constify value_aggregate_elt
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "dfp.h"
38 #include "tracepoint.h"
39 #include <errno.h>
40 #include <string.h>
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "objfiles.h"
44 #include "exceptions.h"
45
46 extern unsigned int overload_debug;
47 /* Local functions. */
48
49 static int typecmp (int staticp, int varargs, int nargs,
50 struct field t1[], struct value *t2[]);
51
52 static struct value *search_struct_field (const char *, struct value *,
53 int, struct type *, int);
54
55 static struct value *search_struct_method (const char *, struct value **,
56 struct value **,
57 int, int *, struct type *);
58
59 static int find_oload_champ_namespace (struct value **, int,
60 const char *, const char *,
61 struct symbol ***,
62 struct badness_vector **,
63 const int no_adl);
64
65 static
66 int find_oload_champ_namespace_loop (struct value **, int,
67 const char *, const char *,
68 int, struct symbol ***,
69 struct badness_vector **, int *,
70 const int no_adl);
71
72 static int find_oload_champ (struct value **, int, int,
73 struct fn_field *, struct symbol **,
74 struct badness_vector **);
75
76 static int oload_method_static (int, struct fn_field *, int);
77
78 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
79
80 static enum
81 oload_classification classify_oload_match (struct badness_vector *,
82 int, int);
83
84 static struct value *value_struct_elt_for_reference (struct type *,
85 int, struct type *,
86 const char *,
87 struct type *,
88 int, enum noside);
89
90 static struct value *value_namespace_elt (const struct type *,
91 const char *, int , enum noside);
92
93 static struct value *value_maybe_namespace_elt (const struct type *,
94 const char *, int,
95 enum noside);
96
97 static CORE_ADDR allocate_space_in_inferior (int);
98
99 static struct value *cast_into_complex (struct type *, struct value *);
100
101 static struct fn_field *find_method_list (struct value **, const char *,
102 int, struct type *, int *,
103 struct type **, int *);
104
105 void _initialize_valops (void);
106
107 #if 0
108 /* Flag for whether we want to abandon failed expression evals by
109 default. */
110
111 static int auto_abandon = 0;
112 #endif
113
114 int overload_resolution = 0;
115 static void
116 show_overload_resolution (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c,
118 const char *value)
119 {
120 fprintf_filtered (file, _("Overload resolution in evaluating "
121 "C++ functions is %s.\n"),
122 value);
123 }
124
125 /* Find the address of function name NAME in the inferior. If OBJF_P
126 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
127 is defined. */
128
129 struct value *
130 find_function_in_inferior (const char *name, struct objfile **objf_p)
131 {
132 struct symbol *sym;
133
134 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
135 if (sym != NULL)
136 {
137 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
138 {
139 error (_("\"%s\" exists in this program but is not a function."),
140 name);
141 }
142
143 if (objf_p)
144 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
145
146 return value_of_variable (sym, NULL);
147 }
148 else
149 {
150 struct bound_minimal_symbol msymbol =
151 lookup_bound_minimal_symbol (name);
152
153 if (msymbol.minsym != NULL)
154 {
155 struct objfile *objfile = msymbol.objfile;
156 struct gdbarch *gdbarch = get_objfile_arch (objfile);
157
158 struct type *type;
159 CORE_ADDR maddr;
160 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
161 type = lookup_function_type (type);
162 type = lookup_pointer_type (type);
163 maddr = BMSYMBOL_VALUE_ADDRESS (msymbol);
164
165 if (objf_p)
166 *objf_p = objfile;
167
168 return value_from_pointer (type, maddr);
169 }
170 else
171 {
172 if (!target_has_execution)
173 error (_("evaluation of this expression "
174 "requires the target program to be active"));
175 else
176 error (_("evaluation of this expression requires the "
177 "program to have a function \"%s\"."),
178 name);
179 }
180 }
181 }
182
183 /* Allocate NBYTES of space in the inferior using the inferior's
184 malloc and return a value that is a pointer to the allocated
185 space. */
186
187 struct value *
188 value_allocate_space_in_inferior (int len)
189 {
190 struct objfile *objf;
191 struct value *val = find_function_in_inferior ("malloc", &objf);
192 struct gdbarch *gdbarch = get_objfile_arch (objf);
193 struct value *blocklen;
194
195 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
196 val = call_function_by_hand (val, 1, &blocklen);
197 if (value_logical_not (val))
198 {
199 if (!target_has_execution)
200 error (_("No memory available to program now: "
201 "you need to start the target first"));
202 else
203 error (_("No memory available to program: call to malloc failed"));
204 }
205 return val;
206 }
207
208 static CORE_ADDR
209 allocate_space_in_inferior (int len)
210 {
211 return value_as_long (value_allocate_space_in_inferior (len));
212 }
213
214 /* Cast struct value VAL to type TYPE and return as a value.
215 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
216 for this to work. Typedef to one of the codes is permitted.
217 Returns NULL if the cast is neither an upcast nor a downcast. */
218
219 static struct value *
220 value_cast_structs (struct type *type, struct value *v2)
221 {
222 struct type *t1;
223 struct type *t2;
224 struct value *v;
225
226 gdb_assert (type != NULL && v2 != NULL);
227
228 t1 = check_typedef (type);
229 t2 = check_typedef (value_type (v2));
230
231 /* Check preconditions. */
232 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
233 || TYPE_CODE (t1) == TYPE_CODE_UNION)
234 && !!"Precondition is that type is of STRUCT or UNION kind.");
235 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
236 || TYPE_CODE (t2) == TYPE_CODE_UNION)
237 && !!"Precondition is that value is of STRUCT or UNION kind");
238
239 if (TYPE_NAME (t1) != NULL
240 && TYPE_NAME (t2) != NULL
241 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
242 return NULL;
243
244 /* Upcasting: look in the type of the source to see if it contains the
245 type of the target as a superclass. If so, we'll need to
246 offset the pointer rather than just change its type. */
247 if (TYPE_NAME (t1) != NULL)
248 {
249 v = search_struct_field (type_name_no_tag (t1),
250 v2, 0, t2, 1);
251 if (v)
252 return v;
253 }
254
255 /* Downcasting: look in the type of the target to see if it contains the
256 type of the source as a superclass. If so, we'll need to
257 offset the pointer rather than just change its type. */
258 if (TYPE_NAME (t2) != NULL)
259 {
260 /* Try downcasting using the run-time type of the value. */
261 int full, top, using_enc;
262 struct type *real_type;
263
264 real_type = value_rtti_type (v2, &full, &top, &using_enc);
265 if (real_type)
266 {
267 v = value_full_object (v2, real_type, full, top, using_enc);
268 v = value_at_lazy (real_type, value_address (v));
269 real_type = value_type (v);
270
271 /* We might be trying to cast to the outermost enclosing
272 type, in which case search_struct_field won't work. */
273 if (TYPE_NAME (real_type) != NULL
274 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
275 return v;
276
277 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
278 if (v)
279 return v;
280 }
281
282 /* Try downcasting using information from the destination type
283 T2. This wouldn't work properly for classes with virtual
284 bases, but those were handled above. */
285 v = search_struct_field (type_name_no_tag (t2),
286 value_zero (t1, not_lval), 0, t1, 1);
287 if (v)
288 {
289 /* Downcasting is possible (t1 is superclass of v2). */
290 CORE_ADDR addr2 = value_address (v2);
291
292 addr2 -= value_address (v) + value_embedded_offset (v);
293 return value_at (type, addr2);
294 }
295 }
296
297 return NULL;
298 }
299
300 /* Cast one pointer or reference type to another. Both TYPE and
301 the type of ARG2 should be pointer types, or else both should be
302 reference types. If SUBCLASS_CHECK is non-zero, this will force a
303 check to see whether TYPE is a superclass of ARG2's type. If
304 SUBCLASS_CHECK is zero, then the subclass check is done only when
305 ARG2 is itself non-zero. Returns the new pointer or reference. */
306
307 struct value *
308 value_cast_pointers (struct type *type, struct value *arg2,
309 int subclass_check)
310 {
311 struct type *type1 = check_typedef (type);
312 struct type *type2 = check_typedef (value_type (arg2));
313 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
314 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
315
316 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
317 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
318 && (subclass_check || !value_logical_not (arg2)))
319 {
320 struct value *v2;
321
322 if (TYPE_CODE (type2) == TYPE_CODE_REF)
323 v2 = coerce_ref (arg2);
324 else
325 v2 = value_ind (arg2);
326 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
327 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
328 v2 = value_cast_structs (t1, v2);
329 /* At this point we have what we can have, un-dereference if needed. */
330 if (v2)
331 {
332 struct value *v = value_addr (v2);
333
334 deprecated_set_value_type (v, type);
335 return v;
336 }
337 }
338
339 /* No superclass found, just change the pointer type. */
340 arg2 = value_copy (arg2);
341 deprecated_set_value_type (arg2, type);
342 set_value_enclosing_type (arg2, type);
343 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
344 return arg2;
345 }
346
347 /* Cast value ARG2 to type TYPE and return as a value.
348 More general than a C cast: accepts any two types of the same length,
349 and if ARG2 is an lvalue it can be cast into anything at all. */
350 /* In C++, casts may change pointer or object representations. */
351
352 struct value *
353 value_cast (struct type *type, struct value *arg2)
354 {
355 enum type_code code1;
356 enum type_code code2;
357 int scalar;
358 struct type *type2;
359
360 int convert_to_boolean = 0;
361
362 if (value_type (arg2) == type)
363 return arg2;
364
365 code1 = TYPE_CODE (check_typedef (type));
366
367 /* Check if we are casting struct reference to struct reference. */
368 if (code1 == TYPE_CODE_REF)
369 {
370 /* We dereference type; then we recurse and finally
371 we generate value of the given reference. Nothing wrong with
372 that. */
373 struct type *t1 = check_typedef (type);
374 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
375 struct value *val = value_cast (dereftype, arg2);
376
377 return value_ref (val);
378 }
379
380 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
381
382 if (code2 == TYPE_CODE_REF)
383 /* We deref the value and then do the cast. */
384 return value_cast (type, coerce_ref (arg2));
385
386 CHECK_TYPEDEF (type);
387 code1 = TYPE_CODE (type);
388 arg2 = coerce_ref (arg2);
389 type2 = check_typedef (value_type (arg2));
390
391 /* You can't cast to a reference type. See value_cast_pointers
392 instead. */
393 gdb_assert (code1 != TYPE_CODE_REF);
394
395 /* A cast to an undetermined-length array_type, such as
396 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
397 where N is sizeof(OBJECT)/sizeof(TYPE). */
398 if (code1 == TYPE_CODE_ARRAY)
399 {
400 struct type *element_type = TYPE_TARGET_TYPE (type);
401 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
402
403 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
404 {
405 struct type *range_type = TYPE_INDEX_TYPE (type);
406 int val_length = TYPE_LENGTH (type2);
407 LONGEST low_bound, high_bound, new_length;
408
409 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
410 low_bound = 0, high_bound = 0;
411 new_length = val_length / element_length;
412 if (val_length % element_length != 0)
413 warning (_("array element type size does not "
414 "divide object size in cast"));
415 /* FIXME-type-allocation: need a way to free this type when
416 we are done with it. */
417 range_type = create_static_range_type ((struct type *) NULL,
418 TYPE_TARGET_TYPE (range_type),
419 low_bound,
420 new_length + low_bound - 1);
421 deprecated_set_value_type (arg2,
422 create_array_type ((struct type *) NULL,
423 element_type,
424 range_type));
425 return arg2;
426 }
427 }
428
429 if (current_language->c_style_arrays
430 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
431 && !TYPE_VECTOR (type2))
432 arg2 = value_coerce_array (arg2);
433
434 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
435 arg2 = value_coerce_function (arg2);
436
437 type2 = check_typedef (value_type (arg2));
438 code2 = TYPE_CODE (type2);
439
440 if (code1 == TYPE_CODE_COMPLEX)
441 return cast_into_complex (type, arg2);
442 if (code1 == TYPE_CODE_BOOL)
443 {
444 code1 = TYPE_CODE_INT;
445 convert_to_boolean = 1;
446 }
447 if (code1 == TYPE_CODE_CHAR)
448 code1 = TYPE_CODE_INT;
449 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
450 code2 = TYPE_CODE_INT;
451
452 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
453 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
454 || code2 == TYPE_CODE_RANGE);
455
456 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
457 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
458 && TYPE_NAME (type) != 0)
459 {
460 struct value *v = value_cast_structs (type, arg2);
461
462 if (v)
463 return v;
464 }
465
466 if (code1 == TYPE_CODE_FLT && scalar)
467 return value_from_double (type, value_as_double (arg2));
468 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
469 {
470 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
471 int dec_len = TYPE_LENGTH (type);
472 gdb_byte dec[16];
473
474 if (code2 == TYPE_CODE_FLT)
475 decimal_from_floating (arg2, dec, dec_len, byte_order);
476 else if (code2 == TYPE_CODE_DECFLOAT)
477 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
478 byte_order, dec, dec_len, byte_order);
479 else
480 /* The only option left is an integral type. */
481 decimal_from_integral (arg2, dec, dec_len, byte_order);
482
483 return value_from_decfloat (type, dec);
484 }
485 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
486 || code1 == TYPE_CODE_RANGE)
487 && (scalar || code2 == TYPE_CODE_PTR
488 || code2 == TYPE_CODE_MEMBERPTR))
489 {
490 LONGEST longest;
491
492 /* When we cast pointers to integers, we mustn't use
493 gdbarch_pointer_to_address to find the address the pointer
494 represents, as value_as_long would. GDB should evaluate
495 expressions just as the compiler would --- and the compiler
496 sees a cast as a simple reinterpretation of the pointer's
497 bits. */
498 if (code2 == TYPE_CODE_PTR)
499 longest = extract_unsigned_integer
500 (value_contents (arg2), TYPE_LENGTH (type2),
501 gdbarch_byte_order (get_type_arch (type2)));
502 else
503 longest = value_as_long (arg2);
504 return value_from_longest (type, convert_to_boolean ?
