* valops.c (value_cast): Simplify and correct logic for doing a
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
3 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "gdbcore.h"
30 #include "target.h"
31 #include "demangle.h"
32 #include "language.h"
33 #include "gdbcmd.h"
34 #include "regcache.h"
35 #include "cp-abi.h"
36
37 #include <errno.h>
38 #include "gdb_string.h"
39 #include "gdb_assert.h"
40
41 /* Flag indicating HP compilers were used; needed to correctly handle some
42 value operations with HP aCC code/runtime. */
43 extern int hp_som_som_object_present;
44
45 extern int overload_debug;
46 /* Local functions. */
47
48 static int typecmp (int staticp, int varargs, int nargs,
49 struct field t1[], struct value *t2[]);
50
51 static CORE_ADDR find_function_addr (struct value *, struct type **);
52 static struct value *value_arg_coerce (struct value *, struct type *, int);
53
54
55 static CORE_ADDR value_push (CORE_ADDR, struct value *);
56
57 static struct value *search_struct_field (char *, struct value *, int,
58 struct type *, int);
59
60 static struct value *search_struct_method (char *, struct value **,
61 struct value **,
62 int, int *, struct type *);
63
64 static int check_field_in (struct type *, const char *);
65
66 static CORE_ADDR allocate_space_in_inferior (int);
67
68 static struct value *cast_into_complex (struct type *, struct value *);
69
70 static struct fn_field *find_method_list (struct value ** argp, char *method,
71 int offset,
72 struct type *type, int *num_fns,
73 struct type **basetype,
74 int *boffset);
75
76 void _initialize_valops (void);
77
78 /* Flag for whether we want to abandon failed expression evals by default. */
79
80 #if 0
81 static int auto_abandon = 0;
82 #endif
83
84 int overload_resolution = 0;
85
86 /* This boolean tells what gdb should do if a signal is received while in
87 a function called from gdb (call dummy). If set, gdb unwinds the stack
88 and restore the context to what as it was before the call.
89 The default is to stop in the frame where the signal was received. */
90
91 int unwind_on_signal_p = 0;
92 \f
93
94
95 /* Find the address of function name NAME in the inferior. */
96
97 struct value *
98 find_function_in_inferior (char *name)
99 {
100 register struct symbol *sym;
101 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
102 if (sym != NULL)
103 {
104 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
105 {
106 error ("\"%s\" exists in this program but is not a function.",
107 name);
108 }
109 return value_of_variable (sym, NULL);
110 }
111 else
112 {
113 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
114 if (msymbol != NULL)
115 {
116 struct type *type;
117 CORE_ADDR maddr;
118 type = lookup_pointer_type (builtin_type_char);
119 type = lookup_function_type (type);
120 type = lookup_pointer_type (type);
121 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
122 return value_from_pointer (type, maddr);
123 }
124 else
125 {
126 if (!target_has_execution)
127 error ("evaluation of this expression requires the target program to be active");
128 else
129 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
130 }
131 }
132 }
133
134 /* Allocate NBYTES of space in the inferior using the inferior's malloc
135 and return a value that is a pointer to the allocated space. */
136
137 struct value *
138 value_allocate_space_in_inferior (int len)
139 {
140 struct value *blocklen;
141 struct value *val = find_function_in_inferior ("malloc");
142
143 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
144 val = call_function_by_hand (val, 1, &blocklen);
145 if (value_logical_not (val))
146 {
147 if (!target_has_execution)
148 error ("No memory available to program now: you need to start the target first");
149 else
150 error ("No memory available to program: call to malloc failed");
151 }
152 return val;
153 }
154
155 static CORE_ADDR
156 allocate_space_in_inferior (int len)
157 {
158 return value_as_long (value_allocate_space_in_inferior (len));
159 }
160
161 /* Cast value ARG2 to type TYPE and return as a value.
162 More general than a C cast: accepts any two types of the same length,
163 and if ARG2 is an lvalue it can be cast into anything at all. */
164 /* In C++, casts may change pointer or object representations. */
165
166 struct value *
167 value_cast (struct type *type, struct value *arg2)
168 {
169 register enum type_code code1;
170 register enum type_code code2;
171 register int scalar;
172 struct type *type2;
173
174 int convert_to_boolean = 0;
175
176 if (VALUE_TYPE (arg2) == type)
177 return arg2;
178
179 CHECK_TYPEDEF (type);
180 code1 = TYPE_CODE (type);
181 COERCE_REF (arg2);
182 type2 = check_typedef (VALUE_TYPE (arg2));
183
184 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
185 is treated like a cast to (TYPE [N])OBJECT,
186 where N is sizeof(OBJECT)/sizeof(TYPE). */
187 if (code1 == TYPE_CODE_ARRAY)
188 {
189 struct type *element_type = TYPE_TARGET_TYPE (type);
190 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
191 if (element_length > 0
192 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
193 {
194 struct type *range_type = TYPE_INDEX_TYPE (type);
195 int val_length = TYPE_LENGTH (type2);
196 LONGEST low_bound, high_bound, new_length;
197 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
198 low_bound = 0, high_bound = 0;
199 new_length = val_length / element_length;
200 if (val_length % element_length != 0)
201 warning ("array element type size does not divide object size in cast");
202 /* FIXME-type-allocation: need a way to free this type when we are
203 done with it. */
204 range_type = create_range_type ((struct type *) NULL,
205 TYPE_TARGET_TYPE (range_type),
206 low_bound,
207 new_length + low_bound - 1);
208 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
209 element_type, range_type);
210 return arg2;
211 }
212 }
213
214 if (current_language->c_style_arrays
215 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
216 arg2 = value_coerce_array (arg2);
217
218 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
219 arg2 = value_coerce_function (arg2);
220
221 type2 = check_typedef (VALUE_TYPE (arg2));
222 COERCE_VARYING_ARRAY (arg2, type2);
223 code2 = TYPE_CODE (type2);
224
225 if (code1 == TYPE_CODE_COMPLEX)
226 return cast_into_complex (type, arg2);
227 if (code1 == TYPE_CODE_BOOL)
228 {
229 code1 = TYPE_CODE_INT;
230 convert_to_boolean = 1;
231 }
232 if (code1 == TYPE_CODE_CHAR)
233 code1 = TYPE_CODE_INT;
234 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
235 code2 = TYPE_CODE_INT;
236
237 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
238 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
239
240 if (code1 == TYPE_CODE_STRUCT
241 && code2 == TYPE_CODE_STRUCT
242 && TYPE_NAME (type) != 0)
243 {
244 /* Look in the type of the source to see if it contains the
245 type of the target as a superclass. If so, we'll need to
246 offset the object in addition to changing its type. */
247 struct value *v = search_struct_field (type_name_no_tag (type),
248 arg2, 0, type2, 1);
249 if (v)
250 {
251 VALUE_TYPE (v) = type;
252 return v;
253 }
254 }
255 if (code1 == TYPE_CODE_FLT && scalar)
256 return value_from_double (type, value_as_double (arg2));
257 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
258 || code1 == TYPE_CODE_RANGE)
259 && (scalar || code2 == TYPE_CODE_PTR))
260 {
261 LONGEST longest;
262
263 if (hp_som_som_object_present && /* if target compiled by HP aCC */
264 (code2 == TYPE_CODE_PTR))
265 {
266 unsigned int *ptr;
267 struct value *retvalp;
268
269 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
270 {
271 /* With HP aCC, pointers to data members have a bias */
272 case TYPE_CODE_MEMBER:
273 retvalp = value_from_longest (type, value_as_long (arg2));
274 /* force evaluation */
275 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
276 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
277 return retvalp;
278
279 /* While pointers to methods don't really point to a function */
280 case TYPE_CODE_METHOD:
281 error ("Pointers to methods not supported with HP aCC");
282
283 default:
284 break; /* fall out and go to normal handling */
285 }
286 }
287
288 /* When we cast pointers to integers, we mustn't use
289 POINTER_TO_ADDRESS to find the address the pointer
290 represents, as value_as_long would. GDB should evaluate
291 expressions just as the compiler would --- and the compiler
292 sees a cast as a simple reinterpretation of the pointer's
293 bits. */
294 if (code2 == TYPE_CODE_PTR)
295 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
296 TYPE_LENGTH (type2));
297 else
298 longest = value_as_long (arg2);
299 return value_from_longest (type, convert_to_boolean ?
300 (LONGEST) (longest ? 1 : 0) : longest);
301 }
302 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
303 code2 == TYPE_CODE_ENUM ||
304 code2 == TYPE_CODE_RANGE))
305 {
306 /* TYPE_LENGTH (type) is the length of a pointer, but we really
307 want the length of an address! -- we are really dealing with
308 addresses (i.e., gdb representations) not pointers (i.e.,
309 target representations) here.
310
311 This allows things like "print *(int *)0x01000234" to work
312 without printing a misleading message -- which would
313 otherwise occur when dealing with a target having two byte
314 pointers and four byte addresses. */
315
316 int addr_bit = TARGET_ADDR_BIT;
317
318 LONGEST longest = value_as_long (arg2);
319 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
320 {
321 if (longest >= ((LONGEST) 1 << addr_bit)
322 || longest <= -((LONGEST) 1 << addr_bit))
323 warning ("value truncated");
324 }
325 return value_from_longest (type, longest);
326 }
327 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
328 {
329 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
330 {
331 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
332 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
333 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
334 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
335 && !value_logical_not (arg2))
336 {
337 struct value *v;
338
339 /* Look in the type of the source to see if it contains the
340 type of the target as a superclass. If so, we'll need to
341 offset the pointer rather than just change its type. */
342 if (TYPE_NAME (t1) != NULL)
343 {
344 v = search_struct_field (type_name_no_tag (t1),
345 value_ind (arg2), 0, t2, 1);
346 if (v)
347 {
348 v = value_addr (v);
349 VALUE_TYPE (v) = type;
350 return v;
351 }
352 }
353
354 /* Look in the type of the target to see if it contains the
355 type of the source as a superclass. If so, we'll need to
356 offset the pointer rather than just change its type.
357 FIXME: This fails silently with virtual inheritance. */
358 if (TYPE_NAME (t2) != NULL)
359 {
360 v = search_struct_field (type_name_no_tag (t2),
361 value_zero (t1, not_lval), 0, t1, 1);
362 if (v)
363 {
364 CORE_ADDR addr2 = value_as_address (arg2);
365 addr2 -= (VALUE_ADDRESS (v)
366 + VALUE_OFFSET (v)
367 + VALUE_EMBEDDED_OFFSET (v));
368 return value_from_pointer (type, addr2);
369 }
370 }
371 }
372 /* No superclass found, just fall through to change ptr type. */
373 }
374 VALUE_TYPE (arg2) = type;
375 arg2 = value_change_enclosing_type (arg2, type);
376 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
377 return arg2;
378 }
379 /* OBSOLETE else if (chill_varying_type (type)) */
380 /* OBSOLETE { */
381 /* OBSOLETE struct type *range1, *range2, *eltype1, *eltype2; */
382 /* OBSOLETE struct value *val; */
383 /* OBSOLETE int count1, count2; */
384 /* OBSOLETE LONGEST low_bound, high_bound; */
385 /* OBSOLETE char *valaddr, *valaddr_data; */
386 /* OBSOLETE *//* For lint warning about eltype2 possibly uninitialized: */
387 /* OBSOLETE eltype2 = NULL; */
388 /* OBSOLETE if (code2 == TYPE_CODE_BITSTRING) */
389 /* OBSOLETE error ("not implemented: converting bitstring to varying type"); */
390 /* OBSOLETE if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING) */
391 /* OBSOLETE || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))), */
392 /* OBSOLETE eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)), */
393 /* OBSOLETE (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2) */
394 /* OBSOLETE *//*|| TYPE_CODE (eltype1) != TYPE_CODE (eltype2) *//* ))) */
395 /* OBSOLETE error ("Invalid conversion to varying type"); */
396 /* OBSOLETE range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0); */
397 /* OBSOLETE range2 = TYPE_FIELD_TYPE (type2, 0); */
398 /* OBSOLETE if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0) */
399 /* OBSOLETE count1 = -1; */
400 /* OBSOLETE else */
401 /* OBSOLETE count1 = high_bound - low_bound + 1; */
402 /* OBSOLETE if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0) */
403 /* OBSOLETE count1 = -1, count2 = 0; *//* To force error before */
404 /* OBSOLETE else */
405 /* OBSOLETE count2 = high_bound - low_bound + 1; */
406 /* OBSOLETE if (count2 > count1) */
407 /* OBSOLETE error ("target varying type is too small"); */
408 /* OBSOLETE val = allocate_value (type); */
409 /* OBSOLETE valaddr = VALUE_CONTENTS_RAW (val); */
410 /* OBSOLETE valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8; */
411 /* OBSOLETE *//* Set val's __var_length field to count2. */
412 /* OBSOLETE store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)), */
413 /* OBSOLETE count2); */
414 /* OBSOLETE *//* Set the __var_data field to count2 elements copied from arg2. */
415 /* OBSOLETE memcpy (valaddr_data, VALUE_CONTENTS (arg2), */
416 /* OBSOLETE count2 * TYPE_LENGTH (eltype2)); */
417 /* OBSOLETE *//* Zero the rest of the __var_data field of val. */
418 /* OBSOLETE memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0', */
419 /* OBSOLETE (count1 - count2) * TYPE_LENGTH (eltype2)); */
420 /* OBSOLETE return val; */
421 /* OBSOLETE } */
422 else if (VALUE_LVAL (arg2) == lval_memory)
423 {
424 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
425 VALUE_BFD_SECTION (arg2));
426 }
427 else if (code1 == TYPE_CODE_VOID)
428 {
429 return value_zero (builtin_type_void, not_lval);
430 }
431 else
432 {
433 error ("Invalid cast.");
434 return 0;
435 }
436 }
437
438 /* Create a value of type TYPE that is zero, and return it. */
439
440 struct value *
441 value_zero (struct type *type, enum lval_type lv)
442 {
443 struct value *val = allocate_value (type);
444
445 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
446 VALUE_LVAL (val) = lv;
447
448 return val;
449 }
450
451 /* Return a value with type TYPE located at ADDR.
