (s, 0);
3175 #if 0
3176 VALUE_TYPE (v) = lookup_reference_type
3177 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3178 domain));
3179 #endif
3180 }
3181 return v;
3182 }
3183 }
3184 }
3185 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3186 {
3187 struct value *v;
3188 int base_offset;
3189
3190 if (BASETYPE_VIA_VIRTUAL (t, i))
3191 base_offset = 0;
3192 else
3193 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3194 v = value_struct_elt_for_reference (domain,
3195 offset + base_offset,
3196 TYPE_BASECLASS (t, i),
3197 name,
3198 intype);
3199 if (v)
3200 return v;
3201 }
3202 return 0;
3203 }
3204
3205
3206 /* Given a pointer value V, find the real (RTTI) type
3207 of the object it points to.
3208 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3209 and refer to the values computed for the object pointed to. */
3210
3211 struct type *
3212 value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
3213 {
3214 struct value *target;
3215
3216 target = value_ind (v);
3217
3218 return value_rtti_type (target, full, top, using_enc);
3219 }
3220
3221 /* Given a value pointed to by ARGP, check its real run-time type, and
3222 if that is different from the enclosing type, create a new value
3223 using the real run-time type as the enclosing type (and of the same
3224 type as ARGP) and return it, with the embedded offset adjusted to
3225 be the correct offset to the enclosed object
3226 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3227 parameters, computed by value_rtti_type(). If these are available,
3228 they can be supplied and a second call to value_rtti_type() is avoided.
3229 (Pass RTYPE == NULL if they're not available */
3230
3231 struct value *
3232 value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
3233 int xusing_enc)
3234 {
3235 struct type *real_type;
3236 int full = 0;
3237 int top = -1;
3238 int using_enc = 0;
3239 struct value *new_val;
3240
3241 if (rtype)
3242 {
3243 real_type = rtype;
3244 full = xfull;
3245 top = xtop;
3246 using_enc = xusing_enc;
3247 }
3248 else
3249 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3250
3251 /* If no RTTI data, or if object is already complete, do nothing */
3252 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3253 return argp;
3254
3255 /* If we have the full object, but for some reason the enclosing
3256 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3257 if (full)
3258 {
3259 argp = value_change_enclosing_type (argp, real_type);
3260 return argp;
3261 }
3262
3263 /* Check if object is in memory */
3264 if (VALUE_LVAL (argp) != lval_memory)
3265 {
3266 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3267
3268 return argp;
3269 }
3270
3271 /* All other cases -- retrieve the complete object */
3272 /* Go back by the computed top_offset from the beginning of the object,
3273 adjusting for the embedded offset of argp if that's what value_rtti_type
3274 used for its computation. */
3275 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3276 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3277 VALUE_BFD_SECTION (argp));
3278 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3279 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3280 return new_val;
3281 }
3282
3283
3284
3285
3286 /* Return the value of the local variable, if one exists.
3287 Flag COMPLAIN signals an error if the request is made in an
3288 inappropriate context. */
3289
3290 struct value *
3291 value_of_local (const char *name, int complain)
3292 {
3293 struct symbol *func, *sym;
3294 struct block *b;
3295 int i;
3296 struct value * ret;
3297
3298 if (deprecated_selected_frame == 0)
3299 {
3300 if (complain)
3301 error ("no frame selected");
3302 else
3303 return 0;
3304 }
3305
3306 func = get_frame_function (deprecated_selected_frame);
3307 if (!func)
3308 {
3309 if (complain)
3310 error ("no `%s' in nameless context", name);
3311 else
3312 return 0;
3313 }
3314
3315 b = SYMBOL_BLOCK_VALUE (func);
3316 i = BLOCK_NSYMS (b);
3317 if (i <= 0)
3318 {
3319 if (complain)
3320 error ("no args, no `%s'", name);
3321 else
3322 return 0;
3323 }
3324
3325 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3326 symbol instead of the LOC_ARG one (if both exist). */
3327 sym = lookup_block_symbol (b, name, NULL, VAR_NAMESPACE);
3328 if (sym == NULL)
3329 {
3330 if (complain)
3331 error ("current stack frame does not contain a variable named `%s'", name);
3332 else
3333 return NULL;
3334 }
3335
3336 ret = read_var_value (sym, deprecated_selected_frame);
3337 if (ret == 0 && complain)
3338 error ("`%s' argument unreadable", name);
3339 return ret;
3340 }
3341
3342 /* C++/Objective-C: return the value of the class instance variable,
3343 if one exists. Flag COMPLAIN signals an error if the request is
3344 made in an inappropriate context. */
3345
3346 struct value *
3347 value_of_this (int complain)
3348 {
3349 if (current_language->la_language == language_objc)
3350 return value_of_local ("self", complain);
3351 else
3352 return value_of_local ("this", complain);
3353 }
3354
3355 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3356 long, starting at LOWBOUND. The result has the same lower bound as
3357 the original ARRAY. */
3358
3359 struct value *
3360 value_slice (struct value *array, int lowbound, int length)
3361 {
3362 struct type *slice_range_type, *slice_type, *range_type;
3363 LONGEST lowerbound, upperbound;
3364 struct value *slice;
3365 struct type *array_type;
3366 array_type = check_typedef (VALUE_TYPE (array));
3367 COERCE_VARYING_ARRAY (array, array_type);
3368 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3369 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3370 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3371 error ("cannot take slice of non-array");
3372 range_type = TYPE_INDEX_TYPE (array_type);
