2003-01-19 Andrew Cagney <ac131313@redhat.com>
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
3 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "gdbcore.h"
30 #include "target.h"
31 #include "demangle.h"
32 #include "language.h"
33 #include "gdbcmd.h"
34 #include "regcache.h"
35 #include "cp-abi.h"
36
37 #include <errno.h>
38 #include "gdb_string.h"
39 #include "gdb_assert.h"
40
41 /* Flag indicating HP compilers were used; needed to correctly handle some
42 value operations with HP aCC code/runtime. */
43 extern int hp_som_som_object_present;
44
45 extern int overload_debug;
46 /* Local functions. */
47
48 static int typecmp (int staticp, int varargs, int nargs,
49 struct field t1[], struct value *t2[]);
50
51 static CORE_ADDR find_function_addr (struct value *, struct type **);
52 static struct value *value_arg_coerce (struct value *, struct type *, int);
53
54
55 static CORE_ADDR value_push (CORE_ADDR, struct value *);
56
57 static struct value *search_struct_field (char *, struct value *, int,
58 struct type *, int);
59
60 static struct value *search_struct_method (char *, struct value **,
61 struct value **,
62 int, int *, struct type *);
63
64 static int check_field_in (struct type *, const char *);
65
66 static CORE_ADDR allocate_space_in_inferior (int);
67
68 static struct value *cast_into_complex (struct type *, struct value *);
69
70 static struct fn_field *find_method_list (struct value ** argp, char *method,
71 int offset,
72 struct type *type, int *num_fns,
73 struct type **basetype,
74 int *boffset);
75
76 void _initialize_valops (void);
77
78 /* Flag for whether we want to abandon failed expression evals by default. */
79
80 #if 0
81 static int auto_abandon = 0;
82 #endif
83
84 int overload_resolution = 0;
85
86 /* This boolean tells what gdb should do if a signal is received while in
87 a function called from gdb (call dummy). If set, gdb unwinds the stack
88 and restore the context to what as it was before the call.
89 The default is to stop in the frame where the signal was received. */
90
91 int unwind_on_signal_p = 0;
92
93 /* How you should pass arguments to a function depends on whether it
94 was defined in K&R style or prototype style. If you define a
95 function using the K&R syntax that takes a `float' argument, then
96 callers must pass that argument as a `double'. If you define the
97 function using the prototype syntax, then you must pass the
98 argument as a `float', with no promotion.
99
100 Unfortunately, on certain older platforms, the debug info doesn't
101 indicate reliably how each function was defined. A function type's
102 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
103 defined in prototype style. When calling a function whose
104 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults this flag to decide
105 what to do.
106
107 For modern targets, it is proper to assume that, if the prototype
108 flag is clear, that can be trusted: `float' arguments should be
109 promoted to `double'. For some older targets, if the prototype
110 flag is clear, that doesn't tell us anything. The default is to
111 trust the debug information; the user can override this behavior
112 with "set coerce-float-to-double 0". */
113
114 static int coerce_float_to_double;
115 \f
116
117 /* Find the address of function name NAME in the inferior. */
118
119 struct value *
120 find_function_in_inferior (const char *name)
121 {
122 register struct symbol *sym;
123 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
124 if (sym != NULL)
125 {
126 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
127 {
128 error ("\"%s\" exists in this program but is not a function.",
129 name);
130 }
131 return value_of_variable (sym, NULL);
132 }
133 else
134 {
135 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
136 if (msymbol != NULL)
137 {
138 struct type *type;
139 CORE_ADDR maddr;
140 type = lookup_pointer_type (builtin_type_char);
141 type = lookup_function_type (type);
142 type = lookup_pointer_type (type);
143 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
144 return value_from_pointer (type, maddr);
145 }
146 else
147 {
148 if (!target_has_execution)
149 error ("evaluation of this expression requires the target program to be active");
150 else
151 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
152 }
153 }
154 }
155
156 /* Allocate NBYTES of space in the inferior using the inferior's malloc
157 and return a value that is a pointer to the allocated space. */
158
159 struct value *
160 value_allocate_space_in_inferior (int len)
161 {
162 struct value *blocklen;
163 struct value *val = find_function_in_inferior (NAME_OF_MALLOC);
164
165 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
166 val = call_function_by_hand (val, 1, &blocklen);
167 if (value_logical_not (val))
168 {
169 if (!target_has_execution)
170 error ("No memory available to program now: you need to start the target first");
171 else
172 error ("No memory available to program: call to malloc failed");
173 }
174 return val;
175 }
176
177 static CORE_ADDR
178 allocate_space_in_inferior (int len)
179 {
180 return value_as_long (value_allocate_space_in_inferior (len));
181 }
182
183 /* Cast value ARG2 to type TYPE and return as a value.
184 More general than a C cast: accepts any two types of the same length,
185 and if ARG2 is an lvalue it can be cast into anything at all. */
186 /* In C++, casts may change pointer or object representations. */
187
188 struct value *
189 value_cast (struct type *type, struct value *arg2)
190 {
191 register enum type_code code1;
192 register enum type_code code2;
193 register int scalar;
194 struct type *type2;
195
196 int convert_to_boolean = 0;
197
198 if (VALUE_TYPE (arg2) == type)
199 return arg2;
200
201 CHECK_TYPEDEF (type);
202 code1 = TYPE_CODE (type);
203 COERCE_REF (arg2);
204 type2 = check_typedef (VALUE_TYPE (arg2));
205
206 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
207 is treated like a cast to (TYPE [N])OBJECT,
208 where N is sizeof(OBJECT)/sizeof(TYPE). */
209 if (code1 == TYPE_CODE_ARRAY)
210 {
211 struct type *element_type = TYPE_TARGET_TYPE (type);
212 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
213 if (element_length > 0
214 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
215 {
216 struct type *range_type = TYPE_INDEX_TYPE (type);
217 int val_length = TYPE_LENGTH (type2);
218 LONGEST low_bound, high_bound, new_length;
219 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
220 low_bound = 0, high_bound = 0;
221 new_length = val_length / element_length;
222 if (val_length % element_length != 0)
223 warning ("array element type size does not divide object size in cast");
224 /* FIXME-type-allocation: need a way to free this type when we are
225 done with it. */
226 range_type = create_range_type ((struct type *) NULL,
227 TYPE_TARGET_TYPE (range_type),
228 low_bound,
229 new_length + low_bound - 1);
230 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
231 element_type, range_type);
232 return arg2;
233 }
234 }
235
236 if (current_language->c_style_arrays
237 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
238 arg2 = value_coerce_array (arg2);
239
240 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
241 arg2 = value_coerce_function (arg2);
242
243 type2 = check_typedef (VALUE_TYPE (arg2));
244 COERCE_VARYING_ARRAY (arg2, type2);
245 code2 = TYPE_CODE (type2);
246
247 if (code1 == TYPE_CODE_COMPLEX)
248 return cast_into_complex (type, arg2);
249 if (code1 == TYPE_CODE_BOOL)
250 {
251 code1 = TYPE_CODE_INT;
252 convert_to_boolean = 1;
253 }
254 if (code1 == TYPE_CODE_CHAR)
255 code1 = TYPE_CODE_INT;
256 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
257 code2 = TYPE_CODE_INT;
258
259 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
260 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
261
262 if (code1 == TYPE_CODE_STRUCT
263 && code2 == TYPE_CODE_STRUCT
264 && TYPE_NAME (type) != 0)
265 {
266 /* Look in the type of the source to see if it contains the
267 type of the target as a superclass. If so, we'll need to
268 offset the object in addition to changing its type. */
269 struct value *v = search_struct_field (type_name_no_tag (type),
270 arg2, 0, type2, 1);
271 if (v)
272 {
273 VALUE_TYPE (v) = type;
274 return v;
275 }
276 }
277 if (code1 == TYPE_CODE_FLT && scalar)
278 return value_from_double (type, value_as_double (arg2));
279 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
280 || code1 == TYPE_CODE_RANGE)
281 && (scalar || code2 == TYPE_CODE_PTR))
282 {
283 LONGEST longest;
284
285 if (hp_som_som_object_present && /* if target compiled by HP aCC */
286 (code2 == TYPE_CODE_PTR))
287 {
288 unsigned int *ptr;
289 struct value *retvalp;
290
291 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
292 {
293 /* With HP aCC, pointers to data members have a bias */
294 case TYPE_CODE_MEMBER:
295 retvalp = value_from_longest (type, value_as_long (arg2));
296 /* force evaluation */
297 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
298 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
299 return retvalp;
300
301 /* While pointers to methods don't really point to a function */
302 case TYPE_CODE_METHOD:
303 error ("Pointers to methods not supported with HP aCC");
304
305 default:
306 break; /* fall out and go to normal handling */
307 }
308 }
309
310 /* When we cast pointers to integers, we mustn't use
311 POINTER_TO_ADDRESS to find the address the pointer
312 represents, as value_as_long would. GDB should evaluate
313 expressions just as the compiler would --- and the compiler
314 sees a cast as a simple reinterpretation of the pointer's
315 bits. */
316 if (code2 == TYPE_CODE_PTR)
317 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
318 TYPE_LENGTH (type2));
319 else
320 longest = value_as_long (arg2);
321 return value_from_longest (type, convert_to_boolean ?
322 (LONGEST) (longest ? 1 : 0) : longest);
323 }
324 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
325 code2 == TYPE_CODE_ENUM ||
326 code2 == TYPE_CODE_RANGE))
327 {
328 /* TYPE_LENGTH (type) is the length of a pointer, but we really
329 want the length of an address! -- we are really dealing with
330 addresses (i.e., gdb representations) not pointers (i.e.,
331 target representations) here.
332
333 This allows things like "print *(int *)0x01000234" to work
334 without printing a misleading message -- which would
335 otherwise occur when dealing with a target having two byte
336 pointers and four byte addresses. */
337
338 int addr_bit = TARGET_ADDR_BIT;
339
340 LONGEST longest = value_as_long (arg2);
341 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
342 {
343 if (longest >= ((LONGEST) 1 << addr_bit)
344 || longest <= -((LONGEST) 1 << addr_bit))
345 warning ("value truncated");
346 }
347 return value_from_longest (type, longest);
348 }
349 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
350 {
351 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
352 {
353 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
354 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
355 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
356 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
357 && !value_logical_not (arg2))
358 {
359 struct value *v;
360
361 /* Look in the type of the source to see if it contains the
362 type of the target as a superclass. If so, we'll need to
363 offset the pointer rather than just change its type. */
364 if (TYPE_NAME (t1) != NULL)
365 {
366 v = search_struct_field (type_name_no_tag (t1),
367 value_ind (arg2), 0, t2, 1);
368 if (v)
369 {
370 v = value_addr (v);
371 VALUE_TYPE (v) = type;
372 return v;
373 }
374 }
375
376 /* Look in the type of the target to see if it contains the
377 type of the source as a superclass. If so, we'll need to
378 offset the pointer rather than just change its type.
379 FIXME: This fails silently with virtual inheritance. */
380 if (TYPE_NAME (t2) != NULL)
381 {
382 v = search_struct_field (type_name_no_tag (t2),
383 value_zero (t1, not_lval), 0, t1, 1);
384 if (v)
385 {
386 CORE_ADDR addr2 = value_as_address (arg2);
387 addr2 -= (VALUE_ADDRESS (v)
388 + VALUE_OFFSET (v)
389 + VALUE_EMBEDDED_OFFSET (v));
390 return value_from_pointer (type, addr2);
391 }
392 }
393 }
394 /* No superclass found, just fall through to change ptr type. */
395 }
396 VALUE_TYPE (arg2) = type;
397 arg2 = value_change_enclosing_type (arg2, type);
398 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
399 return arg2;
400 }
401 else if (VALUE_LVAL (arg2) == lval_memory)
402 {
403 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
404 VALUE_BFD_SECTION (arg2));
405 }
406 else if (code1 == TYPE_CODE_VOID)
407 {
408 return value_zero (builtin_type_void, not_lval);
409 }
410 else
411 {
412 error ("Invalid cast.");
413 return 0;
414 }
415 }
416
417 /* Create a value of type TYPE that is zero, and return it. */
418
419 struct value *
420 value_zero (struct type *type, enum lval_type lv)
421 {
422 struct value *val = allocate_value (type);
423
424 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
425 VALUE_LVAL (val) = lv;
426
427 return val;
428 }
429
430 /* Return a value with type TYPE located at ADDR.
431
432 Call value_at only if the data needs to be fetched immediately;
433 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
434 value_at_lazy instead. value_at_lazy simply records the address of
435 the data and sets the lazy-evaluation-required flag. The lazy flag
436 is tested in the VALUE_CONTENTS macro, which is used if and when
437 the contents are actually required.
438
439 Note: value_at does *NOT* handle embedded offsets; perform such
440 adjustments before or after calling it. */
441
442 struct value *
443 value_at (struct type *type, CORE_ADDR addr, asection *sect)
444 {
445 struct value *val;
446
447 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
448 error ("Attempt to dereference a generic pointer.");
449
450 val = allocate_value (type);
451
452 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
453
454 VALUE_LVAL (val) = lval_memory;
455 VALUE_ADDRESS (val) = addr;
456 VALUE_BFD_SECTION (val) = sect;
457
458 return val;
459 }
460
461 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
462
463 struct value *
464 value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
465 {
466 struct value *val;
467
468 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
469 error ("Attempt to dereference a generic pointer.");
470
471 val = allocate_value (type);
472
473 VALUE_LVAL (val) = lval_memory;
474 VALUE_ADDRESS (val) = addr;
475 VALUE_LAZY (val) = 1;
476 VALUE_BFD_SECTION (val) = sect;
477
478 return val;
479 }
480
481 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
482 if the current data for a variable needs to be loaded into
483 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
484 clears the lazy flag to indicate that the data in the buffer is valid.
