Changes to support alpha OSF/1 in native mode.
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30
31 #include <errno.h>
32
33 /* Local functions. */
34
35 static int
36 typecmp PARAMS ((int staticp, struct type *t1[], value t2[]));
37
38 static CORE_ADDR
39 find_function_addr PARAMS ((value, struct type **));
40
41 static CORE_ADDR
42 value_push PARAMS ((CORE_ADDR, value));
43
44 static CORE_ADDR
45 value_arg_push PARAMS ((CORE_ADDR, value));
46
47 static value
48 search_struct_field PARAMS ((char *, value, int, struct type *, int));
49
50 static value
51 search_struct_method PARAMS ((char *, value *, value *, int, int *,
52 struct type *));
53
54 static int
55 check_field_in PARAMS ((struct type *, const char *));
56
57 static CORE_ADDR
58 allocate_space_in_inferior PARAMS ((int));
59
60 \f
61 /* Allocate NBYTES of space in the inferior using the inferior's malloc
62 and return a value that is a pointer to the allocated space. */
63
64 static CORE_ADDR
65 allocate_space_in_inferior (len)
66 int len;
67 {
68 register value val;
69 register struct symbol *sym;
70 struct minimal_symbol *msymbol;
71 struct type *type;
72 value blocklen;
73 LONGEST maddr;
74
75 /* Find the address of malloc in the inferior. */
76
77 sym = lookup_symbol ("malloc", 0, VAR_NAMESPACE, 0, NULL);
78 if (sym != NULL)
79 {
80 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
81 {
82 error ("\"malloc\" exists in this program but is not a function.");
83 }
84 val = value_of_variable (sym, NULL);
85 }
86 else
87 {
88 msymbol = lookup_minimal_symbol ("malloc", (struct objfile *) NULL);
89 if (msymbol != NULL)
90 {
91 type = lookup_pointer_type (builtin_type_char);
92 type = lookup_function_type (type);
93 type = lookup_pointer_type (type);
94 maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol);
95 val = value_from_longest (type, maddr);
96 }
97 else
98 {
99 error ("evaluation of this expression requires the program to have a function \"malloc\".");
100 }
101 }
102
103 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
104 val = call_function_by_hand (val, 1, &blocklen);
105 if (value_logical_not (val))
106 {
107 error ("No memory available to program.");
108 }
109 return (value_as_long (val));
110 }
111
112 /* Cast value ARG2 to type TYPE and return as a value.
113 More general than a C cast: accepts any two types of the same length,
114 and if ARG2 is an lvalue it can be cast into anything at all. */
115 /* In C++, casts may change pointer or object representations. */
116
117 value
118 value_cast (type, arg2)
119 struct type *type;
120 register value arg2;
121 {
122 register enum type_code code1;
123 register enum type_code code2;
124 register int scalar;
125
126 /* Coerce arrays but not enums. Enums will work as-is
127 and coercing them would cause an infinite recursion. */
128 if (TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_ENUM)
129 COERCE_ARRAY (arg2);
130
131 code1 = TYPE_CODE (type);
132 code2 = TYPE_CODE (VALUE_TYPE (arg2));
133 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
134 || code2 == TYPE_CODE_ENUM);
135
136 if ( code1 == TYPE_CODE_STRUCT
137 && code2 == TYPE_CODE_STRUCT
138 && TYPE_NAME (type) != 0)
139 {
140 /* Look in the type of the source to see if it contains the
141 type of the target as a superclass. If so, we'll need to
142 offset the object in addition to changing its type. */
143 value v = search_struct_field (type_name_no_tag (type),
144 arg2, 0, VALUE_TYPE (arg2), 1);
145 if (v)
146 {
147 VALUE_TYPE (v) = type;
148 return v;
149 }
150 }
151 if (code1 == TYPE_CODE_FLT && scalar)
152 return value_from_double (type, value_as_double (arg2));
153 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM)
154 && (scalar || code2 == TYPE_CODE_PTR))
155 return value_from_longest (type, value_as_long (arg2));
156 else if (TYPE_LENGTH (type) == TYPE_LENGTH (VALUE_TYPE (arg2)))
157 {
158 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
159 {
160 /* Look in the type of the source to see if it contains the
161 type of the target as a superclass. If so, we'll need to
162 offset the pointer rather than just change its type. */
163 struct type *t1 = TYPE_TARGET_TYPE (type);
164 struct type *t2 = TYPE_TARGET_TYPE (VALUE_TYPE (arg2));
165 if ( TYPE_CODE (t1) == TYPE_CODE_STRUCT
166 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
167 && TYPE_NAME (t1) != 0) /* if name unknown, can't have supercl */
168 {
169 value v = search_struct_field (type_name_no_tag (t1),
170 value_ind (arg2), 0, t2, 1);
171 if (v)
172 {
173 v = value_addr (v);
174 VALUE_TYPE (v) = type;
175 return v;
176 }
177 }
178 /* No superclass found, just fall through to change ptr type. */
179 }
180 VALUE_TYPE (arg2) = type;
181 return arg2;
182 }
183 else if (VALUE_LVAL (arg2) == lval_memory)
184 {
185 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2));
186 }
187 else if (code1 == TYPE_CODE_VOID)
188 {
189 return value_zero (builtin_type_void, not_lval);
190 }
191 else
192 {
193 error ("Invalid cast.");
194 return 0;
195 }
196 }
197
198 /* Create a value of type TYPE that is zero, and return it. */
199
200 value
201 value_zero (type, lv)
202 struct type *type;
203 enum lval_type lv;
204 {
205 register value val = allocate_value (type);
206
207 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (type));
208 VALUE_LVAL (val) = lv;
209
210 return val;
211 }
212
213 /* Return a value with type TYPE located at ADDR.
214
215 Call value_at only if the data needs to be fetched immediately;
216 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
217 value_at_lazy instead. value_at_lazy simply records the address of
218 the data and sets the lazy-evaluation-required flag. The lazy flag
219 is tested in the VALUE_CONTENTS macro, which is used if and when
220 the contents are actually required. */
221
222 value
223 value_at (type, addr)
224 struct type *type;
225 CORE_ADDR addr;
226 {
227 register value val = allocate_value (type);
228
229 read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (type));
230
231 VALUE_LVAL (val) = lval_memory;
232 VALUE_ADDRESS (val) = addr;
233
234 return val;
235 }
236
237 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
238
239 value
240 value_at_lazy (type, addr)
241 struct type *type;
242 CORE_ADDR addr;
243 {
244 register value val = allocate_value (type);
245
246 VALUE_LVAL (val) = lval_memory;
247 VALUE_ADDRESS (val) = addr;
248 VALUE_LAZY (val) = 1;
249
250 return val;
251 }
252
253 /* Called only from the VALUE_CONTENTS macro, if the current data for
254 a variable needs to be loaded into VALUE_CONTENTS(VAL). Fetches the
255 data from the user's process, and clears the lazy flag to indicate
256 that the data in the buffer is valid.
