Replace free() with xfree().
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 87, 89, 91, 92, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33
34 #include <errno.h>
35 #include "gdb_string.h"
36
37 /* Flag indicating HP compilers were used; needed to correctly handle some
38 value operations with HP aCC code/runtime. */
39 extern int hp_som_som_object_present;
40
41 extern int overload_debug;
42 /* Local functions. */
43
44 static int typecmp (int staticp, struct type *t1[], value_ptr t2[]);
45
46 static CORE_ADDR find_function_addr (value_ptr, struct type **);
47 static value_ptr value_arg_coerce (value_ptr, struct type *, int);
48
49
50 static CORE_ADDR value_push (CORE_ADDR, value_ptr);
51
52 static value_ptr search_struct_field (char *, value_ptr, int,
53 struct type *, int);
54
55 static value_ptr search_struct_method (char *, value_ptr *,
56 value_ptr *,
57 int, int *, struct type *);
58
59 static int check_field_in (struct type *, const char *);
60
61 static CORE_ADDR allocate_space_in_inferior (int);
62
63 static value_ptr cast_into_complex (struct type *, value_ptr);
64
65 static struct fn_field *find_method_list (value_ptr * argp, char *method,
66 int offset, int *static_memfuncp,
67 struct type *type, int *num_fns,
68 struct type **basetype,
69 int *boffset);
70
71 void _initialize_valops (void);
72
73 #define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL)
74
75 /* Flag for whether we want to abandon failed expression evals by default. */
76
77 #if 0
78 static int auto_abandon = 0;
79 #endif
80
81 int overload_resolution = 0;
82
83 /* This boolean tells what gdb should do if a signal is received while in
84 a function called from gdb (call dummy). If set, gdb unwinds the stack
85 and restore the context to what as it was before the call.
86 The default is to stop in the frame where the signal was received. */
87
88 int unwind_on_signal_p = 0;
89 \f
90
91
92 /* Find the address of function name NAME in the inferior. */
93
94 value_ptr
95 find_function_in_inferior (char *name)
96 {
97 register struct symbol *sym;
98 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
99 if (sym != NULL)
100 {
101 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
102 {
103 error ("\"%s\" exists in this program but is not a function.",
104 name);
105 }
106 return value_of_variable (sym, NULL);
107 }
108 else
109 {
110 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
111 if (msymbol != NULL)
112 {
113 struct type *type;
114 CORE_ADDR maddr;
115 type = lookup_pointer_type (builtin_type_char);
116 type = lookup_function_type (type);
117 type = lookup_pointer_type (type);
118 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
119 return value_from_pointer (type, maddr);
120 }
121 else
122 {
123 if (!target_has_execution)
124 error ("evaluation of this expression requires the target program to be active");
125 else
126 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
127 }
128 }
129 }
130
131 /* Allocate NBYTES of space in the inferior using the inferior's malloc
132 and return a value that is a pointer to the allocated space. */
133
134 value_ptr
135 value_allocate_space_in_inferior (int len)
136 {
137 value_ptr blocklen;
138 register value_ptr val = find_function_in_inferior ("malloc");
139
140 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
141 val = call_function_by_hand (val, 1, &blocklen);
142 if (value_logical_not (val))
143 {
144 if (!target_has_execution)
145 error ("No memory available to program now: you need to start the target first");
146 else
147 error ("No memory available to program: call to malloc failed");
148 }
149 return val;
150 }
151
152 static CORE_ADDR
153 allocate_space_in_inferior (int len)
154 {
155 return value_as_long (value_allocate_space_in_inferior (len));
156 }
157
158 /* Cast value ARG2 to type TYPE and return as a value.
159 More general than a C cast: accepts any two types of the same length,
160 and if ARG2 is an lvalue it can be cast into anything at all. */
161 /* In C++, casts may change pointer or object representations. */
162
163 value_ptr
164 value_cast (struct type *type, register value_ptr arg2)
165 {
166 register enum type_code code1;
167 register enum type_code code2;
168 register int scalar;
169 struct type *type2;
170
171 int convert_to_boolean = 0;
172
173 if (VALUE_TYPE (arg2) == type)
174 return arg2;
175
176 CHECK_TYPEDEF (type);
177 code1 = TYPE_CODE (type);
178 COERCE_REF (arg2);
179 type2 = check_typedef (VALUE_TYPE (arg2));
180
181 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
182 is treated like a cast to (TYPE [N])OBJECT,
183 where N is sizeof(OBJECT)/sizeof(TYPE). */
184 if (code1 == TYPE_CODE_ARRAY)
185 {
186 struct type *element_type = TYPE_TARGET_TYPE (type);
187 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
188 if (element_length > 0
189 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
190 {
191 struct type *range_type = TYPE_INDEX_TYPE (type);
192 int val_length = TYPE_LENGTH (type2);
193 LONGEST low_bound, high_bound, new_length;
194 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
195 low_bound = 0, high_bound = 0;
196 new_length = val_length / element_length;
197 if (val_length % element_length != 0)
198 warning ("array element type size does not divide object size in cast");
199 /* FIXME-type-allocation: need a way to free this type when we are
200 done with it. */
201 range_type = create_range_type ((struct type *) NULL,
202 TYPE_TARGET_TYPE (range_type),
203 low_bound,
204 new_length + low_bound - 1);
205 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
206 element_type, range_type);
207 return arg2;
208 }
209 }
210
211 if (current_language->c_style_arrays
212 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
213 arg2 = value_coerce_array (arg2);
214
215 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
216 arg2 = value_coerce_function (arg2);
217
218 type2 = check_typedef (VALUE_TYPE (arg2));
219 COERCE_VARYING_ARRAY (arg2, type2);
220 code2 = TYPE_CODE (type2);
221
222 if (code1 == TYPE_CODE_COMPLEX)
223 return cast_into_complex (type, arg2);
224 if (code1 == TYPE_CODE_BOOL)
225 {
226 code1 = TYPE_CODE_INT;
227 convert_to_boolean = 1;
228 }
229 if (code1 == TYPE_CODE_CHAR)
230 code1 = TYPE_CODE_INT;
231 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
232 code2 = TYPE_CODE_INT;
233
234 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
235 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
236
237 if (code1 == TYPE_CODE_STRUCT
238 && code2 == TYPE_CODE_STRUCT
239 && TYPE_NAME (type) != 0)
240 {
241 /* Look in the type of the source to see if it contains the
242 type of the target as a superclass. If so, we'll need to
243 offset the object in addition to changing its type. */
244 value_ptr v = search_struct_field (type_name_no_tag (type),
245 arg2, 0, type2, 1);
246 if (v)
247 {
248 VALUE_TYPE (v) = type;
249 return v;
250 }
251 }
252 if (code1 == TYPE_CODE_FLT && scalar)
253 return value_from_double (type, value_as_double (arg2));
254 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
255 || code1 == TYPE_CODE_RANGE)
256 && (scalar || code2 == TYPE_CODE_PTR))
257 {
258 LONGEST longest;
259
260 if (hp_som_som_object_present && /* if target compiled by HP aCC */
261 (code2 == TYPE_CODE_PTR))
262 {
263 unsigned int *ptr;
264 value_ptr retvalp;
265
266 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
267 {
268 /* With HP aCC, pointers to data members have a bias */
269 case TYPE_CODE_MEMBER:
270 retvalp = value_from_longest (type, value_as_long (arg2));
271 /* force evaluation */
272 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
273 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
274 return retvalp;
275
276 /* While pointers to methods don't really point to a function */
277 case TYPE_CODE_METHOD:
278 error ("Pointers to methods not supported with HP aCC");
279
280 default:
281 break; /* fall out and go to normal handling */
282 }
283 }
284 longest = value_as_long (arg2);
285 return value_from_longest (type, convert_to_boolean ?
286 (LONGEST) (longest ? 1 : 0) : longest);
287 }
288 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
289 code2 == TYPE_CODE_ENUM ||
290 code2 == TYPE_CODE_RANGE))
291 {
292 int ptr_bit = HOST_CHAR_BIT * TYPE_LENGTH (type);
293 LONGEST longest = value_as_long (arg2);
294 if (ptr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
295 {
296 if (longest >= ((LONGEST) 1 << ptr_bit)
297 || longest <= -((LONGEST) 1 << ptr_bit))
298 warning ("value truncated");
299 }
300 return value_from_longest (type, longest);
301 }
302 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
303 {
304 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
305 {
306 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
307 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
308 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
309 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
310 && !value_logical_not (arg2))
311 {
312 value_ptr v;
313
314 /* Look in the type of the source to see if it contains the
315 type of the target as a superclass. If so, we'll need to
316 offset the pointer rather than just change its type. */
317 if (TYPE_NAME (t1) != NULL)
318 {
319 v = search_struct_field (type_name_no_tag (t1),
320 value_ind (arg2), 0, t2, 1);
321 if (v)
322 {
323 v = value_addr (v);
324 VALUE_TYPE (v) = type;
325 return v;
326 }
327 }
328
329 /* Look in the type of the target to see if it contains the
330 type of the source as a superclass. If so, we'll need to
331 offset the pointer rather than just change its type.
332 FIXME: This fails silently with virtual inheritance. */
333 if (TYPE_NAME (t2) != NULL)
334 {
335 v = search_struct_field (type_name_no_tag (t2),
336 value_zero (t1, not_lval), 0, t1, 1);
337 if (v)
338 {
339 value_ptr v2 = value_ind (arg2);
340 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
341 + VALUE_OFFSET (v);
342
343 /* JYG: adjust the new pointer value and
344 embedded offset. */
345 v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v);
346 VALUE_EMBEDDED_OFFSET (v2) = 0;
347
348 v2 = value_addr (v2);
349 VALUE_TYPE (v2) = type;
350 return v2;
351 }
352 }
353 }
354 /* No superclass found, just fall through to change ptr type. */
355 }
356 VALUE_TYPE (arg2) = type;
357 VALUE_ENCLOSING_TYPE (arg2) = type; /* pai: chk_val */
358 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
359 return arg2;
360 }
361 else if (chill_varying_type (type))
362 {
363 struct type *range1, *range2, *eltype1, *eltype2;
364 value_ptr val;
365 int count1, count2;
366 LONGEST low_bound, high_bound;
367 char *valaddr, *valaddr_data;
368 /* For lint warning about eltype2 possibly uninitialized: */
369 eltype2 = NULL;
370 if (code2 == TYPE_CODE_BITSTRING)
371 error ("not implemented: converting bitstring to varying type");
372 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
373 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
374 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
375 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
376 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
377 error ("Invalid conversion to varying type");
378 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
379 range2 = TYPE_FIELD_TYPE (type2, 0);
380 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
381 count1 = -1;
382 else
383 count1 = high_bound - low_bound + 1;
384 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
385 count1 = -1, count2 = 0; /* To force error before */
386 else
387 count2 = high_bound - low_bound + 1;
388 if (count2 > count1)
389 error ("target varying type is too small");
390 val = allocate_value (type);
391 valaddr = VALUE_CONTENTS_RAW (val);
392 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
393 /* Set val's __var_length field to count2. */
394 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
395 count2);
396 /* Set the __var_data field to count2 elements copied from arg2. */
397 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
398 count2 * TYPE_LENGTH (eltype2));
399 /* Zero the rest of the __var_data field of val. */
400 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
401 (count1 - count2) * TYPE_LENGTH (eltype2));
402 return val;
403 }
404 else if (VALUE_LVAL (arg2) == lval_memory)
405 {
406 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
407 VALUE_BFD_SECTION (arg2));
408 }
409 else if (code1 == TYPE_CODE_VOID)
410 {
411 return value_zero (builtin_type_void, not_lval);
412 }
413 else
414 {
415 error ("Invalid cast.");
416 return 0;
417 }
418 }
419
420 /* Create a value of type TYPE that is zero, and return it. */
421
422 value_ptr
423 value_zero (struct type *type, enum lval_type lv)
424 {
425 register value_ptr val = allocate_value (type);
426
427 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
428 VALUE_LVAL (val) = lv;
429
430 return val;
431 }
432
433 /* Return a value with type TYPE located at ADDR.
434
435 Call value_at only if the data needs to be fetched immediately;
436 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
437 value_at_lazy instead. value_at_lazy simply records the address of
438 the data and sets the lazy-evaluation-required flag. The lazy flag
439 is tested in the VALUE_CONTENTS macro, which is used if and when
440 the contents are actually required.
441
442 Note: value_at does *NOT* handle embedded offsets; perform such
443 adjustments before or after calling it. */
444
445 value_ptr
446 value_at (struct type *type, CORE_ADDR addr, asection *sect)
447 {
448 register value_ptr val;
449
450 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
451 error ("Attempt to dereference a generic pointer.");
452
453 val = allocate_value (type);
454
455 if (GDB_TARGET_IS_D10V
456 && TYPE_CODE (type) == TYPE_CODE_PTR
457 && TYPE_TARGET_TYPE (type)
458 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
459 {
460 /* pointer to function */
461 unsigned long num;
462 unsigned short snum;
463 snum = read_memory_unsigned_integer (addr, 2);
464 num = D10V_MAKE_IADDR (snum);
465 store_address (VALUE_CONTENTS_RAW (val), 4, num);
466 }
467 else if (GDB_TARGET_IS_D10V
468 && TYPE_CODE (type) == TYPE_CODE_PTR)
469 {
470 /* pointer to data */
471 unsigned long num;
472 unsigned short snum;
473 snum = read_memory_unsigned_integer (addr, 2);
474 num = D10V_MAKE_DADDR (snum);
475 store_address (VALUE_CONTENTS_RAW (val), 4, num);
476 }
477 else
478 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
479
480 VALUE_LVAL (val) = lval_memory;
481 VALUE_ADDRESS (val) = addr;
482 VALUE_BFD_SECTION (val) = sect;
483
484 return val;
485 }
486
487 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
488
489 value_ptr
490 value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
491 {
492 register value_ptr val;
493
494 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
495 error ("Attempt to dereference a generic pointer.");
496
497 val = allocate_value (type);
498
499 VALUE_LVAL (val) = lval_memory;
500 VALUE_ADDRESS (val) = addr;
501 VALUE_LAZY (val) = 1;
502 VALUE_BFD_SECTION (val) = sect;
503
504 return val;
505 }
506
507 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
508 if the current data for a variable needs to be loaded into
509 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
510 clears the lazy flag to indicate that the data in the buffer is valid.
