Include gdb_assert.h in common-defs.h
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "dfp.h"
38 #include "tracepoint.h"
39 #include <errno.h>
40 #include <string.h>
41 #include "observer.h"
42 #include "objfiles.h"
43 #include "exceptions.h"
44 #include "extension.h"
45
46 extern unsigned int overload_debug;
47 /* Local functions. */
48
49 static int typecmp (int staticp, int varargs, int nargs,
50 struct field t1[], struct value *t2[]);
51
52 static struct value *search_struct_field (const char *, struct value *,
53 int, struct type *, int);
54
55 static struct value *search_struct_method (const char *, struct value **,
56 struct value **,
57 int, int *, struct type *);
58
59 static int find_oload_champ_namespace (struct value **, int,
60 const char *, const char *,
61 struct symbol ***,
62 struct badness_vector **,
63 const int no_adl);
64
65 static
66 int find_oload_champ_namespace_loop (struct value **, int,
67 const char *, const char *,
68 int, struct symbol ***,
69 struct badness_vector **, int *,
70 const int no_adl);
71
72 static int find_oload_champ (struct value **, int, int,
73 struct fn_field *, VEC (xmethod_worker_ptr) *,
74 struct symbol **, struct badness_vector **);
75
76 static int oload_method_static_p (struct fn_field *, int);
77
78 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
79
80 static enum
81 oload_classification classify_oload_match (struct badness_vector *,
82 int, int);
83
84 static struct value *value_struct_elt_for_reference (struct type *,
85 int, struct type *,
86 const char *,
87 struct type *,
88 int, enum noside);
89
90 static struct value *value_namespace_elt (const struct type *,
91 const char *, int , enum noside);
92
93 static struct value *value_maybe_namespace_elt (const struct type *,
94 const char *, int,
95 enum noside);
96
97 static CORE_ADDR allocate_space_in_inferior (int);
98
99 static struct value *cast_into_complex (struct type *, struct value *);
100
101 static void find_method_list (struct value **, const char *,
102 int, struct type *, struct fn_field **, int *,
103 VEC (xmethod_worker_ptr) **,
104 struct type **, int *);
105
106 void _initialize_valops (void);
107
108 #if 0
109 /* Flag for whether we want to abandon failed expression evals by
110 default. */
111
112 static int auto_abandon = 0;
113 #endif
114
115 int overload_resolution = 0;
116 static void
117 show_overload_resolution (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c,
119 const char *value)
120 {
121 fprintf_filtered (file, _("Overload resolution in evaluating "
122 "C++ functions is %s.\n"),
123 value);
124 }
125
126 /* Find the address of function name NAME in the inferior. If OBJF_P
127 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
128 is defined. */
129
130 struct value *
131 find_function_in_inferior (const char *name, struct objfile **objf_p)
132 {
133 struct symbol *sym;
134
135 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
136 if (sym != NULL)
137 {
138 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
139 {
140 error (_("\"%s\" exists in this program but is not a function."),
141 name);
142 }
143
144 if (objf_p)
145 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
146
147 return value_of_variable (sym, NULL);
148 }
149 else
150 {
151 struct bound_minimal_symbol msymbol =
152 lookup_bound_minimal_symbol (name);
153
154 if (msymbol.minsym != NULL)
155 {
156 struct objfile *objfile = msymbol.objfile;
157 struct gdbarch *gdbarch = get_objfile_arch (objfile);
158
159 struct type *type;
160 CORE_ADDR maddr;
161 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
162 type = lookup_function_type (type);
163 type = lookup_pointer_type (type);
164 maddr = BMSYMBOL_VALUE_ADDRESS (msymbol);
165
166 if (objf_p)
167 *objf_p = objfile;
168
169 return value_from_pointer (type, maddr);
170 }
171 else
172 {
173 if (!target_has_execution)
174 error (_("evaluation of this expression "
175 "requires the target program to be active"));
176 else
177 error (_("evaluation of this expression requires the "
178 "program to have a function \"%s\"."),
179 name);
180 }
181 }
182 }
183
184 /* Allocate NBYTES of space in the inferior using the inferior's
185 malloc and return a value that is a pointer to the allocated
186 space. */
187
188 struct value *
189 value_allocate_space_in_inferior (int len)
190 {
191 struct objfile *objf;
192 struct value *val = find_function_in_inferior ("malloc", &objf);
193 struct gdbarch *gdbarch = get_objfile_arch (objf);
194 struct value *blocklen;
195
196 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
197 val = call_function_by_hand (val, 1, &blocklen);
198 if (value_logical_not (val))
199 {
200 if (!target_has_execution)
201 error (_("No memory available to program now: "
202 "you need to start the target first"));
203 else
204 error (_("No memory available to program: call to malloc failed"));
205 }
206 return val;
207 }
208
209 static CORE_ADDR
210 allocate_space_in_inferior (int len)
211 {
212 return value_as_long (value_allocate_space_in_inferior (len));
213 }
214
215 /* Cast struct value VAL to type TYPE and return as a value.