257
258 If the value is zero-length, we avoid calling read_memory, which would
259 abort. We mark the value as fetched anyway -- all 0 bytes of it.
260
261 This function returns a value because it is used in the VALUE_CONTENTS
262 macro as part of an expression, where a void would not work. The
263 value is ignored. */
264
265 int
266 value_fetch_lazy (val)
267 register value val;
268 {
269 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
270
271 if (TYPE_LENGTH (VALUE_TYPE (val)))
272 read_memory (addr, VALUE_CONTENTS_RAW (val),
273 TYPE_LENGTH (VALUE_TYPE (val)));
274 VALUE_LAZY (val) = 0;
275 return 0;
276 }
277
278
279 /* Store the contents of FROMVAL into the location of TOVAL.
280 Return a new value with the location of TOVAL and contents of FROMVAL. */
281
282 value
283 value_assign (toval, fromval)
284 register value toval, fromval;
285 {
286 register struct type *type = VALUE_TYPE (toval);
287 register value val;
288 char raw_buffer[MAX_REGISTER_RAW_SIZE];
289 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
290 int use_buffer = 0;
291
292 COERCE_ARRAY (fromval);
293 COERCE_REF (toval);
294
295 if (VALUE_LVAL (toval) != lval_internalvar)
296 fromval = value_cast (type, fromval);
297
298 /* If TOVAL is a special machine register requiring conversion
299 of program values to a special raw format,
300 convert FROMVAL's contents now, with result in `raw_buffer',
301 and set USE_BUFFER to the number of bytes to write. */
302
303 if (VALUE_REGNO (toval) >= 0
304 && REGISTER_CONVERTIBLE (VALUE_REGNO (toval)))
305 {
306 int regno = VALUE_REGNO (toval);
307 if (VALUE_TYPE (fromval) != REGISTER_VIRTUAL_TYPE (regno))
308 fromval = value_cast (REGISTER_VIRTUAL_TYPE (regno), fromval);
309 memcpy (virtual_buffer, VALUE_CONTENTS (fromval),
310 REGISTER_VIRTUAL_SIZE (regno));
311 REGISTER_CONVERT_TO_RAW (regno, virtual_buffer, raw_buffer);
312 use_buffer = REGISTER_RAW_SIZE (regno);
313 }
314
315 switch (VALUE_LVAL (toval))
316 {
317 case lval_internalvar:
318 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
319 break;
320
321 case lval_internalvar_component:
322 set_internalvar_component (VALUE_INTERNALVAR (toval),
323 VALUE_OFFSET (toval),
324 VALUE_BITPOS (toval),
325 VALUE_BITSIZE (toval),
326 fromval);
327 break;
328
329 case lval_memory:
330 if (VALUE_BITSIZE (toval))
331 {
332 int v; /* FIXME, this won't work for large bitfields */
333 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
334 (char *) &v, sizeof v);
335 modify_field ((char *) &v, value_as_long (fromval),
336 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
337 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
338 (char *)&v, sizeof v);
339 }
340 else if (use_buffer)
341 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
342 raw_buffer, use_buffer);
343 else
344 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
345 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
346 break;
347
348 case lval_register:
349 if (VALUE_BITSIZE (toval))
350 {
351 int v;
352
353 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
354 (char *) &v, sizeof v);
355 modify_field ((char *) &v, value_as_long (fromval),
356 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
357 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
358 (char *) &v, sizeof v);
359 }
360 else if (use_buffer)
361 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
362 raw_buffer, use_buffer);
363 else
364 {
365 /* Do any conversion necessary when storing this type to more
366 than one register. */
367 #ifdef REGISTER_CONVERT_FROM_TYPE
368 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
369 REGISTER_CONVERT_FROM_TYPE(VALUE_REGNO (toval), type, raw_buffer);
370 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
371 raw_buffer, TYPE_LENGTH (type));
372 #else
373 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
374 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
375 #endif
376 }
377 break;
378
379 case lval_reg_frame_relative:
380 {
381 /* value is stored in a series of registers in the frame
382 specified by the structure. Copy that value out, modify
383 it, and copy it back in. */
384 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
385 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
386 int byte_offset = VALUE_OFFSET (toval) % reg_size;
387 int reg_offset = VALUE_OFFSET (toval) / reg_size;
388 int amount_copied;
389 char *buffer = (char *) alloca (amount_to_copy);
390 int regno;
391 FRAME frame;
392
393 /* Figure out which frame this is in currently. */
394 for (frame = get_current_frame ();
395 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
396 frame = get_prev_frame (frame))
397 ;
398
399 if (!frame)
400 error ("Value being assigned to is no longer active.");
401
402 amount_to_copy += (reg_size - amount_to_copy % reg_size);
403
404 /* Copy it out. */
405 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
406 amount_copied = 0);
407 amount_copied < amount_to_copy;
408 amount_copied += reg_size, regno++)
409 {
410 get_saved_register (buffer + amount_copied,
411 (int *)NULL, (CORE_ADDR *)NULL,
412 frame, regno, (enum lval_type *)NULL);
413 }
414
415 /* Modify what needs to be modified. */
416 if (VALUE_BITSIZE (toval))
417 modify_field (buffer + byte_offset,
418 value_as_long (fromval),
419 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
420 else if (use_buffer)
421 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
422 else
423 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
424 TYPE_LENGTH (type));
425
426 /* Copy it back. */
427 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
428 amount_copied = 0);
429 amount_copied < amount_to_copy;
430 amount_copied += reg_size, regno++)
431 {
432 enum lval_type lval;
433 CORE_ADDR addr;
434 int optim;
435
436 /* Just find out where to put it. */
437 get_saved_register ((char *)NULL,
438 &optim, &addr, frame, regno, &lval);
439
440 if (optim)
441 error ("Attempt to assign to a value that was optimized out.");
442 if (lval == lval_memory)
443 write_memory (addr, buffer + amount_copied, reg_size);
444 else if (lval == lval_register)
445 write_register_bytes (addr, buffer + amount_copied, reg_size);
446 else
447 error ("Attempt to assign to an unmodifiable value.");
448 }
449 }
450 break;
451
452
453 default:
454 error ("Left side of = operation is not an lvalue.");
455 }
456
457 /* Return a value just like TOVAL except with the contents of FROMVAL
458 (except in the case of the type if TOVAL is an internalvar). */
459
460 if (VALUE_LVAL (toval) == lval_internalvar
461 || VALUE_LVAL (toval) == lval_internalvar_component)
462 {
463 type = VALUE_TYPE (fromval);
464 }
465
466 val = allocate_value (type);
467 memcpy (val, toval, VALUE_CONTENTS_RAW (val) - (char *) val);
468 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
469 TYPE_LENGTH (type));
470 VALUE_TYPE (val) = type;
471
472 return val;
473 }
474
475 /* Extend a value VAL to COUNT repetitions of its type. */
476
477 value
478 value_repeat (arg1, count)
479 value arg1;
480 int count;
481 {
482 register value val;
483
484 if (VALUE_LVAL (arg1) != lval_memory)
485 error ("Only values in memory can be extended with '@'.");
486 if (count < 1)
487 error ("Invalid number %d of repetitions.", count);
488
489 val = allocate_repeat_value (VALUE_TYPE (arg1), count);
490
491 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
492 VALUE_CONTENTS_RAW (val),
493 TYPE_LENGTH (VALUE_TYPE (val)) * count);
494 VALUE_LVAL (val) = lval_memory;
495 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
496
497 return val;
498 }
499
500 value
501 value_of_variable (var, b)
502 struct symbol *var;
503 struct block *b;
504 {
505 value val;
506 FRAME fr;
507
508 if (b == NULL)
509 /* Use selected frame. */
510 fr = NULL;
511 else
512 {
513 fr = block_innermost_frame (b);
514 if (fr == NULL)
515 {
516 if (BLOCK_FUNCTION (b) != NULL
517 && SYMBOL_NAME (BLOCK_FUNCTION (b)) != NULL)
518 error ("No frame is currently executing in block %s.",
519 SYMBOL_NAME (BLOCK_FUNCTION (b)));
520 else
521 error ("No frame is currently executing in specified block");
522 }
523 }
524 val = read_var_value (var, fr);
525 if (val == 0)
526 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
527 return val;
528 }
529
530 /* Given a value which is an array, return a value which is a pointer to its
531 first element, regardless of whether or not the array has a nonzero lower
532 bound.