511
512 If the value is zero-length, we avoid calling read_memory, which would
513 abort. We mark the value as fetched anyway -- all 0 bytes of it.
514
515 This function returns a value because it is used in the VALUE_CONTENTS
516 macro as part of an expression, where a void would not work. The
517 value is ignored. */
518
519 int
520 value_fetch_lazy (register value_ptr val)
521 {
522 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
523 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
524
525 struct type *type = VALUE_TYPE (val);
526 if (GDB_TARGET_IS_D10V
527 && TYPE_CODE (type) == TYPE_CODE_PTR
528 && TYPE_TARGET_TYPE (type)
529 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
530 {
531 /* pointer to function */
532 unsigned long num;
533 unsigned short snum;
534 snum = read_memory_unsigned_integer (addr, 2);
535 num = D10V_MAKE_IADDR (snum);
536 store_address (VALUE_CONTENTS_RAW (val), 4, num);
537 }
538 else if (GDB_TARGET_IS_D10V
539 && TYPE_CODE (type) == TYPE_CODE_PTR)
540 {
541 /* pointer to data */
542 unsigned long num;
543 unsigned short snum;
544 snum = read_memory_unsigned_integer (addr, 2);
545 num = D10V_MAKE_DADDR (snum);
546 store_address (VALUE_CONTENTS_RAW (val), 4, num);
547 }
548 else if (length)
549 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
550
551 VALUE_LAZY (val) = 0;
552 return 0;
553 }
554
555
556 /* Store the contents of FROMVAL into the location of TOVAL.
557 Return a new value with the location of TOVAL and contents of FROMVAL. */
558
559 value_ptr
560 value_assign (register value_ptr toval, register value_ptr fromval)
561 {
562 register struct type *type;
563 register value_ptr val;
564 char raw_buffer[MAX_REGISTER_RAW_SIZE];
565 int use_buffer = 0;
566
567 if (!toval->modifiable)
568 error ("Left operand of assignment is not a modifiable lvalue.");
569
570 COERCE_REF (toval);
571
572 type = VALUE_TYPE (toval);
573 if (VALUE_LVAL (toval) != lval_internalvar)
574 fromval = value_cast (type, fromval);
575 else
576 COERCE_ARRAY (fromval);
577 CHECK_TYPEDEF (type);
578
579 /* If TOVAL is a special machine register requiring conversion
580 of program values to a special raw format,
581 convert FROMVAL's contents now, with result in `raw_buffer',
582 and set USE_BUFFER to the number of bytes to write. */
583
584 if (VALUE_REGNO (toval) >= 0)
585 {
586 int regno = VALUE_REGNO (toval);
587 if (REGISTER_CONVERTIBLE (regno))
588 {
589 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
590 REGISTER_CONVERT_TO_RAW (fromtype, regno,
591 VALUE_CONTENTS (fromval), raw_buffer);
592 use_buffer = REGISTER_RAW_SIZE (regno);
593 }
594 }
595
596 switch (VALUE_LVAL (toval))
597 {
598 case lval_internalvar:
599 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
600 val = value_copy (VALUE_INTERNALVAR (toval)->value);
601 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
602 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
603 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
604 return val;
605
606 case lval_internalvar_component:
607 set_internalvar_component (VALUE_INTERNALVAR (toval),
608 VALUE_OFFSET (toval),
609 VALUE_BITPOS (toval),
610 VALUE_BITSIZE (toval),
611 fromval);
612 break;
613
614 case lval_memory:
615 {
616 char *dest_buffer;
617 CORE_ADDR changed_addr;
618 int changed_len;
619
620 if (VALUE_BITSIZE (toval))
621 {
622 char buffer[sizeof (LONGEST)];
623 /* We assume that the argument to read_memory is in units of
624 host chars. FIXME: Is that correct? */
625 changed_len = (VALUE_BITPOS (toval)
626 + VALUE_BITSIZE (toval)
627 + HOST_CHAR_BIT - 1)
628 / HOST_CHAR_BIT;
629
630 if (changed_len > (int) sizeof (LONGEST))
631 error ("Can't handle bitfields which don't fit in a %d bit word.",
632 sizeof (LONGEST) * HOST_CHAR_BIT);
633
634 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
635 buffer, changed_len);
636 modify_field (buffer, value_as_long (fromval),
637 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
638 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
639 dest_buffer = buffer;
640 }
641 else if (use_buffer)
642 {
643 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
644 changed_len = use_buffer;
645 dest_buffer = raw_buffer;
646 }
647 else
648 {
649 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
650 changed_len = TYPE_LENGTH (type);
651 dest_buffer = VALUE_CONTENTS (fromval);
652 }
653
654 write_memory (changed_addr, dest_buffer, changed_len);
655 if (memory_changed_hook)
656 memory_changed_hook (changed_addr, changed_len);
657 }
658 break;
659
660 case lval_register:
661 if (VALUE_BITSIZE (toval))
662 {
663 char buffer[sizeof (LONGEST)];
664 int len =
665 REGISTER_RAW_SIZE (VALUE_REGNO (toval)) - VALUE_OFFSET (toval);
666
667 if (len > (int) sizeof (LONGEST))
668 error ("Can't handle bitfields in registers larger than %d bits.",
669 sizeof (LONGEST) * HOST_CHAR_BIT);
670
671 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
672 > len * HOST_CHAR_BIT)
673 /* Getting this right would involve being very careful about
674 byte order. */
675 error ("Can't assign to bitfields that cross register "
676 "boundaries.");
677
678 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
679 buffer, len);
680 modify_field (buffer, value_as_long (fromval),
681 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
682 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
683 buffer, len);
684 }
685 else if (use_buffer)
686 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
687 raw_buffer, use_buffer);
688 else
689 {
690 /* Do any conversion necessary when storing this type to more
691 than one register. */
692 #ifdef REGISTER_CONVERT_FROM_TYPE
693 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
694 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
695 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
696 raw_buffer, TYPE_LENGTH (type));
697 #else
698 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
699 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
700 #endif
701 }
702 /* Assigning to the stack pointer, frame pointer, and other
703 (architecture and calling convention specific) registers may
704 cause the frame cache to be out of date. We just do this
705 on all assignments to registers for simplicity; I doubt the slowdown
706 matters. */
707 reinit_frame_cache ();
708 break;
709
710 case lval_reg_frame_relative:
711 {
712 /* value is stored in a series of registers in the frame
713 specified by the structure. Copy that value out, modify
714 it, and copy it back in. */
715 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
716 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
717 int byte_offset = VALUE_OFFSET (toval) % reg_size;
718 int reg_offset = VALUE_OFFSET (toval) / reg_size;
719 int amount_copied;
720
721 /* Make the buffer large enough in all cases. */
722 char *buffer = (char *) alloca (amount_to_copy
723 + sizeof (LONGEST)
724 + MAX_REGISTER_RAW_SIZE);
725
726 int regno;
727 struct frame_info *frame;
728
729 /* Figure out which frame this is in currently. */
730 for (frame = get_current_frame ();
731 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
732 frame = get_prev_frame (frame))
733 ;
734
735 if (!frame)
736 error ("Value being assigned to is no longer active.");
737
738 amount_to_copy += (reg_size - amount_to_copy % reg_size);
739
740 /* Copy it out. */
741 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
742 amount_copied = 0);
743 amount_copied < amount_to_copy;
744 amount_copied += reg_size, regno++)
745 {
746 get_saved_register (buffer + amount_copied,
747 (int *) NULL, (CORE_ADDR *) NULL,
748 frame, regno, (enum lval_type *) NULL);
749 }
750
751 /* Modify what needs to be modified. */
752 if (VALUE_BITSIZE (toval))
753 modify_field (buffer + byte_offset,
754 value_as_long (fromval),
755 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
756 else if (use_buffer)
757 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
758 else
759 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
760 TYPE_LENGTH (type));
761
762 /* Copy it back. */
763 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
764 amount_copied = 0);
765 amount_copied < amount_to_copy;
766 amount_copied += reg_size, regno++)
767 {
768 enum lval_type lval;
769 CORE_ADDR addr;
770 int optim;
771
772 /* Just find out where to put it. */
773 get_saved_register ((char *) NULL,
774 &optim, &addr, frame, regno, &lval);
775
776 if (optim)
777 error ("Attempt to assign to a value that was optimized out.");
778 if (lval == lval_memory)
779 write_memory (addr, buffer + amount_copied, reg_size);
780 else if (lval == lval_register)
781 write_register_bytes (addr, buffer + amount_copied, reg_size);
782 else
783 error ("Attempt to assign to an unmodifiable value.");
784 }
785
786 if (register_changed_hook)
787 register_changed_hook (-1);
788 }
789 break;
790
791
792 default:
793 error ("Left operand of assignment is not an lvalue.");
794 }
795
796 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
797 If the field is signed, and is negative, then sign extend. */
798 if ((VALUE_BITSIZE (toval) > 0)
799 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
800 {
801 LONGEST fieldval = value_as_long (fromval);
802 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
803
804 fieldval &= valmask;
805 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
806 fieldval |= ~valmask;
807
808 fromval = value_from_longest (type, fieldval);
809 }
810
811 val = value_copy (toval);
812 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
813 TYPE_LENGTH (type));
814 VALUE_TYPE (val) = type;
815 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
816 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
817 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
818
819 return val;
820 }
821
822 /* Extend a value VAL to COUNT repetitions of its type. */
823
824 value_ptr
825 value_repeat (value_ptr arg1, int count)
826 {
827 register value_ptr val;
828
829 if (VALUE_LVAL (arg1) != lval_memory)
830 error ("Only values in memory can be extended with '@'.");
831 if (count < 1)
832 error ("Invalid number %d of repetitions.", count);
833
834 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
835
836 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
837 VALUE_CONTENTS_ALL_RAW (val),
838 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
839 VALUE_LVAL (val) = lval_memory;
840 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
841
842 return val;
843 }
844
845 value_ptr
846 value_of_variable (struct symbol *var, struct block *b)
847 {
848 value_ptr val;
849 struct frame_info *frame = NULL;
850
851 if (!b)
852 frame = NULL; /* Use selected frame. */
853 else if (symbol_read_needs_frame (var))
854 {
855 frame = block_innermost_frame (b);
856 if (!frame)
857 {
858 if (BLOCK_FUNCTION (b)
859 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
860 error ("No frame is currently executing in block %s.",
861 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
862 else
863 error ("No frame is currently executing in specified block");
864 }
865 }
866
867 val = read_var_value (var, frame);
868 if (!val)
869 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
870
871 return val;
872 }
873
874 /* Given a value which is an array, return a value which is a pointer to its
875 first element, regardless of whether or not the array has a nonzero lower
876 bound.
877
878 FIXME: A previous comment here indicated that this routine should be
879 substracting the array's lower bound. It's not clear to me that this
880 is correct. Given an array subscripting operation, it would certainly
881 work to do the adjustment here, essentially computing:
882
883 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
884
885 However I believe a more appropriate and logical place to account for
886 the lower bound is to do so in value_subscript, essentially computing:
887
888 (&array[0] + ((index - lowerbound) * sizeof array[0]))
889
890 As further evidence consider what would happen with operations other
891 than array subscripting, where the caller would get back a value that
892 had an address somewhere before the actual first element of the array,
893 and the information about the lower bound would be lost because of
894 the coercion to pointer type.
895 */
896
897 value_ptr
898 value_coerce_array (value_ptr arg1)
899 {
900 register struct type *type = check_typedef (VALUE_TYPE (arg1));
901
902 if (VALUE_LVAL (arg1) != lval_memory)
903 error ("Attempt to take address of value not located in memory.");
904
905 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
906 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
907 }
908
909 /* Given a value which is a function, return a value which is a pointer
910 to it. */
911
912 value_ptr
913 value_coerce_function (value_ptr arg1)
914 {
915 value_ptr retval;
916
917 if (VALUE_LVAL (arg1) != lval_memory)
918 error ("Attempt to take address of value not located in memory.");
919
920 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
921 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
922 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
923 return retval;
924 }
925
926 /* Return a pointer value for the object for which ARG1 is the contents. */
927
928 value_ptr
929 value_addr (value_ptr arg1)
930 {
931 value_ptr arg2;
932
933 struct type *type = check_typedef (VALUE_TYPE (arg1));
934 if (TYPE_CODE (type) == TYPE_CODE_REF)
935 {
936 /* Copy the value, but change the type from (T&) to (T*).
937 We keep the same location information, which is efficient,
938 and allows &(&X) to get the location containing the reference. */
939 arg2 = value_copy (arg1);
940 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
941 return arg2;
942 }
943 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
944 return value_coerce_function (arg1);
945
946 if (VALUE_LVAL (arg1) != lval_memory)
947 error ("Attempt to take address of value not located in memory.");
948
949 /* Get target memory address */
950 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
951 (VALUE_ADDRESS (arg1)
952 + VALUE_OFFSET (arg1)
953 + VALUE_EMBEDDED_OFFSET (arg1)));
954
955 /* This may be a pointer to a base subobject; so remember the
956 full derived object's type ... */
957 VALUE_ENCLOSING_TYPE (arg2) = lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1));
958 /* ... and also the relative position of the subobject in the full object */
959 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
960 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
961 return arg2;
962 }
963
964 /* Given a value of a pointer type, apply the C unary * operator to it. */
965
966 value_ptr
967 value_ind (value_ptr arg1)
968 {
969 struct type *base_type;
970 value_ptr arg2;
971
972 COERCE_ARRAY (arg1);
973
974 base_type = check_typedef (VALUE_TYPE (arg1));
975
976 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
977 error ("not implemented: member types in value_ind");
978
979 /* Allow * on an integer so we can cast it to whatever we want.