485
486 If the value is zero-length, we avoid calling read_memory, which would
487 abort. We mark the value as fetched anyway -- all 0 bytes of it.
488
489 This function returns a value because it is used in the VALUE_CONTENTS
490 macro as part of an expression, where a void would not work. The
491 value is ignored. */
492
493 int
494 value_fetch_lazy (struct value *val)
495 {
496 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
497 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
498
499 struct type *type = VALUE_TYPE (val);
500 if (length)
501 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
502
503 VALUE_LAZY (val) = 0;
504 return 0;
505 }
506
507
508 /* Store the contents of FROMVAL into the location of TOVAL.
509 Return a new value with the location of TOVAL and contents of FROMVAL. */
510
511 struct value *
512 value_assign (struct value *toval, struct value *fromval)
513 {
514 register struct type *type;
515 struct value *val;
516 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
517 int use_buffer = 0;
518
519 if (!toval->modifiable)
520 error ("Left operand of assignment is not a modifiable lvalue.");
521
522 COERCE_REF (toval);
523
524 type = VALUE_TYPE (toval);
525 if (VALUE_LVAL (toval) != lval_internalvar)
526 fromval = value_cast (type, fromval);
527 else
528 COERCE_ARRAY (fromval);
529 CHECK_TYPEDEF (type);
530
531 /* If TOVAL is a special machine register requiring conversion
532 of program values to a special raw format,
533 convert FROMVAL's contents now, with result in `raw_buffer',
534 and set USE_BUFFER to the number of bytes to write. */
535
536 if (VALUE_REGNO (toval) >= 0)
537 {
538 int regno = VALUE_REGNO (toval);
539 if (CONVERT_REGISTER_P (regno))
540 {
541 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
542 VALUE_TO_REGISTER (fromtype, regno, VALUE_CONTENTS (fromval), raw_buffer);
543 use_buffer = REGISTER_RAW_SIZE (regno);
544 }
545 }
546
547 switch (VALUE_LVAL (toval))
548 {
549 case lval_internalvar:
550 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
551 val = value_copy (VALUE_INTERNALVAR (toval)->value);
552 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
553 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
554 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
555 return val;
556
557 case lval_internalvar_component:
558 set_internalvar_component (VALUE_INTERNALVAR (toval),
559 VALUE_OFFSET (toval),
560 VALUE_BITPOS (toval),
561 VALUE_BITSIZE (toval),
562 fromval);
563 break;
564
565 case lval_memory:
566 {
567 char *dest_buffer;
568 CORE_ADDR changed_addr;
569 int changed_len;
570
571 if (VALUE_BITSIZE (toval))
572 {
573 char buffer[sizeof (LONGEST)];
574 /* We assume that the argument to read_memory is in units of
575 host chars. FIXME: Is that correct? */
576 changed_len = (VALUE_BITPOS (toval)
577 + VALUE_BITSIZE (toval)
578 + HOST_CHAR_BIT - 1)
579 / HOST_CHAR_BIT;
580
581 if (changed_len > (int) sizeof (LONGEST))
582 error ("Can't handle bitfields which don't fit in a %d bit word.",
583 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
584
585 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
586 buffer, changed_len);
587 modify_field (buffer, value_as_long (fromval),
588 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
589 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
590 dest_buffer = buffer;
591 }
592 else if (use_buffer)
593 {
594 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
595 changed_len = use_buffer;
596 dest_buffer = raw_buffer;
597 }
598 else
599 {
600 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
601 changed_len = TYPE_LENGTH (type);
602 dest_buffer = VALUE_CONTENTS (fromval);
603 }
604
605 write_memory (changed_addr, dest_buffer, changed_len);
606 if (memory_changed_hook)
607 memory_changed_hook (changed_addr, changed_len);
608 target_changed_event ();
609 }
610 break;
611
612 case lval_reg_frame_relative:
613 case lval_register:
614 {
615 struct frame_id old_frame;
616 /* value is stored in a series of registers in the frame
617 specified by the structure. Copy that value out, modify
618 it, and copy it back in. */
619 int amount_copied;
620 int amount_to_copy;
621 char *buffer;
622 int value_reg;
623 int reg_offset;
624 int byte_offset;
625 int regno;
626 struct frame_info *frame;
627
628 /* Since modifying a register can trash the frame chain, we
629 save the old frame and then restore the new frame
630 afterwards. */
631 old_frame = get_frame_id (deprecated_selected_frame);
632
633 /* Figure out which frame this is in currently. */
634 if (VALUE_LVAL (toval) == lval_register)
635 {
636 frame = get_current_frame ();
637 value_reg = VALUE_REGNO (toval);
638 }
639 else
640 {
641 for (frame = get_current_frame ();
642 frame && get_frame_base (frame) != VALUE_FRAME (toval);
643 frame = get_prev_frame (frame))
644 ;
645 value_reg = VALUE_FRAME_REGNUM (toval);
646 }
647
648 if (!frame)
649 error ("Value being assigned to is no longer active.");
650
651 /* Locate the first register that falls in the value that
652 needs to be transfered. Compute the offset of the value in
653 that register. */
654 {
655 int offset;
656 for (reg_offset = value_reg, offset = 0;
657 offset + REGISTER_RAW_SIZE (reg_offset) <= VALUE_OFFSET (toval);
658 reg_offset++);
659 byte_offset = VALUE_OFFSET (toval) - offset;
660 }
661
662 /* Compute the number of register aligned values that need to
663 be copied. */
664 if (VALUE_BITSIZE (toval))
665 amount_to_copy = byte_offset + 1;
666 else
667 amount_to_copy = byte_offset + TYPE_LENGTH (type);
668
669 /* And a bounce buffer. Be slightly over generous. */
670 buffer = (char *) alloca (amount_to_copy
671 + MAX_REGISTER_RAW_SIZE);
672
673 /* Copy it in. */
674 for (regno = reg_offset, amount_copied = 0;
675 amount_copied < amount_to_copy;
676 amount_copied += REGISTER_RAW_SIZE (regno), regno++)
677 {
678 frame_register_read (frame, regno, buffer + amount_copied);
679 }
680
681 /* Modify what needs to be modified. */
682 if (VALUE_BITSIZE (toval))
683 {
684 modify_field (buffer + byte_offset,
685 value_as_long (fromval),
686 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
687 }
688 else if (use_buffer)
689 {
690 memcpy (buffer + VALUE_OFFSET (toval), raw_buffer, use_buffer);
691 }
692 else
693 {
694 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
695 TYPE_LENGTH (type));
696 /* Do any conversion necessary when storing this type to
697 more than one register. */
698 #ifdef REGISTER_CONVERT_FROM_TYPE
699 REGISTER_CONVERT_FROM_TYPE (value_reg, type,
700 (buffer + byte_offset));
701 #endif
702 }
703
704 /* Copy it out. */
705 for (regno = reg_offset, amount_copied = 0;
706 amount_copied < amount_to_copy;
707 amount_copied += REGISTER_RAW_SIZE (regno), regno++)
708 {
709 enum lval_type lval;
710 CORE_ADDR addr;
711 int optim;
712 int realnum;
713
714 /* Just find out where to put it. */
715 frame_register (frame, regno, &optim, &lval, &addr, &realnum,
716 NULL);
717
718 if (optim)
719 error ("Attempt to assign to a value that was optimized out.");
720 if (lval == lval_memory)
721 write_memory (addr, buffer + amount_copied,
722 REGISTER_RAW_SIZE (regno));
723 else if (lval == lval_register)
724 regcache_cooked_write (current_regcache, realnum,
725 (buffer + amount_copied));
726 else
727 error ("Attempt to assign to an unmodifiable value.");
728 }
729
730 if (register_changed_hook)
731 register_changed_hook (-1);
732 target_changed_event ();
733
734 /* Assigning to the stack pointer, frame pointer, and other
735 (architecture and calling convention specific) registers
736 may cause the frame cache to be out of date. We just do
737 this on all assignments to registers for simplicity; I
738 doubt the slowdown matters. */
739 reinit_frame_cache ();
740
741 /* Having destoroyed the frame cache, restore the selected
742 frame. */
743 /* FIXME: cagney/2002-11-02: There has to be a better way of
744 doing this. Instead of constantly saving/restoring the
745 frame. Why not create a get_selected_frame() function
746 that, having saved the selected frame's ID can
747 automatically re-find the previously selected frame
748 automatically. */
749 {
750 struct frame_info *fi = frame_find_by_id (old_frame);
751 if (fi != NULL)
752 select_frame (fi);
753 }
754 }
755 break;
756
757
758 default:
759 error ("Left operand of assignment is not an lvalue.");
760 }
761
762 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
763 If the field is signed, and is negative, then sign extend. */
764 if ((VALUE_BITSIZE (toval) > 0)
765 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
766 {
767 LONGEST fieldval = value_as_long (fromval);
768 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
769
770 fieldval &= valmask;
771 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
772 fieldval |= ~valmask;
773
774 fromval = value_from_longest (type, fieldval);
775 }
776
777 val = value_copy (toval);
778 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
779 TYPE_LENGTH (type));
780 VALUE_TYPE (val) = type;
781 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
782 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
783 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
784
785 return val;
786 }
787
788 /* Extend a value VAL to COUNT repetitions of its type. */
789
790 struct value *
791 value_repeat (struct value *arg1, int count)
792 {
793 struct value *val;
794
795 if (VALUE_LVAL (arg1) != lval_memory)
796 error ("Only values in memory can be extended with '@'.");
797 if (count < 1)
798 error ("Invalid number %d of repetitions.", count);
799
800 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
801
802 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
803 VALUE_CONTENTS_ALL_RAW (val),
804 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
805 VALUE_LVAL (val) = lval_memory;
806 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
807
808 return val;
809 }
810
811 struct value *
812 value_of_variable (struct symbol *var, struct block *b)
813 {
814 struct value *val;
815 struct frame_info *frame = NULL;
816
817 if (!b)
818 frame = NULL; /* Use selected frame. */
819 else if (symbol_read_needs_frame (var))
820 {
821 frame = block_innermost_frame (b);
822 if (!frame)
823 {
824 if (BLOCK_FUNCTION (b)
825 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
826 error ("No frame is currently executing in block %s.",
827 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
828 else
829 error ("No frame is currently executing in specified block");
830 }
831 }
832
833 val = read_var_value (var, frame);
834 if (!val)
835 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
836
837 return val;
838 }
839
840 /* Given a value which is an array, return a value which is a pointer to its
841 first element, regardless of whether or not the array has a nonzero lower
842 bound.
843
844 FIXME: A previous comment here indicated that this routine should be
845 substracting the array's lower bound. It's not clear to me that this
846 is correct. Given an array subscripting operation, it would certainly
847 work to do the adjustment here, essentially computing:
848
849 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
850
851 However I believe a more appropriate and logical place to account for
852 the lower bound is to do so in value_subscript, essentially computing:
853
854 (&array[0] + ((index - lowerbound) * sizeof array[0]))
855
856 As further evidence consider what would happen with operations other
857 than array subscripting, where the caller would get back a value that
858 had an address somewhere before the actual first element of the array,
859 and the information about the lower bound would be lost because of
860 the coercion to pointer type.
861 */
862
863 struct value *
864 value_coerce_array (struct value *arg1)
865 {
866 register struct type *type = check_typedef (VALUE_TYPE (arg1));
867
868 if (VALUE_LVAL (arg1) != lval_memory)
869 error ("Attempt to take address of value not located in memory.");
870
871 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
872 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
873 }
874
875 /* Given a value which is a function, return a value which is a pointer
876 to it. */
877
878 struct value *
879 value_coerce_function (struct value *arg1)
880 {
881 struct value *retval;
882
883 if (VALUE_LVAL (arg1) != lval_memory)
884 error ("Attempt to take address of value not located in memory.");
885
886 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
887 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
888 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
889 return retval;
890 }
891
892 /* Return a pointer value for the object for which ARG1 is the contents. */
893
894 struct value *
895 value_addr (struct value *arg1)
896 {
897 struct value *arg2;
898
899 struct type *type = check_typedef (VALUE_TYPE (arg1));
900 if (TYPE_CODE (type) == TYPE_CODE_REF)
901 {
902 /* Copy the value, but change the type from (T&) to (T*).