533
534 FIXME: A previous comment here indicated that this routine should be
535 substracting the array's lower bound. It's not clear to me that this
536 is correct. Given an array subscripting operation, it would certainly
537 work to do the adjustment here, essentially computing:
538
539 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
540
541 However I believe a more appropriate and logical place to account for
542 the lower bound is to do so in value_subscript, essentially computing:
543
544 (&array[0] + ((index - lowerbound) * sizeof array[0]))
545
546 As further evidence consider what would happen with operations other
547 than array subscripting, where the caller would get back a value that
548 had an address somewhere before the actual first element of the array,
549 and the information about the lower bound would be lost because of
550 the coercion to pointer type.
551 */
552
553 value
554 value_coerce_array (arg1)
555 value arg1;
556 {
557 register struct type *type;
558
559 if (VALUE_LVAL (arg1) != lval_memory)
560 error ("Attempt to take address of value not located in memory.");
561
562 /* Get type of elements. */
563 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_ARRAY)
564 type = TYPE_TARGET_TYPE (VALUE_TYPE (arg1));
565 else
566 /* A phony array made by value_repeat.
567 Its type is the type of the elements, not an array type. */
568 type = VALUE_TYPE (arg1);
569
570 return value_from_longest (lookup_pointer_type (type),
571 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
572 }
573
574 /* Given a value which is a function, return a value which is a pointer
575 to it. */
576
577 value
578 value_coerce_function (arg1)
579 value arg1;
580 {
581
582 if (VALUE_LVAL (arg1) != lval_memory)
583 error ("Attempt to take address of value not located in memory.");
584
585 return value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
586 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
587 }
588
589 /* Return a pointer value for the object for which ARG1 is the contents. */
590
591 value
592 value_addr (arg1)
593 value arg1;
594 {
595 struct type *type = VALUE_TYPE (arg1);
596 if (TYPE_CODE (type) == TYPE_CODE_REF)
597 {
598 /* Copy the value, but change the type from (T&) to (T*).
599 We keep the same location information, which is efficient,
600 and allows &(&X) to get the location containing the reference. */
601 value arg2 = value_copy (arg1);
602 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
603 return arg2;
604 }
605 if (VALUE_REPEATED (arg1)
606 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
607 return value_coerce_array (arg1);
608 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
609 return value_coerce_function (arg1);
610
611 if (VALUE_LVAL (arg1) != lval_memory)
612 error ("Attempt to take address of value not located in memory.");
613
614 return value_from_longest (lookup_pointer_type (type),
615 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
616 }
617
618 /* Given a value of a pointer type, apply the C unary * operator to it. */
619
620 value
621 value_ind (arg1)
622 value arg1;
623 {
624 COERCE_ARRAY (arg1);
625
626 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_MEMBER)
627 error ("not implemented: member types in value_ind");
628
629 /* Allow * on an integer so we can cast it to whatever we want.
630 This returns an int, which seems like the most C-like thing
631 to do. "long long" variables are rare enough that
632 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
633 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_INT)
634 return value_at (builtin_type_int,
635 (CORE_ADDR) value_as_long (arg1));
636 else if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR)
637 return value_at_lazy (TYPE_TARGET_TYPE (VALUE_TYPE (arg1)),
638 value_as_pointer (arg1));
639 error ("Attempt to take contents of a non-pointer value.");
640 return 0; /* For lint -- never reached */
641 }
642 \f
643 /* Pushing small parts of stack frames. */
644
645 /* Push one word (the size of object that a register holds). */
646
647 CORE_ADDR
648 push_word (sp, word)
649 CORE_ADDR sp;
650 REGISTER_TYPE word;
651 {
652 register int len = sizeof (REGISTER_TYPE);
653 char buffer[MAX_REGISTER_RAW_SIZE];
654
655 store_unsigned_integer (buffer, len, word);
656 #if 1 INNER_THAN 2
657 sp -= len;
658 write_memory (sp, buffer, len);
659 #else /* stack grows upward */
660 write_memory (sp, buffer, len);
661 sp += len;
662 #endif /* stack grows upward */
663
664 return sp;
665 }
666
667 /* Push LEN bytes with data at BUFFER. */
668
669 CORE_ADDR
670 push_bytes (sp, buffer, len)
671 CORE_ADDR sp;
672 char *buffer;
673 int len;
674 {
675 #if 1 INNER_THAN 2
676 sp -= len;
677 write_memory (sp, buffer, len);
678 #else /* stack grows upward */
679 write_memory (sp, buffer, len);
680 sp += len;
681 #endif /* stack grows upward */
682
683 return sp;
684 }
685
686 /* Push onto the stack the specified value VALUE. */
687
688 static CORE_ADDR
689 value_push (sp, arg)
690 register CORE_ADDR sp;
691 value arg;
692 {
693 register int len = TYPE_LENGTH (VALUE_TYPE (arg));
694
695 #if 1 INNER_THAN 2
696 sp -= len;
697 write_memory (sp, VALUE_CONTENTS (arg), len);
698 #else /* stack grows upward */
699 write_memory (sp, VALUE_CONTENTS (arg), len);
700 sp += len;
701 #endif /* stack grows upward */
702
703 return sp;
704 }
705
706 /* Perform the standard coercions that are specified
707 for arguments to be passed to C functions. */
708
709 value
710 value_arg_coerce (arg)
711 value arg;
712 {
713 register struct type *type;
714
715 /* FIXME: We should coerce this according to the prototype (if we have
716 one). Right now we do a little bit of this in typecmp(), but that
717 doesn't always get called. For example, if passing a ref to a function
718 without a prototype, we probably should de-reference it. Currently
719 we don't. */
720
721 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_ENUM)
722 arg = value_cast (builtin_type_unsigned_int, arg);
723
724 #if 1 /* FIXME: This is only a temporary patch. -fnf */
725 if (VALUE_REPEATED (arg)
726 || TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_ARRAY)
727 arg = value_coerce_array (arg);
728 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FUNC)
729 arg = value_coerce_function (arg);
730 #endif
731
732 type = VALUE_TYPE (arg);
733
734 if (TYPE_CODE (type) == TYPE_CODE_INT
735 && TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
736 return value_cast (builtin_type_int, arg);
737
738 if (TYPE_CODE (type) == TYPE_CODE_FLT
739 && TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
740 return value_cast (builtin_type_double, arg);
741
742 return arg;
743 }
744
745 /* Push the value ARG, first coercing it as an argument
746 to a C function. */
747
748 static CORE_ADDR
749 value_arg_push (sp, arg)
750 register CORE_ADDR sp;
751 value arg;
752 {
753 return value_push (sp, value_arg_coerce (arg));
754 }
755
756 /* Determine a function's address and its return type from its value.
