2002-09-18 Andrew Cagney <ac131313@redhat.com>
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
3 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "gdbcore.h"
30 #include "target.h"
31 #include "demangle.h"
32 #include "language.h"
33 #include "gdbcmd.h"
34 #include "regcache.h"
35 #include "cp-abi.h"
36
37 #include <errno.h>
38 #include "gdb_string.h"
39 #include "gdb_assert.h"
40
41 /* Flag indicating HP compilers were used; needed to correctly handle some
42 value operations with HP aCC code/runtime. */
43 extern int hp_som_som_object_present;
44
45 extern int overload_debug;
46 /* Local functions. */
47
48 static int typecmp (int staticp, int varargs, int nargs,
49 struct field t1[], struct value *t2[]);
50
51 static CORE_ADDR find_function_addr (struct value *, struct type **);
52 static struct value *value_arg_coerce (struct value *, struct type *, int);
53
54
55 static CORE_ADDR value_push (CORE_ADDR, struct value *);
56
57 static struct value *search_struct_field (char *, struct value *, int,
58 struct type *, int);
59
60 static struct value *search_struct_method (char *, struct value **,
61 struct value **,
62 int, int *, struct type *);
63
64 static int check_field_in (struct type *, const char *);
65
66 static CORE_ADDR allocate_space_in_inferior (int);
67
68 static struct value *cast_into_complex (struct type *, struct value *);
69
70 static struct fn_field *find_method_list (struct value ** argp, char *method,
71 int offset,
72 struct type *type, int *num_fns,
73 struct type **basetype,
74 int *boffset);
75
76 void _initialize_valops (void);
77
78 /* Flag for whether we want to abandon failed expression evals by default. */
79
80 #if 0
81 static int auto_abandon = 0;
82 #endif
83
84 int overload_resolution = 0;
85
86 /* This boolean tells what gdb should do if a signal is received while in
87 a function called from gdb (call dummy). If set, gdb unwinds the stack
88 and restore the context to what as it was before the call.
89 The default is to stop in the frame where the signal was received. */
90
91 int unwind_on_signal_p = 0;
92 \f
93
94
95 /* Find the address of function name NAME in the inferior. */
96
97 struct value *
98 find_function_in_inferior (const char *name)
99 {
100 register struct symbol *sym;
101 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
102 if (sym != NULL)
103 {
104 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
105 {
106 error ("\"%s\" exists in this program but is not a function.",
107 name);
108 }
109 return value_of_variable (sym, NULL);
110 }
111 else
112 {
113 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
114 if (msymbol != NULL)
115 {
116 struct type *type;
117 CORE_ADDR maddr;
118 type = lookup_pointer_type (builtin_type_char);
119 type = lookup_function_type (type);
120 type = lookup_pointer_type (type);
121 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
122 return value_from_pointer (type, maddr);
123 }
124 else
125 {
126 if (!target_has_execution)
127 error ("evaluation of this expression requires the target program to be active");
128 else
129 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
130 }
131 }
132 }
133
134 /* Allocate NBYTES of space in the inferior using the inferior's malloc
135 and return a value that is a pointer to the allocated space. */
136
137 struct value *
138 value_allocate_space_in_inferior (int len)
139 {
140 struct value *blocklen;
141 struct value *val = find_function_in_inferior (NAME_OF_MALLOC);
142
143 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
144 val = call_function_by_hand (val, 1, &blocklen);
145 if (value_logical_not (val))
146 {
147 if (!target_has_execution)
148 error ("No memory available to program now: you need to start the target first");
149 else
150 error ("No memory available to program: call to malloc failed");
151 }
152 return val;
153 }
154
155 static CORE_ADDR
156 allocate_space_in_inferior (int len)
157 {
158 return value_as_long (value_allocate_space_in_inferior (len));
159 }
160
161 /* Cast value ARG2 to type TYPE and return as a value.
162 More general than a C cast: accepts any two types of the same length,
163 and if ARG2 is an lvalue it can be cast into anything at all. */
164 /* In C++, casts may change pointer or object representations. */
165
166 struct value *
167 value_cast (struct type *type, struct value *arg2)
168 {
169 register enum type_code code1;
170 register enum type_code code2;
171 register int scalar;
172 struct type *type2;
173
174 int convert_to_boolean = 0;
175
176 if (VALUE_TYPE (arg2) == type)
177 return arg2;
178
179 CHECK_TYPEDEF (type);
180 code1 = TYPE_CODE (type);
181 COERCE_REF (arg2);
182 type2 = check_typedef (VALUE_TYPE (arg2));
183
184 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
185 is treated like a cast to (TYPE [N])OBJECT,
186 where N is sizeof(OBJECT)/sizeof(TYPE). */
187 if (code1 == TYPE_CODE_ARRAY)
188 {
189 struct type *element_type = TYPE_TARGET_TYPE (type);
190 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
191 if (element_length > 0
192 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
193 {
194 struct type *range_type = TYPE_INDEX_TYPE (type);
195 int val_length = TYPE_LENGTH (type2);
196 LONGEST low_bound, high_bound, new_length;
197 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
198 low_bound = 0, high_bound = 0;
199 new_length = val_length / element_length;
200 if (val_length % element_length != 0)
201 warning ("array element type size does not divide object size in cast");
202 /* FIXME-type-allocation: need a way to free this type when we are
203 done with it. */
204 range_type = create_range_type ((struct type *) NULL,
205 TYPE_TARGET_TYPE (range_type),
206 low_bound,
207 new_length + low_bound - 1);
208 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
209 element_type, range_type);
210 return arg2;
211 }
212 }
213
214 if (current_language->c_style_arrays
215 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
216 arg2 = value_coerce_array (arg2);
217
218 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
219 arg2 = value_coerce_function (arg2);
220
221 type2 = check_typedef (VALUE_TYPE (arg2));
222 COERCE_VARYING_ARRAY (arg2, type2);
223 code2 = TYPE_CODE (type2);
224
225 if (code1 == TYPE_CODE_COMPLEX)
226 return cast_into_complex (type, arg2);
227 if (code1 == TYPE_CODE_BOOL)
228 {
229 code1 = TYPE_CODE_INT;
230 convert_to_boolean = 1;
231 }
232 if (code1 == TYPE_CODE_CHAR)
233 code1 = TYPE_CODE_INT;
234 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
235 code2 = TYPE_CODE_INT;
236
237 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
238 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
239
240 if (code1 == TYPE_CODE_STRUCT
241 && code2 == TYPE_CODE_STRUCT
242 && TYPE_NAME (type) != 0)
243 {
244 /* Look in the type of the source to see if it contains the
245 type of the target as a superclass. If so, we'll need to
246 offset the object in addition to changing its type. */
247 struct value *v = search_struct_field (type_name_no_tag (type),
248 arg2, 0, type2, 1);
249 if (v)
250 {
251 VALUE_TYPE (v) = type;
252 return v;
253 }
254 }
255 if (code1 == TYPE_CODE_FLT && scalar)
256 return value_from_double (type, value_as_double (arg2));
257 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
258 || code1 == TYPE_CODE_RANGE)
259 && (scalar || code2 == TYPE_CODE_PTR))
260 {
261 LONGEST longest;
262
263 if (hp_som_som_object_present && /* if target compiled by HP aCC */
264 (code2 == TYPE_CODE_PTR))
265 {
266 unsigned int *ptr;
267 struct value *retvalp;
268
269 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
270 {
271 /* With HP aCC, pointers to data members have a bias */
272 case TYPE_CODE_MEMBER:
273 retvalp = value_from_longest (type, value_as_long (arg2));
274 /* force evaluation */
275 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
276 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
277 return retvalp;
278
279 /* While pointers to methods don't really point to a function */
280 case TYPE_CODE_METHOD:
281 error ("Pointers to methods not supported with HP aCC");
282
283 default:
284 break; /* fall out and go to normal handling */
285 }
286 }
287
288 /* When we cast pointers to integers, we mustn't use
289 POINTER_TO_ADDRESS to find the address the pointer
290 represents, as value_as_long would. GDB should evaluate
291 expressions just as the compiler would --- and the compiler
292 sees a cast as a simple reinterpretation of the pointer's
293 bits. */
294 if (code2 == TYPE_CODE_PTR)
295 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
296 TYPE_LENGTH (type2));
297 else
298 longest = value_as_long (arg2);
299 return value_from_longest (type, convert_to_boolean ?
300 (LONGEST) (longest ? 1 : 0) : longest);
301 }
302 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
303 code2 == TYPE_CODE_ENUM ||
304 code2 == TYPE_CODE_RANGE))
305 {
306 /* TYPE_LENGTH (type) is the length of a pointer, but we really
307 want the length of an address! -- we are really dealing with
308 addresses (i.e., gdb representations) not pointers (i.e.,
309 target representations) here.
310
311 This allows things like "print *(int *)0x01000234" to work
312 without printing a misleading message -- which would
313 otherwise occur when dealing with a target having two byte
314 pointers and four byte addresses. */
315
316 int addr_bit = TARGET_ADDR_BIT;
317
318 LONGEST longest = value_as_long (arg2);
319 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
320 {
321 if (longest >= ((LONGEST) 1 << addr_bit)
322 || longest <= -((LONGEST) 1 << addr_bit))
323 warning ("value truncated");
324 }
325 return value_from_longest (type, longest);
326 }
327 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
328 {
329 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
330 {
331 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
332 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
333 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
334 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
335 && !value_logical_not (arg2))
336 {
337 struct value *v;
338
339 /* Look in the type of the source to see if it contains the
340 type of the target as a superclass. If so, we'll need to
341 offset the pointer rather than just change its type. */
342 if (TYPE_NAME (t1) != NULL)
343 {
344 v = search_struct_field (type_name_no_tag (t1),
345 value_ind (arg2), 0, t2, 1);
346 if (v)
347 {
348 v = value_addr (v);
349 VALUE_TYPE (v) = type;
350 return v;
351 }
352 }
353
354 /* Look in the type of the target to see if it contains the
355 type of the source as a superclass. If so, we'll need to
356 offset the pointer rather than just change its type.
357 FIXME: This fails silently with virtual inheritance. */
358 if (TYPE_NAME (t2) != NULL)
359 {
360 v = search_struct_field (type_name_no_tag (t2),
361 value_zero (t1, not_lval), 0, t1, 1);
362 if (v)
363 {
364 CORE_ADDR addr2 = value_as_address (arg2);
365 addr2 -= (VALUE_ADDRESS (v)
366 + VALUE_OFFSET (v)
367 + VALUE_EMBEDDED_OFFSET (v));
368 return value_from_pointer (type, addr2);
369 }
370 }
371 }
372 /* No superclass found, just fall through to change ptr type. */
373 }
374 VALUE_TYPE (arg2) = type;
375 arg2 = value_change_enclosing_type (arg2, type);
376 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
377 return arg2;
378 }
379 /* OBSOLETE else if (chill_varying_type (type)) */
380 /* OBSOLETE { */
381 /* OBSOLETE struct type *range1, *range2, *eltype1, *eltype2; */
382 /* OBSOLETE struct value *val; */
383 /* OBSOLETE int count1, count2; */
384 /* OBSOLETE LONGEST low_bound, high_bound; */
385 /* OBSOLETE char *valaddr, *valaddr_data; */
386 /* OBSOLETE *//* For lint warning about eltype2 possibly uninitialized: */
387 /* OBSOLETE eltype2 = NULL; */
388 /* OBSOLETE if (code2 == TYPE_CODE_BITSTRING) */
389 /* OBSOLETE error ("not implemented: converting bitstring to varying type"); */
390 /* OBSOLETE if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING) */
391 /* OBSOLETE || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))), */
392 /* OBSOLETE eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)), */
393 /* OBSOLETE (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2) */
394 /* OBSOLETE *//*|| TYPE_CODE (eltype1) != TYPE_CODE (eltype2) *//* ))) */
395 /* OBSOLETE error ("Invalid conversion to varying type"); */
396 /* OBSOLETE range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0); */
397 /* OBSOLETE range2 = TYPE_FIELD_TYPE (type2, 0); */
398 /* OBSOLETE if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0) */
399 /* OBSOLETE count1 = -1; */
400 /* OBSOLETE else */
401 /* OBSOLETE count1 = high_bound - low_bound + 1; */
402 /* OBSOLETE if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0) */
403 /* OBSOLETE count1 = -1, count2 = 0; *//* To force error before */
404 /* OBSOLETE else */
405 /* OBSOLETE count2 = high_bound - low_bound + 1; */
406 /* OBSOLETE if (count2 > count1) */
407 /* OBSOLETE error ("target varying type is too small"); */
408 /* OBSOLETE val = allocate_value (type); */
409 /* OBSOLETE valaddr = VALUE_CONTENTS_RAW (val); */
410 /* OBSOLETE valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8; */
411 /* OBSOLETE *//* Set val's __var_length field to count2. */
412 /* OBSOLETE store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)), */
413 /* OBSOLETE count2); */
414 /* OBSOLETE *//* Set the __var_data field to count2 elements copied from arg2. */
415 /* OBSOLETE memcpy (valaddr_data, VALUE_CONTENTS (arg2), */
416 /* OBSOLETE count2 * TYPE_LENGTH (eltype2)); */
417 /* OBSOLETE *//* Zero the rest of the __var_data field of val. */
418 /* OBSOLETE memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0', */
419 /* OBSOLETE (count1 - count2) * TYPE_LENGTH (eltype2)); */
420 /* OBSOLETE return val; */
421 /* OBSOLETE } */
422 else if (VALUE_LVAL (arg2) == lval_memory)
423 {
424 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
425 VALUE_BFD_SECTION (arg2));
426 }
427 else if (code1 == TYPE_CODE_VOID)
428 {
429 return value_zero (builtin_type_void, not_lval);
430 }
431 else
432 {
433 error ("Invalid cast.");
434 return 0;
435 }
436 }
437
438 /* Create a value of type TYPE that is zero, and return it. */
439
440 struct value *
441 value_zero (struct type *type, enum lval_type lv)
442 {
443 struct value *val = allocate_value (type);
444
445 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
446 VALUE_LVAL (val) = lv;
447
448 return val;
449 }
450
451 /* Return a value with type TYPE located at ADDR.