903 We keep the same location information, which is efficient,
904 and allows &(&X) to get the location containing the reference. */
905 arg2 = value_copy (arg1);
906 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
907 return arg2;
908 }
909 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
910 return value_coerce_function (arg1);
911
912 if (VALUE_LVAL (arg1) != lval_memory)
913 error ("Attempt to take address of value not located in memory.");
914
915 /* Get target memory address */
916 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
917 (VALUE_ADDRESS (arg1)
918 + VALUE_OFFSET (arg1)
919 + VALUE_EMBEDDED_OFFSET (arg1)));
920
921 /* This may be a pointer to a base subobject; so remember the
922 full derived object's type ... */
923 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
924 /* ... and also the relative position of the subobject in the full object */
925 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
926 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
927 return arg2;
928 }
929
930 /* Given a value of a pointer type, apply the C unary * operator to it. */
931
932 struct value *
933 value_ind (struct value *arg1)
934 {
935 struct type *base_type;
936 struct value *arg2;
937
938 COERCE_ARRAY (arg1);
939
940 base_type = check_typedef (VALUE_TYPE (arg1));
941
942 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
943 error ("not implemented: member types in value_ind");
944
945 /* Allow * on an integer so we can cast it to whatever we want.
946 This returns an int, which seems like the most C-like thing
947 to do. "long long" variables are rare enough that
948 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
949 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
950 return value_at_lazy (builtin_type_int,
951 (CORE_ADDR) value_as_long (arg1),
952 VALUE_BFD_SECTION (arg1));
953 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
954 {
955 struct type *enc_type;
956 /* We may be pointing to something embedded in a larger object */
957 /* Get the real type of the enclosing object */
958 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
959 enc_type = TYPE_TARGET_TYPE (enc_type);
960 /* Retrieve the enclosing object pointed to */
961 arg2 = value_at_lazy (enc_type,
962 value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
963 VALUE_BFD_SECTION (arg1));
964 /* Re-adjust type */
965 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
966 /* Add embedding info */
967 arg2 = value_change_enclosing_type (arg2, enc_type);
968 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
969
970 /* We may be pointing to an object of some derived type */
971 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
972 return arg2;
973 }
974
975 error ("Attempt to take contents of a non-pointer value.");
976 return 0; /* For lint -- never reached */
977 }
978 \f
979 /* Pushing small parts of stack frames. */
980
981 /* Push one word (the size of object that a register holds). */
982
983 CORE_ADDR
984 push_word (CORE_ADDR sp, ULONGEST word)
985 {
986 register int len = REGISTER_SIZE;
987 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
988
989 store_unsigned_integer (buffer, len, word);
990 if (INNER_THAN (1, 2))
991 {
992 /* stack grows downward */
993 sp -= len;
994 write_memory (sp, buffer, len);
995 }
996 else
997 {
998 /* stack grows upward */
999 write_memory (sp, buffer, len);
1000 sp += len;
1001 }
1002
1003 return sp;
1004 }
1005
1006 /* Push LEN bytes with data at BUFFER. */
1007
1008 CORE_ADDR
1009 push_bytes (CORE_ADDR sp, char *buffer, int len)
1010 {
1011 if (INNER_THAN (1, 2))
1012 {
1013 /* stack grows downward */
1014 sp -= len;
1015 write_memory (sp, buffer, len);
1016 }
1017 else
1018 {
1019 /* stack grows upward */
1020 write_memory (sp, buffer, len);
1021 sp += len;
1022 }
1023
1024 return sp;
1025 }
1026
1027 #ifndef PARM_BOUNDARY
1028 #define PARM_BOUNDARY (0)
1029 #endif
1030
1031 /* Push onto the stack the specified value VALUE. Pad it correctly for
1032 it to be an argument to a function. */
1033
1034 static CORE_ADDR
1035 value_push (register CORE_ADDR sp, struct value *arg)
1036 {
1037 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1038 register int container_len = len;
1039 register int offset;
1040
1041 /* How big is the container we're going to put this value in? */
1042 if (PARM_BOUNDARY)
1043 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1044 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1045
1046 /* Are we going to put it at the high or low end of the container? */
1047 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1048 offset = container_len - len;
1049 else
1050 offset = 0;
1051
1052 if (INNER_THAN (1, 2))
1053 {
1054 /* stack grows downward */
1055 sp -= container_len;
1056 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1057 }
1058 else
1059 {
1060 /* stack grows upward */
1061 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1062 sp += container_len;
1063 }
1064
1065 return sp;
1066 }
1067
1068 CORE_ADDR
1069 default_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1070 int struct_return, CORE_ADDR struct_addr)
1071 {
1072 /* ASSERT ( !struct_return); */
1073 int i;
1074 for (i = nargs - 1; i >= 0; i--)
1075 sp = value_push (sp, args[i]);
1076 return sp;
1077 }
1078
1079 /* Perform the standard coercions that are specified
1080 for arguments to be passed to C functions.
1081
1082 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1083 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1084
1085 static struct value *
1086 value_arg_coerce (struct value *arg, struct type *param_type,
1087 int is_prototyped)
1088 {
1089 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1090 register struct type *type
1091 = param_type ? check_typedef (param_type) : arg_type;
1092
1093 switch (TYPE_CODE (type))
1094 {
1095 case TYPE_CODE_REF:
1096 if (TYPE_CODE (arg_type) != TYPE_CODE_REF
1097 && TYPE_CODE (arg_type) != TYPE_CODE_PTR)
1098 {
1099 arg = value_addr (arg);
1100 VALUE_TYPE (arg) = param_type;
1101 return arg;
1102 }
1103 break;
1104 case TYPE_CODE_INT:
1105 case TYPE_CODE_CHAR:
1106 case TYPE_CODE_BOOL:
1107 case TYPE_CODE_ENUM:
1108 /* If we don't have a prototype, coerce to integer type if necessary. */
1109 if (!is_prototyped)
1110 {
1111 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1112 type = builtin_type_int;
1113 }
1114 /* Currently all target ABIs require at least the width of an integer
1115 type for an argument. We may have to conditionalize the following
1116 type coercion for future targets. */
1117 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1118 type = builtin_type_int;
1119 break;
1120 case TYPE_CODE_FLT:
1121 if (!is_prototyped && coerce_float_to_double)
1122 {
1123 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1124 type = builtin_type_double;
1125 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1126 type = builtin_type_long_double;
1127 }
1128 break;
1129 case TYPE_CODE_FUNC:
1130 type = lookup_pointer_type (type);
1131 break;
1132 case TYPE_CODE_ARRAY:
1133 /* Arrays are coerced to pointers to their first element, unless
1134 they are vectors, in which case we want to leave them alone,
1135 because they are passed by value. */
1136 if (current_language->c_style_arrays)
1137 if (!TYPE_VECTOR (type))
1138 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1139 break;
1140 case TYPE_CODE_UNDEF:
1141 case TYPE_CODE_PTR:
1142 case TYPE_CODE_STRUCT:
1143 case TYPE_CODE_UNION:
1144 case TYPE_CODE_VOID:
1145 case TYPE_CODE_SET:
1146 case TYPE_CODE_RANGE:
1147 case TYPE_CODE_STRING:
1148 case TYPE_CODE_BITSTRING:
1149 case TYPE_CODE_ERROR:
1150 case TYPE_CODE_MEMBER:
1151 case TYPE_CODE_METHOD:
1152 case TYPE_CODE_COMPLEX:
1153 default:
1154 break;
1155 }
1156
1157 return value_cast (type, arg);
1158 }
1159
1160 /* Determine a function's address and its return type from its value.
1161 Calls error() if the function is not valid for calling. */
1162
1163 static CORE_ADDR
1164 find_function_addr (struct value *function, struct type **retval_type)
1165 {
1166 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1167 register enum type_code code = TYPE_CODE (ftype);
1168 struct type *value_type;
1169 CORE_ADDR funaddr;
1170
1171 /* If it's a member function, just look at the function
1172 part of it. */
1173
1174 /* Determine address to call. */
1175 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1176 {
1177 funaddr = VALUE_ADDRESS (function);
1178 value_type = TYPE_TARGET_TYPE (ftype);
1179 }
1180 else if (code == TYPE_CODE_PTR)
1181 {
1182 funaddr = value_as_address (function);
1183 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1184 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1185 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1186 {
1187 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1188 value_type = TYPE_TARGET_TYPE (ftype);
1189 }
1190 else
1191 value_type = builtin_type_int;
1192 }
1193 else if (code == TYPE_CODE_INT)
1194 {
1195 /* Handle the case of functions lacking debugging info.
1196 Their values are characters since their addresses are char */
1197 if (TYPE_LENGTH (ftype) == 1)
1198 funaddr = value_as_address (value_addr (function));
1199 else
1200 /* Handle integer used as address of a function. */
1201 funaddr = (CORE_ADDR) value_as_long (function);
1202
1203 value_type = builtin_type_int;
1204 }
1205 else
1206 error ("Invalid data type for function to be called.");
1207
1208 *retval_type = value_type;
1209 return funaddr;
1210 }
1211
1212 /* All this stuff with a dummy frame may seem unnecessarily complicated
1213 (why not just save registers in GDB?). The purpose of pushing a dummy
1214 frame which looks just like a real frame is so that if you call a
1215 function and then hit a breakpoint (get a signal, etc), "backtrace"
1216 will look right. Whether the backtrace needs to actually show the
1217 stack at the time the inferior function was called is debatable, but
1218 it certainly needs to not display garbage. So if you are contemplating
1219 making dummy frames be different from normal frames, consider that. */
1220
1221 /* Perform a function call in the inferior.
1222 ARGS is a vector of values of arguments (NARGS of them).
1223 FUNCTION is a value, the function to be called.
1224 Returns a value representing what the function returned.
1225 May fail to return, if a breakpoint or signal is hit
1226 during the execution of the function.
1227
1228 ARGS is modified to contain coerced values. */
1229
1230 static struct value *
1231 hand_function_call (struct value *function, int nargs, struct value **args)
1232 {
1233 register CORE_ADDR sp;
1234 register int i;
1235 int rc;
1236 CORE_ADDR start_sp;
1237 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1238 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1239 and remove any extra bytes which might exist because ULONGEST is
1240 bigger than REGISTER_SIZE.
1241
1242 NOTE: This is pretty wierd, as the call dummy is actually a
1243 sequence of instructions. But CISC machines will have
1244 to pack the instructions into REGISTER_SIZE units (and
1245 so will RISC machines for which INSTRUCTION_SIZE is not
1246 REGISTER_SIZE).
1247
1248 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1249 target byte order. */
1250
1251 static ULONGEST *dummy;
1252 int sizeof_dummy1;
1253 char *dummy1;
1254 CORE_ADDR old_sp;
1255 struct type *value_type;
1256 unsigned char struct_return;
1257 CORE_ADDR struct_addr = 0;
1258 struct regcache *retbuf;
1259 struct cleanup *retbuf_cleanup;
1260 struct inferior_status *inf_status;
1261 struct cleanup *inf_status_cleanup;
1262 CORE_ADDR funaddr;
1263 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1264 CORE_ADDR real_pc;
1265 struct type *param_type = NULL;
1266 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1267 int n_method_args = 0;
1268
1269 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1270 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1271 dummy1 = alloca (sizeof_dummy1);
1272 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1273
1274 if (!target_has_execution)
1275 noprocess ();
1276
1277 /* Create a cleanup chain that contains the retbuf (buffer
1278 containing the register values). This chain is create BEFORE the
1279 inf_status chain so that the inferior status can cleaned up
1280 (restored or discarded) without having the retbuf freed. */
1281 retbuf = regcache_xmalloc (current_gdbarch);
1282 retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
1283
1284 /* A cleanup for the inferior status. Create this AFTER the retbuf
1285 so that this can be discarded or applied without interfering with
1286 the regbuf. */
1287 inf_status = save_inferior_status (1);
1288 inf_status_cleanup = make_cleanup_restore_inferior_status (inf_status);
1289
1290 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1291 (and POP_FRAME for restoring them). (At least on most machines)
1292 they are saved on the stack in the inferior. */
1293 PUSH_DUMMY_FRAME;
1294
1295 old_sp = read_sp ();
1296
1297 /* Ensure that the initial SP is correctly aligned. */
1298 if (gdbarch_frame_align_p (current_gdbarch))
1299 {
1300 /* NOTE: cagney/2002-09-18:
1301
1302 On a RISC architecture, a void parameterless generic dummy
1303 frame (i.e., no parameters, no result) typically does not
1304 need to push anything the stack and hence can leave SP and
1305 FP. Similarly, a framelss (possibly leaf) function does not
1306 push anything on the stack and, hence, that too can leave FP
1307 and SP unchanged. As a consequence, a sequence of void
1308 parameterless generic dummy frame calls to frameless
1309 functions will create a sequence of effectively identical
1310 frames (SP, FP and TOS and PC the same). This, not
1311 suprisingly, results in what appears to be a stack in an
1312 infinite loop --- when GDB tries to find a generic dummy
1313 frame on the internal dummy frame stack, it will always find
1314 the first one.