216 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
217 for this to work. Typedef to one of the codes is permitted.
218 Returns NULL if the cast is neither an upcast nor a downcast. */
219
220 static struct value *
221 value_cast_structs (struct type *type, struct value *v2)
222 {
223 struct type *t1;
224 struct type *t2;
225 struct value *v;
226
227 gdb_assert (type != NULL && v2 != NULL);
228
229 t1 = check_typedef (type);
230 t2 = check_typedef (value_type (v2));
231
232 /* Check preconditions. */
233 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
234 || TYPE_CODE (t1) == TYPE_CODE_UNION)
235 && !!"Precondition is that type is of STRUCT or UNION kind.");
236 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
237 || TYPE_CODE (t2) == TYPE_CODE_UNION)
238 && !!"Precondition is that value is of STRUCT or UNION kind");
239
240 if (TYPE_NAME (t1) != NULL
241 && TYPE_NAME (t2) != NULL
242 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
243 return NULL;
244
245 /* Upcasting: look in the type of the source to see if it contains the
246 type of the target as a superclass. If so, we'll need to
247 offset the pointer rather than just change its type. */
248 if (TYPE_NAME (t1) != NULL)
249 {
250 v = search_struct_field (type_name_no_tag (t1),
251 v2, 0, t2, 1);
252 if (v)
253 return v;
254 }
255
256 /* Downcasting: look in the type of the target to see if it contains the
257 type of the source as a superclass. If so, we'll need to
258 offset the pointer rather than just change its type. */
259 if (TYPE_NAME (t2) != NULL)
260 {
261 /* Try downcasting using the run-time type of the value. */
262 int full, top, using_enc;
263 struct type *real_type;
264
265 real_type = value_rtti_type (v2, &full, &top, &using_enc);
266 if (real_type)
267 {
268 v = value_full_object (v2, real_type, full, top, using_enc);
269 v = value_at_lazy (real_type, value_address (v));
270 real_type = value_type (v);
271
272 /* We might be trying to cast to the outermost enclosing
273 type, in which case search_struct_field won't work. */
274 if (TYPE_NAME (real_type) != NULL
275 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
276 return v;
277
278 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
279 if (v)
280 return v;
281 }
282
283 /* Try downcasting using information from the destination type
284 T2. This wouldn't work properly for classes with virtual
285 bases, but those were handled above. */
286 v = search_struct_field (type_name_no_tag (t2),
287 value_zero (t1, not_lval), 0, t1, 1);
288 if (v)
289 {
290 /* Downcasting is possible (t1 is superclass of v2). */
291 CORE_ADDR addr2 = value_address (v2);
292
293 addr2 -= value_address (v) + value_embedded_offset (v);
294 return value_at (type, addr2);
295 }
296 }
297
298 return NULL;
299 }
300
301 /* Cast one pointer or reference type to another. Both TYPE and
302 the type of ARG2 should be pointer types, or else both should be
303 reference types. If SUBCLASS_CHECK is non-zero, this will force a
304 check to see whether TYPE is a superclass of ARG2's type. If
305 SUBCLASS_CHECK is zero, then the subclass check is done only when
306 ARG2 is itself non-zero. Returns the new pointer or reference. */
307
308 struct value *
309 value_cast_pointers (struct type *type, struct value *arg2,
310 int subclass_check)
311 {
312 struct type *type1 = check_typedef (type);
313 struct type *type2 = check_typedef (value_type (arg2));
314 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
315 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
316
317 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
318 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
319 && (subclass_check || !value_logical_not (arg2)))
320 {
321 struct value *v2;
322
323 if (TYPE_CODE (type2) == TYPE_CODE_REF)
324 v2 = coerce_ref (arg2);
325 else
326 v2 = value_ind (arg2);
327 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
328 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
329 v2 = value_cast_structs (t1, v2);
330 /* At this point we have what we can have, un-dereference if needed. */
331 if (v2)
332 {
333 struct value *v = value_addr (v2);
334
335 deprecated_set_value_type (v, type);
336 return v;
337 }
338 }
339
340 /* No superclass found, just change the pointer type. */
341 arg2 = value_copy (arg2);
342 deprecated_set_value_type (arg2, type);
343 set_value_enclosing_type (arg2, type);
344 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
345 return arg2;
346 }
347
348 /* Cast value ARG2 to type TYPE and return as a value.