757 Calls error() if the function is not valid for calling. */
758
759 static CORE_ADDR
760 find_function_addr (function, retval_type)
761 value function;
762 struct type **retval_type;
763 {
764 register struct type *ftype = VALUE_TYPE (function);
765 register enum type_code code = TYPE_CODE (ftype);
766 struct type *value_type;
767 CORE_ADDR funaddr;
768
769 /* If it's a member function, just look at the function
770 part of it. */
771
772 /* Determine address to call. */
773 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
774 {
775 funaddr = VALUE_ADDRESS (function);
776 value_type = TYPE_TARGET_TYPE (ftype);
777 }
778 else if (code == TYPE_CODE_PTR)
779 {
780 funaddr = value_as_pointer (function);
781 if (TYPE_CODE (TYPE_TARGET_TYPE (ftype)) == TYPE_CODE_FUNC
782 || TYPE_CODE (TYPE_TARGET_TYPE (ftype)) == TYPE_CODE_METHOD)
783 value_type = TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype));
784 else
785 value_type = builtin_type_int;
786 }
787 else if (code == TYPE_CODE_INT)
788 {
789 /* Handle the case of functions lacking debugging info.
790 Their values are characters since their addresses are char */
791 if (TYPE_LENGTH (ftype) == 1)
792 funaddr = value_as_pointer (value_addr (function));
793 else
794 /* Handle integer used as address of a function. */
795 funaddr = (CORE_ADDR) value_as_long (function);
796
797 value_type = builtin_type_int;
798 }
799 else
800 error ("Invalid data type for function to be called.");
801
802 *retval_type = value_type;
803 return funaddr;
804 }
805
806 #if defined (CALL_DUMMY)
807 /* All this stuff with a dummy frame may seem unnecessarily complicated
808 (why not just save registers in GDB?). The purpose of pushing a dummy
809 frame which looks just like a real frame is so that if you call a
810 function and then hit a breakpoint (get a signal, etc), "backtrace"
811 will look right. Whether the backtrace needs to actually show the
812 stack at the time the inferior function was called is debatable, but
813 it certainly needs to not display garbage. So if you are contemplating
814 making dummy frames be different from normal frames, consider that. */
815
816 /* Perform a function call in the inferior.
817 ARGS is a vector of values of arguments (NARGS of them).
818 FUNCTION is a value, the function to be called.
819 Returns a value representing what the function returned.
820 May fail to return, if a breakpoint or signal is hit
821 during the execution of the function. */
822
823 value
824 call_function_by_hand (function, nargs, args)
825 value function;
826 int nargs;
827 value *args;
828 {
829 register CORE_ADDR sp;
830 register int i;
831 CORE_ADDR start_sp;
832 /* CALL_DUMMY is an array of words (REGISTER_TYPE), but each word
833 is in host byte order. It is switched to target byte order before calling
834 FIX_CALL_DUMMY. */
835 static REGISTER_TYPE dummy[] = CALL_DUMMY;
836 REGISTER_TYPE dummy1[sizeof dummy / sizeof (REGISTER_TYPE)];
837 CORE_ADDR old_sp;
838 struct type *value_type;
839 unsigned char struct_return;
840 CORE_ADDR struct_addr;
841 struct inferior_status inf_status;
842 struct cleanup *old_chain;
843 CORE_ADDR funaddr;
844 int using_gcc;
845 CORE_ADDR real_pc;
846
847 if (!target_has_execution)
848 noprocess();
849
850 save_inferior_status (&inf_status, 1);
851 old_chain = make_cleanup (restore_inferior_status, &inf_status);
852
853 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
854 (and POP_FRAME for restoring them). (At least on most machines)
855 they are saved on the stack in the inferior. */
856 PUSH_DUMMY_FRAME;
857
858 old_sp = sp = read_sp ();
859
860 #if 1 INNER_THAN 2 /* Stack grows down */
861 sp -= sizeof dummy;
862 start_sp = sp;
863 #else /* Stack grows up */
864 start_sp = sp;
865 sp += sizeof dummy;
866 #endif
867
868 funaddr = find_function_addr (function, &value_type);
869
870 {
871 struct block *b = block_for_pc (funaddr);
872 /* If compiled without -g, assume GCC. */
873 using_gcc = b == NULL || BLOCK_GCC_COMPILED (b);
874 }
875
876 /* Are we returning a value using a structure return or a normal
877 value return? */
878
879 struct_return = using_struct_return (function, funaddr, value_type,
880 using_gcc);
881
882 /* Create a call sequence customized for this function
883 and the number of arguments for it. */
884 for (i = 0; i < sizeof dummy / sizeof (REGISTER_TYPE); i++)
885 store_unsigned_integer (&dummy1[i], sizeof (REGISTER_TYPE),
886 (unsigned LONGEST)dummy[i]);
887
888 #ifdef GDB_TARGET_IS_HPPA
889 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
890 value_type, using_gcc);
891 #else
892 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
893 value_type, using_gcc);
894 real_pc = start_sp;
895 #endif
896
897 #if CALL_DUMMY_LOCATION == ON_STACK
898 write_memory (start_sp, (char *)dummy1, sizeof dummy);
899 #endif /* On stack. */
900
901 #if CALL_DUMMY_LOCATION == BEFORE_TEXT_END
902 /* Convex Unix prohibits executing in the stack segment. */
903 /* Hope there is empty room at the top of the text segment. */
904 {
905 extern CORE_ADDR text_end;
906 static checked = 0;
907 if (!checked)
908 for (start_sp = text_end - sizeof dummy; start_sp < text_end; ++start_sp)
909 if (read_memory_integer (start_sp, 1) != 0)
910 error ("text segment full -- no place to put call");
911 checked = 1;
912 sp = old_sp;
913 real_pc = text_end - sizeof dummy;
914 write_memory (real_pc, (char *)dummy1, sizeof dummy);
915 }
916 #endif /* Before text_end. */
917
918 #if CALL_DUMMY_LOCATION == AFTER_TEXT_END
919 {
920 extern CORE_ADDR text_end;
921 int errcode;
922 sp = old_sp;
923 real_pc = text_end;
924 errcode = target_write_memory (real_pc, (char *)dummy1, sizeof dummy);
925 if (errcode != 0)
926 error ("Cannot write text segment -- call_function failed");
927 }
928 #endif /* After text_end. */
929
930 #if CALL_DUMMY_LOCATION == AT_ENTRY_POINT
931 real_pc = funaddr;
932 #endif /* At entry point. */