1315
1316 To avoid this problem, the code below always grows the stack.
1317 That way, two dummy frames can never be identical. It does
1318 burn a few bytes of stack but that is a small price to pay
1319 :-). */
1320 sp = gdbarch_frame_align (current_gdbarch, old_sp);
1321 if (sp == old_sp)
1322 {
1323 if (INNER_THAN (1, 2))
1324 /* Stack grows down. */
1325 sp = gdbarch_frame_align (current_gdbarch, old_sp - 1);
1326 else
1327 /* Stack grows up. */
1328 sp = gdbarch_frame_align (current_gdbarch, old_sp + 1);
1329 }
1330 gdb_assert ((INNER_THAN (1, 2) && sp <= old_sp)
1331 || (INNER_THAN (2, 1) && sp >= old_sp));
1332 }
1333 else
1334 /* FIXME: cagney/2002-09-18: Hey, you loose! Who knows how badly
1335 aligned the SP is! Further, per comment above, if the generic
1336 dummy frame ends up empty (because nothing is pushed) GDB won't
1337 be able to correctly perform back traces. If a target is
1338 having trouble with backtraces, first thing to do is add
1339 FRAME_ALIGN() to its architecture vector. After that, try
1340 adding SAVE_DUMMY_FRAME_TOS() and modifying FRAME_CHAIN so that
1341 when the next outer frame is a generic dummy, it returns the
1342 current frame's base. */
1343 sp = old_sp;
1344
1345 if (INNER_THAN (1, 2))
1346 {
1347 /* Stack grows down */
1348 sp -= sizeof_dummy1;
1349 start_sp = sp;
1350 }
1351 else
1352 {
1353 /* Stack grows up */
1354 start_sp = sp;
1355 sp += sizeof_dummy1;
1356 }
1357
1358 /* NOTE: cagney/2002-09-10: Don't bother re-adjusting the stack
1359 after allocating space for the call dummy. A target can specify
1360 a SIZEOF_DUMMY1 (via SIZEOF_CALL_DUMMY_WORDS) such that all local
1361 alignment requirements are met. */
1362
1363 funaddr = find_function_addr (function, &value_type);
1364 CHECK_TYPEDEF (value_type);
1365
1366 {
1367 struct block *b = block_for_pc (funaddr);
1368 /* If compiled without -g, assume GCC 2. */
1369 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1370 }
1371
1372 /* Are we returning a value using a structure return or a normal
1373 value return? */
1374
1375 struct_return = using_struct_return (function, funaddr, value_type,
1376 using_gcc);
1377
1378 /* Create a call sequence customized for this function
1379 and the number of arguments for it. */
1380 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1381 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1382 REGISTER_SIZE,
1383 (ULONGEST) dummy[i]);
1384
1385 #ifdef GDB_TARGET_IS_HPPA
1386 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1387 value_type, using_gcc);
1388 #else
1389 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1390 value_type, using_gcc);
1391 real_pc = start_sp;
1392 #endif
1393
1394 if (CALL_DUMMY_LOCATION == ON_STACK)
1395 {
1396 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1397 if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES)
1398 generic_save_call_dummy_addr (start_sp, start_sp + sizeof_dummy1);
1399 }
1400
1401 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1402 {
1403 /* Convex Unix prohibits executing in the stack segment. */
1404 /* Hope there is empty room at the top of the text segment. */
1405 extern CORE_ADDR text_end;
1406 static int checked = 0;
1407 if (!checked)
1408 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1409 if (read_memory_integer (start_sp, 1) != 0)
1410 error ("text segment full -- no place to put call");
1411 checked = 1;
1412 sp = old_sp;
1413 real_pc = text_end - sizeof_dummy1;
1414 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1415 if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES)
1416 generic_save_call_dummy_addr (real_pc, real_pc + sizeof_dummy1);
1417 }
1418
1419 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1420 {
1421 extern CORE_ADDR text_end;
1422 int errcode;
1423 sp = old_sp;
1424 real_pc = text_end;
1425 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1426 if (errcode != 0)
1427 error ("Cannot write text segment -- call_function failed");
1428 if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES)
1429 generic_save_call_dummy_addr (real_pc, real_pc + sizeof_dummy1);
1430 }
1431
1432 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1433 {
1434 real_pc = funaddr;
1435 if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES)
1436 /* NOTE: cagney/2002-04-13: The entry point is going to be
1437 modified with a single breakpoint. */
1438 generic_save_call_dummy_addr (CALL_DUMMY_ADDRESS (),
1439 CALL_DUMMY_ADDRESS () + 1);
1440 }
1441
1442 #ifdef lint
1443 sp = old_sp; /* It really is used, for some ifdef's... */
1444 #endif
1445
1446 if (nargs < TYPE_NFIELDS (ftype))
1447 error ("too few arguments in function call");
1448
1449 for (i = nargs - 1; i >= 0; i--)
1450 {
1451 int prototyped;
1452
1453 /* FIXME drow/2002-05-31: Should just always mark methods as
1454 prototyped. Can we respect TYPE_VARARGS? Probably not. */
1455 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1456 prototyped = 1;
1457 else
1458 prototyped = TYPE_PROTOTYPED (ftype);
1459
1460 if (i < TYPE_NFIELDS (ftype))
1461 args[i] = value_arg_coerce (args[i], TYPE_FIELD_TYPE (ftype, i),
1462 prototyped);
1463 else
1464 args[i] = value_arg_coerce (args[i], NULL, 0);
1465
1466 /*elz: this code is to handle the case in which the function to be called
1467 has a pointer to function as parameter and the corresponding actual argument
1468 is the address of a function and not a pointer to function variable.
1469 In aCC compiled code, the calls through pointers to functions (in the body
1470 of the function called by hand) are made via $$dyncall_external which
1471 requires some registers setting, this is taken care of if we call
1472 via a function pointer variable, but not via a function address.
1473 In cc this is not a problem. */
1474
1475 if (using_gcc == 0)
1476 if (param_type && TYPE_CODE (ftype) != TYPE_CODE_METHOD)
1477 /* if this parameter is a pointer to function */
1478 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1479 if (TYPE_CODE (TYPE_TARGET_TYPE (param_type)) == TYPE_CODE_FUNC)
1480 /* elz: FIXME here should go the test about the compiler used
1481 to compile the target. We want to issue the error
1482 message only if the compiler used was HP's aCC.
1483 If we used HP's cc, then there is no problem and no need
1484 to return at this point */
1485 if (using_gcc == 0) /* && compiler == aCC */
1486 /* go see if the actual parameter is a variable of type
1487 pointer to function or just a function */
1488 if (args[i]->lval == not_lval)
1489 {
1490 char *arg_name;
1491 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1492 error ("\
1493 You cannot use function <%s> as argument. \n\
1494 You must use a pointer to function type variable. Command ignored.", arg_name);
1495 }
1496 }
1497
1498 if (REG_STRUCT_HAS_ADDR_P ())
1499 {
1500 /* This is a machine like the sparc, where we may need to pass a
1501 pointer to the structure, not the structure itself. */
1502 for (i = nargs - 1; i >= 0; i--)
1503 {
1504 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1505 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1506 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1507 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1508 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1509 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1510 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1511 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1512 && TYPE_LENGTH (arg_type) > 8)
1513 )
1514 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1515 {
1516 CORE_ADDR addr;
1517 int len; /* = TYPE_LENGTH (arg_type); */
1518 int aligned_len;
1519 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1520 len = TYPE_LENGTH (arg_type);
1521
1522 if (STACK_ALIGN_P ())
1523 /* MVS 11/22/96: I think at least some of this
1524 stack_align code is really broken. Better to let
1525 PUSH_ARGUMENTS adjust the stack in a target-defined
1526 manner. */
1527 aligned_len = STACK_ALIGN (len);
1528 else
1529 aligned_len = len;
1530 if (INNER_THAN (1, 2))
1531 {
1532 /* stack grows downward */
1533 sp -= aligned_len;
1534 /* ... so the address of the thing we push is the
1535 stack pointer after we push it. */
1536 addr = sp;
1537 }
1538 else
1539 {
1540 /* The stack grows up, so the address of the thing
1541 we push is the stack pointer before we push it. */
1542 addr = sp;
1543 sp += aligned_len;
1544 }
1545 /* Push the structure. */
1546 write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
1547 /* The value we're going to pass is the address of the
1548 thing we just pushed. */
1549 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1550 (LONGEST) addr); */
1551 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1552 addr);
1553 }
1554 }
1555 }
1556
1557
1558 /* Reserve space for the return structure to be written on the
1559 stack, if necessary. Make certain that the value is correctly
1560 aligned. */
1561
1562 if (struct_return)
1563 {
1564 int len = TYPE_LENGTH (value_type);
1565 if (STACK_ALIGN_P ())
1566 /* MVS 11/22/96: I think at least some of this stack_align
1567 code is really broken. Better to let PUSH_ARGUMENTS adjust
1568 the stack in a target-defined manner. */
1569 len = STACK_ALIGN (len);
1570 if (INNER_THAN (1, 2))
1571 {
1572 /* Stack grows downward. Align STRUCT_ADDR and SP after
1573 making space for the return value. */
1574 sp -= len;
1575 if (gdbarch_frame_align_p (current_gdbarch))
1576 sp = gdbarch_frame_align (current_gdbarch, sp);
1577 struct_addr = sp;
1578 }
1579 else
1580 {
1581 /* Stack grows upward. Align the frame, allocate space, and
1582 then again, re-align the frame??? */
1583 if (gdbarch_frame_align_p (current_gdbarch))
1584 sp = gdbarch_frame_align (current_gdbarch, sp);
1585 struct_addr = sp;
1586 sp += len;
1587 if (gdbarch_frame_align_p (current_gdbarch))
1588 sp = gdbarch_frame_align (current_gdbarch, sp);
1589 }
1590 }
1591
1592 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1593 on other architectures. This is because all the alignment is
1594 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1595 in hppa_push_arguments */
1596 if (EXTRA_STACK_ALIGNMENT_NEEDED)
1597 {
1598 /* MVS 11/22/96: I think at least some of this stack_align code
1599 is really broken. Better to let PUSH_ARGUMENTS adjust the
1600 stack in a target-defined manner. */
1601 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1602 {
1603 /* If stack grows down, we must leave a hole at the top. */
1604 int len = 0;
1605
1606 for (i = nargs - 1; i >= 0; i--)
1607 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1608 if (CALL_DUMMY_STACK_ADJUST_P)
1609 len += CALL_DUMMY_STACK_ADJUST;
1610 sp -= STACK_ALIGN (len) - len;
1611 }
1612 }
1613
1614 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1615
1616 if (PUSH_RETURN_ADDRESS_P ())
1617 /* for targets that use no CALL_DUMMY */
1618 /* There are a number of targets now which actually don't write
1619 any CALL_DUMMY instructions into the target, but instead just
1620 save the machine state, push the arguments, and jump directly
1621 to the callee function. Since this doesn't actually involve
1622 executing a JSR/BSR instruction, the return address must be set
1623 up by hand, either by pushing onto the stack or copying into a
1624 return-address register as appropriate. Formerly this has been
1625 done in PUSH_ARGUMENTS, but that's overloading its
1626 functionality a bit, so I'm making it explicit to do it here. */
1627 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1628
1629 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
1630 {
1631 /* If stack grows up, we must leave a hole at the bottom, note
1632 that sp already has been advanced for the arguments! */
1633 if (CALL_DUMMY_STACK_ADJUST_P)
1634 sp += CALL_DUMMY_STACK_ADJUST;
1635 sp = STACK_ALIGN (sp);
1636 }
1637
1638 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1639 anything here! */
1640 /* MVS 11/22/96: I think at least some of this stack_align code is
1641 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1642 a target-defined manner. */
1643 if (CALL_DUMMY_STACK_ADJUST_P)
1644 if (INNER_THAN (1, 2))
1645 {
1646 /* stack grows downward */
1647 sp -= CALL_DUMMY_STACK_ADJUST;
1648 }
1649
1650 /* Store the address at which the structure is supposed to be
1651 written. Note that this (and the code which reserved the space
1652 above) assumes that gcc was used to compile this function. Since
1653 it doesn't cost us anything but space and if the function is pcc
1654 it will ignore this value, we will make that assumption.
1655
1656 Also note that on some machines (like the sparc) pcc uses a
1657 convention like gcc's. */
1658
1659 if (struct_return)
1660 STORE_STRUCT_RETURN (struct_addr, sp);
1661
1662 /* Write the stack pointer. This is here because the statements above
1663 might fool with it. On SPARC, this write also stores the register
1664 window into the right place in the new stack frame, which otherwise
1665 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1666 write_sp (sp);
1667
1668 if (SAVE_DUMMY_FRAME_TOS_P ())
1669 SAVE_DUMMY_FRAME_TOS (sp);
1670
1671 {
1672 char *name;
1673 struct symbol *symbol;
1674
1675 name = NULL;
1676 symbol = find_pc_function (funaddr);
1677 if (symbol)
1678 {
1679 name = SYMBOL_SOURCE_NAME (symbol);
1680 }
1681 else
1682 {
1683 /* Try the minimal symbols. */
1684 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1685
1686 if (msymbol)
1687 {
1688 name = SYMBOL_SOURCE_NAME (msymbol);
1689 }
1690 }
1691 if (name == NULL)
1692 {
1693 char format[80];
1694 sprintf (format, "at %s", local_hex_format ());
1695 name = alloca (80);
1696 /* FIXME-32x64: assumes funaddr fits in a long. */
1697 sprintf (name, format, (unsigned long) funaddr);
1698 }
1699
1700 /* Execute the stack dummy routine, calling FUNCTION.
1701 When it is done, discard the empty frame
1702 after storing the contents of all regs into retbuf. */
1703 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1704
1705 if (rc == 1)
1706 {
1707 /* We stopped inside the FUNCTION because of a random signal.