452
453 Call value_at only if the data needs to be fetched immediately;
454 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
455 value_at_lazy instead. value_at_lazy simply records the address of
456 the data and sets the lazy-evaluation-required flag. The lazy flag
457 is tested in the VALUE_CONTENTS macro, which is used if and when
458 the contents are actually required.
459
460 Note: value_at does *NOT* handle embedded offsets; perform such
461 adjustments before or after calling it. */
462
463 struct value *
464 value_at (struct type *type, CORE_ADDR addr, asection *sect)
465 {
466 struct value *val;
467
468 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
469 error ("Attempt to dereference a generic pointer.");
470
471 val = allocate_value (type);
472
473 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
474
475 VALUE_LVAL (val) = lval_memory;
476 VALUE_ADDRESS (val) = addr;
477 VALUE_BFD_SECTION (val) = sect;
478
479 return val;
480 }
481
482 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
483
484 struct value *
485 value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
486 {
487 struct value *val;
488
489 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
490 error ("Attempt to dereference a generic pointer.");
491
492 val = allocate_value (type);
493
494 VALUE_LVAL (val) = lval_memory;
495 VALUE_ADDRESS (val) = addr;
496 VALUE_LAZY (val) = 1;
497 VALUE_BFD_SECTION (val) = sect;
498
499 return val;
500 }
501
502 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
503 if the current data for a variable needs to be loaded into
504 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
505 clears the lazy flag to indicate that the data in the buffer is valid.
506
507 If the value is zero-length, we avoid calling read_memory, which would
508 abort. We mark the value as fetched anyway -- all 0 bytes of it.
509
510 This function returns a value because it is used in the VALUE_CONTENTS
511 macro as part of an expression, where a void would not work. The
512 value is ignored. */
513
514 int
515 value_fetch_lazy (struct value *val)
516 {
517 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
518 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
519
520 struct type *type = VALUE_TYPE (val);
521 if (length)
522 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
523
524 VALUE_LAZY (val) = 0;
525 return 0;
526 }
527
528
529 /* Store the contents of FROMVAL into the location of TOVAL.
530 Return a new value with the location of TOVAL and contents of FROMVAL. */
531
532 struct value *
533 value_assign (struct value *toval, struct value *fromval)
534 {
535 register struct type *type;
536 struct value *val;
537 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
538 int use_buffer = 0;
539
540 if (!toval->modifiable)
541 error ("Left operand of assignment is not a modifiable lvalue.");
542
543 COERCE_REF (toval);
544
545 type = VALUE_TYPE (toval);
546 if (VALUE_LVAL (toval) != lval_internalvar)
547 fromval = value_cast (type, fromval);
548 else
549 COERCE_ARRAY (fromval);
550 CHECK_TYPEDEF (type);
551
552 /* If TOVAL is a special machine register requiring conversion
553 of program values to a special raw format,
554 convert FROMVAL's contents now, with result in `raw_buffer',
555 and set USE_BUFFER to the number of bytes to write. */
556
557 if (VALUE_REGNO (toval) >= 0)
558 {
559 int regno = VALUE_REGNO (toval);
560 if (CONVERT_REGISTER_P (regno))
561 {
562 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
563 VALUE_TO_REGISTER (fromtype, regno, VALUE_CONTENTS (fromval), raw_buffer);
564 use_buffer = REGISTER_RAW_SIZE (regno);
565 }
566 }
567
568 switch (VALUE_LVAL (toval))
569 {
570 case lval_internalvar:
571 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
572 val = value_copy (VALUE_INTERNALVAR (toval)->value);
573 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
574 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
575 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
576 return val;
577
578 case lval_internalvar_component:
579 set_internalvar_component (VALUE_INTERNALVAR (toval),
580 VALUE_OFFSET (toval),
581 VALUE_BITPOS (toval),
582 VALUE_BITSIZE (toval),
583 fromval);
584 break;
585
586 case lval_memory:
587 {
588 char *dest_buffer;
589 CORE_ADDR changed_addr;
590 int changed_len;
591
592 if (VALUE_BITSIZE (toval))
593 {
594 char buffer[sizeof (LONGEST)];
595 /* We assume that the argument to read_memory is in units of
596 host chars. FIXME: Is that correct? */
597 changed_len = (VALUE_BITPOS (toval)
598 + VALUE_BITSIZE (toval)
599 + HOST_CHAR_BIT - 1)
600 / HOST_CHAR_BIT;
601
602 if (changed_len > (int) sizeof (LONGEST))
603 error ("Can't handle bitfields which don't fit in a %d bit word.",
604 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
605
606 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
607 buffer, changed_len);
608 modify_field (buffer, value_as_long (fromval),
609 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
610 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
611 dest_buffer = buffer;
612 }
613 else if (use_buffer)
614 {
615 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
616 changed_len = use_buffer;
617 dest_buffer = raw_buffer;
618 }
619 else
620 {
621 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
622 changed_len = TYPE_LENGTH (type);
623 dest_buffer = VALUE_CONTENTS (fromval);
624 }
625
626 write_memory (changed_addr, dest_buffer, changed_len);
627 if (memory_changed_hook)
628 memory_changed_hook (changed_addr, changed_len);
629 target_changed_event ();
630 }
631 break;
632
633 case lval_register:
634 if (VALUE_BITSIZE (toval))
635 {
636 char buffer[sizeof (LONGEST)];
637 int len =
638 REGISTER_RAW_SIZE (VALUE_REGNO (toval)) - VALUE_OFFSET (toval);
639
640 if (len > (int) sizeof (LONGEST))
641 error ("Can't handle bitfields in registers larger than %d bits.",
642 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
643
644 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
645 > len * HOST_CHAR_BIT)
646 /* Getting this right would involve being very careful about
647 byte order. */
648 error ("Can't assign to bitfields that cross register "
649 "boundaries.");
650
651 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
652 buffer, len);
653 modify_field (buffer, value_as_long (fromval),
654 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
655 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
656 buffer, len);
657 }
658 else if (use_buffer)
659 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
660 raw_buffer, use_buffer);
661 else
662 {
663 /* Do any conversion necessary when storing this type to more
664 than one register. */
665 #ifdef REGISTER_CONVERT_FROM_TYPE
666 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
667 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
668 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
669 raw_buffer, TYPE_LENGTH (type));
670 #else
671 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
672 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
673 #endif
674 }
675
676 target_changed_event ();
677
678 /* Assigning to the stack pointer, frame pointer, and other
679 (architecture and calling convention specific) registers may
680 cause the frame cache to be out of date. We just do this
681 on all assignments to registers for simplicity; I doubt the slowdown
682 matters. */
683 reinit_frame_cache ();
684 break;
685
686 case lval_reg_frame_relative:
687 {
688 /* value is stored in a series of registers in the frame
689 specified by the structure. Copy that value out, modify
690 it, and copy it back in. */
691 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
692 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
693 int byte_offset = VALUE_OFFSET (toval) % reg_size;
694 int reg_offset = VALUE_OFFSET (toval) / reg_size;
695 int amount_copied;
696
697 /* Make the buffer large enough in all cases. */
698 /* FIXME (alloca): Not safe for very large data types. */
699 char *buffer = (char *) alloca (amount_to_copy
700 + sizeof (LONGEST)
701 + MAX_REGISTER_RAW_SIZE);
702
703 int regno;
704 struct frame_info *frame;
705
706 /* Figure out which frame this is in currently. */
707 for (frame = get_current_frame ();
708 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
709 frame = get_prev_frame (frame))
710 ;
711
712 if (!frame)
713 error ("Value being assigned to is no longer active.");
714
715 amount_to_copy += (reg_size - amount_to_copy % reg_size);
716
717 /* Copy it out. */
718 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
719 amount_copied = 0);
720 amount_copied < amount_to_copy;
721 amount_copied += reg_size, regno++)
722 {
723 get_saved_register (buffer + amount_copied,
724 (int *) NULL, (CORE_ADDR *) NULL,
725 frame, regno, (enum lval_type *) NULL);
726 }
727
728 /* Modify what needs to be modified. */
729 if (VALUE_BITSIZE (toval))
730 modify_field (buffer + byte_offset,
731 value_as_long (fromval),
732 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
733 else if (use_buffer)
734 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
735 else
736 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
737 TYPE_LENGTH (type));
738
739 /* Copy it back. */
740 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
741 amount_copied = 0);
742 amount_copied < amount_to_copy;
743 amount_copied += reg_size, regno++)
744 {
745 enum lval_type lval;
746 CORE_ADDR addr;
747 int optim;
748
749 /* Just find out where to put it. */
750 get_saved_register ((char *) NULL,
751 &optim, &addr, frame, regno, &lval);
752
753 if (optim)
754 error ("Attempt to assign to a value that was optimized out.");
755 if (lval == lval_memory)
756 write_memory (addr, buffer + amount_copied, reg_size);
757 else if (lval == lval_register)
758 write_register_bytes (addr, buffer + amount_copied, reg_size);
759 else
760 error ("Attempt to assign to an unmodifiable value.");
761 }
762
763 if (register_changed_hook)
764 register_changed_hook (-1);
765 target_changed_event ();
766 }
767 break;
768
769
770 default:
771 error ("Left operand of assignment is not an lvalue.");
772 }
773
774 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
775 If the field is signed, and is negative, then sign extend. */
776 if ((VALUE_BITSIZE (toval) > 0)
777 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
778 {
779 LONGEST fieldval = value_as_long (fromval);
780 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
781
782 fieldval &= valmask;
783 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
784 fieldval |= ~valmask;
785
786 fromval = value_from_longest (type, fieldval);
787 }
788
789 val = value_copy (toval);
790 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
791 TYPE_LENGTH (type));
792 VALUE_TYPE (val) = type;
793 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
794 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
795 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
796
797 return val;
798 }
799
800 /* Extend a value VAL to COUNT repetitions of its type. */
801
802 struct value *
803 value_repeat (struct value *arg1, int count)
804 {
805 struct value *val;
806
807 if (VALUE_LVAL (arg1) != lval_memory)
808 error ("Only values in memory can be extended with '@'.");
809 if (count < 1)
810 error ("Invalid number %d of repetitions.", count);
811
812 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
813
814 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
815 VALUE_CONTENTS_ALL_RAW (val),
816 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
817 VALUE_LVAL (val) = lval_memory;
818 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
819
820 return val;
821 }
822
823 struct value *
824 value_of_variable (struct symbol *var, struct block *b)
825 {
826 struct value *val;
827 struct frame_info *frame = NULL;
828
829 if (!b)
830 frame = NULL; /* Use selected frame. */
831 else if (symbol_read_needs_frame (var))
832 {
833 frame = block_innermost_frame (b);
834 if (!frame)
835 {
836 if (BLOCK_FUNCTION (b)
837 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
838 error ("No frame is currently executing in block %s.",
839 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
840 else
841 error ("No frame is currently executing in specified block");
842 }
843 }
844
845 val = read_var_value (var, frame);
846 if (!val)
847 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
848
849 return val;
850 }
851
852 /* Given a value which is an array, return a value which is a pointer to its
853 first element, regardless of whether or not the array has a nonzero lower
854 bound.
855
856 FIXME: A previous comment here indicated that this routine should be
857 substracting the array's lower bound. It's not clear to me that this
858 is correct. Given an array subscripting operation, it would certainly
859 work to do the adjustment here, essentially computing:
860
861 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
862
863 However I believe a more appropriate and logical place to account for
864 the lower bound is to do so in value_subscript, essentially computing:
865
866 (&array[0] + ((index - lowerbound) * sizeof array[0]))
867
868 As further evidence consider what would happen with operations other
869 than array subscripting, where the caller would get back a value that
870 had an address somewhere before the actual first element of the array,
871 and the information about the lower bound would be lost because of
872 the coercion to pointer type.
873 */
874
875 struct value *
876 value_coerce_array (struct value *arg1)
877 {
878 register struct type *type = check_typedef (VALUE_TYPE (arg1));
879
880 if (VALUE_LVAL (arg1) != lval_memory)
881 error ("Attempt to take address of value not located in memory.");
882
883 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
884 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
885 }
886
887 /* Given a value which is a function, return a value which is a pointer
888 to it. */
889
890 struct value *
891 value_coerce_function (struct value *arg1)
892 {
893 struct value *retval;
894
895 if (VALUE_LVAL (arg1) != lval_memory)
896 error ("Attempt to take address of value not located in memory.");
897
898 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
899 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
900 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
901 return retval;
902 }
903
904 /* Return a pointer value for the object for which ARG1 is the contents. */
905
906 struct value *
907 value_addr (struct value *arg1)
908 {
909 struct value *arg2;
910
911 struct type *type = check_typedef (VALUE_TYPE (arg1));
912 if (TYPE_CODE (type) == TYPE_CODE_REF)
913 {
914 /* Copy the value, but change the type from (T&) to (T*).