349 More general than a C cast: accepts any two types of the same length,
350 and if ARG2 is an lvalue it can be cast into anything at all. */
351 /* In C++, casts may change pointer or object representations. */
352
353 struct value *
354 value_cast (struct type *type, struct value *arg2)
355 {
356 enum type_code code1;
357 enum type_code code2;
358 int scalar;
359 struct type *type2;
360
361 int convert_to_boolean = 0;
362
363 if (value_type (arg2) == type)
364 return arg2;
365
366 code1 = TYPE_CODE (check_typedef (type));
367
368 /* Check if we are casting struct reference to struct reference. */
369 if (code1 == TYPE_CODE_REF)
370 {
371 /* We dereference type; then we recurse and finally
372 we generate value of the given reference. Nothing wrong with
373 that. */
374 struct type *t1 = check_typedef (type);
375 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
376 struct value *val = value_cast (dereftype, arg2);
377
378 return value_ref (val);
379 }
380
381 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
382
383 if (code2 == TYPE_CODE_REF)
384 /* We deref the value and then do the cast. */
385 return value_cast (type, coerce_ref (arg2));
386
387 CHECK_TYPEDEF (type);
388 code1 = TYPE_CODE (type);
389 arg2 = coerce_ref (arg2);
390 type2 = check_typedef (value_type (arg2));
391
392 /* You can't cast to a reference type. See value_cast_pointers
393 instead. */
394 gdb_assert (code1 != TYPE_CODE_REF);
395
396 /* A cast to an undetermined-length array_type, such as
397 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
398 where N is sizeof(OBJECT)/sizeof(TYPE). */
399 if (code1 == TYPE_CODE_ARRAY)
400 {
401 struct type *element_type = TYPE_TARGET_TYPE (type);
402 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
403
404 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
405 {
406 struct type *range_type = TYPE_INDEX_TYPE (type);
407 int val_length = TYPE_LENGTH (type2);
408 LONGEST low_bound, high_bound, new_length;
409
410 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
411 low_bound = 0, high_bound = 0;
412 new_length = val_length / element_length;
413 if (val_length % element_length != 0)
414 warning (_("array element type size does not "
415 "divide object size in cast"));
416 /* FIXME-type-allocation: need a way to free this type when
417 we are done with it. */
418 range_type = create_static_range_type ((struct type *) NULL,
419 TYPE_TARGET_TYPE (range_type),
420 low_bound,
421 new_length + low_bound - 1);
422 deprecated_set_value_type (arg2,
423 create_array_type ((struct type *) NULL,
424 element_type,
425 range_type));
426 return arg2;
427 }
428 }
429
430 if (current_language->c_style_arrays
431 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
432 && !TYPE_VECTOR (type2))
433 arg2 = value_coerce_array (arg2);
434
435 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
436 arg2 = value_coerce_function (arg2);
437
438 type2 = check_typedef (value_type (arg2));
439 code2 = TYPE_CODE (type2);
440
441 if (code1 == TYPE_CODE_COMPLEX)
442 return cast_into_complex (type, arg2);
443 if (code1 == TYPE_CODE_BOOL)
444 {
445 code1 = TYPE_CODE_INT;
446 convert_to_boolean = 1;
447 }
448 if (code1 == TYPE_CODE_CHAR)
449 code1 = TYPE_CODE_INT;
450 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
451 code2 = TYPE_CODE_INT;
452
453 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
454 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
455 || code2 == TYPE_CODE_RANGE);
456
457 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
458 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
459 && TYPE_NAME (type) != 0)
460 {
461 struct value *v = value_cast_structs (type, arg2);
462
463 if (v)
464 return v;
465 }
466
467 if (code1 == TYPE_CODE_FLT && scalar)
468 return value_from_double (type, value_as_double (arg2));
469 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
470 {
471 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
472 int dec_len = TYPE_LENGTH (type);
473 gdb_byte dec[16];
474
475 if (code2 == TYPE_CODE_FLT)
476 decimal_from_floating (arg2, dec, dec_len, byte_order);
477 else if (code2 == TYPE_CODE_DECFLOAT)
478 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
479 byte_order, dec, dec_len, byte_order);
480 else
481 /* The only option left is an integral type. */
482 decimal_from_integral (arg2, dec, dec_len, byte_order);
483
484 return value_from_decfloat (type, dec);
485 }
486 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
487 || code1 == TYPE_CODE_RANGE)
488 && (scalar || code2 == TYPE_CODE_PTR
489 || code2 == TYPE_CODE_MEMBERPTR))
490 {
491 LONGEST longest;
492
493 /* When we cast pointers to integers, we mustn't use
494 gdbarch_pointer_to_address to find the address the pointer
495 represents, as value_as_long would. GDB should evaluate
496 expressions just as the compiler would --- and the compiler
497 sees a cast as a simple reinterpretation of the pointer's
498 bits. */
499 if (code2 == TYPE_CODE_PTR)
500 longest = extract_unsigned_integer
501 (value_contents (arg2), TYPE_LENGTH (type2),
502 gdbarch_byte_order (get_type_arch (type2)));
503 else
504 longest = value_as_long (arg2);
505 return value_from_longest (type, convert_to_boolean ?