1708 Further execution of the FUNCTION is not allowed. */
1709
1710 if (unwind_on_signal_p)
1711 {
1712 /* The user wants the context restored. */
1713
1714 /* We must get back to the frame we were before the dummy
1715 call. */
1716 frame_pop (get_current_frame ());
1717
1718 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1719 a C++ name with arguments and stuff. */
1720 error ("\
1721 The program being debugged was signaled while in a function called from GDB.\n\
1722 GDB has restored the context to what it was before the call.\n\
1723 To change this behavior use \"set unwindonsignal off\"\n\
1724 Evaluation of the expression containing the function (%s) will be abandoned.",
1725 name);
1726 }
1727 else
1728 {
1729 /* The user wants to stay in the frame where we stopped (default).*/
1730
1731 /* If we restored the inferior status (via the cleanup),
1732 we would print a spurious error message (Unable to
1733 restore previously selected frame), would write the
1734 registers from the inf_status (which is wrong), and
1735 would do other wrong things. */
1736 discard_cleanups (inf_status_cleanup);
1737 discard_inferior_status (inf_status);
1738
1739 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1740 a C++ name with arguments and stuff. */
1741 error ("\
1742 The program being debugged was signaled while in a function called from GDB.\n\
1743 GDB remains in the frame where the signal was received.\n\
1744 To change this behavior use \"set unwindonsignal on\"\n\
1745 Evaluation of the expression containing the function (%s) will be abandoned.",
1746 name);
1747 }
1748 }
1749
1750 if (rc == 2)
1751 {
1752 /* We hit a breakpoint inside the FUNCTION. */
1753
1754 /* If we restored the inferior status (via the cleanup), we
1755 would print a spurious error message (Unable to restore
1756 previously selected frame), would write the registers from
1757 the inf_status (which is wrong), and would do other wrong
1758 things. */
1759 discard_cleanups (inf_status_cleanup);
1760 discard_inferior_status (inf_status);
1761
1762 /* The following error message used to say "The expression
1763 which contained the function call has been discarded." It
1764 is a hard concept to explain in a few words. Ideally, GDB
1765 would be able to resume evaluation of the expression when
1766 the function finally is done executing. Perhaps someday
1767 this will be implemented (it would not be easy). */
1768
1769 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1770 a C++ name with arguments and stuff. */
1771 error ("\
1772 The program being debugged stopped while in a function called from GDB.\n\
1773 When the function (%s) is done executing, GDB will silently\n\
1774 stop (instead of continuing to evaluate the expression containing\n\
1775 the function call).", name);
1776 }
1777
1778 /* If we get here the called FUNCTION run to completion. */
1779
1780 /* Restore the inferior status, via its cleanup. At this stage,
1781 leave the RETBUF alone. */
1782 do_cleanups (inf_status_cleanup);
1783
1784 /* Figure out the value returned by the function. */
1785 /* elz: I defined this new macro for the hppa architecture only.
1786 this gives us a way to get the value returned by the function
1787 from the stack, at the same address we told the function to put
1788 it. We cannot assume on the pa that r28 still contains the
1789 address of the returned structure. Usually this will be
1790 overwritten by the callee. I don't know about other
1791 architectures, so I defined this macro */
1792 #ifdef VALUE_RETURNED_FROM_STACK
1793 if (struct_return)
1794 {
1795 do_cleanups (retbuf_cleanup);
1796 return VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1797 }
1798 #endif
1799 /* NOTE: cagney/2002-09-10: Only when the stack has been correctly
1800 aligned (using frame_align()) do we can trust STRUCT_ADDR and
1801 fetch the return value direct from the stack. This lack of
1802 trust comes about because legacy targets have a nasty habit of
1803 silently, and local to PUSH_ARGUMENTS(), moving STRUCT_ADDR.
1804 For such targets, just hope that value_being_returned() can
1805 find the adjusted value. */
1806 if (struct_return && gdbarch_frame_align_p (current_gdbarch))
1807 {
1808 struct value *retval = value_at (value_type, struct_addr, NULL);
1809 do_cleanups (retbuf_cleanup);
1810 return retval;
1811 }
1812 else
1813 {
1814 struct value *retval = value_being_returned (value_type, retbuf,
1815 struct_return);
1816 do_cleanups (retbuf_cleanup);
1817 return retval;
1818 }
1819 }
1820 }
1821
1822 struct value *
1823 call_function_by_hand (struct value *function, int nargs, struct value **args)
1824 {
1825 if (CALL_DUMMY_P)
1826 {
1827 return hand_function_call (function, nargs, args);
1828 }
1829 else
1830 {
1831 error ("Cannot invoke functions on this machine.");
1832 }
1833 }
1834 \f
1835
1836
1837 /* Create a value for an array by allocating space in the inferior, copying
1838 the data into that space, and then setting up an array value.
1839
1840 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1841 populated from the values passed in ELEMVEC.
1842
1843 The element type of the array is inherited from the type of the
1844 first element, and all elements must have the same size (though we
1845 don't currently enforce any restriction on their types). */
1846
1847 struct value *
1848 value_array (int lowbound, int highbound, struct value **elemvec)
1849 {
1850 int nelem;
1851 int idx;
1852 unsigned int typelength;
1853 struct value *val;
1854 struct type *rangetype;
1855 struct type *arraytype;
1856 CORE_ADDR addr;
1857
1858 /* Validate that the bounds are reasonable and that each of the elements
1859 have the same size. */
1860
1861 nelem = highbound - lowbound + 1;
1862 if (nelem <= 0)
1863 {
1864 error ("bad array bounds (%d, %d)", lowbound, highbound);
1865 }
1866 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1867 for (idx = 1; idx < nelem; idx++)
1868 {
1869 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1870 {
1871 error ("array elements must all be the same size");
1872 }
1873 }
1874
1875 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1876 lowbound, highbound);
1877 arraytype = create_array_type ((struct type *) NULL,
1878 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1879
1880 if (!current_language->c_style_arrays)
1881 {
1882 val = allocate_value (arraytype);
1883 for (idx = 0; idx < nelem; idx++)
1884 {
1885 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1886 VALUE_CONTENTS_ALL (elemvec[idx]),
1887 typelength);
1888 }
1889 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1890 return val;
1891 }
1892
1893 /* Allocate space to store the array in the inferior, and then initialize
1894 it by copying in each element. FIXME: Is it worth it to create a
1895 local buffer in which to collect each value and then write all the
1896 bytes in one operation? */
1897
1898 addr = allocate_space_in_inferior (nelem * typelength);
1899 for (idx = 0; idx < nelem; idx++)
1900 {
1901 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1902 typelength);
1903 }
1904
1905 /* Create the array type and set up an array value to be evaluated lazily. */
1906
1907 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1908 return (val);
1909 }
1910
1911 /* Create a value for a string constant by allocating space in the inferior,
1912 copying the data into that space, and returning the address with type
1913 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1914 of characters.
1915 Note that string types are like array of char types with a lower bound of
1916 zero and an upper bound of LEN - 1. Also note that the string may contain
1917 embedded null bytes. */
1918
1919 struct value *
1920 value_string (char *ptr, int len)
1921 {
1922 struct value *val;
1923 int lowbound = current_language->string_lower_bound;
1924 struct type *rangetype = create_range_type ((struct type *) NULL,
1925 builtin_type_int,
1926 lowbound, len + lowbound - 1);
1927 struct type *stringtype
1928 = create_string_type ((struct type *) NULL, rangetype);
1929 CORE_ADDR addr;
1930
1931 if (current_language->c_style_arrays == 0)
1932 {
1933 val = allocate_value (stringtype);
1934 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1935 return val;
1936 }
1937
1938
1939 /* Allocate space to store the string in the inferior, and then
1940 copy LEN bytes from PTR in gdb to that address in the inferior. */
1941
1942 addr = allocate_space_in_inferior (len);
1943 write_memory (addr, ptr, len);
1944
1945 val = value_at_lazy (stringtype, addr, NULL);
1946 return (val);
1947 }
1948
1949 struct value *
1950 value_bitstring (char *ptr, int len)
1951 {
1952 struct value *val;
1953 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1954 0, len - 1);
1955 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1956 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1957 val = allocate_value (type);
1958 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1959 return val;
1960 }
1961 \f
1962 /* See if we can pass arguments in T2 to a function which takes arguments
1963 of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
1964 vector. If some arguments need coercion of some sort, then the coerced
1965 values are written into T2. Return value is 0 if the arguments could be
1966 matched, or the position at which they differ if not.
1967
1968 STATICP is nonzero if the T1 argument list came from a
1969 static member function. T2 will still include the ``this'' pointer,
1970 but it will be skipped.
1971
1972 For non-static member functions, we ignore the first argument,
1973 which is the type of the instance variable. This is because we want
1974 to handle calls with objects from derived classes. This is not
1975 entirely correct: we should actually check to make sure that a
1976 requested operation is type secure, shouldn't we? FIXME. */
1977
1978 static int
1979 typecmp (int staticp, int varargs, int nargs,
1980 struct field t1[], struct value *t2[])
1981 {
1982 int i;
1983
1984 if (t2 == 0)
1985 internal_error (__FILE__, __LINE__, "typecmp: no argument list");
1986
1987 /* Skip ``this'' argument if applicable. T2 will always include THIS. */
1988 if (staticp)
1989 t2 ++;
1990
1991 for (i = 0;
1992 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1993 i++)
1994 {
1995 struct type *tt1, *tt2;
1996
1997 if (!t2[i])
1998 return i + 1;
1999
2000 tt1 = check_typedef (t1[i].type);
2001 tt2 = check_typedef (VALUE_TYPE (t2[i]));
2002
2003 if (TYPE_CODE (tt1) == TYPE_CODE_REF
2004 /* We should be doing hairy argument matching, as below. */
2005 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
2006 {
2007 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
2008 t2[i] = value_coerce_array (t2[i]);
2009 else
2010 t2[i] = value_addr (t2[i]);
2011 continue;
2012 }
2013
2014 /* djb - 20000715 - Until the new type structure is in the
2015 place, and we can attempt things like implicit conversions,
2016 we need to do this so you can take something like a map<const
2017 char *>, and properly access map["hello"], because the
2018 argument to [] will be a reference to a pointer to a char,
2019 and the argument will be a pointer to a char. */
2020 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
2021 TYPE_CODE (tt1) == TYPE_CODE_PTR)
2022 {
2023 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
2024 }
2025 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
2026 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
2027 TYPE_CODE(tt2) == TYPE_CODE_REF)
2028 {
2029 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
2030 }
2031 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
2032 continue;
2033 /* Array to pointer is a `trivial conversion' according to the ARM. */
2034
2035 /* We should be doing much hairier argument matching (see section 13.2
2036 of the ARM), but as a quick kludge, just check for the same type
2037 code. */
2038 if (TYPE_CODE (t1[i].type) != TYPE_CODE (VALUE_TYPE (t2[i])))
2039 return i + 1;
2040 }
2041 if (varargs || t2[i] == NULL)
2042 return 0;
2043 return i + 1;
2044 }
2045
2046 /* Helper function used by value_struct_elt to recurse through baseclasses.
2047 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2048 and search in it assuming it has (class) type TYPE.
2049 If found, return value, else return NULL.
2050
2051 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2052 look for a baseclass named NAME. */
2053
2054 static struct value *
2055 search_struct_field (char *name, struct value *arg1, int offset,
2056 register struct type *type, int looking_for_baseclass)
2057 {
2058 int i;
2059 int nbases = TYPE_N_BASECLASSES (type);
2060
2061 CHECK_TYPEDEF (type);
2062
2063 if (!looking_for_baseclass)
2064 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2065 {
2066 char *t_field_name = TYPE_FIELD_NAME (type, i);
2067
2068 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2069 {
2070 struct value *v;
2071 if (TYPE_FIELD_STATIC (type, i))
2072 {
2073 v = value_static_field (type, i);
2074 if (v == 0)
2075 error ("field %s is nonexistent or has been optimised out",
2076 name);
2077 }
2078 else
2079 {
2080 v = value_primitive_field (arg1, offset, i, type);
2081 if (v == 0)
2082 error ("there is no field named %s", name);
2083 }
2084 return v;
2085 }
2086
2087 if (t_field_name
2088 && (t_field_name[0] == '\0'
2089 || (TYPE_CODE (type) == TYPE_CODE_UNION
2090 && (strcmp_iw (t_field_name, "else") == 0))))
2091 {
2092 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2093 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2094 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2095 {
2096 /* Look for a match through the fields of an anonymous union,
2097 or anonymous struct. C++ provides anonymous unions.