3373 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3374 error ("slice from bad array or bitstring");
3375 if (lowbound < lowerbound || length < 0
3376 || lowbound + length - 1 > upperbound)
3377 error ("slice out of range");
3378 /* FIXME-type-allocation: need a way to free this type when we are
3379 done with it. */
3380 slice_range_type = create_range_type ((struct type *) NULL,
3381 TYPE_TARGET_TYPE (range_type),
3382 lowbound, lowbound + length - 1);
3383 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3384 {
3385 int i;
3386 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3387 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3388 slice = value_zero (slice_type, not_lval);
3389 for (i = 0; i < length; i++)
3390 {
3391 int element = value_bit_index (array_type,
3392 VALUE_CONTENTS (array),
3393 lowbound + i);
3394 if (element < 0)
3395 error ("internal error accessing bitstring");
3396 else if (element > 0)
3397 {
3398 int j = i % TARGET_CHAR_BIT;
3399 if (BITS_BIG_ENDIAN)
3400 j = TARGET_CHAR_BIT - 1 - j;
3401 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3402 }
3403 }
3404 /* We should set the address, bitssize, and bitspos, so the clice
3405 can be used on the LHS, but that may require extensions to
3406 value_assign. For now, just leave as a non_lval. FIXME. */
3407 }
3408 else
3409 {
3410 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3411 LONGEST offset
3412 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3413 slice_type = create_array_type ((struct type *) NULL, element_type,
3414 slice_range_type);
3415 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3416 slice = allocate_value (slice_type);
3417 if (VALUE_LAZY (array))
3418 VALUE_LAZY (slice) = 1;
3419 else
3420 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3421 TYPE_LENGTH (slice_type));
3422 if (VALUE_LVAL (array) == lval_internalvar)
3423 VALUE_LVAL (slice) = lval_internalvar_component;
3424 else
3425 VALUE_LVAL (slice) = VALUE_LVAL (array);
3426 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3427 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3428 }
3429 return slice;
3430 }
3431
3432 /* Create a value for a FORTRAN complex number. Currently most of
3433 the time values are coerced to COMPLEX*16 (i.e. a complex number
3434 composed of 2 doubles. This really should be a smarter routine
3435 that figures out precision inteligently as opposed to assuming
3436 doubles. FIXME: fmb */
3437
3438 struct value *
3439 value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
3440 {
3441 struct value *val;
3442 struct type *real_type = TYPE_TARGET_TYPE (type);
3443
3444 val = allocate_value (type);
3445 arg1 = value_cast (real_type, arg1);
3446 arg2 = value_cast (real_type, arg2);
3447
3448 memcpy (VALUE_CONTENTS_RAW (val),
3449 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3450 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3451 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3452 return val;
3453 }
3454
3455 /* Cast a value into the appropriate complex data type. */
3456
3457 static struct value *
3458 cast_into_complex (struct type *type, struct value *val)
3459 {
3460 struct type *real_type = TYPE_TARGET_TYPE (type);
3461 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3462 {
3463 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3464 struct value *re_val = allocate_value (val_real_type);
3465 struct value *im_val = allocate_value (val_real_type);
3466
3467 memcpy (VALUE_CONTENTS_RAW (re_val),
3468 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3469 memcpy (VALUE_CONTENTS_RAW (im_val),
3470 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3471 TYPE_LENGTH (val_real_type));
3472
3473 return value_literal_complex (re_val, im_val, type);
3474 }
3475 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3476 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3477 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3478 else
3479 error ("cannot cast non-number to complex");
3480 }
3481
3482 void
3483 _initialize_valops (void)
3484 {
3485 #if 0
3486 add_show_from_set
3487 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3488 "Set automatic abandonment of expressions upon failure.",
3489 &setlist),
3490 &showlist);
3491 #endif
3492
3493 add_show_from_set
3494 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3495 "Set overload resolution in evaluating C++ functions.",
3496 &setlist),
3497 &showlist);
3498 overload_resolution = 1;
3499
3500 add_show_from_set (
3501 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3502 (char *) &unwind_on_signal_p,
3503 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3504 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3505 is received while in a function called from gdb (call dummy). If set, gdb\n\
3506 unwinds the stack and restore the context to what as it was before the call.\n\
3507 The default is to stop in the frame where the signal was received.", &setlist),
3508 &showlist);
3509
3510 add_show_from_set
3511 (add_set_cmd ("coerce-float-to-double", class_obscure, var_boolean,
3512 (char *) &coerce_float_to_double,
3513 "Set coercion of floats to doubles when calling functions\n"
3514 "Variables of type float should generally be converted to doubles before\n"
3515 "calling an unprototyped function, and left alone when calling a prototyped\n"
3516 "function. However, some older debug info formats do not provide enough\n"
3517 "information to determine that a function is prototyped. If this flag is\n"
3518 "set, GDB will perform the conversion for a function it considers\n"
3519 "unprototyped.\n"
3520 "The default is to perform the conversion.\n",
3521 &setlist),
3522 &showlist);
3523 coerce_float_to_double = 1;
3524 }
This page took 0.140979 seconds and 5 git commands to generate.