933
934 #ifdef lint
935 sp = old_sp; /* It really is used, for some ifdef's... */
936 #endif
937
938 #ifdef STACK_ALIGN
939 /* If stack grows down, we must leave a hole at the top. */
940 {
941 int len = 0;
942
943 /* Reserve space for the return structure to be written on the
944 stack, if necessary */
945
946 if (struct_return)
947 len += TYPE_LENGTH (value_type);
948
949 for (i = nargs - 1; i >= 0; i--)
950 len += TYPE_LENGTH (VALUE_TYPE (value_arg_coerce (args[i])));
951 #ifdef CALL_DUMMY_STACK_ADJUST
952 len += CALL_DUMMY_STACK_ADJUST;
953 #endif
954 #if 1 INNER_THAN 2
955 sp -= STACK_ALIGN (len) - len;
956 #else
957 sp += STACK_ALIGN (len) - len;
958 #endif
959 }
960 #endif /* STACK_ALIGN */
961
962 /* Reserve space for the return structure to be written on the
963 stack, if necessary */
964
965 if (struct_return)
966 {
967 #if 1 INNER_THAN 2
968 sp -= TYPE_LENGTH (value_type);
969 struct_addr = sp;
970 #else
971 struct_addr = sp;
972 sp += TYPE_LENGTH (value_type);
973 #endif
974 }
975
976 #if defined (REG_STRUCT_HAS_ADDR)
977 {
978 /* This is a machine like the sparc, where we need to pass a pointer
979 to the structure, not the structure itself. */
980 if (REG_STRUCT_HAS_ADDR (using_gcc))
981 for (i = nargs - 1; i >= 0; i--)
982 if (TYPE_CODE (VALUE_TYPE (args[i])) == TYPE_CODE_STRUCT)
983 {
984 CORE_ADDR addr;
985 #if !(1 INNER_THAN 2)
986 /* The stack grows up, so the address of the thing we push
987 is the stack pointer before we push it. */
988 addr = sp;
989 #endif
990 /* Push the structure. */
991 sp = value_push (sp, args[i]);
992 #if 1 INNER_THAN 2
993 /* The stack grows down, so the address of the thing we push
994 is the stack pointer after we push it. */
995 addr = sp;
996 #endif
997 /* The value we're going to pass is the address of the thing
998 we just pushed. */
999 args[i] = value_from_longest (lookup_pointer_type (value_type),
1000 (LONGEST) addr);
1001 }
1002 }
1003 #endif /* REG_STRUCT_HAS_ADDR. */
1004
1005 #ifdef PUSH_ARGUMENTS
1006 PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr);
1007 #else /* !PUSH_ARGUMENTS */
1008 for (i = nargs - 1; i >= 0; i--)
1009 sp = value_arg_push (sp, args[i]);
1010 #endif /* !PUSH_ARGUMENTS */
1011
1012 #ifdef CALL_DUMMY_STACK_ADJUST
1013 #if 1 INNER_THAN 2
1014 sp -= CALL_DUMMY_STACK_ADJUST;
1015 #else
1016 sp += CALL_DUMMY_STACK_ADJUST;
1017 #endif
1018 #endif /* CALL_DUMMY_STACK_ADJUST */
1019
1020 /* Store the address at which the structure is supposed to be
1021 written. Note that this (and the code which reserved the space
1022 above) assumes that gcc was used to compile this function. Since
1023 it doesn't cost us anything but space and if the function is pcc
1024 it will ignore this value, we will make that assumption.
1025
1026 Also note that on some machines (like the sparc) pcc uses a
1027 convention like gcc's. */
1028
1029 if (struct_return)
1030 STORE_STRUCT_RETURN (struct_addr, sp);
1031
1032 /* Write the stack pointer. This is here because the statements above
1033 might fool with it. On SPARC, this write also stores the register
1034 window into the right place in the new stack frame, which otherwise
1035 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1036 write_sp (sp);
1037
1038 {
1039 char retbuf[REGISTER_BYTES];
1040 char *name;
1041 struct symbol *symbol;
1042
1043 name = NULL;
1044 symbol = find_pc_function (funaddr);
1045 if (symbol)
1046 {
1047 name = SYMBOL_SOURCE_NAME (symbol);
1048 }
1049 else
1050 {
1051 /* Try the minimal symbols. */
1052 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1053
1054 if (msymbol)
1055 {
1056 name = SYMBOL_SOURCE_NAME (msymbol);
1057 }
1058 }
1059 if (name == NULL)
1060 {
1061 char format[80];
1062 sprintf (format, "at %s", local_hex_format ());
1063 name = alloca (80);
1064 sprintf (name, format, (unsigned long) funaddr);
1065 }
1066
1067 /* Execute the stack dummy routine, calling FUNCTION.
1068 When it is done, discard the empty frame
1069 after storing the contents of all regs into retbuf. */
1070 if (run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf))
1071 {
1072 /* We stopped somewhere besides the call dummy. */
1073
1074 /* If we did the cleanups, we would print a spurious error message
1075 (Unable to restore previously selected frame), would write the
1076 registers from the inf_status (which is wrong), and would do other
1077 wrong things (like set stop_bpstat to the wrong thing). */
1078 discard_cleanups (old_chain);
1079 /* Prevent memory leak. */
1080 bpstat_clear (&inf_status.stop_bpstat);
1081
1082 /* The following error message used to say "The expression
1083 which contained the function call has been discarded." It
1084 is a hard concept to explain in a few words. Ideally, GDB
1085 would be able to resume evaluation of the expression when
1086 the function finally is done executing. Perhaps someday
1087 this will be implemented (it would not be easy). */
1088
1089 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1090 a C++ name with arguments and stuff. */
1091 error ("\
1092 The program being debugged stopped while in a function called from GDB.\n\
1093 When the function (%s) is done executing, GDB will silently\n\
1094 stop (instead of continuing to evaluate the expression containing\n\
1095 the function call).", name);
1096 }
1097
1098 do_cleanups (old_chain);
1099
1100 /* Figure out the value returned by the function. */
1101 return value_being_returned (value_type, retbuf, struct_return);
1102 }
1103 }
1104 #else /* no CALL_DUMMY. */
1105 value
1106 call_function_by_hand (function, nargs, args)
1107 value function;
1108 int nargs;
1109 value *args;
1110 {
1111 error ("Cannot invoke functions on this machine.");
1112 }
1113 #endif /* no CALL_DUMMY. */
1114
1115 \f
1116 /* Create a value for an array by allocating space in the inferior, copying
1117 the data into that space, and then setting up an array value.