2098
2099 In the GNU Chill (now deleted from GDB)
2100 implementation of variant record types, each
2101 <alternative field> has an (anonymous) union type,
2102 each member of the union represents a <variant
2103 alternative>. Each <variant alternative> is
2104 represented as a struct, with a member for each
2105 <variant field>. */
2106
2107 struct value *v;
2108 int new_offset = offset;
2109
2110 /* This is pretty gross. In G++, the offset in an
2111 anonymous union is relative to the beginning of the
2112 enclosing struct. In the GNU Chill (now deleted
2113 from GDB) implementation of variant records, the
2114 bitpos is zero in an anonymous union field, so we
2115 have to add the offset of the union here. */
2116 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2117 || (TYPE_NFIELDS (field_type) > 0
2118 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2119 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2120
2121 v = search_struct_field (name, arg1, new_offset, field_type,
2122 looking_for_baseclass);
2123 if (v)
2124 return v;
2125 }
2126 }
2127 }
2128
2129 for (i = 0; i < nbases; i++)
2130 {
2131 struct value *v;
2132 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2133 /* If we are looking for baseclasses, this is what we get when we
2134 hit them. But it could happen that the base part's member name
2135 is not yet filled in. */
2136 int found_baseclass = (looking_for_baseclass
2137 && TYPE_BASECLASS_NAME (type, i) != NULL
2138 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2139
2140 if (BASETYPE_VIA_VIRTUAL (type, i))
2141 {
2142 int boffset;
2143 struct value *v2 = allocate_value (basetype);
2144
2145 boffset = baseclass_offset (type, i,
2146 VALUE_CONTENTS (arg1) + offset,
2147 VALUE_ADDRESS (arg1)
2148 + VALUE_OFFSET (arg1) + offset);
2149 if (boffset == -1)
2150 error ("virtual baseclass botch");
2151
2152 /* The virtual base class pointer might have been clobbered by the
2153 user program. Make sure that it still points to a valid memory
2154 location. */
2155
2156 boffset += offset;
2157 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2158 {
2159 CORE_ADDR base_addr;
2160
2161 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2162 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2163 TYPE_LENGTH (basetype)) != 0)
2164 error ("virtual baseclass botch");
2165 VALUE_LVAL (v2) = lval_memory;
2166 VALUE_ADDRESS (v2) = base_addr;
2167 }
2168 else
2169 {
2170 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2171 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2172 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2173 if (VALUE_LAZY (arg1))
2174 VALUE_LAZY (v2) = 1;
2175 else
2176 memcpy (VALUE_CONTENTS_RAW (v2),
2177 VALUE_CONTENTS_RAW (arg1) + boffset,
2178 TYPE_LENGTH (basetype));
2179 }
2180
2181 if (found_baseclass)
2182 return v2;
2183 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2184 looking_for_baseclass);
2185 }
2186 else if (found_baseclass)
2187 v = value_primitive_field (arg1, offset, i, type);
2188 else
2189 v = search_struct_field (name, arg1,
2190 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2191 basetype, looking_for_baseclass);
2192 if (v)
2193 return v;
2194 }
2195 return NULL;
2196 }
2197
2198
2199 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2200 * in an object pointed to by VALADDR (on the host), assumed to be of
2201 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2202 * looking (in case VALADDR is the contents of an enclosing object).
2203 *
2204 * This routine recurses on the primary base of the derived class because
2205 * the virtual base entries of the primary base appear before the other
2206 * virtual base entries.
2207 *
2208 * If the virtual base is not found, a negative integer is returned.
2209 * The magnitude of the negative integer is the number of entries in
2210 * the virtual table to skip over (entries corresponding to various
2211 * ancestral classes in the chain of primary bases).
2212 *
2213 * Important: This assumes the HP / Taligent C++ runtime
2214 * conventions. Use baseclass_offset() instead to deal with g++
2215 * conventions. */
2216
2217 void
2218 find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2219 int offset, int *boffset_p, int *skip_p)
2220 {
2221 int boffset; /* offset of virtual base */
2222 int index; /* displacement to use in virtual table */
2223 int skip;
2224
2225 struct value *vp;
2226 CORE_ADDR vtbl; /* the virtual table pointer */
2227 struct type *pbc; /* the primary base class */
2228
2229 /* Look for the virtual base recursively in the primary base, first.
2230 * This is because the derived class object and its primary base
2231 * subobject share the primary virtual table. */
2232
2233 boffset = 0;
2234 pbc = TYPE_PRIMARY_BASE (type);
2235 if (pbc)
2236 {
2237 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2238 if (skip < 0)
2239 {
2240 *boffset_p = boffset;
2241 *skip_p = -1;
2242 return;
2243 }
2244 }
2245 else
2246 skip = 0;
2247
2248
2249 /* Find the index of the virtual base according to HP/Taligent
2250 runtime spec. (Depth-first, left-to-right.) */
2251 index = virtual_base_index_skip_primaries (basetype, type);
2252
2253 if (index < 0)
2254 {
2255 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2256 *boffset_p = 0;
2257 return;
2258 }
2259
2260 /* pai: FIXME -- 32x64 possible problem */
2261 /* First word (4 bytes) in object layout is the vtable pointer */
2262 vtbl = *(CORE_ADDR *) (valaddr + offset);
2263
2264 /* Before the constructor is invoked, things are usually zero'd out. */
2265 if (vtbl == 0)
2266 error ("Couldn't find virtual table -- object may not be constructed yet.");
2267
2268
2269 /* Find virtual base's offset -- jump over entries for primary base
2270 * ancestors, then use the index computed above. But also adjust by
2271 * HP_ACC_VBASE_START for the vtable slots before the start of the
2272 * virtual base entries. Offset is negative -- virtual base entries
2273 * appear _before_ the address point of the virtual table. */
2274
2275 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2276 & use long type */
2277
2278 /* epstein : FIXME -- added param for overlay section. May not be correct */
2279 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2280 boffset = value_as_long (vp);
2281 *skip_p = -1;
2282 *boffset_p = boffset;
2283 return;
2284 }
2285
2286
2287 /* Helper function used by value_struct_elt to recurse through baseclasses.
2288 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2289 and search in it assuming it has (class) type TYPE.
2290 If found, return value, else if name matched and args not return (value)-1,
2291 else return NULL. */
2292
2293 static struct value *
2294 search_struct_method (char *name, struct value **arg1p,
2295 struct value **args, int offset,
2296 int *static_memfuncp, register struct type *type)
2297 {
2298 int i;
2299 struct value *v;
2300 int name_matched = 0;
2301 char dem_opname[64];
2302
2303 CHECK_TYPEDEF (type);
2304 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2305 {
2306 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2307 /* FIXME! May need to check for ARM demangling here */
2308 if (strncmp (t_field_name, "__", 2) == 0 ||
2309 strncmp (t_field_name, "op", 2) == 0 ||
2310 strncmp (t_field_name, "type", 4) == 0)
2311 {
2312 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2313 t_field_name = dem_opname;
2314 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2315 t_field_name = dem_opname;
2316 }
2317 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2318 {
2319 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2320 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2321 name_matched = 1;
2322
2323 check_stub_method_group (type, i);
2324 if (j > 0 && args == 0)
2325 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2326 else if (j == 0 && args == 0)
2327 {
2328 v = value_fn_field (arg1p, f, j, type, offset);
2329 if (v != NULL)
2330 return v;
2331 }
2332 else
2333 while (j >= 0)
2334 {
2335 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2336 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2337 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2338 TYPE_FN_FIELD_ARGS (f, j), args))
2339 {
2340 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2341 return value_virtual_fn_field (arg1p, f, j, type, offset);
2342 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2343 *static_memfuncp = 1;
2344 v = value_fn_field (arg1p, f, j, type, offset);
2345 if (v != NULL)
2346 return v;
2347 }
2348 j--;
2349 }
2350 }
2351 }
2352
2353 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2354 {
2355 int base_offset;
2356
2357 if (BASETYPE_VIA_VIRTUAL (type, i))
2358 {
2359 if (TYPE_HAS_VTABLE (type))
2360 {
2361 /* HP aCC compiled type, search for virtual base offset
2362 according to HP/Taligent runtime spec. */
2363 int skip;
2364 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2365 VALUE_CONTENTS_ALL (*arg1p),
2366 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2367 &base_offset, &skip);
2368 if (skip >= 0)
2369 error ("Virtual base class offset not found in vtable");
2370 }
2371 else
2372 {
2373 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2374 char *base_valaddr;
2375
2376 /* The virtual base class pointer might have been clobbered by the
2377 user program. Make sure that it still points to a valid memory
2378 location. */
2379
2380 if (offset < 0 || offset >= TYPE_LENGTH (type))
2381 {
2382 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2383 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2384 + VALUE_OFFSET (*arg1p) + offset,
2385 base_valaddr,
2386 TYPE_LENGTH (baseclass)) != 0)
2387 error ("virtual baseclass botch");
2388 }
2389 else
2390 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2391
2392 base_offset =
2393 baseclass_offset (type, i, base_valaddr,
2394 VALUE_ADDRESS (*arg1p)
2395 + VALUE_OFFSET (*arg1p) + offset);
2396 if (base_offset == -1)
2397 error ("virtual baseclass botch");
2398 }
2399 }
2400 else
2401 {
2402 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2403 }
2404 v = search_struct_method (name, arg1p, args, base_offset + offset,
2405 static_memfuncp, TYPE_BASECLASS (type, i));
2406 if (v == (struct value *) - 1)
2407 {
2408 name_matched = 1;
2409 }
2410 else if (v)
2411 {
2412 /* FIXME-bothner: Why is this commented out? Why is it here? */
2413 /* *arg1p = arg1_tmp; */
2414 return v;
2415 }
2416 }
2417 if (name_matched)
2418 return (struct value *) - 1;
2419 else
2420 return NULL;
2421 }
2422
2423 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2424 extract the component named NAME from the ultimate target structure/union
2425 and return it as a value with its appropriate type.
2426 ERR is used in the error message if *ARGP's type is wrong.
2427
2428 C++: ARGS is a list of argument types to aid in the selection of
2429 an appropriate method. Also, handle derived types.
2430
2431 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2432 where the truthvalue of whether the function that was resolved was
2433 a static member function or not is stored.
2434
2435 ERR is an error message to be printed in case the field is not found. */
2436
2437 struct value *
2438 value_struct_elt (struct value **argp, struct value **args,
2439 char *name, int *static_memfuncp, char *err)
2440 {
2441 register struct type *t;
2442 struct value *v;
2443
2444 COERCE_ARRAY (*argp);
2445
2446 t = check_typedef (VALUE_TYPE (*argp));
2447
2448 /* Follow pointers until we get to a non-pointer. */
2449
2450 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2451 {
2452 *argp = value_ind (*argp);
2453 /* Don't coerce fn pointer to fn and then back again! */
2454 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2455 COERCE_ARRAY (*argp);
2456 t = check_typedef (VALUE_TYPE (*argp));
2457 }
2458
2459 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2460 error ("not implemented: member type in value_struct_elt");
2461
2462 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2463 && TYPE_CODE (t) != TYPE_CODE_UNION)
2464 error ("Attempt to extract a component of a value that is not a %s.", err);
2465
2466 /* Assume it's not, unless we see that it is. */
2467 if (static_memfuncp)
2468 *static_memfuncp = 0;
2469
2470 if (!args)
2471 {
2472 /* if there are no arguments ...do this... */
2473
2474 /* Try as a field first, because if we succeed, there
2475 is less work to be done. */
2476 v = search_struct_field (name, *argp, 0, t, 0);
2477 if (v)
2478 return v;
2479
2480 /* C++: If it was not found as a data field, then try to
2481 return it as a pointer to a method. */
2482
2483 if (destructor_name_p (name, t))
2484 error ("Cannot get value of destructor");
2485
2486 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2487
2488 if (v == (struct value *) - 1)
2489 error ("Cannot take address of a method");
2490 else if (v == 0)
2491 {
2492 if (TYPE_NFN_FIELDS (t))
2493 error ("There is no member or method named %s.", name);
2494 else
2495 error ("There is no member named %s.", name);
2496 }
2497 return v;
2498 }
2499
2500 if (destructor_name_p (name, t))
2501 {
2502 if (!args[1])
2503 {
2504 /* Destructors are a special case. */
2505 int m_index, f_index;
2506
2507 v = NULL;
2508 if (get_destructor_fn_field (t, &m_index, &f_index))
2509 {
2510 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2511 f_index, NULL, 0);
2512 }
2513 if (v == NULL)
2514 error ("could not find destructor function named %s.", name);
2515 else
2516 return v;
2517 }
2518 else
2519 {
2520 error ("destructor should not have any argument");
2521 }
2522 }
2523 else
2524 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2525
2526 if (v == (struct value *) - 1)
2527 {
2528 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
2529 }
2530 else if (v == 0)
2531 {
2532 /* See if user tried to invoke data as function. If so,
2533 hand it back. If it's not callable (i.e., a pointer to function),
2534 gdb should give an error. */
2535 v = search_struct_field (name, *argp, 0, t, 0);
2536 }
2537
2538 if (!v)
2539 error ("Structure has no component named %s.", name);
2540 return v;
2541 }
2542
2543 /* Search through the methods of an object (and its bases)
2544 * to find a specified method. Return the pointer to the
2545 * fn_field list of overloaded instances.
2546 * Helper function for value_find_oload_list.