915 We keep the same location information, which is efficient,
916 and allows &(&X) to get the location containing the reference. */
917 arg2 = value_copy (arg1);
918 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
919 return arg2;
920 }
921 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
922 return value_coerce_function (arg1);
923
924 if (VALUE_LVAL (arg1) != lval_memory)
925 error ("Attempt to take address of value not located in memory.");
926
927 /* Get target memory address */
928 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
929 (VALUE_ADDRESS (arg1)
930 + VALUE_OFFSET (arg1)
931 + VALUE_EMBEDDED_OFFSET (arg1)));
932
933 /* This may be a pointer to a base subobject; so remember the
934 full derived object's type ... */
935 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
936 /* ... and also the relative position of the subobject in the full object */
937 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
938 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
939 return arg2;
940 }
941
942 /* Given a value of a pointer type, apply the C unary * operator to it. */
943
944 struct value *
945 value_ind (struct value *arg1)
946 {
947 struct type *base_type;
948 struct value *arg2;
949
950 COERCE_ARRAY (arg1);
951
952 base_type = check_typedef (VALUE_TYPE (arg1));
953
954 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
955 error ("not implemented: member types in value_ind");
956
957 /* Allow * on an integer so we can cast it to whatever we want.
958 This returns an int, which seems like the most C-like thing
959 to do. "long long" variables are rare enough that
960 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
961 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
962 return value_at_lazy (builtin_type_int,
963 (CORE_ADDR) value_as_long (arg1),
964 VALUE_BFD_SECTION (arg1));
965 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
966 {
967 struct type *enc_type;
968 /* We may be pointing to something embedded in a larger object */
969 /* Get the real type of the enclosing object */
970 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
971 enc_type = TYPE_TARGET_TYPE (enc_type);
972 /* Retrieve the enclosing object pointed to */
973 arg2 = value_at_lazy (enc_type,
974 value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
975 VALUE_BFD_SECTION (arg1));
976 /* Re-adjust type */
977 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
978 /* Add embedding info */
979 arg2 = value_change_enclosing_type (arg2, enc_type);
980 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
981
982 /* We may be pointing to an object of some derived type */
983 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
984 return arg2;
985 }
986
987 error ("Attempt to take contents of a non-pointer value.");
988 return 0; /* For lint -- never reached */
989 }
990 \f
991 /* Pushing small parts of stack frames. */
992
993 /* Push one word (the size of object that a register holds). */
994
995 CORE_ADDR
996 push_word (CORE_ADDR sp, ULONGEST word)
997 {
998 register int len = REGISTER_SIZE;
999 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
1000
1001 store_unsigned_integer (buffer, len, word);
1002 if (INNER_THAN (1, 2))
1003 {
1004 /* stack grows downward */
1005 sp -= len;
1006 write_memory (sp, buffer, len);
1007 }
1008 else
1009 {
1010 /* stack grows upward */
1011 write_memory (sp, buffer, len);
1012 sp += len;
1013 }
1014
1015 return sp;
1016 }
1017
1018 /* Push LEN bytes with data at BUFFER. */
1019
1020 CORE_ADDR
1021 push_bytes (CORE_ADDR sp, char *buffer, int len)
1022 {
1023 if (INNER_THAN (1, 2))
1024 {
1025 /* stack grows downward */
1026 sp -= len;
1027 write_memory (sp, buffer, len);
1028 }
1029 else
1030 {
1031 /* stack grows upward */
1032 write_memory (sp, buffer, len);
1033 sp += len;
1034 }
1035
1036 return sp;
1037 }
1038
1039 #ifndef PARM_BOUNDARY
1040 #define PARM_BOUNDARY (0)
1041 #endif
1042
1043 /* Push onto the stack the specified value VALUE. Pad it correctly for
1044 it to be an argument to a function. */
1045
1046 static CORE_ADDR
1047 value_push (register CORE_ADDR sp, struct value *arg)
1048 {
1049 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1050 register int container_len = len;
1051 register int offset;
1052
1053 /* How big is the container we're going to put this value in? */
1054 if (PARM_BOUNDARY)
1055 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1056 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1057
1058 /* Are we going to put it at the high or low end of the container? */
1059 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1060 offset = container_len - len;
1061 else
1062 offset = 0;
1063
1064 if (INNER_THAN (1, 2))
1065 {
1066 /* stack grows downward */
1067 sp -= container_len;
1068 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1069 }
1070 else
1071 {
1072 /* stack grows upward */
1073 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1074 sp += container_len;
1075 }
1076
1077 return sp;
1078 }
1079
1080 CORE_ADDR
1081 default_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1082 int struct_return, CORE_ADDR struct_addr)
1083 {
1084 /* ASSERT ( !struct_return); */
1085 int i;
1086 for (i = nargs - 1; i >= 0; i--)
1087 sp = value_push (sp, args[i]);
1088 return sp;
1089 }
1090
1091
1092 /* Functions to use for the COERCE_FLOAT_TO_DOUBLE gdbarch method.
1093
1094 How you should pass arguments to a function depends on whether it
1095 was defined in K&R style or prototype style. If you define a
1096 function using the K&R syntax that takes a `float' argument, then
1097 callers must pass that argument as a `double'. If you define the
1098 function using the prototype syntax, then you must pass the
1099 argument as a `float', with no promotion.
1100
1101 Unfortunately, on certain older platforms, the debug info doesn't
1102 indicate reliably how each function was defined. A function type's
1103 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
1104 defined in prototype style. When calling a function whose
1105 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults the
1106 COERCE_FLOAT_TO_DOUBLE gdbarch method to decide what to do.
1107
1108 For modern targets, it is proper to assume that, if the prototype
1109 flag is clear, that can be trusted: `float' arguments should be
1110 promoted to `double'. You should register the function
1111 `standard_coerce_float_to_double' to get this behavior.
1112
1113 For some older targets, if the prototype flag is clear, that
1114 doesn't tell us anything. So we guess that, if we don't have a
1115 type for the formal parameter (i.e., the first argument to
1116 COERCE_FLOAT_TO_DOUBLE is null), then we should promote it;
1117 otherwise, we should leave it alone. The function
1118 `default_coerce_float_to_double' provides this behavior; it is the
1119 default value, for compatibility with older configurations. */
1120 int
1121 default_coerce_float_to_double (struct type *formal, struct type *actual)
1122 {
1123 return formal == NULL;
1124 }
1125
1126
1127 int
1128 standard_coerce_float_to_double (struct type *formal, struct type *actual)
1129 {
1130 return 1;
1131 }
1132
1133
1134 /* Perform the standard coercions that are specified
1135 for arguments to be passed to C functions.
1136
1137 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1138 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1139
1140 static struct value *
1141 value_arg_coerce (struct value *arg, struct type *param_type,
1142 int is_prototyped)
1143 {
1144 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1145 register struct type *type
1146 = param_type ? check_typedef (param_type) : arg_type;
1147
1148 switch (TYPE_CODE (type))
1149 {
1150 case TYPE_CODE_REF:
1151 if (TYPE_CODE (arg_type) != TYPE_CODE_REF
1152 && TYPE_CODE (arg_type) != TYPE_CODE_PTR)
1153 {
1154 arg = value_addr (arg);
1155 VALUE_TYPE (arg) = param_type;
1156 return arg;
1157 }
1158 break;
1159 case TYPE_CODE_INT:
1160 case TYPE_CODE_CHAR:
1161 case TYPE_CODE_BOOL:
1162 case TYPE_CODE_ENUM:
1163 /* If we don't have a prototype, coerce to integer type if necessary. */
1164 if (!is_prototyped)
1165 {
1166 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1167 type = builtin_type_int;
1168 }
1169 /* Currently all target ABIs require at least the width of an integer
1170 type for an argument. We may have to conditionalize the following
1171 type coercion for future targets. */
1172 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1173 type = builtin_type_int;
1174 break;
1175 case TYPE_CODE_FLT:
1176 /* FIXME: We should always convert floats to doubles in the
1177 non-prototyped case. As many debugging formats include
1178 no information about prototyping, we have to live with
1179 COERCE_FLOAT_TO_DOUBLE for now. */
1180 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
1181 {
1182 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1183 type = builtin_type_double;
1184 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1185 type = builtin_type_long_double;
1186 }
1187 break;
1188 case TYPE_CODE_FUNC:
1189 type = lookup_pointer_type (type);
1190 break;
1191 case TYPE_CODE_ARRAY:
1192 /* Arrays are coerced to pointers to their first element, unless
1193 they are vectors, in which case we want to leave them alone,
1194 because they are passed by value. */
1195 if (current_language->c_style_arrays)
1196 if (!TYPE_VECTOR (type))
1197 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1198 break;
1199 case TYPE_CODE_UNDEF:
1200 case TYPE_CODE_PTR:
1201 case TYPE_CODE_STRUCT:
1202 case TYPE_CODE_UNION:
1203 case TYPE_CODE_VOID:
1204 case TYPE_CODE_SET:
1205 case TYPE_CODE_RANGE:
1206 case TYPE_CODE_STRING:
1207 case TYPE_CODE_BITSTRING:
1208 case TYPE_CODE_ERROR:
1209 case TYPE_CODE_MEMBER:
1210 case TYPE_CODE_METHOD:
1211 case TYPE_CODE_COMPLEX:
1212 default:
1213 break;
1214 }
1215
1216 return value_cast (type, arg);
1217 }
1218
1219 /* Determine a function's address and its return type from its value.
1220 Calls error() if the function is not valid for calling. */
1221
1222 static CORE_ADDR
1223 find_function_addr (struct value *function, struct type **retval_type)
1224 {
1225 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1226 register enum type_code code = TYPE_CODE (ftype);
1227 struct type *value_type;
1228 CORE_ADDR funaddr;
1229
1230 /* If it's a member function, just look at the function
1231 part of it. */
1232
1233 /* Determine address to call. */
1234 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1235 {
1236 funaddr = VALUE_ADDRESS (function);
1237 value_type = TYPE_TARGET_TYPE (ftype);
1238 }
1239 else if (code == TYPE_CODE_PTR)
1240 {
1241 funaddr = value_as_address (function);
1242 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1243 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1244 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1245 {
1246 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1247 value_type = TYPE_TARGET_TYPE (ftype);
1248 }
1249 else
1250 value_type = builtin_type_int;
1251 }
1252 else if (code == TYPE_CODE_INT)
1253 {
1254 /* Handle the case of functions lacking debugging info.
1255 Their values are characters since their addresses are char */
1256 if (TYPE_LENGTH (ftype) == 1)
1257 funaddr = value_as_address (value_addr (function));
1258 else
1259 /* Handle integer used as address of a function. */
1260 funaddr = (CORE_ADDR) value_as_long (function);
1261
1262 value_type = builtin_type_int;
1263 }
1264 else
1265 error ("Invalid data type for function to be called.");
1266
1267 *retval_type = value_type;
1268 return funaddr;
1269 }
1270
1271 /* All this stuff with a dummy frame may seem unnecessarily complicated
1272 (why not just save registers in GDB?). The purpose of pushing a dummy
1273 frame which looks just like a real frame is so that if you call a
1274 function and then hit a breakpoint (get a signal, etc), "backtrace"
1275 will look right. Whether the backtrace needs to actually show the
1276 stack at the time the inferior function was called is debatable, but
1277 it certainly needs to not display garbage. So if you are contemplating
1278 making dummy frames be different from normal frames, consider that. */
1279
1280 /* Perform a function call in the inferior.
1281 ARGS is a vector of values of arguments (NARGS of them).
1282 FUNCTION is a value, the function to be called.
1283 Returns a value representing what the function returned.
1284 May fail to return, if a breakpoint or signal is hit
1285 during the execution of the function.
1286
1287 ARGS is modified to contain coerced values. */
1288
1289 static struct value *
1290 hand_function_call (struct value *function, int nargs, struct value **args)
1291 {
1292 register CORE_ADDR sp;
1293 register int i;
1294 int rc;
1295 CORE_ADDR start_sp;
1296 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1297 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1298 and remove any extra bytes which might exist because ULONGEST is
1299 bigger than REGISTER_SIZE.
1300
1301 NOTE: This is pretty wierd, as the call dummy is actually a
1302 sequence of instructions. But CISC machines will have
1303 to pack the instructions into REGISTER_SIZE units (and
1304 so will RISC machines for which INSTRUCTION_SIZE is not
1305 REGISTER_SIZE).
1306
1307 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1308 target byte order. */
1309
1310 static ULONGEST *dummy;
1311 int sizeof_dummy1;
1312 char *dummy1;
1313 CORE_ADDR old_sp;
1314 struct type *value_type;
1315 unsigned char struct_return;
1316 CORE_ADDR struct_addr = 0;
1317 struct regcache *retbuf;
1318 struct cleanup *retbuf_cleanup;
1319 struct inferior_status *inf_status;
1320 struct cleanup *inf_status_cleanup;
1321 CORE_ADDR funaddr;
1322 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1323 CORE_ADDR real_pc;
1324 struct type *param_type = NULL;
1325 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1326 int n_method_args = 0;
1327
1328 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1329 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1330 dummy1 = alloca (sizeof_dummy1);
1331 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1332
1333 if (!target_has_execution)
1334 noprocess ();
1335
1336 /* Create a cleanup chain that contains the retbuf (buffer
1337 containing the register values). This chain is create BEFORE the
1338 inf_status chain so that the inferior status can cleaned up
1339 (restored or discarded) without having the retbuf freed. */
1340 retbuf = regcache_xmalloc (current_gdbarch);
1341 retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
1342
1343 /* A cleanup for the inferior status. Create this AFTER the retbuf
1344 so that this can be discarded or applied without interfering with
1345 the regbuf. */
1346 inf_status = save_inferior_status (1);
1347 inf_status_cleanup = make_cleanup_restore_inferior_status (inf_status);
1348
1349 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1350 (and POP_FRAME for restoring them). (At least on most machines)
1351 they are saved on the stack in the inferior. */
1352 PUSH_DUMMY_FRAME;
1353
1354 old_sp = read_sp ();
1355
1356 /* Ensure that the initial SP is correctly aligned. */
1357 if (gdbarch_frame_align_p (current_gdbarch))
1358 {
1359 /* NOTE: cagney/2002-09-18:
1360
1361 On a RISC architecture, a void parameterless generic dummy
1362 frame (i.e., no parameters, no result) typically does not
1363 need to push anything the stack and hence can leave SP and
1364 FP. Similarly, a framelss (possibly leaf) function does not
1365 push anything on the stack and, hence, that too can leave FP
1366 and SP unchanged. As a consequence, a sequence of void
1367 parameterless generic dummy frame calls to frameless
1368 functions will create a sequence of effectively identical
1369 frames (SP, FP and TOS and PC the same). This, not
1370 suprisingly, results in what appears to be a stack in an
1371 infinite loop --- when GDB tries to find a generic dummy
1372 frame on the internal dummy frame stack, it will always find
1373 the first one.