452
453 Call value_at only if the data needs to be fetched immediately;
454 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
455 value_at_lazy instead. value_at_lazy simply records the address of
456 the data and sets the lazy-evaluation-required flag. The lazy flag
457 is tested in the VALUE_CONTENTS macro, which is used if and when
458 the contents are actually required.
459
460 Note: value_at does *NOT* handle embedded offsets; perform such
461 adjustments before or after calling it. */
462
463 struct value *
464 value_at (struct type *type, CORE_ADDR addr, asection *sect)
465 {
466 struct value *val;
467
468 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
469 error ("Attempt to dereference a generic pointer.");
470
471 val = allocate_value (type);
472
473 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
474
475 VALUE_LVAL (val) = lval_memory;
476 VALUE_ADDRESS (val) = addr;
477 VALUE_BFD_SECTION (val) = sect;
478
479 return val;
480 }
481
482 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
483
484 struct value *
485 value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
486 {
487 struct value *val;
488
489 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
490 error ("Attempt to dereference a generic pointer.");
491
492 val = allocate_value (type);
493
494 VALUE_LVAL (val) = lval_memory;
495 VALUE_ADDRESS (val) = addr;
496 VALUE_LAZY (val) = 1;
497 VALUE_BFD_SECTION (val) = sect;
498
499 return val;
500 }
501
502 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
503 if the current data for a variable needs to be loaded into
504 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
505 clears the lazy flag to indicate that the data in the buffer is valid.
506
507 If the value is zero-length, we avoid calling read_memory, which would
508 abort. We mark the value as fetched anyway -- all 0 bytes of it.
509
510 This function returns a value because it is used in the VALUE_CONTENTS
511 macro as part of an expression, where a void would not work. The
512 value is ignored. */
513
514 int
515 value_fetch_lazy (struct value *val)
516 {
517 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
518 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
519
520 struct type *type = VALUE_TYPE (val);
521 if (length)
522 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
523
524 VALUE_LAZY (val) = 0;
525 return 0;
526 }
527
528
529 /* Store the contents of FROMVAL into the location of TOVAL.
530 Return a new value with the location of TOVAL and contents of FROMVAL. */
531
532 struct value *
533 value_assign (struct value *toval, struct value *fromval)
534 {
535 register struct type *type;
536 struct value *val;
537 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
538 int use_buffer = 0;
539
540 if (!toval->modifiable)
541 error ("Left operand of assignment is not a modifiable lvalue.");
542
543 COERCE_REF (toval);
544
545 type = VALUE_TYPE (toval);
546 if (VALUE_LVAL (toval) != lval_internalvar)
547 fromval = value_cast (type, fromval);
548 else
549 COERCE_ARRAY (fromval);
550 CHECK_TYPEDEF (type);
551
552 /* If TOVAL is a special machine register requiring conversion
553 of program values to a special raw format,
554 convert FROMVAL's contents now, with result in `raw_buffer',
555 and set USE_BUFFER to the number of bytes to write. */
556
557 if (VALUE_REGNO (toval) >= 0)
558 {
559 int regno = VALUE_REGNO (toval);
560 if (CONVERT_REGISTER_P (regno))
561 {
562 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
563 VALUE_TO_REGISTER (fromtype, regno, VALUE_CONTENTS (fromval), raw_buffer);
564 use_buffer = REGISTER_RAW_SIZE (regno);
565 }
566 }
567
568 switch (VALUE_LVAL (toval))
569 {
570 case lval_internalvar:
571 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
572 val = value_copy (VALUE_INTERNALVAR (toval)->value);
573 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
574 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
575 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
576 return val;
577
578 case lval_internalvar_component:
579 set_internalvar_component (VALUE_INTERNALVAR (toval),
580 VALUE_OFFSET (toval),
581 VALUE_BITPOS (toval),
582 VALUE_BITSIZE (toval),
583 fromval);
584 break;
585
586 case lval_memory:
587 {
588 char *dest_buffer;
589 CORE_ADDR changed_addr;
590 int changed_len;
591
592 if (VALUE_BITSIZE (toval))
593 {
594 char buffer[sizeof (LONGEST)];
595 /* We assume that the argument to read_memory is in units of
596 host chars. FIXME: Is that correct? */
597 changed_len = (VALUE_BITPOS (toval)
598 + VALUE_BITSIZE (toval)
599 + HOST_CHAR_BIT - 1)
600 / HOST_CHAR_BIT;
601
602 if (changed_len > (int) sizeof (LONGEST))
603 error ("Can't handle bitfields which don't fit in a %d bit word.",
604 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
605
606 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
607 buffer, changed_len);
608 modify_field (buffer, value_as_long (fromval),
609 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
610 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
611 dest_buffer = buffer;
612 }
613 else if (use_buffer)
614 {
615 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
616 changed_len = use_buffer;
617 dest_buffer = raw_buffer;
618 }
619 else
620 {
621 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
622 changed_len = TYPE_LENGTH (type);
623 dest_buffer = VALUE_CONTENTS (fromval);
624 }
625
626 write_memory (changed_addr, dest_buffer, changed_len);
627 if (memory_changed_hook)
628 memory_changed_hook (changed_addr, changed_len);
629 target_changed_event ();
630 }
631 break;
632
633 case lval_register:
634 if (VALUE_BITSIZE (toval))
635 {
636 char buffer[sizeof (LONGEST)];
637 int len =
638 REGISTER_RAW_SIZE (VALUE_REGNO (toval)) - VALUE_OFFSET (toval);
639
640 if (len > (int) sizeof (LONGEST))
641 error ("Can't handle bitfields in registers larger than %d bits.",
642 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
643
644 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
645 > len * HOST_CHAR_BIT)
646 /* Getting this right would involve being very careful about
647 byte order. */
648 error ("Can't assign to bitfields that cross register "
649 "boundaries.");
650
651 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
652 buffer, len);
653 modify_field (buffer, value_as_long (fromval),
654 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
655 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
656 buffer, len);
657 }
658 else if (use_buffer)
659 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
660 raw_buffer, use_buffer);
661 else
662 {
663 /* Do any conversion necessary when storing this type to more
664 than one register. */
665 #ifdef REGISTER_CONVERT_FROM_TYPE
666 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
667 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
668 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
669 raw_buffer, TYPE_LENGTH (type));
670 #else
671 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
672 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
673 #endif
674 }
675
676 target_changed_event ();
677
678 /* Assigning to the stack pointer, frame pointer, and other
679 (architecture and calling convention specific) registers may
680 cause the frame cache to be out of date. We just do this
681 on all assignments to registers for simplicity; I doubt the slowdown
682 matters. */
683 reinit_frame_cache ();
684 break;
685
686 case lval_reg_frame_relative:
687 {
688 /* value is stored in a series of registers in the frame
689 specified by the structure. Copy that value out, modify
690 it, and copy it back in. */
691 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
692 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
693 int byte_offset = VALUE_OFFSET (toval) % reg_size;
694 int reg_offset = VALUE_OFFSET (toval) / reg_size;
695 int amount_copied;
696
697 /* Make the buffer large enough in all cases. */
698 /* FIXME (alloca): Not safe for very large data types. */
699 char *buffer = (char *) alloca (amount_to_copy
700 + sizeof (LONGEST)
701 + MAX_REGISTER_RAW_SIZE);
702
703 int regno;
704 struct frame_info *frame;
705
706 /* Figure out which frame this is in currently. */
707 for (frame = get_current_frame ();
708 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
709 frame = get_prev_frame (frame))
710 ;
711
712 if (!frame)
713 error ("Value being assigned to is no longer active.");
714
715 amount_to_copy += (reg_size - amount_to_copy % reg_size);
716
717 /* Copy it out. */
718 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
719 amount_copied = 0);
720 amount_copied < amount_to_copy;
721 amount_copied += reg_size, regno++)
722 {
723 get_saved_register (buffer + amount_copied,
724 (int *) NULL, (CORE_ADDR *) NULL,
725 frame, regno, (enum lval_type *) NULL);
726 }
727
728 /* Modify what needs to be modified. */
729 if (VALUE_BITSIZE (toval))
730 modify_field (buffer + byte_offset,
731 value_as_long (fromval),
732 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
733 else if (use_buffer)
734 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
735 else
736 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
737 TYPE_LENGTH (type));
738
739 /* Copy it back. */
740 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
741 amount_copied = 0);
742 amount_copied < amount_to_copy;
743 amount_copied += reg_size, regno++)
744 {
745 enum lval_type lval;
746 CORE_ADDR addr;
747 int optim;
748
749 /* Just find out where to put it. */
750 get_saved_register ((char *) NULL,
751 &optim, &addr, frame, regno, &lval);
752
753 if (optim)
754 error ("Attempt to assign to a value that was optimized out.");
755 if (lval == lval_memory)
756 write_memory (addr, buffer + amount_copied, reg_size);
757 else if (lval == lval_register)
758 write_register_bytes (addr, buffer + amount_copied, reg_size);
759 else
760 error ("Attempt to assign to an unmodifiable value.");
761 }
762
763 if (register_changed_hook)
764 register_changed_hook (-1);
765 target_changed_event ();
766 }
767 break;
768
769
770 default:
771 error ("Left operand of assignment is not an lvalue.");
772 }
773
774 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
775 If the field is signed, and is negative, then sign extend. */
776 if ((VALUE_BITSIZE (toval) > 0)
777 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
778 {
779 LONGEST fieldval = value_as_long (fromval);
780 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
781
782 fieldval &= valmask;
783 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
784 fieldval |= ~valmask;
785
786 fromval = value_from_longest (type, fieldval);
787 }
788
789 val = value_copy (toval);
790 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
791 TYPE_LENGTH (type));
792 VALUE_TYPE (val) = type;
793 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
794 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
795 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
796
797 return val;
798 }
799
800 /* Extend a value VAL to COUNT repetitions of its type. */
801
802 struct value *
803 value_repeat (struct value *arg1, int count)
804 {
805 struct value *val;
806
807 if (VALUE_LVAL (arg1) != lval_memory)
808 error ("Only values in memory can be extended with '@'.");
809 if (count < 1)
810 error ("Invalid number %d of repetitions.", count);
811
812 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
813
814 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
815 VALUE_CONTENTS_ALL_RAW (val),
816 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
817 VALUE_LVAL (val) = lval_memory;
818 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
819
820 return val;
821 }
822
823 struct value *
824 value_of_variable (struct symbol *var, struct block *b)
825 {
826 struct value *val;
827 struct frame_info *frame = NULL;
828
829 if (!b)
830 frame = NULL; /* Use selected frame. */
831 else if (symbol_read_needs_frame (var))
832 {
833 frame = block_innermost_frame (b);
834 if (!frame)
835 {
836 if (BLOCK_FUNCTION (b)
837 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
838 error ("No frame is currently executing in block %s.",
839 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
840 else
841 error ("No frame is currently executing in specified block");
842 }
843 }
844
845 val = read_var_value (var, frame);
846 if (!val)
847 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
848
849 return val;
850 }
851
852 /* Given a value which is an array, return a value which is a pointer to its
853 first element, regardless of whether or not the array has a nonzero lower
854 bound.
855
856 FIXME: A previous comment here indicated that this routine should be
857 substracting the array's lower bound. It's not clear to me that this
858 is correct. Given an array subscripting operation, it would certainly
859 work to do the adjustment here, essentially computing:
860
861 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
862
863 However I believe a more appropriate and logical place to account for
864 the lower bound is to do so in value_subscript, essentially computing:
865
866 (&array[0] + ((index - lowerbound) * sizeof array[0]))
867
868 As further evidence consider what would happen with operations other
869 than array subscripting, where the caller would get back a value that
870 had an address somewhere before the actual first element of the array,
871 and the information about the lower bound would be lost because of
872 the coercion to pointer type.