506 (LONGEST) (longest ? 1 : 0) : longest);
507 }
508 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
509 || code2 == TYPE_CODE_ENUM
510 || code2 == TYPE_CODE_RANGE))
511 {
512 /* TYPE_LENGTH (type) is the length of a pointer, but we really
513 want the length of an address! -- we are really dealing with
514 addresses (i.e., gdb representations) not pointers (i.e.,
515 target representations) here.
516
517 This allows things like "print *(int *)0x01000234" to work
518 without printing a misleading message -- which would
519 otherwise occur when dealing with a target having two byte
520 pointers and four byte addresses. */
521
522 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
523 LONGEST longest = value_as_long (arg2);
524
525 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
526 {
527 if (longest >= ((LONGEST) 1 << addr_bit)
528 || longest <= -((LONGEST) 1 << addr_bit))
529 warning (_("value truncated"));
530 }
531 return value_from_longest (type, longest);
532 }
533 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
534 && value_as_long (arg2) == 0)
535 {
536 struct value *result = allocate_value (type);
537
538 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
539 return result;
540 }
541 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
542 && value_as_long (arg2) == 0)
543 {
544 /* The Itanium C++ ABI represents NULL pointers to members as
545 minus one, instead of biasing the normal case. */
546 return value_from_longest (type, -1);
547 }
548 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
549 && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
550 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
551 error (_("Cannot convert between vector values of different sizes"));
552 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
553 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
554 error (_("can only cast scalar to vector of same size"));
555 else if (code1 == TYPE_CODE_VOID)
556 {
557 return value_zero (type, not_lval);
558 }
559 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
560 {
561 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
562 return value_cast_pointers (type, arg2, 0);
563
564 arg2 = value_copy (arg2);
565 deprecated_set_value_type (arg2, type);
566 set_value_enclosing_type (arg2, type);
567 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
568 return arg2;
569 }
570 else if (VALUE_LVAL (arg2) == lval_memory)
571 return value_at_lazy (type, value_address (arg2));
572 else
573 {
574 error (_("Invalid cast."));
575 return 0;
576 }
577 }
578
579 /* The C++ reinterpret_cast operator. */
580
581 struct value *
582 value_reinterpret_cast (struct type *type, struct value *arg)
583 {
584 struct value *result;
585 struct type *real_type = check_typedef (type);
586 struct type *arg_type, *dest_type;
587 int is_ref = 0;
588 enum type_code dest_code, arg_code;
589
590 /* Do reference, function, and array conversion. */
591 arg = coerce_array (arg);
592
593 /* Attempt to preserve the type the user asked for. */
594 dest_type = type;
595
596 /* If we are casting to a reference type, transform
597 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
598 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
599 {
600 is_ref = 1;
601 arg = value_addr (arg);
602 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
603 real_type = lookup_pointer_type (real_type);
604 }
605
606 arg_type = value_type (arg);
607
608 dest_code = TYPE_CODE (real_type);
609 arg_code = TYPE_CODE (arg_type);
610
611 /* We can convert pointer types, or any pointer type to int, or int
612 type to pointer. */
613 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
614 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
615 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
616 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
617 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
618 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
619 || (dest_code == arg_code
620 && (dest_code == TYPE_CODE_PTR
621 || dest_code == TYPE_CODE_METHODPTR
622 || dest_code == TYPE_CODE_MEMBERPTR)))
623 result = value_cast (dest_type, arg);
624 else
625 error (_("Invalid reinterpret_cast"));
626
627 if (is_ref)
628 result = value_cast (type, value_ref (value_ind (result)));
629
630 return result;
631 }
632
633 /* A helper for value_dynamic_cast. This implements the first of two
634 runtime checks: we iterate over all the base classes of the value's
635 class which are equal to the desired class; if only one of these
636 holds the value, then it is the answer. */
637
638 static int
639 dynamic_cast_check_1 (struct type *desired_type,
640 const gdb_byte *valaddr,
641 int embedded_offset,
642 CORE_ADDR address,
643 struct value *val,
644 struct type *search_type,
645 CORE_ADDR arg_addr,
646 struct type *arg_type,
647 struct value **result)