980 This returns an int, which seems like the most C-like thing
981 to do. "long long" variables are rare enough that
982 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
983 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
984 return value_at (builtin_type_int,
985 (CORE_ADDR) value_as_long (arg1),
986 VALUE_BFD_SECTION (arg1));
987 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
988 {
989 struct type *enc_type;
990 /* We may be pointing to something embedded in a larger object */
991 /* Get the real type of the enclosing object */
992 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
993 enc_type = TYPE_TARGET_TYPE (enc_type);
994 /* Retrieve the enclosing object pointed to */
995 arg2 = value_at_lazy (enc_type,
996 value_as_pointer (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
997 VALUE_BFD_SECTION (arg1));
998 /* Re-adjust type */
999 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
1000 /* Add embedding info */
1001 VALUE_ENCLOSING_TYPE (arg2) = enc_type;
1002 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
1003
1004 /* We may be pointing to an object of some derived type */
1005 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1006 return arg2;
1007 }
1008
1009 error ("Attempt to take contents of a non-pointer value.");
1010 return 0; /* For lint -- never reached */
1011 }
1012 \f
1013 /* Pushing small parts of stack frames. */
1014
1015 /* Push one word (the size of object that a register holds). */
1016
1017 CORE_ADDR
1018 push_word (CORE_ADDR sp, ULONGEST word)
1019 {
1020 register int len = REGISTER_SIZE;
1021 char buffer[MAX_REGISTER_RAW_SIZE];
1022
1023 store_unsigned_integer (buffer, len, word);
1024 if (INNER_THAN (1, 2))
1025 {
1026 /* stack grows downward */
1027 sp -= len;
1028 write_memory (sp, buffer, len);
1029 }
1030 else
1031 {
1032 /* stack grows upward */
1033 write_memory (sp, buffer, len);
1034 sp += len;
1035 }
1036
1037 return sp;
1038 }
1039
1040 /* Push LEN bytes with data at BUFFER. */
1041
1042 CORE_ADDR
1043 push_bytes (CORE_ADDR sp, char *buffer, int len)
1044 {
1045 if (INNER_THAN (1, 2))
1046 {
1047 /* stack grows downward */
1048 sp -= len;
1049 write_memory (sp, buffer, len);
1050 }
1051 else
1052 {
1053 /* stack grows upward */
1054 write_memory (sp, buffer, len);
1055 sp += len;
1056 }
1057
1058 return sp;
1059 }
1060
1061 #ifndef PARM_BOUNDARY
1062 #define PARM_BOUNDARY (0)
1063 #endif
1064
1065 /* Push onto the stack the specified value VALUE. Pad it correctly for
1066 it to be an argument to a function. */
1067
1068 static CORE_ADDR
1069 value_push (register CORE_ADDR sp, value_ptr arg)
1070 {
1071 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1072 register int container_len = len;
1073 register int offset;
1074
1075 /* How big is the container we're going to put this value in? */
1076 if (PARM_BOUNDARY)
1077 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1078 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1079
1080 /* Are we going to put it at the high or low end of the container? */
1081 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1082 offset = container_len - len;
1083 else
1084 offset = 0;
1085
1086 if (INNER_THAN (1, 2))
1087 {
1088 /* stack grows downward */
1089 sp -= container_len;
1090 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1091 }
1092 else
1093 {
1094 /* stack grows upward */
1095 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1096 sp += container_len;
1097 }
1098
1099 return sp;
1100 }
1101
1102 #ifndef PUSH_ARGUMENTS
1103 #define PUSH_ARGUMENTS default_push_arguments
1104 #endif
1105
1106 CORE_ADDR
1107 default_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
1108 int struct_return, CORE_ADDR struct_addr)
1109 {
1110 /* ASSERT ( !struct_return); */
1111 int i;
1112 for (i = nargs - 1; i >= 0; i--)
1113 sp = value_push (sp, args[i]);
1114 return sp;
1115 }
1116
1117
1118 /* A default function for COERCE_FLOAT_TO_DOUBLE: do the coercion only
1119 when we don't have any type for the argument at hand. This occurs
1120 when we have no debug info, or when passing varargs.
1121
1122 This is an annoying default: the rule the compiler follows is to do
1123 the standard promotions whenever there is no prototype in scope,
1124 and almost all targets want this behavior. But there are some old
1125 architectures which want this odd behavior. If you want to go
1126 through them all and fix them, please do. Modern gdbarch-style
1127 targets may find it convenient to use standard_coerce_float_to_double. */
1128 int
1129 default_coerce_float_to_double (struct type *formal, struct type *actual)
1130 {
1131 return formal == NULL;
1132 }
1133
1134
1135 /* Always coerce floats to doubles when there is no prototype in scope.
1136 If your architecture follows the standard type promotion rules for
1137 calling unprototyped functions, your gdbarch init function can pass
1138 this function to set_gdbarch_coerce_float_to_double to use its logic. */
1139 int
1140 standard_coerce_float_to_double (struct type *formal, struct type *actual)
1141 {
1142 return 1;
1143 }
1144
1145
1146 /* Perform the standard coercions that are specified
1147 for arguments to be passed to C functions.
1148
1149 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1150 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1151
1152 static value_ptr
1153 value_arg_coerce (value_ptr arg, struct type *param_type, int is_prototyped)
1154 {
1155 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1156 register struct type *type
1157 = param_type ? check_typedef (param_type) : arg_type;
1158
1159 switch (TYPE_CODE (type))
1160 {
1161 case TYPE_CODE_REF:
1162 if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
1163 {
1164 arg = value_addr (arg);
1165 VALUE_TYPE (arg) = param_type;
1166 return arg;
1167 }
1168 break;
1169 case TYPE_CODE_INT:
1170 case TYPE_CODE_CHAR:
1171 case TYPE_CODE_BOOL:
1172 case TYPE_CODE_ENUM:
1173 /* If we don't have a prototype, coerce to integer type if necessary. */
1174 if (!is_prototyped)
1175 {
1176 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1177 type = builtin_type_int;
1178 }
1179 /* Currently all target ABIs require at least the width of an integer
1180 type for an argument. We may have to conditionalize the following
1181 type coercion for future targets. */
1182 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1183 type = builtin_type_int;
1184 break;
1185 case TYPE_CODE_FLT:
1186 /* FIXME: We should always convert floats to doubles in the
1187 non-prototyped case. As many debugging formats include
1188 no information about prototyping, we have to live with
1189 COERCE_FLOAT_TO_DOUBLE for now. */
1190 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
1191 {
1192 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1193 type = builtin_type_double;
1194 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1195 type = builtin_type_long_double;
1196 }
1197 break;
1198 case TYPE_CODE_FUNC:
1199 type = lookup_pointer_type (type);
1200 break;
1201 case TYPE_CODE_ARRAY:
1202 if (current_language->c_style_arrays)
1203 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1204 break;
1205 case TYPE_CODE_UNDEF:
1206 case TYPE_CODE_PTR:
1207 case TYPE_CODE_STRUCT:
1208 case TYPE_CODE_UNION:
1209 case TYPE_CODE_VOID:
1210 case TYPE_CODE_SET:
1211 case TYPE_CODE_RANGE:
1212 case TYPE_CODE_STRING:
1213 case TYPE_CODE_BITSTRING:
1214 case TYPE_CODE_ERROR:
1215 case TYPE_CODE_MEMBER:
1216 case TYPE_CODE_METHOD:
1217 case TYPE_CODE_COMPLEX:
1218 default:
1219 break;
1220 }
1221
1222 return value_cast (type, arg);
1223 }
1224
1225 /* Determine a function's address and its return type from its value.
1226 Calls error() if the function is not valid for calling. */
1227
1228 static CORE_ADDR
1229 find_function_addr (value_ptr function, struct type **retval_type)
1230 {
1231 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1232 register enum type_code code = TYPE_CODE (ftype);
1233 struct type *value_type;
1234 CORE_ADDR funaddr;
1235
1236 /* If it's a member function, just look at the function
1237 part of it. */
1238
1239 /* Determine address to call. */
1240 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1241 {
1242 funaddr = VALUE_ADDRESS (function);
1243 value_type = TYPE_TARGET_TYPE (ftype);
1244 }
1245 else if (code == TYPE_CODE_PTR)
1246 {
1247 funaddr = value_as_pointer (function);
1248 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1249 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1250 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1251 {
1252 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1253 value_type = TYPE_TARGET_TYPE (ftype);
1254 }
1255 else
1256 value_type = builtin_type_int;
1257 }
1258 else if (code == TYPE_CODE_INT)
1259 {
1260 /* Handle the case of functions lacking debugging info.
1261 Their values are characters since their addresses are char */
1262 if (TYPE_LENGTH (ftype) == 1)
1263 funaddr = value_as_pointer (value_addr (function));
1264 else
1265 /* Handle integer used as address of a function. */
1266 funaddr = (CORE_ADDR) value_as_long (function);
1267
1268 value_type = builtin_type_int;
1269 }
1270 else
1271 error ("Invalid data type for function to be called.");
1272
1273 *retval_type = value_type;
1274 return funaddr;
1275 }
1276
1277 /* All this stuff with a dummy frame may seem unnecessarily complicated
1278 (why not just save registers in GDB?). The purpose of pushing a dummy
1279 frame which looks just like a real frame is so that if you call a
1280 function and then hit a breakpoint (get a signal, etc), "backtrace"
1281 will look right. Whether the backtrace needs to actually show the
1282 stack at the time the inferior function was called is debatable, but
1283 it certainly needs to not display garbage. So if you are contemplating
1284 making dummy frames be different from normal frames, consider that. */
1285
1286 /* Perform a function call in the inferior.
1287 ARGS is a vector of values of arguments (NARGS of them).
1288 FUNCTION is a value, the function to be called.
1289 Returns a value representing what the function returned.
1290 May fail to return, if a breakpoint or signal is hit
1291 during the execution of the function.
1292
1293 ARGS is modified to contain coerced values. */
1294
1295 static value_ptr hand_function_call (value_ptr function, int nargs,
1296 value_ptr * args);
1297 static value_ptr
1298 hand_function_call (value_ptr function, int nargs, value_ptr *args)
1299 {
1300 register CORE_ADDR sp;
1301 register int i;
1302 int rc;
1303 CORE_ADDR start_sp;
1304 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1305 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1306 and remove any extra bytes which might exist because ULONGEST is
1307 bigger than REGISTER_SIZE.
1308
1309 NOTE: This is pretty wierd, as the call dummy is actually a
1310 sequence of instructions. But CISC machines will have
1311 to pack the instructions into REGISTER_SIZE units (and
1312 so will RISC machines for which INSTRUCTION_SIZE is not
1313 REGISTER_SIZE).
1314
1315 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1316 target byte order. */
1317
1318 static ULONGEST *dummy;
1319 int sizeof_dummy1;
1320 char *dummy1;
1321 CORE_ADDR old_sp;
1322 struct type *value_type;
1323 unsigned char struct_return;
1324 CORE_ADDR struct_addr = 0;
1325 struct inferior_status *inf_status;
1326 struct cleanup *old_chain;
1327 CORE_ADDR funaddr;
1328 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1329 CORE_ADDR real_pc;
1330 struct type *param_type = NULL;
1331 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1332
1333 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1334 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1335 dummy1 = alloca (sizeof_dummy1);
1336 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1337
1338 if (!target_has_execution)
1339 noprocess ();
1340
1341 inf_status = save_inferior_status (1);
1342 old_chain = make_cleanup_restore_inferior_status (inf_status);
1343
1344 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1345 (and POP_FRAME for restoring them). (At least on most machines)
1346 they are saved on the stack in the inferior. */
1347 PUSH_DUMMY_FRAME;
1348
1349 old_sp = sp = read_sp ();
1350
1351 if (INNER_THAN (1, 2))
1352 {
1353 /* Stack grows down */
1354 sp -= sizeof_dummy1;
1355 start_sp = sp;
1356 }
1357 else
1358 {
1359 /* Stack grows up */
1360 start_sp = sp;
1361 sp += sizeof_dummy1;
1362 }
1363
1364 funaddr = find_function_addr (function, &value_type);
1365 CHECK_TYPEDEF (value_type);
1366
1367 {
1368 struct block *b = block_for_pc (funaddr);
1369 /* If compiled without -g, assume GCC 2. */
1370 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1371 }
1372
1373 /* Are we returning a value using a structure return or a normal
1374 value return? */
1375
1376 struct_return = using_struct_return (function, funaddr, value_type,
1377 using_gcc);
1378
1379 /* Create a call sequence customized for this function
1380 and the number of arguments for it. */
1381 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1382 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1383 REGISTER_SIZE,
1384 (ULONGEST) dummy[i]);
1385
1386 #ifdef GDB_TARGET_IS_HPPA
1387 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1388 value_type, using_gcc);
1389 #else
1390 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1391 value_type, using_gcc);
1392 real_pc = start_sp;
1393 #endif
1394
1395 if (CALL_DUMMY_LOCATION == ON_STACK)
1396 {
1397 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1398 }
1399
1400 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1401 {
1402 /* Convex Unix prohibits executing in the stack segment. */
1403 /* Hope there is empty room at the top of the text segment. */
1404 extern CORE_ADDR text_end;
1405 static int checked = 0;
1406 if (!checked)
1407 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1408 if (read_memory_integer (start_sp, 1) != 0)
1409 error ("text segment full -- no place to put call");
1410 checked = 1;
1411 sp = old_sp;
1412 real_pc = text_end - sizeof_dummy1;
1413 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1414 }
1415
1416 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1417 {
1418 extern CORE_ADDR text_end;
1419 int errcode;
1420 sp = old_sp;
1421 real_pc = text_end;
1422 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1423 if (errcode != 0)
1424 error ("Cannot write text segment -- call_function failed");
1425 }
1426
1427 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1428 {
1429 real_pc = funaddr;
1430 }
1431
1432 #ifdef lint
1433 sp = old_sp; /* It really is used, for some ifdef's... */
1434 #endif
1435
1436 if (nargs < TYPE_NFIELDS (ftype))
1437 error ("too few arguments in function call");
1438
1439 for (i = nargs - 1; i >= 0; i--)
1440 {
1441 /* If we're off the end of the known arguments, do the standard
1442 promotions. FIXME: if we had a prototype, this should only
1443 be allowed if ... were present. */
1444 if (i >= TYPE_NFIELDS (ftype))
1445 args[i] = value_arg_coerce (args[i], NULL, 0);
1446
1447 else
1448 {
1449 int is_prototyped = TYPE_FLAGS (ftype) & TYPE_FLAG_PROTOTYPED;
1450 param_type = TYPE_FIELD_TYPE (ftype, i);
1451
1452 args[i] = value_arg_coerce (args[i], param_type, is_prototyped);
1453 }
1454
1455 /*elz: this code is to handle the case in which the function to be called
1456 has a pointer to function as parameter and the corresponding actual argument
1457 is the address of a function and not a pointer to function variable.