505 (LONGEST) (longest ? 1 : 0) : longest);
506 }
507 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
508 || code2 == TYPE_CODE_ENUM
509 || code2 == TYPE_CODE_RANGE))
510 {
511 /* TYPE_LENGTH (type) is the length of a pointer, but we really
512 want the length of an address! -- we are really dealing with
513 addresses (i.e., gdb representations) not pointers (i.e.,
514 target representations) here.
515
516 This allows things like "print *(int *)0x01000234" to work
517 without printing a misleading message -- which would
518 otherwise occur when dealing with a target having two byte
519 pointers and four byte addresses. */
520
521 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
522 LONGEST longest = value_as_long (arg2);
523
524 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
525 {
526 if (longest >= ((LONGEST) 1 << addr_bit)
527 || longest <= -((LONGEST) 1 << addr_bit))
528 warning (_("value truncated"));
529 }
530 return value_from_longest (type, longest);
531 }
532 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
533 && value_as_long (arg2) == 0)
534 {
535 struct value *result = allocate_value (type);
536
537 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
538 return result;
539 }
540 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
541 && value_as_long (arg2) == 0)
542 {
543 /* The Itanium C++ ABI represents NULL pointers to members as
544 minus one, instead of biasing the normal case. */
545 return value_from_longest (type, -1);
546 }
547 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
548 && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
549 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
550 error (_("Cannot convert between vector values of different sizes"));
551 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
552 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
553 error (_("can only cast scalar to vector of same size"));
554 else if (code1 == TYPE_CODE_VOID)
555 {
556 return value_zero (type, not_lval);
557 }
558 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
559 {
560 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
561 return value_cast_pointers (type, arg2, 0);
562
563 arg2 = value_copy (arg2);
564 deprecated_set_value_type (arg2, type);
565 set_value_enclosing_type (arg2, type);
566 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
567 return arg2;
568 }
569 else if (VALUE_LVAL (arg2) == lval_memory)
570 return value_at_lazy (type, value_address (arg2));
571 else
572 {
573 error (_("Invalid cast."));
574 return 0;
575 }
576 }
577
578 /* The C++ reinterpret_cast operator. */
579
580 struct value *
581 value_reinterpret_cast (struct type *type, struct value *arg)
582 {
583 struct value *result;
584 struct type *real_type = check_typedef (type);
585 struct type *arg_type, *dest_type;
586 int is_ref = 0;
587 enum type_code dest_code, arg_code;
588
589 /* Do reference, function, and array conversion. */
590 arg = coerce_array (arg);
591
592 /* Attempt to preserve the type the user asked for. */
593 dest_type = type;
594
595 /* If we are casting to a reference type, transform
596 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
597 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
598 {
599 is_ref = 1;
600 arg = value_addr (arg);
601 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
602 real_type = lookup_pointer_type (real_type);
603 }
604
605 arg_type = value_type (arg);
606
607 dest_code = TYPE_CODE (real_type);
608 arg_code = TYPE_CODE (arg_type);
609
610 /* We can convert pointer types, or any pointer type to int, or int
611 type to pointer. */
612 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
613 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
614 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
615 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
616 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
617 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
618 || (dest_code == arg_code
619 && (dest_code == TYPE_CODE_PTR
620 || dest_code == TYPE_CODE_METHODPTR
621 || dest_code == TYPE_CODE_MEMBERPTR)))
622 result = value_cast (dest_type, arg);
623 else
624 error (_("Invalid reinterpret_cast"));
625
626 if (is_ref)
627 result = value_cast (type, value_ref (value_ind (result)));
628
629 return result;
630 }
631
632 /* A helper for value_dynamic_cast. This implements the first of two
633 runtime checks: we iterate over all the base classes of the value's
634 class which are equal to the desired class; if only one of these
635 holds the value, then it is the answer. */
636
637 static int
638 dynamic_cast_check_1 (struct type *desired_type,
639 const gdb_byte *valaddr,
640 int embedded_offset,
641 CORE_ADDR address,
642 struct value *val,
643 struct type *search_type,
644 CORE_ADDR arg_addr,
645 struct type *arg_type,
646 struct value **result)
647 {
648 int i, result_count = 0;
649
650 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
651 {
652 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
653 address, val);
654
655 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
656 {
657 if (address + embedded_offset + offset >= arg_addr
658 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
659 {
660 ++result_count;
661 if (!*result)
662 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
663 address + embedded_offset + offset);
664 }
665 }
666 else
667 result_count += dynamic_cast_check_1 (desired_type,
668 valaddr,
669 embedded_offset + offset,
670 address, val,
671 TYPE_BASECLASS (search_type, i),
672 arg_addr,
673 arg_type,
674 result);
675 }
676
677 return result_count;
678 }
679
680 /* A helper for value_dynamic_cast. This implements the second of two
681 runtime checks: we look for a unique public sibling class of the
682 argument's declared class. */
683
684 static int
685 dynamic_cast_check_2 (struct type *desired_type,
686 const gdb_byte *valaddr,
687 int embedded_offset,
688 CORE_ADDR address,
689 struct value *val,
690 struct type *search_type,
691 struct value **result)
692 {
693 int i, result_count = 0;
694
695 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
696 {
697 int offset;
698
699 if (! BASETYPE_VIA_PUBLIC (search_type, i))
700 continue;
701
702 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
703 address, val);
704 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
705 {
706 ++result_count;
707 if (*result == NULL)
708 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
709 address + embedded_offset + offset);
710 }
711 else
712 result_count += dynamic_cast_check_2 (desired_type,
713 valaddr,
714 embedded_offset + offset,
715 address, val,
716 TYPE_BASECLASS (search_type, i),
717 result);
718 }
719
720 return result_count;
721 }
722
723 /* The C++ dynamic_cast operator. */
724
725 struct value *
726 value_dynamic_cast (struct type *type, struct value *arg)
727 {
728 int full, top, using_enc;
729 struct type *resolved_type = check_typedef (type);
730 struct type *arg_type = check_typedef (value_type (arg));
731 struct type *class_type, *rtti_type;
732 struct value *result, *tem, *original_arg = arg;
733 CORE_ADDR addr;
734 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
735
736 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
737 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
738 error (_("Argument to dynamic_cast must be a pointer or reference type"));
739 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
740 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
741 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
742
743 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
744 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
745 {
746 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
747 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
748 && value_as_long (arg) == 0))
749 error (_("Argument to dynamic_cast does not have pointer type"));
750 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
751 {
752 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
753 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
754 error (_("Argument to dynamic_cast does "
755 "not have pointer to class type"));
756 }
757
758 /* Handle NULL pointers. */
759 if (value_as_long (arg) == 0)
760 return value_zero (type, not_lval);
761
762 arg = value_ind (arg);
763 }
764 else
765 {
766 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
767 error (_("Argument to dynamic_cast does not have class type"));
768 }
769
770 /* If the classes are the same, just return the argument. */
771 if (class_types_same_p (class_type, arg_type))
772 return value_cast (type, arg);
773
774 /* If the target type is a unique base class of the argument's
775 declared type, just cast it. */
776 if (is_ancestor (class_type, arg_type))
777 {
778 if (is_unique_ancestor (class_type, arg))
779 return value_cast (type, original_arg);
780 error (_("Ambiguous dynamic_cast"));
781 }
782
783 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
784 if (! rtti_type)
785 error (_("Couldn't determine value's most derived type for dynamic_cast"));
786
787 /* Compute the most derived object's address. */
788 addr = value_address (arg);
789 if (full)
790 {
791 /* Done. */
792 }
793 else if (using_enc)
794 addr += top;
795 else
796 addr += top + value_embedded_offset (arg);
797
798 /* dynamic_cast<void *> means to return a pointer to the
799 most-derived object. */
800 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
801 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
802 return value_at_lazy (type, addr);
803
804 tem = value_at (type, addr);
805 type = value_type (tem);
806
807 /* The first dynamic check specified in 5.2.7. */
808 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
809 {
810 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
811 return tem;
812 result = NULL;
813 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
814 value_contents_for_printing (tem),
815 value_embedded_offset (tem),
816 value_address (tem), tem,
817 rtti_type, addr,
818 arg_type,
819 &result) == 1)
820 return value_cast (type,
821 is_ref ? value_ref (result) : value_addr (result));
822 }
823
824 /* The second dynamic check specified in 5.2.7. */
825 result = NULL;
826 if (is_public_ancestor (arg_type, rtti_type)
827 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
828 value_contents_for_printing (tem),
829 value_embedded_offset (tem),
830 value_address (tem), tem,
831 rtti_type, &result) == 1)
832 return value_cast (type,
833 is_ref ? value_ref (result) : value_addr (result));
834
835 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
836 return value_zero (type, not_lval);
837
838 error (_("dynamic_cast failed"));
839 }
840
841 /* Create a value of type TYPE that is zero, and return it. */
842
843 struct value *
844 value_zero (struct type *type, enum lval_type lv)
845 {
846 struct value *val = allocate_value (type);
847
848 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
849 return val;
850 }
851
852 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
853
854 struct value *
855 value_one (struct type *type)
856 {
857 struct type *type1 = check_typedef (type);
858 struct value *val;
859
860 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
861 {
862 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
863 gdb_byte v[16];
864
865 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
866 val = value_from_decfloat (type, v);
867 }
868 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
869 {
870 val = value_from_double (type, (DOUBLEST) 1);
871 }
872 else if (is_integral_type (type1))
873 {
874 val = value_from_longest (type, (LONGEST) 1);
875 }
876 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
877 {
878 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
879 int i;
880 LONGEST low_bound, high_bound;
881 struct value *tmp;
882
883 if (!get_array_bounds (type1, &low_bound, &high_bound))
884 error (_("Could not determine the vector bounds"));
885
886 val = allocate_value (type);
887 for (i = 0; i < high_bound - low_bound + 1; i++)
888 {
889 tmp = value_one (eltype);
890 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
891 value_contents_all (tmp), TYPE_LENGTH (eltype));
892 }
893 }
894 else
895 {
896 error (_("Not a numeric type."));
897 }
898
899 /* value_one result is never used for assignments to. */
900 gdb_assert (VALUE_LVAL (val) == not_lval);
901
902 return val;
903 }
904
905 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.
906 The type of the created value may differ from the passed type TYPE.
907 Make sure to retrieve the returned values's new type after this call
908 e.g. in case the type is a variable length array. */
909
910 static struct value *
911 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
912 {
913 struct value *val;
914
915 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
916 error (_("Attempt to dereference a generic pointer."));
917
918 val = value_from_contents_and_address (type, NULL, addr);
919
920 if (!lazy)
921 value_fetch_lazy (val);
922
923 return val;
924 }
925
926 /* Return a value with type TYPE located at ADDR.
927
928 Call value_at only if the data needs to be fetched immediately;
929 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
930 value_at_lazy instead. value_at_lazy simply records the address of
931 the data and sets the lazy-evaluation-required flag. The lazy flag
932 is tested in the value_contents macro, which is used if and when
933 the contents are actually required. The type of the created value
934 may differ from the passed type TYPE. Make sure to retrieve the
935 returned values's new type after this call e.g. in case the type
936 is a variable length array.
937
938 Note: value_at does *NOT* handle embedded offsets; perform such
939 adjustments before or after calling it. */
940
941 struct value *
942 value_at (struct type *type, CORE_ADDR addr)
943 {
944 return get_value_at (type, addr, 0);
945 }
946
947 /* Return a lazy value with type TYPE located at ADDR (cf. value_at).
948 The type of the created value may differ from the passed type TYPE.
949 Make sure to retrieve the returned values's new type after this call
950 e.g. in case the type is a variable length array. */
951
952 struct value *
953 value_at_lazy (struct type *type, CORE_ADDR addr)
954 {
955 return get_value_at (type, addr, 1);
956 }
957
958 void
959 read_value_memory (struct value *val, int embedded_offset,
960 int stack, CORE_ADDR memaddr,
961 gdb_byte *buffer, size_t length)
962 {
963 ULONGEST xfered = 0;
964
965 while (xfered < length)
966 {
967 enum target_xfer_status status;
968 ULONGEST xfered_len;
969
970 status = target_xfer_partial (current_target.beneath,
971 TARGET_OBJECT_MEMORY, NULL,
972 buffer + xfered, NULL,
973 memaddr + xfered, length - xfered,
974 &xfered_len);
975
976 if (status == TARGET_XFER_OK)
977 /* nothing */;
978 else if (status == TARGET_XFER_UNAVAILABLE)
979 mark_value_bytes_unavailable (val, embedded_offset + xfered,
980 xfered_len);
981 else if (status == TARGET_XFER_EOF)
982 memory_error (TARGET_XFER_E_IO, memaddr + xfered);
983 else
984 memory_error (status, memaddr + xfered);
985
986 xfered += xfered_len;
987 QUIT;
988 }
989 }
990
991 /* Store the contents of FROMVAL into the location of TOVAL.