648 {
649 int i, result_count = 0;
650
651 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
652 {
653 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
654 address, val);
655
656 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
657 {
658 if (address + embedded_offset + offset >= arg_addr
659 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
660 {
661 ++result_count;
662 if (!*result)
663 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
664 address + embedded_offset + offset);
665 }
666 }
667 else
668 result_count += dynamic_cast_check_1 (desired_type,
669 valaddr,
670 embedded_offset + offset,
671 address, val,
672 TYPE_BASECLASS (search_type, i),
673 arg_addr,
674 arg_type,
675 result);
676 }
677
678 return result_count;
679 }
680
681 /* A helper for value_dynamic_cast. This implements the second of two
682 runtime checks: we look for a unique public sibling class of the
683 argument's declared class. */
684
685 static int
686 dynamic_cast_check_2 (struct type *desired_type,
687 const gdb_byte *valaddr,
688 int embedded_offset,
689 CORE_ADDR address,
690 struct value *val,
691 struct type *search_type,
692 struct value **result)
693 {
694 int i, result_count = 0;
695
696 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
697 {
698 int offset;
699
700 if (! BASETYPE_VIA_PUBLIC (search_type, i))
701 continue;
702
703 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
704 address, val);
705 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
706 {
707 ++result_count;
708 if (*result == NULL)
709 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
710 address + embedded_offset + offset);
711 }
712 else
713 result_count += dynamic_cast_check_2 (desired_type,
714 valaddr,
715 embedded_offset + offset,
716 address, val,
717 TYPE_BASECLASS (search_type, i),
718 result);
719 }
720
721 return result_count;
722 }
723
724 /* The C++ dynamic_cast operator. */
725
726 struct value *
727 value_dynamic_cast (struct type *type, struct value *arg)
728 {
729 int full, top, using_enc;
730 struct type *resolved_type = check_typedef (type);
731 struct type *arg_type = check_typedef (value_type (arg));
732 struct type *class_type, *rtti_type;
733 struct value *result, *tem, *original_arg = arg;
734 CORE_ADDR addr;
735 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
736
737 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
738 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
739 error (_("Argument to dynamic_cast must be a pointer or reference type"));
740 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
741 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
742 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
743
744 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
745 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
746 {
747 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
748 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
749 && value_as_long (arg) == 0))
750 error (_("Argument to dynamic_cast does not have pointer type"));
751 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
752 {
753 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
754 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
755 error (_("Argument to dynamic_cast does "
756 "not have pointer to class type"));
757 }
758
759 /* Handle NULL pointers. */
760 if (value_as_long (arg) == 0)
761 return value_zero (type, not_lval);
762
763 arg = value_ind (arg);
764 }
765 else
766 {
767 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
768 error (_("Argument to dynamic_cast does not have class type"));
769 }
770
771 /* If the classes are the same, just return the argument. */
772 if (class_types_same_p (class_type, arg_type))
773 return value_cast (type, arg);
774
775 /* If the target type is a unique base class of the argument's
776 declared type, just cast it. */
777 if (is_ancestor (class_type, arg_type))
778 {
779 if (is_unique_ancestor (class_type, arg))
780 return value_cast (type, original_arg);
781 error (_("Ambiguous dynamic_cast"));
782 }
783
784 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
785 if (! rtti_type)
786 error (_("Couldn't determine value's most derived type for dynamic_cast"));
787
788 /* Compute the most derived object's address. */
789 addr = value_address (arg);
790 if (full)
791 {
792 /* Done. */
793 }
794 else if (using_enc)
795 addr += top;
796 else
797 addr += top + value_embedded_offset (arg);
798
799 /* dynamic_cast<void *> means to return a pointer to the
800 most-derived object. */
801 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
802 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
803 return value_at_lazy (type, addr);
804
805 tem = value_at (type, addr);
806 type = value_type (tem);
807
808 /* The first dynamic check specified in 5.2.7. */
809 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