1374
1375 To avoid this problem, the code below always grows the stack.
1376 That way, two dummy frames can never be identical. It does
1377 burn a few bytes of stack but that is a small price to pay
1378 :-). */
1379 sp = gdbarch_frame_align (current_gdbarch, old_sp);
1380 if (sp == old_sp)
1381 {
1382 if (INNER_THAN (1, 2))
1383 /* Stack grows down. */
1384 sp = gdbarch_frame_align (current_gdbarch, old_sp - 1);
1385 else
1386 /* Stack grows up. */
1387 sp = gdbarch_frame_align (current_gdbarch, old_sp + 1);
1388 }
1389 gdb_assert ((INNER_THAN (1, 2) && sp <= old_sp)
1390 || (INNER_THAN (2, 1) && sp >= old_sp));
1391 }
1392 else
1393 /* FIXME: cagney/2002-09-18: Hey, you loose! Who knows how badly
1394 aligned the SP is! Further, per comment above, if the generic
1395 dummy frame ends up empty (because nothing is pushed) GDB won't
1396 be able to correctly perform back traces. If a target is
1397 having trouble with backtraces, first thing to do is add
1398 FRAME_ALIGN() to its architecture vector. After that, try
1399 adding SAVE_DUMMY_FRAME_TOS() and modifying FRAME_CHAIN so that
1400 when the next outer frame is a generic dummy, it returns the
1401 current frame's base. */
1402 sp = old_sp;
1403
1404 if (INNER_THAN (1, 2))
1405 {
1406 /* Stack grows down */
1407 sp -= sizeof_dummy1;
1408 start_sp = sp;
1409 }
1410 else
1411 {
1412 /* Stack grows up */
1413 start_sp = sp;
1414 sp += sizeof_dummy1;
1415 }
1416
1417 /* NOTE: cagney/2002-09-10: Don't bother re-adjusting the stack
1418 after allocating space for the call dummy. A target can specify
1419 a SIZEOF_DUMMY1 (via SIZEOF_CALL_DUMMY_WORDS) such that all local
1420 alignment requirements are met. */
1421
1422 funaddr = find_function_addr (function, &value_type);
1423 CHECK_TYPEDEF (value_type);
1424
1425 {
1426 struct block *b = block_for_pc (funaddr);
1427 /* If compiled without -g, assume GCC 2. */
1428 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1429 }
1430
1431 /* Are we returning a value using a structure return or a normal
1432 value return? */
1433
1434 struct_return = using_struct_return (function, funaddr, value_type,
1435 using_gcc);
1436
1437 /* Create a call sequence customized for this function
1438 and the number of arguments for it. */
1439 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1440 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1441 REGISTER_SIZE,
1442 (ULONGEST) dummy[i]);
1443
1444 #ifdef GDB_TARGET_IS_HPPA
1445 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1446 value_type, using_gcc);
1447 #else
1448 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1449 value_type, using_gcc);
1450 real_pc = start_sp;
1451 #endif
1452
1453 if (CALL_DUMMY_LOCATION == ON_STACK)
1454 {
1455 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1456 if (USE_GENERIC_DUMMY_FRAMES)
1457 generic_save_call_dummy_addr (start_sp, start_sp + sizeof_dummy1);
1458 }
1459
1460 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1461 {
1462 /* Convex Unix prohibits executing in the stack segment. */
1463 /* Hope there is empty room at the top of the text segment. */
1464 extern CORE_ADDR text_end;
1465 static int checked = 0;
1466 if (!checked)
1467 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1468 if (read_memory_integer (start_sp, 1) != 0)
1469 error ("text segment full -- no place to put call");
1470 checked = 1;
1471 sp = old_sp;
1472 real_pc = text_end - sizeof_dummy1;
1473 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1474 if (USE_GENERIC_DUMMY_FRAMES)
1475 generic_save_call_dummy_addr (real_pc, real_pc + sizeof_dummy1);
1476 }
1477
1478 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1479 {
1480 extern CORE_ADDR text_end;
1481 int errcode;
1482 sp = old_sp;
1483 real_pc = text_end;
1484 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1485 if (errcode != 0)
1486 error ("Cannot write text segment -- call_function failed");
1487 if (USE_GENERIC_DUMMY_FRAMES)
1488 generic_save_call_dummy_addr (real_pc, real_pc + sizeof_dummy1);
1489 }
1490
1491 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1492 {
1493 real_pc = funaddr;
1494 if (USE_GENERIC_DUMMY_FRAMES)
1495 /* NOTE: cagney/2002-04-13: The entry point is going to be
1496 modified with a single breakpoint. */
1497 generic_save_call_dummy_addr (CALL_DUMMY_ADDRESS (),
1498 CALL_DUMMY_ADDRESS () + 1);
1499 }
1500
1501 #ifdef lint
1502 sp = old_sp; /* It really is used, for some ifdef's... */
1503 #endif
1504
1505 if (nargs < TYPE_NFIELDS (ftype))
1506 error ("too few arguments in function call");
1507
1508 for (i = nargs - 1; i >= 0; i--)
1509 {
1510 int prototyped;
1511
1512 /* FIXME drow/2002-05-31: Should just always mark methods as
1513 prototyped. Can we respect TYPE_VARARGS? Probably not. */
1514 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1515 prototyped = 1;
1516 else
1517 prototyped = TYPE_PROTOTYPED (ftype);
1518
1519 if (i < TYPE_NFIELDS (ftype))
1520 args[i] = value_arg_coerce (args[i], TYPE_FIELD_TYPE (ftype, i),
1521 prototyped);
1522 else
1523 args[i] = value_arg_coerce (args[i], NULL, 0);
1524
1525 /*elz: this code is to handle the case in which the function to be called
1526 has a pointer to function as parameter and the corresponding actual argument
1527 is the address of a function and not a pointer to function variable.
1528 In aCC compiled code, the calls through pointers to functions (in the body
1529 of the function called by hand) are made via $$dyncall_external which
1530 requires some registers setting, this is taken care of if we call
1531 via a function pointer variable, but not via a function address.
1532 In cc this is not a problem. */
1533
1534 if (using_gcc == 0)
1535 if (param_type && TYPE_CODE (ftype) != TYPE_CODE_METHOD)
1536 /* if this parameter is a pointer to function */
1537 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1538 if (TYPE_CODE (TYPE_TARGET_TYPE (param_type)) == TYPE_CODE_FUNC)
1539 /* elz: FIXME here should go the test about the compiler used
1540 to compile the target. We want to issue the error
1541 message only if the compiler used was HP's aCC.
1542 If we used HP's cc, then there is no problem and no need
1543 to return at this point */
1544 if (using_gcc == 0) /* && compiler == aCC */
1545 /* go see if the actual parameter is a variable of type
1546 pointer to function or just a function */
1547 if (args[i]->lval == not_lval)
1548 {
1549 char *arg_name;
1550 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1551 error ("\
1552 You cannot use function <%s> as argument. \n\
1553 You must use a pointer to function type variable. Command ignored.", arg_name);
1554 }
1555 }
1556
1557 if (REG_STRUCT_HAS_ADDR_P ())
1558 {
1559 /* This is a machine like the sparc, where we may need to pass a
1560 pointer to the structure, not the structure itself. */
1561 for (i = nargs - 1; i >= 0; i--)
1562 {
1563 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1564 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1565 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1566 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1567 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1568 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1569 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1570 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1571 && TYPE_LENGTH (arg_type) > 8)
1572 )
1573 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1574 {
1575 CORE_ADDR addr;
1576 int len; /* = TYPE_LENGTH (arg_type); */
1577 int aligned_len;
1578 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1579 len = TYPE_LENGTH (arg_type);
1580
1581 if (STACK_ALIGN_P ())
1582 /* MVS 11/22/96: I think at least some of this
1583 stack_align code is really broken. Better to let
1584 PUSH_ARGUMENTS adjust the stack in a target-defined
1585 manner. */
1586 aligned_len = STACK_ALIGN (len);
1587 else
1588 aligned_len = len;
1589 if (INNER_THAN (1, 2))
1590 {
1591 /* stack grows downward */
1592 sp -= aligned_len;
1593 /* ... so the address of the thing we push is the
1594 stack pointer after we push it. */
1595 addr = sp;
1596 }
1597 else
1598 {
1599 /* The stack grows up, so the address of the thing
1600 we push is the stack pointer before we push it. */
1601 addr = sp;
1602 sp += aligned_len;
1603 }
1604 /* Push the structure. */
1605 write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
1606 /* The value we're going to pass is the address of the
1607 thing we just pushed. */
1608 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1609 (LONGEST) addr); */
1610 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1611 addr);
1612 }
1613 }
1614 }
1615
1616
1617 /* Reserve space for the return structure to be written on the
1618 stack, if necessary. Make certain that the value is correctly
1619 aligned. */
1620
1621 if (struct_return)
1622 {
1623 int len = TYPE_LENGTH (value_type);
1624 if (STACK_ALIGN_P ())
1625 /* MVS 11/22/96: I think at least some of this stack_align
1626 code is really broken. Better to let PUSH_ARGUMENTS adjust
1627 the stack in a target-defined manner. */
1628 len = STACK_ALIGN (len);
1629 if (INNER_THAN (1, 2))
1630 {
1631 /* Stack grows downward. Align STRUCT_ADDR and SP after
1632 making space for the return value. */
1633 sp -= len;
1634 if (gdbarch_frame_align_p (current_gdbarch))
1635 sp = gdbarch_frame_align (current_gdbarch, sp);
1636 struct_addr = sp;
1637 }
1638 else
1639 {
1640 /* Stack grows upward. Align the frame, allocate space, and
1641 then again, re-align the frame??? */
1642 if (gdbarch_frame_align_p (current_gdbarch))
1643 sp = gdbarch_frame_align (current_gdbarch, sp);
1644 struct_addr = sp;
1645 sp += len;
1646 if (gdbarch_frame_align_p (current_gdbarch))
1647 sp = gdbarch_frame_align (current_gdbarch, sp);
1648 }
1649 }
1650
1651 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1652 on other architectures. This is because all the alignment is
1653 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1654 in hppa_push_arguments */
1655 if (EXTRA_STACK_ALIGNMENT_NEEDED)
1656 {
1657 /* MVS 11/22/96: I think at least some of this stack_align code
1658 is really broken. Better to let PUSH_ARGUMENTS adjust the
1659 stack in a target-defined manner. */
1660 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1661 {
1662 /* If stack grows down, we must leave a hole at the top. */
1663 int len = 0;
1664
1665 for (i = nargs - 1; i >= 0; i--)
1666 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1667 if (CALL_DUMMY_STACK_ADJUST_P)
1668 len += CALL_DUMMY_STACK_ADJUST;
1669 sp -= STACK_ALIGN (len) - len;
1670 }
1671 }
1672
1673 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1674
1675 if (PUSH_RETURN_ADDRESS_P ())
1676 /* for targets that use no CALL_DUMMY */
1677 /* There are a number of targets now which actually don't write
1678 any CALL_DUMMY instructions into the target, but instead just
1679 save the machine state, push the arguments, and jump directly
1680 to the callee function. Since this doesn't actually involve
1681 executing a JSR/BSR instruction, the return address must be set
1682 up by hand, either by pushing onto the stack or copying into a
1683 return-address register as appropriate. Formerly this has been
1684 done in PUSH_ARGUMENTS, but that's overloading its
1685 functionality a bit, so I'm making it explicit to do it here. */
1686 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1687
1688 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
1689 {
1690 /* If stack grows up, we must leave a hole at the bottom, note
1691 that sp already has been advanced for the arguments! */
1692 if (CALL_DUMMY_STACK_ADJUST_P)
1693 sp += CALL_DUMMY_STACK_ADJUST;
1694 sp = STACK_ALIGN (sp);
1695 }
1696
1697 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1698 anything here! */
1699 /* MVS 11/22/96: I think at least some of this stack_align code is
1700 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1701 a target-defined manner. */
1702 if (CALL_DUMMY_STACK_ADJUST_P)
1703 if (INNER_THAN (1, 2))
1704 {
1705 /* stack grows downward */
1706 sp -= CALL_DUMMY_STACK_ADJUST;
1707 }
1708
1709 /* Store the address at which the structure is supposed to be
1710 written. Note that this (and the code which reserved the space
1711 above) assumes that gcc was used to compile this function. Since
1712 it doesn't cost us anything but space and if the function is pcc
1713 it will ignore this value, we will make that assumption.