1458 In aCC compiled code, the calls through pointers to functions (in the body
1459 of the function called by hand) are made via $$dyncall_external which
1460 requires some registers setting, this is taken care of if we call
1461 via a function pointer variable, but not via a function address.
1462 In cc this is not a problem. */
1463
1464 if (using_gcc == 0)
1465 if (param_type)
1466 /* if this parameter is a pointer to function */
1467 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1468 if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
1469 /* elz: FIXME here should go the test about the compiler used
1470 to compile the target. We want to issue the error
1471 message only if the compiler used was HP's aCC.
1472 If we used HP's cc, then there is no problem and no need
1473 to return at this point */
1474 if (using_gcc == 0) /* && compiler == aCC */
1475 /* go see if the actual parameter is a variable of type
1476 pointer to function or just a function */
1477 if (args[i]->lval == not_lval)
1478 {
1479 char *arg_name;
1480 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1481 error ("\
1482 You cannot use function <%s> as argument. \n\
1483 You must use a pointer to function type variable. Command ignored.", arg_name);
1484 }
1485 }
1486
1487 if (REG_STRUCT_HAS_ADDR_P ())
1488 {
1489 /* This is a machine like the sparc, where we may need to pass a
1490 pointer to the structure, not the structure itself. */
1491 for (i = nargs - 1; i >= 0; i--)
1492 {
1493 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1494 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1495 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1496 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1497 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1498 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1499 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1500 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1501 && TYPE_LENGTH (arg_type) > 8)
1502 )
1503 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1504 {
1505 CORE_ADDR addr;
1506 int len; /* = TYPE_LENGTH (arg_type); */
1507 int aligned_len;
1508 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1509 len = TYPE_LENGTH (arg_type);
1510
1511 if (STACK_ALIGN_P ())
1512 /* MVS 11/22/96: I think at least some of this
1513 stack_align code is really broken. Better to let
1514 PUSH_ARGUMENTS adjust the stack in a target-defined
1515 manner. */
1516 aligned_len = STACK_ALIGN (len);
1517 else
1518 aligned_len = len;
1519 if (INNER_THAN (1, 2))
1520 {
1521 /* stack grows downward */
1522 sp -= aligned_len;
1523 }
1524 else
1525 {
1526 /* The stack grows up, so the address of the thing
1527 we push is the stack pointer before we push it. */
1528 addr = sp;
1529 }
1530 /* Push the structure. */
1531 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1532 if (INNER_THAN (1, 2))
1533 {
1534 /* The stack grows down, so the address of the thing
1535 we push is the stack pointer after we push it. */
1536 addr = sp;
1537 }
1538 else
1539 {
1540 /* stack grows upward */
1541 sp += aligned_len;
1542 }
1543 /* The value we're going to pass is the address of the
1544 thing we just pushed. */
1545 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1546 (LONGEST) addr); */
1547 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1548 addr);
1549 }
1550 }
1551 }
1552
1553
1554 /* Reserve space for the return structure to be written on the
1555 stack, if necessary */
1556
1557 if (struct_return)
1558 {
1559 int len = TYPE_LENGTH (value_type);
1560 if (STACK_ALIGN_P ())
1561 /* MVS 11/22/96: I think at least some of this stack_align
1562 code is really broken. Better to let PUSH_ARGUMENTS adjust
1563 the stack in a target-defined manner. */
1564 len = STACK_ALIGN (len);
1565 if (INNER_THAN (1, 2))
1566 {
1567 /* stack grows downward */
1568 sp -= len;
1569 struct_addr = sp;
1570 }
1571 else
1572 {
1573 /* stack grows upward */
1574 struct_addr = sp;
1575 sp += len;
1576 }
1577 }
1578
1579 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1580 on other architectures. This is because all the alignment is
1581 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1582 in hppa_push_arguments */
1583 if (EXTRA_STACK_ALIGNMENT_NEEDED)
1584 {
1585 /* MVS 11/22/96: I think at least some of this stack_align code
1586 is really broken. Better to let PUSH_ARGUMENTS adjust the
1587 stack in a target-defined manner. */
1588 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1589 {
1590 /* If stack grows down, we must leave a hole at the top. */
1591 int len = 0;
1592
1593 for (i = nargs - 1; i >= 0; i--)
1594 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1595 if (CALL_DUMMY_STACK_ADJUST_P)
1596 len += CALL_DUMMY_STACK_ADJUST;
1597 sp -= STACK_ALIGN (len) - len;
1598 }
1599 }
1600
1601 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1602
1603 #ifdef PUSH_RETURN_ADDRESS /* for targets that use no CALL_DUMMY */
1604 /* There are a number of targets now which actually don't write any
1605 CALL_DUMMY instructions into the target, but instead just save the
1606 machine state, push the arguments, and jump directly to the callee
1607 function. Since this doesn't actually involve executing a JSR/BSR
1608 instruction, the return address must be set up by hand, either by
1609 pushing onto the stack or copying into a return-address register
1610 as appropriate. Formerly this has been done in PUSH_ARGUMENTS,
1611 but that's overloading its functionality a bit, so I'm making it
1612 explicit to do it here. */
1613 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1614 #endif /* PUSH_RETURN_ADDRESS */
1615
1616 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
1617 {
1618 /* If stack grows up, we must leave a hole at the bottom, note
1619 that sp already has been advanced for the arguments! */
1620 if (CALL_DUMMY_STACK_ADJUST_P)
1621 sp += CALL_DUMMY_STACK_ADJUST;
1622 sp = STACK_ALIGN (sp);
1623 }
1624
1625 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1626 anything here! */
1627 /* MVS 11/22/96: I think at least some of this stack_align code is
1628 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1629 a target-defined manner. */
1630 if (CALL_DUMMY_STACK_ADJUST_P)
1631 if (INNER_THAN (1, 2))
1632 {
1633 /* stack grows downward */
1634 sp -= CALL_DUMMY_STACK_ADJUST;
1635 }
1636
1637 /* Store the address at which the structure is supposed to be
1638 written. Note that this (and the code which reserved the space
1639 above) assumes that gcc was used to compile this function. Since
1640 it doesn't cost us anything but space and if the function is pcc
1641 it will ignore this value, we will make that assumption.
1642
1643 Also note that on some machines (like the sparc) pcc uses a
1644 convention like gcc's. */
1645
1646 if (struct_return)
1647 STORE_STRUCT_RETURN (struct_addr, sp);
1648
1649 /* Write the stack pointer. This is here because the statements above
1650 might fool with it. On SPARC, this write also stores the register
1651 window into the right place in the new stack frame, which otherwise
1652 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1653 write_sp (sp);
1654
1655 if (SAVE_DUMMY_FRAME_TOS_P ())
1656 SAVE_DUMMY_FRAME_TOS (sp);
1657
1658 {
1659 char retbuf[REGISTER_BYTES];
1660 char *name;
1661 struct symbol *symbol;
1662
1663 name = NULL;
1664 symbol = find_pc_function (funaddr);
1665 if (symbol)
1666 {
1667 name = SYMBOL_SOURCE_NAME (symbol);
1668 }
1669 else
1670 {
1671 /* Try the minimal symbols. */
1672 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1673
1674 if (msymbol)
1675 {
1676 name = SYMBOL_SOURCE_NAME (msymbol);
1677 }
1678 }
1679 if (name == NULL)
1680 {
1681 char format[80];
1682 sprintf (format, "at %s", local_hex_format ());
1683 name = alloca (80);
1684 /* FIXME-32x64: assumes funaddr fits in a long. */
1685 sprintf (name, format, (unsigned long) funaddr);
1686 }
1687
1688 /* Execute the stack dummy routine, calling FUNCTION.
1689 When it is done, discard the empty frame
1690 after storing the contents of all regs into retbuf. */
1691 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1692
1693 if (rc == 1)
1694 {
1695 /* We stopped inside the FUNCTION because of a random signal.
1696 Further execution of the FUNCTION is not allowed. */
1697
1698 if (unwind_on_signal_p)
1699 {
1700 /* The user wants the context restored. */
1701
1702 /* We must get back to the frame we were before the dummy call. */
1703 POP_FRAME;
1704
1705 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1706 a C++ name with arguments and stuff. */
1707 error ("\
1708 The program being debugged was signaled while in a function called from GDB.\n\
1709 GDB has restored the context to what it was before the call.\n\
1710 To change this behavior use \"set unwindonsignal off\"\n\
1711 Evaluation of the expression containing the function (%s) will be abandoned.",
1712 name);
1713 }
1714 else
1715 {
1716 /* The user wants to stay in the frame where we stopped (default).*/
1717
1718 /* If we did the cleanups, we would print a spurious error
1719 message (Unable to restore previously selected frame),
1720 would write the registers from the inf_status (which is
1721 wrong), and would do other wrong things. */
1722 discard_cleanups (old_chain);
1723 discard_inferior_status (inf_status);
1724
1725 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1726 a C++ name with arguments and stuff. */
1727 error ("\
1728 The program being debugged was signaled while in a function called from GDB.\n\
1729 GDB remains in the frame where the signal was received.\n\
1730 To change this behavior use \"set unwindonsignal on\"\n\
1731 Evaluation of the expression containing the function (%s) will be abandoned.",
1732 name);
1733 }
1734 }
1735
1736 if (rc == 2)
1737 {
1738 /* We hit a breakpoint inside the FUNCTION. */
1739
1740 /* If we did the cleanups, we would print a spurious error
1741 message (Unable to restore previously selected frame),
1742 would write the registers from the inf_status (which is
1743 wrong), and would do other wrong things. */
1744 discard_cleanups (old_chain);
1745 discard_inferior_status (inf_status);
1746
1747 /* The following error message used to say "The expression
1748 which contained the function call has been discarded." It
1749 is a hard concept to explain in a few words. Ideally, GDB
1750 would be able to resume evaluation of the expression when
1751 the function finally is done executing. Perhaps someday
1752 this will be implemented (it would not be easy). */
1753
1754 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1755 a C++ name with arguments and stuff. */
1756 error ("\
1757 The program being debugged stopped while in a function called from GDB.\n\
1758 When the function (%s) is done executing, GDB will silently\n\
1759 stop (instead of continuing to evaluate the expression containing\n\
1760 the function call).", name);
1761 }
1762
1763 /* If we get here the called FUNCTION run to completion. */
1764 do_cleanups (old_chain);
1765
1766 /* Figure out the value returned by the function. */
1767 /* elz: I defined this new macro for the hppa architecture only.
1768 this gives us a way to get the value returned by the function from the stack,
1769 at the same address we told the function to put it.
1770 We cannot assume on the pa that r28 still contains the address of the returned
1771 structure. Usually this will be overwritten by the callee.
1772 I don't know about other architectures, so I defined this macro
1773 */
1774
1775 #ifdef VALUE_RETURNED_FROM_STACK
1776 if (struct_return)
1777 return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1778 #endif
1779
1780 return value_being_returned (value_type, retbuf, struct_return);
1781 }
1782 }
1783
1784 value_ptr
1785 call_function_by_hand (value_ptr function, int nargs, value_ptr *args)
1786 {
1787 if (CALL_DUMMY_P)
1788 {
1789 return hand_function_call (function, nargs, args);
1790 }
1791 else
1792 {
1793 error ("Cannot invoke functions on this machine.");
1794 }
1795 }
1796 \f
1797
1798
1799 /* Create a value for an array by allocating space in the inferior, copying
1800 the data into that space, and then setting up an array value.
1801
1802 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1803 populated from the values passed in ELEMVEC.
1804
1805 The element type of the array is inherited from the type of the
1806 first element, and all elements must have the same size (though we
1807 don't currently enforce any restriction on their types). */
1808
1809 value_ptr
1810 value_array (int lowbound, int highbound, value_ptr *elemvec)
1811 {
1812 int nelem;
1813 int idx;
1814 unsigned int typelength;
1815 value_ptr val;
1816 struct type *rangetype;
1817 struct type *arraytype;
1818 CORE_ADDR addr;
1819
1820 /* Validate that the bounds are reasonable and that each of the elements
1821 have the same size. */
1822
1823 nelem = highbound - lowbound + 1;
1824 if (nelem <= 0)
1825 {
1826 error ("bad array bounds (%d, %d)", lowbound, highbound);
1827 }
1828 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1829 for (idx = 1; idx < nelem; idx++)
1830 {
1831 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1832 {
1833 error ("array elements must all be the same size");
1834 }
1835 }
1836
1837 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1838 lowbound, highbound);
1839 arraytype = create_array_type ((struct type *) NULL,
1840 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1841
1842 if (!current_language->c_style_arrays)
1843 {
1844 val = allocate_value (arraytype);
1845 for (idx = 0; idx < nelem; idx++)
1846 {
1847 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1848 VALUE_CONTENTS_ALL (elemvec[idx]),
1849 typelength);
1850 }
1851 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1852 return val;
1853 }
1854
1855 /* Allocate space to store the array in the inferior, and then initialize
1856 it by copying in each element. FIXME: Is it worth it to create a
1857 local buffer in which to collect each value and then write all the
1858 bytes in one operation? */
1859
1860 addr = allocate_space_in_inferior (nelem * typelength);
1861 for (idx = 0; idx < nelem; idx++)
1862 {
1863 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1864 typelength);
1865 }
1866
1867 /* Create the array type and set up an array value to be evaluated lazily. */
1868
1869 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1870 return (val);
1871 }
1872
1873 /* Create a value for a string constant by allocating space in the inferior,
1874 copying the data into that space, and returning the address with type
1875 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1876 of characters.