992 Return a new value with the location of TOVAL and contents of FROMVAL. */
993
994 struct value *
995 value_assign (struct value *toval, struct value *fromval)
996 {
997 struct type *type;
998 struct value *val;
999 struct frame_id old_frame;
1000
1001 if (!deprecated_value_modifiable (toval))
1002 error (_("Left operand of assignment is not a modifiable lvalue."));
1003
1004 toval = coerce_ref (toval);
1005
1006 type = value_type (toval);
1007 if (VALUE_LVAL (toval) != lval_internalvar)
1008 fromval = value_cast (type, fromval);
1009 else
1010 {
1011 /* Coerce arrays and functions to pointers, except for arrays
1012 which only live in GDB's storage. */
1013 if (!value_must_coerce_to_target (fromval))
1014 fromval = coerce_array (fromval);
1015 }
1016
1017 CHECK_TYPEDEF (type);
1018
1019 /* Since modifying a register can trash the frame chain, and
1020 modifying memory can trash the frame cache, we save the old frame
1021 and then restore the new frame afterwards. */
1022 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1023
1024 switch (VALUE_LVAL (toval))
1025 {
1026 case lval_internalvar:
1027 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1028 return value_of_internalvar (get_type_arch (type),
1029 VALUE_INTERNALVAR (toval));
1030
1031 case lval_internalvar_component:
1032 {
1033 int offset = value_offset (toval);
1034
1035 /* Are we dealing with a bitfield?
1036
1037 It is important to mention that `value_parent (toval)' is
1038 non-NULL iff `value_bitsize (toval)' is non-zero. */
1039 if (value_bitsize (toval))
1040 {
1041 /* VALUE_INTERNALVAR below refers to the parent value, while
1042 the offset is relative to this parent value. */
1043 gdb_assert (value_parent (value_parent (toval)) == NULL);
1044 offset += value_offset (value_parent (toval));
1045 }
1046
1047 set_internalvar_component (VALUE_INTERNALVAR (toval),
1048 offset,
1049 value_bitpos (toval),
1050 value_bitsize (toval),
1051 fromval);
1052 }
1053 break;
1054
1055 case lval_memory:
1056 {
1057 const gdb_byte *dest_buffer;
1058 CORE_ADDR changed_addr;
1059 int changed_len;
1060 gdb_byte buffer[sizeof (LONGEST)];
1061
1062 if (value_bitsize (toval))
1063 {
1064 struct value *parent = value_parent (toval);
1065
1066 changed_addr = value_address (parent) + value_offset (toval);
1067 changed_len = (value_bitpos (toval)
1068 + value_bitsize (toval)
1069 + HOST_CHAR_BIT - 1)
1070 / HOST_CHAR_BIT;
1071
1072 /* If we can read-modify-write exactly the size of the
1073 containing type (e.g. short or int) then do so. This
1074 is safer for volatile bitfields mapped to hardware
1075 registers. */
1076 if (changed_len < TYPE_LENGTH (type)
1077 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1078 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1079 changed_len = TYPE_LENGTH (type);
1080
1081 if (changed_len > (int) sizeof (LONGEST))
1082 error (_("Can't handle bitfields which "
1083 "don't fit in a %d bit word."),
1084 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1085
1086 read_memory (changed_addr, buffer, changed_len);
1087 modify_field (type, buffer, value_as_long (fromval),
1088 value_bitpos (toval), value_bitsize (toval));
1089 dest_buffer = buffer;
1090 }
1091 else
1092 {
1093 changed_addr = value_address (toval);
1094 changed_len = TYPE_LENGTH (type);
1095 dest_buffer = value_contents (fromval);
1096 }
1097
1098 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1099 }
1100 break;
1101
1102 case lval_register:
1103 {
1104 struct frame_info *frame;
1105 struct gdbarch *gdbarch;
1106 int value_reg;
1107
1108 /* Figure out which frame this is in currently. */
1109 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1110 value_reg = VALUE_REGNUM (toval);
1111
1112 if (!frame)
1113 error (_("Value being assigned to is no longer active."));
1114
1115 gdbarch = get_frame_arch (frame);
1116 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1117 {
1118 /* If TOVAL is a special machine register requiring
1119 conversion of program values to a special raw
1120 format. */
1121 gdbarch_value_to_register (gdbarch, frame,
1122 VALUE_REGNUM (toval), type,
1123 value_contents (fromval));
1124 }
1125 else
1126 {
1127 if (value_bitsize (toval))
1128 {
1129 struct value *parent = value_parent (toval);
1130 int offset = value_offset (parent) + value_offset (toval);
1131 int changed_len;
1132 gdb_byte buffer[sizeof (LONGEST)];
1133 int optim, unavail;
1134
1135 changed_len = (value_bitpos (toval)
1136 + value_bitsize (toval)
1137 + HOST_CHAR_BIT - 1)
1138 / HOST_CHAR_BIT;
1139
1140 if (changed_len > (int) sizeof (LONGEST))
1141 error (_("Can't handle bitfields which "
1142 "don't fit in a %d bit word."),
1143 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1144
1145 if (!get_frame_register_bytes (frame, value_reg, offset,
1146 changed_len, buffer,
1147 &optim, &unavail))
1148 {
1149 if (optim)
1150 throw_error (OPTIMIZED_OUT_ERROR,
1151 _("value has been optimized out"));
1152 if (unavail)
1153 throw_error (NOT_AVAILABLE_ERROR,
1154 _("value is not available"));
1155 }
1156
1157 modify_field (type, buffer, value_as_long (fromval),
1158 value_bitpos (toval), value_bitsize (toval));
1159
1160 put_frame_register_bytes (frame, value_reg, offset,
1161 changed_len, buffer);
1162 }
1163 else
1164 {
1165 put_frame_register_bytes (frame, value_reg,
1166 value_offset (toval),
1167 TYPE_LENGTH (type),
1168 value_contents (fromval));
1169 }
1170 }
1171
1172 if (deprecated_register_changed_hook)
1173 deprecated_register_changed_hook (-1);
1174 break;
1175 }
1176
1177 case lval_computed:
1178 {
1179 const struct lval_funcs *funcs = value_computed_funcs (toval);
1180
1181 if (funcs->write != NULL)
1182 {
1183 funcs->write (toval, fromval);
1184 break;
1185 }
1186 }
1187 /* Fall through. */
1188
1189 default:
1190 error (_("Left operand of assignment is not an lvalue."));
1191 }
1192
1193 /* Assigning to the stack pointer, frame pointer, and other
1194 (architecture and calling convention specific) registers may
1195 cause the frame cache and regcache to be out of date. Assigning to memory
1196 also can. We just do this on all assignments to registers or
1197 memory, for simplicity's sake; I doubt the slowdown matters. */
1198 switch (VALUE_LVAL (toval))
1199 {
1200 case lval_memory:
1201 case lval_register:
1202 case lval_computed:
1203
1204 observer_notify_target_changed (&current_target);
1205
1206 /* Having destroyed the frame cache, restore the selected
1207 frame. */
1208
1209 /* FIXME: cagney/2002-11-02: There has to be a better way of
1210 doing this. Instead of constantly saving/restoring the
1211 frame. Why not create a get_selected_frame() function that,
1212 having saved the selected frame's ID can automatically
1213 re-find the previously selected frame automatically. */
1214
1215 {
1216 struct frame_info *fi = frame_find_by_id (old_frame);
1217
1218 if (fi != NULL)
1219 select_frame (fi);
1220 }
1221
1222 break;
1223 default:
1224 break;
1225 }
1226
1227 /* If the field does not entirely fill a LONGEST, then zero the sign
1228 bits. If the field is signed, and is negative, then sign
1229 extend. */
1230 if ((value_bitsize (toval) > 0)
1231 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1232 {
1233 LONGEST fieldval = value_as_long (fromval);
1234 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1235
1236 fieldval &= valmask;
1237 if (!TYPE_UNSIGNED (type)
1238 && (fieldval & (valmask ^ (valmask >> 1))))
1239 fieldval |= ~valmask;
1240
1241 fromval = value_from_longest (type, fieldval);
1242 }
1243
1244 /* The return value is a copy of TOVAL so it shares its location
1245 information, but its contents are updated from FROMVAL. This
1246 implies the returned value is not lazy, even if TOVAL was. */
1247 val = value_copy (toval);
1248 set_value_lazy (val, 0);
1249 memcpy (value_contents_raw (val), value_contents (fromval),
1250 TYPE_LENGTH (type));
1251
1252 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1253 in the case of pointer types. For object types, the enclosing type
1254 and embedded offset must *not* be copied: the target object refered
1255 to by TOVAL retains its original dynamic type after assignment. */
1256 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1257 {
1258 set_value_enclosing_type (val, value_enclosing_type (fromval));
1259 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1260 }
1261
1262 return val;
1263 }
1264
1265 /* Extend a value VAL to COUNT repetitions of its type. */
1266
1267 struct value *
1268 value_repeat (struct value *arg1, int count)
1269 {
1270 struct value *val;
1271
1272 if (VALUE_LVAL (arg1) != lval_memory)
1273 error (_("Only values in memory can be extended with '@'."));
1274 if (count < 1)
1275 error (_("Invalid number %d of repetitions."), count);
1276
1277 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1278
1279 VALUE_LVAL (val) = lval_memory;
1280 set_value_address (val, value_address (arg1));
1281
1282 read_value_memory (val, 0, value_stack (val), value_address (val),
1283 value_contents_all_raw (val),
1284 TYPE_LENGTH (value_enclosing_type (val)));
1285
1286 return val;
1287 }
1288
1289 struct value *
1290 value_of_variable (struct symbol *var, const struct block *b)
1291 {
1292 struct frame_info *frame;
1293
1294 if (!symbol_read_needs_frame (var))
1295 frame = NULL;
1296 else if (!b)
1297 frame = get_selected_frame (_("No frame selected."));
1298 else
1299 {
1300 frame = block_innermost_frame (b);
1301 if (!frame)
1302 {
1303 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1304 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1305 error (_("No frame is currently executing in block %s."),
1306 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1307 else
1308 error (_("No frame is currently executing in specified block"));
1309 }
1310 }
1311
1312 return read_var_value (var, frame);
1313 }
1314
1315 struct value *
1316 address_of_variable (struct symbol *var, const struct block *b)
1317 {
1318 struct type *type = SYMBOL_TYPE (var);
1319 struct value *val;
1320
1321 /* Evaluate it first; if the result is a memory address, we're fine.
1322 Lazy evaluation pays off here. */
1323
1324 val = value_of_variable (var, b);
1325 type = value_type (val);
1326
1327 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1328 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1329 {
1330 CORE_ADDR addr = value_address (val);
1331
1332 return value_from_pointer (lookup_pointer_type (type), addr);
1333 }
1334
1335 /* Not a memory address; check what the problem was. */
1336 switch (VALUE_LVAL (val))
1337 {
1338 case lval_register:
1339 {
1340 struct frame_info *frame;
1341 const char *regname;
1342
1343 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1344 gdb_assert (frame);
1345
1346 regname = gdbarch_register_name (get_frame_arch (frame),
1347 VALUE_REGNUM (val));
1348 gdb_assert (regname && *regname);
1349
1350 error (_("Address requested for identifier "
1351 "\"%s\" which is in register $%s"),
1352 SYMBOL_PRINT_NAME (var), regname);
1353 break;
1354 }
1355
1356 default:
1357 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1358 SYMBOL_PRINT_NAME (var));
1359 break;
1360 }
1361
1362 return val;
1363 }
1364
1365 /* Return one if VAL does not live in target memory, but should in order
1366 to operate on it. Otherwise return zero. */
1367
1368 int
1369 value_must_coerce_to_target (struct value *val)
1370 {
1371 struct type *valtype;
1372
1373 /* The only lval kinds which do not live in target memory. */
1374 if (VALUE_LVAL (val) != not_lval
1375 && VALUE_LVAL (val) != lval_internalvar)
1376 return 0;
1377
1378 valtype = check_typedef (value_type (val));
1379
1380 switch (TYPE_CODE (valtype))
1381 {
1382 case TYPE_CODE_ARRAY:
1383 return TYPE_VECTOR (valtype) ? 0 : 1;
1384 case TYPE_CODE_STRING:
1385 return 1;
1386 default:
1387 return 0;
1388 }
1389 }
1390
1391 /* Make sure that VAL lives in target memory if it's supposed to. For
1392 instance, strings are constructed as character arrays in GDB's
1393 storage, and this function copies them to the target. */
1394
1395 struct value *
1396 value_coerce_to_target (struct value *val)
1397 {
1398 LONGEST length;
1399 CORE_ADDR addr;
1400
1401 if (!value_must_coerce_to_target (val))
1402 return val;
1403
1404 length = TYPE_LENGTH (check_typedef (value_type (val)));
1405 addr = allocate_space_in_inferior (length);
1406 write_memory (addr, value_contents (val), length);
1407 return value_at_lazy (value_type (val), addr);
1408 }
1409
1410 /* Given a value which is an array, return a value which is a pointer
1411 to its first element, regardless of whether or not the array has a
1412 nonzero lower bound.