873 */
874
875 struct value *
876 value_coerce_array (struct value *arg1)
877 {
878 register struct type *type = check_typedef (VALUE_TYPE (arg1));
879
880 if (VALUE_LVAL (arg1) != lval_memory)
881 error ("Attempt to take address of value not located in memory.");
882
883 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
884 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
885 }
886
887 /* Given a value which is a function, return a value which is a pointer
888 to it. */
889
890 struct value *
891 value_coerce_function (struct value *arg1)
892 {
893 struct value *retval;
894
895 if (VALUE_LVAL (arg1) != lval_memory)
896 error ("Attempt to take address of value not located in memory.");
897
898 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
899 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
900 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
901 return retval;
902 }
903
904 /* Return a pointer value for the object for which ARG1 is the contents. */
905
906 struct value *
907 value_addr (struct value *arg1)
908 {
909 struct value *arg2;
910
911 struct type *type = check_typedef (VALUE_TYPE (arg1));
912 if (TYPE_CODE (type) == TYPE_CODE_REF)
913 {
914 /* Copy the value, but change the type from (T&) to (T*).
915 We keep the same location information, which is efficient,
916 and allows &(&X) to get the location containing the reference. */
917 arg2 = value_copy (arg1);
918 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
919 return arg2;
920 }
921 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
922 return value_coerce_function (arg1);
923
924 if (VALUE_LVAL (arg1) != lval_memory)
925 error ("Attempt to take address of value not located in memory.");
926
927 /* Get target memory address */
928 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
929 (VALUE_ADDRESS (arg1)
930 + VALUE_OFFSET (arg1)
931 + VALUE_EMBEDDED_OFFSET (arg1)));
932
933 /* This may be a pointer to a base subobject; so remember the
934 full derived object's type ... */
935 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
936 /* ... and also the relative position of the subobject in the full object */
937 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
938 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
939 return arg2;
940 }
941
942 /* Given a value of a pointer type, apply the C unary * operator to it. */
943
944 struct value *
945 value_ind (struct value *arg1)
946 {
947 struct type *base_type;
948 struct value *arg2;
949
950 COERCE_ARRAY (arg1);
951
952 base_type = check_typedef (VALUE_TYPE (arg1));
953
954 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
955 error ("not implemented: member types in value_ind");
956
957 /* Allow * on an integer so we can cast it to whatever we want.
958 This returns an int, which seems like the most C-like thing
959 to do. "long long" variables are rare enough that
960 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
961 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
962 return value_at_lazy (builtin_type_int,
963 (CORE_ADDR) value_as_long (arg1),
964 VALUE_BFD_SECTION (arg1));
965 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
966 {
967 struct type *enc_type;
968 /* We may be pointing to something embedded in a larger object */
969 /* Get the real type of the enclosing object */
970 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
971 enc_type = TYPE_TARGET_TYPE (enc_type);
972 /* Retrieve the enclosing object pointed to */
973 arg2 = value_at_lazy (enc_type,
974 value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
975 VALUE_BFD_SECTION (arg1));
976 /* Re-adjust type */
977 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
978 /* Add embedding info */
979 arg2 = value_change_enclosing_type (arg2, enc_type);
980 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
981
982 /* We may be pointing to an object of some derived type */
983 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
984 return arg2;
985 }
986
987 error ("Attempt to take contents of a non-pointer value.");
988 return 0; /* For lint -- never reached */
989 }
990 \f
991 /* Pushing small parts of stack frames. */
992
993 /* Push one word (the size of object that a register holds). */
994
995 CORE_ADDR
996 push_word (CORE_ADDR sp, ULONGEST word)
997 {
998 register int len = REGISTER_SIZE;
999 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
1000
1001 store_unsigned_integer (buffer, len, word);
1002 if (INNER_THAN (1, 2))
1003 {
1004 /* stack grows downward */
1005 sp -= len;
1006 write_memory (sp, buffer, len);
1007 }
1008 else
1009 {
1010 /* stack grows upward */
1011 write_memory (sp, buffer, len);
1012 sp += len;
1013 }
1014
1015 return sp;
1016 }
1017
1018 /* Push LEN bytes with data at BUFFER. */
1019
1020 CORE_ADDR
1021 push_bytes (CORE_ADDR sp, char *buffer, int len)
1022 {
1023 if (INNER_THAN (1, 2))
1024 {
1025 /* stack grows downward */
1026 sp -= len;
1027 write_memory (sp, buffer, len);
1028 }
1029 else
1030 {
1031 /* stack grows upward */
1032 write_memory (sp, buffer, len);
1033 sp += len;
1034 }
1035
1036 return sp;
1037 }
1038
1039 #ifndef PARM_BOUNDARY
1040 #define PARM_BOUNDARY (0)
1041 #endif
1042
1043 /* Push onto the stack the specified value VALUE. Pad it correctly for
1044 it to be an argument to a function. */
1045
1046 static CORE_ADDR
1047 value_push (register CORE_ADDR sp, struct value *arg)
1048 {
1049 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1050 register int container_len = len;
1051 register int offset;
1052
1053 /* How big is the container we're going to put this value in? */
1054 if (PARM_BOUNDARY)
1055 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1056 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1057
1058 /* Are we going to put it at the high or low end of the container? */
1059 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1060 offset = container_len - len;
1061 else
1062 offset = 0;
1063
1064 if (INNER_THAN (1, 2))
1065 {
1066 /* stack grows downward */
1067 sp -= container_len;
1068 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1069 }
1070 else
1071 {
1072 /* stack grows upward */
1073 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1074 sp += container_len;
1075 }
1076
1077 return sp;
1078 }
1079
1080 CORE_ADDR
1081 default_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1082 int struct_return, CORE_ADDR struct_addr)
1083 {
1084 /* ASSERT ( !struct_return); */
1085 int i;
1086 for (i = nargs - 1; i >= 0; i--)
1087 sp = value_push (sp, args[i]);
1088 return sp;
1089 }
1090
1091
1092 /* Functions to use for the COERCE_FLOAT_TO_DOUBLE gdbarch method.
1093
1094 How you should pass arguments to a function depends on whether it
1095 was defined in K&R style or prototype style. If you define a
1096 function using the K&R syntax that takes a `float' argument, then
1097 callers must pass that argument as a `double'. If you define the
1098 function using the prototype syntax, then you must pass the
1099 argument as a `float', with no promotion.
1100
1101 Unfortunately, on certain older platforms, the debug info doesn't
1102 indicate reliably how each function was defined. A function type's
1103 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
1104 defined in prototype style. When calling a function whose
1105 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults the
1106 COERCE_FLOAT_TO_DOUBLE gdbarch method to decide what to do.
1107
1108 For modern targets, it is proper to assume that, if the prototype
1109 flag is clear, that can be trusted: `float' arguments should be
1110 promoted to `double'. You should register the function
1111 `standard_coerce_float_to_double' to get this behavior.
1112
1113 For some older targets, if the prototype flag is clear, that
1114 doesn't tell us anything. So we guess that, if we don't have a
1115 type for the formal parameter (i.e., the first argument to
1116 COERCE_FLOAT_TO_DOUBLE is null), then we should promote it;
1117 otherwise, we should leave it alone. The function
1118 `default_coerce_float_to_double' provides this behavior; it is the
1119 default value, for compatibility with older configurations. */
1120 int
1121 default_coerce_float_to_double (struct type *formal, struct type *actual)
1122 {
1123 return formal == NULL;
1124 }
1125
1126
1127 int
1128 standard_coerce_float_to_double (struct type *formal, struct type *actual)
1129 {
1130 return 1;
1131 }
1132
1133
1134 /* Perform the standard coercions that are specified
1135 for arguments to be passed to C functions.
1136
1137 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1138 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1139
1140 static struct value *
1141 value_arg_coerce (struct value *arg, struct type *param_type,
1142 int is_prototyped)
1143 {
1144 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1145 register struct type *type
1146 = param_type ? check_typedef (param_type) : arg_type;
1147
1148 switch (TYPE_CODE (type))
1149 {
1150 case TYPE_CODE_REF:
1151 if (TYPE_CODE (arg_type) != TYPE_CODE_REF
1152 && TYPE_CODE (arg_type) != TYPE_CODE_PTR)
1153 {
1154 arg = value_addr (arg);
1155 VALUE_TYPE (arg) = param_type;
1156 return arg;
1157 }
1158 break;
1159 case TYPE_CODE_INT:
1160 case TYPE_CODE_CHAR:
1161 case TYPE_CODE_BOOL:
1162 case TYPE_CODE_ENUM:
1163 /* If we don't have a prototype, coerce to integer type if necessary. */
1164 if (!is_prototyped)
1165 {
1166 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1167 type = builtin_type_int;
1168 }
1169 /* Currently all target ABIs require at least the width of an integer
1170 type for an argument. We may have to conditionalize the following
1171 type coercion for future targets. */
1172 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1173 type = builtin_type_int;
1174 break;
1175 case TYPE_CODE_FLT:
1176 /* FIXME: We should always convert floats to doubles in the
1177 non-prototyped case. As many debugging formats include
1178 no information about prototyping, we have to live with
1179 COERCE_FLOAT_TO_DOUBLE for now. */
1180 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
1181 {
1182 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1183 type = builtin_type_double;
1184 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1185 type = builtin_type_long_double;
1186 }
1187 break;
1188 case TYPE_CODE_FUNC:
1189 type = lookup_pointer_type (type);
1190 break;
1191 case TYPE_CODE_ARRAY:
1192 /* Arrays are coerced to pointers to their first element, unless
1193 they are vectors, in which case we want to leave them alone,
1194 because they are passed by value. */
1195 if (current_language->c_style_arrays)
1196 if (!TYPE_VECTOR (type))
1197 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1198 break;
1199 case TYPE_CODE_UNDEF:
1200 case TYPE_CODE_PTR:
1201 case TYPE_CODE_STRUCT:
1202 case TYPE_CODE_UNION:
1203 case TYPE_CODE_VOID:
1204 case TYPE_CODE_SET:
1205 case TYPE_CODE_RANGE:
1206 case TYPE_CODE_STRING:
1207 case TYPE_CODE_BITSTRING:
1208 case TYPE_CODE_ERROR:
1209 case TYPE_CODE_MEMBER:
1210 case TYPE_CODE_METHOD:
1211 case TYPE_CODE_COMPLEX:
1212 default:
1213 break;
1214 }
1215
1216 return value_cast (type, arg);
1217 }
1218
1219 /* Determine a function's address and its return type from its value.
1220 Calls error() if the function is not valid for calling. */
1221
1222 static CORE_ADDR
1223 find_function_addr (struct value *function, struct type **retval_type)
1224 {
1225 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1226 register enum type_code code = TYPE_CODE (ftype);
1227 struct type *value_type;
1228 CORE_ADDR funaddr;
1229
1230 /* If it's a member function, just look at the function
1231 part of it. */
1232
1233 /* Determine address to call. */
1234 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1235 {
1236 funaddr = VALUE_ADDRESS (function);
1237 value_type = TYPE_TARGET_TYPE (ftype);
1238 }
1239 else if (code == TYPE_CODE_PTR)
1240 {
1241 funaddr = value_as_address (function);
1242 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1243 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1244 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1245 {
1246 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1247 value_type = TYPE_TARGET_TYPE (ftype);
1248 }
1249 else
1250 value_type = builtin_type_int;
1251 }
1252 else if (code == TYPE_CODE_INT)
1253 {
1254 /* Handle the case of functions lacking debugging info.
1255 Their values are characters since their addresses are char */
1256 if (TYPE_LENGTH (ftype) == 1)
1257 funaddr = value_as_address (value_addr (function));
1258 else
1259 /* Handle integer used as address of a function. */
1260 funaddr = (CORE_ADDR) value_as_long (function);
1261
1262 value_type = builtin_type_int;
1263 }
1264 else
1265 error ("Invalid data type for function to be called.");
1266
1267 *retval_type = value_type;
1268 return funaddr;
1269 }
1270
1271 /* All this stuff with a dummy frame may seem unnecessarily complicated
1272 (why not just save registers in GDB?). The purpose of pushing a dummy
1273 frame which looks just like a real frame is so that if you call a
1274 function and then hit a breakpoint (get a signal, etc), "backtrace"
1275 will look right. Whether the backtrace needs to actually show the
1276 stack at the time the inferior function was called is debatable, but
1277 it certainly needs to not display garbage. So if you are contemplating
1278 making dummy frames be different from normal frames, consider that. */
1279
1280 /* Perform a function call in the inferior.
1281 ARGS is a vector of values of arguments (NARGS of them).
1282 FUNCTION is a value, the function to be called.
1283 Returns a value representing what the function returned.
1284 May fail to return, if a breakpoint or signal is hit
1285 during the execution of the function.
1286
1287 ARGS is modified to contain coerced values. */
1288
1289 static struct value *
1290 hand_function_call (struct value *function, int nargs, struct value **args)
1291 {
1292 register CORE_ADDR sp;
1293 register int i;
1294 int rc;
1295 CORE_ADDR start_sp;
1296 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1297 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1298 and remove any extra bytes which might exist because ULONGEST is
1299 bigger than REGISTER_SIZE.