1877 Note that string types are like array of char types with a lower bound of
1878 zero and an upper bound of LEN - 1. Also note that the string may contain
1879 embedded null bytes. */
1880
1881 value_ptr
1882 value_string (char *ptr, int len)
1883 {
1884 value_ptr val;
1885 int lowbound = current_language->string_lower_bound;
1886 struct type *rangetype = create_range_type ((struct type *) NULL,
1887 builtin_type_int,
1888 lowbound, len + lowbound - 1);
1889 struct type *stringtype
1890 = create_string_type ((struct type *) NULL, rangetype);
1891 CORE_ADDR addr;
1892
1893 if (current_language->c_style_arrays == 0)
1894 {
1895 val = allocate_value (stringtype);
1896 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1897 return val;
1898 }
1899
1900
1901 /* Allocate space to store the string in the inferior, and then
1902 copy LEN bytes from PTR in gdb to that address in the inferior. */
1903
1904 addr = allocate_space_in_inferior (len);
1905 write_memory (addr, ptr, len);
1906
1907 val = value_at_lazy (stringtype, addr, NULL);
1908 return (val);
1909 }
1910
1911 value_ptr
1912 value_bitstring (char *ptr, int len)
1913 {
1914 value_ptr val;
1915 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1916 0, len - 1);
1917 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1918 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1919 val = allocate_value (type);
1920 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1921 return val;
1922 }
1923 \f
1924 /* See if we can pass arguments in T2 to a function which takes arguments
1925 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1926 arguments need coercion of some sort, then the coerced values are written
1927 into T2. Return value is 0 if the arguments could be matched, or the
1928 position at which they differ if not.
1929
1930 STATICP is nonzero if the T1 argument list came from a
1931 static member function.
1932
1933 For non-static member functions, we ignore the first argument,
1934 which is the type of the instance variable. This is because we want
1935 to handle calls with objects from derived classes. This is not
1936 entirely correct: we should actually check to make sure that a
1937 requested operation is type secure, shouldn't we? FIXME. */
1938
1939 static int
1940 typecmp (int staticp, struct type *t1[], value_ptr t2[])
1941 {
1942 int i;
1943
1944 if (t2 == 0)
1945 return 1;
1946 if (staticp && t1 == 0)
1947 return t2[1] != 0;
1948 if (t1 == 0)
1949 return 1;
1950 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID)
1951 return 0;
1952 if (t1[!staticp] == 0)
1953 return 0;
1954 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1955 {
1956 struct type *tt1, *tt2;
1957 if (!t2[i])
1958 return i + 1;
1959 tt1 = check_typedef (t1[i]);
1960 tt2 = check_typedef (VALUE_TYPE (t2[i]));
1961 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1962 /* We should be doing hairy argument matching, as below. */
1963 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1964 {
1965 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1966 t2[i] = value_coerce_array (t2[i]);
1967 else
1968 t2[i] = value_addr (t2[i]);
1969 continue;
1970 }
1971
1972 /* djb - 20000715 - Until the new type structure is in the
1973 place, and we can attempt things like implicit conversions,
1974 we need to do this so you can take something like a map<const
1975 char *>, and properly access map["hello"], because the
1976 argument to [] will be a reference to a pointer to a char,
1977 and the argument will be a pointer to a char. */
1978 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
1979 TYPE_CODE (tt1) == TYPE_CODE_PTR)
1980 {
1981 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1982 }
1983 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
1984 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
1985 TYPE_CODE(tt2) == TYPE_CODE_REF)
1986 {
1987 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
1988 }
1989 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1990 continue;
1991 /* Array to pointer is a `trivial conversion' according to the ARM. */
1992
1993 /* We should be doing much hairier argument matching (see section 13.2
1994 of the ARM), but as a quick kludge, just check for the same type
1995 code. */
1996 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
1997 return i + 1;
1998 }
1999 if (!t1[i])
2000 return 0;
2001 return t2[i] ? i + 1 : 0;
2002 }
2003
2004 /* Helper function used by value_struct_elt to recurse through baseclasses.
2005 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2006 and search in it assuming it has (class) type TYPE.
2007 If found, return value, else return NULL.
2008
2009 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2010 look for a baseclass named NAME. */
2011
2012 static value_ptr
2013 search_struct_field (char *name, register value_ptr arg1, int offset,
2014 register struct type *type, int looking_for_baseclass)
2015 {
2016 int i;
2017 int nbases = TYPE_N_BASECLASSES (type);
2018
2019 CHECK_TYPEDEF (type);
2020
2021 if (!looking_for_baseclass)
2022 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2023 {
2024 char *t_field_name = TYPE_FIELD_NAME (type, i);
2025
2026 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2027 {
2028 value_ptr v;
2029 if (TYPE_FIELD_STATIC (type, i))
2030 v = value_static_field (type, i);
2031 else
2032 v = value_primitive_field (arg1, offset, i, type);
2033 if (v == 0)
2034 error ("there is no field named %s", name);
2035 return v;
2036 }
2037
2038 if (t_field_name
2039 && (t_field_name[0] == '\0'
2040 || (TYPE_CODE (type) == TYPE_CODE_UNION
2041 && (strcmp_iw (t_field_name, "else") == 0))))
2042 {
2043 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2044 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2045 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2046 {
2047 /* Look for a match through the fields of an anonymous union,
2048 or anonymous struct. C++ provides anonymous unions.
2049
2050 In the GNU Chill implementation of variant record types,
2051 each <alternative field> has an (anonymous) union type,
2052 each member of the union represents a <variant alternative>.
2053 Each <variant alternative> is represented as a struct,
2054 with a member for each <variant field>. */
2055
2056 value_ptr v;
2057 int new_offset = offset;
2058
2059 /* This is pretty gross. In G++, the offset in an anonymous
2060 union is relative to the beginning of the enclosing struct.
2061 In the GNU Chill implementation of variant records,
2062 the bitpos is zero in an anonymous union field, so we
2063 have to add the offset of the union here. */
2064 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2065 || (TYPE_NFIELDS (field_type) > 0
2066 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2067 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2068
2069 v = search_struct_field (name, arg1, new_offset, field_type,
2070 looking_for_baseclass);
2071 if (v)
2072 return v;
2073 }
2074 }
2075 }
2076
2077 for (i = 0; i < nbases; i++)
2078 {
2079 value_ptr v;
2080 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2081 /* If we are looking for baseclasses, this is what we get when we
2082 hit them. But it could happen that the base part's member name
2083 is not yet filled in. */
2084 int found_baseclass = (looking_for_baseclass
2085 && TYPE_BASECLASS_NAME (type, i) != NULL
2086 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2087
2088 if (BASETYPE_VIA_VIRTUAL (type, i))
2089 {
2090 int boffset;
2091 value_ptr v2 = allocate_value (basetype);
2092
2093 boffset = baseclass_offset (type, i,
2094 VALUE_CONTENTS (arg1) + offset,
2095 VALUE_ADDRESS (arg1)
2096 + VALUE_OFFSET (arg1) + offset);
2097 if (boffset == -1)
2098 error ("virtual baseclass botch");
2099
2100 /* The virtual base class pointer might have been clobbered by the
2101 user program. Make sure that it still points to a valid memory
2102 location. */
2103
2104 boffset += offset;
2105 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2106 {
2107 CORE_ADDR base_addr;
2108
2109 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2110 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2111 TYPE_LENGTH (basetype)) != 0)
2112 error ("virtual baseclass botch");
2113 VALUE_LVAL (v2) = lval_memory;
2114 VALUE_ADDRESS (v2) = base_addr;
2115 }
2116 else
2117 {
2118 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2119 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2120 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2121 if (VALUE_LAZY (arg1))
2122 VALUE_LAZY (v2) = 1;
2123 else
2124 memcpy (VALUE_CONTENTS_RAW (v2),
2125 VALUE_CONTENTS_RAW (arg1) + boffset,
2126 TYPE_LENGTH (basetype));
2127 }
2128
2129 if (found_baseclass)
2130 return v2;
2131 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2132 looking_for_baseclass);
2133 }
2134 else if (found_baseclass)
2135 v = value_primitive_field (arg1, offset, i, type);
2136 else
2137 v = search_struct_field (name, arg1,
2138 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2139 basetype, looking_for_baseclass);
2140 if (v)
2141 return v;
2142 }
2143 return NULL;
2144 }
2145
2146
2147 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2148 * in an object pointed to by VALADDR (on the host), assumed to be of
2149 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2150 * looking (in case VALADDR is the contents of an enclosing object).
2151 *
2152 * This routine recurses on the primary base of the derived class because
2153 * the virtual base entries of the primary base appear before the other
2154 * virtual base entries.
2155 *
2156 * If the virtual base is not found, a negative integer is returned.
2157 * The magnitude of the negative integer is the number of entries in
2158 * the virtual table to skip over (entries corresponding to various
2159 * ancestral classes in the chain of primary bases).
2160 *
2161 * Important: This assumes the HP / Taligent C++ runtime
2162 * conventions. Use baseclass_offset() instead to deal with g++
2163 * conventions. */
2164
2165 void
2166 find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2167 int offset, int *boffset_p, int *skip_p)
2168 {
2169 int boffset; /* offset of virtual base */
2170 int index; /* displacement to use in virtual table */
2171 int skip;
2172
2173 value_ptr vp;
2174 CORE_ADDR vtbl; /* the virtual table pointer */
2175 struct type *pbc; /* the primary base class */
2176
2177 /* Look for the virtual base recursively in the primary base, first.
2178 * This is because the derived class object and its primary base
2179 * subobject share the primary virtual table. */
2180
2181 boffset = 0;
2182 pbc = TYPE_PRIMARY_BASE (type);
2183 if (pbc)
2184 {
2185 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2186 if (skip < 0)
2187 {
2188 *boffset_p = boffset;
2189 *skip_p = -1;
2190 return;
2191 }
2192 }
2193 else
2194 skip = 0;
2195
2196
2197 /* Find the index of the virtual base according to HP/Taligent
2198 runtime spec. (Depth-first, left-to-right.) */
2199 index = virtual_base_index_skip_primaries (basetype, type);
2200
2201 if (index < 0)
2202 {
2203 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2204 *boffset_p = 0;
2205 return;
2206 }
2207
2208 /* pai: FIXME -- 32x64 possible problem */
2209 /* First word (4 bytes) in object layout is the vtable pointer */
2210 vtbl = *(CORE_ADDR *) (valaddr + offset);
2211
2212 /* Before the constructor is invoked, things are usually zero'd out. */
2213 if (vtbl == 0)
2214 error ("Couldn't find virtual table -- object may not be constructed yet.");
2215
2216
2217 /* Find virtual base's offset -- jump over entries for primary base
2218 * ancestors, then use the index computed above. But also adjust by
2219 * HP_ACC_VBASE_START for the vtable slots before the start of the
2220 * virtual base entries. Offset is negative -- virtual base entries
2221 * appear _before_ the address point of the virtual table. */
2222
2223 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2224 & use long type */
2225
2226 /* epstein : FIXME -- added param for overlay section. May not be correct */
2227 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2228 boffset = value_as_long (vp);
2229 *skip_p = -1;
2230 *boffset_p = boffset;
2231 return;
2232 }
2233
2234
2235 /* Helper function used by value_struct_elt to recurse through baseclasses.
2236 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2237 and search in it assuming it has (class) type TYPE.