1714
1715 Also note that on some machines (like the sparc) pcc uses a
1716 convention like gcc's. */
1717
1718 if (struct_return)
1719 STORE_STRUCT_RETURN (struct_addr, sp);
1720
1721 /* Write the stack pointer. This is here because the statements above
1722 might fool with it. On SPARC, this write also stores the register
1723 window into the right place in the new stack frame, which otherwise
1724 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1725 write_sp (sp);
1726
1727 if (SAVE_DUMMY_FRAME_TOS_P ())
1728 SAVE_DUMMY_FRAME_TOS (sp);
1729
1730 {
1731 char *name;
1732 struct symbol *symbol;
1733
1734 name = NULL;
1735 symbol = find_pc_function (funaddr);
1736 if (symbol)
1737 {
1738 name = SYMBOL_SOURCE_NAME (symbol);
1739 }
1740 else
1741 {
1742 /* Try the minimal symbols. */
1743 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1744
1745 if (msymbol)
1746 {
1747 name = SYMBOL_SOURCE_NAME (msymbol);
1748 }
1749 }
1750 if (name == NULL)
1751 {
1752 char format[80];
1753 sprintf (format, "at %s", local_hex_format ());
1754 name = alloca (80);
1755 /* FIXME-32x64: assumes funaddr fits in a long. */
1756 sprintf (name, format, (unsigned long) funaddr);
1757 }
1758
1759 /* Execute the stack dummy routine, calling FUNCTION.
1760 When it is done, discard the empty frame
1761 after storing the contents of all regs into retbuf. */
1762 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1763
1764 if (rc == 1)
1765 {
1766 /* We stopped inside the FUNCTION because of a random signal.
1767 Further execution of the FUNCTION is not allowed. */
1768
1769 if (unwind_on_signal_p)
1770 {
1771 /* The user wants the context restored. */
1772
1773 /* We must get back to the frame we were before the dummy call. */
1774 POP_FRAME;
1775
1776 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1777 a C++ name with arguments and stuff. */
1778 error ("\
1779 The program being debugged was signaled while in a function called from GDB.\n\
1780 GDB has restored the context to what it was before the call.\n\
1781 To change this behavior use \"set unwindonsignal off\"\n\
1782 Evaluation of the expression containing the function (%s) will be abandoned.",
1783 name);
1784 }
1785 else
1786 {
1787 /* The user wants to stay in the frame where we stopped (default).*/
1788
1789 /* If we restored the inferior status (via the cleanup),
1790 we would print a spurious error message (Unable to
1791 restore previously selected frame), would write the
1792 registers from the inf_status (which is wrong), and
1793 would do other wrong things. */
1794 discard_cleanups (inf_status_cleanup);
1795 discard_inferior_status (inf_status);
1796
1797 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1798 a C++ name with arguments and stuff. */
1799 error ("\
1800 The program being debugged was signaled while in a function called from GDB.\n\
1801 GDB remains in the frame where the signal was received.\n\
1802 To change this behavior use \"set unwindonsignal on\"\n\
1803 Evaluation of the expression containing the function (%s) will be abandoned.",
1804 name);
1805 }
1806 }
1807
1808 if (rc == 2)
1809 {
1810 /* We hit a breakpoint inside the FUNCTION. */
1811
1812 /* If we restored the inferior status (via the cleanup), we
1813 would print a spurious error message (Unable to restore
1814 previously selected frame), would write the registers from
1815 the inf_status (which is wrong), and would do other wrong
1816 things. */
1817 discard_cleanups (inf_status_cleanup);
1818 discard_inferior_status (inf_status);
1819
1820 /* The following error message used to say "The expression
1821 which contained the function call has been discarded." It
1822 is a hard concept to explain in a few words. Ideally, GDB
1823 would be able to resume evaluation of the expression when
1824 the function finally is done executing. Perhaps someday
1825 this will be implemented (it would not be easy). */
1826
1827 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1828 a C++ name with arguments and stuff. */
1829 error ("\
1830 The program being debugged stopped while in a function called from GDB.\n\
1831 When the function (%s) is done executing, GDB will silently\n\
1832 stop (instead of continuing to evaluate the expression containing\n\
1833 the function call).", name);
1834 }
1835
1836 /* If we get here the called FUNCTION run to completion. */
1837
1838 /* Restore the inferior status, via its cleanup. At this stage,
1839 leave the RETBUF alone. */
1840 do_cleanups (inf_status_cleanup);
1841
1842 /* Figure out the value returned by the function. */
1843 /* elz: I defined this new macro for the hppa architecture only.
1844 this gives us a way to get the value returned by the function
1845 from the stack, at the same address we told the function to put
1846 it. We cannot assume on the pa that r28 still contains the
1847 address of the returned structure. Usually this will be
1848 overwritten by the callee. I don't know about other
1849 architectures, so I defined this macro */
1850 #ifdef VALUE_RETURNED_FROM_STACK
1851 if (struct_return)
1852 {
1853 do_cleanups (retbuf_cleanup);
1854 return VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1855 }
1856 #endif
1857 /* NOTE: cagney/2002-09-10: Only when the stack has been correctly
1858 aligned (using frame_align()) do we can trust STRUCT_ADDR and
1859 fetch the return value direct from the stack. This lack of
1860 trust comes about because legacy targets have a nasty habit of
1861 silently, and local to PUSH_ARGUMENTS(), moving STRUCT_ADDR.
1862 For such targets, just hope that value_being_returned() can
1863 find the adjusted value. */
1864 if (struct_return && gdbarch_frame_align_p (current_gdbarch))
1865 {
1866 struct value *retval = value_at (value_type, struct_addr, NULL);
1867 do_cleanups (retbuf_cleanup);
1868 return retval;
1869 }
1870 else
1871 {
1872 struct value *retval = value_being_returned (value_type, retbuf,
1873 struct_return);
1874 do_cleanups (retbuf_cleanup);
1875 return retval;
1876 }
1877 }
1878 }
1879
1880 struct value *
1881 call_function_by_hand (struct value *function, int nargs, struct value **args)
1882 {
1883 if (CALL_DUMMY_P)
1884 {
1885 return hand_function_call (function, nargs, args);
1886 }
1887 else
1888 {
1889 error ("Cannot invoke functions on this machine.");
1890 }
1891 }
1892 \f
1893
1894
1895 /* Create a value for an array by allocating space in the inferior, copying
1896 the data into that space, and then setting up an array value.
1897
1898 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1899 populated from the values passed in ELEMVEC.
1900
1901 The element type of the array is inherited from the type of the
1902 first element, and all elements must have the same size (though we
1903 don't currently enforce any restriction on their types). */
1904
1905 struct value *
1906 value_array (int lowbound, int highbound, struct value **elemvec)
1907 {
1908 int nelem;
1909 int idx;
1910 unsigned int typelength;
1911 struct value *val;
1912 struct type *rangetype;
1913 struct type *arraytype;
1914 CORE_ADDR addr;
1915
1916 /* Validate that the bounds are reasonable and that each of the elements
1917 have the same size. */
1918
1919 nelem = highbound - lowbound + 1;
1920 if (nelem <= 0)
1921 {
1922 error ("bad array bounds (%d, %d)", lowbound, highbound);
1923 }
1924 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1925 for (idx = 1; idx < nelem; idx++)
1926 {
1927 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1928 {
1929 error ("array elements must all be the same size");
1930 }
1931 }
1932
1933 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1934 lowbound, highbound);
1935 arraytype = create_array_type ((struct type *) NULL,
1936 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1937
1938 if (!current_language->c_style_arrays)
1939 {
1940 val = allocate_value (arraytype);
1941 for (idx = 0; idx < nelem; idx++)
1942 {
1943 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1944 VALUE_CONTENTS_ALL (elemvec[idx]),
1945 typelength);
1946 }
1947 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1948 return val;
1949 }
1950
1951 /* Allocate space to store the array in the inferior, and then initialize
1952 it by copying in each element. FIXME: Is it worth it to create a
1953 local buffer in which to collect each value and then write all the
1954 bytes in one operation? */
1955
1956 addr = allocate_space_in_inferior (nelem * typelength);
1957 for (idx = 0; idx < nelem; idx++)
1958 {
1959 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1960 typelength);
1961 }
1962
1963 /* Create the array type and set up an array value to be evaluated lazily. */
1964
1965 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1966 return (val);
1967 }
1968
1969 /* Create a value for a string constant by allocating space in the inferior,
1970 copying the data into that space, and returning the address with type
1971 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1972 of characters.
1973 Note that string types are like array of char types with a lower bound of
1974 zero and an upper bound of LEN - 1. Also note that the string may contain
1975 embedded null bytes. */
1976
1977 struct value *
1978 value_string (char *ptr, int len)
1979 {
1980 struct value *val;
1981 int lowbound = current_language->string_lower_bound;
1982 struct type *rangetype = create_range_type ((struct type *) NULL,
1983 builtin_type_int,
1984 lowbound, len + lowbound - 1);
1985 struct type *stringtype
1986 = create_string_type ((struct type *) NULL, rangetype);
1987 CORE_ADDR addr;
1988
1989 if (current_language->c_style_arrays == 0)
1990 {
1991 val = allocate_value (stringtype);
1992 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1993 return val;
1994 }
1995
1996
1997 /* Allocate space to store the string in the inferior, and then
1998 copy LEN bytes from PTR in gdb to that address in the inferior. */
1999
2000 addr = allocate_space_in_inferior (len);
2001 write_memory (addr, ptr, len);
2002
2003 val = value_at_lazy (stringtype, addr, NULL);
2004 return (val);
2005 }
2006
2007 struct value *
2008 value_bitstring (char *ptr, int len)
2009 {
2010 struct value *val;
2011 struct type *domain_type = create_range_type (NULL, builtin_type_int,
2012 0, len - 1);
2013 struct type *type = create_set_type ((struct type *) NULL, domain_type);
2014 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
2015 val = allocate_value (type);
2016 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
2017 return val;
2018 }
2019 \f
2020 /* See if we can pass arguments in T2 to a function which takes arguments
2021 of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
2022 vector. If some arguments need coercion of some sort, then the coerced
2023 values are written into T2. Return value is 0 if the arguments could be
2024 matched, or the position at which they differ if not.
2025
2026 STATICP is nonzero if the T1 argument list came from a
2027 static member function. T2 will still include the ``this'' pointer,
2028 but it will be skipped.
2029
2030 For non-static member functions, we ignore the first argument,
2031 which is the type of the instance variable. This is because we want
2032 to handle calls with objects from derived classes. This is not
2033 entirely correct: we should actually check to make sure that a
2034 requested operation is type secure, shouldn't we? FIXME. */
2035
2036 static int
2037 typecmp (int staticp, int varargs, int nargs,
2038 struct field t1[], struct value *t2[])
2039 {
2040 int i;
2041
2042 if (t2 == 0)
2043 internal_error (__FILE__, __LINE__, "typecmp: no argument list");
2044
2045 /* Skip ``this'' argument if applicable. T2 will always include THIS. */
2046 if (staticp)
2047 t2 ++;
2048
2049 for (i = 0;
2050 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
2051 i++)
2052 {
2053 struct type *tt1, *tt2;
2054
2055 if (!t2[i])
2056 return i + 1;
2057
2058 tt1 = check_typedef (t1[i].type);
2059 tt2 = check_typedef (VALUE_TYPE (t2[i]));
2060
2061 if (TYPE_CODE (tt1) == TYPE_CODE_REF
2062 /* We should be doing hairy argument matching, as below. */
2063 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
2064 {
2065 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
2066 t2[i] = value_coerce_array (t2[i]);
2067 else
2068 t2[i] = value_addr (t2[i]);
2069 continue;
2070 }
2071
2072 /* djb - 20000715 - Until the new type structure is in the
2073 place, and we can attempt things like implicit conversions,
2074 we need to do this so you can take something like a map<const
2075 char *>, and properly access map["hello"], because the
2076 argument to [] will be a reference to a pointer to a char,
2077 and the argument will be a pointer to a char. */
2078 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
2079 TYPE_CODE (tt1) == TYPE_CODE_PTR)
2080 {
2081 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
2082 }
2083 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
2084 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
2085 TYPE_CODE(tt2) == TYPE_CODE_REF)
2086 {
2087 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
2088 }
2089 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
2090 continue;
2091 /* Array to pointer is a `trivial conversion' according to the ARM. */
2092
2093 /* We should be doing much hairier argument matching (see section 13.2
2094 of the ARM), but as a quick kludge, just check for the same type
2095 code. */
2096 if (TYPE_CODE (t1[i].type) != TYPE_CODE (VALUE_TYPE (t2[i])))
2097 return i + 1;
2098 }
2099 if (varargs || t2[i] == NULL)
2100 return 0;
2101 return i + 1;
2102 }
2103
2104 /* Helper function used by value_struct_elt to recurse through baseclasses.
2105 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2106 and search in it assuming it has (class) type TYPE.
2107 If found, return value, else return NULL.
2108
2109 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2110 look for a baseclass named NAME. */
2111
2112 static struct value *
2113 search_struct_field (char *name, struct value *arg1, int offset,
2114 register struct type *type, int looking_for_baseclass)
2115 {
2116 int i;
2117 int nbases = TYPE_N_BASECLASSES (type);
2118
2119 CHECK_TYPEDEF (type);
2120
2121 if (!looking_for_baseclass)
2122 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2123 {
2124 char *t_field_name = TYPE_FIELD_NAME (type, i);
2125
2126 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2127 {
2128 struct value *v;
2129 if (TYPE_FIELD_STATIC (type, i))
2130 {
2131 v = value_static_field (type, i);
2132 if (v == 0)
2133 error ("field %s is nonexistent or has been optimised out",
2134 name);
2135 }
2136 else
2137 {
2138 v = value_primitive_field (arg1, offset, i, type);
2139 if (v == 0)
2140 error ("there is no field named %s", name);
2141 }
2142 return v;
2143 }
2144
2145 if (t_field_name
2146 && (t_field_name[0] == '\0'
2147 || (TYPE_CODE (type) == TYPE_CODE_UNION
2148 && (strcmp_iw (t_field_name, "else") == 0))))
2149 {
2150 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2151 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2152 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2153 {
2154 /* Look for a match through the fields of an anonymous union,
2155 or anonymous struct. C++ provides anonymous unions.