1300
1301 NOTE: This is pretty wierd, as the call dummy is actually a
1302 sequence of instructions. But CISC machines will have
1303 to pack the instructions into REGISTER_SIZE units (and
1304 so will RISC machines for which INSTRUCTION_SIZE is not
1305 REGISTER_SIZE).
1306
1307 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1308 target byte order. */
1309
1310 static ULONGEST *dummy;
1311 int sizeof_dummy1;
1312 char *dummy1;
1313 CORE_ADDR old_sp;
1314 struct type *value_type;
1315 unsigned char struct_return;
1316 CORE_ADDR struct_addr = 0;
1317 struct regcache *retbuf;
1318 struct cleanup *retbuf_cleanup;
1319 struct inferior_status *inf_status;
1320 struct cleanup *inf_status_cleanup;
1321 CORE_ADDR funaddr;
1322 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1323 CORE_ADDR real_pc;
1324 struct type *param_type = NULL;
1325 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1326 int n_method_args = 0;
1327
1328 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1329 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1330 dummy1 = alloca (sizeof_dummy1);
1331 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1332
1333 if (!target_has_execution)
1334 noprocess ();
1335
1336 /* Create a cleanup chain that contains the retbuf (buffer
1337 containing the register values). This chain is create BEFORE the
1338 inf_status chain so that the inferior status can cleaned up
1339 (restored or discarded) without having the retbuf freed. */
1340 retbuf = regcache_xmalloc (current_gdbarch);
1341 retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
1342
1343 /* A cleanup for the inferior status. Create this AFTER the retbuf
1344 so that this can be discarded or applied without interfering with
1345 the regbuf. */
1346 inf_status = save_inferior_status (1);
1347 inf_status_cleanup = make_cleanup_restore_inferior_status (inf_status);
1348
1349 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1350 (and POP_FRAME for restoring them). (At least on most machines)
1351 they are saved on the stack in the inferior. */
1352 PUSH_DUMMY_FRAME;
1353
1354 old_sp = sp = read_sp ();
1355
1356 if (INNER_THAN (1, 2))
1357 {
1358 /* Stack grows down */
1359 sp -= sizeof_dummy1;
1360 start_sp = sp;
1361 }
1362 else
1363 {
1364 /* Stack grows up */
1365 start_sp = sp;
1366 sp += sizeof_dummy1;
1367 }
1368
1369 funaddr = find_function_addr (function, &value_type);
1370 CHECK_TYPEDEF (value_type);
1371
1372 {
1373 struct block *b = block_for_pc (funaddr);
1374 /* If compiled without -g, assume GCC 2. */
1375 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1376 }
1377
1378 /* Are we returning a value using a structure return or a normal
1379 value return? */
1380
1381 struct_return = using_struct_return (function, funaddr, value_type,
1382 using_gcc);
1383
1384 /* Create a call sequence customized for this function
1385 and the number of arguments for it. */
1386 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1387 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1388 REGISTER_SIZE,
1389 (ULONGEST) dummy[i]);
1390
1391 #ifdef GDB_TARGET_IS_HPPA
1392 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1393 value_type, using_gcc);
1394 #else
1395 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1396 value_type, using_gcc);
1397 real_pc = start_sp;
1398 #endif
1399
1400 if (CALL_DUMMY_LOCATION == ON_STACK)
1401 {
1402 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1403 if (USE_GENERIC_DUMMY_FRAMES)
1404 generic_save_call_dummy_addr (start_sp, start_sp + sizeof_dummy1);
1405 }
1406
1407 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1408 {
1409 /* Convex Unix prohibits executing in the stack segment. */
1410 /* Hope there is empty room at the top of the text segment. */
1411 extern CORE_ADDR text_end;
1412 static int checked = 0;
1413 if (!checked)
1414 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1415 if (read_memory_integer (start_sp, 1) != 0)
1416 error ("text segment full -- no place to put call");
1417 checked = 1;
1418 sp = old_sp;
1419 real_pc = text_end - sizeof_dummy1;
1420 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1421 if (USE_GENERIC_DUMMY_FRAMES)
1422 generic_save_call_dummy_addr (real_pc, real_pc + sizeof_dummy1);
1423 }
1424
1425 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1426 {
1427 extern CORE_ADDR text_end;
1428 int errcode;
1429 sp = old_sp;
1430 real_pc = text_end;
1431 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1432 if (errcode != 0)
1433 error ("Cannot write text segment -- call_function failed");
1434 if (USE_GENERIC_DUMMY_FRAMES)
1435 generic_save_call_dummy_addr (real_pc, real_pc + sizeof_dummy1);
1436 }
1437
1438 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1439 {
1440 real_pc = funaddr;
1441 if (USE_GENERIC_DUMMY_FRAMES)
1442 /* NOTE: cagney/2002-04-13: The entry point is going to be
1443 modified with a single breakpoint. */
1444 generic_save_call_dummy_addr (CALL_DUMMY_ADDRESS (),
1445 CALL_DUMMY_ADDRESS () + 1);
1446 }
1447
1448 #ifdef lint
1449 sp = old_sp; /* It really is used, for some ifdef's... */
1450 #endif
1451
1452 if (nargs < TYPE_NFIELDS (ftype))
1453 error ("too few arguments in function call");
1454
1455 for (i = nargs - 1; i >= 0; i--)
1456 {
1457 int prototyped;
1458
1459 /* FIXME drow/2002-05-31: Should just always mark methods as
1460 prototyped. Can we respect TYPE_VARARGS? Probably not. */
1461 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1462 prototyped = 1;
1463 else
1464 prototyped = TYPE_PROTOTYPED (ftype);
1465
1466 if (i < TYPE_NFIELDS (ftype))
1467 args[i] = value_arg_coerce (args[i], TYPE_FIELD_TYPE (ftype, i),
1468 prototyped);
1469 else
1470 args[i] = value_arg_coerce (args[i], NULL, 0);
1471
1472 /*elz: this code is to handle the case in which the function to be called
1473 has a pointer to function as parameter and the corresponding actual argument
1474 is the address of a function and not a pointer to function variable.
1475 In aCC compiled code, the calls through pointers to functions (in the body
1476 of the function called by hand) are made via $$dyncall_external which
1477 requires some registers setting, this is taken care of if we call
1478 via a function pointer variable, but not via a function address.
1479 In cc this is not a problem. */
1480
1481 if (using_gcc == 0)
1482 if (param_type && TYPE_CODE (ftype) != TYPE_CODE_METHOD)
1483 /* if this parameter is a pointer to function */
1484 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1485 if (TYPE_CODE (TYPE_TARGET_TYPE (param_type)) == TYPE_CODE_FUNC)
1486 /* elz: FIXME here should go the test about the compiler used
1487 to compile the target. We want to issue the error
1488 message only if the compiler used was HP's aCC.
1489 If we used HP's cc, then there is no problem and no need
1490 to return at this point */
1491 if (using_gcc == 0) /* && compiler == aCC */
1492 /* go see if the actual parameter is a variable of type
1493 pointer to function or just a function */
1494 if (args[i]->lval == not_lval)
1495 {
1496 char *arg_name;
1497 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1498 error ("\
1499 You cannot use function <%s> as argument. \n\
1500 You must use a pointer to function type variable. Command ignored.", arg_name);
1501 }
1502 }
1503
1504 if (REG_STRUCT_HAS_ADDR_P ())
1505 {
1506 /* This is a machine like the sparc, where we may need to pass a
1507 pointer to the structure, not the structure itself. */
1508 for (i = nargs - 1; i >= 0; i--)
1509 {
1510 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1511 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1512 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1513 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1514 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1515 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1516 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1517 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1518 && TYPE_LENGTH (arg_type) > 8)
1519 )
1520 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1521 {
1522 CORE_ADDR addr;
1523 int len; /* = TYPE_LENGTH (arg_type); */
1524 int aligned_len;
1525 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1526 len = TYPE_LENGTH (arg_type);
1527
1528 if (STACK_ALIGN_P ())
1529 /* MVS 11/22/96: I think at least some of this
1530 stack_align code is really broken. Better to let
1531 PUSH_ARGUMENTS adjust the stack in a target-defined
1532 manner. */
1533 aligned_len = STACK_ALIGN (len);
1534 else
1535 aligned_len = len;
1536 if (INNER_THAN (1, 2))
1537 {
1538 /* stack grows downward */
1539 sp -= aligned_len;
1540 /* ... so the address of the thing we push is the
1541 stack pointer after we push it. */
1542 addr = sp;
1543 }
1544 else
1545 {
1546 /* The stack grows up, so the address of the thing
1547 we push is the stack pointer before we push it. */
1548 addr = sp;
1549 sp += aligned_len;
1550 }
1551 /* Push the structure. */
1552 write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
1553 /* The value we're going to pass is the address of the
1554 thing we just pushed. */
1555 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1556 (LONGEST) addr); */
1557 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1558 addr);
1559 }
1560 }
1561 }
1562
1563
1564 /* Reserve space for the return structure to be written on the
1565 stack, if necessary */
1566
1567 if (struct_return)
1568 {
1569 int len = TYPE_LENGTH (value_type);
1570 if (STACK_ALIGN_P ())
1571 /* MVS 11/22/96: I think at least some of this stack_align
1572 code is really broken. Better to let PUSH_ARGUMENTS adjust
1573 the stack in a target-defined manner. */
1574 len = STACK_ALIGN (len);
1575 if (INNER_THAN (1, 2))
1576 {
1577 /* stack grows downward */
1578 sp -= len;
1579 struct_addr = sp;
1580 }
1581 else
1582 {
1583 /* stack grows upward */
1584 struct_addr = sp;
1585 sp += len;
1586 }
1587 }
1588
1589 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1590 on other architectures. This is because all the alignment is
1591 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1592 in hppa_push_arguments */
1593 if (EXTRA_STACK_ALIGNMENT_NEEDED)
1594 {
1595 /* MVS 11/22/96: I think at least some of this stack_align code
1596 is really broken. Better to let PUSH_ARGUMENTS adjust the
1597 stack in a target-defined manner. */
1598 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1599 {
1600 /* If stack grows down, we must leave a hole at the top. */
1601 int len = 0;
1602
1603 for (i = nargs - 1; i >= 0; i--)
1604 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1605 if (CALL_DUMMY_STACK_ADJUST_P)
1606 len += CALL_DUMMY_STACK_ADJUST;
1607 sp -= STACK_ALIGN (len) - len;
1608 }
1609 }
1610
1611 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1612
1613 if (PUSH_RETURN_ADDRESS_P ())
1614 /* for targets that use no CALL_DUMMY */
1615 /* There are a number of targets now which actually don't write
1616 any CALL_DUMMY instructions into the target, but instead just
1617 save the machine state, push the arguments, and jump directly
1618 to the callee function. Since this doesn't actually involve
1619 executing a JSR/BSR instruction, the return address must be set
1620 up by hand, either by pushing onto the stack or copying into a
1621 return-address register as appropriate. Formerly this has been
1622 done in PUSH_ARGUMENTS, but that's overloading its
1623 functionality a bit, so I'm making it explicit to do it here. */
1624 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1625
1626 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
1627 {
1628 /* If stack grows up, we must leave a hole at the bottom, note
1629 that sp already has been advanced for the arguments! */
1630 if (CALL_DUMMY_STACK_ADJUST_P)
1631 sp += CALL_DUMMY_STACK_ADJUST;
1632 sp = STACK_ALIGN (sp);
1633 }
1634
1635 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1636 anything here! */
1637 /* MVS 11/22/96: I think at least some of this stack_align code is
1638 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1639 a target-defined manner. */
1640 if (CALL_DUMMY_STACK_ADJUST_P)
1641 if (INNER_THAN (1, 2))
1642 {
1643 /* stack grows downward */
1644 sp -= CALL_DUMMY_STACK_ADJUST;
1645 }
1646
1647 /* Store the address at which the structure is supposed to be
1648 written. Note that this (and the code which reserved the space
1649 above) assumes that gcc was used to compile this function. Since
1650 it doesn't cost us anything but space and if the function is pcc
1651 it will ignore this value, we will make that assumption.
1652
1653 Also note that on some machines (like the sparc) pcc uses a
1654 convention like gcc's. */
1655
1656 if (struct_return)
1657 STORE_STRUCT_RETURN (struct_addr, sp);
1658
1659 /* Write the stack pointer. This is here because the statements above
1660 might fool with it. On SPARC, this write also stores the register
1661 window into the right place in the new stack frame, which otherwise
1662 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1663 write_sp (sp);
1664
1665 if (SAVE_DUMMY_FRAME_TOS_P ())
1666 SAVE_DUMMY_FRAME_TOS (sp);
1667
1668 {
1669 char *name;
1670 struct symbol *symbol;
1671
1672 name = NULL;
1673 symbol = find_pc_function (funaddr);
1674 if (symbol)
1675 {
1676 name = SYMBOL_SOURCE_NAME (symbol);
1677 }
1678 else
1679 {
1680 /* Try the minimal symbols. */
1681 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1682
1683 if (msymbol)
1684 {
1685 name = SYMBOL_SOURCE_NAME (msymbol);
1686 }
1687 }
1688 if (name == NULL)
1689 {
1690 char format[80];
1691 sprintf (format, "at %s", local_hex_format ());
1692 name = alloca (80);
1693 /* FIXME-32x64: assumes funaddr fits in a long. */
1694 sprintf (name, format, (unsigned long) funaddr);
1695 }
1696
1697 /* Execute the stack dummy routine, calling FUNCTION.
