http://sourceware.org/ml/gdb-patches/2012-11/msg00312.html
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "dfp.h"
38 #include "user-regs.h"
39 #include "tracepoint.h"
40 #include <errno.h>
41 #include "gdb_string.h"
42 #include "gdb_assert.h"
43 #include "cp-support.h"
44 #include "observer.h"
45 #include "objfiles.h"
46 #include "symtab.h"
47 #include "exceptions.h"
48
49 extern unsigned int overload_debug;
50 /* Local functions. */
51
52 static int typecmp (int staticp, int varargs, int nargs,
53 struct field t1[], struct value *t2[]);
54
55 static struct value *search_struct_field (const char *, struct value *,
56 int, struct type *, int);
57
58 static struct value *search_struct_method (const char *, struct value **,
59 struct value **,
60 int, int *, struct type *);
61
62 static int find_oload_champ_namespace (struct value **, int,
63 const char *, const char *,
64 struct symbol ***,
65 struct badness_vector **,
66 const int no_adl);
67
68 static
69 int find_oload_champ_namespace_loop (struct value **, int,
70 const char *, const char *,
71 int, struct symbol ***,
72 struct badness_vector **, int *,
73 const int no_adl);
74
75 static int find_oload_champ (struct value **, int, int, int,
76 struct fn_field *, struct symbol **,
77 struct badness_vector **);
78
79 static int oload_method_static (int, struct fn_field *, int);
80
81 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
82
83 static enum
84 oload_classification classify_oload_match (struct badness_vector *,
85 int, int);
86
87 static struct value *value_struct_elt_for_reference (struct type *,
88 int, struct type *,
89 char *,
90 struct type *,
91 int, enum noside);
92
93 static struct value *value_namespace_elt (const struct type *,
94 char *, int , enum noside);
95
96 static struct value *value_maybe_namespace_elt (const struct type *,
97 char *, int,
98 enum noside);
99
100 static CORE_ADDR allocate_space_in_inferior (int);
101
102 static struct value *cast_into_complex (struct type *, struct value *);
103
104 static struct fn_field *find_method_list (struct value **, const char *,
105 int, struct type *, int *,
106 struct type **, int *);
107
108 void _initialize_valops (void);
109
110 #if 0
111 /* Flag for whether we want to abandon failed expression evals by
112 default. */
113
114 static int auto_abandon = 0;
115 #endif
116
117 int overload_resolution = 0;
118 static void
119 show_overload_resolution (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c,
121 const char *value)
122 {
123 fprintf_filtered (file, _("Overload resolution in evaluating "
124 "C++ functions is %s.\n"),
125 value);
126 }
127
128 /* Find the address of function name NAME in the inferior. If OBJF_P
129 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
130 is defined. */
131
132 struct value *
133 find_function_in_inferior (const char *name, struct objfile **objf_p)
134 {
135 struct symbol *sym;
136
137 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
138 if (sym != NULL)
139 {
140 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
141 {
142 error (_("\"%s\" exists in this program but is not a function."),
143 name);
144 }
145
146 if (objf_p)
147 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
148
149 return value_of_variable (sym, NULL);
150 }
151 else
152 {
153 struct minimal_symbol *msymbol =
154 lookup_minimal_symbol (name, NULL, NULL);
155
156 if (msymbol != NULL)
157 {
158 struct objfile *objfile = msymbol_objfile (msymbol);
159 struct gdbarch *gdbarch = get_objfile_arch (objfile);
160
161 struct type *type;
162 CORE_ADDR maddr;
163 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
164 type = lookup_function_type (type);
165 type = lookup_pointer_type (type);
166 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
167
168 if (objf_p)
169 *objf_p = objfile;
170
171 return value_from_pointer (type, maddr);
172 }
173 else
174 {
175 if (!target_has_execution)
176 error (_("evaluation of this expression "
177 "requires the target program to be active"));
178 else
179 error (_("evaluation of this expression requires the "
180 "program to have a function \"%s\"."),
181 name);
182 }
183 }
184 }
185
186 /* Allocate NBYTES of space in the inferior using the inferior's
187 malloc and return a value that is a pointer to the allocated
188 space. */
189
190 struct value *
191 value_allocate_space_in_inferior (int len)
192 {
193 struct objfile *objf;
194 struct value *val = find_function_in_inferior ("malloc", &objf);
195 struct gdbarch *gdbarch = get_objfile_arch (objf);
196 struct value *blocklen;
197
198 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
199 val = call_function_by_hand (val, 1, &blocklen);
200 if (value_logical_not (val))
201 {
202 if (!target_has_execution)
203 error (_("No memory available to program now: "
204 "you need to start the target first"));
205 else
206 error (_("No memory available to program: call to malloc failed"));
207 }
208 return val;
209 }
210
211 static CORE_ADDR
212 allocate_space_in_inferior (int len)
213 {
214 return value_as_long (value_allocate_space_in_inferior (len));
215 }
216
217 /* Cast struct value VAL to type TYPE and return as a value.
218 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
219 for this to work. Typedef to one of the codes is permitted.
220 Returns NULL if the cast is neither an upcast nor a downcast. */
221
222 static struct value *
223 value_cast_structs (struct type *type, struct value *v2)
224 {
225 struct type *t1;
226 struct type *t2;
227 struct value *v;
228
229 gdb_assert (type != NULL && v2 != NULL);
230
231 t1 = check_typedef (type);
232 t2 = check_typedef (value_type (v2));
233
234 /* Check preconditions. */
235 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
236 || TYPE_CODE (t1) == TYPE_CODE_UNION)
237 && !!"Precondition is that type is of STRUCT or UNION kind.");
238 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
239 || TYPE_CODE (t2) == TYPE_CODE_UNION)
240 && !!"Precondition is that value is of STRUCT or UNION kind");
241
242 if (TYPE_NAME (t1) != NULL
243 && TYPE_NAME (t2) != NULL
244 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
245 return NULL;
246
247 /* Upcasting: look in the type of the source to see if it contains the
248 type of the target as a superclass. If so, we'll need to
249 offset the pointer rather than just change its type. */
250 if (TYPE_NAME (t1) != NULL)
251 {
252 v = search_struct_field (type_name_no_tag (t1),
253 v2, 0, t2, 1);
254 if (v)
255 return v;
256 }
257
258 /* Downcasting: look in the type of the target to see if it contains the
259 type of the source as a superclass. If so, we'll need to
260 offset the pointer rather than just change its type. */
261 if (TYPE_NAME (t2) != NULL)
262 {
263 /* Try downcasting using the run-time type of the value. */
264 int full, top, using_enc;
265 struct type *real_type;
266
267 real_type = value_rtti_type (v2, &full, &top, &using_enc);
268 if (real_type)
269 {
270 v = value_full_object (v2, real_type, full, top, using_enc);
271 v = value_at_lazy (real_type, value_address (v));
272
273 /* We might be trying to cast to the outermost enclosing
274 type, in which case search_struct_field won't work. */
275 if (TYPE_NAME (real_type) != NULL
276 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
277 return v;
278
279 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
280 if (v)
281 return v;
282 }
283
284 /* Try downcasting using information from the destination type
285 T2. This wouldn't work properly for classes with virtual
286 bases, but those were handled above. */
287 v = search_struct_field (type_name_no_tag (t2),
288 value_zero (t1, not_lval), 0, t1, 1);
289 if (v)
290 {
291 /* Downcasting is possible (t1 is superclass of v2). */
292 CORE_ADDR addr2 = value_address (v2);
293
294 addr2 -= value_address (v) + value_embedded_offset (v);
295 return value_at (type, addr2);
296 }
297 }
298
299 return NULL;
300 }
301
302 /* Cast one pointer or reference type to another. Both TYPE and
303 the type of ARG2 should be pointer types, or else both should be
304 reference types. If SUBCLASS_CHECK is non-zero, this will force a
305 check to see whether TYPE is a superclass of ARG2's type. If
306 SUBCLASS_CHECK is zero, then the subclass check is done only when
307 ARG2 is itself non-zero. Returns the new pointer or reference. */
308
309 struct value *
310 value_cast_pointers (struct type *type, struct value *arg2,
311 int subclass_check)
312 {
313 struct type *type1 = check_typedef (type);
314 struct type *type2 = check_typedef (value_type (arg2));
315 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
316 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
317
318 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
319 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
320 && (subclass_check || !value_logical_not (arg2)))
321 {
322 struct value *v2;
323
324 if (TYPE_CODE (type2) == TYPE_CODE_REF)
325 v2 = coerce_ref (arg2);
326 else
327 v2 = value_ind (arg2);
328 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
329 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
330 v2 = value_cast_structs (t1, v2);
331 /* At this point we have what we can have, un-dereference if needed. */
332 if (v2)
333 {
334 struct value *v = value_addr (v2);
335
336 deprecated_set_value_type (v, type);
337 return v;
338 }
339 }
340
341 /* No superclass found, just change the pointer type. */
342 arg2 = value_copy (arg2);
343 deprecated_set_value_type (arg2, type);
344 set_value_enclosing_type (arg2, type);
345 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
346 return arg2;
347 }
348
349 /* Cast value ARG2 to type TYPE and return as a value.
350 More general than a C cast: accepts any two types of the same length,
351 and if ARG2 is an lvalue it can be cast into anything at all. */
352 /* In C++, casts may change pointer or object representations. */
353
354 struct value *
355 value_cast (struct type *type, struct value *arg2)
356 {
357 enum type_code code1;
358 enum type_code code2;
359 int scalar;
360 struct type *type2;
361
362 int convert_to_boolean = 0;
363
364 if (value_type (arg2) == type)
365 return arg2;
366
367 code1 = TYPE_CODE (check_typedef (type));
368
369 /* Check if we are casting struct reference to struct reference. */
370 if (code1 == TYPE_CODE_REF)
371 {
372 /* We dereference type; then we recurse and finally
373 we generate value of the given reference. Nothing wrong with
374 that. */
375 struct type *t1 = check_typedef (type);
376 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
377 struct value *val = value_cast (dereftype, arg2);
378
379 return value_ref (val);
380 }
381
382 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
383
384 if (code2 == TYPE_CODE_REF)
385 /* We deref the value and then do the cast. */
386 return value_cast (type, coerce_ref (arg2));
387
388 CHECK_TYPEDEF (type);
389 code1 = TYPE_CODE (type);
390 arg2 = coerce_ref (arg2);
391 type2 = check_typedef (value_type (arg2));
392
393 /* You can't cast to a reference type. See value_cast_pointers
394 instead. */
395 gdb_assert (code1 != TYPE_CODE_REF);
396
397 /* A cast to an undetermined-length array_type, such as
398 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
399 where N is sizeof(OBJECT)/sizeof(TYPE). */
400 if (code1 == TYPE_CODE_ARRAY)
401 {
402 struct type *element_type = TYPE_TARGET_TYPE (type);
403 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
404
405 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
406 {
407 struct type *range_type = TYPE_INDEX_TYPE (type);
408 int val_length = TYPE_LENGTH (type2);
409 LONGEST low_bound, high_bound, new_length;
410
411 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
412 low_bound = 0, high_bound = 0;
413 new_length = val_length / element_length;
414 if (val_length % element_length != 0)
415 warning (_("array element type size does not "
416 "divide object size in cast"));
417 /* FIXME-type-allocation: need a way to free this type when
418 we are done with it. */
419 range_type = create_range_type ((struct type *) NULL,
420 TYPE_TARGET_TYPE (range_type),
421 low_bound,
422 new_length + low_bound - 1);
423 deprecated_set_value_type (arg2,
424 create_array_type ((struct type *) NULL,
425 element_type,
426 range_type));
427 return arg2;
428 }
429 }
430
431 if (current_language->c_style_arrays
432 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
433 && !TYPE_VECTOR (type2))
434 arg2 = value_coerce_array (arg2);
435
436 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
437 arg2 = value_coerce_function (arg2);
438
439 type2 = check_typedef (value_type (arg2));
440 code2 = TYPE_CODE (type2);
441
442 if (code1 == TYPE_CODE_COMPLEX)
443 return cast_into_complex (type, arg2);
444 if (code1 == TYPE_CODE_BOOL)
445 {
446 code1 = TYPE_CODE_INT;
447 convert_to_boolean = 1;
448 }
449 if (code1 == TYPE_CODE_CHAR)
450 code1 = TYPE_CODE_INT;
451 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
452 code2 = TYPE_CODE_INT;
453
454 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
455 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
456 || code2 == TYPE_CODE_RANGE);
457
458 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
459 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
460 && TYPE_NAME (type) != 0)
461 {
462 struct value *v = value_cast_structs (type, arg2);
463
464 if (v)
465 return v;
466 }
467
468 if (code1 == TYPE_CODE_FLT && scalar)
469 return value_from_double (type, value_as_double (arg2));
470 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
471 {
472 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
473 int dec_len = TYPE_LENGTH (type);
474 gdb_byte dec[16];
475
476 if (code2 == TYPE_CODE_FLT)
477 decimal_from_floating (arg2, dec, dec_len, byte_order);
478 else if (code2 == TYPE_CODE_DECFLOAT)
479 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
480 byte_order, dec, dec_len, byte_order);
481 else
482 /* The only option left is an integral type. */
483 decimal_from_integral (arg2, dec, dec_len, byte_order);
484
485 return value_from_decfloat (type, dec);
486 }
487 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
488 || code1 == TYPE_CODE_RANGE)
489 && (scalar || code2 == TYPE_CODE_PTR
490 || code2 == TYPE_CODE_MEMBERPTR))
491 {
492 LONGEST longest;
493
494 /* When we cast pointers to integers, we mustn't use
495 gdbarch_pointer_to_address to find the address the pointer
496 represents, as value_as_long would. GDB should evaluate
497 expressions just as the compiler would --- and the compiler
498 sees a cast as a simple reinterpretation of the pointer's
499 bits. */
500 if (code2 == TYPE_CODE_PTR)
501 longest = extract_unsigned_integer
502 (value_contents (arg2), TYPE_LENGTH (type2),
503 gdbarch_byte_order (get_type_arch (type2)));
504 else
505 longest = value_as_long (arg2);
506 return value_from_longest (type, convert_to_boolean ?