1413
1414 FIXME: A previous comment here indicated that this routine should
1415 be substracting the array's lower bound. It's not clear to me that
1416 this is correct. Given an array subscripting operation, it would
1417 certainly work to do the adjustment here, essentially computing:
1418
1419 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1420
1421 However I believe a more appropriate and logical place to account
1422 for the lower bound is to do so in value_subscript, essentially
1423 computing:
1424
1425 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1426
1427 As further evidence consider what would happen with operations
1428 other than array subscripting, where the caller would get back a
1429 value that had an address somewhere before the actual first element
1430 of the array, and the information about the lower bound would be
1431 lost because of the coercion to pointer type. */
1432
1433 struct value *
1434 value_coerce_array (struct value *arg1)
1435 {
1436 struct type *type = check_typedef (value_type (arg1));
1437
1438 /* If the user tries to do something requiring a pointer with an
1439 array that has not yet been pushed to the target, then this would
1440 be a good time to do so. */
1441 arg1 = value_coerce_to_target (arg1);
1442
1443 if (VALUE_LVAL (arg1) != lval_memory)
1444 error (_("Attempt to take address of value not located in memory."));
1445
1446 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1447 value_address (arg1));
1448 }
1449
1450 /* Given a value which is a function, return a value which is a pointer
1451 to it. */
1452
1453 struct value *
1454 value_coerce_function (struct value *arg1)
1455 {
1456 struct value *retval;
1457
1458 if (VALUE_LVAL (arg1) != lval_memory)
1459 error (_("Attempt to take address of value not located in memory."));
1460
1461 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1462 value_address (arg1));
1463 return retval;
1464 }
1465
1466 /* Return a pointer value for the object for which ARG1 is the
1467 contents. */
1468
1469 struct value *
1470 value_addr (struct value *arg1)
1471 {
1472 struct value *arg2;
1473 struct type *type = check_typedef (value_type (arg1));
1474
1475 if (TYPE_CODE (type) == TYPE_CODE_REF)
1476 {
1477 /* Copy the value, but change the type from (T&) to (T*). We
1478 keep the same location information, which is efficient, and
1479 allows &(&X) to get the location containing the reference. */
1480 arg2 = value_copy (arg1);
1481 deprecated_set_value_type (arg2,
1482 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1483 return arg2;
1484 }
1485 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1486 return value_coerce_function (arg1);
1487
1488 /* If this is an array that has not yet been pushed to the target,
1489 then this would be a good time to force it to memory. */
1490 arg1 = value_coerce_to_target (arg1);
1491
1492 if (VALUE_LVAL (arg1) != lval_memory)
1493 error (_("Attempt to take address of value not located in memory."));
1494
1495 /* Get target memory address. */
1496 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1497 (value_address (arg1)
1498 + value_embedded_offset (arg1)));
1499
1500 /* This may be a pointer to a base subobject; so remember the
1501 full derived object's type ... */
1502 set_value_enclosing_type (arg2,
1503 lookup_pointer_type (value_enclosing_type (arg1)));
1504 /* ... and also the relative position of the subobject in the full
1505 object. */
1506 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1507 return arg2;
1508 }
1509
1510 /* Return a reference value for the object for which ARG1 is the
1511 contents. */
1512
1513 struct value *
1514 value_ref (struct value *arg1)
1515 {
1516 struct value *arg2;
1517 struct type *type = check_typedef (value_type (arg1));
1518
1519 if (TYPE_CODE (type) == TYPE_CODE_REF)
1520 return arg1;
1521
1522 arg2 = value_addr (arg1);
1523 deprecated_set_value_type (arg2, lookup_reference_type (type));
1524 return arg2;
1525 }
1526
1527 /* Given a value of a pointer type, apply the C unary * operator to
1528 it. */
1529
1530 struct value *
1531 value_ind (struct value *arg1)
1532 {
1533 struct type *base_type;
1534 struct value *arg2;
1535
1536 arg1 = coerce_array (arg1);
1537
1538 base_type = check_typedef (value_type (arg1));
1539
1540 if (VALUE_LVAL (arg1) == lval_computed)
1541 {
1542 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1543
1544 if (funcs->indirect)
1545 {
1546 struct value *result = funcs->indirect (arg1);
1547
1548 if (result)
1549 return result;
1550 }
1551 }
1552
1553 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1554 {
1555 struct type *enc_type;
1556
1557 /* We may be pointing to something embedded in a larger object.
1558 Get the real type of the enclosing object. */
1559 enc_type = check_typedef (value_enclosing_type (arg1));
1560 enc_type = TYPE_TARGET_TYPE (enc_type);
1561
1562 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1563 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1564 /* For functions, go through find_function_addr, which knows
1565 how to handle function descriptors. */
1566 arg2 = value_at_lazy (enc_type,
1567 find_function_addr (arg1, NULL));
1568 else
1569 /* Retrieve the enclosing object pointed to. */
1570 arg2 = value_at_lazy (enc_type,
1571 (value_as_address (arg1)
1572 - value_pointed_to_offset (arg1)));
1573
1574 enc_type = value_type (arg2);
1575 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1576 }
1577
1578 error (_("Attempt to take contents of a non-pointer value."));
1579 return 0; /* For lint -- never reached. */
1580 }
1581 \f
1582 /* Create a value for an array by allocating space in GDB, copying the
1583 data into that space, and then setting up an array value.
1584
1585 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1586 is populated from the values passed in ELEMVEC.
1587
1588 The element type of the array is inherited from the type of the
1589 first element, and all elements must have the same size (though we
1590 don't currently enforce any restriction on their types). */
1591
1592 struct value *
1593 value_array (int lowbound, int highbound, struct value **elemvec)
1594 {
1595 int nelem;
1596 int idx;
1597 unsigned int typelength;
1598 struct value *val;
1599 struct type *arraytype;
1600
1601 /* Validate that the bounds are reasonable and that each of the
1602 elements have the same size. */
1603
1604 nelem = highbound - lowbound + 1;
1605 if (nelem <= 0)
1606 {
1607 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1608 }
1609 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1610 for (idx = 1; idx < nelem; idx++)
1611 {
1612 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1613 {
1614 error (_("array elements must all be the same size"));
1615 }
1616 }
1617
1618 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1619 lowbound, highbound);
1620
1621 if (!current_language->c_style_arrays)
1622 {
1623 val = allocate_value (arraytype);
1624 for (idx = 0; idx < nelem; idx++)
1625 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1626 typelength);
1627 return val;
1628 }
1629
1630 /* Allocate space to store the array, and then initialize it by
1631 copying in each element. */
1632
1633 val = allocate_value (arraytype);
1634 for (idx = 0; idx < nelem; idx++)
1635 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1636 return val;
1637 }
1638
1639 struct value *
1640 value_cstring (char *ptr, ssize_t len, struct type *char_type)
1641 {
1642 struct value *val;
1643 int lowbound = current_language->string_lower_bound;
1644 ssize_t highbound = len / TYPE_LENGTH (char_type);
1645 struct type *stringtype
1646 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1647
1648 val = allocate_value (stringtype);
1649 memcpy (value_contents_raw (val), ptr, len);
1650 return val;
1651 }
1652
1653 /* Create a value for a string constant by allocating space in the
1654 inferior, copying the data into that space, and returning the
1655 address with type TYPE_CODE_STRING. PTR points to the string
1656 constant data; LEN is number of characters.
1657
1658 Note that string types are like array of char types with a lower
1659 bound of zero and an upper bound of LEN - 1. Also note that the
1660 string may contain embedded null bytes. */
1661
1662 struct value *
1663 value_string (char *ptr, ssize_t len, struct type *char_type)
1664 {
1665 struct value *val;
1666 int lowbound = current_language->string_lower_bound;
1667 ssize_t highbound = len / TYPE_LENGTH (char_type);
1668 struct type *stringtype
1669 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1670
1671 val = allocate_value (stringtype);
1672 memcpy (value_contents_raw (val), ptr, len);
1673 return val;
1674 }
1675
1676 \f
1677 /* See if we can pass arguments in T2 to a function which takes
1678 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1679 a NULL-terminated vector. If some arguments need coercion of some
1680 sort, then the coerced values are written into T2. Return value is
1681 0 if the arguments could be matched, or the position at which they
1682 differ if not.
1683
1684 STATICP is nonzero if the T1 argument list came from a static
1685 member function. T2 will still include the ``this'' pointer, but
1686 it will be skipped.
1687
1688 For non-static member functions, we ignore the first argument,
1689 which is the type of the instance variable. This is because we
1690 want to handle calls with objects from derived classes. This is
1691 not entirely correct: we should actually check to make sure that a
1692 requested operation is type secure, shouldn't we? FIXME. */
1693
1694 static int
1695 typecmp (int staticp, int varargs, int nargs,
1696 struct field t1[], struct value *t2[])
1697 {
1698 int i;
1699
1700 if (t2 == 0)
1701 internal_error (__FILE__, __LINE__,
1702 _("typecmp: no argument list"));
1703
1704 /* Skip ``this'' argument if applicable. T2 will always include
1705 THIS. */
1706 if (staticp)
1707 t2 ++;
1708
1709 for (i = 0;
1710 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1711 i++)
1712 {
1713 struct type *tt1, *tt2;
1714
1715 if (!t2[i])
1716 return i + 1;
1717
1718 tt1 = check_typedef (t1[i].type);
1719 tt2 = check_typedef (value_type (t2[i]));
1720
1721 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1722 /* We should be doing hairy argument matching, as below. */
1723 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1724 == TYPE_CODE (tt2)))
1725 {
1726 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1727 t2[i] = value_coerce_array (t2[i]);
1728 else
1729 t2[i] = value_ref (t2[i]);
1730 continue;
1731 }
1732
1733 /* djb - 20000715 - Until the new type structure is in the
1734 place, and we can attempt things like implicit conversions,
1735 we need to do this so you can take something like a map<const
1736 char *>, and properly access map["hello"], because the
1737 argument to [] will be a reference to a pointer to a char,
1738 and the argument will be a pointer to a char. */
1739 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1740 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1741 {
1742 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1743 }
1744 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1745 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1746 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1747 {
1748 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1749 }
1750 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1751 continue;
1752 /* Array to pointer is a `trivial conversion' according to the
1753 ARM. */
1754
1755 /* We should be doing much hairier argument matching (see
1756 section 13.2 of the ARM), but as a quick kludge, just check
1757 for the same type code. */
1758 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1759 return i + 1;
1760 }
1761 if (varargs || t2[i] == NULL)
1762 return 0;
1763 return i + 1;
1764 }
1765
1766 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1767 and *LAST_BOFFSET, and possibly throws an exception if the field
1768 search has yielded ambiguous results. */
1769
1770 static void
1771 update_search_result (struct value **result_ptr, struct value *v,
1772 int *last_boffset, int boffset,
1773 const char *name, struct type *type)
1774 {
1775 if (v != NULL)
1776 {
1777 if (*result_ptr != NULL
1778 /* The result is not ambiguous if all the classes that are
1779 found occupy the same space. */
1780 && *last_boffset != boffset)
1781 error (_("base class '%s' is ambiguous in type '%s'"),
1782 name, TYPE_SAFE_NAME (type));
1783 *result_ptr = v;
1784 *last_boffset = boffset;
1785 }
1786 }
1787
1788 /* A helper for search_struct_field. This does all the work; most
1789 arguments are as passed to search_struct_field. The result is
1790 stored in *RESULT_PTR, which must be initialized to NULL.
1791 OUTERMOST_TYPE is the type of the initial type passed to
1792 search_struct_field; this is used for error reporting when the
1793 lookup is ambiguous. */
1794
1795 static void
1796 do_search_struct_field (const char *name, struct value *arg1, int offset,
1797 struct type *type, int looking_for_baseclass,
1798 struct value **result_ptr,
1799 int *last_boffset,
1800 struct type *outermost_type)
1801 {
1802 int i;
1803 int nbases;
1804
1805 CHECK_TYPEDEF (type);
1806 nbases = TYPE_N_BASECLASSES (type);
1807
1808 if (!looking_for_baseclass)
1809 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1810 {
1811 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1812
1813 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1814 {
1815 struct value *v;
1816
1817 if (field_is_static (&TYPE_FIELD (type, i)))
1818 v = value_static_field (type, i);
1819 else
1820 v = value_primitive_field (arg1, offset, i, type);
1821 *result_ptr = v;
1822 return;
1823 }
1824
1825 if (t_field_name
1826 && (t_field_name[0] == '\0'
1827 || (TYPE_CODE (type) == TYPE_CODE_UNION
1828 && (strcmp_iw (t_field_name, "else") == 0))))
1829 {
1830 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1831
1832 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1833 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1834 {
1835 /* Look for a match through the fields of an anonymous
1836 union, or anonymous struct. C++ provides anonymous
1837 unions.
1838
1839 In the GNU Chill (now deleted from GDB)
1840 implementation of variant record types, each
1841 <alternative field> has an (anonymous) union type,
1842 each member of the union represents a <variant
1843 alternative>. Each <variant alternative> is
1844 represented as a struct, with a member for each
1845 <variant field>. */
1846
1847 struct value *v = NULL;
1848 int new_offset = offset;
1849
1850 /* This is pretty gross. In G++, the offset in an
1851 anonymous union is relative to the beginning of the
1852 enclosing struct. In the GNU Chill (now deleted
1853 from GDB) implementation of variant records, the
1854 bitpos is zero in an anonymous union field, so we
1855 have to add the offset of the union here. */
1856 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1857 || (TYPE_NFIELDS (field_type) > 0
1858 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1859 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1860
1861 do_search_struct_field (name, arg1, new_offset,
1862 field_type,
1863 looking_for_baseclass, &v,
1864 last_boffset,
1865 outermost_type);
1866 if (v)
1867 {
1868 *result_ptr = v;
1869 return;
1870 }
1871 }
1872 }
1873 }
1874
1875 for (i = 0; i < nbases; i++)
1876 {
1877 struct value *v = NULL;
1878 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1879 /* If we are looking for baseclasses, this is what we get when
1880 we hit them. But it could happen that the base part's member
1881 name is not yet filled in. */
1882 int found_baseclass = (looking_for_baseclass
1883 && TYPE_BASECLASS_NAME (type, i) != NULL
1884 && (strcmp_iw (name,
1885 TYPE_BASECLASS_NAME (type,
1886 i)) == 0));
1887 int boffset = value_embedded_offset (arg1) + offset;
1888
1889 if (BASETYPE_VIA_VIRTUAL (type, i))
1890 {
1891 struct value *v2;
1892
1893 boffset = baseclass_offset (type, i,
1894 value_contents_for_printing (arg1),
1895 value_embedded_offset (arg1) + offset,
1896 value_address (arg1),
1897 arg1);
1898
1899 /* The virtual base class pointer might have been clobbered
1900 by the user program. Make sure that it still points to a
1901 valid memory location. */
1902
1903 boffset += value_embedded_offset (arg1) + offset;
1904 if (boffset < 0
1905 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1906 {
1907 CORE_ADDR base_addr;
1908
1909 base_addr = value_address (arg1) + boffset;
1910 v2 = value_at_lazy (basetype, base_addr);
1911 if (target_read_memory (base_addr,
1912 value_contents_raw (v2),
1913 TYPE_LENGTH (value_type (v2))) != 0)
1914 error (_("virtual baseclass botch"));
1915 }
1916 else
1917 {
1918 v2 = value_copy (arg1);
1919 deprecated_set_value_type (v2, basetype);
1920 set_value_embedded_offset (v2, boffset);
1921 }
1922
1923 if (found_baseclass)
1924 v = v2;
1925 else
1926 {
1927 do_search_struct_field (name, v2, 0,
1928 TYPE_BASECLASS (type, i),
1929 looking_for_baseclass,
1930 result_ptr, last_boffset,
1931 outermost_type);
1932 }
1933 }
1934 else if (found_baseclass)
1935 v = value_primitive_field (arg1, offset, i, type);
1936 else
1937 {
1938 do_search_struct_field (name, arg1,
1939 offset + TYPE_BASECLASS_BITPOS (type,
1940 i) / 8,
1941 basetype, looking_for_baseclass,
1942 result_ptr, last_boffset,
1943 outermost_type);
1944 }
1945
1946 update_search_result (result_ptr, v, last_boffset,
1947 boffset, name, outermost_type);
1948 }
1949 }
1950
1951 /* Helper function used by value_struct_elt to recurse through
1952 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1953 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1954 TYPE. If found, return value, else return NULL.