1698 When it is done, discard the empty frame
1699 after storing the contents of all regs into retbuf. */
1700 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1701
1702 if (rc == 1)
1703 {
1704 /* We stopped inside the FUNCTION because of a random signal.
1705 Further execution of the FUNCTION is not allowed. */
1706
1707 if (unwind_on_signal_p)
1708 {
1709 /* The user wants the context restored. */
1710
1711 /* We must get back to the frame we were before the dummy call. */
1712 POP_FRAME;
1713
1714 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1715 a C++ name with arguments and stuff. */
1716 error ("\
1717 The program being debugged was signaled while in a function called from GDB.\n\
1718 GDB has restored the context to what it was before the call.\n\
1719 To change this behavior use \"set unwindonsignal off\"\n\
1720 Evaluation of the expression containing the function (%s) will be abandoned.",
1721 name);
1722 }
1723 else
1724 {
1725 /* The user wants to stay in the frame where we stopped (default).*/
1726
1727 /* If we restored the inferior status (via the cleanup),
1728 we would print a spurious error message (Unable to
1729 restore previously selected frame), would write the
1730 registers from the inf_status (which is wrong), and
1731 would do other wrong things. */
1732 discard_cleanups (inf_status_cleanup);
1733 discard_inferior_status (inf_status);
1734
1735 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1736 a C++ name with arguments and stuff. */
1737 error ("\
1738 The program being debugged was signaled while in a function called from GDB.\n\
1739 GDB remains in the frame where the signal was received.\n\
1740 To change this behavior use \"set unwindonsignal on\"\n\
1741 Evaluation of the expression containing the function (%s) will be abandoned.",
1742 name);
1743 }
1744 }
1745
1746 if (rc == 2)
1747 {
1748 /* We hit a breakpoint inside the FUNCTION. */
1749
1750 /* If we restored the inferior status (via the cleanup), we
1751 would print a spurious error message (Unable to restore
1752 previously selected frame), would write the registers from
1753 the inf_status (which is wrong), and would do other wrong
1754 things. */
1755 discard_cleanups (inf_status_cleanup);
1756 discard_inferior_status (inf_status);
1757
1758 /* The following error message used to say "The expression
1759 which contained the function call has been discarded." It
1760 is a hard concept to explain in a few words. Ideally, GDB
1761 would be able to resume evaluation of the expression when
1762 the function finally is done executing. Perhaps someday
1763 this will be implemented (it would not be easy). */
1764
1765 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1766 a C++ name with arguments and stuff. */
1767 error ("\
1768 The program being debugged stopped while in a function called from GDB.\n\
1769 When the function (%s) is done executing, GDB will silently\n\
1770 stop (instead of continuing to evaluate the expression containing\n\
1771 the function call).", name);
1772 }
1773
1774 /* If we get here the called FUNCTION run to completion. */
1775
1776 /* Restore the inferior status, via its cleanup. At this stage,
1777 leave the RETBUF alone. */
1778 do_cleanups (inf_status_cleanup);
1779
1780 /* Figure out the value returned by the function. */
1781 /* elz: I defined this new macro for the hppa architecture only.
1782 this gives us a way to get the value returned by the function from the stack,
1783 at the same address we told the function to put it.
1784 We cannot assume on the pa that r28 still contains the address of the returned
1785 structure. Usually this will be overwritten by the callee.
1786 I don't know about other architectures, so I defined this macro
1787 */
1788
1789 #ifdef VALUE_RETURNED_FROM_STACK
1790 if (struct_return)
1791 {
1792 do_cleanups (retbuf_cleanup);
1793 return VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1794 }
1795 #endif
1796
1797 {
1798 struct value *retval = value_being_returned (value_type, retbuf, struct_return);
1799 do_cleanups (retbuf_cleanup);
1800 return retval;
1801 }
1802 }
1803 }
1804
1805 struct value *
1806 call_function_by_hand (struct value *function, int nargs, struct value **args)
1807 {
1808 if (CALL_DUMMY_P)
1809 {
1810 return hand_function_call (function, nargs, args);
1811 }
1812 else
1813 {
1814 error ("Cannot invoke functions on this machine.");
1815 }
1816 }
1817 \f
1818
1819
1820 /* Create a value for an array by allocating space in the inferior, copying
1821 the data into that space, and then setting up an array value.
1822
1823 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1824 populated from the values passed in ELEMVEC.
1825
1826 The element type of the array is inherited from the type of the
1827 first element, and all elements must have the same size (though we
1828 don't currently enforce any restriction on their types). */
1829
1830 struct value *
1831 value_array (int lowbound, int highbound, struct value **elemvec)
1832 {
1833 int nelem;
1834 int idx;
1835 unsigned int typelength;
1836 struct value *val;
1837 struct type *rangetype;
1838 struct type *arraytype;
1839 CORE_ADDR addr;
1840
1841 /* Validate that the bounds are reasonable and that each of the elements
1842 have the same size. */
1843
1844 nelem = highbound - lowbound + 1;
1845 if (nelem <= 0)
1846 {
1847 error ("bad array bounds (%d, %d)", lowbound, highbound);
1848 }
1849 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1850 for (idx = 1; idx < nelem; idx++)
1851 {
1852 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1853 {
1854 error ("array elements must all be the same size");
1855 }
1856 }
1857
1858 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1859 lowbound, highbound);
1860 arraytype = create_array_type ((struct type *) NULL,
1861 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1862
1863 if (!current_language->c_style_arrays)
1864 {
1865 val = allocate_value (arraytype);
1866 for (idx = 0; idx < nelem; idx++)
1867 {
1868 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1869 VALUE_CONTENTS_ALL (elemvec[idx]),
1870 typelength);
1871 }
1872 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1873 return val;
1874 }
1875
1876 /* Allocate space to store the array in the inferior, and then initialize
1877 it by copying in each element. FIXME: Is it worth it to create a
1878 local buffer in which to collect each value and then write all the
1879 bytes in one operation? */
1880
1881 addr = allocate_space_in_inferior (nelem * typelength);
1882 for (idx = 0; idx < nelem; idx++)
1883 {
1884 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1885 typelength);
1886 }
1887
1888 /* Create the array type and set up an array value to be evaluated lazily. */
1889
1890 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1891 return (val);
1892 }
1893
1894 /* Create a value for a string constant by allocating space in the inferior,
1895 copying the data into that space, and returning the address with type
1896 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1897 of characters.
1898 Note that string types are like array of char types with a lower bound of
1899 zero and an upper bound of LEN - 1. Also note that the string may contain
1900 embedded null bytes. */
1901
1902 struct value *
1903 value_string (char *ptr, int len)
1904 {
1905 struct value *val;
1906 int lowbound = current_language->string_lower_bound;
1907 struct type *rangetype = create_range_type ((struct type *) NULL,
1908 builtin_type_int,
1909 lowbound, len + lowbound - 1);
1910 struct type *stringtype
1911 = create_string_type ((struct type *) NULL, rangetype);
1912 CORE_ADDR addr;
1913
1914 if (current_language->c_style_arrays == 0)
1915 {
1916 val = allocate_value (stringtype);
1917 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1918 return val;
1919 }
1920
1921
1922 /* Allocate space to store the string in the inferior, and then
1923 copy LEN bytes from PTR in gdb to that address in the inferior. */
1924
1925 addr = allocate_space_in_inferior (len);
1926 write_memory (addr, ptr, len);
1927
1928 val = value_at_lazy (stringtype, addr, NULL);
1929 return (val);
1930 }
1931
1932 struct value *
1933 value_bitstring (char *ptr, int len)
1934 {
1935 struct value *val;
1936 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1937 0, len - 1);
1938 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1939 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1940 val = allocate_value (type);
1941 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1942 return val;
1943 }
1944 \f
1945 /* See if we can pass arguments in T2 to a function which takes arguments
1946 of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
1947 vector. If some arguments need coercion of some sort, then the coerced
1948 values are written into T2. Return value is 0 if the arguments could be
1949 matched, or the position at which they differ if not.
1950
1951 STATICP is nonzero if the T1 argument list came from a
1952 static member function. T2 will still include the ``this'' pointer,
1953 but it will be skipped.
1954
1955 For non-static member functions, we ignore the first argument,
1956 which is the type of the instance variable. This is because we want
1957 to handle calls with objects from derived classes. This is not
1958 entirely correct: we should actually check to make sure that a
1959 requested operation is type secure, shouldn't we? FIXME. */
1960
1961 static int
1962 typecmp (int staticp, int varargs, int nargs,
1963 struct field t1[], struct value *t2[])
1964 {
1965 int i;
1966
1967 if (t2 == 0)
1968 internal_error (__FILE__, __LINE__, "typecmp: no argument list");
1969
1970 /* Skip ``this'' argument if applicable. T2 will always include THIS. */
1971 if (staticp)
1972 t2 ++;
1973
1974 for (i = 0;
1975 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1976 i++)
1977 {
1978 struct type *tt1, *tt2;
1979
1980 if (!t2[i])
1981 return i + 1;
1982
1983 tt1 = check_typedef (t1[i].type);
1984 tt2 = check_typedef (VALUE_TYPE (t2[i]));
1985
1986 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1987 /* We should be doing hairy argument matching, as below. */
1988 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1989 {
1990 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1991 t2[i] = value_coerce_array (t2[i]);
1992 else
1993 t2[i] = value_addr (t2[i]);
1994 continue;
1995 }
1996
1997 /* djb - 20000715 - Until the new type structure is in the
1998 place, and we can attempt things like implicit conversions,
1999 we need to do this so you can take something like a map<const
2000 char *>, and properly access map["hello"], because the
2001 argument to [] will be a reference to a pointer to a char,
2002 and the argument will be a pointer to a char. */
2003 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
2004 TYPE_CODE (tt1) == TYPE_CODE_PTR)
2005 {
2006 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
2007 }
2008 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
2009 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
2010 TYPE_CODE(tt2) == TYPE_CODE_REF)
2011 {
2012 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
2013 }
2014 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
2015 continue;
2016 /* Array to pointer is a `trivial conversion' according to the ARM. */
2017
2018 /* We should be doing much hairier argument matching (see section 13.2
2019 of the ARM), but as a quick kludge, just check for the same type
2020 code. */
2021 if (TYPE_CODE (t1[i].type) != TYPE_CODE (VALUE_TYPE (t2[i])))
2022 return i + 1;
2023 }
2024 if (varargs || t2[i] == NULL)
2025 return 0;
2026 return i + 1;
2027 }
2028
2029 /* Helper function used by value_struct_elt to recurse through baseclasses.
2030 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2031 and search in it assuming it has (class) type TYPE.
2032 If found, return value, else return NULL.
2033
2034 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2035 look for a baseclass named NAME. */
2036
2037 static struct value *
2038 search_struct_field (char *name, struct value *arg1, int offset,
2039 register struct type *type, int looking_for_baseclass)
2040 {
2041 int i;
2042 int nbases = TYPE_N_BASECLASSES (type);
2043
2044 CHECK_TYPEDEF (type);
2045
2046 if (!looking_for_baseclass)
2047 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2048 {
2049 char *t_field_name = TYPE_FIELD_NAME (type, i);
2050
2051 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2052 {
2053 struct value *v;
2054 if (TYPE_FIELD_STATIC (type, i))
2055 {
2056 v = value_static_field (type, i);
2057 if (v == 0)
2058 error ("field %s is nonexistent or has been optimised out",
2059 name);
2060 }
2061 else
2062 {
2063 v = value_primitive_field (arg1, offset, i, type);
2064 if (v == 0)
2065 error ("there is no field named %s", name);
2066 }
2067 return v;
2068 }
2069
2070 if (t_field_name
2071 && (t_field_name[0] == '\0'
2072 || (TYPE_CODE (type) == TYPE_CODE_UNION
2073 && (strcmp_iw (t_field_name, "else") == 0))))
2074 {
2075 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2076 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2077 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2078 {
2079 /* Look for a match through the fields of an anonymous union,
2080 or anonymous struct. C++ provides anonymous unions.