507 (LONGEST) (longest ? 1 : 0) : longest);
508 }
509 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
510 || code2 == TYPE_CODE_ENUM
511 || code2 == TYPE_CODE_RANGE))
512 {
513 /* TYPE_LENGTH (type) is the length of a pointer, but we really
514 want the length of an address! -- we are really dealing with
515 addresses (i.e., gdb representations) not pointers (i.e.,
516 target representations) here.
517
518 This allows things like "print *(int *)0x01000234" to work
519 without printing a misleading message -- which would
520 otherwise occur when dealing with a target having two byte
521 pointers and four byte addresses. */
522
523 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
524 LONGEST longest = value_as_long (arg2);
525
526 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
527 {
528 if (longest >= ((LONGEST) 1 << addr_bit)
529 || longest <= -((LONGEST) 1 << addr_bit))
530 warning (_("value truncated"));
531 }
532 return value_from_longest (type, longest);
533 }
534 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
535 && value_as_long (arg2) == 0)
536 {
537 struct value *result = allocate_value (type);
538
539 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
540 return result;
541 }
542 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
543 && value_as_long (arg2) == 0)
544 {
545 /* The Itanium C++ ABI represents NULL pointers to members as
546 minus one, instead of biasing the normal case. */
547 return value_from_longest (type, -1);
548 }
549 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
550 && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
551 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
552 error (_("Cannot convert between vector values of different sizes"));
553 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
554 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
555 error (_("can only cast scalar to vector of same size"));
556 else if (code1 == TYPE_CODE_VOID)
557 {
558 return value_zero (type, not_lval);
559 }
560 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
561 {
562 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
563 return value_cast_pointers (type, arg2, 0);
564
565 arg2 = value_copy (arg2);
566 deprecated_set_value_type (arg2, type);
567 set_value_enclosing_type (arg2, type);
568 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
569 return arg2;
570 }
571 else if (VALUE_LVAL (arg2) == lval_memory)
572 return value_at_lazy (type, value_address (arg2));
573 else
574 {
575 error (_("Invalid cast."));
576 return 0;
577 }
578 }
579
580 /* The C++ reinterpret_cast operator. */
581
582 struct value *
583 value_reinterpret_cast (struct type *type, struct value *arg)
584 {
585 struct value *result;
586 struct type *real_type = check_typedef (type);
587 struct type *arg_type, *dest_type;
588 int is_ref = 0;
589 enum type_code dest_code, arg_code;
590
591 /* Do reference, function, and array conversion. */
592 arg = coerce_array (arg);
593
594 /* Attempt to preserve the type the user asked for. */
595 dest_type = type;
596
597 /* If we are casting to a reference type, transform
598 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
599 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
600 {
601 is_ref = 1;
602 arg = value_addr (arg);
603 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
604 real_type = lookup_pointer_type (real_type);
605 }
606
607 arg_type = value_type (arg);
608
609 dest_code = TYPE_CODE (real_type);
610 arg_code = TYPE_CODE (arg_type);
611
612 /* We can convert pointer types, or any pointer type to int, or int
613 type to pointer. */
614 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
615 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
616 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
617 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
618 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
619 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
620 || (dest_code == arg_code
621 && (dest_code == TYPE_CODE_PTR
622 || dest_code == TYPE_CODE_METHODPTR
623 || dest_code == TYPE_CODE_MEMBERPTR)))
624 result = value_cast (dest_type, arg);
625 else
626 error (_("Invalid reinterpret_cast"));
627
628 if (is_ref)
629 result = value_cast (type, value_ref (value_ind (result)));
630
631 return result;
632 }
633
634 /* A helper for value_dynamic_cast. This implements the first of two
635 runtime checks: we iterate over all the base classes of the value's
636 class which are equal to the desired class; if only one of these
637 holds the value, then it is the answer. */
638
639 static int
640 dynamic_cast_check_1 (struct type *desired_type,
641 const gdb_byte *valaddr,
642 int embedded_offset,
643 CORE_ADDR address,
644 struct value *val,
645 struct type *search_type,
646 CORE_ADDR arg_addr,
647 struct type *arg_type,
648 struct value **result)
649 {
650 int i, result_count = 0;
651
652 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
653 {
654 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
655 address, val);
656
657 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
658 {
659 if (address + embedded_offset + offset >= arg_addr
660 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
661 {
662 ++result_count;
663 if (!*result)
664 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
665 address + embedded_offset + offset);
666 }
667 }
668 else
669 result_count += dynamic_cast_check_1 (desired_type,
670 valaddr,
671 embedded_offset + offset,
672 address, val,
673 TYPE_BASECLASS (search_type, i),
674 arg_addr,
675 arg_type,
676 result);
677 }
678
679 return result_count;
680 }
681
682 /* A helper for value_dynamic_cast. This implements the second of two
683 runtime checks: we look for a unique public sibling class of the
684 argument's declared class. */
685
686 static int
687 dynamic_cast_check_2 (struct type *desired_type,
688 const gdb_byte *valaddr,
689 int embedded_offset,
690 CORE_ADDR address,
691 struct value *val,
692 struct type *search_type,
693 struct value **result)
694 {
695 int i, result_count = 0;
696
697 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
698 {
699 int offset;
700
701 if (! BASETYPE_VIA_PUBLIC (search_type, i))
702 continue;
703
704 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
705 address, val);
706 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
707 {
708 ++result_count;
709 if (*result == NULL)
710 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
711 address + embedded_offset + offset);
712 }
713 else
714 result_count += dynamic_cast_check_2 (desired_type,
715 valaddr,
716 embedded_offset + offset,
717 address, val,
718 TYPE_BASECLASS (search_type, i),
719 result);
720 }
721
722 return result_count;
723 }
724
725 /* The C++ dynamic_cast operator. */
726
727 struct value *
728 value_dynamic_cast (struct type *type, struct value *arg)
729 {
730 int full, top, using_enc;
731 struct type *resolved_type = check_typedef (type);
732 struct type *arg_type = check_typedef (value_type (arg));
733 struct type *class_type, *rtti_type;
734 struct value *result, *tem, *original_arg = arg;
735 CORE_ADDR addr;
736 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
737
738 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
739 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
740 error (_("Argument to dynamic_cast must be a pointer or reference type"));
741 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
742 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
743 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
744
745 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
746 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
747 {
748 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
749 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
750 && value_as_long (arg) == 0))
751 error (_("Argument to dynamic_cast does not have pointer type"));
752 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
753 {
754 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
755 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
756 error (_("Argument to dynamic_cast does "
757 "not have pointer to class type"));
758 }
759
760 /* Handle NULL pointers. */
761 if (value_as_long (arg) == 0)
762 return value_zero (type, not_lval);
763
764 arg = value_ind (arg);
765 }
766 else
767 {
768 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
769 error (_("Argument to dynamic_cast does not have class type"));
770 }
771
772 /* If the classes are the same, just return the argument. */
773 if (class_types_same_p (class_type, arg_type))
774 return value_cast (type, arg);
775
776 /* If the target type is a unique base class of the argument's
777 declared type, just cast it. */
778 if (is_ancestor (class_type, arg_type))
779 {
780 if (is_unique_ancestor (class_type, arg))
781 return value_cast (type, original_arg);
782 error (_("Ambiguous dynamic_cast"));
783 }
784
785 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
786 if (! rtti_type)
787 error (_("Couldn't determine value's most derived type for dynamic_cast"));
788
789 /* Compute the most derived object's address. */
790 addr = value_address (arg);
791 if (full)
792 {
793 /* Done. */
794 }
795 else if (using_enc)
796 addr += top;
797 else
798 addr += top + value_embedded_offset (arg);
799
800 /* dynamic_cast<void *> means to return a pointer to the
801 most-derived object. */
802 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
803 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
804 return value_at_lazy (type, addr);
805
806 tem = value_at (type, addr);
807
808 /* The first dynamic check specified in 5.2.7. */
809 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
810 {
811 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
812 return tem;
813 result = NULL;
814 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
815 value_contents_for_printing (tem),
816 value_embedded_offset (tem),
817 value_address (tem), tem,
818 rtti_type, addr,
819 arg_type,
820 &result) == 1)
821 return value_cast (type,
822 is_ref ? value_ref (result) : value_addr (result));
823 }
824
825 /* The second dynamic check specified in 5.2.7. */
826 result = NULL;
827 if (is_public_ancestor (arg_type, rtti_type)
828 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
829 value_contents_for_printing (tem),
830 value_embedded_offset (tem),
831 value_address (tem), tem,
832 rtti_type, &result) == 1)
833 return value_cast (type,
834 is_ref ? value_ref (result) : value_addr (result));
835
836 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
837 return value_zero (type, not_lval);
838
839 error (_("dynamic_cast failed"));
840 }
841
842 /* Create a value of type TYPE that is zero, and return it. */
843
844 struct value *
845 value_zero (struct type *type, enum lval_type lv)
846 {
847 struct value *val = allocate_value (type);
848
849 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
850 return val;
851 }
852
853 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
854
855 struct value *
856 value_one (struct type *type)
857 {
858 struct type *type1 = check_typedef (type);
859 struct value *val;
860
861 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
862 {
863 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
864 gdb_byte v[16];
865
866 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
867 val = value_from_decfloat (type, v);
868 }
869 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
870 {
871 val = value_from_double (type, (DOUBLEST) 1);
872 }
873 else if (is_integral_type (type1))
874 {
875 val = value_from_longest (type, (LONGEST) 1);
876 }
877 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
878 {
879 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
880 int i;
881 LONGEST low_bound, high_bound;
882 struct value *tmp;
883
884 if (!get_array_bounds (type1, &low_bound, &high_bound))
885 error (_("Could not determine the vector bounds"));
886
887 val = allocate_value (type);
888 for (i = 0; i < high_bound - low_bound + 1; i++)
889 {
890 tmp = value_one (eltype);
891 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
892 value_contents_all (tmp), TYPE_LENGTH (eltype));
893 }
894 }
895 else
896 {
897 error (_("Not a numeric type."));
898 }
899
900 /* value_one result is never used for assignments to. */
901 gdb_assert (VALUE_LVAL (val) == not_lval);
902
903 return val;
904 }
905
906 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
907
908 static struct value *
909 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
910 {
911 struct value *val;
912
913 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
914 error (_("Attempt to dereference a generic pointer."));
915
916 val = value_from_contents_and_address (type, NULL, addr);
917
918 if (!lazy)
919 value_fetch_lazy (val);
920
921 return val;
922 }
923
924 /* Return a value with type TYPE located at ADDR.
925
926 Call value_at only if the data needs to be fetched immediately;
927 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
928 value_at_lazy instead. value_at_lazy simply records the address of
929 the data and sets the lazy-evaluation-required flag. The lazy flag
930 is tested in the value_contents macro, which is used if and when
931 the contents are actually required.
932
933 Note: value_at does *NOT* handle embedded offsets; perform such
934 adjustments before or after calling it. */
935
936 struct value *
937 value_at (struct type *type, CORE_ADDR addr)
938 {
939 return get_value_at (type, addr, 0);
940 }
941
942 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
943
944 struct value *
945 value_at_lazy (struct type *type, CORE_ADDR addr)
946 {
947 return get_value_at (type, addr, 1);
948 }
949
950 /* Called only from the value_contents and value_contents_all()
951 macros, if the current data for a variable needs to be loaded into
952 value_contents(VAL). Fetches the data from the user's process, and
953 clears the lazy flag to indicate that the data in the buffer is
954 valid.
955
956 If the value is zero-length, we avoid calling read_memory, which
957 would abort. We mark the value as fetched anyway -- all 0 bytes of
958 it.