2156
2157 In the GNU Chill (OBSOLETE) implementation of
2158 variant record types, each <alternative field> has
2159 an (anonymous) union type, each member of the union
2160 represents a <variant alternative>. Each <variant
2161 alternative> is represented as a struct, with a
2162 member for each <variant field>. */
2163
2164 struct value *v;
2165 int new_offset = offset;
2166
2167 /* This is pretty gross. In G++, the offset in an
2168 anonymous union is relative to the beginning of the
2169 enclosing struct. In the GNU Chill (OBSOLETE)
2170 implementation of variant records, the bitpos is
2171 zero in an anonymous union field, so we have to add
2172 the offset of the union here. */
2173 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2174 || (TYPE_NFIELDS (field_type) > 0
2175 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2176 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2177
2178 v = search_struct_field (name, arg1, new_offset, field_type,
2179 looking_for_baseclass);
2180 if (v)
2181 return v;
2182 }
2183 }
2184 }
2185
2186 for (i = 0; i < nbases; i++)
2187 {
2188 struct value *v;
2189 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2190 /* If we are looking for baseclasses, this is what we get when we
2191 hit them. But it could happen that the base part's member name
2192 is not yet filled in. */
2193 int found_baseclass = (looking_for_baseclass
2194 && TYPE_BASECLASS_NAME (type, i) != NULL
2195 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2196
2197 if (BASETYPE_VIA_VIRTUAL (type, i))
2198 {
2199 int boffset;
2200 struct value *v2 = allocate_value (basetype);
2201
2202 boffset = baseclass_offset (type, i,
2203 VALUE_CONTENTS (arg1) + offset,
2204 VALUE_ADDRESS (arg1)
2205 + VALUE_OFFSET (arg1) + offset);
2206 if (boffset == -1)
2207 error ("virtual baseclass botch");
2208
2209 /* The virtual base class pointer might have been clobbered by the
2210 user program. Make sure that it still points to a valid memory
2211 location. */
2212
2213 boffset += offset;
2214 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2215 {
2216 CORE_ADDR base_addr;
2217
2218 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2219 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2220 TYPE_LENGTH (basetype)) != 0)
2221 error ("virtual baseclass botch");
2222 VALUE_LVAL (v2) = lval_memory;
2223 VALUE_ADDRESS (v2) = base_addr;
2224 }
2225 else
2226 {
2227 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2228 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2229 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2230 if (VALUE_LAZY (arg1))
2231 VALUE_LAZY (v2) = 1;
2232 else
2233 memcpy (VALUE_CONTENTS_RAW (v2),
2234 VALUE_CONTENTS_RAW (arg1) + boffset,
2235 TYPE_LENGTH (basetype));
2236 }
2237
2238 if (found_baseclass)
2239 return v2;
2240 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2241 looking_for_baseclass);
2242 }
2243 else if (found_baseclass)
2244 v = value_primitive_field (arg1, offset, i, type);
2245 else
2246 v = search_struct_field (name, arg1,
2247 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2248 basetype, looking_for_baseclass);
2249 if (v)
2250 return v;
2251 }
2252 return NULL;
2253 }
2254
2255
2256 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2257 * in an object pointed to by VALADDR (on the host), assumed to be of
2258 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2259 * looking (in case VALADDR is the contents of an enclosing object).
2260 *
2261 * This routine recurses on the primary base of the derived class because
2262 * the virtual base entries of the primary base appear before the other
2263 * virtual base entries.
2264 *
2265 * If the virtual base is not found, a negative integer is returned.
2266 * The magnitude of the negative integer is the number of entries in
2267 * the virtual table to skip over (entries corresponding to various
2268 * ancestral classes in the chain of primary bases).
2269 *
2270 * Important: This assumes the HP / Taligent C++ runtime
2271 * conventions. Use baseclass_offset() instead to deal with g++
2272 * conventions. */
2273
2274 void
2275 find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2276 int offset, int *boffset_p, int *skip_p)
2277 {
2278 int boffset; /* offset of virtual base */
2279 int index; /* displacement to use in virtual table */
2280 int skip;
2281
2282 struct value *vp;
2283 CORE_ADDR vtbl; /* the virtual table pointer */
2284 struct type *pbc; /* the primary base class */
2285
2286 /* Look for the virtual base recursively in the primary base, first.
2287 * This is because the derived class object and its primary base
2288 * subobject share the primary virtual table. */
2289
2290 boffset = 0;
2291 pbc = TYPE_PRIMARY_BASE (type);
2292 if (pbc)
2293 {
2294 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2295 if (skip < 0)
2296 {
2297 *boffset_p = boffset;
2298 *skip_p = -1;
2299 return;
2300 }
2301 }
2302 else
2303 skip = 0;
2304
2305
2306 /* Find the index of the virtual base according to HP/Taligent
2307 runtime spec. (Depth-first, left-to-right.) */
2308 index = virtual_base_index_skip_primaries (basetype, type);
2309
2310 if (index < 0)
2311 {
2312 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2313 *boffset_p = 0;
2314 return;
2315 }
2316
2317 /* pai: FIXME -- 32x64 possible problem */
2318 /* First word (4 bytes) in object layout is the vtable pointer */
2319 vtbl = *(CORE_ADDR *) (valaddr + offset);
2320
2321 /* Before the constructor is invoked, things are usually zero'd out. */
2322 if (vtbl == 0)
2323 error ("Couldn't find virtual table -- object may not be constructed yet.");
2324
2325
2326 /* Find virtual base's offset -- jump over entries for primary base
2327 * ancestors, then use the index computed above. But also adjust by
2328 * HP_ACC_VBASE_START for the vtable slots before the start of the
2329 * virtual base entries. Offset is negative -- virtual base entries
2330 * appear _before_ the address point of the virtual table. */
2331
2332 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2333 & use long type */
2334
2335 /* epstein : FIXME -- added param for overlay section. May not be correct */
2336 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2337 boffset = value_as_long (vp);
2338 *skip_p = -1;
2339 *boffset_p = boffset;
2340 return;
2341 }
2342
2343
2344 /* Helper function used by value_struct_elt to recurse through baseclasses.
2345 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2346 and search in it assuming it has (class) type TYPE.
2347 If found, return value, else if name matched and args not return (value)-1,
2348 else return NULL. */
2349
2350 static struct value *
2351 search_struct_method (char *name, struct value **arg1p,
2352 struct value **args, int offset,
2353 int *static_memfuncp, register struct type *type)
2354 {
2355 int i;
2356 struct value *v;
2357 int name_matched = 0;
2358 char dem_opname[64];
2359
2360 CHECK_TYPEDEF (type);
2361 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2362 {
2363 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2364 /* FIXME! May need to check for ARM demangling here */
2365 if (strncmp (t_field_name, "__", 2) == 0 ||
2366 strncmp (t_field_name, "op", 2) == 0 ||
2367 strncmp (t_field_name, "type", 4) == 0)
2368 {
2369 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2370 t_field_name = dem_opname;
2371 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2372 t_field_name = dem_opname;
2373 }
2374 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2375 {
2376 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2377 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2378 name_matched = 1;
2379
2380 check_stub_method_group (type, i);
2381 if (j > 0 && args == 0)
2382 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2383 else if (j == 0 && args == 0)
2384 {
2385 v = value_fn_field (arg1p, f, j, type, offset);
2386 if (v != NULL)
2387 return v;
2388 }
2389 else
2390 while (j >= 0)
2391 {
2392 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2393 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2394 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2395 TYPE_FN_FIELD_ARGS (f, j), args))
2396 {
2397 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2398 return value_virtual_fn_field (arg1p, f, j, type, offset);
2399 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2400 *static_memfuncp = 1;
2401 v = value_fn_field (arg1p, f, j, type, offset);
2402 if (v != NULL)
2403 return v;
2404 }
2405 j--;
2406 }
2407 }
2408 }
2409
2410 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2411 {
2412 int base_offset;
2413
2414 if (BASETYPE_VIA_VIRTUAL (type, i))
2415 {
2416 if (TYPE_HAS_VTABLE (type))
2417 {
2418 /* HP aCC compiled type, search for virtual base offset
2419 according to HP/Taligent runtime spec. */
2420 int skip;
2421 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2422 VALUE_CONTENTS_ALL (*arg1p),
2423 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2424 &base_offset, &skip);
2425 if (skip >= 0)
2426 error ("Virtual base class offset not found in vtable");
2427 }
2428 else
2429 {
2430 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2431 char *base_valaddr;
2432
2433 /* The virtual base class pointer might have been clobbered by the
2434 user program. Make sure that it still points to a valid memory
2435 location. */
2436
2437 if (offset < 0 || offset >= TYPE_LENGTH (type))
2438 {
2439 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2440 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2441 + VALUE_OFFSET (*arg1p) + offset,
2442 base_valaddr,
2443 TYPE_LENGTH (baseclass)) != 0)
2444 error ("virtual baseclass botch");
2445 }
2446 else
2447 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2448
2449 base_offset =
2450 baseclass_offset (type, i, base_valaddr,
2451 VALUE_ADDRESS (*arg1p)
2452 + VALUE_OFFSET (*arg1p) + offset);
2453 if (base_offset == -1)
2454 error ("virtual baseclass botch");
2455 }
2456 }
2457 else
2458 {
2459 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2460 }
2461 v = search_struct_method (name, arg1p, args, base_offset + offset,
2462 static_memfuncp, TYPE_BASECLASS (type, i));
2463 if (v == (struct value *) - 1)
2464 {
2465 name_matched = 1;
2466 }
2467 else if (v)
2468 {
2469 /* FIXME-bothner: Why is this commented out? Why is it here? */
2470 /* *arg1p = arg1_tmp; */
2471 return v;
2472 }
2473 }
2474 if (name_matched)
2475 return (struct value *) - 1;
2476 else
2477 return NULL;
2478 }
2479
2480 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2481 extract the component named NAME from the ultimate target structure/union
2482 and return it as a value with its appropriate type.
2483 ERR is used in the error message if *ARGP's type is wrong.
2484
2485 C++: ARGS is a list of argument types to aid in the selection of
2486 an appropriate method. Also, handle derived types.
2487
2488 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2489 where the truthvalue of whether the function that was resolved was
2490 a static member function or not is stored.
2491
2492 ERR is an error message to be printed in case the field is not found. */
2493
2494 struct value *
2495 value_struct_elt (struct value **argp, struct value **args,
2496 char *name, int *static_memfuncp, char *err)
2497 {
2498 register struct type *t;
2499 struct value *v;
2500
2501 COERCE_ARRAY (*argp);
2502
2503 t = check_typedef (VALUE_TYPE (*argp));
2504
2505 /* Follow pointers until we get to a non-pointer. */
2506
2507 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2508 {
2509 *argp = value_ind (*argp);
2510 /* Don't coerce fn pointer to fn and then back again! */
2511 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2512 COERCE_ARRAY (*argp);
2513 t = check_typedef (VALUE_TYPE (*argp));
2514 }
2515
2516 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2517 error ("not implemented: member type in value_struct_elt");
2518
2519 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2520 && TYPE_CODE (t) != TYPE_CODE_UNION)
2521 error ("Attempt to extract a component of a value that is not a %s.", err);
2522
2523 /* Assume it's not, unless we see that it is. */
2524 if (static_memfuncp)
2525 *static_memfuncp = 0;
2526
2527 if (!args)
2528 {
2529 /* if there are no arguments ...do this... */
2530
2531 /* Try as a field first, because if we succeed, there
2532 is less work to be done. */
2533 v = search_struct_field (name, *argp, 0, t, 0);
2534 if (v)
2535 return v;
2536
2537 /* C++: If it was not found as a data field, then try to
2538 return it as a pointer to a method. */
2539
2540 if (destructor_name_p (name, t))
2541 error ("Cannot get value of destructor");
2542
2543 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2544
2545 if (v == (struct value *) - 1)
2546 error ("Cannot take address of a method");
2547 else if (v == 0)
2548 {
2549 if (TYPE_NFN_FIELDS (t))
2550 error ("There is no member or method named %s.", name);
2551 else
2552 error ("There is no member named %s.", name);
2553 }
2554 return v;
2555 }
2556
2557 if (destructor_name_p (name, t))
2558 {
2559 if (!args[1])
2560 {
2561 /* Destructors are a special case. */
2562 int m_index, f_index;
2563
2564 v = NULL;
2565 if (get_destructor_fn_field (t, &m_index, &f_index))
2566 {
2567 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2568 f_index, NULL, 0);
2569 }
2570 if (v == NULL)
2571 error ("could not find destructor function named %s.", name);
2572 else
2573 return v;
2574 }
2575 else
2576 {
2577 error ("destructor should not have any argument");
2578 }
2579 }
2580 else
2581 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2582
2583 if (v == (struct value *) - 1)
2584 {
2585 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
2586 }
2587 else if (v == 0)
2588 {
2589 /* See if user tried to invoke data as function. If so,
2590 hand it back. If it's not callable (i.e., a pointer to function),
2591 gdb should give an error. */
2592 v = search_struct_field (name, *argp, 0, t, 0);
2593 }
2594
2595 if (!v)
2596 error ("Structure has no component named %s.", name);
2597 return v;
2598 }
2599
2600 /* Search through the methods of an object (and its bases)
2601 * to find a specified method. Return the pointer to the
2602 * fn_field list of overloaded instances.