2081
2082 In the GNU Chill (OBSOLETE) implementation of
2083 variant record types, each <alternative field> has
2084 an (anonymous) union type, each member of the union
2085 represents a <variant alternative>. Each <variant
2086 alternative> is represented as a struct, with a
2087 member for each <variant field>. */
2088
2089 struct value *v;
2090 int new_offset = offset;
2091
2092 /* This is pretty gross. In G++, the offset in an
2093 anonymous union is relative to the beginning of the
2094 enclosing struct. In the GNU Chill (OBSOLETE)
2095 implementation of variant records, the bitpos is
2096 zero in an anonymous union field, so we have to add
2097 the offset of the union here. */
2098 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2099 || (TYPE_NFIELDS (field_type) > 0
2100 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2101 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2102
2103 v = search_struct_field (name, arg1, new_offset, field_type,
2104 looking_for_baseclass);
2105 if (v)
2106 return v;
2107 }
2108 }
2109 }
2110
2111 for (i = 0; i < nbases; i++)
2112 {
2113 struct value *v;
2114 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2115 /* If we are looking for baseclasses, this is what we get when we
2116 hit them. But it could happen that the base part's member name
2117 is not yet filled in. */
2118 int found_baseclass = (looking_for_baseclass
2119 && TYPE_BASECLASS_NAME (type, i) != NULL
2120 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2121
2122 if (BASETYPE_VIA_VIRTUAL (type, i))
2123 {
2124 int boffset;
2125 struct value *v2 = allocate_value (basetype);
2126
2127 boffset = baseclass_offset (type, i,
2128 VALUE_CONTENTS (arg1) + offset,
2129 VALUE_ADDRESS (arg1)
2130 + VALUE_OFFSET (arg1) + offset);
2131 if (boffset == -1)
2132 error ("virtual baseclass botch");
2133
2134 /* The virtual base class pointer might have been clobbered by the
2135 user program. Make sure that it still points to a valid memory
2136 location. */
2137
2138 boffset += offset;
2139 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2140 {
2141 CORE_ADDR base_addr;
2142
2143 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2144 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2145 TYPE_LENGTH (basetype)) != 0)
2146 error ("virtual baseclass botch");
2147 VALUE_LVAL (v2) = lval_memory;
2148 VALUE_ADDRESS (v2) = base_addr;
2149 }
2150 else
2151 {
2152 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2153 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2154 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2155 if (VALUE_LAZY (arg1))
2156 VALUE_LAZY (v2) = 1;
2157 else
2158 memcpy (VALUE_CONTENTS_RAW (v2),
2159 VALUE_CONTENTS_RAW (arg1) + boffset,
2160 TYPE_LENGTH (basetype));
2161 }
2162
2163 if (found_baseclass)
2164 return v2;
2165 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2166 looking_for_baseclass);
2167 }
2168 else if (found_baseclass)
2169 v = value_primitive_field (arg1, offset, i, type);
2170 else
2171 v = search_struct_field (name, arg1,
2172 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2173 basetype, looking_for_baseclass);
2174 if (v)
2175 return v;
2176 }
2177 return NULL;
2178 }
2179
2180
2181 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2182 * in an object pointed to by VALADDR (on the host), assumed to be of
2183 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2184 * looking (in case VALADDR is the contents of an enclosing object).
2185 *
2186 * This routine recurses on the primary base of the derived class because
2187 * the virtual base entries of the primary base appear before the other
2188 * virtual base entries.
2189 *
2190 * If the virtual base is not found, a negative integer is returned.
2191 * The magnitude of the negative integer is the number of entries in
2192 * the virtual table to skip over (entries corresponding to various
2193 * ancestral classes in the chain of primary bases).
2194 *
2195 * Important: This assumes the HP / Taligent C++ runtime
2196 * conventions. Use baseclass_offset() instead to deal with g++
2197 * conventions. */
2198
2199 void
2200 find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2201 int offset, int *boffset_p, int *skip_p)
2202 {
2203 int boffset; /* offset of virtual base */
2204 int index; /* displacement to use in virtual table */
2205 int skip;
2206
2207 struct value *vp;
2208 CORE_ADDR vtbl; /* the virtual table pointer */
2209 struct type *pbc; /* the primary base class */
2210
2211 /* Look for the virtual base recursively in the primary base, first.
2212 * This is because the derived class object and its primary base
2213 * subobject share the primary virtual table. */
2214
2215 boffset = 0;
2216 pbc = TYPE_PRIMARY_BASE (type);
2217 if (pbc)
2218 {
2219 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2220 if (skip < 0)
2221 {
2222 *boffset_p = boffset;
2223 *skip_p = -1;
2224 return;
2225 }
2226 }
2227 else
2228 skip = 0;
2229
2230
2231 /* Find the index of the virtual base according to HP/Taligent
2232 runtime spec. (Depth-first, left-to-right.) */
2233 index = virtual_base_index_skip_primaries (basetype, type);
2234
2235 if (index < 0)
2236 {
2237 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2238 *boffset_p = 0;
2239 return;
2240 }
2241
2242 /* pai: FIXME -- 32x64 possible problem */
2243 /* First word (4 bytes) in object layout is the vtable pointer */
2244 vtbl = *(CORE_ADDR *) (valaddr + offset);
2245
2246 /* Before the constructor is invoked, things are usually zero'd out. */
2247 if (vtbl == 0)
2248 error ("Couldn't find virtual table -- object may not be constructed yet.");
2249
2250
2251 /* Find virtual base's offset -- jump over entries for primary base
2252 * ancestors, then use the index computed above. But also adjust by
2253 * HP_ACC_VBASE_START for the vtable slots before the start of the
2254 * virtual base entries. Offset is negative -- virtual base entries
2255 * appear _before_ the address point of the virtual table. */
2256
2257 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2258 & use long type */
2259
2260 /* epstein : FIXME -- added param for overlay section. May not be correct */
2261 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2262 boffset = value_as_long (vp);
2263 *skip_p = -1;
2264 *boffset_p = boffset;
2265 return;
2266 }
2267
2268
2269 /* Helper function used by value_struct_elt to recurse through baseclasses.
2270 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2271 and search in it assuming it has (class) type TYPE.
2272 If found, return value, else if name matched and args not return (value)-1,
2273 else return NULL. */
2274
2275 static struct value *
2276 search_struct_method (char *name, struct value **arg1p,
2277 struct value **args, int offset,
2278 int *static_memfuncp, register struct type *type)
2279 {
2280 int i;
2281 struct value *v;
2282 int name_matched = 0;
2283 char dem_opname[64];
2284
2285 CHECK_TYPEDEF (type);
2286 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2287 {
2288 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2289 /* FIXME! May need to check for ARM demangling here */
2290 if (strncmp (t_field_name, "__", 2) == 0 ||
2291 strncmp (t_field_name, "op", 2) == 0 ||
2292 strncmp (t_field_name, "type", 4) == 0)
2293 {
2294 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2295 t_field_name = dem_opname;
2296 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2297 t_field_name = dem_opname;
2298 }
2299 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2300 {
2301 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2302 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2303 name_matched = 1;
2304
2305 if (j > 0 && args == 0)
2306 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2307 else if (j == 0 && args == 0)
2308 {
2309 if (TYPE_FN_FIELD_STUB (f, j))
2310 check_stub_method (type, i, j);
2311 v = value_fn_field (arg1p, f, j, type, offset);
2312 if (v != NULL)
2313 return v;
2314 }
2315 else
2316 while (j >= 0)
2317 {
2318 if (TYPE_FN_FIELD_STUB (f, j))
2319 check_stub_method (type, i, j);
2320 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2321 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2322 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2323 TYPE_FN_FIELD_ARGS (f, j), args))
2324 {
2325 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2326 return value_virtual_fn_field (arg1p, f, j, type, offset);
2327 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2328 *static_memfuncp = 1;
2329 v = value_fn_field (arg1p, f, j, type, offset);
2330 if (v != NULL)
2331 return v;
2332 }
2333 j--;
2334 }
2335 }
2336 }
2337
2338 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2339 {
2340 int base_offset;
2341
2342 if (BASETYPE_VIA_VIRTUAL (type, i))
2343 {
2344 if (TYPE_HAS_VTABLE (type))
2345 {
2346 /* HP aCC compiled type, search for virtual base offset
2347 according to HP/Taligent runtime spec. */
2348 int skip;
2349 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2350 VALUE_CONTENTS_ALL (*arg1p),
2351 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2352 &base_offset, &skip);
2353 if (skip >= 0)
2354 error ("Virtual base class offset not found in vtable");
2355 }
2356 else
2357 {
2358 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2359 char *base_valaddr;
2360
2361 /* The virtual base class pointer might have been clobbered by the
2362 user program. Make sure that it still points to a valid memory
2363 location. */
2364
2365 if (offset < 0 || offset >= TYPE_LENGTH (type))
2366 {
2367 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2368 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2369 + VALUE_OFFSET (*arg1p) + offset,
2370 base_valaddr,
2371 TYPE_LENGTH (baseclass)) != 0)
2372 error ("virtual baseclass botch");
2373 }
2374 else
2375 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2376
2377 base_offset =
2378 baseclass_offset (type, i, base_valaddr,
2379 VALUE_ADDRESS (*arg1p)
2380 + VALUE_OFFSET (*arg1p) + offset);
2381 if (base_offset == -1)
2382 error ("virtual baseclass botch");
2383 }
2384 }
2385 else
2386 {
2387 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2388 }
2389 v = search_struct_method (name, arg1p, args, base_offset + offset,
2390 static_memfuncp, TYPE_BASECLASS (type, i));
2391 if (v == (struct value *) - 1)
2392 {
2393 name_matched = 1;
2394 }
2395 else if (v)
2396 {
2397 /* FIXME-bothner: Why is this commented out? Why is it here? */
2398 /* *arg1p = arg1_tmp; */
2399 return v;
2400 }
2401 }
2402 if (name_matched)
2403 return (struct value *) - 1;
2404 else
2405 return NULL;
2406 }
2407
2408 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2409 extract the component named NAME from the ultimate target structure/union
2410 and return it as a value with its appropriate type.
2411 ERR is used in the error message if *ARGP's type is wrong.
2412
2413 C++: ARGS is a list of argument types to aid in the selection of
2414 an appropriate method. Also, handle derived types.
2415
2416 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2417 where the truthvalue of whether the function that was resolved was
2418 a static member function or not is stored.
2419
2420 ERR is an error message to be printed in case the field is not found. */
2421
2422 struct value *
2423 value_struct_elt (struct value **argp, struct value **args,
2424 char *name, int *static_memfuncp, char *err)
2425 {
2426 register struct type *t;
2427 struct value *v;
2428
2429 COERCE_ARRAY (*argp);
2430
2431 t = check_typedef (VALUE_TYPE (*argp));
2432
2433 /* Follow pointers until we get to a non-pointer. */
2434
2435 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2436 {
2437 *argp = value_ind (*argp);
2438 /* Don't coerce fn pointer to fn and then back again! */
2439 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2440 COERCE_ARRAY (*argp);
2441 t = check_typedef (VALUE_TYPE (*argp));
2442 }
2443
2444 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2445 error ("not implemented: member type in value_struct_elt");
2446
2447 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2448 && TYPE_CODE (t) != TYPE_CODE_UNION)
2449 error ("Attempt to extract a component of a value that is not a %s.", err);
2450
2451 /* Assume it's not, unless we see that it is. */
2452 if (static_memfuncp)
2453 *static_memfuncp = 0;
2454
2455 if (!args)
2456 {
2457 /* if there are no arguments ...do this... */
2458
2459 /* Try as a field first, because if we succeed, there
2460 is less work to be done. */
2461 v = search_struct_field (name, *argp, 0, t, 0);
2462 if (v)
2463 return v;
2464
2465 /* C++: If it was not found as a data field, then try to
2466 return it as a pointer to a method. */
2467
2468 if (destructor_name_p (name, t))
2469 error ("Cannot get value of destructor");
2470
2471 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2472
2473 if (v == (struct value *) - 1)
2474 error ("Cannot take address of a method");
2475 else if (v == 0)
2476 {
2477 if (TYPE_NFN_FIELDS (t))
2478 error ("There is no member or method named %s.", name);
2479 else
2480 error ("There is no member named %s.", name);
2481 }
2482 return v;
2483 }
2484
2485 if (destructor_name_p (name, t))
2486 {
2487 if (!args[1])
2488 {
2489 /* Destructors are a special case. */
2490 int m_index, f_index;
2491
2492 v = NULL;
2493 if (get_destructor_fn_field (t, &m_index, &f_index))
2494 {
2495 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2496 f_index, NULL, 0);
2497 }
2498 if (v == NULL)
2499 error ("could not find destructor function named %s.", name);
2500 else
2501 return v;
2502 }
2503 else
2504 {
2505 error ("destructor should not have any argument");
2506 }
2507 }
2508 else
2509 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2510
2511 if (v == (struct value *) - 1)
2512 {
2513 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
2514 }
2515 else if (v == 0)
2516 {
2517 /* See if user tried to invoke data as function. If so,
2518 hand it back. If it's not callable (i.e., a pointer to function),
2519 gdb should give an error. */
2520 v = search_struct_field (name, *argp, 0, t, 0);
2521 }
2522
2523 if (!v)
2524 error ("Structure has no component named %s.", name);
2525 return v;
2526 }
2527
2528 /* Search through the methods of an object (and its bases)
2529 * to find a specified method. Return the pointer to the
2530 * fn_field list of overloaded instances.
2531 * Helper function for value_find_oload_list.