959
960 This function returns a value because it is used in the
961 value_contents macro as part of an expression, where a void would
962 not work. The value is ignored. */
963
964 int
965 value_fetch_lazy (struct value *val)
966 {
967 gdb_assert (value_lazy (val));
968 allocate_value_contents (val);
969 if (value_bitsize (val))
970 {
971 /* To read a lazy bitfield, read the entire enclosing value. This
972 prevents reading the same block of (possibly volatile) memory once
973 per bitfield. It would be even better to read only the containing
974 word, but we have no way to record that just specific bits of a
975 value have been fetched. */
976 struct type *type = check_typedef (value_type (val));
977 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
978 struct value *parent = value_parent (val);
979 LONGEST offset = value_offset (val);
980 LONGEST num;
981
982 if (!value_bits_valid (val,
983 TARGET_CHAR_BIT * offset + value_bitpos (val),
984 value_bitsize (val)))
985 error (_("value has been optimized out"));
986
987 if (!unpack_value_bits_as_long (value_type (val),
988 value_contents_for_printing (parent),
989 offset,
990 value_bitpos (val),
991 value_bitsize (val), parent, &num))
992 mark_value_bytes_unavailable (val,
993 value_embedded_offset (val),
994 TYPE_LENGTH (type));
995 else
996 store_signed_integer (value_contents_raw (val), TYPE_LENGTH (type),
997 byte_order, num);
998 }
999 else if (VALUE_LVAL (val) == lval_memory)
1000 {
1001 CORE_ADDR addr = value_address (val);
1002 struct type *type = check_typedef (value_enclosing_type (val));
1003
1004 if (TYPE_LENGTH (type))
1005 read_value_memory (val, 0, value_stack (val),
1006 addr, value_contents_all_raw (val),
1007 TYPE_LENGTH (type));
1008 }
1009 else if (VALUE_LVAL (val) == lval_register)
1010 {
1011 struct frame_info *frame;
1012 int regnum;
1013 struct type *type = check_typedef (value_type (val));
1014 struct value *new_val = val, *mark = value_mark ();
1015
1016 /* Offsets are not supported here; lazy register values must
1017 refer to the entire register. */
1018 gdb_assert (value_offset (val) == 0);
1019
1020 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
1021 {
1022 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
1023 regnum = VALUE_REGNUM (new_val);
1024
1025 gdb_assert (frame != NULL);
1026
1027 /* Convertible register routines are used for multi-register
1028 values and for interpretation in different types
1029 (e.g. float or int from a double register). Lazy
1030 register values should have the register's natural type,
1031 so they do not apply. */
1032 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
1033 regnum, type));
1034
1035 new_val = get_frame_register_value (frame, regnum);
1036 }
1037
1038 /* If it's still lazy (for instance, a saved register on the
1039 stack), fetch it. */
1040 if (value_lazy (new_val))
1041 value_fetch_lazy (new_val);
1042
1043 /* If the register was not saved, mark it optimized out. */
1044 if (value_optimized_out (new_val))
1045 set_value_optimized_out (val, 1);
1046 else
1047 {
1048 set_value_lazy (val, 0);
1049 value_contents_copy (val, value_embedded_offset (val),
1050 new_val, value_embedded_offset (new_val),
1051 TYPE_LENGTH (type));
1052 }
1053
1054 if (frame_debug)
1055 {
1056 struct gdbarch *gdbarch;
1057 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1058 regnum = VALUE_REGNUM (val);
1059 gdbarch = get_frame_arch (frame);
1060
1061 fprintf_unfiltered (gdb_stdlog,
1062 "{ value_fetch_lazy "
1063 "(frame=%d,regnum=%d(%s),...) ",
1064 frame_relative_level (frame), regnum,
1065 user_reg_map_regnum_to_name (gdbarch, regnum));
1066
1067 fprintf_unfiltered (gdb_stdlog, "->");
1068 if (value_optimized_out (new_val))
1069 fprintf_unfiltered (gdb_stdlog, " optimized out");
1070 else
1071 {
1072 int i;
1073 const gdb_byte *buf = value_contents (new_val);
1074
1075 if (VALUE_LVAL (new_val) == lval_register)
1076 fprintf_unfiltered (gdb_stdlog, " register=%d",
1077 VALUE_REGNUM (new_val));
1078 else if (VALUE_LVAL (new_val) == lval_memory)
1079 fprintf_unfiltered (gdb_stdlog, " address=%s",
1080 paddress (gdbarch,
1081 value_address (new_val)));
1082 else
1083 fprintf_unfiltered (gdb_stdlog, " computed");
1084
1085 fprintf_unfiltered (gdb_stdlog, " bytes=");
1086 fprintf_unfiltered (gdb_stdlog, "[");
1087 for (i = 0; i < register_size (gdbarch, regnum); i++)
1088 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1089 fprintf_unfiltered (gdb_stdlog, "]");
1090 }
1091
1092 fprintf_unfiltered (gdb_stdlog, " }\n");
1093 }
1094
1095 /* Dispose of the intermediate values. This prevents
1096 watchpoints from trying to watch the saved frame pointer. */
1097 value_free_to_mark (mark);
1098 }
1099 else if (VALUE_LVAL (val) == lval_computed
1100 && value_computed_funcs (val)->read != NULL)
1101 value_computed_funcs (val)->read (val);
1102 else if (value_optimized_out (val))
1103 /* Keep it optimized out. */;
1104 else
1105 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
1106
1107 set_value_lazy (val, 0);
1108 return 0;
1109 }
1110
1111 void
1112 read_value_memory (struct value *val, int embedded_offset,
1113 int stack, CORE_ADDR memaddr,
1114 gdb_byte *buffer, size_t length)
1115 {
1116 if (length)
1117 {
1118 VEC(mem_range_s) *available_memory;
1119
1120 if (get_traceframe_number () < 0
1121 || !traceframe_available_memory (&available_memory, memaddr, length))
1122 {
1123 if (stack)
1124 read_stack (memaddr, buffer, length);
1125 else
1126 read_memory (memaddr, buffer, length);
1127 }
1128 else
1129 {
1130 struct target_section_table *table;
1131 struct cleanup *old_chain;
1132 CORE_ADDR unavail;
1133 mem_range_s *r;
1134 int i;
1135
1136 /* Fallback to reading from read-only sections. */
1137 table = target_get_section_table (&exec_ops);
1138 available_memory =
1139 section_table_available_memory (available_memory,
1140 memaddr, length,
1141 table->sections,
1142 table->sections_end);
1143
1144 old_chain = make_cleanup (VEC_cleanup(mem_range_s),
1145 &available_memory);
1146
1147 normalize_mem_ranges (available_memory);
1148
1149 /* Mark which bytes are unavailable, and read those which
1150 are available. */
1151
1152 unavail = memaddr;
1153
1154 for (i = 0;
1155 VEC_iterate (mem_range_s, available_memory, i, r);
1156 i++)
1157 {
1158 if (mem_ranges_overlap (r->start, r->length,
1159 memaddr, length))
1160 {
1161 CORE_ADDR lo1, hi1, lo2, hi2;
1162 CORE_ADDR start, end;
1163
1164 /* Get the intersection window. */
1165 lo1 = memaddr;
1166 hi1 = memaddr + length;
1167 lo2 = r->start;
1168 hi2 = r->start + r->length;
1169 start = max (lo1, lo2);
1170 end = min (hi1, hi2);
1171
1172 gdb_assert (end - memaddr <= length);
1173
1174 if (start > unavail)
1175 mark_value_bytes_unavailable (val,
1176 (embedded_offset
1177 + unavail - memaddr),
1178 start - unavail);
1179 unavail = end;
1180
1181 read_memory (start, buffer + start - memaddr, end - start);
1182 }
1183 }
1184
1185 if (unavail != memaddr + length)
1186 mark_value_bytes_unavailable (val,
1187 embedded_offset + unavail - memaddr,
1188 (memaddr + length) - unavail);
1189
1190 do_cleanups (old_chain);
1191 }
1192 }
1193 }
1194
1195 /* Store the contents of FROMVAL into the location of TOVAL.
1196 Return a new value with the location of TOVAL and contents of FROMVAL. */
1197
1198 struct value *
1199 value_assign (struct value *toval, struct value *fromval)
1200 {
1201 struct type *type;
1202 struct value *val;
1203 struct frame_id old_frame;
1204
1205 if (!deprecated_value_modifiable (toval))
1206 error (_("Left operand of assignment is not a modifiable lvalue."));
1207
1208 toval = coerce_ref (toval);
1209
1210 type = value_type (toval);
1211 if (VALUE_LVAL (toval) != lval_internalvar)
1212 fromval = value_cast (type, fromval);
1213 else
1214 {
1215 /* Coerce arrays and functions to pointers, except for arrays
1216 which only live in GDB's storage. */
1217 if (!value_must_coerce_to_target (fromval))
1218 fromval = coerce_array (fromval);
1219 }
1220
1221 CHECK_TYPEDEF (type);
1222
1223 /* Since modifying a register can trash the frame chain, and
1224 modifying memory can trash the frame cache, we save the old frame
1225 and then restore the new frame afterwards. */
1226 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1227
1228 switch (VALUE_LVAL (toval))
1229 {
1230 case lval_internalvar:
1231 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1232 return value_of_internalvar (get_type_arch (type),
1233 VALUE_INTERNALVAR (toval));
1234
1235 case lval_internalvar_component:
1236 set_internalvar_component (VALUE_INTERNALVAR (toval),
1237 value_offset (toval),
1238 value_bitpos (toval),
1239 value_bitsize (toval),
1240 fromval);
1241 break;
1242
1243 case lval_memory:
1244 {
1245 const gdb_byte *dest_buffer;
1246 CORE_ADDR changed_addr;
1247 int changed_len;
1248 gdb_byte buffer[sizeof (LONGEST)];
1249
1250 if (value_bitsize (toval))
1251 {
1252 struct value *parent = value_parent (toval);
1253
1254 changed_addr = value_address (parent) + value_offset (toval);
1255 changed_len = (value_bitpos (toval)
1256 + value_bitsize (toval)
1257 + HOST_CHAR_BIT - 1)
1258 / HOST_CHAR_BIT;
1259
1260 /* If we can read-modify-write exactly the size of the
1261 containing type (e.g. short or int) then do so. This
1262 is safer for volatile bitfields mapped to hardware
1263 registers. */
1264 if (changed_len < TYPE_LENGTH (type)
1265 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1266 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1267 changed_len = TYPE_LENGTH (type);
1268
1269 if (changed_len > (int) sizeof (LONGEST))
1270 error (_("Can't handle bitfields which "
1271 "don't fit in a %d bit word."),
1272 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1273
1274 read_memory (changed_addr, buffer, changed_len);
1275 modify_field (type, buffer, value_as_long (fromval),
1276 value_bitpos (toval), value_bitsize (toval));
1277 dest_buffer = buffer;
1278 }
1279 else
1280 {
1281 changed_addr = value_address (toval);
1282 changed_len = TYPE_LENGTH (type);
1283 dest_buffer = value_contents (fromval);
1284 }
1285
1286 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1287 }
1288 break;
1289
1290 case lval_register:
1291 {
1292 struct frame_info *frame;
1293 struct gdbarch *gdbarch;
1294 int value_reg;
1295
1296 /* Figure out which frame this is in currently. */
1297 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1298 value_reg = VALUE_REGNUM (toval);
1299
1300 if (!frame)
1301 error (_("Value being assigned to is no longer active."));
1302
1303 gdbarch = get_frame_arch (frame);
1304 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1305 {
1306 /* If TOVAL is a special machine register requiring
1307 conversion of program values to a special raw
1308 format. */
1309 gdbarch_value_to_register (gdbarch, frame,
1310 VALUE_REGNUM (toval), type,
1311 value_contents (fromval));
1312 }
1313 else
1314 {
1315 if (value_bitsize (toval))
1316 {
1317 struct value *parent = value_parent (toval);
1318 int offset = value_offset (parent) + value_offset (toval);
1319 int changed_len;
1320 gdb_byte buffer[sizeof (LONGEST)];
1321 int optim, unavail;
1322
1323 changed_len = (value_bitpos (toval)
1324 + value_bitsize (toval)
1325 + HOST_CHAR_BIT - 1)
1326 / HOST_CHAR_BIT;
1327
1328 if (changed_len > (int) sizeof (LONGEST))
1329 error (_("Can't handle bitfields which "
1330 "don't fit in a %d bit word."),
1331 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1332
1333 if (!get_frame_register_bytes (frame, value_reg, offset,
1334 changed_len, buffer,
1335 &optim, &unavail))
1336 {
1337 if (optim)
1338 error (_("value has been optimized out"));
1339 if (unavail)
1340 throw_error (NOT_AVAILABLE_ERROR,
1341 _("value is not available"));
1342 }
1343
1344 modify_field (type, buffer, value_as_long (fromval),
1345 value_bitpos (toval), value_bitsize (toval));
1346
1347 put_frame_register_bytes (frame, value_reg, offset,
1348 changed_len, buffer);
1349 }
1350 else
1351 {
1352 put_frame_register_bytes (frame, value_reg,
1353 value_offset (toval),
1354 TYPE_LENGTH (type),
1355 value_contents (fromval));
1356 }
1357 }
1358
1359 if (deprecated_register_changed_hook)
1360 deprecated_register_changed_hook (-1);
1361 break;
1362 }
1363
1364 case lval_computed:
1365 {
1366 const struct lval_funcs *funcs = value_computed_funcs (toval);
1367
1368 if (funcs->write != NULL)
1369 {
1370 funcs->write (toval, fromval);
1371 break;
1372 }
1373 }
1374 /* Fall through. */
1375
1376 default:
1377 error (_("Left operand of assignment is not an lvalue."));
1378 }
1379
1380 /* Assigning to the stack pointer, frame pointer, and other
1381 (architecture and calling convention specific) registers may
1382 cause the frame cache and regcache to be out of date. Assigning to memory
1383 also can. We just do this on all assignments to registers or
1384 memory, for simplicity's sake; I doubt the slowdown matters. */
1385 switch (VALUE_LVAL (toval))
1386 {
1387 case lval_memory:
1388 case lval_register:
1389 case lval_computed:
1390
1391 observer_notify_target_changed (&current_target);
1392
1393 /* Having destroyed the frame cache, restore the selected
1394 frame. */
1395
1396 /* FIXME: cagney/2002-11-02: There has to be a better way of
1397 doing this. Instead of constantly saving/restoring the
1398 frame. Why not create a get_selected_frame() function that,
1399 having saved the selected frame's ID can automatically
1400 re-find the previously selected frame automatically. */
1401
1402 {
1403 struct frame_info *fi = frame_find_by_id (old_frame);
1404
1405 if (fi != NULL)
1406 select_frame (fi);
1407 }
1408
1409 break;
1410 default:
1411 break;
1412 }
1413
1414 /* If the field does not entirely fill a LONGEST, then zero the sign
1415 bits. If the field is signed, and is negative, then sign
1416 extend. */
1417 if ((value_bitsize (toval) > 0)
1418 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1419 {
1420 LONGEST fieldval = value_as_long (fromval);
1421 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1422
1423 fieldval &= valmask;
1424 if (!TYPE_UNSIGNED (type)
1425 && (fieldval & (valmask ^ (valmask >> 1))))
1426 fieldval |= ~valmask;
1427
1428 fromval = value_from_longest (type, fieldval);
1429 }
1430
1431 /* The return value is a copy of TOVAL so it shares its location
1432 information, but its contents are updated from FROMVAL. This
1433 implies the returned value is not lazy, even if TOVAL was. */
1434 val = value_copy (toval);
1435 set_value_lazy (val, 0);
1436 memcpy (value_contents_raw (val), value_contents (fromval),
1437 TYPE_LENGTH (type));
1438
1439 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1440 in the case of pointer types. For object types, the enclosing type
1441 and embedded offset must *not* be copied: the target object refered
1442 to by TOVAL retains its original dynamic type after assignment. */
1443 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1444 {
1445 set_value_enclosing_type (val, value_enclosing_type (fromval));
1446 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1447 }
1448
1449 return val;
1450 }
1451
1452 /* Extend a value VAL to COUNT repetitions of its type. */
1453
1454 struct value *
1455 value_repeat (struct value *arg1, int count)
1456 {
1457 struct value *val;
1458
1459 if (VALUE_LVAL (arg1) != lval_memory)
1460 error (_("Only values in memory can be extended with '@'."));
1461 if (count < 1)
1462 error (_("Invalid number %d of repetitions."), count);
1463
1464 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1465
1466 VALUE_LVAL (val) = lval_memory;
1467 set_value_address (val, value_address (arg1));
1468
1469 read_value_memory (val, 0, value_stack (val), value_address (val),
1470 value_contents_all_raw (val),
1471 TYPE_LENGTH (value_enclosing_type (val)));
1472
1473 return val;
1474 }
1475
1476 struct value *
1477 value_of_variable (struct symbol *var, const struct block *b)
1478 {
1479 struct frame_info *frame;
1480
1481 if (!symbol_read_needs_frame (var))
1482 frame = NULL;
1483 else if (!b)
1484 frame = get_selected_frame (_("No frame selected."));
1485 else
1486 {
1487 frame = block_innermost_frame (b);
1488 if (!frame)
1489 {
1490 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1491 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1492 error (_("No frame is currently executing in block %s."),
1493 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1494 else
1495 error (_("No frame is currently executing in specified block"));
1496 }
1497 }
1498
1499 return read_var_value (var, frame);
1500 }
1501
1502 struct value *
1503 address_of_variable (struct symbol *var, const struct block *b)
1504 {
1505 struct type *type = SYMBOL_TYPE (var);
1506 struct value *val;
1507
1508 /* Evaluate it first; if the result is a memory address, we're fine.