1955
1956 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1957 fields, look for a baseclass named NAME. */
1958
1959 static struct value *
1960 search_struct_field (const char *name, struct value *arg1, int offset,
1961 struct type *type, int looking_for_baseclass)
1962 {
1963 struct value *result = NULL;
1964 int boffset = 0;
1965
1966 do_search_struct_field (name, arg1, offset, type, looking_for_baseclass,
1967 &result, &boffset, type);
1968 return result;
1969 }
1970
1971 /* Helper function used by value_struct_elt to recurse through
1972 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1973 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1974 TYPE.
1975
1976 If found, return value, else if name matched and args not return
1977 (value) -1, else return NULL. */
1978
1979 static struct value *
1980 search_struct_method (const char *name, struct value **arg1p,
1981 struct value **args, int offset,
1982 int *static_memfuncp, struct type *type)
1983 {
1984 int i;
1985 struct value *v;
1986 int name_matched = 0;
1987 char dem_opname[64];
1988
1989 CHECK_TYPEDEF (type);
1990 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1991 {
1992 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1993
1994 /* FIXME! May need to check for ARM demangling here. */
1995 if (strncmp (t_field_name, "__", 2) == 0 ||
1996 strncmp (t_field_name, "op", 2) == 0 ||
1997 strncmp (t_field_name, "type", 4) == 0)
1998 {
1999 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2000 t_field_name = dem_opname;
2001 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2002 t_field_name = dem_opname;
2003 }
2004 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2005 {
2006 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2007 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2008
2009 name_matched = 1;
2010 check_stub_method_group (type, i);
2011 if (j > 0 && args == 0)
2012 error (_("cannot resolve overloaded method "
2013 "`%s': no arguments supplied"), name);
2014 else if (j == 0 && args == 0)
2015 {
2016 v = value_fn_field (arg1p, f, j, type, offset);
2017 if (v != NULL)
2018 return v;
2019 }
2020 else
2021 while (j >= 0)
2022 {
2023 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2024 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2025 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2026 TYPE_FN_FIELD_ARGS (f, j), args))
2027 {
2028 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2029 return value_virtual_fn_field (arg1p, f, j,
2030 type, offset);
2031 if (TYPE_FN_FIELD_STATIC_P (f, j)
2032 && static_memfuncp)
2033 *static_memfuncp = 1;
2034 v = value_fn_field (arg1p, f, j, type, offset);
2035 if (v != NULL)
2036 return v;
2037 }
2038 j--;
2039 }
2040 }
2041 }
2042
2043 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2044 {
2045 int base_offset;
2046 int this_offset;
2047
2048 if (BASETYPE_VIA_VIRTUAL (type, i))
2049 {
2050 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2051 struct value *base_val;
2052 const gdb_byte *base_valaddr;
2053
2054 /* The virtual base class pointer might have been
2055 clobbered by the user program. Make sure that it
2056 still points to a valid memory location. */
2057
2058 if (offset < 0 || offset >= TYPE_LENGTH (type))
2059 {
2060 gdb_byte *tmp;
2061 struct cleanup *back_to;
2062 CORE_ADDR address;
2063
2064 tmp = xmalloc (TYPE_LENGTH (baseclass));
2065 back_to = make_cleanup (xfree, tmp);
2066 address = value_address (*arg1p);
2067
2068 if (target_read_memory (address + offset,
2069 tmp, TYPE_LENGTH (baseclass)) != 0)
2070 error (_("virtual baseclass botch"));
2071
2072 base_val = value_from_contents_and_address (baseclass,
2073 tmp,
2074 address + offset);
2075 base_valaddr = value_contents_for_printing (base_val);
2076 this_offset = 0;
2077 do_cleanups (back_to);
2078 }
2079 else
2080 {
2081 base_val = *arg1p;
2082 base_valaddr = value_contents_for_printing (*arg1p);
2083 this_offset = offset;
2084 }
2085
2086 base_offset = baseclass_offset (type, i, base_valaddr,
2087 this_offset, value_address (base_val),
2088 base_val);
2089 }
2090 else
2091 {
2092 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2093 }
2094 v = search_struct_method (name, arg1p, args, base_offset + offset,
2095 static_memfuncp, TYPE_BASECLASS (type, i));
2096 if (v == (struct value *) - 1)
2097 {
2098 name_matched = 1;
2099 }
2100 else if (v)
2101 {
2102 /* FIXME-bothner: Why is this commented out? Why is it here? */
2103 /* *arg1p = arg1_tmp; */
2104 return v;
2105 }
2106 }
2107 if (name_matched)
2108 return (struct value *) - 1;
2109 else
2110 return NULL;
2111 }
2112
2113 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2114 extract the component named NAME from the ultimate target
2115 structure/union and return it as a value with its appropriate type.
2116 ERR is used in the error message if *ARGP's type is wrong.
2117
2118 C++: ARGS is a list of argument types to aid in the selection of
2119 an appropriate method. Also, handle derived types.
2120
2121 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2122 where the truthvalue of whether the function that was resolved was
2123 a static member function or not is stored.
2124
2125 ERR is an error message to be printed in case the field is not
2126 found. */
2127
2128 struct value *
2129 value_struct_elt (struct value **argp, struct value **args,
2130 const char *name, int *static_memfuncp, const char *err)
2131 {
2132 struct type *t;
2133 struct value *v;
2134
2135 *argp = coerce_array (*argp);
2136
2137 t = check_typedef (value_type (*argp));
2138
2139 /* Follow pointers until we get to a non-pointer. */
2140
2141 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2142 {
2143 *argp = value_ind (*argp);
2144 /* Don't coerce fn pointer to fn and then back again! */
2145 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2146 *argp = coerce_array (*argp);
2147 t = check_typedef (value_type (*argp));
2148 }
2149
2150 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2151 && TYPE_CODE (t) != TYPE_CODE_UNION)
2152 error (_("Attempt to extract a component of a value that is not a %s."),
2153 err);
2154
2155 /* Assume it's not, unless we see that it is. */
2156 if (static_memfuncp)
2157 *static_memfuncp = 0;
2158
2159 if (!args)
2160 {
2161 /* if there are no arguments ...do this... */
2162
2163 /* Try as a field first, because if we succeed, there is less
2164 work to be done. */
2165 v = search_struct_field (name, *argp, 0, t, 0);
2166 if (v)
2167 return v;
2168
2169 /* C++: If it was not found as a data field, then try to
2170 return it as a pointer to a method. */
2171 v = search_struct_method (name, argp, args, 0,
2172 static_memfuncp, t);
2173
2174 if (v == (struct value *) - 1)
2175 error (_("Cannot take address of method %s."), name);
2176 else if (v == 0)
2177 {
2178 if (TYPE_NFN_FIELDS (t))
2179 error (_("There is no member or method named %s."), name);
2180 else
2181 error (_("There is no member named %s."), name);
2182 }
2183 return v;
2184 }
2185
2186 v = search_struct_method (name, argp, args, 0,
2187 static_memfuncp, t);
2188
2189 if (v == (struct value *) - 1)
2190 {
2191 error (_("One of the arguments you tried to pass to %s could not "
2192 "be converted to what the function wants."), name);
2193 }
2194 else if (v == 0)
2195 {
2196 /* See if user tried to invoke data as function. If so, hand it
2197 back. If it's not callable (i.e., a pointer to function),
2198 gdb should give an error. */
2199 v = search_struct_field (name, *argp, 0, t, 0);
2200 /* If we found an ordinary field, then it is not a method call.
2201 So, treat it as if it were a static member function. */
2202 if (v && static_memfuncp)
2203 *static_memfuncp = 1;
2204 }
2205
2206 if (!v)
2207 throw_error (NOT_FOUND_ERROR,
2208 _("Structure has no component named %s."), name);
2209 return v;
2210 }
2211
2212 /* Given *ARGP, a value of type structure or union, or a pointer/reference
2213 to a structure or union, extract and return its component (field) of
2214 type FTYPE at the specified BITPOS.
2215 Throw an exception on error. */
2216
2217 struct value *
2218 value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
2219 const char *err)
2220 {
2221 struct type *t;
2222 struct value *v;
2223 int i;
2224 int nbases;
2225
2226 *argp = coerce_array (*argp);
2227
2228 t = check_typedef (value_type (*argp));
2229
2230 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2231 {
2232 *argp = value_ind (*argp);
2233 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2234 *argp = coerce_array (*argp);
2235 t = check_typedef (value_type (*argp));
2236 }
2237
2238 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2239 && TYPE_CODE (t) != TYPE_CODE_UNION)
2240 error (_("Attempt to extract a component of a value that is not a %s."),
2241 err);
2242
2243 for (i = TYPE_N_BASECLASSES (t); i < TYPE_NFIELDS (t); i++)
2244 {
2245 if (!field_is_static (&TYPE_FIELD (t, i))
2246 && bitpos == TYPE_FIELD_BITPOS (t, i)
2247 && types_equal (ftype, TYPE_FIELD_TYPE (t, i)))
2248 return value_primitive_field (*argp, 0, i, t);
2249 }
2250
2251 error (_("No field with matching bitpos and type."));
2252
2253 /* Never hit. */
2254 return NULL;
2255 }
2256
2257 /* Search through the methods of an object (and its bases) to find a
2258 specified method. Return the pointer to the fn_field list of
2259 overloaded instances.
2260
2261 Helper function for value_find_oload_list.
2262 ARGP is a pointer to a pointer to a value (the object).
2263 METHOD is a string containing the method name.
2264 OFFSET is the offset within the value.
2265 TYPE is the assumed type of the object.
2266 NUM_FNS is the number of overloaded instances.
2267 BASETYPE is set to the actual type of the subobject where the
2268 method is found.
2269 BOFFSET is the offset of the base subobject where the method is found. */
2270
2271 static struct fn_field *
2272 find_method_list (struct value **argp, const char *method,
2273 int offset, struct type *type, int *num_fns,
2274 struct type **basetype, int *boffset)
2275 {
2276 int i;
2277 struct fn_field *f;
2278 CHECK_TYPEDEF (type);
2279
2280 *num_fns = 0;
2281
2282 /* First check in object itself. */
2283 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2284 {
2285 /* pai: FIXME What about operators and type conversions? */
2286 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2287
2288 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2289 {
2290 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2291 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2292
2293 *num_fns = len;
2294 *basetype = type;
2295 *boffset = offset;
2296
2297 /* Resolve any stub methods. */
2298 check_stub_method_group (type, i);
2299
2300 return f;
2301 }
2302 }
2303
2304 /* Not found in object, check in base subobjects. */
2305 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2306 {
2307 int base_offset;
2308
2309 if (BASETYPE_VIA_VIRTUAL (type, i))
2310 {
2311 base_offset = baseclass_offset (type, i,
2312 value_contents_for_printing (*argp),
2313 value_offset (*argp) + offset,
2314 value_address (*argp), *argp);
2315 }
2316 else /* Non-virtual base, simply use bit position from debug
2317 info. */
2318 {
2319 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2320 }
2321 f = find_method_list (argp, method, base_offset + offset,
2322 TYPE_BASECLASS (type, i), num_fns,
2323 basetype, boffset);
2324 if (f)
2325 return f;
2326 }
2327 return NULL;
2328 }
2329
2330 /* Return the list of overloaded methods of a specified name.
2331
2332 ARGP is a pointer to a pointer to a value (the object).
2333 METHOD is the method name.
2334 OFFSET is the offset within the value contents.
2335 NUM_FNS is the number of overloaded instances.
2336 BASETYPE is set to the type of the base subobject that defines the
2337 method.
2338 BOFFSET is the offset of the base subobject which defines the method. */
2339
2340 static struct fn_field *
2341 value_find_oload_method_list (struct value **argp, const char *method,
2342 int offset, int *num_fns,
2343 struct type **basetype, int *boffset)
2344 {
2345 struct type *t;
2346
2347 t = check_typedef (value_type (*argp));
2348
2349 /* Code snarfed from value_struct_elt. */
2350 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2351 {
2352 *argp = value_ind (*argp);
2353 /* Don't coerce fn pointer to fn and then back again! */
2354 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2355 *argp = coerce_array (*argp);
2356 t = check_typedef (value_type (*argp));
2357 }
2358
2359 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2360 && TYPE_CODE (t) != TYPE_CODE_UNION)
2361 error (_("Attempt to extract a component of a "
2362 "value that is not a struct or union"));
2363
2364 return find_method_list (argp, method, 0, t, num_fns,
2365 basetype, boffset);
2366 }
2367
2368 /* Given an array of arguments (ARGS) (which includes an
2369 entry for "this" in the case of C++ methods), the number of
2370 arguments NARGS, the NAME of a function, and whether it's a method or
2371 not (METHOD), find the best function that matches on the argument types
2372 according to the overload resolution rules.