2532 * ARGP is a pointer to a pointer to a value (the object)
2533 * METHOD is a string containing the method name
2534 * OFFSET is the offset within the value
2535 * TYPE is the assumed type of the object
2536 * NUM_FNS is the number of overloaded instances
2537 * BASETYPE is set to the actual type of the subobject where the method is found
2538 * BOFFSET is the offset of the base subobject where the method is found */
2539
2540 static struct fn_field *
2541 find_method_list (struct value **argp, char *method, int offset,
2542 struct type *type, int *num_fns,
2543 struct type **basetype, int *boffset)
2544 {
2545 int i;
2546 struct fn_field *f;
2547 CHECK_TYPEDEF (type);
2548
2549 *num_fns = 0;
2550
2551 /* First check in object itself */
2552 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2553 {
2554 /* pai: FIXME What about operators and type conversions? */
2555 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2556 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2557 {
2558 /* Resolve any stub methods. */
2559 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2560 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2561 int j;
2562
2563 *num_fns = len;
2564 *basetype = type;
2565 *boffset = offset;
2566
2567 for (j = 0; j < len; j++)
2568 {
2569 if (TYPE_FN_FIELD_STUB (f, j))
2570 check_stub_method (type, i, j);
2571 }
2572
2573 return f;
2574 }
2575 }
2576
2577 /* Not found in object, check in base subobjects */
2578 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2579 {
2580 int base_offset;
2581 if (BASETYPE_VIA_VIRTUAL (type, i))
2582 {
2583 if (TYPE_HAS_VTABLE (type))
2584 {
2585 /* HP aCC compiled type, search for virtual base offset
2586 * according to HP/Taligent runtime spec. */
2587 int skip;
2588 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2589 VALUE_CONTENTS_ALL (*argp),
2590 offset + VALUE_EMBEDDED_OFFSET (*argp),
2591 &base_offset, &skip);
2592 if (skip >= 0)
2593 error ("Virtual base class offset not found in vtable");
2594 }
2595 else
2596 {
2597 /* probably g++ runtime model */
2598 base_offset = VALUE_OFFSET (*argp) + offset;
2599 base_offset =
2600 baseclass_offset (type, i,
2601 VALUE_CONTENTS (*argp) + base_offset,
2602 VALUE_ADDRESS (*argp) + base_offset);
2603 if (base_offset == -1)
2604 error ("virtual baseclass botch");
2605 }
2606 }
2607 else
2608 /* non-virtual base, simply use bit position from debug info */
2609 {
2610 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2611 }
2612 f = find_method_list (argp, method, base_offset + offset,
2613 TYPE_BASECLASS (type, i), num_fns, basetype,
2614 boffset);
2615 if (f)
2616 return f;
2617 }
2618 return NULL;
2619 }
2620
2621 /* Return the list of overloaded methods of a specified name.
2622 * ARGP is a pointer to a pointer to a value (the object)
2623 * METHOD is the method name
2624 * OFFSET is the offset within the value contents
2625 * NUM_FNS is the number of overloaded instances
2626 * BASETYPE is set to the type of the base subobject that defines the method
2627 * BOFFSET is the offset of the base subobject which defines the method */
2628
2629 struct fn_field *
2630 value_find_oload_method_list (struct value **argp, char *method, int offset,
2631 int *num_fns, struct type **basetype,
2632 int *boffset)
2633 {
2634 struct type *t;
2635
2636 t = check_typedef (VALUE_TYPE (*argp));
2637
2638 /* code snarfed from value_struct_elt */
2639 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2640 {
2641 *argp = value_ind (*argp);
2642 /* Don't coerce fn pointer to fn and then back again! */
2643 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2644 COERCE_ARRAY (*argp);
2645 t = check_typedef (VALUE_TYPE (*argp));
2646 }
2647
2648 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2649 error ("Not implemented: member type in value_find_oload_lis");
2650
2651 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2652 && TYPE_CODE (t) != TYPE_CODE_UNION)
2653 error ("Attempt to extract a component of a value that is not a struct or union");
2654
2655 return find_method_list (argp, method, 0, t, num_fns, basetype, boffset);
2656 }
2657
2658 /* Given an array of argument types (ARGTYPES) (which includes an
2659 entry for "this" in the case of C++ methods), the number of
2660 arguments NARGS, the NAME of a function whether it's a method or
2661 not (METHOD), and the degree of laxness (LAX) in conforming to
2662 overload resolution rules in ANSI C++, find the best function that
2663 matches on the argument types according to the overload resolution
2664 rules.
2665
2666 In the case of class methods, the parameter OBJ is an object value
2667 in which to search for overloaded methods.
2668
2669 In the case of non-method functions, the parameter FSYM is a symbol
2670 corresponding to one of the overloaded functions.
2671
2672 Return value is an integer: 0 -> good match, 10 -> debugger applied
2673 non-standard coercions, 100 -> incompatible.
2674
2675 If a method is being searched for, VALP will hold the value.
2676 If a non-method is being searched for, SYMP will hold the symbol for it.
2677
2678 If a method is being searched for, and it is a static method,
2679 then STATICP will point to a non-zero value.
2680
2681 Note: This function does *not* check the value of
2682 overload_resolution. Caller must check it to see whether overload
2683 resolution is permitted.
2684 */
2685
2686 int
2687 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
2688 int lax, struct value **objp, struct symbol *fsym,
2689 struct value **valp, struct symbol **symp, int *staticp)
2690 {
2691 int nparms;
2692 struct type **parm_types;
2693 int champ_nparms = 0;
2694 struct value *obj = (objp ? *objp : NULL);
2695
2696 short oload_champ = -1; /* Index of best overloaded function */
2697 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2698 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2699 short oload_ambig_champ = -1; /* 2nd contender for best match */
2700 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2701 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2702
2703 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2704 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2705
2706 struct value *temp = obj;
2707 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2708 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2709 int num_fns = 0; /* Number of overloaded instances being considered */
2710 struct type *basetype = NULL;
2711 int boffset;
2712 register int jj;
2713 register int ix;
2714 int static_offset;
2715 struct cleanup *cleanups = NULL;
2716
2717 char *obj_type_name = NULL;
2718 char *func_name = NULL;
2719
2720 /* Get the list of overloaded methods or functions */
2721 if (method)
2722 {
2723 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2724 /* Hack: evaluate_subexp_standard often passes in a pointer
2725 value rather than the object itself, so try again */
2726 if ((!obj_type_name || !*obj_type_name) &&
2727 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2728 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2729
2730 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2731 &num_fns,
2732 &basetype, &boffset);
2733 if (!fns_ptr || !num_fns)
2734 error ("Couldn't find method %s%s%s",
2735 obj_type_name,
2736 (obj_type_name && *obj_type_name) ? "::" : "",
2737 name);
2738 /* If we are dealing with stub method types, they should have
2739 been resolved by find_method_list via value_find_oload_method_list
2740 above. */
2741 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2742 }
2743 else
2744 {
2745 int i = -1;
2746 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2747
2748 /* If the name is NULL this must be a C-style function.
2749 Just return the same symbol. */
2750 if (!func_name)
2751 {
2752 *symp = fsym;
2753 return 0;
2754 }
2755
2756 oload_syms = make_symbol_overload_list (fsym);
2757 cleanups = make_cleanup (xfree, oload_syms);
2758 while (oload_syms[++i])
2759 num_fns++;
2760 if (!num_fns)
2761 error ("Couldn't find function %s", func_name);
2762 }
2763
2764 oload_champ_bv = NULL;
2765
2766 /* Consider each candidate in turn */
2767 for (ix = 0; ix < num_fns; ix++)
2768 {
2769 static_offset = 0;
2770 if (method)
2771 {
2772 if (TYPE_FN_FIELD_STATIC_P (fns_ptr, ix))
2773 static_offset = 1;
2774 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2775 }
2776 else
2777 {
2778 /* If it's not a method, this is the proper place */
2779 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2780 }
2781
2782 /* Prepare array of parameter types */
2783 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2784 for (jj = 0; jj < nparms; jj++)
2785 parm_types[jj] = (method
2786 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2787 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2788
2789 /* Compare parameter types to supplied argument types. Skip THIS for
2790 static methods. */
2791 bv = rank_function (parm_types, nparms, arg_types + static_offset,
2792 nargs - static_offset);
2793
2794 if (!oload_champ_bv)
2795 {
2796 oload_champ_bv = bv;
2797 oload_champ = 0;
2798 champ_nparms = nparms;
2799 }
2800 else
2801 /* See whether current candidate is better or worse than previous best */
2802 switch (compare_badness (bv, oload_champ_bv))
2803 {
2804 case 0:
2805 oload_ambiguous = 1; /* top two contenders are equally good */
2806 oload_ambig_champ = ix;
2807 break;
2808 case 1:
2809 oload_ambiguous = 2; /* incomparable top contenders */
2810 oload_ambig_champ = ix;
2811 break;
2812 case 2:
2813 oload_champ_bv = bv; /* new champion, record details */
2814 oload_ambiguous = 0;
2815 oload_champ = ix;
2816 oload_ambig_champ = -1;
2817 champ_nparms = nparms;
2818 break;
2819 case 3:
2820 default:
2821 break;
2822 }
2823 xfree (parm_types);
2824 if (overload_debug)
2825 {
2826 if (method)
2827 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2828 else
2829 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2830 for (jj = 0; jj < nargs - static_offset; jj++)
2831 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2832 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2833 }
2834 } /* end loop over all candidates */
2835 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2836 if they have the exact same goodness. This is because there is no
2837 way to differentiate based on return type, which we need to in
2838 cases like overloads of .begin() <It's both const and non-const> */
2839 #if 0
2840 if (oload_ambiguous)
2841 {
2842 if (method)
2843 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2844 obj_type_name,
2845 (obj_type_name && *obj_type_name) ? "::" : "",
2846 name);
2847 else
2848 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2849 func_name);
2850 }
2851 #endif
2852
2853 /* Check how bad the best match is. */
2854 static_offset = 0;
2855 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2856 static_offset = 1;
2857 for (ix = 1; ix <= nargs - static_offset; ix++)
2858 {
2859 if (oload_champ_bv->rank[ix] >= 100)
2860 oload_incompatible = 1; /* truly mismatched types */
2861
2862 else if (oload_champ_bv->rank[ix] >= 10)
2863 oload_non_standard = 1; /* non-standard type conversions needed */
2864 }
2865 if (oload_incompatible)
2866 {
2867 if (method)
2868 error ("Cannot resolve method %s%s%s to any overloaded instance",
2869 obj_type_name,
2870 (obj_type_name && *obj_type_name) ? "::" : "",
2871 name);
2872 else
2873 error ("Cannot resolve function %s to any overloaded instance",
2874 func_name);
2875 }
2876 else if (oload_non_standard)
2877 {
2878 if (method)
2879 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2880 obj_type_name,
2881 (obj_type_name && *obj_type_name) ? "::" : "",
2882 name);
2883 else
2884 warning ("Using non-standard conversion to match function %s to supplied arguments",
2885 func_name);
2886 }
2887
2888 if (method)
2889 {
2890 if (staticp && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2891 *staticp = 1;
2892 else if (staticp)
2893 *staticp = 0;
2894 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2895 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2896 else
2897 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2898 }
2899 else
2900 {
2901 *symp = oload_syms[oload_champ];
2902 xfree (func_name);
2903 }
2904
2905 if (objp)
2906 {
2907 if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR
2908 && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR)
2909 {
2910 temp = value_addr (temp);
2911 }
2912 *objp = temp;
2913 }
2914 if (cleanups != NULL)
2915 do_cleanups (cleanups);
2916
2917 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2918 }
2919
2920 /* C++: return 1 is NAME is a legitimate name for the destructor
2921 of type TYPE. If TYPE does not have a destructor, or
2922 if NAME is inappropriate for TYPE, an error is signaled. */
2923 int
2924 destructor_name_p (const char *name, const struct type *type)
2925 {
2926 /* destructors are a special case. */
2927
2928 if (name[0] == '~')
2929 {
2930 char *dname = type_name_no_tag (type);
2931 char *cp = strchr (dname, '<');
2932 unsigned int len;
2933
2934 /* Do not compare the template part for template classes. */
2935 if (cp == NULL)
2936 len = strlen (dname);
2937 else
2938 len = cp - dname;
2939 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2940 error ("name of destructor must equal name of class");
2941 else
2942 return 1;
2943 }
2944 return 0;
2945 }
2946
2947 /* Helper function for check_field: Given TYPE, a structure/union,
2948 return 1 if the component named NAME from the ultimate
2949 target structure/union is defined, otherwise, return 0. */
2950
2951 static int
2952 check_field_in (register struct type *type, const char *name)
2953 {
2954 register int i;
2955
2956 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2957 {
2958 char *t_field_name = TYPE_FIELD_NAME (type, i);
2959 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2960 return 1;
2961 }
2962
2963 /* C++: If it was not found as a data field, then try to
2964 return it as a pointer to a method. */
2965
2966 /* Destructors are a special case. */
2967 if (destructor_name_p (name, type))
2968 {
2969 int m_index, f_index;
2970
2971 return get_destructor_fn_field (type, &m_index, &f_index);
2972 }
2973
2974 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2975 {
2976 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2977 return 1;
2978 }
2979
2980 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2981 if (check_field_in (TYPE_BASECLASS (type, i), name))
2982 return 1;
2983
2984 return 0;
2985 }
2986
2987
2988 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2989 return 1 if the component named NAME from the ultimate
2990 target structure/union is defined, otherwise, return 0. */
2991
2992 int
2993 check_field (struct value *arg1, const char *name)
2994 {
2995 register struct type *t;
2996
2997 COERCE_ARRAY (arg1);
2998
2999 t = VALUE_TYPE (arg1);
3000
3001 /* Follow pointers until we get to a non-pointer. */
3002
3003 for (;;)