1118
1119 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1120 populated from the values passed in ELEMVEC.
1121
1122 The element type of the array is inherited from the type of the
1123 first element, and all elements must have the same size (though we
1124 don't currently enforce any restriction on their types). */
1125
1126 value
1127 value_array (lowbound, highbound, elemvec)
1128 int lowbound;
1129 int highbound;
1130 value *elemvec;
1131 {
1132 int nelem;
1133 int idx;
1134 int typelength;
1135 value val;
1136 struct type *rangetype;
1137 struct type *arraytype;
1138 CORE_ADDR addr;
1139
1140 /* Validate that the bounds are reasonable and that each of the elements
1141 have the same size. */
1142
1143 nelem = highbound - lowbound + 1;
1144 if (nelem <= 0)
1145 {
1146 error ("bad array bounds (%d, %d)", lowbound, highbound);
1147 }
1148 typelength = TYPE_LENGTH (VALUE_TYPE (elemvec[0]));
1149 for (idx = 0; idx < nelem; idx++)
1150 {
1151 if (TYPE_LENGTH (VALUE_TYPE (elemvec[idx])) != typelength)
1152 {
1153 error ("array elements must all be the same size");
1154 }
1155 }
1156
1157 /* Allocate space to store the array in the inferior, and then initialize
1158 it by copying in each element. FIXME: Is it worth it to create a
1159 local buffer in which to collect each value and then write all the
1160 bytes in one operation? */
1161
1162 addr = allocate_space_in_inferior (nelem * typelength);
1163 for (idx = 0; idx < nelem; idx++)
1164 {
1165 write_memory (addr + (idx * typelength), VALUE_CONTENTS (elemvec[idx]),
1166 typelength);
1167 }
1168
1169 /* Create the array type and set up an array value to be evaluated lazily. */
1170
1171 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1172 lowbound, highbound);
1173 arraytype = create_array_type ((struct type *) NULL,
1174 VALUE_TYPE (elemvec[0]), rangetype);
1175 val = value_at_lazy (arraytype, addr);
1176 return (val);
1177 }
1178
1179 /* Create a value for a string constant by allocating space in the inferior,
1180 copying the data into that space, and returning the address with type
1181 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1182 of characters.
1183 Note that string types are like array of char types with a lower bound of
1184 zero and an upper bound of LEN - 1. Also note that the string may contain
1185 embedded null bytes. */
1186
1187 value
1188 value_string (ptr, len)
1189 char *ptr;
1190 int len;
1191 {
1192 value val;
1193 struct type *rangetype;
1194 struct type *stringtype;
1195 CORE_ADDR addr;
1196
1197 /* Allocate space to store the string in the inferior, and then
1198 copy LEN bytes from PTR in gdb to that address in the inferior. */
1199
1200 addr = allocate_space_in_inferior (len);
1201 write_memory (addr, ptr, len);
1202
1203 /* Create the string type and set up a string value to be evaluated
1204 lazily. */
1205
1206 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1207 0, len - 1);
1208 stringtype = create_string_type ((struct type *) NULL, rangetype);
1209 val = value_at_lazy (stringtype, addr);
1210 return (val);
1211 }
1212 \f
1213 /* See if we can pass arguments in T2 to a function which takes arguments
1214 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1215 arguments need coercion of some sort, then the coerced values are written
1216 into T2. Return value is 0 if the arguments could be matched, or the
1217 position at which they differ if not.
1218
1219 STATICP is nonzero if the T1 argument list came from a
1220 static member function.
1221
1222 For non-static member functions, we ignore the first argument,
1223 which is the type of the instance variable. This is because we want
1224 to handle calls with objects from derived classes. This is not
1225 entirely correct: we should actually check to make sure that a
1226 requested operation is type secure, shouldn't we? FIXME. */
1227
1228 static int
1229 typecmp (staticp, t1, t2)
1230 int staticp;
1231 struct type *t1[];
1232 value t2[];
1233 {
1234 int i;
1235
1236 if (t2 == 0)
1237 return 1;
1238 if (staticp && t1 == 0)
1239 return t2[1] != 0;
1240 if (t1 == 0)
1241 return 1;
1242 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID) return 0;
1243 if (t1[!staticp] == 0) return 0;
1244 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1245 {
1246 if (! t2[i])
1247 return i+1;
1248 if (TYPE_CODE (t1[i]) == TYPE_CODE_REF
1249 /* We should be doing hairy argument matching, as below. */
1250 && (TYPE_CODE (TYPE_TARGET_TYPE (t1[i]))
1251 == TYPE_CODE (VALUE_TYPE (t2[i]))))
1252 {
1253 t2[i] = value_addr (t2[i]);
1254 continue;
1255 }
1256
1257 if (TYPE_CODE (t1[i]) == TYPE_CODE_PTR
1258 && TYPE_CODE (VALUE_TYPE (t2[i])) == TYPE_CODE_ARRAY)
1259 /* Array to pointer is a `trivial conversion' according to the ARM. */
1260 continue;
1261
1262 /* We should be doing much hairier argument matching (see section 13.2
1263 of the ARM), but as a quick kludge, just check for the same type
1264 code. */
1265 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
1266 return i+1;
1267 }
1268 if (!t1[i]) return 0;
1269 return t2[i] ? i+1 : 0;
1270 }
1271
1272 /* Helper function used by value_struct_elt to recurse through baseclasses.
1273 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1274 and search in it assuming it has (class) type TYPE.
1275 If found, return value, else return NULL.
1276
1277 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
1278 look for a baseclass named NAME. */
1279
1280 static value
1281 search_struct_field (name, arg1, offset, type, looking_for_baseclass)
1282 char *name;
1283 register value arg1;
1284 int offset;
1285 register struct type *type;
1286 int looking_for_baseclass;
1287 {
1288 int i;
1289
1290 check_stub_type (type);
1291
1292 if (! looking_for_baseclass)
1293 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1294 {
1295 char *t_field_name = TYPE_FIELD_NAME (type, i);
1296
1297 if (t_field_name && STREQ (t_field_name, name))
1298 {
1299 value v;
1300 if (TYPE_FIELD_STATIC (type, i))
1301 {
1302 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, i);
1303 struct symbol *sym =
1304 lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
1305 if (sym == NULL)
1306 error ("Internal error: could not find physical static variable named %s",
1307 phys_name);
1308 v = value_at (TYPE_FIELD_TYPE (type, i),
1309 (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym));
1310 }
1311 else
1312 v = value_primitive_field (arg1, offset, i, type);
1313 if (v == 0)
1314 error("there is no field named %s", name);
1315 return v;
1316 }
1317 }
1318
1319 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1320 {
1321 value v;
1322 /* If we are looking for baseclasses, this is what we get when we
1323 hit them. But it could happen that the base part's member name
1324 is not yet filled in. */
1325 int found_baseclass = (looking_for_baseclass
1326 && TYPE_BASECLASS_NAME (type, i) != NULL
1327 && STREQ (name, TYPE_BASECLASS_NAME (type, i)));
1328
1329 if (BASETYPE_VIA_VIRTUAL (type, i))
1330 {
1331 value v2;
1332 /* Fix to use baseclass_offset instead. FIXME */
1333 baseclass_addr (type, i, VALUE_CONTENTS (arg1) + offset,
1334 &v2, (int *)NULL);
1335 if (v2 == 0)
1336 error ("virtual baseclass botch");
1337 if (found_baseclass)
1338 return v2;
1339 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
1340 looking_for_baseclass);
1341 }
1342 else if (found_baseclass)
1343 v = value_primitive_field (arg1, offset, i, type);
1344 else
1345 v = search_struct_field (name, arg1,
1346 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
1347 TYPE_BASECLASS (type, i),
1348 looking_for_baseclass);
1349 if (v) return v;
1350 }
1351 return NULL;
1352 }
1353
1354 /* Helper function used by value_struct_elt to recurse through baseclasses.