2238 If found, return value, else if name matched and args not return (value)-1,
2239 else return NULL. */
2240
2241 static value_ptr
2242 search_struct_method (char *name, register value_ptr *arg1p,
2243 register value_ptr *args, int offset,
2244 int *static_memfuncp, register struct type *type)
2245 {
2246 int i;
2247 value_ptr v;
2248 int name_matched = 0;
2249 char dem_opname[64];
2250
2251 CHECK_TYPEDEF (type);
2252 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2253 {
2254 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2255 /* FIXME! May need to check for ARM demangling here */
2256 if (strncmp (t_field_name, "__", 2) == 0 ||
2257 strncmp (t_field_name, "op", 2) == 0 ||
2258 strncmp (t_field_name, "type", 4) == 0)
2259 {
2260 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2261 t_field_name = dem_opname;
2262 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2263 t_field_name = dem_opname;
2264 }
2265 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2266 {
2267 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2268 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2269 name_matched = 1;
2270
2271 if (j > 0 && args == 0)
2272 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2273 while (j >= 0)
2274 {
2275 if (TYPE_FN_FIELD_STUB (f, j))
2276 check_stub_method (type, i, j);
2277 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2278 TYPE_FN_FIELD_ARGS (f, j), args))
2279 {
2280 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2281 return value_virtual_fn_field (arg1p, f, j, type, offset);
2282 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2283 *static_memfuncp = 1;
2284 v = value_fn_field (arg1p, f, j, type, offset);
2285 if (v != NULL)
2286 return v;
2287 }
2288 j--;
2289 }
2290 }
2291 }
2292
2293 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2294 {
2295 int base_offset;
2296
2297 if (BASETYPE_VIA_VIRTUAL (type, i))
2298 {
2299 if (TYPE_HAS_VTABLE (type))
2300 {
2301 /* HP aCC compiled type, search for virtual base offset
2302 according to HP/Taligent runtime spec. */
2303 int skip;
2304 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2305 VALUE_CONTENTS_ALL (*arg1p),
2306 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2307 &base_offset, &skip);
2308 if (skip >= 0)
2309 error ("Virtual base class offset not found in vtable");
2310 }
2311 else
2312 {
2313 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2314 char *base_valaddr;
2315
2316 /* The virtual base class pointer might have been clobbered by the
2317 user program. Make sure that it still points to a valid memory
2318 location. */
2319
2320 if (offset < 0 || offset >= TYPE_LENGTH (type))
2321 {
2322 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2323 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2324 + VALUE_OFFSET (*arg1p) + offset,
2325 base_valaddr,
2326 TYPE_LENGTH (baseclass)) != 0)
2327 error ("virtual baseclass botch");
2328 }
2329 else
2330 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2331
2332 base_offset =
2333 baseclass_offset (type, i, base_valaddr,
2334 VALUE_ADDRESS (*arg1p)
2335 + VALUE_OFFSET (*arg1p) + offset);
2336 if (base_offset == -1)
2337 error ("virtual baseclass botch");
2338 }
2339 }
2340 else
2341 {
2342 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2343 }
2344 v = search_struct_method (name, arg1p, args, base_offset + offset,
2345 static_memfuncp, TYPE_BASECLASS (type, i));
2346 if (v == (value_ptr) - 1)
2347 {
2348 name_matched = 1;
2349 }
2350 else if (v)
2351 {
2352 /* FIXME-bothner: Why is this commented out? Why is it here? */
2353 /* *arg1p = arg1_tmp; */
2354 return v;
2355 }
2356 }
2357 if (name_matched)
2358 return (value_ptr) - 1;
2359 else
2360 return NULL;
2361 }
2362
2363 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2364 extract the component named NAME from the ultimate target structure/union
2365 and return it as a value with its appropriate type.
2366 ERR is used in the error message if *ARGP's type is wrong.
2367
2368 C++: ARGS is a list of argument types to aid in the selection of
2369 an appropriate method. Also, handle derived types.
2370
2371 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2372 where the truthvalue of whether the function that was resolved was
2373 a static member function or not is stored.
2374
2375 ERR is an error message to be printed in case the field is not found. */
2376
2377 value_ptr
2378 value_struct_elt (register value_ptr *argp, register value_ptr *args,
2379 char *name, int *static_memfuncp, char *err)
2380 {
2381 register struct type *t;
2382 value_ptr v;
2383
2384 COERCE_ARRAY (*argp);
2385
2386 t = check_typedef (VALUE_TYPE (*argp));
2387
2388 /* Follow pointers until we get to a non-pointer. */
2389
2390 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2391 {
2392 *argp = value_ind (*argp);
2393 /* Don't coerce fn pointer to fn and then back again! */
2394 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2395 COERCE_ARRAY (*argp);
2396 t = check_typedef (VALUE_TYPE (*argp));
2397 }
2398
2399 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2400 error ("not implemented: member type in value_struct_elt");
2401
2402 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2403 && TYPE_CODE (t) != TYPE_CODE_UNION)
2404 error ("Attempt to extract a component of a value that is not a %s.", err);
2405
2406 /* Assume it's not, unless we see that it is. */
2407 if (static_memfuncp)
2408 *static_memfuncp = 0;
2409
2410 if (!args)
2411 {
2412 /* if there are no arguments ...do this... */
2413
2414 /* Try as a field first, because if we succeed, there
2415 is less work to be done. */
2416 v = search_struct_field (name, *argp, 0, t, 0);
2417 if (v)
2418 return v;
2419
2420 /* C++: If it was not found as a data field, then try to
2421 return it as a pointer to a method. */
2422
2423 if (destructor_name_p (name, t))
2424 error ("Cannot get value of destructor");
2425
2426 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2427
2428 if (v == (value_ptr) - 1)
2429 error ("Cannot take address of a method");
2430 else if (v == 0)
2431 {
2432 if (TYPE_NFN_FIELDS (t))
2433 error ("There is no member or method named %s.", name);
2434 else
2435 error ("There is no member named %s.", name);
2436 }
2437 return v;
2438 }
2439
2440 if (destructor_name_p (name, t))
2441 {
2442 if (!args[1])
2443 {
2444 /* Destructors are a special case. */
2445 int m_index, f_index;
2446
2447 v = NULL;
2448 if (get_destructor_fn_field (t, &m_index, &f_index))
2449 {
2450 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2451 f_index, NULL, 0);
2452 }
2453 if (v == NULL)
2454 error ("could not find destructor function named %s.", name);
2455 else
2456 return v;
2457 }
2458 else
2459 {
2460 error ("destructor should not have any argument");
2461 }
2462 }
2463 else
2464 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2465
2466 if (v == (value_ptr) - 1)
2467 {
2468 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
2469 }
2470 else if (v == 0)
2471 {
2472 /* See if user tried to invoke data as function. If so,
2473 hand it back. If it's not callable (i.e., a pointer to function),
2474 gdb should give an error. */
2475 v = search_struct_field (name, *argp, 0, t, 0);
2476 }
2477
2478 if (!v)
2479 error ("Structure has no component named %s.", name);
2480 return v;
2481 }
2482
2483 /* Search through the methods of an object (and its bases)
2484 * to find a specified method. Return the pointer to the
2485 * fn_field list of overloaded instances.
2486 * Helper function for value_find_oload_list.
2487 * ARGP is a pointer to a pointer to a value (the object)
2488 * METHOD is a string containing the method name
2489 * OFFSET is the offset within the value
2490 * STATIC_MEMFUNCP is set if the method is static
2491 * TYPE is the assumed type of the object
2492 * NUM_FNS is the number of overloaded instances
2493 * BASETYPE is set to the actual type of the subobject where the method is found
2494 * BOFFSET is the offset of the base subobject where the method is found */
2495
2496 static struct fn_field *
2497 find_method_list (value_ptr *argp, char *method, int offset,
2498 int *static_memfuncp, struct type *type, int *num_fns,
2499 struct type **basetype, int *boffset)
2500 {
2501 int i;
2502 struct fn_field *f;
2503 CHECK_TYPEDEF (type);
2504
2505 *num_fns = 0;
2506
2507 /* First check in object itself */
2508 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2509 {
2510 /* pai: FIXME What about operators and type conversions? */
2511 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2512 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2513 {
2514 *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
2515 *basetype = type;
2516 *boffset = offset;
2517 return TYPE_FN_FIELDLIST1 (type, i);
2518 }
2519 }
2520
2521 /* Not found in object, check in base subobjects */
2522 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2523 {
2524 int base_offset;
2525 if (BASETYPE_VIA_VIRTUAL (type, i))
2526 {
2527 if (TYPE_HAS_VTABLE (type))
2528 {
2529 /* HP aCC compiled type, search for virtual base offset
2530 * according to HP/Taligent runtime spec. */
2531 int skip;
2532 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2533 VALUE_CONTENTS_ALL (*argp),
2534 offset + VALUE_EMBEDDED_OFFSET (*argp),
2535 &base_offset, &skip);
2536 if (skip >= 0)
2537 error ("Virtual base class offset not found in vtable");
2538 }
2539 else
2540 {
2541 /* probably g++ runtime model */
2542 base_offset = VALUE_OFFSET (*argp) + offset;
2543 base_offset =
2544 baseclass_offset (type, i,
2545 VALUE_CONTENTS (*argp) + base_offset,
2546 VALUE_ADDRESS (*argp) + base_offset);
2547 if (base_offset == -1)
2548 error ("virtual baseclass botch");
2549 }
2550 }
2551 else
2552 /* non-virtual base, simply use bit position from debug info */
2553 {
2554 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2555 }
2556 f = find_method_list (argp, method, base_offset + offset,
2557 static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
2558 if (f)
2559 return f;
2560 }
2561 return NULL;
2562 }
2563
2564 /* Return the list of overloaded methods of a specified name.
2565 * ARGP is a pointer to a pointer to a value (the object)
2566 * METHOD is the method name
2567 * OFFSET is the offset within the value contents
2568 * STATIC_MEMFUNCP is set if the method is static
2569 * NUM_FNS is the number of overloaded instances
2570 * BASETYPE is set to the type of the base subobject that defines the method
2571 * BOFFSET is the offset of the base subobject which defines the method */
2572
2573 struct fn_field *
2574 value_find_oload_method_list (value_ptr *argp, char *method, int offset,
2575 int *static_memfuncp, int *num_fns,
2576 struct type **basetype, int *boffset)
2577 {
2578 struct type *t;
2579
2580 t = check_typedef (VALUE_TYPE (*argp));
2581
2582 /* code snarfed from value_struct_elt */
2583 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2584 {
2585 *argp = value_ind (*argp);
2586 /* Don't coerce fn pointer to fn and then back again! */
2587 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2588 COERCE_ARRAY (*argp);
2589 t = check_typedef (VALUE_TYPE (*argp));
2590 }
2591
2592 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2593 error ("Not implemented: member type in value_find_oload_lis");
2594
2595 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2596 && TYPE_CODE (t) != TYPE_CODE_UNION)
2597 error ("Attempt to extract a component of a value that is not a struct or union");
2598
2599 /* Assume it's not static, unless we see that it is. */
2600 if (static_memfuncp)
2601 *static_memfuncp = 0;
2602
2603 return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
2604
2605 }
2606
2607 /* Given an array of argument types (ARGTYPES) (which includes an
2608 entry for "this" in the case of C++ methods), the number of
2609 arguments NARGS, the NAME of a function whether it's a method or
2610 not (METHOD), and the degree of laxness (LAX) in conforming to
2611 overload resolution rules in ANSI C++, find the best function that
2612 matches on the argument types according to the overload resolution
2613 rules.
2614
2615 In the case of class methods, the parameter OBJ is an object value
2616 in which to search for overloaded methods.
2617
2618 In the case of non-method functions, the parameter FSYM is a symbol
2619 corresponding to one of the overloaded functions.
2620
2621 Return value is an integer: 0 -> good match, 10 -> debugger applied
2622 non-standard coercions, 100 -> incompatible.
2623
2624 If a method is being searched for, VALP will hold the value.
2625 If a non-method is being searched for, SYMP will hold the symbol for it.
2626
2627 If a method is being searched for, and it is a static method,
2628 then STATICP will point to a non-zero value.
2629
2630 Note: This function does *not* check the value of
2631 overload_resolution. Caller must check it to see whether overload
2632 resolution is permitted.
2633 */
2634
2635 int
2636 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
2637 int lax, value_ptr obj, struct symbol *fsym,
2638 value_ptr *valp, struct symbol **symp, int *staticp)
2639 {
2640 int nparms;
2641 struct type **parm_types;
2642 int champ_nparms = 0;
2643
2644 short oload_champ = -1; /* Index of best overloaded function */
2645 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2646 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2647 short oload_ambig_champ = -1; /* 2nd contender for best match */
2648 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2649 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2650
2651 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2652 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2653
2654 value_ptr temp = obj;
2655 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2656 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2657 int num_fns = 0; /* Number of overloaded instances being considered */
2658 struct type *basetype = NULL;
2659 int boffset;
2660 register int jj;
2661 register int ix;
2662
2663 char *obj_type_name = NULL;
2664 char *func_name = NULL;
2665
2666 /* Get the list of overloaded methods or functions */
2667 if (method)
2668 {
2669 int i;
2670 int len;
2671 struct type *domain;
2672 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2673 /* Hack: evaluate_subexp_standard often passes in a pointer
2674 value rather than the object itself, so try again */
2675 if ((!obj_type_name || !*obj_type_name) &&
2676 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2677 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2678
2679 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2680 staticp,
2681 &num_fns,
2682 &basetype, &boffset);
2683 if (!fns_ptr || !num_fns)
2684 error ("Couldn't find method %s%s%s",
2685 obj_type_name,
2686 (obj_type_name && *obj_type_name) ? "::" : "",
2687 name);
2688 domain = TYPE_DOMAIN_TYPE (fns_ptr[0].type);
2689 len = TYPE_NFN_FIELDS (domain);
2690 /* NOTE: dan/2000-03-10: This stuff is for STABS, which won't
2691 give us the info we need directly in the types. We have to
2692 use the method stub conversion to get it. Be aware that this
2693 is by no means perfect, and if you use STABS, please move to
2694 DWARF-2, or something like it, because trying to improve
2695 overloading using STABS is really a waste of time. */
2696 for (i = 0; i < len; i++)
2697 {
2698 int j;
2699 struct fn_field *f = TYPE_FN_FIELDLIST1 (domain, i);
2700 int len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
2701
2702 for (j = 0; j < len2; j++)
2703 {
2704 if (TYPE_FN_FIELD_STUB (f, j) && (!strcmp_iw (TYPE_FN_FIELDLIST_NAME (domain,i),name)))
2705 check_stub_method (domain, i, j);
2706 }
2707 }
2708 }
2709 else
2710 {
2711 int i = -1;
2712 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2713
2714 /* If the name is NULL this must be a C-style function.