1509 Lazy evaluation pays off here. */
1510
1511 val = value_of_variable (var, b);
1512
1513 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1514 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1515 {
1516 CORE_ADDR addr = value_address (val);
1517
1518 return value_from_pointer (lookup_pointer_type (type), addr);
1519 }
1520
1521 /* Not a memory address; check what the problem was. */
1522 switch (VALUE_LVAL (val))
1523 {
1524 case lval_register:
1525 {
1526 struct frame_info *frame;
1527 const char *regname;
1528
1529 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1530 gdb_assert (frame);
1531
1532 regname = gdbarch_register_name (get_frame_arch (frame),
1533 VALUE_REGNUM (val));
1534 gdb_assert (regname && *regname);
1535
1536 error (_("Address requested for identifier "
1537 "\"%s\" which is in register $%s"),
1538 SYMBOL_PRINT_NAME (var), regname);
1539 break;
1540 }
1541
1542 default:
1543 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1544 SYMBOL_PRINT_NAME (var));
1545 break;
1546 }
1547
1548 return val;
1549 }
1550
1551 /* Return one if VAL does not live in target memory, but should in order
1552 to operate on it. Otherwise return zero. */
1553
1554 int
1555 value_must_coerce_to_target (struct value *val)
1556 {
1557 struct type *valtype;
1558
1559 /* The only lval kinds which do not live in target memory. */
1560 if (VALUE_LVAL (val) != not_lval
1561 && VALUE_LVAL (val) != lval_internalvar)
1562 return 0;
1563
1564 valtype = check_typedef (value_type (val));
1565
1566 switch (TYPE_CODE (valtype))
1567 {
1568 case TYPE_CODE_ARRAY:
1569 return TYPE_VECTOR (valtype) ? 0 : 1;
1570 case TYPE_CODE_STRING:
1571 return 1;
1572 default:
1573 return 0;
1574 }
1575 }
1576
1577 /* Make sure that VAL lives in target memory if it's supposed to. For
1578 instance, strings are constructed as character arrays in GDB's
1579 storage, and this function copies them to the target. */
1580
1581 struct value *
1582 value_coerce_to_target (struct value *val)
1583 {
1584 LONGEST length;
1585 CORE_ADDR addr;
1586
1587 if (!value_must_coerce_to_target (val))
1588 return val;
1589
1590 length = TYPE_LENGTH (check_typedef (value_type (val)));
1591 addr = allocate_space_in_inferior (length);
1592 write_memory (addr, value_contents (val), length);
1593 return value_at_lazy (value_type (val), addr);
1594 }
1595
1596 /* Given a value which is an array, return a value which is a pointer
1597 to its first element, regardless of whether or not the array has a
1598 nonzero lower bound.
1599
1600 FIXME: A previous comment here indicated that this routine should
1601 be substracting the array's lower bound. It's not clear to me that
1602 this is correct. Given an array subscripting operation, it would
1603 certainly work to do the adjustment here, essentially computing:
1604
1605 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1606
1607 However I believe a more appropriate and logical place to account
1608 for the lower bound is to do so in value_subscript, essentially
1609 computing:
1610
1611 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1612
1613 As further evidence consider what would happen with operations
1614 other than array subscripting, where the caller would get back a
1615 value that had an address somewhere before the actual first element
1616 of the array, and the information about the lower bound would be
1617 lost because of the coercion to pointer type. */
1618
1619 struct value *
1620 value_coerce_array (struct value *arg1)
1621 {
1622 struct type *type = check_typedef (value_type (arg1));
1623
1624 /* If the user tries to do something requiring a pointer with an
1625 array that has not yet been pushed to the target, then this would
1626 be a good time to do so. */
1627 arg1 = value_coerce_to_target (arg1);
1628
1629 if (VALUE_LVAL (arg1) != lval_memory)
1630 error (_("Attempt to take address of value not located in memory."));
1631
1632 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1633 value_address (arg1));
1634 }
1635
1636 /* Given a value which is a function, return a value which is a pointer
1637 to it. */
1638
1639 struct value *
1640 value_coerce_function (struct value *arg1)
1641 {
1642 struct value *retval;
1643
1644 if (VALUE_LVAL (arg1) != lval_memory)
1645 error (_("Attempt to take address of value not located in memory."));
1646
1647 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1648 value_address (arg1));
1649 return retval;
1650 }
1651
1652 /* Return a pointer value for the object for which ARG1 is the
1653 contents. */
1654
1655 struct value *
1656 value_addr (struct value *arg1)
1657 {
1658 struct value *arg2;
1659 struct type *type = check_typedef (value_type (arg1));
1660
1661 if (TYPE_CODE (type) == TYPE_CODE_REF)
1662 {
1663 /* Copy the value, but change the type from (T&) to (T*). We
1664 keep the same location information, which is efficient, and
1665 allows &(&X) to get the location containing the reference. */
1666 arg2 = value_copy (arg1);
1667 deprecated_set_value_type (arg2,
1668 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1669 return arg2;
1670 }
1671 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1672 return value_coerce_function (arg1);
1673
1674 /* If this is an array that has not yet been pushed to the target,
1675 then this would be a good time to force it to memory. */
1676 arg1 = value_coerce_to_target (arg1);
1677
1678 if (VALUE_LVAL (arg1) != lval_memory)
1679 error (_("Attempt to take address of value not located in memory."));
1680
1681 /* Get target memory address. */
1682 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1683 (value_address (arg1)
1684 + value_embedded_offset (arg1)));
1685
1686 /* This may be a pointer to a base subobject; so remember the
1687 full derived object's type ... */
1688 set_value_enclosing_type (arg2,
1689 lookup_pointer_type (value_enclosing_type (arg1)));
1690 /* ... and also the relative position of the subobject in the full
1691 object. */
1692 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1693 return arg2;
1694 }
1695
1696 /* Return a reference value for the object for which ARG1 is the
1697 contents. */
1698
1699 struct value *
1700 value_ref (struct value *arg1)
1701 {
1702 struct value *arg2;
1703 struct type *type = check_typedef (value_type (arg1));
1704
1705 if (TYPE_CODE (type) == TYPE_CODE_REF)
1706 return arg1;
1707
1708 arg2 = value_addr (arg1);
1709 deprecated_set_value_type (arg2, lookup_reference_type (type));
1710 return arg2;
1711 }
1712
1713 /* Given a value of a pointer type, apply the C unary * operator to
1714 it. */
1715
1716 struct value *
1717 value_ind (struct value *arg1)
1718 {
1719 struct type *base_type;
1720 struct value *arg2;
1721
1722 arg1 = coerce_array (arg1);
1723
1724 base_type = check_typedef (value_type (arg1));
1725
1726 if (VALUE_LVAL (arg1) == lval_computed)
1727 {
1728 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1729
1730 if (funcs->indirect)
1731 {
1732 struct value *result = funcs->indirect (arg1);
1733
1734 if (result)
1735 return result;
1736 }
1737 }
1738
1739 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1740 {
1741 struct type *enc_type;
1742
1743 /* We may be pointing to something embedded in a larger object.
1744 Get the real type of the enclosing object. */
1745 enc_type = check_typedef (value_enclosing_type (arg1));
1746 enc_type = TYPE_TARGET_TYPE (enc_type);
1747
1748 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1749 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1750 /* For functions, go through find_function_addr, which knows
1751 how to handle function descriptors. */
1752 arg2 = value_at_lazy (enc_type,
1753 find_function_addr (arg1, NULL));
1754 else
1755 /* Retrieve the enclosing object pointed to. */
1756 arg2 = value_at_lazy (enc_type,
1757 (value_as_address (arg1)
1758 - value_pointed_to_offset (arg1)));
1759
1760 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1761 }
1762
1763 error (_("Attempt to take contents of a non-pointer value."));
1764 return 0; /* For lint -- never reached. */
1765 }
1766 \f
1767 /* Create a value for an array by allocating space in GDB, copying the
1768 data into that space, and then setting up an array value.
1769
1770 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1771 is populated from the values passed in ELEMVEC.
1772
1773 The element type of the array is inherited from the type of the
1774 first element, and all elements must have the same size (though we
1775 don't currently enforce any restriction on their types). */
1776
1777 struct value *
1778 value_array (int lowbound, int highbound, struct value **elemvec)
1779 {
1780 int nelem;
1781 int idx;
1782 unsigned int typelength;
1783 struct value *val;
1784 struct type *arraytype;
1785
1786 /* Validate that the bounds are reasonable and that each of the
1787 elements have the same size. */
1788
1789 nelem = highbound - lowbound + 1;
1790 if (nelem <= 0)
1791 {
1792 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1793 }
1794 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1795 for (idx = 1; idx < nelem; idx++)
1796 {
1797 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1798 {
1799 error (_("array elements must all be the same size"));
1800 }
1801 }
1802
1803 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1804 lowbound, highbound);
1805
1806 if (!current_language->c_style_arrays)
1807 {
1808 val = allocate_value (arraytype);
1809 for (idx = 0; idx < nelem; idx++)
1810 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1811 typelength);
1812 return val;
1813 }
1814
1815 /* Allocate space to store the array, and then initialize it by
1816 copying in each element. */
1817
1818 val = allocate_value (arraytype);
1819 for (idx = 0; idx < nelem; idx++)
1820 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1821 return val;
1822 }
1823
1824 struct value *
1825 value_cstring (char *ptr, ssize_t len, struct type *char_type)
1826 {
1827 struct value *val;
1828 int lowbound = current_language->string_lower_bound;
1829 ssize_t highbound = len / TYPE_LENGTH (char_type);
1830 struct type *stringtype
1831 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1832
1833 val = allocate_value (stringtype);
1834 memcpy (value_contents_raw (val), ptr, len);
1835 return val;
1836 }
1837
1838 /* Create a value for a string constant by allocating space in the
1839 inferior, copying the data into that space, and returning the
1840 address with type TYPE_CODE_STRING. PTR points to the string
1841 constant data; LEN is number of characters.
1842
1843 Note that string types are like array of char types with a lower
1844 bound of zero and an upper bound of LEN - 1. Also note that the
1845 string may contain embedded null bytes. */
1846
1847 struct value *
1848 value_string (char *ptr, ssize_t len, struct type *char_type)
1849 {
1850 struct value *val;
1851 int lowbound = current_language->string_lower_bound;
1852 ssize_t highbound = len / TYPE_LENGTH (char_type);
1853 struct type *stringtype
1854 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1855
1856 val = allocate_value (stringtype);
1857 memcpy (value_contents_raw (val), ptr, len);
1858 return val;
1859 }
1860
1861 \f
1862 /* See if we can pass arguments in T2 to a function which takes
1863 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1864 a NULL-terminated vector. If some arguments need coercion of some
1865 sort, then the coerced values are written into T2. Return value is
1866 0 if the arguments could be matched, or the position at which they
1867 differ if not.
1868
1869 STATICP is nonzero if the T1 argument list came from a static
1870 member function. T2 will still include the ``this'' pointer, but
1871 it will be skipped.
1872
1873 For non-static member functions, we ignore the first argument,
1874 which is the type of the instance variable. This is because we
1875 want to handle calls with objects from derived classes. This is
1876 not entirely correct: we should actually check to make sure that a
1877 requested operation is type secure, shouldn't we? FIXME. */
1878
1879 static int
1880 typecmp (int staticp, int varargs, int nargs,
1881 struct field t1[], struct value *t2[])
1882 {
1883 int i;
1884
1885 if (t2 == 0)
1886 internal_error (__FILE__, __LINE__,
1887 _("typecmp: no argument list"));
1888
1889 /* Skip ``this'' argument if applicable. T2 will always include
1890 THIS. */
1891 if (staticp)
1892 t2 ++;
1893
1894 for (i = 0;
1895 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1896 i++)
1897 {
1898 struct type *tt1, *tt2;
1899
1900 if (!t2[i])
1901 return i + 1;
1902
1903 tt1 = check_typedef (t1[i].type);
1904 tt2 = check_typedef (value_type (t2[i]));
1905
1906 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1907 /* We should be doing hairy argument matching, as below. */
1908 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1909 == TYPE_CODE (tt2)))
1910 {
1911 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1912 t2[i] = value_coerce_array (t2[i]);
1913 else
1914 t2[i] = value_ref (t2[i]);
1915 continue;
1916 }
1917
1918 /* djb - 20000715 - Until the new type structure is in the
1919 place, and we can attempt things like implicit conversions,
1920 we need to do this so you can take something like a map<const
1921 char *>, and properly access map["hello"], because the
1922 argument to [] will be a reference to a pointer to a char,
1923 and the argument will be a pointer to a char. */
1924 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1925 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1926 {
1927 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1928 }
1929 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1930 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1931 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1932 {
1933 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1934 }
1935 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1936 continue;
1937 /* Array to pointer is a `trivial conversion' according to the
1938 ARM. */
1939
1940 /* We should be doing much hairier argument matching (see
1941 section 13.2 of the ARM), but as a quick kludge, just check
1942 for the same type code. */
1943 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1944 return i + 1;
1945 }
1946 if (varargs || t2[i] == NULL)
1947 return 0;
1948 return i + 1;
1949 }
1950
1951 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1952 and *LAST_BOFFSET, and possibly throws an exception if the field
1953 search has yielded ambiguous results. */
1954
1955 static void
1956 update_search_result (struct value **result_ptr, struct value *v,
1957 int *last_boffset, int boffset,
1958 const char *name, struct type *type)
1959 {
1960 if (v != NULL)
1961 {
1962 if (*result_ptr != NULL
1963 /* The result is not ambiguous if all the classes that are
1964 found occupy the same space. */
1965 && *last_boffset != boffset)
1966 error (_("base class '%s' is ambiguous in type '%s'"),
1967 name, TYPE_SAFE_NAME (type));
1968 *result_ptr = v;
1969 *last_boffset = boffset;
1970 }
1971 }
1972
1973 /* A helper for search_struct_field. This does all the work; most
1974 arguments are as passed to search_struct_field. The result is
1975 stored in *RESULT_PTR, which must be initialized to NULL.