2373
2374 METHOD can be one of three values:
2375 NON_METHOD for non-member functions.
2376 METHOD: for member functions.
2377 BOTH: used for overload resolution of operators where the
2378 candidates are expected to be either member or non member
2379 functions. In this case the first argument ARGTYPES
2380 (representing 'this') is expected to be a reference to the
2381 target object, and will be dereferenced when attempting the
2382 non-member search.
2383
2384 In the case of class methods, the parameter OBJ is an object value
2385 in which to search for overloaded methods.
2386
2387 In the case of non-method functions, the parameter FSYM is a symbol
2388 corresponding to one of the overloaded functions.
2389
2390 Return value is an integer: 0 -> good match, 10 -> debugger applied
2391 non-standard coercions, 100 -> incompatible.
2392
2393 If a method is being searched for, VALP will hold the value.
2394 If a non-method is being searched for, SYMP will hold the symbol
2395 for it.
2396
2397 If a method is being searched for, and it is a static method,
2398 then STATICP will point to a non-zero value.
2399
2400 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2401 ADL overload candidates when performing overload resolution for a fully
2402 qualified name.
2403
2404 Note: This function does *not* check the value of
2405 overload_resolution. Caller must check it to see whether overload
2406 resolution is permitted. */
2407
2408 int
2409 find_overload_match (struct value **args, int nargs,
2410 const char *name, enum oload_search_type method,
2411 struct value **objp, struct symbol *fsym,
2412 struct value **valp, struct symbol **symp,
2413 int *staticp, const int no_adl)
2414 {
2415 struct value *obj = (objp ? *objp : NULL);
2416 struct type *obj_type = obj ? value_type (obj) : NULL;
2417 /* Index of best overloaded function. */
2418 int func_oload_champ = -1;
2419 int method_oload_champ = -1;
2420
2421 /* The measure for the current best match. */
2422 struct badness_vector *method_badness = NULL;
2423 struct badness_vector *func_badness = NULL;
2424
2425 struct value *temp = obj;
2426 /* For methods, the list of overloaded methods. */
2427 struct fn_field *fns_ptr = NULL;
2428 /* For non-methods, the list of overloaded function symbols. */
2429 struct symbol **oload_syms = NULL;
2430 /* Number of overloaded instances being considered. */
2431 int num_fns = 0;
2432 struct type *basetype = NULL;
2433 int boffset;
2434
2435 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2436
2437 const char *obj_type_name = NULL;
2438 const char *func_name = NULL;
2439 enum oload_classification match_quality;
2440 enum oload_classification method_match_quality = INCOMPATIBLE;
2441 enum oload_classification func_match_quality = INCOMPATIBLE;
2442
2443 /* Get the list of overloaded methods or functions. */
2444 if (method == METHOD || method == BOTH)
2445 {
2446 gdb_assert (obj);
2447
2448 /* OBJ may be a pointer value rather than the object itself. */
2449 obj = coerce_ref (obj);
2450 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2451 obj = coerce_ref (value_ind (obj));
2452 obj_type_name = TYPE_NAME (value_type (obj));
2453
2454 /* First check whether this is a data member, e.g. a pointer to
2455 a function. */
2456 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2457 {
2458 *valp = search_struct_field (name, obj, 0,
2459 check_typedef (value_type (obj)), 0);
2460 if (*valp)
2461 {
2462 *staticp = 1;
2463 do_cleanups (all_cleanups);
2464 return 0;
2465 }
2466 }
2467
2468 /* Retrieve the list of methods with the name NAME. */
2469 fns_ptr = value_find_oload_method_list (&temp, name,
2470 0, &num_fns,
2471 &basetype, &boffset);
2472 /* If this is a method only search, and no methods were found
2473 the search has faild. */
2474 if (method == METHOD && (!fns_ptr || !num_fns))
2475 error (_("Couldn't find method %s%s%s"),
2476 obj_type_name,
2477 (obj_type_name && *obj_type_name) ? "::" : "",
2478 name);
2479 /* If we are dealing with stub method types, they should have
2480 been resolved by find_method_list via
2481 value_find_oload_method_list above. */
2482 if (fns_ptr)
2483 {
2484 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2485 method_oload_champ = find_oload_champ (args, nargs,
2486 num_fns, fns_ptr,
2487 NULL, &method_badness);
2488
2489 method_match_quality =
2490 classify_oload_match (method_badness, nargs,
2491 oload_method_static (method, fns_ptr,
2492 method_oload_champ));
2493
2494 make_cleanup (xfree, method_badness);
2495 }
2496
2497 }
2498
2499 if (method == NON_METHOD || method == BOTH)
2500 {
2501 const char *qualified_name = NULL;
2502
2503 /* If the overload match is being search for both as a method
2504 and non member function, the first argument must now be
2505 dereferenced. */
2506 if (method == BOTH)
2507 args[0] = value_ind (args[0]);
2508
2509 if (fsym)
2510 {
2511 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2512
2513 /* If we have a function with a C++ name, try to extract just
2514 the function part. Do not try this for non-functions (e.g.
2515 function pointers). */
2516 if (qualified_name
2517 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2518 == TYPE_CODE_FUNC)
2519 {
2520 char *temp;
2521
2522 temp = cp_func_name (qualified_name);
2523
2524 /* If cp_func_name did not remove anything, the name of the
2525 symbol did not include scope or argument types - it was
2526 probably a C-style function. */
2527 if (temp)
2528 {
2529 make_cleanup (xfree, temp);
2530 if (strcmp (temp, qualified_name) == 0)
2531 func_name = NULL;
2532 else
2533 func_name = temp;
2534 }
2535 }
2536 }
2537 else
2538 {
2539 func_name = name;
2540 qualified_name = name;
2541 }
2542
2543 /* If there was no C++ name, this must be a C-style function or
2544 not a function at all. Just return the same symbol. Do the
2545 same if cp_func_name fails for some reason. */
2546 if (func_name == NULL)
2547 {
2548 *symp = fsym;
2549 do_cleanups (all_cleanups);
2550 return 0;
2551 }
2552
2553 func_oload_champ = find_oload_champ_namespace (args, nargs,
2554 func_name,
2555 qualified_name,
2556 &oload_syms,
2557 &func_badness,
2558 no_adl);
2559
2560 if (func_oload_champ >= 0)
2561 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2562
2563 make_cleanup (xfree, oload_syms);
2564 make_cleanup (xfree, func_badness);
2565 }
2566
2567 /* Did we find a match ? */
2568 if (method_oload_champ == -1 && func_oload_champ == -1)
2569 throw_error (NOT_FOUND_ERROR,
2570 _("No symbol \"%s\" in current context."),
2571 name);
2572
2573 /* If we have found both a method match and a function
2574 match, find out which one is better, and calculate match
2575 quality. */
2576 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2577 {
2578 switch (compare_badness (func_badness, method_badness))
2579 {
2580 case 0: /* Top two contenders are equally good. */
2581 /* FIXME: GDB does not support the general ambiguous case.
2582 All candidates should be collected and presented the
2583 user. */
2584 error (_("Ambiguous overload resolution"));
2585 break;
2586 case 1: /* Incomparable top contenders. */
2587 /* This is an error incompatible candidates
2588 should not have been proposed. */
2589 error (_("Internal error: incompatible "
2590 "overload candidates proposed"));
2591 break;
2592 case 2: /* Function champion. */
2593 method_oload_champ = -1;
2594 match_quality = func_match_quality;
2595 break;
2596 case 3: /* Method champion. */
2597 func_oload_champ = -1;
2598 match_quality = method_match_quality;
2599 break;
2600 default:
2601 error (_("Internal error: unexpected overload comparison result"));
2602 break;
2603 }
2604 }
2605 else
2606 {
2607 /* We have either a method match or a function match. */
2608 if (method_oload_champ >= 0)
2609 match_quality = method_match_quality;
2610 else
2611 match_quality = func_match_quality;
2612 }
2613
2614 if (match_quality == INCOMPATIBLE)
2615 {
2616 if (method == METHOD)
2617 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2618 obj_type_name,
2619 (obj_type_name && *obj_type_name) ? "::" : "",
2620 name);
2621 else
2622 error (_("Cannot resolve function %s to any overloaded instance"),
2623 func_name);
2624 }
2625 else if (match_quality == NON_STANDARD)
2626 {
2627 if (method == METHOD)
2628 warning (_("Using non-standard conversion to match "
2629 "method %s%s%s to supplied arguments"),
2630 obj_type_name,
2631 (obj_type_name && *obj_type_name) ? "::" : "",
2632 name);
2633 else
2634 warning (_("Using non-standard conversion to match "
2635 "function %s to supplied arguments"),
2636 func_name);
2637 }
2638
2639 if (staticp != NULL)
2640 *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2641
2642 if (method_oload_champ >= 0)
2643 {
2644 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2645 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2646 basetype, boffset);
2647 else
2648 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2649 basetype, boffset);
2650 }
2651 else
2652 *symp = oload_syms[func_oload_champ];
2653
2654 if (objp)
2655 {
2656 struct type *temp_type = check_typedef (value_type (temp));
2657 struct type *objtype = check_typedef (obj_type);
2658
2659 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2660 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2661 || TYPE_CODE (objtype) == TYPE_CODE_REF))
2662 {
2663 temp = value_addr (temp);
2664 }
2665 *objp = temp;
2666 }
2667
2668 do_cleanups (all_cleanups);
2669
2670 switch (match_quality)
2671 {
2672 case INCOMPATIBLE:
2673 return 100;
2674 case NON_STANDARD:
2675 return 10;
2676 default: /* STANDARD */
2677 return 0;
2678 }
2679 }
2680
2681 /* Find the best overload match, searching for FUNC_NAME in namespaces
2682 contained in QUALIFIED_NAME until it either finds a good match or
2683 runs out of namespaces. It stores the overloaded functions in
2684 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2685 calling function is responsible for freeing *OLOAD_SYMS and
2686 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2687 performned. */
2688
2689 static int
2690 find_oload_champ_namespace (struct value **args, int nargs,
2691 const char *func_name,
2692 const char *qualified_name,
2693 struct symbol ***oload_syms,
2694 struct badness_vector **oload_champ_bv,
2695 const int no_adl)
2696 {
2697 int oload_champ;
2698
2699 find_oload_champ_namespace_loop (args, nargs,
2700 func_name,
2701 qualified_name, 0,
2702 oload_syms, oload_champ_bv,
2703 &oload_champ,
2704 no_adl);
2705
2706 return oload_champ;
2707 }
2708
2709 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2710 how deep we've looked for namespaces, and the champ is stored in
2711 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2712 if it isn't. Other arguments are the same as in
2713 find_oload_champ_namespace
2714
2715 It is the caller's responsibility to free *OLOAD_SYMS and
2716 *OLOAD_CHAMP_BV. */
2717
2718 static int
2719 find_oload_champ_namespace_loop (struct value **args, int nargs,
2720 const char *func_name,
2721 const char *qualified_name,
2722 int namespace_len,
2723 struct symbol ***oload_syms,
2724 struct badness_vector **oload_champ_bv,
2725 int *oload_champ,
2726 const int no_adl)
2727 {
2728 int next_namespace_len = namespace_len;
2729 int searched_deeper = 0;
2730 int num_fns = 0;
2731 struct cleanup *old_cleanups;
2732 int new_oload_champ;
2733 struct symbol **new_oload_syms;
2734 struct badness_vector *new_oload_champ_bv;
2735 char *new_namespace;
2736
2737 if (next_namespace_len != 0)
2738 {
2739 gdb_assert (qualified_name[next_namespace_len] == ':');
2740 next_namespace_len += 2;
2741 }
2742 next_namespace_len +=
2743 cp_find_first_component (qualified_name + next_namespace_len);
2744
2745 /* Initialize these to values that can safely be xfree'd. */
2746 *oload_syms = NULL;
2747 *oload_champ_bv = NULL;
2748
2749 /* First, see if we have a deeper namespace we can search in.