2603 * Helper function for value_find_oload_list.
2604 * ARGP is a pointer to a pointer to a value (the object)
2605 * METHOD is a string containing the method name
2606 * OFFSET is the offset within the value
2607 * TYPE is the assumed type of the object
2608 * NUM_FNS is the number of overloaded instances
2609 * BASETYPE is set to the actual type of the subobject where the method is found
2610 * BOFFSET is the offset of the base subobject where the method is found */
2611
2612 static struct fn_field *
2613 find_method_list (struct value **argp, char *method, int offset,
2614 struct type *type, int *num_fns,
2615 struct type **basetype, int *boffset)
2616 {
2617 int i;
2618 struct fn_field *f;
2619 CHECK_TYPEDEF (type);
2620
2621 *num_fns = 0;
2622
2623 /* First check in object itself */
2624 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2625 {
2626 /* pai: FIXME What about operators and type conversions? */
2627 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2628 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2629 {
2630 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2631 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2632
2633 *num_fns = len;
2634 *basetype = type;
2635 *boffset = offset;
2636
2637 /* Resolve any stub methods. */
2638 check_stub_method_group (type, i);
2639
2640 return f;
2641 }
2642 }
2643
2644 /* Not found in object, check in base subobjects */
2645 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2646 {
2647 int base_offset;
2648 if (BASETYPE_VIA_VIRTUAL (type, i))
2649 {
2650 if (TYPE_HAS_VTABLE (type))
2651 {
2652 /* HP aCC compiled type, search for virtual base offset
2653 * according to HP/Taligent runtime spec. */
2654 int skip;
2655 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2656 VALUE_CONTENTS_ALL (*argp),
2657 offset + VALUE_EMBEDDED_OFFSET (*argp),
2658 &base_offset, &skip);
2659 if (skip >= 0)
2660 error ("Virtual base class offset not found in vtable");
2661 }
2662 else
2663 {
2664 /* probably g++ runtime model */
2665 base_offset = VALUE_OFFSET (*argp) + offset;
2666 base_offset =
2667 baseclass_offset (type, i,
2668 VALUE_CONTENTS (*argp) + base_offset,
2669 VALUE_ADDRESS (*argp) + base_offset);
2670 if (base_offset == -1)
2671 error ("virtual baseclass botch");
2672 }
2673 }
2674 else
2675 /* non-virtual base, simply use bit position from debug info */
2676 {
2677 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2678 }
2679 f = find_method_list (argp, method, base_offset + offset,
2680 TYPE_BASECLASS (type, i), num_fns, basetype,
2681 boffset);
2682 if (f)
2683 return f;
2684 }
2685 return NULL;
2686 }
2687
2688 /* Return the list of overloaded methods of a specified name.
2689 * ARGP is a pointer to a pointer to a value (the object)
2690 * METHOD is the method name
2691 * OFFSET is the offset within the value contents
2692 * NUM_FNS is the number of overloaded instances
2693 * BASETYPE is set to the type of the base subobject that defines the method
2694 * BOFFSET is the offset of the base subobject which defines the method */
2695
2696 struct fn_field *
2697 value_find_oload_method_list (struct value **argp, char *method, int offset,
2698 int *num_fns, struct type **basetype,
2699 int *boffset)
2700 {
2701 struct type *t;
2702
2703 t = check_typedef (VALUE_TYPE (*argp));
2704
2705 /* code snarfed from value_struct_elt */
2706 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2707 {
2708 *argp = value_ind (*argp);
2709 /* Don't coerce fn pointer to fn and then back again! */
2710 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2711 COERCE_ARRAY (*argp);
2712 t = check_typedef (VALUE_TYPE (*argp));
2713 }
2714
2715 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2716 error ("Not implemented: member type in value_find_oload_lis");
2717
2718 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2719 && TYPE_CODE (t) != TYPE_CODE_UNION)
2720 error ("Attempt to extract a component of a value that is not a struct or union");
2721
2722 return find_method_list (argp, method, 0, t, num_fns, basetype, boffset);
2723 }
2724
2725 /* Given an array of argument types (ARGTYPES) (which includes an
2726 entry for "this" in the case of C++ methods), the number of
2727 arguments NARGS, the NAME of a function whether it's a method or
2728 not (METHOD), and the degree of laxness (LAX) in conforming to
2729 overload resolution rules in ANSI C++, find the best function that
2730 matches on the argument types according to the overload resolution
2731 rules.
2732
2733 In the case of class methods, the parameter OBJ is an object value
2734 in which to search for overloaded methods.
2735
2736 In the case of non-method functions, the parameter FSYM is a symbol
2737 corresponding to one of the overloaded functions.
2738
2739 Return value is an integer: 0 -> good match, 10 -> debugger applied
2740 non-standard coercions, 100 -> incompatible.
2741
2742 If a method is being searched for, VALP will hold the value.
2743 If a non-method is being searched for, SYMP will hold the symbol for it.
2744
2745 If a method is being searched for, and it is a static method,
2746 then STATICP will point to a non-zero value.
2747
2748 Note: This function does *not* check the value of
2749 overload_resolution. Caller must check it to see whether overload
2750 resolution is permitted.
2751 */
2752
2753 int
2754 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
2755 int lax, struct value **objp, struct symbol *fsym,
2756 struct value **valp, struct symbol **symp, int *staticp)
2757 {
2758 int nparms;
2759 struct type **parm_types;
2760 int champ_nparms = 0;
2761 struct value *obj = (objp ? *objp : NULL);
2762
2763 short oload_champ = -1; /* Index of best overloaded function */
2764 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2765 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2766 short oload_ambig_champ = -1; /* 2nd contender for best match */
2767 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2768 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2769
2770 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2771 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2772
2773 struct value *temp = obj;
2774 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2775 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2776 int num_fns = 0; /* Number of overloaded instances being considered */
2777 struct type *basetype = NULL;
2778 int boffset;
2779 register int jj;
2780 register int ix;
2781 int static_offset;
2782 struct cleanup *cleanups = NULL;
2783
2784 char *obj_type_name = NULL;
2785 char *func_name = NULL;
2786
2787 /* Get the list of overloaded methods or functions */
2788 if (method)
2789 {
2790 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2791 /* Hack: evaluate_subexp_standard often passes in a pointer
2792 value rather than the object itself, so try again */
2793 if ((!obj_type_name || !*obj_type_name) &&
2794 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2795 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2796
2797 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2798 &num_fns,
2799 &basetype, &boffset);
2800 if (!fns_ptr || !num_fns)
2801 error ("Couldn't find method %s%s%s",
2802 obj_type_name,
2803 (obj_type_name && *obj_type_name) ? "::" : "",
2804 name);
2805 /* If we are dealing with stub method types, they should have
2806 been resolved by find_method_list via value_find_oload_method_list
2807 above. */
2808 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2809 }
2810 else
2811 {
2812 int i = -1;
2813 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2814
2815 /* If the name is NULL this must be a C-style function.
2816 Just return the same symbol. */
2817 if (!func_name)
2818 {
2819 *symp = fsym;
2820 return 0;
2821 }
2822
2823 oload_syms = make_symbol_overload_list (fsym);
2824 cleanups = make_cleanup (xfree, oload_syms);
2825 while (oload_syms[++i])
2826 num_fns++;
2827 if (!num_fns)
2828 error ("Couldn't find function %s", func_name);
2829 }
2830
2831 oload_champ_bv = NULL;
2832
2833 /* Consider each candidate in turn */
2834 for (ix = 0; ix < num_fns; ix++)
2835 {
2836 static_offset = 0;
2837 if (method)
2838 {
2839 if (TYPE_FN_FIELD_STATIC_P (fns_ptr, ix))
2840 static_offset = 1;
2841 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2842 }
2843 else
2844 {
2845 /* If it's not a method, this is the proper place */
2846 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2847 }
2848
2849 /* Prepare array of parameter types */
2850 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2851 for (jj = 0; jj < nparms; jj++)
2852 parm_types[jj] = (method
2853 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2854 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2855
2856 /* Compare parameter types to supplied argument types. Skip THIS for
2857 static methods. */
2858 bv = rank_function (parm_types, nparms, arg_types + static_offset,
2859 nargs - static_offset);
2860
2861 if (!oload_champ_bv)
2862 {
2863 oload_champ_bv = bv;
2864 oload_champ = 0;
2865 champ_nparms = nparms;
2866 }
2867 else
2868 /* See whether current candidate is better or worse than previous best */
2869 switch (compare_badness (bv, oload_champ_bv))
2870 {
2871 case 0:
2872 oload_ambiguous = 1; /* top two contenders are equally good */
2873 oload_ambig_champ = ix;
2874 break;
2875 case 1:
2876 oload_ambiguous = 2; /* incomparable top contenders */
2877 oload_ambig_champ = ix;
2878 break;
2879 case 2:
2880 oload_champ_bv = bv; /* new champion, record details */
2881 oload_ambiguous = 0;
2882 oload_champ = ix;
2883 oload_ambig_champ = -1;
2884 champ_nparms = nparms;
2885 break;
2886 case 3:
2887 default:
2888 break;
2889 }
2890 xfree (parm_types);
2891 if (overload_debug)
2892 {
2893 if (method)
2894 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2895 else
2896 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2897 for (jj = 0; jj < nargs - static_offset; jj++)
2898 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2899 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2900 }
2901 } /* end loop over all candidates */
2902 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2903 if they have the exact same goodness. This is because there is no
2904 way to differentiate based on return type, which we need to in
2905 cases like overloads of .begin() <It's both const and non-const> */
2906 #if 0
2907 if (oload_ambiguous)
2908 {
2909 if (method)
2910 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2911 obj_type_name,
2912 (obj_type_name && *obj_type_name) ? "::" : "",
2913 name);
2914 else
2915 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2916 func_name);
2917 }
2918 #endif
2919
2920 /* Check how bad the best match is. */
2921 static_offset = 0;
2922 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2923 static_offset = 1;
2924 for (ix = 1; ix <= nargs - static_offset; ix++)
2925 {
2926 if (oload_champ_bv->rank[ix] >= 100)
2927 oload_incompatible = 1; /* truly mismatched types */
2928
2929 else if (oload_champ_bv->rank[ix] >= 10)
2930 oload_non_standard = 1; /* non-standard type conversions needed */
2931 }
2932 if (oload_incompatible)
2933 {
2934 if (method)
2935 error ("Cannot resolve method %s%s%s to any overloaded instance",
2936 obj_type_name,
2937 (obj_type_name && *obj_type_name) ? "::" : "",
2938 name);
2939 else
2940 error ("Cannot resolve function %s to any overloaded instance",
2941 func_name);
2942 }
2943 else if (oload_non_standard)
2944 {
2945 if (method)
2946 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2947 obj_type_name,
2948 (obj_type_name && *obj_type_name) ? "::" : "",
2949 name);
2950 else
2951 warning ("Using non-standard conversion to match function %s to supplied arguments",
2952 func_name);
2953 }
2954
2955 if (method)
2956 {
2957 if (staticp && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2958 *staticp = 1;
2959 else if (staticp)
2960 *staticp = 0;
2961 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2962 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2963 else
2964 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2965 }
2966 else
2967 {
2968 *symp = oload_syms[oload_champ];
2969 xfree (func_name);
2970 }
2971
2972 if (objp)
2973 {
2974 if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR
2975 && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR)
2976 {
2977 temp = value_addr (temp);
2978 }
2979 *objp = temp;
2980 }
2981 if (cleanups != NULL)
2982 do_cleanups (cleanups);
2983
2984 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2985 }
2986
2987 /* C++: return 1 is NAME is a legitimate name for the destructor
2988 of type TYPE. If TYPE does not have a destructor, or
2989 if NAME is inappropriate for TYPE, an error is signaled. */
2990 int
2991 destructor_name_p (const char *name, const struct type *type)
2992 {
2993 /* destructors are a special case. */
2994
2995 if (name[0] == '~')
2996 {
2997 char *dname = type_name_no_tag (type);
2998 char *cp = strchr (dname, '<');
2999 unsigned int len;
3000
3001 /* Do not compare the template part for template classes. */
3002 if (cp == NULL)
3003 len = strlen (dname);
3004 else
3005 len = cp - dname;
3006 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
3007 error ("name of destructor must equal name of class");
3008 else
3009 return 1;
3010 }
3011 return 0;
3012 }
3013
3014 /* Helper function for check_field: Given TYPE, a structure/union,
3015 return 1 if the component named NAME from the ultimate
3016 target structure/union is defined, otherwise, return 0. */
3017
3018 static int
3019 check_field_in (register struct type *type, const char *name)
3020 {
3021 register int i;
3022
3023 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
3024 {
3025 char *t_field_name = TYPE_FIELD_NAME (type, i);
3026 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
3027 return 1;
3028 }
3029
3030 /* C++: If it was not found as a data field, then try to
3031 return it as a pointer to a method. */
3032
3033 /* Destructors are a special case. */
3034 if (destructor_name_p (name, type))
3035 {
3036 int m_index, f_index;
3037
3038 return get_destructor_fn_field (type, &m_index, &f_index);
3039 }
3040
3041 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
3042 {
3043 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
3044 return 1;
3045 }
3046
3047 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3048 if (check_field_in (TYPE_BASECLASS (type, i), name))
3049 return 1;
3050
3051 return 0;
3052 }
3053
3054
3055 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
3056 return 1 if the component named NAME from the ultimate
3057 target structure/union is defined, otherwise, return 0. */
3058
3059 int
3060 check_field (struct value *arg1, const char *name)
3061 {
3062 register struct type *t;
3063
3064 COERCE_ARRAY (arg1);
3065
3066 t = VALUE_TYPE (arg1);
3067
3068 /* Follow pointers until we get to a non-pointer. */
3069
3070 for (;;)