1976 OUTERMOST_TYPE is the type of the initial type passed to
1977 search_struct_field; this is used for error reporting when the
1978 lookup is ambiguous. */
1979
1980 static void
1981 do_search_struct_field (const char *name, struct value *arg1, int offset,
1982 struct type *type, int looking_for_baseclass,
1983 struct value **result_ptr,
1984 int *last_boffset,
1985 struct type *outermost_type)
1986 {
1987 int i;
1988 int nbases;
1989
1990 CHECK_TYPEDEF (type);
1991 nbases = TYPE_N_BASECLASSES (type);
1992
1993 if (!looking_for_baseclass)
1994 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1995 {
1996 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1997
1998 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1999 {
2000 struct value *v;
2001
2002 if (field_is_static (&TYPE_FIELD (type, i)))
2003 {
2004 v = value_static_field (type, i);
2005 if (v == 0)
2006 error (_("field %s is nonexistent or "
2007 "has been optimized out"),
2008 name);
2009 }
2010 else
2011 v = value_primitive_field (arg1, offset, i, type);
2012 *result_ptr = v;
2013 return;
2014 }
2015
2016 if (t_field_name
2017 && (t_field_name[0] == '\0'
2018 || (TYPE_CODE (type) == TYPE_CODE_UNION
2019 && (strcmp_iw (t_field_name, "else") == 0))))
2020 {
2021 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2022
2023 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2024 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2025 {
2026 /* Look for a match through the fields of an anonymous
2027 union, or anonymous struct. C++ provides anonymous
2028 unions.
2029
2030 In the GNU Chill (now deleted from GDB)
2031 implementation of variant record types, each
2032 <alternative field> has an (anonymous) union type,
2033 each member of the union represents a <variant
2034 alternative>. Each <variant alternative> is
2035 represented as a struct, with a member for each
2036 <variant field>. */
2037
2038 struct value *v = NULL;
2039 int new_offset = offset;
2040
2041 /* This is pretty gross. In G++, the offset in an
2042 anonymous union is relative to the beginning of the
2043 enclosing struct. In the GNU Chill (now deleted
2044 from GDB) implementation of variant records, the
2045 bitpos is zero in an anonymous union field, so we
2046 have to add the offset of the union here. */
2047 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2048 || (TYPE_NFIELDS (field_type) > 0
2049 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2050 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2051
2052 do_search_struct_field (name, arg1, new_offset,
2053 field_type,
2054 looking_for_baseclass, &v,
2055 last_boffset,
2056 outermost_type);
2057 if (v)
2058 {
2059 *result_ptr = v;
2060 return;
2061 }
2062 }
2063 }
2064 }
2065
2066 for (i = 0; i < nbases; i++)
2067 {
2068 struct value *v = NULL;
2069 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2070 /* If we are looking for baseclasses, this is what we get when
2071 we hit them. But it could happen that the base part's member
2072 name is not yet filled in. */
2073 int found_baseclass = (looking_for_baseclass
2074 && TYPE_BASECLASS_NAME (type, i) != NULL
2075 && (strcmp_iw (name,
2076 TYPE_BASECLASS_NAME (type,
2077 i)) == 0));
2078 int boffset = value_embedded_offset (arg1) + offset;
2079
2080 if (BASETYPE_VIA_VIRTUAL (type, i))
2081 {
2082 struct value *v2;
2083
2084 boffset = baseclass_offset (type, i,
2085 value_contents_for_printing (arg1),
2086 value_embedded_offset (arg1) + offset,
2087 value_address (arg1),
2088 arg1);
2089
2090 /* The virtual base class pointer might have been clobbered
2091 by the user program. Make sure that it still points to a
2092 valid memory location. */
2093
2094 boffset += value_embedded_offset (arg1) + offset;
2095 if (boffset < 0
2096 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
2097 {
2098 CORE_ADDR base_addr;
2099
2100 v2 = allocate_value (basetype);
2101 base_addr = value_address (arg1) + boffset;
2102 if (target_read_memory (base_addr,
2103 value_contents_raw (v2),
2104 TYPE_LENGTH (basetype)) != 0)
2105 error (_("virtual baseclass botch"));
2106 VALUE_LVAL (v2) = lval_memory;
2107 set_value_address (v2, base_addr);
2108 }
2109 else
2110 {
2111 v2 = value_copy (arg1);
2112 deprecated_set_value_type (v2, basetype);
2113 set_value_embedded_offset (v2, boffset);
2114 }
2115
2116 if (found_baseclass)
2117 v = v2;
2118 else
2119 {
2120 do_search_struct_field (name, v2, 0,
2121 TYPE_BASECLASS (type, i),
2122 looking_for_baseclass,
2123 result_ptr, last_boffset,
2124 outermost_type);
2125 }
2126 }
2127 else if (found_baseclass)
2128 v = value_primitive_field (arg1, offset, i, type);
2129 else
2130 {
2131 do_search_struct_field (name, arg1,
2132 offset + TYPE_BASECLASS_BITPOS (type,
2133 i) / 8,
2134 basetype, looking_for_baseclass,
2135 result_ptr, last_boffset,
2136 outermost_type);
2137 }
2138
2139 update_search_result (result_ptr, v, last_boffset,
2140 boffset, name, outermost_type);
2141 }
2142 }
2143
2144 /* Helper function used by value_struct_elt to recurse through
2145 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2146 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2147 TYPE. If found, return value, else return NULL.
2148
2149 If LOOKING_FOR_BASECLASS, then instead of looking for struct
2150 fields, look for a baseclass named NAME. */
2151
2152 static struct value *
2153 search_struct_field (const char *name, struct value *arg1, int offset,
2154 struct type *type, int looking_for_baseclass)
2155 {
2156 struct value *result = NULL;
2157 int boffset = 0;
2158
2159 do_search_struct_field (name, arg1, offset, type, looking_for_baseclass,
2160 &result, &boffset, type);
2161 return result;
2162 }
2163
2164 /* Helper function used by value_struct_elt to recurse through
2165 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2166 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2167 TYPE.
2168
2169 If found, return value, else if name matched and args not return
2170 (value) -1, else return NULL. */
2171
2172 static struct value *
2173 search_struct_method (const char *name, struct value **arg1p,
2174 struct value **args, int offset,
2175 int *static_memfuncp, struct type *type)
2176 {
2177 int i;
2178 struct value *v;
2179 int name_matched = 0;
2180 char dem_opname[64];
2181
2182 CHECK_TYPEDEF (type);
2183 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2184 {
2185 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2186
2187 /* FIXME! May need to check for ARM demangling here. */
2188 if (strncmp (t_field_name, "__", 2) == 0 ||
2189 strncmp (t_field_name, "op", 2) == 0 ||
2190 strncmp (t_field_name, "type", 4) == 0)
2191 {
2192 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2193 t_field_name = dem_opname;
2194 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2195 t_field_name = dem_opname;
2196 }
2197 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2198 {
2199 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2200 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2201
2202 name_matched = 1;
2203 check_stub_method_group (type, i);
2204 if (j > 0 && args == 0)
2205 error (_("cannot resolve overloaded method "
2206 "`%s': no arguments supplied"), name);
2207 else if (j == 0 && args == 0)
2208 {
2209 v = value_fn_field (arg1p, f, j, type, offset);
2210 if (v != NULL)
2211 return v;
2212 }
2213 else
2214 while (j >= 0)
2215 {
2216 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2217 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2218 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2219 TYPE_FN_FIELD_ARGS (f, j), args))
2220 {
2221 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2222 return value_virtual_fn_field (arg1p, f, j,
2223 type, offset);
2224 if (TYPE_FN_FIELD_STATIC_P (f, j)
2225 && static_memfuncp)
2226 *static_memfuncp = 1;
2227 v = value_fn_field (arg1p, f, j, type, offset);
2228 if (v != NULL)
2229 return v;
2230 }
2231 j--;
2232 }
2233 }
2234 }
2235
2236 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2237 {
2238 int base_offset;
2239 int skip = 0;
2240 int this_offset;
2241
2242 if (BASETYPE_VIA_VIRTUAL (type, i))
2243 {
2244 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2245 struct value *base_val;
2246 const gdb_byte *base_valaddr;
2247
2248 /* The virtual base class pointer might have been
2249 clobbered by the user program. Make sure that it
2250 still points to a valid memory location. */
2251
2252 if (offset < 0 || offset >= TYPE_LENGTH (type))
2253 {
2254 gdb_byte *tmp;
2255 struct cleanup *back_to;
2256 CORE_ADDR address;
2257
2258 tmp = xmalloc (TYPE_LENGTH (baseclass));
2259 back_to = make_cleanup (xfree, tmp);
2260 address = value_address (*arg1p);
2261
2262 if (target_read_memory (address + offset,
2263 tmp, TYPE_LENGTH (baseclass)) != 0)
2264 error (_("virtual baseclass botch"));
2265
2266 base_val = value_from_contents_and_address (baseclass,
2267 tmp,
2268 address + offset);
2269 base_valaddr = value_contents_for_printing (base_val);
2270 this_offset = 0;
2271 do_cleanups (back_to);
2272 }
2273 else
2274 {
2275 base_val = *arg1p;
2276 base_valaddr = value_contents_for_printing (*arg1p);
2277 this_offset = offset;
2278 }
2279
2280 base_offset = baseclass_offset (type, i, base_valaddr,
2281 this_offset, value_address (base_val),
2282 base_val);
2283 }
2284 else
2285 {
2286 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2287 }
2288 v = search_struct_method (name, arg1p, args, base_offset + offset,
2289 static_memfuncp, TYPE_BASECLASS (type, i));
2290 if (v == (struct value *) - 1)
2291 {
2292 name_matched = 1;
2293 }
2294 else if (v)
2295 {
2296 /* FIXME-bothner: Why is this commented out? Why is it here? */
2297 /* *arg1p = arg1_tmp; */
2298 return v;
2299 }
2300 }
2301 if (name_matched)
2302 return (struct value *) - 1;
2303 else
2304 return NULL;
2305 }
2306
2307 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2308 extract the component named NAME from the ultimate target
2309 structure/union and return it as a value with its appropriate type.
2310 ERR is used in the error message if *ARGP's type is wrong.
2311
2312 C++: ARGS is a list of argument types to aid in the selection of
2313 an appropriate method. Also, handle derived types.
2314
2315 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2316 where the truthvalue of whether the function that was resolved was
2317 a static member function or not is stored.
2318
2319 ERR is an error message to be printed in case the field is not
2320 found. */
2321
2322 struct value *
2323 value_struct_elt (struct value **argp, struct value **args,
2324 const char *name, int *static_memfuncp, const char *err)
2325 {
2326 struct type *t;
2327 struct value *v;
2328
2329 *argp = coerce_array (*argp);
2330
2331 t = check_typedef (value_type (*argp));
2332
2333 /* Follow pointers until we get to a non-pointer. */
2334
2335 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2336 {
2337 *argp = value_ind (*argp);
2338 /* Don't coerce fn pointer to fn and then back again! */
2339 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2340 *argp = coerce_array (*argp);
2341 t = check_typedef (value_type (*argp));
2342 }
2343
2344 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2345 && TYPE_CODE (t) != TYPE_CODE_UNION)
2346 error (_("Attempt to extract a component of a value that is not a %s."),
2347 err);
2348
2349 /* Assume it's not, unless we see that it is. */
2350 if (static_memfuncp)
2351 *static_memfuncp = 0;
2352
2353 if (!args)
2354 {
2355 /* if there are no arguments ...do this... */
2356
2357 /* Try as a field first, because if we succeed, there is less
2358 work to be done. */
2359 v = search_struct_field (name, *argp, 0, t, 0);
2360 if (v)
2361 return v;
2362
2363 /* C++: If it was not found as a data field, then try to
2364 return it as a pointer to a method. */
2365 v = search_struct_method (name, argp, args, 0,
2366 static_memfuncp, t);
2367
2368 if (v == (struct value *) - 1)
2369 error (_("Cannot take address of method %s."), name);
2370 else if (v == 0)
2371 {
2372 if (TYPE_NFN_FIELDS (t))
2373 error (_("There is no member or method named %s."), name);
2374 else
2375 error (_("There is no member named %s."), name);
2376 }
2377 return v;
2378 }
2379
2380 v = search_struct_method (name, argp, args, 0,
2381 static_memfuncp, t);
2382
2383 if (v == (struct value *) - 1)
2384 {
2385 error (_("One of the arguments you tried to pass to %s could not "
2386 "be converted to what the function wants."), name);
2387 }
2388 else if (v == 0)
2389 {
2390 /* See if user tried to invoke data as function. If so, hand it
2391 back. If it's not callable (i.e., a pointer to function),
2392 gdb should give an error. */
2393 v = search_struct_field (name, *argp, 0, t, 0);
2394 /* If we found an ordinary field, then it is not a method call.
2395 So, treat it as if it were a static member function. */
2396 if (v && static_memfuncp)
2397 *static_memfuncp = 1;
2398 }
2399
2400 if (!v)
2401 throw_error (NOT_FOUND_ERROR,
2402 _("Structure has no component named %s."), name);
2403 return v;
2404 }
2405
2406 /* Search through the methods of an object (and its bases) to find a
2407 specified method. Return the pointer to the fn_field list of
2408 overloaded instances.
2409
2410 Helper function for value_find_oload_list.
2411 ARGP is a pointer to a pointer to a value (the object).
2412 METHOD is a string containing the method name.
2413 OFFSET is the offset within the value.
2414 TYPE is the assumed type of the object.
2415 NUM_FNS is the number of overloaded instances.
2416 BASETYPE is set to the actual type of the subobject where the
2417 method is found.