2750 If we get a good match there, use it. */
2751
2752 if (qualified_name[next_namespace_len] == ':')
2753 {
2754 searched_deeper = 1;
2755
2756 if (find_oload_champ_namespace_loop (args, nargs,
2757 func_name, qualified_name,
2758 next_namespace_len,
2759 oload_syms, oload_champ_bv,
2760 oload_champ, no_adl))
2761 {
2762 return 1;
2763 }
2764 };
2765
2766 /* If we reach here, either we're in the deepest namespace or we
2767 didn't find a good match in a deeper namespace. But, in the
2768 latter case, we still have a bad match in a deeper namespace;
2769 note that we might not find any match at all in the current
2770 namespace. (There's always a match in the deepest namespace,
2771 because this overload mechanism only gets called if there's a
2772 function symbol to start off with.) */
2773
2774 old_cleanups = make_cleanup (xfree, *oload_syms);
2775 make_cleanup (xfree, *oload_champ_bv);
2776 new_namespace = alloca (namespace_len + 1);
2777 strncpy (new_namespace, qualified_name, namespace_len);
2778 new_namespace[namespace_len] = '\0';
2779 new_oload_syms = make_symbol_overload_list (func_name,
2780 new_namespace);
2781
2782 /* If we have reached the deepest level perform argument
2783 determined lookup. */
2784 if (!searched_deeper && !no_adl)
2785 {
2786 int ix;
2787 struct type **arg_types;
2788
2789 /* Prepare list of argument types for overload resolution. */
2790 arg_types = (struct type **)
2791 alloca (nargs * (sizeof (struct type *)));
2792 for (ix = 0; ix < nargs; ix++)
2793 arg_types[ix] = value_type (args[ix]);
2794 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2795 }
2796
2797 while (new_oload_syms[num_fns])
2798 ++num_fns;
2799
2800 new_oload_champ = find_oload_champ (args, nargs, num_fns,
2801 NULL, new_oload_syms,
2802 &new_oload_champ_bv);
2803
2804 /* Case 1: We found a good match. Free earlier matches (if any),
2805 and return it. Case 2: We didn't find a good match, but we're
2806 not the deepest function. Then go with the bad match that the
2807 deeper function found. Case 3: We found a bad match, and we're
2808 the deepest function. Then return what we found, even though
2809 it's a bad match. */
2810
2811 if (new_oload_champ != -1
2812 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2813 {
2814 *oload_syms = new_oload_syms;
2815 *oload_champ = new_oload_champ;
2816 *oload_champ_bv = new_oload_champ_bv;
2817 do_cleanups (old_cleanups);
2818 return 1;
2819 }
2820 else if (searched_deeper)
2821 {
2822 xfree (new_oload_syms);
2823 xfree (new_oload_champ_bv);
2824 discard_cleanups (old_cleanups);
2825 return 0;
2826 }
2827 else
2828 {
2829 *oload_syms = new_oload_syms;
2830 *oload_champ = new_oload_champ;
2831 *oload_champ_bv = new_oload_champ_bv;
2832 do_cleanups (old_cleanups);
2833 return 0;
2834 }
2835 }
2836
2837 /* Look for a function to take NARGS args of ARGS. Find
2838 the best match from among the overloaded methods or functions
2839 given by FNS_PTR or OLOAD_SYMS, respectively. One, and only one of
2840 FNS_PTR and OLOAD_SYMS can be non-NULL. The number of
2841 methods/functions in the non-NULL list is given by NUM_FNS.
2842 Return the index of the best match; store an indication of the
2843 quality of the match in OLOAD_CHAMP_BV.
2844
2845 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2846
2847 static int
2848 find_oload_champ (struct value **args, int nargs,
2849 int num_fns, struct fn_field *fns_ptr,
2850 struct symbol **oload_syms,
2851 struct badness_vector **oload_champ_bv)
2852 {
2853 int ix;
2854 /* A measure of how good an overloaded instance is. */
2855 struct badness_vector *bv;
2856 /* Index of best overloaded function. */
2857 int oload_champ = -1;
2858 /* Current ambiguity state for overload resolution. */
2859 int oload_ambiguous = 0;
2860 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2861
2862 /* A champion can be found among methods alone, or among functions
2863 alone, but not both. */
2864 gdb_assert ((fns_ptr != NULL) + (oload_syms != NULL) == 1);
2865
2866 *oload_champ_bv = NULL;
2867
2868 /* Consider each candidate in turn. */
2869 for (ix = 0; ix < num_fns; ix++)
2870 {
2871 int jj;
2872 int static_offset;
2873 int nparms;
2874 struct type **parm_types;
2875
2876 if (fns_ptr != NULL)
2877 {
2878 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2879 static_offset = oload_method_static (1, fns_ptr, ix);
2880 }
2881 else
2882 {
2883 /* If it's not a method, this is the proper place. */
2884 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2885 static_offset = 0;
2886 }
2887
2888 /* Prepare array of parameter types. */
2889 parm_types = (struct type **)
2890 xmalloc (nparms * (sizeof (struct type *)));
2891 for (jj = 0; jj < nparms; jj++)
2892 parm_types[jj] = (fns_ptr != NULL
2893 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2894 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2895 jj));
2896
2897 /* Compare parameter types to supplied argument types. Skip
2898 THIS for static methods. */
2899 bv = rank_function (parm_types, nparms,
2900 args + static_offset,
2901 nargs - static_offset);
2902
2903 if (!*oload_champ_bv)
2904 {
2905 *oload_champ_bv = bv;
2906 oload_champ = 0;
2907 }
2908 else /* See whether current candidate is better or worse than
2909 previous best. */
2910 switch (compare_badness (bv, *oload_champ_bv))
2911 {
2912 case 0: /* Top two contenders are equally good. */
2913 oload_ambiguous = 1;
2914 break;
2915 case 1: /* Incomparable top contenders. */
2916 oload_ambiguous = 2;
2917 break;
2918 case 2: /* New champion, record details. */
2919 *oload_champ_bv = bv;
2920 oload_ambiguous = 0;
2921 oload_champ = ix;
2922 break;
2923 case 3:
2924 default:
2925 break;
2926 }
2927 xfree (parm_types);
2928 if (overload_debug)
2929 {
2930 if (fns_ptr)
2931 fprintf_filtered (gdb_stderr,
2932 "Overloaded method instance %s, # of parms %d\n",
2933 fns_ptr[ix].physname, nparms);
2934 else
2935 fprintf_filtered (gdb_stderr,
2936 "Overloaded function instance "
2937 "%s # of parms %d\n",
2938 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2939 nparms);
2940 for (jj = 0; jj < nargs - static_offset; jj++)
2941 fprintf_filtered (gdb_stderr,
2942 "...Badness @ %d : %d\n",
2943 jj, bv->rank[jj].rank);
2944 fprintf_filtered (gdb_stderr, "Overload resolution "
2945 "champion is %d, ambiguous? %d\n",
2946 oload_champ, oload_ambiguous);
2947 }
2948 }
2949
2950 return oload_champ;
2951 }
2952
2953 /* Return 1 if we're looking at a static method, 0 if we're looking at
2954 a non-static method or a function that isn't a method. */
2955
2956 static int
2957 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2958 {
2959 if (method && fns_ptr && index >= 0
2960 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2961 return 1;
2962 else
2963 return 0;
2964 }
2965
2966 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2967
2968 static enum oload_classification
2969 classify_oload_match (struct badness_vector *oload_champ_bv,
2970 int nargs,
2971 int static_offset)
2972 {
2973 int ix;
2974 enum oload_classification worst = STANDARD;
2975
2976 for (ix = 1; ix <= nargs - static_offset; ix++)
2977 {
2978 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
2979 or worse return INCOMPATIBLE. */
2980 if (compare_ranks (oload_champ_bv->rank[ix],
2981 INCOMPATIBLE_TYPE_BADNESS) <= 0)
2982 return INCOMPATIBLE; /* Truly mismatched types. */
2983 /* Otherwise If this conversion is as bad as
2984 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
2985 else if (compare_ranks (oload_champ_bv->rank[ix],
2986 NS_POINTER_CONVERSION_BADNESS) <= 0)
2987 worst = NON_STANDARD; /* Non-standard type conversions
2988 needed. */
2989 }
2990
2991 /* If no INCOMPATIBLE classification was found, return the worst one
2992 that was found (if any). */
2993 return worst;
2994 }
2995
2996 /* C++: return 1 is NAME is a legitimate name for the destructor of
2997 type TYPE. If TYPE does not have a destructor, or if NAME is
2998 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
2999 have CHECK_TYPEDEF applied, this function will apply it itself. */
3000
3001 int
3002 destructor_name_p (const char *name, struct type *type)
3003 {
3004 if (name[0] == '~')
3005 {
3006 const char *dname = type_name_no_tag_or_error (type);
3007 const char *cp = strchr (dname, '<');
3008 unsigned int len;
3009
3010 /* Do not compare the template part for template classes. */
3011 if (cp == NULL)
3012 len = strlen (dname);
3013 else
3014 len = cp - dname;
3015 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3016 error (_("name of destructor must equal name of class"));
3017 else
3018 return 1;
3019 }
3020 return 0;
3021 }
3022
3023 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3024 return the appropriate member (or the address of the member, if
3025 WANT_ADDRESS). This function is used to resolve user expressions
3026 of the form "DOMAIN::NAME". For more details on what happens, see
3027 the comment before value_struct_elt_for_reference. */
3028
3029 struct value *
3030 value_aggregate_elt (struct type *curtype, const char *name,
3031 struct type *expect_type, int want_address,
3032 enum noside noside)
3033 {
3034 switch (TYPE_CODE (curtype))
3035 {
3036 case TYPE_CODE_STRUCT:
3037 case TYPE_CODE_UNION:
3038 return value_struct_elt_for_reference (curtype, 0, curtype,
3039 name, expect_type,
3040 want_address, noside);
3041 case TYPE_CODE_NAMESPACE:
3042 return value_namespace_elt (curtype, name,
3043 want_address, noside);
3044 default:
3045 internal_error (__FILE__, __LINE__,
3046 _("non-aggregate type in value_aggregate_elt"));
3047 }
3048 }
3049
3050 /* Compares the two method/function types T1 and T2 for "equality"
3051 with respect to the methods' parameters. If the types of the
3052 two parameter lists are the same, returns 1; 0 otherwise. This
3053 comparison may ignore any artificial parameters in T1 if
3054 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3055 the first artificial parameter in T1, assumed to be a 'this' pointer.
3056
3057 The type T2 is expected to have come from make_params (in eval.c). */
3058
3059 static int
3060 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3061 {
3062 int start = 0;
3063
3064 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3065 ++start;
3066
3067 /* If skipping artificial fields, find the first real field
3068 in T1. */
3069 if (skip_artificial)
3070 {
3071 while (start < TYPE_NFIELDS (t1)
3072 && TYPE_FIELD_ARTIFICIAL (t1, start))
3073 ++start;
3074 }
3075
3076 /* Now compare parameters. */
3077
3078 /* Special case: a method taking void. T1 will contain no
3079 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3080 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3081 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3082 return 1;
3083
3084 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3085 {
3086 int i;
3087
3088 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3089 {
3090 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3091 TYPE_FIELD_TYPE (t2, i), NULL),
3092 EXACT_MATCH_BADNESS) != 0)
3093 return 0;
3094 }
3095
3096 return 1;
3097 }
3098
3099 return 0;
3100 }
3101
3102 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3103 return the address of this member as a "pointer to member" type.
3104 If INTYPE is non-null, then it will be the type of the member we
3105 are looking for. This will help us resolve "pointers to member
3106 functions". This function is used to resolve user expressions of
3107 the form "DOMAIN::NAME". */
3108
3109 static struct value *
3110 value_struct_elt_for_reference (struct type *domain, int offset,
3111 struct type *curtype, const char *name,
3112 struct type *intype,
3113 int want_address,
3114 enum noside noside)
3115 {
3116 struct type *t = curtype;
3117 int i;
3118 struct value *v, *result;
3119
3120 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3121 && TYPE_CODE (t) != TYPE_CODE_UNION)
3122 error (_("Internal error: non-aggregate type "
3123 "to value_struct_elt_for_reference"));
3124
3125 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3126 {
3127 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3128
3129 if (t_field_name && strcmp (t_field_name, name) == 0)
3130 {
3131 if (field_is_static (&TYPE_FIELD (t, i)))
3132 {
3133 v = value_static_field (t, i);
3134 if (want_address)
3135 v = value_addr (v);
3136 return v;
3137 }
3138 if (TYPE_FIELD_PACKED (t, i))
3139 error (_("pointers to bitfield members not allowed"));
3140
3141 if (want_address)
3142 return value_from_longest
3143 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3144 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3145 else if (noside != EVAL_NORMAL)
3146 return allocate_value (TYPE_FIELD_TYPE (t, i));
3147 else
3148 {
3149 /* Try to evaluate NAME as a qualified name with implicit
3150 this pointer. In this case, attempt to return the
3151 equivalent to `this->*(&TYPE::NAME)'. */
3152 v = value_of_this_silent (current_language);
3153 if (v != NULL)
3154 {
3155 struct value *ptr;
3156 long mem_offset;
3157 struct type *type, *tmp;
3158
3159 ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
3160 type = check_typedef (value_type (ptr));
3161 gdb_assert (type != NULL
3162 && TYPE_CODE (type) == TYPE_CODE_MEMBERPTR);
3163 tmp = lookup_pointer_type (TYPE_DOMAIN_TYPE (type));
3164 v = value_cast_pointers (tmp, v, 1);
3165 mem_offset = value_as_long (ptr);
3166 tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type));
3167 result = value_from_pointer (tmp,
3168 value_as_long (v) + mem_offset);
3169 return value_ind (result);
3170 }
3171
3172 error (_("Cannot reference non-static field \"%s\""), name);
3173 }
3174 }
3175 }
3176
3177 /* C++: If it was not found as a data field, then try to return it
3178 as a pointer to a method. */
3179
3180 /* Perform all necessary dereferencing. */
3181 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3182 intype = TYPE_TARGET_TYPE (intype);
3183
3184 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3185 {
3186 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3187 char dem_opname[64];
3188
3189 if (strncmp (t_field_name, "__", 2) == 0
3190 || strncmp (t_field_name, "op", 2) == 0
3191 || strncmp (t_field_name, "type", 4) == 0)
3192 {
3193 if (cplus_demangle_opname (t_field_name,
3194 dem_opname, DMGL_ANSI))
3195 t_field_name = dem_opname;
3196 else if (cplus_demangle_opname (t_field_name,
3197 dem_opname, 0))
3198 t_field_name = dem_opname;
3199 }
3200 if (t_field_name && strcmp (t_field_name, name) == 0)
3201 {
3202 int j;
3203 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3204 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3205
3206 check_stub_method_group (t, i);
3207
3208 if (intype)
3209 {
3210 for (j = 0; j < len; ++j)
3211 {
3212 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3213 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3214 intype, 1))
3215 break;
3216 }
3217
3218 if (j == len)
3219 error (_("no member function matches "
3220 "that type instantiation"));
3221 }
3222 else
3223 {
3224 int ii;
3225
3226 j = -1;
3227 for (ii = 0; ii < len; ++ii)
3228 {
3229 /* Skip artificial methods. This is necessary if,
3230 for example, the user wants to "print
3231 subclass::subclass" with only one user-defined
3232 constructor. There is no ambiguity in this case.