2547 * ARGP is a pointer to a pointer to a value (the object)
2548 * METHOD is a string containing the method name
2549 * OFFSET is the offset within the value
2550 * TYPE is the assumed type of the object
2551 * NUM_FNS is the number of overloaded instances
2552 * BASETYPE is set to the actual type of the subobject where the method is found
2553 * BOFFSET is the offset of the base subobject where the method is found */
2554
2555 static struct fn_field *
2556 find_method_list (struct value **argp, char *method, int offset,
2557 struct type *type, int *num_fns,
2558 struct type **basetype, int *boffset)
2559 {
2560 int i;
2561 struct fn_field *f;
2562 CHECK_TYPEDEF (type);
2563
2564 *num_fns = 0;
2565
2566 /* First check in object itself */
2567 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2568 {
2569 /* pai: FIXME What about operators and type conversions? */
2570 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2571 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2572 {
2573 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2574 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2575
2576 *num_fns = len;
2577 *basetype = type;
2578 *boffset = offset;
2579
2580 /* Resolve any stub methods. */
2581 check_stub_method_group (type, i);
2582
2583 return f;
2584 }
2585 }
2586
2587 /* Not found in object, check in base subobjects */
2588 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2589 {
2590 int base_offset;
2591 if (BASETYPE_VIA_VIRTUAL (type, i))
2592 {
2593 if (TYPE_HAS_VTABLE (type))
2594 {
2595 /* HP aCC compiled type, search for virtual base offset
2596 * according to HP/Taligent runtime spec. */
2597 int skip;
2598 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2599 VALUE_CONTENTS_ALL (*argp),
2600 offset + VALUE_EMBEDDED_OFFSET (*argp),
2601 &base_offset, &skip);
2602 if (skip >= 0)
2603 error ("Virtual base class offset not found in vtable");
2604 }
2605 else
2606 {
2607 /* probably g++ runtime model */
2608 base_offset = VALUE_OFFSET (*argp) + offset;
2609 base_offset =
2610 baseclass_offset (type, i,
2611 VALUE_CONTENTS (*argp) + base_offset,
2612 VALUE_ADDRESS (*argp) + base_offset);
2613 if (base_offset == -1)
2614 error ("virtual baseclass botch");
2615 }
2616 }
2617 else
2618 /* non-virtual base, simply use bit position from debug info */
2619 {
2620 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2621 }
2622 f = find_method_list (argp, method, base_offset + offset,
2623 TYPE_BASECLASS (type, i), num_fns, basetype,
2624 boffset);
2625 if (f)
2626 return f;
2627 }
2628 return NULL;
2629 }
2630
2631 /* Return the list of overloaded methods of a specified name.
2632 * ARGP is a pointer to a pointer to a value (the object)
2633 * METHOD is the method name
2634 * OFFSET is the offset within the value contents
2635 * NUM_FNS is the number of overloaded instances
2636 * BASETYPE is set to the type of the base subobject that defines the method
2637 * BOFFSET is the offset of the base subobject which defines the method */
2638
2639 struct fn_field *
2640 value_find_oload_method_list (struct value **argp, char *method, int offset,
2641 int *num_fns, struct type **basetype,
2642 int *boffset)
2643 {
2644 struct type *t;
2645
2646 t = check_typedef (VALUE_TYPE (*argp));
2647
2648 /* code snarfed from value_struct_elt */
2649 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2650 {
2651 *argp = value_ind (*argp);
2652 /* Don't coerce fn pointer to fn and then back again! */
2653 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2654 COERCE_ARRAY (*argp);
2655 t = check_typedef (VALUE_TYPE (*argp));
2656 }
2657
2658 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2659 error ("Not implemented: member type in value_find_oload_lis");
2660
2661 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2662 && TYPE_CODE (t) != TYPE_CODE_UNION)
2663 error ("Attempt to extract a component of a value that is not a struct or union");
2664
2665 return find_method_list (argp, method, 0, t, num_fns, basetype, boffset);
2666 }
2667
2668 /* Given an array of argument types (ARGTYPES) (which includes an
2669 entry for "this" in the case of C++ methods), the number of
2670 arguments NARGS, the NAME of a function whether it's a method or
2671 not (METHOD), and the degree of laxness (LAX) in conforming to
2672 overload resolution rules in ANSI C++, find the best function that
2673 matches on the argument types according to the overload resolution
2674 rules.
2675
2676 In the case of class methods, the parameter OBJ is an object value
2677 in which to search for overloaded methods.
2678
2679 In the case of non-method functions, the parameter FSYM is a symbol
2680 corresponding to one of the overloaded functions.
2681
2682 Return value is an integer: 0 -> good match, 10 -> debugger applied
2683 non-standard coercions, 100 -> incompatible.
2684
2685 If a method is being searched for, VALP will hold the value.
2686 If a non-method is being searched for, SYMP will hold the symbol for it.
2687
2688 If a method is being searched for, and it is a static method,
2689 then STATICP will point to a non-zero value.
2690
2691 Note: This function does *not* check the value of
2692 overload_resolution. Caller must check it to see whether overload
2693 resolution is permitted.
2694 */
2695
2696 int
2697 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
2698 int lax, struct value **objp, struct symbol *fsym,
2699 struct value **valp, struct symbol **symp, int *staticp)
2700 {
2701 int nparms;
2702 struct type **parm_types;
2703 int champ_nparms = 0;
2704 struct value *obj = (objp ? *objp : NULL);
2705
2706 short oload_champ = -1; /* Index of best overloaded function */
2707 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2708 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2709 short oload_ambig_champ = -1; /* 2nd contender for best match */
2710 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2711 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2712
2713 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2714 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2715
2716 struct value *temp = obj;
2717 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2718 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2719 int num_fns = 0; /* Number of overloaded instances being considered */
2720 struct type *basetype = NULL;
2721 int boffset;
2722 register int jj;
2723 register int ix;
2724 int static_offset;
2725 struct cleanup *cleanups = NULL;
2726
2727 char *obj_type_name = NULL;
2728 char *func_name = NULL;
2729
2730 /* Get the list of overloaded methods or functions */
2731 if (method)
2732 {
2733 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2734 /* Hack: evaluate_subexp_standard often passes in a pointer
2735 value rather than the object itself, so try again */
2736 if ((!obj_type_name || !*obj_type_name) &&
2737 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2738 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2739
2740 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2741 &num_fns,
2742 &basetype, &boffset);
2743 if (!fns_ptr || !num_fns)
2744 error ("Couldn't find method %s%s%s",
2745 obj_type_name,
2746 (obj_type_name && *obj_type_name) ? "::" : "",
2747 name);
2748 /* If we are dealing with stub method types, they should have
2749 been resolved by find_method_list via value_find_oload_method_list
2750 above. */
2751 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2752 }
2753 else
2754 {
2755 int i = -1;
2756 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2757
2758 /* If the name is NULL this must be a C-style function.
2759 Just return the same symbol. */
2760 if (!func_name)
2761 {
2762 *symp = fsym;
2763 return 0;
2764 }
2765
2766 oload_syms = make_symbol_overload_list (fsym);
2767 cleanups = make_cleanup (xfree, oload_syms);
2768 while (oload_syms[++i])
2769 num_fns++;
2770 if (!num_fns)
2771 error ("Couldn't find function %s", func_name);
2772 }
2773
2774 oload_champ_bv = NULL;
2775
2776 /* Consider each candidate in turn */
2777 for (ix = 0; ix < num_fns; ix++)
2778 {
2779 static_offset = 0;
2780 if (method)
2781 {
2782 if (TYPE_FN_FIELD_STATIC_P (fns_ptr, ix))
2783 static_offset = 1;
2784 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2785 }
2786 else
2787 {
2788 /* If it's not a method, this is the proper place */
2789 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2790 }
2791
2792 /* Prepare array of parameter types */
2793 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2794 for (jj = 0; jj < nparms; jj++)
2795 parm_types[jj] = (method
2796 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2797 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2798
2799 /* Compare parameter types to supplied argument types. Skip THIS for
2800 static methods. */
2801 bv = rank_function (parm_types, nparms, arg_types + static_offset,
2802 nargs - static_offset);
2803
2804 if (!oload_champ_bv)
2805 {
2806 oload_champ_bv = bv;
2807 oload_champ = 0;
2808 champ_nparms = nparms;
2809 }
2810 else
2811 /* See whether current candidate is better or worse than previous best */
2812 switch (compare_badness (bv, oload_champ_bv))
2813 {
2814 case 0:
2815 oload_ambiguous = 1; /* top two contenders are equally good */
2816 oload_ambig_champ = ix;
2817 break;
2818 case 1:
2819 oload_ambiguous = 2; /* incomparable top contenders */
2820 oload_ambig_champ = ix;
2821 break;
2822 case 2:
2823 oload_champ_bv = bv; /* new champion, record details */
2824 oload_ambiguous = 0;
2825 oload_champ = ix;
2826 oload_ambig_champ = -1;
2827 champ_nparms = nparms;
2828 break;
2829 case 3:
2830 default:
2831 break;
2832 }
2833 xfree (parm_types);
2834 if (overload_debug)
2835 {
2836 if (method)
2837 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2838 else
2839 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2840 for (jj = 0; jj < nargs - static_offset; jj++)
2841 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2842 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2843 }
2844 } /* end loop over all candidates */
2845 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2846 if they have the exact same goodness. This is because there is no
2847 way to differentiate based on return type, which we need to in
2848 cases like overloads of .begin() <It's both const and non-const> */
2849 #if 0
2850 if (oload_ambiguous)
2851 {
2852 if (method)
2853 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2854 obj_type_name,
2855 (obj_type_name && *obj_type_name) ? "::" : "",
2856 name);
2857 else
2858 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2859 func_name);
2860 }
2861 #endif
2862
2863 /* Check how bad the best match is. */
2864 static_offset = 0;
2865 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2866 static_offset = 1;
2867 for (ix = 1; ix <= nargs - static_offset; ix++)
2868 {
2869 if (oload_champ_bv->rank[ix] >= 100)
2870 oload_incompatible = 1; /* truly mismatched types */
2871
2872 else if (oload_champ_bv->rank[ix] >= 10)
2873 oload_non_standard = 1; /* non-standard type conversions needed */
2874 }
2875 if (oload_incompatible)
2876 {
2877 if (method)
2878 error ("Cannot resolve method %s%s%s to any overloaded instance",
2879 obj_type_name,
2880 (obj_type_name && *obj_type_name) ? "::" : "",
2881 name);
2882 else
2883 error ("Cannot resolve function %s to any overloaded instance",
2884 func_name);
2885 }
2886 else if (oload_non_standard)
2887 {
2888 if (method)
2889 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2890 obj_type_name,
2891 (obj_type_name && *obj_type_name) ? "::" : "",
2892 name);
2893 else
2894 warning ("Using non-standard conversion to match function %s to supplied arguments",
2895 func_name);
2896 }
2897
2898 if (method)
2899 {
2900 if (staticp && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2901 *staticp = 1;
2902 else if (staticp)
2903 *staticp = 0;
2904 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2905 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2906 else
2907 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2908 }
2909 else
2910 {
2911 *symp = oload_syms[oload_champ];
2912 xfree (func_name);
2913 }
2914
2915 if (objp)
2916 {
2917 if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR
2918 && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR)
2919 {
2920 temp = value_addr (temp);
2921 }
2922 *objp = temp;
2923 }
2924 if (cleanups != NULL)
2925 do_cleanups (cleanups);
2926
2927 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2928 }
2929
2930 /* C++: return 1 is NAME is a legitimate name for the destructor
2931 of type TYPE. If TYPE does not have a destructor, or
2932 if NAME is inappropriate for TYPE, an error is signaled. */
2933 int
2934 destructor_name_p (const char *name, const struct type *type)
2935 {
2936 /* destructors are a special case. */
2937
2938 if (name[0] == '~')
2939 {
2940 char *dname = type_name_no_tag (type);
2941 char *cp = strchr (dname, '<');
2942 unsigned int len;
2943
2944 /* Do not compare the template part for template classes. */
2945 if (cp == NULL)
2946 len = strlen (dname);
2947 else
2948 len = cp - dname;
2949 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2950 error ("name of destructor must equal name of class");
2951 else
2952 return 1;
2953 }
2954 return 0;
2955 }
2956
2957 /* Helper function for check_field: Given TYPE, a structure/union,
2958 return 1 if the component named NAME from the ultimate
2959 target structure/union is defined, otherwise, return 0. */
2960
2961 static int
2962 check_field_in (register struct type *type, const char *name)
2963 {
2964 register int i;
2965
2966 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2967 {
2968 char *t_field_name = TYPE_FIELD_NAME (type, i);
2969 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2970 return 1;
2971 }
2972
2973 /* C++: If it was not found as a data field, then try to
2974 return it as a pointer to a method. */
2975
2976 /* Destructors are a special case. */
2977 if (destructor_name_p (name, type))
2978 {
2979 int m_index, f_index;
2980
2981 return get_destructor_fn_field (type, &m_index, &f_index);
2982 }
2983
2984 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2985 {
2986 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2987 return 1;
2988 }
2989
2990 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2991 if (check_field_in (TYPE_BASECLASS (type, i), name))
2992 return 1;
2993
2994 return 0;
2995 }
2996
2997
2998 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2999 return 1 if the component named NAME from the ultimate
3000 target structure/union is defined, otherwise, return 0. */
3001
3002 int
3003 check_field (struct value *arg1, const char *name)
3004 {
3005 register struct type *t;
3006
3007 COERCE_ARRAY (arg1);
3008
3009 t = VALUE_TYPE (arg1);
3010
3011 /* Follow pointers until we get to a non-pointer. */
3012
3013 for (;;)
3014 {
3015 CHECK_TYPEDEF (t);
3016 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
3017 break;
3018 t = TYPE_TARGET_TYPE (t);
3019 }
3020
3021 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
3022 error ("not implemented: member type in check_field");
3023
3024 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3025 && TYPE_CODE (t) != TYPE_CODE_UNION)
3026 error ("Internal error: `this' is not an aggregate");
3027
3028 return check_field_in (t, name);
3029 }
3030
3031 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3032 return the address of this member as a "pointer to member"
3033 type. If INTYPE is non-null, then it will be the type
3034 of the member we are looking for. This will help us resolve
3035 "pointers to member functions". This function is used
3036 to resolve user expressions of the form "DOMAIN::NAME". */
3037
3038 struct value *
3039 value_struct_elt_for_reference (struct type *domain, int offset,
3040 struct type *curtype, char *name,
3041 struct type *intype)
3042 {
3043 register struct type *t = curtype;
3044 register int i;
3045 struct value *v;
3046
3047 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3048 && TYPE_CODE (t) != TYPE_CODE_UNION)
3049 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3050
3051 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3052 {
3053 char *t_field_name = TYPE_FIELD_NAME (t, i);
3054
3055 if (t_field_name && STREQ (t_field_name, name))
3056 {
3057 if (TYPE_FIELD_STATIC (t, i))
3058 {
3059 v = value_static_field (t, i);
3060 if (v == NULL)
3061 error ("static field %s has been optimized out",
3062 name);
3063 return v;
3064 }
3065 if (TYPE_FIELD_PACKED (t, i))
3066 error ("pointers to bitfield members not allowed");
3067
3068 return value_from_longest
3069 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3070 domain)),
3071 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3072 }
3073 }
3074
3075 /* C++: If it was not found as a data field, then try to
3076 return it as a pointer to a method. */
3077
3078 /* Destructors are a special case. */
3079 if (destructor_name_p (name, t))
3080 {
3081 error ("member pointers to destructors not implemented yet");
3082 }
3083
3084 /* Perform all necessary dereferencing. */
3085 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3086 intype = TYPE_TARGET_TYPE (intype);
3087
3088 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3089 {
3090 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3091 char dem_opname[64];
3092
3093 if (strncmp (t_field_name, "__", 2) == 0 ||
3094 strncmp (t_field_name, "op", 2) == 0 ||
3095 strncmp (t_field_name, "type", 4) == 0)
3096 {
3097 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3098 t_field_name = dem_opname;
3099 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3100 t_field_name = dem_opname;
3101 }
3102 if (t_field_name && STREQ (t_field_name, name))
3103 {
3104 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3105 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3106
3107 check_stub_method_group (t, i);
3108
3109 if (intype == 0 && j > 1)
3110 error ("non-unique member `%s' requires type instantiation", name);
3111 if (intype)
3112 {
3113 while (j--)
3114 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3115 break;
3116 if (j < 0)
3117 error ("no member function matches that type instantiation");
3118 }
3119 else
3120 j = 0;
3121
3122 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3123 {
3124 return value_from_longest
3125 (lookup_reference_type
3126 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3127 domain)),
3128 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3129 }
3130 else
3131 {
3132 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3133 0, VAR_NAMESPACE, 0, NULL);
3134 if (s == NULL)
3135 {
3136 v = 0;
3137 }
3138 else
3139 {
3140 v = read_var_value (s, 0);
3141 #if 0
3142 VALUE_TYPE (v) = lookup_reference_type
3143 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3144 domain));
3145 #endif
3146 }
3147 return v;
3148 }
3149 }
3150 }
3151 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3152 {
3153 struct value *v;
3154 int base_offset;
3155
3156 if (BASETYPE_VIA_VIRTUAL (t, i))
3157 base_offset = 0;
3158 else
3159 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3160 v = value_struct_elt_for_reference (domain,
3161 offset + base_offset,
3162 TYPE_BASECLASS (t, i),
3163 name,
3164 intype);
3165 if (v)
3166 return v;
3167 }
3168 return 0;
3169 }
3170
3171
3172 /* Given a pointer value V, find the real (RTTI) type
3173 of the object it points to.