2418 BOFFSET is the offset of the base subobject where the method is found. */
2419
2420 static struct fn_field *
2421 find_method_list (struct value **argp, const char *method,
2422 int offset, struct type *type, int *num_fns,
2423 struct type **basetype, int *boffset)
2424 {
2425 int i;
2426 struct fn_field *f;
2427 CHECK_TYPEDEF (type);
2428
2429 *num_fns = 0;
2430
2431 /* First check in object itself. */
2432 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2433 {
2434 /* pai: FIXME What about operators and type conversions? */
2435 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2436
2437 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2438 {
2439 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2440 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2441
2442 *num_fns = len;
2443 *basetype = type;
2444 *boffset = offset;
2445
2446 /* Resolve any stub methods. */
2447 check_stub_method_group (type, i);
2448
2449 return f;
2450 }
2451 }
2452
2453 /* Not found in object, check in base subobjects. */
2454 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2455 {
2456 int base_offset;
2457
2458 if (BASETYPE_VIA_VIRTUAL (type, i))
2459 {
2460 base_offset = baseclass_offset (type, i,
2461 value_contents_for_printing (*argp),
2462 value_offset (*argp) + offset,
2463 value_address (*argp), *argp);
2464 }
2465 else /* Non-virtual base, simply use bit position from debug
2466 info. */
2467 {
2468 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2469 }
2470 f = find_method_list (argp, method, base_offset + offset,
2471 TYPE_BASECLASS (type, i), num_fns,
2472 basetype, boffset);
2473 if (f)
2474 return f;
2475 }
2476 return NULL;
2477 }
2478
2479 /* Return the list of overloaded methods of a specified name.
2480
2481 ARGP is a pointer to a pointer to a value (the object).
2482 METHOD is the method name.
2483 OFFSET is the offset within the value contents.
2484 NUM_FNS is the number of overloaded instances.
2485 BASETYPE is set to the type of the base subobject that defines the
2486 method.
2487 BOFFSET is the offset of the base subobject which defines the method. */
2488
2489 static struct fn_field *
2490 value_find_oload_method_list (struct value **argp, const char *method,
2491 int offset, int *num_fns,
2492 struct type **basetype, int *boffset)
2493 {
2494 struct type *t;
2495
2496 t = check_typedef (value_type (*argp));
2497
2498 /* Code snarfed from value_struct_elt. */
2499 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2500 {
2501 *argp = value_ind (*argp);
2502 /* Don't coerce fn pointer to fn and then back again! */
2503 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2504 *argp = coerce_array (*argp);
2505 t = check_typedef (value_type (*argp));
2506 }
2507
2508 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2509 && TYPE_CODE (t) != TYPE_CODE_UNION)
2510 error (_("Attempt to extract a component of a "
2511 "value that is not a struct or union"));
2512
2513 return find_method_list (argp, method, 0, t, num_fns,
2514 basetype, boffset);
2515 }
2516
2517 /* Given an array of arguments (ARGS) (which includes an
2518 entry for "this" in the case of C++ methods), the number of
2519 arguments NARGS, the NAME of a function whether it's a method or
2520 not (METHOD), and the degree of laxness (LAX) in conforming to
2521 overload resolution rules in ANSI C++, find the best function that
2522 matches on the argument types according to the overload resolution
2523 rules.
2524
2525 METHOD can be one of three values:
2526 NON_METHOD for non-member functions.
2527 METHOD: for member functions.
2528 BOTH: used for overload resolution of operators where the
2529 candidates are expected to be either member or non member
2530 functions. In this case the first argument ARGTYPES
2531 (representing 'this') is expected to be a reference to the
2532 target object, and will be dereferenced when attempting the
2533 non-member search.
2534
2535 In the case of class methods, the parameter OBJ is an object value
2536 in which to search for overloaded methods.
2537
2538 In the case of non-method functions, the parameter FSYM is a symbol
2539 corresponding to one of the overloaded functions.
2540
2541 Return value is an integer: 0 -> good match, 10 -> debugger applied
2542 non-standard coercions, 100 -> incompatible.
2543
2544 If a method is being searched for, VALP will hold the value.
2545 If a non-method is being searched for, SYMP will hold the symbol
2546 for it.
2547
2548 If a method is being searched for, and it is a static method,
2549 then STATICP will point to a non-zero value.
2550
2551 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2552 ADL overload candidates when performing overload resolution for a fully
2553 qualified name.
2554
2555 Note: This function does *not* check the value of
2556 overload_resolution. Caller must check it to see whether overload
2557 resolution is permitted. */
2558
2559 int
2560 find_overload_match (struct value **args, int nargs,
2561 const char *name, enum oload_search_type method,
2562 int lax, struct value **objp, struct symbol *fsym,
2563 struct value **valp, struct symbol **symp,
2564 int *staticp, const int no_adl)
2565 {
2566 struct value *obj = (objp ? *objp : NULL);
2567 struct type *obj_type = obj ? value_type (obj) : NULL;
2568 /* Index of best overloaded function. */
2569 int func_oload_champ = -1;
2570 int method_oload_champ = -1;
2571
2572 /* The measure for the current best match. */
2573 struct badness_vector *method_badness = NULL;
2574 struct badness_vector *func_badness = NULL;
2575
2576 struct value *temp = obj;
2577 /* For methods, the list of overloaded methods. */
2578 struct fn_field *fns_ptr = NULL;
2579 /* For non-methods, the list of overloaded function symbols. */
2580 struct symbol **oload_syms = NULL;
2581 /* Number of overloaded instances being considered. */
2582 int num_fns = 0;
2583 struct type *basetype = NULL;
2584 int boffset;
2585
2586 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2587
2588 const char *obj_type_name = NULL;
2589 const char *func_name = NULL;
2590 enum oload_classification match_quality;
2591 enum oload_classification method_match_quality = INCOMPATIBLE;
2592 enum oload_classification func_match_quality = INCOMPATIBLE;
2593
2594 /* Get the list of overloaded methods or functions. */
2595 if (method == METHOD || method == BOTH)
2596 {
2597 gdb_assert (obj);
2598
2599 /* OBJ may be a pointer value rather than the object itself. */
2600 obj = coerce_ref (obj);
2601 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2602 obj = coerce_ref (value_ind (obj));
2603 obj_type_name = TYPE_NAME (value_type (obj));
2604
2605 /* First check whether this is a data member, e.g. a pointer to
2606 a function. */
2607 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2608 {
2609 *valp = search_struct_field (name, obj, 0,
2610 check_typedef (value_type (obj)), 0);
2611 if (*valp)
2612 {
2613 *staticp = 1;
2614 do_cleanups (all_cleanups);
2615 return 0;
2616 }
2617 }
2618
2619 /* Retrieve the list of methods with the name NAME. */
2620 fns_ptr = value_find_oload_method_list (&temp, name,
2621 0, &num_fns,
2622 &basetype, &boffset);
2623 /* If this is a method only search, and no methods were found
2624 the search has faild. */
2625 if (method == METHOD && (!fns_ptr || !num_fns))
2626 error (_("Couldn't find method %s%s%s"),
2627 obj_type_name,
2628 (obj_type_name && *obj_type_name) ? "::" : "",
2629 name);
2630 /* If we are dealing with stub method types, they should have
2631 been resolved by find_method_list via
2632 value_find_oload_method_list above. */
2633 if (fns_ptr)
2634 {
2635 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2636 method_oload_champ = find_oload_champ (args, nargs, method,
2637 num_fns, fns_ptr,
2638 oload_syms, &method_badness);
2639
2640 method_match_quality =
2641 classify_oload_match (method_badness, nargs,
2642 oload_method_static (method, fns_ptr,
2643 method_oload_champ));
2644
2645 make_cleanup (xfree, method_badness);
2646 }
2647
2648 }
2649
2650 if (method == NON_METHOD || method == BOTH)
2651 {
2652 const char *qualified_name = NULL;
2653
2654 /* If the overload match is being search for both as a method
2655 and non member function, the first argument must now be
2656 dereferenced. */
2657 if (method == BOTH)
2658 args[0] = value_ind (args[0]);
2659
2660 if (fsym)
2661 {
2662 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2663
2664 /* If we have a function with a C++ name, try to extract just
2665 the function part. Do not try this for non-functions (e.g.
2666 function pointers). */
2667 if (qualified_name
2668 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2669 == TYPE_CODE_FUNC)
2670 {
2671 char *temp;
2672
2673 temp = cp_func_name (qualified_name);
2674
2675 /* If cp_func_name did not remove anything, the name of the
2676 symbol did not include scope or argument types - it was
2677 probably a C-style function. */
2678 if (temp)
2679 {
2680 make_cleanup (xfree, temp);
2681 if (strcmp (temp, qualified_name) == 0)
2682 func_name = NULL;
2683 else
2684 func_name = temp;
2685 }
2686 }
2687 }
2688 else
2689 {
2690 func_name = name;
2691 qualified_name = name;
2692 }
2693
2694 /* If there was no C++ name, this must be a C-style function or
2695 not a function at all. Just return the same symbol. Do the
2696 same if cp_func_name fails for some reason. */
2697 if (func_name == NULL)
2698 {
2699 *symp = fsym;
2700 do_cleanups (all_cleanups);
2701 return 0;
2702 }
2703
2704 func_oload_champ = find_oload_champ_namespace (args, nargs,
2705 func_name,
2706 qualified_name,
2707 &oload_syms,
2708 &func_badness,
2709 no_adl);
2710
2711 if (func_oload_champ >= 0)
2712 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2713
2714 make_cleanup (xfree, oload_syms);
2715 make_cleanup (xfree, func_badness);
2716 }
2717
2718 /* Did we find a match ? */
2719 if (method_oload_champ == -1 && func_oload_champ == -1)
2720 throw_error (NOT_FOUND_ERROR,
2721 _("No symbol \"%s\" in current context."),
2722 name);
2723
2724 /* If we have found both a method match and a function
2725 match, find out which one is better, and calculate match
2726 quality. */
2727 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2728 {
2729 switch (compare_badness (func_badness, method_badness))
2730 {
2731 case 0: /* Top two contenders are equally good. */
2732 /* FIXME: GDB does not support the general ambiguous case.
2733 All candidates should be collected and presented the
2734 user. */
2735 error (_("Ambiguous overload resolution"));
2736 break;
2737 case 1: /* Incomparable top contenders. */
2738 /* This is an error incompatible candidates
2739 should not have been proposed. */
2740 error (_("Internal error: incompatible "
2741 "overload candidates proposed"));
2742 break;
2743 case 2: /* Function champion. */
2744 method_oload_champ = -1;
2745 match_quality = func_match_quality;
2746 break;
2747 case 3: /* Method champion. */
2748 func_oload_champ = -1;
2749 match_quality = method_match_quality;
2750 break;
2751 default:
2752 error (_("Internal error: unexpected overload comparison result"));
2753 break;
2754 }
2755 }
2756 else
2757 {
2758 /* We have either a method match or a function match. */
2759 if (method_oload_champ >= 0)
2760 match_quality = method_match_quality;
2761 else
2762 match_quality = func_match_quality;
2763 }
2764
2765 if (match_quality == INCOMPATIBLE)
2766 {
2767 if (method == METHOD)
2768 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2769 obj_type_name,
2770 (obj_type_name && *obj_type_name) ? "::" : "",
2771 name);
2772 else
2773 error (_("Cannot resolve function %s to any overloaded instance"),
2774 func_name);
2775 }
2776 else if (match_quality == NON_STANDARD)
2777 {
2778 if (method == METHOD)
2779 warning (_("Using non-standard conversion to match "
2780 "method %s%s%s to supplied arguments"),
2781 obj_type_name,
2782 (obj_type_name && *obj_type_name) ? "::" : "",
2783 name);
2784 else
2785 warning (_("Using non-standard conversion to match "
2786 "function %s to supplied arguments"),
2787 func_name);
2788 }
2789
2790 if (staticp != NULL)
2791 *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2792
2793 if (method_oload_champ >= 0)
2794 {
2795 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2796 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2797 basetype, boffset);
2798 else
2799 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2800 basetype, boffset);
2801 }
2802 else
2803 *symp = oload_syms[func_oload_champ];
2804
2805 if (objp)
2806 {
2807 struct type *temp_type = check_typedef (value_type (temp));
2808 struct type *objtype = check_typedef (obj_type);
2809
2810 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2811 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2812 || TYPE_CODE (objtype) == TYPE_CODE_REF))
2813 {
2814 temp = value_addr (temp);
2815 }
2816 *objp = temp;
2817 }
2818
2819 do_cleanups (all_cleanups);
2820
2821 switch (match_quality)
2822 {
2823 case INCOMPATIBLE:
2824 return 100;
2825 case NON_STANDARD:
2826 return 10;
2827 default: /* STANDARD */
2828 return 0;
2829 }
2830 }
2831
2832 /* Find the best overload match, searching for FUNC_NAME in namespaces
2833 contained in QUALIFIED_NAME until it either finds a good match or
2834 runs out of namespaces. It stores the overloaded functions in
2835 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2836 calling function is responsible for freeing *OLOAD_SYMS and
2837 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2838 performned. */
2839
2840 static int
2841 find_oload_champ_namespace (struct value **args, int nargs,
2842 const char *func_name,
2843 const char *qualified_name,
2844 struct symbol ***oload_syms,
2845 struct badness_vector **oload_champ_bv,
2846 const int no_adl)
2847 {
2848 int oload_champ;
2849
2850 find_oload_champ_namespace_loop (args, nargs,
2851 func_name,
2852 qualified_name, 0,
2853 oload_syms, oload_champ_bv,
2854 &oload_champ,
2855 no_adl);
2856
2857 return oload_champ;
2858 }
2859
2860 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2861 how deep we've looked for namespaces, and the champ is stored in
2862 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2863 if it isn't. Other arguments are the same as in
2864 find_oload_champ_namespace
2865
2866 It is the caller's responsibility to free *OLOAD_SYMS and
2867 *OLOAD_CHAMP_BV. */
2868
2869 static int
2870 find_oload_champ_namespace_loop (struct value **args, int nargs,
2871 const char *func_name,
2872 const char *qualified_name,
2873 int namespace_len,
2874 struct symbol ***oload_syms,
2875 struct badness_vector **oload_champ_bv,
2876 int *oload_champ,
2877 const int no_adl)
2878 {
2879 int next_namespace_len = namespace_len;
2880 int searched_deeper = 0;
2881 int num_fns = 0;
2882 struct cleanup *old_cleanups;
2883 int new_oload_champ;
2884 struct symbol **new_oload_syms;
2885 struct badness_vector *new_oload_champ_bv;
2886 char *new_namespace;
2887
2888 if (next_namespace_len != 0)
2889 {
2890 gdb_assert (qualified_name[next_namespace_len] == ':');
2891 next_namespace_len += 2;
2892 }
2893 next_namespace_len +=
2894 cp_find_first_component (qualified_name + next_namespace_len);
2895
2896 /* Initialize these to values that can safely be xfree'd. */
2897 *oload_syms = NULL;
2898 *oload_champ_bv = NULL;
2899
2900 /* First, see if we have a deeper namespace we can search in.