2715 Just return the same symbol. */
2716 if (!func_name)
2717 {
2718 *symp = fsym;
2719 return 0;
2720 }
2721
2722 oload_syms = make_symbol_overload_list (fsym);
2723 while (oload_syms[++i])
2724 num_fns++;
2725 if (!num_fns)
2726 error ("Couldn't find function %s", func_name);
2727 }
2728
2729 oload_champ_bv = NULL;
2730
2731 /* Consider each candidate in turn */
2732 for (ix = 0; ix < num_fns; ix++)
2733 {
2734 if (method)
2735 {
2736 /* For static member functions, we won't have a this pointer, but nothing
2737 else seems to handle them right now, so we just pretend ourselves */
2738 nparms=0;
2739
2740 if (TYPE_FN_FIELD_ARGS(fns_ptr,ix))
2741 {
2742 while (TYPE_CODE(TYPE_FN_FIELD_ARGS(fns_ptr,ix)[nparms]) != TYPE_CODE_VOID)
2743 nparms++;
2744 }
2745 }
2746 else
2747 {
2748 /* If it's not a method, this is the proper place */
2749 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2750 }
2751
2752 /* Prepare array of parameter types */
2753 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2754 for (jj = 0; jj < nparms; jj++)
2755 parm_types[jj] = (method
2756 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj])
2757 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2758
2759 /* Compare parameter types to supplied argument types */
2760 bv = rank_function (parm_types, nparms, arg_types, nargs);
2761
2762 if (!oload_champ_bv)
2763 {
2764 oload_champ_bv = bv;
2765 oload_champ = 0;
2766 champ_nparms = nparms;
2767 }
2768 else
2769 /* See whether current candidate is better or worse than previous best */
2770 switch (compare_badness (bv, oload_champ_bv))
2771 {
2772 case 0:
2773 oload_ambiguous = 1; /* top two contenders are equally good */
2774 oload_ambig_champ = ix;
2775 break;
2776 case 1:
2777 oload_ambiguous = 2; /* incomparable top contenders */
2778 oload_ambig_champ = ix;
2779 break;
2780 case 2:
2781 oload_champ_bv = bv; /* new champion, record details */
2782 oload_ambiguous = 0;
2783 oload_champ = ix;
2784 oload_ambig_champ = -1;
2785 champ_nparms = nparms;
2786 break;
2787 case 3:
2788 default:
2789 break;
2790 }
2791 xfree (parm_types);
2792 if (overload_debug)
2793 {
2794 if (method)
2795 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2796 else
2797 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2798 for (jj = 0; jj < nargs; jj++)
2799 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2800 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2801 }
2802 } /* end loop over all candidates */
2803 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2804 if they have the exact same goodness. This is because there is no
2805 way to differentiate based on return type, which we need to in
2806 cases like overloads of .begin() <It's both const and non-const> */
2807 #if 0
2808 if (oload_ambiguous)
2809 {
2810 if (method)
2811 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2812 obj_type_name,
2813 (obj_type_name && *obj_type_name) ? "::" : "",
2814 name);
2815 else
2816 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2817 func_name);
2818 }
2819 #endif
2820
2821 /* Check how bad the best match is */
2822 for (ix = 1; ix <= nargs; ix++)
2823 {
2824 if (oload_champ_bv->rank[ix] >= 100)
2825 oload_incompatible = 1; /* truly mismatched types */
2826
2827 else if (oload_champ_bv->rank[ix] >= 10)
2828 oload_non_standard = 1; /* non-standard type conversions needed */
2829 }
2830 if (oload_incompatible)
2831 {
2832 if (method)
2833 error ("Cannot resolve method %s%s%s to any overloaded instance",
2834 obj_type_name,
2835 (obj_type_name && *obj_type_name) ? "::" : "",
2836 name);
2837 else
2838 error ("Cannot resolve function %s to any overloaded instance",
2839 func_name);
2840 }
2841 else if (oload_non_standard)
2842 {
2843 if (method)
2844 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2845 obj_type_name,
2846 (obj_type_name && *obj_type_name) ? "::" : "",
2847 name);
2848 else
2849 warning ("Using non-standard conversion to match function %s to supplied arguments",
2850 func_name);
2851 }
2852
2853 if (method)
2854 {
2855 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2856 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2857 else
2858 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2859 }
2860 else
2861 {
2862 *symp = oload_syms[oload_champ];
2863 xfree (func_name);
2864 }
2865
2866 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2867 }
2868
2869 /* C++: return 1 is NAME is a legitimate name for the destructor
2870 of type TYPE. If TYPE does not have a destructor, or
2871 if NAME is inappropriate for TYPE, an error is signaled. */
2872 int
2873 destructor_name_p (const char *name, const struct type *type)
2874 {
2875 /* destructors are a special case. */
2876
2877 if (name[0] == '~')
2878 {
2879 char *dname = type_name_no_tag (type);
2880 char *cp = strchr (dname, '<');
2881 unsigned int len;
2882
2883 /* Do not compare the template part for template classes. */
2884 if (cp == NULL)
2885 len = strlen (dname);
2886 else
2887 len = cp - dname;
2888 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2889 error ("name of destructor must equal name of class");
2890 else
2891 return 1;
2892 }
2893 return 0;
2894 }
2895
2896 /* Helper function for check_field: Given TYPE, a structure/union,
2897 return 1 if the component named NAME from the ultimate
2898 target structure/union is defined, otherwise, return 0. */
2899
2900 static int
2901 check_field_in (register struct type *type, const char *name)
2902 {
2903 register int i;
2904
2905 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2906 {
2907 char *t_field_name = TYPE_FIELD_NAME (type, i);
2908 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2909 return 1;
2910 }
2911
2912 /* C++: If it was not found as a data field, then try to
2913 return it as a pointer to a method. */
2914
2915 /* Destructors are a special case. */
2916 if (destructor_name_p (name, type))
2917 {
2918 int m_index, f_index;
2919
2920 return get_destructor_fn_field (type, &m_index, &f_index);
2921 }
2922
2923 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2924 {
2925 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2926 return 1;
2927 }
2928
2929 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2930 if (check_field_in (TYPE_BASECLASS (type, i), name))
2931 return 1;
2932
2933 return 0;
2934 }
2935
2936
2937 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2938 return 1 if the component named NAME from the ultimate
2939 target structure/union is defined, otherwise, return 0. */
2940
2941 int
2942 check_field (register value_ptr arg1, const char *name)
2943 {
2944 register struct type *t;
2945
2946 COERCE_ARRAY (arg1);
2947
2948 t = VALUE_TYPE (arg1);
2949
2950 /* Follow pointers until we get to a non-pointer. */
2951
2952 for (;;)
2953 {
2954 CHECK_TYPEDEF (t);
2955 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2956 break;
2957 t = TYPE_TARGET_TYPE (t);
2958 }
2959
2960 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2961 error ("not implemented: member type in check_field");
2962
2963 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2964 && TYPE_CODE (t) != TYPE_CODE_UNION)
2965 error ("Internal error: `this' is not an aggregate");
2966
2967 return check_field_in (t, name);
2968 }
2969
2970 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2971 return the address of this member as a "pointer to member"
2972 type. If INTYPE is non-null, then it will be the type
2973 of the member we are looking for. This will help us resolve
2974 "pointers to member functions". This function is used
2975 to resolve user expressions of the form "DOMAIN::NAME". */
2976
2977 value_ptr
2978 value_struct_elt_for_reference (struct type *domain, int offset,
2979 struct type *curtype, char *name,
2980 struct type *intype)
2981 {
2982 register struct type *t = curtype;
2983 register int i;
2984 value_ptr v;
2985
2986 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2987 && TYPE_CODE (t) != TYPE_CODE_UNION)
2988 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
2989
2990 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2991 {
2992 char *t_field_name = TYPE_FIELD_NAME (t, i);
2993
2994 if (t_field_name && STREQ (t_field_name, name))
2995 {
2996 if (TYPE_FIELD_STATIC (t, i))
2997 {
2998 v = value_static_field (t, i);
2999 if (v == NULL)
3000 error ("Internal error: could not find static variable %s",
3001 name);
3002 return v;
3003 }
3004 if (TYPE_FIELD_PACKED (t, i))
3005 error ("pointers to bitfield members not allowed");
3006
3007 return value_from_longest
3008 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3009 domain)),
3010 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3011 }
3012 }
3013
3014 /* C++: If it was not found as a data field, then try to
3015 return it as a pointer to a method. */
3016
3017 /* Destructors are a special case. */
3018 if (destructor_name_p (name, t))
3019 {
3020 error ("member pointers to destructors not implemented yet");
3021 }
3022
3023 /* Perform all necessary dereferencing. */
3024 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3025 intype = TYPE_TARGET_TYPE (intype);
3026
3027 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3028 {
3029 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3030 char dem_opname[64];
3031
3032 if (strncmp (t_field_name, "__", 2) == 0 ||
3033 strncmp (t_field_name, "op", 2) == 0 ||
3034 strncmp (t_field_name, "type", 4) == 0)
3035 {
3036 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3037 t_field_name = dem_opname;
3038 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3039 t_field_name = dem_opname;
3040 }
3041 if (t_field_name && STREQ (t_field_name, name))
3042 {
3043 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3044 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3045
3046 if (intype == 0 && j > 1)
3047 error ("non-unique member `%s' requires type instantiation", name);
3048 if (intype)
3049 {
3050 while (j--)
3051 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3052 break;
3053 if (j < 0)
3054 error ("no member function matches that type instantiation");
3055 }
3056 else
3057 j = 0;
3058
3059 if (TYPE_FN_FIELD_STUB (f, j))
3060 check_stub_method (t, i, j);
3061 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3062 {
3063 return value_from_longest
3064 (lookup_reference_type
3065 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3066 domain)),
3067 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3068 }
3069 else
3070 {
3071 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3072 0, VAR_NAMESPACE, 0, NULL);
3073 if (s == NULL)
3074 {
3075 v = 0;
3076 }
3077 else
3078 {
3079 v = read_var_value (s, 0);
3080 #if 0
3081 VALUE_TYPE (v) = lookup_reference_type
3082 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3083 domain));
3084 #endif
3085 }
3086 return v;
3087 }
3088 }
3089 }
3090 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3091 {
3092 value_ptr v;
3093 int base_offset;
3094
3095 if (BASETYPE_VIA_VIRTUAL (t, i))
3096 base_offset = 0;
3097 else
3098 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3099 v = value_struct_elt_for_reference (domain,
3100 offset + base_offset,
3101 TYPE_BASECLASS (t, i),
3102 name,
3103 intype);
3104 if (v)
3105 return v;
3106 }
3107 return 0;
3108 }
3109
3110
3111 /* Find the real run-time type of a value using RTTI.
3112 * V is a pointer to the value.
3113 * A pointer to the struct type entry of the run-time type
3114 * is returneed.
3115 * FULL is a flag that is set only if the value V includes
3116 * the entire contents of an object of the RTTI type.
3117 * TOP is the offset to the top of the enclosing object of
3118 * the real run-time type. This offset may be for the embedded
3119 * object, or for the enclosing object of V.
3120 * USING_ENC is the flag that distinguishes the two cases.
3121 * If it is 1, then the offset is for the enclosing object,
3122 * otherwise for the embedded object.
3123 *
3124 */
3125
3126 struct type *
3127 value_rtti_type (value_ptr v, int *full, int *top, int *using_enc)
3128 {
3129 struct type *known_type;
3130 struct type *rtti_type;
3131 CORE_ADDR coreptr;
3132 value_ptr vp;
3133 int using_enclosing = 0;
3134 long top_offset = 0;
3135 char rtti_type_name[256];
3136
3137 if (full)
3138 *full = 0;
3139 if (top)
3140 *top = -1;
3141 if (using_enc)
3142 *using_enc = 0;
3143
3144 /* Get declared type */
3145 known_type = VALUE_TYPE (v);
3146 CHECK_TYPEDEF (known_type);
3147 /* RTTI works only or class objects */
3148 if (TYPE_CODE (known_type) != TYPE_CODE_CLASS)
3149 return NULL;
3150 if (TYPE_HAS_VTABLE(known_type))
3151 {
3152 /* If neither the declared type nor the enclosing type of the
3153 * value structure has a HP ANSI C++ style virtual table,
3154 * we can't do anything. */
3155 if (!TYPE_HAS_VTABLE (known_type))
3156 {
3157 known_type = VALUE_ENCLOSING_TYPE (v);
3158 CHECK_TYPEDEF (known_type);
3159 if ((TYPE_CODE (known_type) != TYPE_CODE_CLASS) ||
3160 !TYPE_HAS_VTABLE (known_type))
3161 return NULL; /* No RTTI, or not HP-compiled types */
3162 CHECK_TYPEDEF (known_type);
3163 using_enclosing = 1;
3164 }
3165
3166 if (using_enclosing && using_enc)
3167 *using_enc = 1;
3168
3169 /* First get the virtual table address */
3170 coreptr = *(CORE_ADDR *) ((VALUE_CONTENTS_ALL (v))
3171 + VALUE_OFFSET (v)
3172 + (using_enclosing ? 0 : VALUE_EMBEDDED_OFFSET (v)));
3173 if (coreptr == 0)
3174 return NULL; /* return silently -- maybe called on gdb-generated value */
3175
3176 /* Fetch the top offset of the object */
3177 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3178 vp = value_at (builtin_type_int,
3179 coreptr + 4 * HP_ACC_TOP_OFFSET_OFFSET,
3180 VALUE_BFD_SECTION (v));
3181 top_offset = value_as_long (vp);
3182 if (top)
3183 *top = top_offset;
3184
3185 /* Fetch the typeinfo pointer */
3186 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3187 vp = value_at (builtin_type_int, coreptr + 4 * HP_ACC_TYPEINFO_OFFSET, VALUE_BFD_SECTION (v));
3188 /* Indirect through the typeinfo pointer and retrieve the pointer
3189 * to the string name */
3190 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
3191 if (!coreptr)
3192 error ("Retrieved null typeinfo pointer in trying to determine run-time type");
3193 vp = value_at (builtin_type_int, coreptr + 4, VALUE_BFD_SECTION (v)); /* 4 -> offset of name field */
3194 /* FIXME possible 32x64 problem */
3195
3196 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
3197
3198 read_memory_string (coreptr, rtti_type_name, 256);
3199
3200 if (strlen (rtti_type_name) == 0)
3201 error ("Retrieved null type name from typeinfo");
3202
3203 /* search for type */
3204 rtti_type = lookup_typename (rtti_type_name, (struct block *) 0, 1);
3205
3206 if (!rtti_type)
3207 error ("Could not find run-time type: invalid type name %s in typeinfo??", rtti_type_name);
3208 CHECK_TYPEDEF (rtti_type);
3209 #if 0
3210 printf ("RTTI type name %s, tag %s, full? %d\n", TYPE_NAME (rtti_type), TYPE_TAG_NAME (rtti_type), full ? *full : -1);
3211 #endif
3212 /* Check whether we have the entire object */
3213 if (full /* Non-null pointer passed */
3214 &&
3215 /* Either we checked on the whole object in hand and found the
3216 top offset to be zero */
3217 (((top_offset == 0) &&
3218 using_enclosing &&
3219 TYPE_LENGTH (known_type) == TYPE_LENGTH (rtti_type))
3220 ||
3221 /* Or we checked on the embedded object and top offset was the
3222 same as the embedded offset */
3223 ((top_offset == VALUE_EMBEDDED_OFFSET (v)) &&
3224 !using_enclosing &&
3225 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (v)) == TYPE_LENGTH (rtti_type))))
3226
3227 *full = 1;
3228 }
3229 else
3230 /*
3231 Right now this is G++ RTTI. Plan on this changing in the
3232 future as i get around to setting the vtables properly for G++
3233 compiled stuff. Also, i'll be using the type info functions,
3234 which are always right. Deal with it until then.