3004 {
3005 CHECK_TYPEDEF (t);
3006 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
3007 break;
3008 t = TYPE_TARGET_TYPE (t);
3009 }
3010
3011 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
3012 error ("not implemented: member type in check_field");
3013
3014 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3015 && TYPE_CODE (t) != TYPE_CODE_UNION)
3016 error ("Internal error: `this' is not an aggregate");
3017
3018 return check_field_in (t, name);
3019 }
3020
3021 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3022 return the address of this member as a "pointer to member"
3023 type. If INTYPE is non-null, then it will be the type
3024 of the member we are looking for. This will help us resolve
3025 "pointers to member functions". This function is used
3026 to resolve user expressions of the form "DOMAIN::NAME". */
3027
3028 struct value *
3029 value_struct_elt_for_reference (struct type *domain, int offset,
3030 struct type *curtype, char *name,
3031 struct type *intype)
3032 {
3033 register struct type *t = curtype;
3034 register int i;
3035 struct value *v;
3036
3037 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3038 && TYPE_CODE (t) != TYPE_CODE_UNION)
3039 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3040
3041 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3042 {
3043 char *t_field_name = TYPE_FIELD_NAME (t, i);
3044
3045 if (t_field_name && STREQ (t_field_name, name))
3046 {
3047 if (TYPE_FIELD_STATIC (t, i))
3048 {
3049 v = value_static_field (t, i);
3050 if (v == NULL)
3051 error ("static field %s has been optimized out",
3052 name);
3053 return v;
3054 }
3055 if (TYPE_FIELD_PACKED (t, i))
3056 error ("pointers to bitfield members not allowed");
3057
3058 return value_from_longest
3059 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3060 domain)),
3061 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3062 }
3063 }
3064
3065 /* C++: If it was not found as a data field, then try to
3066 return it as a pointer to a method. */
3067
3068 /* Destructors are a special case. */
3069 if (destructor_name_p (name, t))
3070 {
3071 error ("member pointers to destructors not implemented yet");
3072 }
3073
3074 /* Perform all necessary dereferencing. */
3075 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3076 intype = TYPE_TARGET_TYPE (intype);
3077
3078 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3079 {
3080 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3081 char dem_opname[64];
3082
3083 if (strncmp (t_field_name, "__", 2) == 0 ||
3084 strncmp (t_field_name, "op", 2) == 0 ||
3085 strncmp (t_field_name, "type", 4) == 0)
3086 {
3087 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3088 t_field_name = dem_opname;
3089 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3090 t_field_name = dem_opname;
3091 }
3092 if (t_field_name && STREQ (t_field_name, name))
3093 {
3094 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3095 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3096
3097 if (intype == 0 && j > 1)
3098 error ("non-unique member `%s' requires type instantiation", name);
3099 if (intype)
3100 {
3101 while (j--)
3102 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3103 break;
3104 if (j < 0)
3105 error ("no member function matches that type instantiation");
3106 }
3107 else
3108 j = 0;
3109
3110 if (TYPE_FN_FIELD_STUB (f, j))
3111 check_stub_method (t, i, j);
3112 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3113 {
3114 return value_from_longest
3115 (lookup_reference_type
3116 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3117 domain)),
3118 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3119 }
3120 else
3121 {
3122 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3123 0, VAR_NAMESPACE, 0, NULL);
3124 if (s == NULL)
3125 {
3126 v = 0;
3127 }
3128 else
3129 {
3130 v = read_var_value (s, 0);
3131 #if 0
3132 VALUE_TYPE (v) = lookup_reference_type
3133 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3134 domain));
3135 #endif
3136 }
3137 return v;
3138 }
3139 }
3140 }
3141 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3142 {
3143 struct value *v;
3144 int base_offset;
3145
3146 if (BASETYPE_VIA_VIRTUAL (t, i))
3147 base_offset = 0;
3148 else
3149 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3150 v = value_struct_elt_for_reference (domain,
3151 offset + base_offset,
3152 TYPE_BASECLASS (t, i),
3153 name,
3154 intype);
3155 if (v)
3156 return v;
3157 }
3158 return 0;
3159 }
3160
3161
3162 /* Given a pointer value V, find the real (RTTI) type
3163 of the object it points to.
3164 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3165 and refer to the values computed for the object pointed to. */
3166
3167 struct type *
3168 value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
3169 {
3170 struct value *target;
3171
3172 target = value_ind (v);
3173
3174 return value_rtti_type (target, full, top, using_enc);
3175 }
3176
3177 /* Given a value pointed to by ARGP, check its real run-time type, and
3178 if that is different from the enclosing type, create a new value
3179 using the real run-time type as the enclosing type (and of the same
3180 type as ARGP) and return it, with the embedded offset adjusted to
3181 be the correct offset to the enclosed object
3182 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3183 parameters, computed by value_rtti_type(). If these are available,
3184 they can be supplied and a second call to value_rtti_type() is avoided.
3185 (Pass RTYPE == NULL if they're not available */
3186
3187 struct value *
3188 value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
3189 int xusing_enc)
3190 {
3191 struct type *real_type;
3192 int full = 0;
3193 int top = -1;
3194 int using_enc = 0;
3195 struct value *new_val;
3196
3197 if (rtype)
3198 {
3199 real_type = rtype;
3200 full = xfull;
3201 top = xtop;
3202 using_enc = xusing_enc;
3203 }
3204 else
3205 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3206
3207 /* If no RTTI data, or if object is already complete, do nothing */
3208 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3209 return argp;
3210
3211 /* If we have the full object, but for some reason the enclosing
3212 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3213 if (full)
3214 {
3215 argp = value_change_enclosing_type (argp, real_type);
3216 return argp;
3217 }
3218
3219 /* Check if object is in memory */
3220 if (VALUE_LVAL (argp) != lval_memory)
3221 {
3222 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3223
3224 return argp;
3225 }
3226
3227 /* All other cases -- retrieve the complete object */
3228 /* Go back by the computed top_offset from the beginning of the object,
3229 adjusting for the embedded offset of argp if that's what value_rtti_type
3230 used for its computation. */
3231 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3232 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3233 VALUE_BFD_SECTION (argp));
3234 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3235 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3236 return new_val;
3237 }
3238
3239
3240
3241
3242 /* C++: return the value of the class instance variable, if one exists.
3243 Flag COMPLAIN signals an error if the request is made in an
3244 inappropriate context. */
3245
3246 struct value *
3247 value_of_this (int complain)
3248 {
3249 struct symbol *func, *sym;
3250 struct block *b;
3251 int i;
3252 static const char funny_this[] = "this";
3253 struct value *this;
3254
3255 if (selected_frame == 0)
3256 {
3257 if (complain)
3258 error ("no frame selected");
3259 else
3260 return 0;
3261 }
3262
3263 func = get_frame_function (selected_frame);
3264 if (!func)
3265 {
3266 if (complain)
3267 error ("no `this' in nameless context");
3268 else
3269 return 0;
3270 }
3271
3272 b = SYMBOL_BLOCK_VALUE (func);
3273 i = BLOCK_NSYMS (b);
3274 if (i <= 0)
3275 {
3276 if (complain)
3277 error ("no args, no `this'");
3278 else
3279 return 0;
3280 }
3281
3282 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3283 symbol instead of the LOC_ARG one (if both exist). */
3284 sym = lookup_block_symbol (b, funny_this, NULL, VAR_NAMESPACE);
3285 if (sym == NULL)
3286 {
3287 if (complain)
3288 error ("current stack frame not in method");
3289 else
3290 return NULL;
3291 }
3292
3293 this = read_var_value (sym, selected_frame);
3294 if (this == 0 && complain)
3295 error ("`this' argument at unknown address");
3296 return this;
3297 }
3298
3299 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3300 long, starting at LOWBOUND. The result has the same lower bound as
3301 the original ARRAY. */
3302
3303 struct value *
3304 value_slice (struct value *array, int lowbound, int length)
3305 {
3306 struct type *slice_range_type, *slice_type, *range_type;
3307 LONGEST lowerbound, upperbound, offset;
3308 struct value *slice;
3309 struct type *array_type;
3310 array_type = check_typedef (VALUE_TYPE (array));
3311 COERCE_VARYING_ARRAY (array, array_type);
3312 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3313 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3314 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3315 error ("cannot take slice of non-array");
3316 range_type = TYPE_INDEX_TYPE (array_type);
3317 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3318 error ("slice from bad array or bitstring");
3319 if (lowbound < lowerbound || length < 0
3320 || lowbound + length - 1 > upperbound)
3321 /* OBSOLETE Chill allows zero-length strings but not arrays. */
3322 /* OBSOLETE || (current_language->la_language == language_chill */
3323 /* OBSOLETE && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY)) */
3324 error ("slice out of range");
3325 /* FIXME-type-allocation: need a way to free this type when we are
3326 done with it. */
3327 slice_range_type = create_range_type ((struct type *) NULL,
3328 TYPE_TARGET_TYPE (range_type),
3329 lowbound, lowbound + length - 1);
3330 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3331 {
3332 int i;
3333 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3334 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3335 slice = value_zero (slice_type, not_lval);
3336 for (i = 0; i < length; i++)
3337 {
3338 int element = value_bit_index (array_type,
3339 VALUE_CONTENTS (array),
3340 lowbound + i);
3341 if (element < 0)
3342 error ("internal error accessing bitstring");
3343 else if (element > 0)
3344 {
3345 int j = i % TARGET_CHAR_BIT;
3346 if (BITS_BIG_ENDIAN)
3347 j = TARGET_CHAR_BIT - 1 - j;
3348 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3349 }
3350 }
3351 /* We should set the address, bitssize, and bitspos, so the clice
3352 can be used on the LHS, but that may require extensions to
3353 value_assign. For now, just leave as a non_lval. FIXME. */
3354 }
3355 else
3356 {
3357 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3358 offset
3359 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3360 slice_type = create_array_type ((struct type *) NULL, element_type,
3361 slice_range_type);
3362 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3363 slice = allocate_value (slice_type);
3364 if (VALUE_LAZY (array))
3365 VALUE_LAZY (slice) = 1;
3366 else
3367 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3368 TYPE_LENGTH (slice_type));
3369 if (VALUE_LVAL (array) == lval_internalvar)
3370 VALUE_LVAL (slice) = lval_internalvar_component;
3371 else
3372 VALUE_LVAL (slice) = VALUE_LVAL (array);
3373 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3374 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3375 }
3376 return slice;
3377 }
3378
3379 /* Assuming OBSOLETE chill_varying_type (VARRAY) is true, return an
3380 equivalent value as a fixed-length array. */
3381
3382 struct value *
3383 varying_to_slice (struct value *varray)
3384 {
3385 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3386 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3387 VALUE_CONTENTS (varray)
3388 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3389 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3390 }
3391
3392 /* Create a value for a FORTRAN complex number. Currently most of
3393 the time values are coerced to COMPLEX*16 (i.e. a complex number
3394 composed of 2 doubles. This really should be a smarter routine
3395 that figures out precision inteligently as opposed to assuming
3396 doubles. FIXME: fmb */
3397
3398 struct value *
3399 value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
3400 {
3401 struct value *val;
3402 struct type *real_type = TYPE_TARGET_TYPE (type);
3403
3404 val = allocate_value (type);
3405 arg1 = value_cast (real_type, arg1);
3406 arg2 = value_cast (real_type, arg2);
3407
3408 memcpy (VALUE_CONTENTS_RAW (val),
3409 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3410 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3411 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3412 return val;
3413 }
3414
3415 /* Cast a value into the appropriate complex data type. */
3416
3417 static struct value *
3418 cast_into_complex (struct type *type, struct value *val)
3419 {
3420 struct type *real_type = TYPE_TARGET_TYPE (type);
3421 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3422 {
3423 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3424 struct value *re_val = allocate_value (val_real_type);
3425 struct value *im_val = allocate_value (val_real_type);
3426
3427 memcpy (VALUE_CONTENTS_RAW (re_val),
3428 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3429 memcpy (VALUE_CONTENTS_RAW (im_val),
3430 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3431 TYPE_LENGTH (val_real_type));
3432
3433 return value_literal_complex (re_val, im_val, type);
3434 }
3435 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3436 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3437 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3438 else
3439 error ("cannot cast non-number to complex");
3440 }
3441
3442 void
3443 _initialize_valops (void)
3444 {
3445 #if 0
3446 add_show_from_set
3447 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3448 "Set automatic abandonment of expressions upon failure.",
3449 &setlist),
3450 &showlist);
3451 #endif
3452
3453 add_show_from_set
3454 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3455 "Set overload resolution in evaluating C++ functions.",
3456 &setlist),
3457 &showlist);
3458 overload_resolution = 1;
3459
3460 add_show_from_set (
3461 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3462 (char *) &unwind_on_signal_p,
3463 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3464 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3465 is received while in a function called from gdb (call dummy). If set, gdb\n\
3466 unwinds the stack and restore the context to what as it was before the call.\n\
3467 The default is to stop in the frame where the signal was received.", &setlist),
3468 &showlist);
3469 }
This page took 0.149291 seconds and 5 git commands to generate.