1355 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1356 and search in it assuming it has (class) type TYPE.
1357 If found, return value, else if name matched and args not return (value)-1,
1358 else return NULL. */
1359
1360 static value
1361 search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
1362 char *name;
1363 register value *arg1p, *args;
1364 int offset, *static_memfuncp;
1365 register struct type *type;
1366 {
1367 int i;
1368 static int name_matched = 0;
1369
1370 check_stub_type (type);
1371 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1372 {
1373 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1374 if (t_field_name && STREQ (t_field_name, name))
1375 {
1376 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1377 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1378 name_matched = 1;
1379
1380 if (j > 0 && args == 0)
1381 error ("cannot resolve overloaded method `%s'", name);
1382 while (j >= 0)
1383 {
1384 if (TYPE_FN_FIELD_STUB (f, j))
1385 check_stub_method (type, i, j);
1386 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1387 TYPE_FN_FIELD_ARGS (f, j), args))
1388 {
1389 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1390 return (value)value_virtual_fn_field (arg1p, f, j, type, offset);
1391 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
1392 *static_memfuncp = 1;
1393 return (value)value_fn_field (arg1p, f, j, type, offset);
1394 }
1395 j--;
1396 }
1397 }
1398 }
1399
1400 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1401 {
1402 value v;
1403 int base_offset;
1404
1405 if (BASETYPE_VIA_VIRTUAL (type, i))
1406 {
1407 base_offset = baseclass_offset (type, i, *arg1p, offset);
1408 if (base_offset == -1)
1409 error ("virtual baseclass botch");
1410 }
1411 else
1412 {
1413 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1414 }
1415 v = search_struct_method (name, arg1p, args, base_offset + offset,
1416 static_memfuncp, TYPE_BASECLASS (type, i));
1417 if (v == (value) -1)
1418 {
1419 name_matched = 1;
1420 }
1421 else if (v)
1422 {
1423 /* FIXME-bothner: Why is this commented out? Why is it here? */
1424 /* *arg1p = arg1_tmp;*/
1425 return v;
1426 }
1427 }
1428 if (name_matched) return (value) -1;
1429 else return NULL;
1430 }
1431
1432 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1433 extract the component named NAME from the ultimate target structure/union
1434 and return it as a value with its appropriate type.
1435 ERR is used in the error message if *ARGP's type is wrong.
1436
1437 C++: ARGS is a list of argument types to aid in the selection of
1438 an appropriate method. Also, handle derived types.
1439
1440 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1441 where the truthvalue of whether the function that was resolved was
1442 a static member function or not is stored.
1443
1444 ERR is an error message to be printed in case the field is not found. */
1445
1446 value
1447 value_struct_elt (argp, args, name, static_memfuncp, err)
1448 register value *argp, *args;
1449 char *name;
1450 int *static_memfuncp;
1451 char *err;
1452 {
1453 register struct type *t;
1454 value v;
1455
1456 COERCE_ARRAY (*argp);
1457
1458 t = VALUE_TYPE (*argp);
1459
1460 /* Follow pointers until we get to a non-pointer. */
1461
1462 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1463 {
1464 *argp = value_ind (*argp);
1465 /* Don't coerce fn pointer to fn and then back again! */
1466 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
1467 COERCE_ARRAY (*argp);
1468 t = VALUE_TYPE (*argp);
1469 }
1470
1471 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1472 error ("not implemented: member type in value_struct_elt");
1473
1474 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1475 && TYPE_CODE (t) != TYPE_CODE_UNION)
1476 error ("Attempt to extract a component of a value that is not a %s.", err);
1477
1478 /* Assume it's not, unless we see that it is. */
1479 if (static_memfuncp)
1480 *static_memfuncp =0;
1481
1482 if (!args)
1483 {
1484 /* if there are no arguments ...do this... */
1485
1486 /* Try as a field first, because if we succeed, there
1487 is less work to be done. */
1488 v = search_struct_field (name, *argp, 0, t, 0);
1489 if (v)
1490 return v;
1491
1492 /* C++: If it was not found as a data field, then try to
1493 return it as a pointer to a method. */
1494
1495 if (destructor_name_p (name, t))
1496 error ("Cannot get value of destructor");
1497
1498 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1499
1500 if (v == 0)
1501 {
1502 if (TYPE_NFN_FIELDS (t))
1503 error ("There is no member or method named %s.", name);
1504 else
1505 error ("There is no member named %s.", name);
1506 }
1507 return v;
1508 }
1509
1510 if (destructor_name_p (name, t))
1511 {
1512 if (!args[1])
1513 {
1514 /* destructors are a special case. */
1515 return (value)value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, 0),
1516 TYPE_FN_FIELDLIST_LENGTH (t, 0),
1517 0, 0);
1518 }
1519 else
1520 {
1521 error ("destructor should not have any argument");
1522 }
1523 }
1524 else
1525 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1526
1527 if (v == (value) -1)
1528 {
1529 error("Argument list of %s mismatch with component in the structure.", name);
1530 }
1531 else if (v == 0)
1532 {
1533 /* See if user tried to invoke data as function. If so,
1534 hand it back. If it's not callable (i.e., a pointer to function),
1535 gdb should give an error. */
1536 v = search_struct_field (name, *argp, 0, t, 0);
1537 }
1538
1539 if (!v)
1540 error ("Structure has no component named %s.", name);
1541 return v;
1542 }
1543
1544 /* C++: return 1 is NAME is a legitimate name for the destructor
1545 of type TYPE. If TYPE does not have a destructor, or
1546 if NAME is inappropriate for TYPE, an error is signaled. */
1547 int
1548 destructor_name_p (name, type)
1549 const char *name;
1550 const struct type *type;
1551 {
1552 /* destructors are a special case. */
1553
1554 if (name[0] == '~')
1555 {
1556 char *dname = type_name_no_tag (type);
1557 if (!STREQ (dname, name+1))
1558 error ("name of destructor must equal name of class");
1559 else
1560 return 1;
1561 }
1562 return 0;
1563 }
1564
1565 /* Helper function for check_field: Given TYPE, a structure/union,
1566 return 1 if the component named NAME from the ultimate
1567 target structure/union is defined, otherwise, return 0. */
1568
1569 static int
1570 check_field_in (type, name)
1571 register struct type *type;
1572 const char *name;
1573 {
1574 register int i;
1575
1576 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1577 {
1578 char *t_field_name = TYPE_FIELD_NAME (type, i);
1579 if (t_field_name && STREQ (t_field_name, name))