3235 */
3236 {
3237 CORE_ADDR vtbl;
3238 struct minimal_symbol *minsym;
3239 struct symbol *sym;
3240 char *demangled_name;
3241 struct type *btype;
3242 /* If the type has no vptr fieldno, try to get it filled in */
3243 if (TYPE_VPTR_FIELDNO(known_type) < 0)
3244 fill_in_vptr_fieldno(known_type);
3245
3246 /* If we still can't find one, give up */
3247 if (TYPE_VPTR_FIELDNO(known_type) < 0)
3248 return NULL;
3249
3250 /* Make sure our basetype and known type match, otherwise, cast
3251 so we can get at the vtable properly.
3252 */
3253 btype = TYPE_VPTR_BASETYPE (known_type);
3254 CHECK_TYPEDEF (btype);
3255 if (btype != known_type )
3256 {
3257 v = value_cast (btype, v);
3258 if (using_enc)
3259 *using_enc=1;
3260 }
3261 /*
3262 We can't use value_ind here, because it would want to use RTTI, and
3263 we'd waste a bunch of time figuring out we already know the type.
3264 Besides, we don't care about the type, just the actual pointer
3265 */
3266 if (VALUE_ADDRESS (value_field (v, TYPE_VPTR_FIELDNO (known_type))) == 0)
3267 return NULL;
3268
3269 /*
3270 If we are enclosed by something that isn't us, adjust the
3271 address properly and set using_enclosing.
3272 */
3273 if (VALUE_ENCLOSING_TYPE(v) != VALUE_TYPE(v))
3274 {
3275 value_ptr tempval;
3276 tempval=value_field(v,TYPE_VPTR_FIELDNO(known_type));
3277 VALUE_ADDRESS(tempval)+=(TYPE_BASECLASS_BITPOS(known_type,TYPE_VPTR_FIELDNO(known_type))/8);
3278 vtbl=value_as_pointer(tempval);
3279 using_enclosing=1;
3280 }
3281 else
3282 {
3283 vtbl=value_as_pointer(value_field(v,TYPE_VPTR_FIELDNO(known_type)));
3284 using_enclosing=0;
3285 }
3286
3287 /* Try to find a symbol that is the vtable */
3288 minsym=lookup_minimal_symbol_by_pc(vtbl);
3289 if (minsym==NULL || (demangled_name=SYMBOL_NAME(minsym))==NULL || !VTBL_PREFIX_P(demangled_name))
3290 return NULL;
3291
3292 /* If we just skip the prefix, we get screwed by namespaces */
3293 demangled_name=cplus_demangle(demangled_name,DMGL_PARAMS|DMGL_ANSI);
3294 *(strchr(demangled_name,' '))=0;
3295
3296 /* Lookup the type for the name */
3297 rtti_type=lookup_typename(demangled_name, (struct block *)0,1);
3298
3299 if (rtti_type==NULL)
3300 return NULL;
3301
3302 if (TYPE_N_BASECLASSES(rtti_type) > 1 && full && (*full) != 1)
3303 {
3304 if (top)
3305 *top=TYPE_BASECLASS_BITPOS(rtti_type,TYPE_VPTR_FIELDNO(rtti_type))/8;
3306 if (top && ((*top) >0))
3307 {
3308 if (TYPE_LENGTH(rtti_type) > TYPE_LENGTH(known_type))
3309 {
3310 if (full)
3311 *full=0;
3312 }
3313 else
3314 {
3315 if (full)
3316 *full=1;
3317 }
3318 }
3319 }
3320 else
3321 {
3322 if (full)
3323 *full=1;
3324 }
3325 if (using_enc)
3326 *using_enc=using_enclosing;
3327 }
3328 return rtti_type;
3329 }
3330
3331 /* Given a pointer value V, find the real (RTTI) type
3332 of the object it points to.
3333 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3334 and refer to the values computed for the object pointed to. */
3335
3336 struct type *
3337 value_rtti_target_type (value_ptr v, int *full, int *top, int *using_enc)
3338 {
3339 value_ptr target;
3340
3341 target = value_ind (v);
3342
3343 return value_rtti_type (target, full, top, using_enc);
3344 }
3345
3346 /* Given a value pointed to by ARGP, check its real run-time type, and
3347 if that is different from the enclosing type, create a new value
3348 using the real run-time type as the enclosing type (and of the same
3349 type as ARGP) and return it, with the embedded offset adjusted to
3350 be the correct offset to the enclosed object
3351 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3352 parameters, computed by value_rtti_type(). If these are available,
3353 they can be supplied and a second call to value_rtti_type() is avoided.
3354 (Pass RTYPE == NULL if they're not available */
3355
3356 value_ptr
3357 value_full_object (value_ptr argp, struct type *rtype, int xfull, int xtop,
3358 int xusing_enc)
3359 {
3360 struct type *real_type;
3361 int full = 0;
3362 int top = -1;
3363 int using_enc = 0;
3364 value_ptr new_val;
3365
3366 if (rtype)
3367 {
3368 real_type = rtype;
3369 full = xfull;
3370 top = xtop;
3371 using_enc = xusing_enc;
3372 }
3373 else
3374 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3375
3376 /* If no RTTI data, or if object is already complete, do nothing */
3377 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3378 return argp;
3379
3380 /* If we have the full object, but for some reason the enclosing
3381 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3382 if (full)
3383 {
3384 VALUE_ENCLOSING_TYPE (argp) = real_type;
3385 return argp;
3386 }
3387
3388 /* Check if object is in memory */
3389 if (VALUE_LVAL (argp) != lval_memory)
3390 {
3391 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3392
3393 return argp;
3394 }
3395
3396 /* All other cases -- retrieve the complete object */
3397 /* Go back by the computed top_offset from the beginning of the object,
3398 adjusting for the embedded offset of argp if that's what value_rtti_type
3399 used for its computation. */
3400 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3401 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3402 VALUE_BFD_SECTION (argp));
3403 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3404 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3405 return new_val;
3406 }
3407
3408
3409
3410
3411 /* C++: return the value of the class instance variable, if one exists.
3412 Flag COMPLAIN signals an error if the request is made in an
3413 inappropriate context. */
3414
3415 value_ptr
3416 value_of_this (int complain)
3417 {
3418 struct symbol *func, *sym;
3419 struct block *b;
3420 int i;
3421 static const char funny_this[] = "this";
3422 value_ptr this;
3423
3424 if (selected_frame == 0)
3425 {
3426 if (complain)
3427 error ("no frame selected");
3428 else
3429 return 0;
3430 }
3431
3432 func = get_frame_function (selected_frame);
3433 if (!func)
3434 {
3435 if (complain)
3436 error ("no `this' in nameless context");
3437 else
3438 return 0;
3439 }
3440
3441 b = SYMBOL_BLOCK_VALUE (func);
3442 i = BLOCK_NSYMS (b);
3443 if (i <= 0)
3444 {
3445 if (complain)
3446 error ("no args, no `this'");
3447 else
3448 return 0;
3449 }
3450
3451 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3452 symbol instead of the LOC_ARG one (if both exist). */
3453 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
3454 if (sym == NULL)
3455 {
3456 if (complain)
3457 error ("current stack frame not in method");
3458 else
3459 return NULL;
3460 }
3461
3462 this = read_var_value (sym, selected_frame);
3463 if (this == 0 && complain)
3464 error ("`this' argument at unknown address");
3465 return this;
3466 }
3467
3468 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3469 long, starting at LOWBOUND. The result has the same lower bound as
3470 the original ARRAY. */
3471
3472 value_ptr
3473 value_slice (value_ptr array, int lowbound, int length)
3474 {
3475 struct type *slice_range_type, *slice_type, *range_type;
3476 LONGEST lowerbound, upperbound, offset;
3477 value_ptr slice;
3478 struct type *array_type;
3479 array_type = check_typedef (VALUE_TYPE (array));
3480 COERCE_VARYING_ARRAY (array, array_type);
3481 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3482 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3483 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3484 error ("cannot take slice of non-array");
3485 range_type = TYPE_INDEX_TYPE (array_type);
3486 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3487 error ("slice from bad array or bitstring");
3488 if (lowbound < lowerbound || length < 0
3489 || lowbound + length - 1 > upperbound
3490 /* Chill allows zero-length strings but not arrays. */
3491 || (current_language->la_language == language_chill
3492 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3493 error ("slice out of range");
3494 /* FIXME-type-allocation: need a way to free this type when we are
3495 done with it. */
3496 slice_range_type = create_range_type ((struct type *) NULL,
3497 TYPE_TARGET_TYPE (range_type),
3498 lowbound, lowbound + length - 1);
3499 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3500 {
3501 int i;
3502 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3503 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3504 slice = value_zero (slice_type, not_lval);
3505 for (i = 0; i < length; i++)
3506 {
3507 int element = value_bit_index (array_type,
3508 VALUE_CONTENTS (array),
3509 lowbound + i);
3510 if (element < 0)
3511 error ("internal error accessing bitstring");
3512 else if (element > 0)
3513 {
3514 int j = i % TARGET_CHAR_BIT;
3515 if (BITS_BIG_ENDIAN)
3516 j = TARGET_CHAR_BIT - 1 - j;
3517 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3518 }
3519 }
3520 /* We should set the address, bitssize, and bitspos, so the clice
3521 can be used on the LHS, but that may require extensions to
3522 value_assign. For now, just leave as a non_lval. FIXME. */
3523 }
3524 else
3525 {
3526 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3527 offset
3528 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3529 slice_type = create_array_type ((struct type *) NULL, element_type,
3530 slice_range_type);
3531 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3532 slice = allocate_value (slice_type);
3533 if (VALUE_LAZY (array))
3534 VALUE_LAZY (slice) = 1;
3535 else
3536 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3537 TYPE_LENGTH (slice_type));
3538 if (VALUE_LVAL (array) == lval_internalvar)
3539 VALUE_LVAL (slice) = lval_internalvar_component;
3540 else
3541 VALUE_LVAL (slice) = VALUE_LVAL (array);
3542 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3543 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3544 }
3545 return slice;
3546 }
3547
3548 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3549 value as a fixed-length array. */
3550
3551 value_ptr
3552 varying_to_slice (value_ptr varray)
3553 {
3554 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3555 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3556 VALUE_CONTENTS (varray)
3557 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3558 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3559 }
3560
3561 /* Create a value for a FORTRAN complex number. Currently most of
3562 the time values are coerced to COMPLEX*16 (i.e. a complex number
3563 composed of 2 doubles. This really should be a smarter routine
3564 that figures out precision inteligently as opposed to assuming
3565 doubles. FIXME: fmb */
3566
3567 value_ptr
3568 value_literal_complex (value_ptr arg1, value_ptr arg2, struct type *type)
3569 {
3570 register value_ptr val;
3571 struct type *real_type = TYPE_TARGET_TYPE (type);
3572
3573 val = allocate_value (type);
3574 arg1 = value_cast (real_type, arg1);
3575 arg2 = value_cast (real_type, arg2);
3576
3577 memcpy (VALUE_CONTENTS_RAW (val),
3578 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3579 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3580 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3581 return val;
3582 }
3583
3584 /* Cast a value into the appropriate complex data type. */
3585
3586 static value_ptr
3587 cast_into_complex (struct type *type, register value_ptr val)
3588 {
3589 struct type *real_type = TYPE_TARGET_TYPE (type);
3590 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3591 {
3592 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3593 value_ptr re_val = allocate_value (val_real_type);
3594 value_ptr im_val = allocate_value (val_real_type);
3595
3596 memcpy (VALUE_CONTENTS_RAW (re_val),
3597 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3598 memcpy (VALUE_CONTENTS_RAW (im_val),
3599 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3600 TYPE_LENGTH (val_real_type));
3601
3602 return value_literal_complex (re_val, im_val, type);
3603 }
3604 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3605 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3606 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3607 else
3608 error ("cannot cast non-number to complex");
3609 }
3610
3611 void
3612 _initialize_valops (void)
3613 {
3614 #if 0
3615 add_show_from_set
3616 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3617 "Set automatic abandonment of expressions upon failure.",
3618 &setlist),
3619 &showlist);
3620 #endif
3621
3622 add_show_from_set
3623 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3624 "Set overload resolution in evaluating C++ functions.",
3625 &setlist),
3626 &showlist);
3627 overload_resolution = 1;
3628
3629 add_show_from_set (
3630 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3631 (char *) &unwind_on_signal_p,
3632 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3633 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3634 is received while in a function called from gdb (call dummy). If set, gdb\n\
3635 unwinds the stack and restore the context to what as it was before the call.\n\
3636 The default is to stop in the frame where the signal was received.", &setlist),
3637 &showlist);
3638 }
This page took 0.166331 seconds and 5 git commands to generate.