3071 {
3072 CHECK_TYPEDEF (t);
3073 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
3074 break;
3075 t = TYPE_TARGET_TYPE (t);
3076 }
3077
3078 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
3079 error ("not implemented: member type in check_field");
3080
3081 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3082 && TYPE_CODE (t) != TYPE_CODE_UNION)
3083 error ("Internal error: `this' is not an aggregate");
3084
3085 return check_field_in (t, name);
3086 }
3087
3088 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3089 return the address of this member as a "pointer to member"
3090 type. If INTYPE is non-null, then it will be the type
3091 of the member we are looking for. This will help us resolve
3092 "pointers to member functions". This function is used
3093 to resolve user expressions of the form "DOMAIN::NAME". */
3094
3095 struct value *
3096 value_struct_elt_for_reference (struct type *domain, int offset,
3097 struct type *curtype, char *name,
3098 struct type *intype)
3099 {
3100 register struct type *t = curtype;
3101 register int i;
3102 struct value *v;
3103
3104 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3105 && TYPE_CODE (t) != TYPE_CODE_UNION)
3106 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3107
3108 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3109 {
3110 char *t_field_name = TYPE_FIELD_NAME (t, i);
3111
3112 if (t_field_name && STREQ (t_field_name, name))
3113 {
3114 if (TYPE_FIELD_STATIC (t, i))
3115 {
3116 v = value_static_field (t, i);
3117 if (v == NULL)
3118 error ("static field %s has been optimized out",
3119 name);
3120 return v;
3121 }
3122 if (TYPE_FIELD_PACKED (t, i))
3123 error ("pointers to bitfield members not allowed");
3124
3125 return value_from_longest
3126 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3127 domain)),
3128 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3129 }
3130 }
3131
3132 /* C++: If it was not found as a data field, then try to
3133 return it as a pointer to a method. */
3134
3135 /* Destructors are a special case. */
3136 if (destructor_name_p (name, t))
3137 {
3138 error ("member pointers to destructors not implemented yet");
3139 }
3140
3141 /* Perform all necessary dereferencing. */
3142 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3143 intype = TYPE_TARGET_TYPE (intype);
3144
3145 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3146 {
3147 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3148 char dem_opname[64];
3149
3150 if (strncmp (t_field_name, "__", 2) == 0 ||
3151 strncmp (t_field_name, "op", 2) == 0 ||
3152 strncmp (t_field_name, "type", 4) == 0)
3153 {
3154 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3155 t_field_name = dem_opname;
3156 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3157 t_field_name = dem_opname;
3158 }
3159 if (t_field_name && STREQ (t_field_name, name))
3160 {
3161 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3162 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3163
3164 check_stub_method_group (t, i);
3165
3166 if (intype == 0 && j > 1)
3167 error ("non-unique member `%s' requires type instantiation", name);
3168 if (intype)
3169 {
3170 while (j--)
3171 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3172 break;
3173 if (j < 0)
3174 error ("no member function matches that type instantiation");
3175 }
3176 else
3177 j = 0;
3178
3179 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3180 {
3181 return value_from_longest
3182 (lookup_reference_type
3183 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3184 domain)),
3185 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3186 }
3187 else
3188 {
3189 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3190 0, VAR_NAMESPACE, 0, NULL);
3191 if (s == NULL)
3192 {
3193 v = 0;
3194 }
3195 else
3196 {
3197 v = read_var_value (s, 0);
3198 #if 0
3199 VALUE_TYPE (v) = lookup_reference_type
3200 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3201 domain));
3202 #endif
3203 }
3204 return v;
3205 }
3206 }
3207 }
3208 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3209 {
3210 struct value *v;
3211 int base_offset;
3212
3213 if (BASETYPE_VIA_VIRTUAL (t, i))
3214 base_offset = 0;
3215 else
3216 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3217 v = value_struct_elt_for_reference (domain,
3218 offset + base_offset,
3219 TYPE_BASECLASS (t, i),
3220 name,
3221 intype);
3222 if (v)
3223 return v;
3224 }
3225 return 0;
3226 }
3227
3228
3229 /* Given a pointer value V, find the real (RTTI) type
3230 of the object it points to.
3231 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3232 and refer to the values computed for the object pointed to. */
3233
3234 struct type *
3235 value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
3236 {
3237 struct value *target;
3238
3239 target = value_ind (v);
3240
3241 return value_rtti_type (target, full, top, using_enc);
3242 }
3243
3244 /* Given a value pointed to by ARGP, check its real run-time type, and
3245 if that is different from the enclosing type, create a new value
3246 using the real run-time type as the enclosing type (and of the same
3247 type as ARGP) and return it, with the embedded offset adjusted to
3248 be the correct offset to the enclosed object
3249 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3250 parameters, computed by value_rtti_type(). If these are available,
3251 they can be supplied and a second call to value_rtti_type() is avoided.
3252 (Pass RTYPE == NULL if they're not available */
3253
3254 struct value *
3255 value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
3256 int xusing_enc)
3257 {
3258 struct type *real_type;
3259 int full = 0;
3260 int top = -1;
3261 int using_enc = 0;
3262 struct value *new_val;
3263
3264 if (rtype)
3265 {
3266 real_type = rtype;
3267 full = xfull;
3268 top = xtop;
3269 using_enc = xusing_enc;
3270 }
3271 else
3272 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3273
3274 /* If no RTTI data, or if object is already complete, do nothing */
3275 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3276 return argp;
3277
3278 /* If we have the full object, but for some reason the enclosing
3279 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3280 if (full)
3281 {
3282 argp = value_change_enclosing_type (argp, real_type);
3283 return argp;
3284 }
3285
3286 /* Check if object is in memory */
3287 if (VALUE_LVAL (argp) != lval_memory)
3288 {
3289 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3290
3291 return argp;
3292 }
3293
3294 /* All other cases -- retrieve the complete object */
3295 /* Go back by the computed top_offset from the beginning of the object,
3296 adjusting for the embedded offset of argp if that's what value_rtti_type
3297 used for its computation. */
3298 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3299 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3300 VALUE_BFD_SECTION (argp));
3301 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3302 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3303 return new_val;
3304 }
3305
3306
3307
3308
3309 /* C++: return the value of the class instance variable, if one exists.
3310 Flag COMPLAIN signals an error if the request is made in an
3311 inappropriate context. */
3312
3313 struct value *
3314 value_of_this (int complain)
3315 {
3316 struct symbol *func, *sym;
3317 struct block *b;
3318 int i;
3319 static const char funny_this[] = "this";
3320 struct value *this;
3321
3322 if (selected_frame == 0)
3323 {
3324 if (complain)
3325 error ("no frame selected");
3326 else
3327 return 0;
3328 }
3329
3330 func = get_frame_function (selected_frame);
3331 if (!func)
3332 {
3333 if (complain)
3334 error ("no `this' in nameless context");
3335 else
3336 return 0;
3337 }
3338
3339 b = SYMBOL_BLOCK_VALUE (func);
3340 i = BLOCK_NSYMS (b);
3341 if (i <= 0)
3342 {
3343 if (complain)
3344 error ("no args, no `this'");
3345 else
3346 return 0;
3347 }
3348
3349 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3350 symbol instead of the LOC_ARG one (if both exist). */
3351 sym = lookup_block_symbol (b, funny_this, NULL, VAR_NAMESPACE);
3352 if (sym == NULL)
3353 {
3354 if (complain)
3355 error ("current stack frame not in method");
3356 else
3357 return NULL;
3358 }
3359
3360 this = read_var_value (sym, selected_frame);
3361 if (this == 0 && complain)
3362 error ("`this' argument at unknown address");
3363 return this;
3364 }
3365
3366 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3367 long, starting at LOWBOUND. The result has the same lower bound as
3368 the original ARRAY. */
3369
3370 struct value *
3371 value_slice (struct value *array, int lowbound, int length)
3372 {
3373 struct type *slice_range_type, *slice_type, *range_type;
3374 LONGEST lowerbound, upperbound, offset;
3375 struct value *slice;
3376 struct type *array_type;
3377 array_type = check_typedef (VALUE_TYPE (array));
3378 COERCE_VARYING_ARRAY (array, array_type);
3379 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3380 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3381 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3382 error ("cannot take slice of non-array");
3383 range_type = TYPE_INDEX_TYPE (array_type);
3384 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3385 error ("slice from bad array or bitstring");
3386 if (lowbound < lowerbound || length < 0
3387 || lowbound + length - 1 > upperbound)
3388 /* OBSOLETE Chill allows zero-length strings but not arrays. */
3389 /* OBSOLETE || (current_language->la_language == language_chill */
3390 /* OBSOLETE && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY)) */
3391 error ("slice out of range");
3392 /* FIXME-type-allocation: need a way to free this type when we are
3393 done with it. */
3394 slice_range_type = create_range_type ((struct type *) NULL,
3395 TYPE_TARGET_TYPE (range_type),
3396 lowbound, lowbound + length - 1);
3397 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3398 {
3399 int i;
3400 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3401 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3402 slice = value_zero (slice_type, not_lval);
3403 for (i = 0; i < length; i++)
3404 {
3405 int element = value_bit_index (array_type,
3406 VALUE_CONTENTS (array),
3407 lowbound + i);
3408 if (element < 0)
3409 error ("internal error accessing bitstring");
3410 else if (element > 0)
3411 {
3412 int j = i % TARGET_CHAR_BIT;
3413 if (BITS_BIG_ENDIAN)
3414 j = TARGET_CHAR_BIT - 1 - j;
3415 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3416 }
3417 }
3418 /* We should set the address, bitssize, and bitspos, so the clice
3419 can be used on the LHS, but that may require extensions to
3420 value_assign. For now, just leave as a non_lval. FIXME. */
3421 }
3422 else
3423 {
3424 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3425 offset
3426 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3427 slice_type = create_array_type ((struct type *) NULL, element_type,
3428 slice_range_type);
3429 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3430 slice = allocate_value (slice_type);
3431 if (VALUE_LAZY (array))
3432 VALUE_LAZY (slice) = 1;
3433 else
3434 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3435 TYPE_LENGTH (slice_type));
3436 if (VALUE_LVAL (array) == lval_internalvar)
3437 VALUE_LVAL (slice) = lval_internalvar_component;
3438 else
3439 VALUE_LVAL (slice) = VALUE_LVAL (array);
3440 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3441 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3442 }
3443 return slice;
3444 }
3445
3446 /* Assuming OBSOLETE chill_varying_type (VARRAY) is true, return an
3447 equivalent value as a fixed-length array. */
3448
3449 struct value *
3450 varying_to_slice (struct value *varray)
3451 {
3452 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3453 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3454 VALUE_CONTENTS (varray)
3455 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3456 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3457 }
3458
3459 /* Create a value for a FORTRAN complex number. Currently most of
3460 the time values are coerced to COMPLEX*16 (i.e. a complex number
3461 composed of 2 doubles. This really should be a smarter routine
3462 that figures out precision inteligently as opposed to assuming
3463 doubles. FIXME: fmb */
3464
3465 struct value *
3466 value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
3467 {
3468 struct value *val;
3469 struct type *real_type = TYPE_TARGET_TYPE (type);
3470
3471 val = allocate_value (type);
3472 arg1 = value_cast (real_type, arg1);
3473 arg2 = value_cast (real_type, arg2);
3474
3475 memcpy (VALUE_CONTENTS_RAW (val),
3476 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3477 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3478 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3479 return val;
3480 }
3481
3482 /* Cast a value into the appropriate complex data type. */
3483
3484 static struct value *
3485 cast_into_complex (struct type *type, struct value *val)
3486 {
3487 struct type *real_type = TYPE_TARGET_TYPE (type);
3488 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3489 {
3490 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3491 struct value *re_val = allocate_value (val_real_type);
3492 struct value *im_val = allocate_value (val_real_type);
3493
3494 memcpy (VALUE_CONTENTS_RAW (re_val),
3495 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3496 memcpy (VALUE_CONTENTS_RAW (im_val),
3497 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3498 TYPE_LENGTH (val_real_type));
3499
3500 return value_literal_complex (re_val, im_val, type);
3501 }
3502 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3503 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3504 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3505 else
3506 error ("cannot cast non-number to complex");
3507 }
3508
3509 void
3510 _initialize_valops (void)
3511 {
3512 #if 0
3513 add_show_from_set
3514 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3515 "Set automatic abandonment of expressions upon failure.",
3516 &setlist),
3517 &showlist);
3518 #endif
3519
3520 add_show_from_set
3521 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3522 "Set overload resolution in evaluating C++ functions.",
3523 &setlist),
3524 &showlist);
3525 overload_resolution = 1;
3526
3527 add_show_from_set (
3528 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3529 (char *) &unwind_on_signal_p,
3530 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3531 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3532 is received while in a function called from gdb (call dummy). If set, gdb\n\
3533 unwinds the stack and restore the context to what as it was before the call.\n\
3534 The default is to stop in the frame where the signal was received.", &setlist),
3535 &showlist);
3536 }
This page took 0.097776 seconds and 5 git commands to generate.