2901 If we get a good match there, use it. */
2902
2903 if (qualified_name[next_namespace_len] == ':')
2904 {
2905 searched_deeper = 1;
2906
2907 if (find_oload_champ_namespace_loop (args, nargs,
2908 func_name, qualified_name,
2909 next_namespace_len,
2910 oload_syms, oload_champ_bv,
2911 oload_champ, no_adl))
2912 {
2913 return 1;
2914 }
2915 };
2916
2917 /* If we reach here, either we're in the deepest namespace or we
2918 didn't find a good match in a deeper namespace. But, in the
2919 latter case, we still have a bad match in a deeper namespace;
2920 note that we might not find any match at all in the current
2921 namespace. (There's always a match in the deepest namespace,
2922 because this overload mechanism only gets called if there's a
2923 function symbol to start off with.) */
2924
2925 old_cleanups = make_cleanup (xfree, *oload_syms);
2926 make_cleanup (xfree, *oload_champ_bv);
2927 new_namespace = alloca (namespace_len + 1);
2928 strncpy (new_namespace, qualified_name, namespace_len);
2929 new_namespace[namespace_len] = '\0';
2930 new_oload_syms = make_symbol_overload_list (func_name,
2931 new_namespace);
2932
2933 /* If we have reached the deepest level perform argument
2934 determined lookup. */
2935 if (!searched_deeper && !no_adl)
2936 {
2937 int ix;
2938 struct type **arg_types;
2939
2940 /* Prepare list of argument types for overload resolution. */
2941 arg_types = (struct type **)
2942 alloca (nargs * (sizeof (struct type *)));
2943 for (ix = 0; ix < nargs; ix++)
2944 arg_types[ix] = value_type (args[ix]);
2945 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2946 }
2947
2948 while (new_oload_syms[num_fns])
2949 ++num_fns;
2950
2951 new_oload_champ = find_oload_champ (args, nargs, 0, num_fns,
2952 NULL, new_oload_syms,
2953 &new_oload_champ_bv);
2954
2955 /* Case 1: We found a good match. Free earlier matches (if any),
2956 and return it. Case 2: We didn't find a good match, but we're
2957 not the deepest function. Then go with the bad match that the
2958 deeper function found. Case 3: We found a bad match, and we're
2959 the deepest function. Then return what we found, even though
2960 it's a bad match. */
2961
2962 if (new_oload_champ != -1
2963 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2964 {
2965 *oload_syms = new_oload_syms;
2966 *oload_champ = new_oload_champ;
2967 *oload_champ_bv = new_oload_champ_bv;
2968 do_cleanups (old_cleanups);
2969 return 1;
2970 }
2971 else if (searched_deeper)
2972 {
2973 xfree (new_oload_syms);
2974 xfree (new_oload_champ_bv);
2975 discard_cleanups (old_cleanups);
2976 return 0;
2977 }
2978 else
2979 {
2980 *oload_syms = new_oload_syms;
2981 *oload_champ = new_oload_champ;
2982 *oload_champ_bv = new_oload_champ_bv;
2983 do_cleanups (old_cleanups);
2984 return 0;
2985 }
2986 }
2987
2988 /* Look for a function to take NARGS args of ARGS. Find
2989 the best match from among the overloaded methods or functions
2990 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2991 The number of methods/functions in the list is given by NUM_FNS.
2992 Return the index of the best match; store an indication of the
2993 quality of the match in OLOAD_CHAMP_BV.
2994
2995 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2996
2997 static int
2998 find_oload_champ (struct value **args, int nargs, int method,
2999 int num_fns, struct fn_field *fns_ptr,
3000 struct symbol **oload_syms,
3001 struct badness_vector **oload_champ_bv)
3002 {
3003 int ix;
3004 /* A measure of how good an overloaded instance is. */
3005 struct badness_vector *bv;
3006 /* Index of best overloaded function. */
3007 int oload_champ = -1;
3008 /* Current ambiguity state for overload resolution. */
3009 int oload_ambiguous = 0;
3010 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
3011
3012 *oload_champ_bv = NULL;
3013
3014 /* Consider each candidate in turn. */
3015 for (ix = 0; ix < num_fns; ix++)
3016 {
3017 int jj;
3018 int static_offset = oload_method_static (method, fns_ptr, ix);
3019 int nparms;
3020 struct type **parm_types;
3021
3022 if (method)
3023 {
3024 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
3025 }
3026 else
3027 {
3028 /* If it's not a method, this is the proper place. */
3029 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
3030 }
3031
3032 /* Prepare array of parameter types. */
3033 parm_types = (struct type **)
3034 xmalloc (nparms * (sizeof (struct type *)));
3035 for (jj = 0; jj < nparms; jj++)
3036 parm_types[jj] = (method
3037 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
3038 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
3039 jj));
3040
3041 /* Compare parameter types to supplied argument types. Skip
3042 THIS for static methods. */
3043 bv = rank_function (parm_types, nparms,
3044 args + static_offset,
3045 nargs - static_offset);
3046
3047 if (!*oload_champ_bv)
3048 {
3049 *oload_champ_bv = bv;
3050 oload_champ = 0;
3051 }
3052 else /* See whether current candidate is better or worse than
3053 previous best. */
3054 switch (compare_badness (bv, *oload_champ_bv))
3055 {
3056 case 0: /* Top two contenders are equally good. */
3057 oload_ambiguous = 1;
3058 break;
3059 case 1: /* Incomparable top contenders. */
3060 oload_ambiguous = 2;
3061 break;
3062 case 2: /* New champion, record details. */
3063 *oload_champ_bv = bv;
3064 oload_ambiguous = 0;
3065 oload_champ = ix;
3066 break;
3067 case 3:
3068 default:
3069 break;
3070 }
3071 xfree (parm_types);
3072 if (overload_debug)
3073 {
3074 if (method)
3075 fprintf_filtered (gdb_stderr,
3076 "Overloaded method instance %s, # of parms %d\n",
3077 fns_ptr[ix].physname, nparms);
3078 else
3079 fprintf_filtered (gdb_stderr,
3080 "Overloaded function instance "
3081 "%s # of parms %d\n",
3082 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
3083 nparms);
3084 for (jj = 0; jj < nargs - static_offset; jj++)
3085 fprintf_filtered (gdb_stderr,
3086 "...Badness @ %d : %d\n",
3087 jj, bv->rank[jj].rank);
3088 fprintf_filtered (gdb_stderr, "Overload resolution "
3089 "champion is %d, ambiguous? %d\n",
3090 oload_champ, oload_ambiguous);
3091 }
3092 }
3093
3094 return oload_champ;
3095 }
3096
3097 /* Return 1 if we're looking at a static method, 0 if we're looking at
3098 a non-static method or a function that isn't a method. */
3099
3100 static int
3101 oload_method_static (int method, struct fn_field *fns_ptr, int index)
3102 {
3103 if (method && fns_ptr && index >= 0
3104 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3105 return 1;
3106 else
3107 return 0;
3108 }
3109
3110 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3111
3112 static enum oload_classification
3113 classify_oload_match (struct badness_vector *oload_champ_bv,
3114 int nargs,
3115 int static_offset)
3116 {
3117 int ix;
3118 enum oload_classification worst = STANDARD;
3119
3120 for (ix = 1; ix <= nargs - static_offset; ix++)
3121 {
3122 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3123 or worse return INCOMPATIBLE. */
3124 if (compare_ranks (oload_champ_bv->rank[ix],
3125 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3126 return INCOMPATIBLE; /* Truly mismatched types. */
3127 /* Otherwise If this conversion is as bad as
3128 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3129 else if (compare_ranks (oload_champ_bv->rank[ix],
3130 NS_POINTER_CONVERSION_BADNESS) <= 0)
3131 worst = NON_STANDARD; /* Non-standard type conversions
3132 needed. */
3133 }
3134
3135 /* If no INCOMPATIBLE classification was found, return the worst one
3136 that was found (if any). */
3137 return worst;
3138 }
3139
3140 /* C++: return 1 is NAME is a legitimate name for the destructor of
3141 type TYPE. If TYPE does not have a destructor, or if NAME is
3142 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3143 have CHECK_TYPEDEF applied, this function will apply it itself. */
3144
3145 int
3146 destructor_name_p (const char *name, struct type *type)
3147 {
3148 if (name[0] == '~')
3149 {
3150 const char *dname = type_name_no_tag_or_error (type);
3151 const char *cp = strchr (dname, '<');
3152 unsigned int len;
3153
3154 /* Do not compare the template part for template classes. */
3155 if (cp == NULL)
3156 len = strlen (dname);
3157 else
3158 len = cp - dname;
3159 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3160 error (_("name of destructor must equal name of class"));
3161 else
3162 return 1;
3163 }
3164 return 0;
3165 }
3166
3167 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3168 return the appropriate member (or the address of the member, if
3169 WANT_ADDRESS). This function is used to resolve user expressions
3170 of the form "DOMAIN::NAME". For more details on what happens, see
3171 the comment before value_struct_elt_for_reference. */
3172
3173 struct value *
3174 value_aggregate_elt (struct type *curtype, char *name,
3175 struct type *expect_type, int want_address,
3176 enum noside noside)
3177 {
3178 switch (TYPE_CODE (curtype))
3179 {
3180 case TYPE_CODE_STRUCT:
3181 case TYPE_CODE_UNION:
3182 return value_struct_elt_for_reference (curtype, 0, curtype,
3183 name, expect_type,
3184 want_address, noside);
3185 case TYPE_CODE_NAMESPACE:
3186 return value_namespace_elt (curtype, name,
3187 want_address, noside);
3188 default:
3189 internal_error (__FILE__, __LINE__,
3190 _("non-aggregate type in value_aggregate_elt"));
3191 }
3192 }
3193
3194 /* Compares the two method/function types T1 and T2 for "equality"
3195 with respect to the methods' parameters. If the types of the
3196 two parameter lists are the same, returns 1; 0 otherwise. This
3197 comparison may ignore any artificial parameters in T1 if
3198 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3199 the first artificial parameter in T1, assumed to be a 'this' pointer.
3200
3201 The type T2 is expected to have come from make_params (in eval.c). */
3202
3203 static int
3204 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3205 {
3206 int start = 0;
3207
3208 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3209 ++start;
3210
3211 /* If skipping artificial fields, find the first real field
3212 in T1. */
3213 if (skip_artificial)
3214 {
3215 while (start < TYPE_NFIELDS (t1)
3216 && TYPE_FIELD_ARTIFICIAL (t1, start))
3217 ++start;
3218 }
3219
3220 /* Now compare parameters. */
3221
3222 /* Special case: a method taking void. T1 will contain no
3223 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3224 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3225 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3226 return 1;
3227
3228 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3229 {
3230 int i;
3231
3232 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3233 {
3234 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3235 TYPE_FIELD_TYPE (t2, i), NULL),
3236 EXACT_MATCH_BADNESS) != 0)
3237 return 0;
3238 }
3239
3240 return 1;
3241 }
3242
3243 return 0;
3244 }
3245
3246 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3247 return the address of this member as a "pointer to member" type.
3248 If INTYPE is non-null, then it will be the type of the member we
3249 are looking for. This will help us resolve "pointers to member
3250 functions". This function is used to resolve user expressions of
3251 the form "DOMAIN::NAME". */
3252
3253 static struct value *
3254 value_struct_elt_for_reference (struct type *domain, int offset,
3255 struct type *curtype, char *name,
3256 struct type *intype,
3257 int want_address,
3258 enum noside noside)
3259 {
3260 struct type *t = curtype;
3261 int i;
3262 struct value *v, *result;
3263
3264 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3265 && TYPE_CODE (t) != TYPE_CODE_UNION)
3266 error (_("Internal error: non-aggregate type "
3267 "to value_struct_elt_for_reference"));
3268
3269 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3270 {
3271 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3272
3273 if (t_field_name && strcmp (t_field_name, name) == 0)
3274 {
3275 if (field_is_static (&TYPE_FIELD (t, i)))
3276 {
3277 v = value_static_field (t, i);
3278 if (v == NULL)
3279 error (_("static field %s has been optimized out"),
3280 name);
3281 if (want_address)
3282 v = value_addr (v);
3283 return v;
3284 }
3285 if (TYPE_FIELD_PACKED (t, i))
3286 error (_("pointers to bitfield members not allowed"));
3287
3288 if (want_address)
3289 return value_from_longest
3290 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3291 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3292 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3293 return allocate_value (TYPE_FIELD_TYPE (t, i));
3294 else
3295 error (_("Cannot reference non-static field \"%s\""), name);
3296 }
3297 }
3298
3299 /* C++: If it was not found as a data field, then try to return it
3300 as a pointer to a method. */
3301
3302 /* Perform all necessary dereferencing. */
3303 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3304 intype = TYPE_TARGET_TYPE (intype);
3305
3306 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3307 {
3308 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3309 char dem_opname[64];
3310
3311 if (strncmp (t_field_name, "__", 2) == 0
3312 || strncmp (t_field_name, "op", 2) == 0
3313 || strncmp (t_field_name, "type", 4) == 0)
3314 {
3315 if (cplus_demangle_opname (t_field_name,
3316 dem_opname, DMGL_ANSI))
3317 t_field_name = dem_opname;
3318 else if (cplus_demangle_opname (t_field_name,
3319 dem_opname, 0))
3320 t_field_name = dem_opname;
3321 }
3322 if (t_field_name && strcmp (t_field_name, name) == 0)
3323 {
3324 int j;
3325 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3326 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3327
3328 check_stub_method_group (t, i);
3329
3330 if (intype)
3331 {
3332 for (j = 0; j < len; ++j)
3333 {
3334 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3335 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3336 intype, 1))
3337 break;
3338 }
3339
3340 if (j == len)
3341 error (_("no member function matches "
3342 "that type instantiation"));
3343 }
3344 else
3345 {
3346 int ii;
3347
3348 j = -1;
3349 for (ii = 0; ii < len; ++ii)
3350 {
3351 /* Skip artificial methods. This is necessary if,
3352 for example, the user wants to "print
3353 subclass::subclass" with only one user-defined
3354 constructor. There is no ambiguity in this case.