3174 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3175 and refer to the values computed for the object pointed to. */
3176
3177 struct type *
3178 value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
3179 {
3180 struct value *target;
3181
3182 target = value_ind (v);
3183
3184 return value_rtti_type (target, full, top, using_enc);
3185 }
3186
3187 /* Given a value pointed to by ARGP, check its real run-time type, and
3188 if that is different from the enclosing type, create a new value
3189 using the real run-time type as the enclosing type (and of the same
3190 type as ARGP) and return it, with the embedded offset adjusted to
3191 be the correct offset to the enclosed object
3192 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3193 parameters, computed by value_rtti_type(). If these are available,
3194 they can be supplied and a second call to value_rtti_type() is avoided.
3195 (Pass RTYPE == NULL if they're not available */
3196
3197 struct value *
3198 value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
3199 int xusing_enc)
3200 {
3201 struct type *real_type;
3202 int full = 0;
3203 int top = -1;
3204 int using_enc = 0;
3205 struct value *new_val;
3206
3207 if (rtype)
3208 {
3209 real_type = rtype;
3210 full = xfull;
3211 top = xtop;
3212 using_enc = xusing_enc;
3213 }
3214 else
3215 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3216
3217 /* If no RTTI data, or if object is already complete, do nothing */
3218 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3219 return argp;
3220
3221 /* If we have the full object, but for some reason the enclosing
3222 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3223 if (full)
3224 {
3225 argp = value_change_enclosing_type (argp, real_type);
3226 return argp;
3227 }
3228
3229 /* Check if object is in memory */
3230 if (VALUE_LVAL (argp) != lval_memory)
3231 {
3232 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3233
3234 return argp;
3235 }
3236
3237 /* All other cases -- retrieve the complete object */
3238 /* Go back by the computed top_offset from the beginning of the object,
3239 adjusting for the embedded offset of argp if that's what value_rtti_type
3240 used for its computation. */
3241 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3242 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3243 VALUE_BFD_SECTION (argp));
3244 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3245 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3246 return new_val;
3247 }
3248
3249
3250
3251
3252 /* Return the value of the local variable, if one exists.
3253 Flag COMPLAIN signals an error if the request is made in an
3254 inappropriate context. */
3255
3256 struct value *
3257 value_of_local (const char *name, int complain)
3258 {
3259 struct symbol *func, *sym;
3260 struct block *b;
3261 int i;
3262 struct value * ret;
3263
3264 if (deprecated_selected_frame == 0)
3265 {
3266 if (complain)
3267 error ("no frame selected");
3268 else
3269 return 0;
3270 }
3271
3272 func = get_frame_function (deprecated_selected_frame);
3273 if (!func)
3274 {
3275 if (complain)
3276 error ("no `%s' in nameless context", name);
3277 else
3278 return 0;
3279 }
3280
3281 b = SYMBOL_BLOCK_VALUE (func);
3282 i = BLOCK_NSYMS (b);
3283 if (i <= 0)
3284 {
3285 if (complain)
3286 error ("no args, no `%s'", name);
3287 else
3288 return 0;
3289 }
3290
3291 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3292 symbol instead of the LOC_ARG one (if both exist). */
3293 sym = lookup_block_symbol (b, name, NULL, VAR_NAMESPACE);
3294 if (sym == NULL)
3295 {
3296 if (complain)
3297 error ("current stack frame does not contain a variable named `%s'", name);
3298 else
3299 return NULL;
3300 }
3301
3302 ret = read_var_value (sym, deprecated_selected_frame);
3303 if (ret == 0 && complain)
3304 error ("`%s' argument unreadable", name);
3305 return ret;
3306 }
3307
3308 /* C++/Objective-C: return the value of the class instance variable,
3309 if one exists. Flag COMPLAIN signals an error if the request is
3310 made in an inappropriate context. */
3311
3312 struct value *
3313 value_of_this (int complain)
3314 {
3315 if (current_language->la_language == language_objc)
3316 return value_of_local ("self", complain);
3317 else
3318 return value_of_local ("this", complain);
3319 }
3320
3321 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3322 long, starting at LOWBOUND. The result has the same lower bound as
3323 the original ARRAY. */
3324
3325 struct value *
3326 value_slice (struct value *array, int lowbound, int length)
3327 {
3328 struct type *slice_range_type, *slice_type, *range_type;
3329 LONGEST lowerbound, upperbound;
3330 struct value *slice;
3331 struct type *array_type;
3332 array_type = check_typedef (VALUE_TYPE (array));
3333 COERCE_VARYING_ARRAY (array, array_type);
3334 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3335 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3336 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3337 error ("cannot take slice of non-array");
3338 range_type = TYPE_INDEX_TYPE (array_type);
3339 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3340 error ("slice from bad array or bitstring");
3341 if (lowbound < lowerbound || length < 0
3342 || lowbound + length - 1 > upperbound)
3343 error ("slice out of range");
3344 /* FIXME-type-allocation: need a way to free this type when we are
3345 done with it. */
3346 slice_range_type = create_range_type ((struct type *) NULL,
3347 TYPE_TARGET_TYPE (range_type),
3348 lowbound, lowbound + length - 1);
3349 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3350 {
3351 int i;
3352 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3353 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3354 slice = value_zero (slice_type, not_lval);
3355 for (i = 0; i < length; i++)
3356 {
3357 int element = value_bit_index (array_type,
3358 VALUE_CONTENTS (array),
3359 lowbound + i);
3360 if (element < 0)
3361 error ("internal error accessing bitstring");
3362 else if (element > 0)
3363 {
3364 int j = i % TARGET_CHAR_BIT;
3365 if (BITS_BIG_ENDIAN)
3366 j = TARGET_CHAR_BIT - 1 - j;
3367 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3368 }
3369 }
3370 /* We should set the address, bitssize, and bitspos, so the clice
3371 can be used on the LHS, but that may require extensions to
3372 value_assign. For now, just leave as a non_lval. FIXME. */
3373 }
3374 else
3375 {
3376 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3377 LONGEST offset
3378 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3379 slice_type = create_array_type ((struct type *) NULL, element_type,
3380 slice_range_type);
3381 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3382 slice = allocate_value (slice_type);
3383 if (VALUE_LAZY (array))
3384 VALUE_LAZY (slice) = 1;
3385 else
3386 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3387 TYPE_LENGTH (slice_type));
3388 if (VALUE_LVAL (array) == lval_internalvar)
3389 VALUE_LVAL (slice) = lval_internalvar_component;
3390 else
3391 VALUE_LVAL (slice) = VALUE_LVAL (array);
3392 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3393 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3394 }
3395 return slice;
3396 }
3397
3398 /* Create a value for a FORTRAN complex number. Currently most of
3399 the time values are coerced to COMPLEX*16 (i.e. a complex number
3400 composed of 2 doubles. This really should be a smarter routine
3401 that figures out precision inteligently as opposed to assuming
3402 doubles. FIXME: fmb */
3403
3404 struct value *
3405 value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
3406 {
3407 struct value *val;
3408 struct type *real_type = TYPE_TARGET_TYPE (type);
3409
3410 val = allocate_value (type);
3411 arg1 = value_cast (real_type, arg1);
3412 arg2 = value_cast (real_type, arg2);
3413
3414 memcpy (VALUE_CONTENTS_RAW (val),
3415 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3416 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3417 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3418 return val;
3419 }
3420
3421 /* Cast a value into the appropriate complex data type. */
3422
3423 static struct value *
3424 cast_into_complex (struct type *type, struct value *val)
3425 {
3426 struct type *real_type = TYPE_TARGET_TYPE (type);
3427 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3428 {
3429 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3430 struct value *re_val = allocate_value (val_real_type);
3431 struct value *im_val = allocate_value (val_real_type);
3432
3433 memcpy (VALUE_CONTENTS_RAW (re_val),
3434 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3435 memcpy (VALUE_CONTENTS_RAW (im_val),
3436 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3437 TYPE_LENGTH (val_real_type));
3438
3439 return value_literal_complex (re_val, im_val, type);
3440 }
3441 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3442 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3443 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3444 else
3445 error ("cannot cast non-number to complex");
3446 }
3447
3448 void
3449 _initialize_valops (void)
3450 {
3451 #if 0
3452 add_show_from_set
3453 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3454 "Set automatic abandonment of expressions upon failure.",
3455 &setlist),
3456 &showlist);
3457 #endif
3458
3459 add_show_from_set
3460 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3461 "Set overload resolution in evaluating C++ functions.",
3462 &setlist),
3463 &showlist);
3464 overload_resolution = 1;
3465
3466 add_show_from_set (
3467 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3468 (char *) &unwind_on_signal_p,
3469 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3470 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3471 is received while in a function called from gdb (call dummy). If set, gdb\n\
3472 unwinds the stack and restore the context to what as it was before the call.\n\
3473 The default is to stop in the frame where the signal was received.", &setlist),
3474 &showlist);
3475
3476 add_show_from_set
3477 (add_set_cmd ("coerce-float-to-double", class_obscure, var_boolean,
3478 (char *) &coerce_float_to_double,
3479 "Set coercion of floats to doubles when calling functions\n"
3480 "Variables of type float should generally be converted to doubles before\n"
3481 "calling an unprototyped function, and left alone when calling a prototyped\n"
3482 "function. However, some older debug info formats do not provide enough\n"
3483 "information to determine that a function is prototyped. If this flag is\n"
3484 "set, GDB will perform the conversion for a function it considers\n"
3485 "unprototyped.\n"
3486 "The default is to perform the conversion.\n",
3487 &setlist),
3488 &showlist);
3489 coerce_float_to_double = 1;
3490 }
This page took 0.101695 seconds and 5 git commands to generate.