1580 return 1;
1581 }
1582
1583 /* C++: If it was not found as a data field, then try to
1584 return it as a pointer to a method. */
1585
1586 /* Destructors are a special case. */
1587 if (destructor_name_p (name, type))
1588 return 1;
1589
1590 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1591 {
1592 if (STREQ (TYPE_FN_FIELDLIST_NAME (type, i), name))
1593 return 1;
1594 }
1595
1596 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1597 if (check_field_in (TYPE_BASECLASS (type, i), name))
1598 return 1;
1599
1600 return 0;
1601 }
1602
1603
1604 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
1605 return 1 if the component named NAME from the ultimate
1606 target structure/union is defined, otherwise, return 0. */
1607
1608 int
1609 check_field (arg1, name)
1610 register value arg1;
1611 const char *name;
1612 {
1613 register struct type *t;
1614
1615 COERCE_ARRAY (arg1);
1616
1617 t = VALUE_TYPE (arg1);
1618
1619 /* Follow pointers until we get to a non-pointer. */
1620
1621 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1622 t = TYPE_TARGET_TYPE (t);
1623
1624 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1625 error ("not implemented: member type in check_field");
1626
1627 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1628 && TYPE_CODE (t) != TYPE_CODE_UNION)
1629 error ("Internal error: `this' is not an aggregate");
1630
1631 return check_field_in (t, name);
1632 }
1633
1634 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
1635 return the address of this member as a "pointer to member"
1636 type. If INTYPE is non-null, then it will be the type
1637 of the member we are looking for. This will help us resolve
1638 "pointers to member functions". This function is used
1639 to resolve user expressions of the form "DOMAIN::NAME". */
1640
1641 value
1642 value_struct_elt_for_reference (domain, offset, curtype, name, intype)
1643 struct type *domain, *curtype, *intype;
1644 int offset;
1645 char *name;
1646 {
1647 register struct type *t = curtype;
1648 register int i;
1649 value v;
1650
1651 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1652 && TYPE_CODE (t) != TYPE_CODE_UNION)
1653 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
1654
1655 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
1656 {
1657 char *t_field_name = TYPE_FIELD_NAME (t, i);
1658
1659 if (t_field_name && STREQ (t_field_name, name))
1660 {
1661 if (TYPE_FIELD_STATIC (t, i))
1662 {
1663 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (t, i);
1664 struct symbol *sym =
1665 lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
1666 if (sym == NULL)
1667 error ("Internal error: could not find physical static variable named %s",
1668 phys_name);
1669 return value_at (SYMBOL_TYPE (sym),
1670 (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym));
1671 }
1672 if (TYPE_FIELD_PACKED (t, i))
1673 error ("pointers to bitfield members not allowed");
1674
1675 return value_from_longest
1676 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
1677 domain)),
1678 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
1679 }
1680 }
1681
1682 /* C++: If it was not found as a data field, then try to
1683 return it as a pointer to a method. */
1684
1685 /* Destructors are a special case. */
1686 if (destructor_name_p (name, t))
1687 {
1688 error ("member pointers to destructors not implemented yet");
1689 }
1690
1691 /* Perform all necessary dereferencing. */
1692 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
1693 intype = TYPE_TARGET_TYPE (intype);
1694
1695 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
1696 {
1697 if (STREQ (TYPE_FN_FIELDLIST_NAME (t, i), name))
1698 {
1699 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
1700 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
1701
1702 if (intype == 0 && j > 1)
1703 error ("non-unique member `%s' requires type instantiation", name);
1704 if (intype)
1705 {
1706 while (j--)
1707 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
1708 break;
1709 if (j < 0)
1710 error ("no member function matches that type instantiation");
1711 }
1712 else
1713 j = 0;
1714
1715 if (TYPE_FN_FIELD_STUB (f, j))
1716 check_stub_method (t, i, j);
1717 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1718 {
1719 return value_from_longest
1720 (lookup_reference_type
1721 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
1722 domain)),
1723 (LONGEST) METHOD_PTR_FROM_VOFFSET
1724 (TYPE_FN_FIELD_VOFFSET (f, j)));
1725 }
1726 else
1727 {
1728 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
1729 0, VAR_NAMESPACE, 0, NULL);
1730 if (s == NULL)
1731 {
1732 v = 0;
1733 }
1734 else
1735 {
1736 v = read_var_value (s, 0);
1737 #if 0
1738 VALUE_TYPE (v) = lookup_reference_type
1739 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
1740 domain));
1741 #endif
1742 }
1743 return v;
1744 }
1745 }
1746 }
1747 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
1748 {
1749 value v;
1750 int base_offset;
1751
1752 if (BASETYPE_VIA_VIRTUAL (t, i))
1753 base_offset = 0;
1754 else
1755 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
1756 v = value_struct_elt_for_reference (domain,
1757 offset + base_offset,
1758 TYPE_BASECLASS (t, i),
1759 name,
1760 intype);
1761 if (v)
1762 return v;
1763 }
1764 return 0;
1765 }
1766
1767 /* C++: return the value of the class instance variable, if one exists.
1768 Flag COMPLAIN signals an error if the request is made in an
1769 inappropriate context. */
1770 value
1771 value_of_this (complain)
1772 int complain;
1773 {
1774 extern FRAME selected_frame;
1775 struct symbol *func, *sym;
1776 struct block *b;
1777 int i;
1778 static const char funny_this[] = "this";
1779 value this;
1780
1781 if (selected_frame == 0)
1782 if (complain)
1783 error ("no frame selected");
1784 else return 0;
1785
1786 func = get_frame_function (selected_frame);
1787 if (!func)
1788 {
1789 if (complain)
1790 error ("no `this' in nameless context");
1791 else return 0;
1792 }
1793
1794 b = SYMBOL_BLOCK_VALUE (func);
1795 i = BLOCK_NSYMS (b);
1796 if (i <= 0)
1797 if (complain)
1798 error ("no args, no `this'");
1799 else return 0;
1800
1801 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
1802 symbol instead of the LOC_ARG one (if both exist). */
1803 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
1804 if (sym == NULL)
1805 {
1806 if (complain)
1807 error ("current stack frame not in method");
1808 else
1809 return NULL;
1810 }
1811
1812 this = read_var_value (sym, selected_frame);
1813 if (this == 0 && complain)
1814 error ("`this' argument at unknown address");
1815 return this;
1816 }
This page took 0.065602 seconds and 5 git commands to generate.