3355 We are careful here to allow artificial methods
3356 if they are the unique result. */
3357 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3358 {
3359 if (j == -1)
3360 j = ii;
3361 continue;
3362 }
3363
3364 /* Desired method is ambiguous if more than one
3365 method is defined. */
3366 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3367 error (_("non-unique member `%s' requires "
3368 "type instantiation"), name);
3369
3370 j = ii;
3371 }
3372
3373 if (j == -1)
3374 error (_("no matching member function"));
3375 }
3376
3377 if (TYPE_FN_FIELD_STATIC_P (f, j))
3378 {
3379 struct symbol *s =
3380 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3381 0, VAR_DOMAIN, 0);
3382
3383 if (s == NULL)
3384 return NULL;
3385
3386 if (want_address)
3387 return value_addr (read_var_value (s, 0));
3388 else
3389 return read_var_value (s, 0);
3390 }
3391
3392 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3393 {
3394 if (want_address)
3395 {
3396 result = allocate_value
3397 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3398 cplus_make_method_ptr (value_type (result),
3399 value_contents_writeable (result),
3400 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3401 }
3402 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3403 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3404 else
3405 error (_("Cannot reference virtual member function \"%s\""),
3406 name);
3407 }
3408 else
3409 {
3410 struct symbol *s =
3411 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3412 0, VAR_DOMAIN, 0);
3413
3414 if (s == NULL)
3415 return NULL;
3416
3417 v = read_var_value (s, 0);
3418 if (!want_address)
3419 result = v;
3420 else
3421 {
3422 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3423 cplus_make_method_ptr (value_type (result),
3424 value_contents_writeable (result),
3425 value_address (v), 0);
3426 }
3427 }
3428 return result;
3429 }
3430 }
3431 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3432 {
3433 struct value *v;
3434 int base_offset;
3435
3436 if (BASETYPE_VIA_VIRTUAL (t, i))
3437 base_offset = 0;
3438 else
3439 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3440 v = value_struct_elt_for_reference (domain,
3441 offset + base_offset,
3442 TYPE_BASECLASS (t, i),
3443 name, intype,
3444 want_address, noside);
3445 if (v)
3446 return v;
3447 }
3448
3449 /* As a last chance, pretend that CURTYPE is a namespace, and look
3450 it up that way; this (frequently) works for types nested inside
3451 classes. */
3452
3453 return value_maybe_namespace_elt (curtype, name,
3454 want_address, noside);
3455 }
3456
3457 /* C++: Return the member NAME of the namespace given by the type
3458 CURTYPE. */
3459
3460 static struct value *
3461 value_namespace_elt (const struct type *curtype,
3462 char *name, int want_address,
3463 enum noside noside)
3464 {
3465 struct value *retval = value_maybe_namespace_elt (curtype, name,
3466 want_address,
3467 noside);
3468
3469 if (retval == NULL)
3470 error (_("No symbol \"%s\" in namespace \"%s\"."),
3471 name, TYPE_TAG_NAME (curtype));
3472
3473 return retval;
3474 }
3475
3476 /* A helper function used by value_namespace_elt and
3477 value_struct_elt_for_reference. It looks up NAME inside the
3478 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3479 is a class and NAME refers to a type in CURTYPE itself (as opposed
3480 to, say, some base class of CURTYPE). */
3481
3482 static struct value *
3483 value_maybe_namespace_elt (const struct type *curtype,
3484 char *name, int want_address,
3485 enum noside noside)
3486 {
3487 const char *namespace_name = TYPE_TAG_NAME (curtype);
3488 struct symbol *sym;
3489 struct value *result;
3490
3491 sym = cp_lookup_symbol_namespace (namespace_name, name,
3492 get_selected_block (0), VAR_DOMAIN);
3493
3494 if (sym == NULL)
3495 {
3496 char *concatenated_name = alloca (strlen (namespace_name) + 2
3497 + strlen (name) + 1);
3498
3499 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3500 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3501 }
3502
3503 if (sym == NULL)
3504 return NULL;
3505 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3506 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3507 result = allocate_value (SYMBOL_TYPE (sym));
3508 else
3509 result = value_of_variable (sym, get_selected_block (0));
3510
3511 if (result && want_address)
3512 result = value_addr (result);
3513
3514 return result;
3515 }
3516
3517 /* Given a pointer or a reference value V, find its real (RTTI) type.
3518
3519 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3520 and refer to the values computed for the object pointed to. */
3521
3522 struct type *
3523 value_rtti_indirect_type (struct value *v, int *full,
3524 int *top, int *using_enc)
3525 {
3526 struct value *target;
3527 struct type *type, *real_type, *target_type;
3528
3529 type = value_type (v);
3530 type = check_typedef (type);
3531 if (TYPE_CODE (type) == TYPE_CODE_REF)
3532 target = coerce_ref (v);
3533 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3534 target = value_ind (v);
3535 else
3536 return NULL;
3537
3538 real_type = value_rtti_type (target, full, top, using_enc);
3539
3540 if (real_type)
3541 {
3542 /* Copy qualifiers to the referenced object. */
3543 target_type = value_type (target);
3544 real_type = make_cv_type (TYPE_CONST (target_type),
3545 TYPE_VOLATILE (target_type), real_type, NULL);
3546 if (TYPE_CODE (type) == TYPE_CODE_REF)
3547 real_type = lookup_reference_type (real_type);
3548 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3549 real_type = lookup_pointer_type (real_type);
3550 else
3551 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3552
3553 /* Copy qualifiers to the pointer/reference. */
3554 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3555 real_type, NULL);
3556 }
3557
3558 return real_type;
3559 }
3560
3561 /* Given a value pointed to by ARGP, check its real run-time type, and
3562 if that is different from the enclosing type, create a new value
3563 using the real run-time type as the enclosing type (and of the same
3564 type as ARGP) and return it, with the embedded offset adjusted to
3565 be the correct offset to the enclosed object. RTYPE is the type,
3566 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3567 by value_rtti_type(). If these are available, they can be supplied
3568 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3569 NULL if they're not available. */
3570
3571 struct value *
3572 value_full_object (struct value *argp,
3573 struct type *rtype,
3574 int xfull, int xtop,
3575 int xusing_enc)
3576 {
3577 struct type *real_type;
3578 int full = 0;
3579 int top = -1;
3580 int using_enc = 0;
3581 struct value *new_val;
3582
3583 if (rtype)
3584 {
3585 real_type = rtype;
3586 full = xfull;
3587 top = xtop;
3588 using_enc = xusing_enc;
3589 }
3590 else
3591 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3592
3593 /* If no RTTI data, or if object is already complete, do nothing. */
3594 if (!real_type || real_type == value_enclosing_type (argp))
3595 return argp;
3596
3597 /* In a destructor we might see a real type that is a superclass of
3598 the object's type. In this case it is better to leave the object
3599 as-is. */
3600 if (full
3601 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3602 return argp;
3603
3604 /* If we have the full object, but for some reason the enclosing
3605 type is wrong, set it. */
3606 /* pai: FIXME -- sounds iffy */
3607 if (full)
3608 {
3609 argp = value_copy (argp);
3610 set_value_enclosing_type (argp, real_type);
3611 return argp;
3612 }
3613
3614 /* Check if object is in memory. */
3615 if (VALUE_LVAL (argp) != lval_memory)
3616 {
3617 warning (_("Couldn't retrieve complete object of RTTI "
3618 "type %s; object may be in register(s)."),
3619 TYPE_NAME (real_type));
3620
3621 return argp;
3622 }
3623
3624 /* All other cases -- retrieve the complete object. */
3625 /* Go back by the computed top_offset from the beginning of the
3626 object, adjusting for the embedded offset of argp if that's what
3627 value_rtti_type used for its computation. */
3628 new_val = value_at_lazy (real_type, value_address (argp) - top +
3629 (using_enc ? 0 : value_embedded_offset (argp)));
3630 deprecated_set_value_type (new_val, value_type (argp));
3631 set_value_embedded_offset (new_val, (using_enc
3632 ? top + value_embedded_offset (argp)
3633 : top));
3634 return new_val;
3635 }
3636
3637
3638 /* Return the value of the local variable, if one exists. Throw error
3639 otherwise, such as if the request is made in an inappropriate context. */
3640
3641 struct value *
3642 value_of_this (const struct language_defn *lang)
3643 {
3644 struct symbol *sym;
3645 struct block *b;
3646 struct frame_info *frame;
3647
3648 if (!lang->la_name_of_this)
3649 error (_("no `this' in current language"));
3650
3651 frame = get_selected_frame (_("no frame selected"));
3652
3653 b = get_frame_block (frame, NULL);
3654
3655 sym = lookup_language_this (lang, b);
3656 if (sym == NULL)
3657 error (_("current stack frame does not contain a variable named `%s'"),
3658 lang->la_name_of_this);
3659
3660 return read_var_value (sym, frame);
3661 }
3662
3663 /* Return the value of the local variable, if one exists. Return NULL
3664 otherwise. Never throw error. */
3665
3666 struct value *
3667 value_of_this_silent (const struct language_defn *lang)
3668 {
3669 struct value *ret = NULL;
3670 volatile struct gdb_exception except;
3671
3672 TRY_CATCH (except, RETURN_MASK_ERROR)
3673 {
3674 ret = value_of_this (lang);
3675 }
3676
3677 return ret;
3678 }
3679
3680 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3681 elements long, starting at LOWBOUND. The result has the same lower
3682 bound as the original ARRAY. */
3683
3684 struct value *
3685 value_slice (struct value *array, int lowbound, int length)
3686 {
3687 struct type *slice_range_type, *slice_type, *range_type;
3688 LONGEST lowerbound, upperbound;
3689 struct value *slice;
3690 struct type *array_type;
3691
3692 array_type = check_typedef (value_type (array));
3693 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3694 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
3695 error (_("cannot take slice of non-array"));
3696
3697 range_type = TYPE_INDEX_TYPE (array_type);
3698 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3699 error (_("slice from bad array or bitstring"));
3700
3701 if (lowbound < lowerbound || length < 0
3702 || lowbound + length - 1 > upperbound)
3703 error (_("slice out of range"));
3704
3705 /* FIXME-type-allocation: need a way to free this type when we are
3706 done with it. */
3707 slice_range_type = create_range_type ((struct type *) NULL,
3708 TYPE_TARGET_TYPE (range_type),
3709 lowbound,
3710 lowbound + length - 1);
3711
3712 {
3713 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3714 LONGEST offset =
3715 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3716
3717 slice_type = create_array_type ((struct type *) NULL,
3718 element_type,
3719 slice_range_type);
3720 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3721
3722 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3723 slice = allocate_value_lazy (slice_type);
3724 else
3725 {
3726 slice = allocate_value (slice_type);
3727 value_contents_copy (slice, 0, array, offset,
3728 TYPE_LENGTH (slice_type));
3729 }
3730
3731 set_value_component_location (slice, array);
3732 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3733 set_value_offset (slice, value_offset (array) + offset);
3734 }
3735 return slice;
3736 }
3737
3738 /* Create a value for a FORTRAN complex number. Currently most of the
3739 time values are coerced to COMPLEX*16 (i.e. a complex number
3740 composed of 2 doubles. This really should be a smarter routine
3741 that figures out precision inteligently as opposed to assuming
3742 doubles. FIXME: fmb */
3743
3744 struct value *
3745 value_literal_complex (struct value *arg1,
3746 struct value *arg2,
3747 struct type *type)
3748 {
3749 struct value *val;
3750 struct type *real_type = TYPE_TARGET_TYPE (type);
3751
3752 val = allocate_value (type);
3753 arg1 = value_cast (real_type, arg1);
3754 arg2 = value_cast (real_type, arg2);
3755
3756 memcpy (value_contents_raw (val),
3757 value_contents (arg1), TYPE_LENGTH (real_type));
3758 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3759 value_contents (arg2), TYPE_LENGTH (real_type));
3760 return val;
3761 }
3762
3763 /* Cast a value into the appropriate complex data type. */
3764
3765 static struct value *
3766 cast_into_complex (struct type *type, struct value *val)
3767 {
3768 struct type *real_type = TYPE_TARGET_TYPE (type);
3769
3770 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3771 {
3772 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3773 struct value *re_val = allocate_value (val_real_type);
3774 struct value *im_val = allocate_value (val_real_type);
3775
3776 memcpy (value_contents_raw (re_val),
3777 value_contents (val), TYPE_LENGTH (val_real_type));
3778 memcpy (value_contents_raw (im_val),
3779 value_contents (val) + TYPE_LENGTH (val_real_type),
3780 TYPE_LENGTH (val_real_type));
3781
3782 return value_literal_complex (re_val, im_val, type);
3783 }
3784 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3785 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3786 return value_literal_complex (val,
3787 value_zero (real_type, not_lval),
3788 type);
3789 else
3790 error (_("cannot cast non-number to complex"));
3791 }
3792
3793 void
3794 _initialize_valops (void)
3795 {
3796 add_setshow_boolean_cmd ("overload-resolution", class_support,
3797 &overload_resolution, _("\
3798 Set overload resolution in evaluating C++ functions."), _("\
3799 Show overload resolution in evaluating C++ functions."),
3800 NULL, NULL,
3801 show_overload_resolution,
3802 &setlist, &showlist);
3803 overload_resolution = 1;
3804 }
This page took 0.106727 seconds and 5 git commands to generate.