3233 We are careful here to allow artificial methods
3234 if they are the unique result. */
3235 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3236 {
3237 if (j == -1)
3238 j = ii;
3239 continue;
3240 }
3241
3242 /* Desired method is ambiguous if more than one
3243 method is defined. */
3244 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3245 error (_("non-unique member `%s' requires "
3246 "type instantiation"), name);
3247
3248 j = ii;
3249 }
3250
3251 if (j == -1)
3252 error (_("no matching member function"));
3253 }
3254
3255 if (TYPE_FN_FIELD_STATIC_P (f, j))
3256 {
3257 struct symbol *s =
3258 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3259 0, VAR_DOMAIN, 0);
3260
3261 if (s == NULL)
3262 return NULL;
3263
3264 if (want_address)
3265 return value_addr (read_var_value (s, 0));
3266 else
3267 return read_var_value (s, 0);
3268 }
3269
3270 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3271 {
3272 if (want_address)
3273 {
3274 result = allocate_value
3275 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3276 cplus_make_method_ptr (value_type (result),
3277 value_contents_writeable (result),
3278 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3279 }
3280 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3281 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3282 else
3283 error (_("Cannot reference virtual member function \"%s\""),
3284 name);
3285 }
3286 else
3287 {
3288 struct symbol *s =
3289 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3290 0, VAR_DOMAIN, 0);
3291
3292 if (s == NULL)
3293 return NULL;
3294
3295 v = read_var_value (s, 0);
3296 if (!want_address)
3297 result = v;
3298 else
3299 {
3300 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3301 cplus_make_method_ptr (value_type (result),
3302 value_contents_writeable (result),
3303 value_address (v), 0);
3304 }
3305 }
3306 return result;
3307 }
3308 }
3309 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3310 {
3311 struct value *v;
3312 int base_offset;
3313
3314 if (BASETYPE_VIA_VIRTUAL (t, i))
3315 base_offset = 0;
3316 else
3317 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3318 v = value_struct_elt_for_reference (domain,
3319 offset + base_offset,
3320 TYPE_BASECLASS (t, i),
3321 name, intype,
3322 want_address, noside);
3323 if (v)
3324 return v;
3325 }
3326
3327 /* As a last chance, pretend that CURTYPE is a namespace, and look
3328 it up that way; this (frequently) works for types nested inside
3329 classes. */
3330
3331 return value_maybe_namespace_elt (curtype, name,
3332 want_address, noside);
3333 }
3334
3335 /* C++: Return the member NAME of the namespace given by the type
3336 CURTYPE. */
3337
3338 static struct value *
3339 value_namespace_elt (const struct type *curtype,
3340 const char *name, int want_address,
3341 enum noside noside)
3342 {
3343 struct value *retval = value_maybe_namespace_elt (curtype, name,
3344 want_address,
3345 noside);
3346
3347 if (retval == NULL)
3348 error (_("No symbol \"%s\" in namespace \"%s\"."),
3349 name, TYPE_TAG_NAME (curtype));
3350
3351 return retval;
3352 }
3353
3354 /* A helper function used by value_namespace_elt and
3355 value_struct_elt_for_reference. It looks up NAME inside the
3356 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3357 is a class and NAME refers to a type in CURTYPE itself (as opposed
3358 to, say, some base class of CURTYPE). */
3359
3360 static struct value *
3361 value_maybe_namespace_elt (const struct type *curtype,
3362 const char *name, int want_address,
3363 enum noside noside)
3364 {
3365 const char *namespace_name = TYPE_TAG_NAME (curtype);
3366 struct symbol *sym;
3367 struct value *result;
3368
3369 sym = cp_lookup_symbol_namespace (namespace_name, name,
3370 get_selected_block (0), VAR_DOMAIN);
3371
3372 if (sym == NULL)
3373 {
3374 char *concatenated_name = alloca (strlen (namespace_name) + 2
3375 + strlen (name) + 1);
3376
3377 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3378 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3379 }
3380
3381 if (sym == NULL)
3382 return NULL;
3383 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3384 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3385 result = allocate_value (SYMBOL_TYPE (sym));
3386 else
3387 result = value_of_variable (sym, get_selected_block (0));
3388
3389 if (result && want_address)
3390 result = value_addr (result);
3391
3392 return result;
3393 }
3394
3395 /* Given a pointer or a reference value V, find its real (RTTI) type.
3396
3397 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3398 and refer to the values computed for the object pointed to. */
3399
3400 struct type *
3401 value_rtti_indirect_type (struct value *v, int *full,
3402 int *top, int *using_enc)
3403 {
3404 struct value *target;
3405 struct type *type, *real_type, *target_type;
3406
3407 type = value_type (v);
3408 type = check_typedef (type);
3409 if (TYPE_CODE (type) == TYPE_CODE_REF)
3410 target = coerce_ref (v);
3411 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3412 target = value_ind (v);
3413 else
3414 return NULL;
3415
3416 real_type = value_rtti_type (target, full, top, using_enc);
3417
3418 if (real_type)
3419 {
3420 /* Copy qualifiers to the referenced object. */
3421 target_type = value_type (target);
3422 real_type = make_cv_type (TYPE_CONST (target_type),
3423 TYPE_VOLATILE (target_type), real_type, NULL);
3424 if (TYPE_CODE (type) == TYPE_CODE_REF)
3425 real_type = lookup_reference_type (real_type);
3426 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3427 real_type = lookup_pointer_type (real_type);
3428 else
3429 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3430
3431 /* Copy qualifiers to the pointer/reference. */
3432 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3433 real_type, NULL);
3434 }
3435
3436 return real_type;
3437 }
3438
3439 /* Given a value pointed to by ARGP, check its real run-time type, and
3440 if that is different from the enclosing type, create a new value
3441 using the real run-time type as the enclosing type (and of the same
3442 type as ARGP) and return it, with the embedded offset adjusted to
3443 be the correct offset to the enclosed object. RTYPE is the type,
3444 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3445 by value_rtti_type(). If these are available, they can be supplied
3446 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3447 NULL if they're not available. */
3448
3449 struct value *
3450 value_full_object (struct value *argp,
3451 struct type *rtype,
3452 int xfull, int xtop,
3453 int xusing_enc)
3454 {
3455 struct type *real_type;
3456 int full = 0;
3457 int top = -1;
3458 int using_enc = 0;
3459 struct value *new_val;
3460
3461 if (rtype)
3462 {
3463 real_type = rtype;
3464 full = xfull;
3465 top = xtop;
3466 using_enc = xusing_enc;
3467 }
3468 else
3469 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3470
3471 /* If no RTTI data, or if object is already complete, do nothing. */
3472 if (!real_type || real_type == value_enclosing_type (argp))
3473 return argp;
3474
3475 /* In a destructor we might see a real type that is a superclass of
3476 the object's type. In this case it is better to leave the object
3477 as-is. */
3478 if (full
3479 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3480 return argp;
3481
3482 /* If we have the full object, but for some reason the enclosing
3483 type is wrong, set it. */
3484 /* pai: FIXME -- sounds iffy */
3485 if (full)
3486 {
3487 argp = value_copy (argp);
3488 set_value_enclosing_type (argp, real_type);
3489 return argp;
3490 }
3491
3492 /* Check if object is in memory. */
3493 if (VALUE_LVAL (argp) != lval_memory)
3494 {
3495 warning (_("Couldn't retrieve complete object of RTTI "
3496 "type %s; object may be in register(s)."),
3497 TYPE_NAME (real_type));
3498
3499 return argp;
3500 }
3501
3502 /* All other cases -- retrieve the complete object. */
3503 /* Go back by the computed top_offset from the beginning of the
3504 object, adjusting for the embedded offset of argp if that's what
3505 value_rtti_type used for its computation. */
3506 new_val = value_at_lazy (real_type, value_address (argp) - top +
3507 (using_enc ? 0 : value_embedded_offset (argp)));
3508 deprecated_set_value_type (new_val, value_type (argp));
3509 set_value_embedded_offset (new_val, (using_enc
3510 ? top + value_embedded_offset (argp)
3511 : top));
3512 return new_val;
3513 }
3514
3515
3516 /* Return the value of the local variable, if one exists. Throw error
3517 otherwise, such as if the request is made in an inappropriate context. */
3518
3519 struct value *
3520 value_of_this (const struct language_defn *lang)
3521 {
3522 struct symbol *sym;
3523 struct block *b;
3524 struct frame_info *frame;
3525
3526 if (!lang->la_name_of_this)
3527 error (_("no `this' in current language"));
3528
3529 frame = get_selected_frame (_("no frame selected"));
3530
3531 b = get_frame_block (frame, NULL);
3532
3533 sym = lookup_language_this (lang, b);
3534 if (sym == NULL)
3535 error (_("current stack frame does not contain a variable named `%s'"),
3536 lang->la_name_of_this);
3537
3538 return read_var_value (sym, frame);
3539 }
3540
3541 /* Return the value of the local variable, if one exists. Return NULL
3542 otherwise. Never throw error. */
3543
3544 struct value *
3545 value_of_this_silent (const struct language_defn *lang)
3546 {
3547 struct value *ret = NULL;
3548 volatile struct gdb_exception except;
3549
3550 TRY_CATCH (except, RETURN_MASK_ERROR)
3551 {
3552 ret = value_of_this (lang);
3553 }
3554
3555 return ret;
3556 }
3557
3558 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3559 elements long, starting at LOWBOUND. The result has the same lower
3560 bound as the original ARRAY. */
3561
3562 struct value *
3563 value_slice (struct value *array, int lowbound, int length)
3564 {
3565 struct type *slice_range_type, *slice_type, *range_type;
3566 LONGEST lowerbound, upperbound;
3567 struct value *slice;
3568 struct type *array_type;
3569
3570 array_type = check_typedef (value_type (array));
3571 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3572 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
3573 error (_("cannot take slice of non-array"));
3574
3575 range_type = TYPE_INDEX_TYPE (array_type);
3576 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3577 error (_("slice from bad array or bitstring"));
3578
3579 if (lowbound < lowerbound || length < 0
3580 || lowbound + length - 1 > upperbound)
3581 error (_("slice out of range"));
3582
3583 /* FIXME-type-allocation: need a way to free this type when we are
3584 done with it. */
3585 slice_range_type = create_static_range_type ((struct type *) NULL,
3586 TYPE_TARGET_TYPE (range_type),
3587 lowbound,
3588 lowbound + length - 1);
3589
3590 {
3591 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3592 LONGEST offset
3593 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3594
3595 slice_type = create_array_type ((struct type *) NULL,
3596 element_type,
3597 slice_range_type);
3598 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3599
3600 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3601 slice = allocate_value_lazy (slice_type);
3602 else
3603 {
3604 slice = allocate_value (slice_type);
3605 value_contents_copy (slice, 0, array, offset,
3606 TYPE_LENGTH (slice_type));
3607 }
3608
3609 set_value_component_location (slice, array);
3610 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3611 set_value_offset (slice, value_offset (array) + offset);
3612 }
3613
3614 return slice;
3615 }
3616
3617 /* Create a value for a FORTRAN complex number. Currently most of the
3618 time values are coerced to COMPLEX*16 (i.e. a complex number
3619 composed of 2 doubles. This really should be a smarter routine
3620 that figures out precision inteligently as opposed to assuming
3621 doubles. FIXME: fmb */
3622
3623 struct value *
3624 value_literal_complex (struct value *arg1,
3625 struct value *arg2,
3626 struct type *type)
3627 {
3628 struct value *val;
3629 struct type *real_type = TYPE_TARGET_TYPE (type);
3630
3631 val = allocate_value (type);
3632 arg1 = value_cast (real_type, arg1);
3633 arg2 = value_cast (real_type, arg2);
3634
3635 memcpy (value_contents_raw (val),
3636 value_contents (arg1), TYPE_LENGTH (real_type));
3637 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3638 value_contents (arg2), TYPE_LENGTH (real_type));
3639 return val;
3640 }
3641
3642 /* Cast a value into the appropriate complex data type. */
3643
3644 static struct value *
3645 cast_into_complex (struct type *type, struct value *val)
3646 {
3647 struct type *real_type = TYPE_TARGET_TYPE (type);
3648
3649 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3650 {
3651 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3652 struct value *re_val = allocate_value (val_real_type);
3653 struct value *im_val = allocate_value (val_real_type);
3654
3655 memcpy (value_contents_raw (re_val),
3656 value_contents (val), TYPE_LENGTH (val_real_type));
3657 memcpy (value_contents_raw (im_val),
3658 value_contents (val) + TYPE_LENGTH (val_real_type),
3659 TYPE_LENGTH (val_real_type));
3660
3661 return value_literal_complex (re_val, im_val, type);
3662 }
3663 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3664 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3665 return value_literal_complex (val,
3666 value_zero (real_type, not_lval),
3667 type);
3668 else
3669 error (_("cannot cast non-number to complex"));
3670 }
3671
3672 void
3673 _initialize_valops (void)
3674 {
3675 add_setshow_boolean_cmd ("overload-resolution", class_support,
3676 &overload_resolution, _("\
3677 Set overload resolution in evaluating C++ functions."), _("\
3678 Show overload resolution in evaluating C++ functions."),
3679 NULL, NULL,
3680 show_overload_resolution,
3681 &setlist, &showlist);
3682 overload_resolution = 1;
3683 }
This page took 0.137376 seconds and 5 git commands to generate.