810 {
811 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
812 return tem;
813 result = NULL;
814 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
815 value_contents_for_printing (tem),
816 value_embedded_offset (tem),
817 value_address (tem), tem,
818 rtti_type, addr,
819 arg_type,
820 &result) == 1)
821 return value_cast (type,
822 is_ref ? value_ref (result) : value_addr (result));
823 }
824
825 /* The second dynamic check specified in 5.2.7. */
826 result = NULL;
827 if (is_public_ancestor (arg_type, rtti_type)
828 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
829 value_contents_for_printing (tem),
830 value_embedded_offset (tem),
831 value_address (tem), tem,
832 rtti_type, &result) == 1)
833 return value_cast (type,
834 is_ref ? value_ref (result) : value_addr (result));
835
836 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
837 return value_zero (type, not_lval);
838
839 error (_("dynamic_cast failed"));
840 }
841
842 /* Create a value of type TYPE that is zero, and return it. */
843
844 struct value *
845 value_zero (struct type *type, enum lval_type lv)
846 {
847 struct value *val = allocate_value (type);
848
849 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
850 return val;
851 }
852
853 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
854
855 struct value *
856 value_one (struct type *type)
857 {
858 struct type *type1 = check_typedef (type);
859 struct value *val;
860
861 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
862 {
863 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
864 gdb_byte v[16];
865
866 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
867 val = value_from_decfloat (type, v);
868 }
869 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
870 {
871 val = value_from_double (type, (DOUBLEST) 1);
872 }
873 else if (is_integral_type (type1))
874 {
875 val = value_from_longest (type, (LONGEST) 1);
876 }
877 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
878 {
879 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
880 int i;
881 LONGEST low_bound, high_bound;
882 struct value *tmp;
883
884 if (!get_array_bounds (type1, &low_bound, &high_bound))
885 error (_("Could not determine the vector bounds"));
886
887 val = allocate_value (type);
888 for (i = 0; i < high_bound - low_bound + 1; i++)
889 {
890 tmp = value_one (eltype);
891 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
892 value_contents_all (tmp), TYPE_LENGTH (eltype));
893 }
894 }
895 else
896 {
897 error (_("Not a numeric type."));
898 }
899
900 /* value_one result is never used for assignments to. */
901 gdb_assert (VALUE_LVAL (val) == not_lval);
902
903 return val;
904 }
905
906 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.
907 The type of the created value may differ from the passed type TYPE.
908 Make sure to retrieve the returned values's new type after this call
909 e.g. in case the type is a variable length array. */
910
911 static struct value *
912 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
913 {
914 struct value *val;
915
916 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
917 error (_("Attempt to dereference a generic pointer."));
918
919 val = value_from_contents_and_address (type, NULL, addr);
920
921 if (!lazy)
922 value_fetch_lazy (val);
923
924 return val;
925 }
926
927 /* Return a value with type TYPE located at ADDR.
928
929 Call value_at only if the data needs to be fetched immediately;
930 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
931 value_at_lazy instead. value_at_lazy simply records the address of
932 the data and sets the lazy-evaluation-required flag. The lazy flag
933 is tested in the value_contents macro, which is used if and when
934 the contents are actually required. The type of the created value
935 may differ from the passed type TYPE. Make sure to retrieve the
936 returned values's new type after this call e.g. in case the type
937 is a variable length array.
938
939 Note: value_at does *NOT* handle embedded offsets; perform such
940 adjustments before or after calling it. */
941
942 struct value *
943 value_at (struct type *type, CORE_ADDR addr)
944 {
945 return get_value_at (type, addr, 0);
946 }
947
948 /* Return a lazy value with type TYPE located at ADDR (cf. value_at).
949 The type of the created value may differ from the passed type TYPE.
950 Make sure to retrieve the returned values's new type after this call
951 e.g. in case the type is a variable length array. */
952
953 struct value *
954 value_at_lazy (struct type *type, CORE_ADDR addr)
955 {
956 return get_value_at (type, addr, 1);
957 }
958
959 void
960 read_value_memory (struct value *val, int embedded_offset,
961 int stack, CORE_ADDR memaddr,
962 gdb_byte *buffer, size_t length)
963 {
964 ULONGEST xfered = 0;
965
966 while (xfered < length)
967 {
968 enum target_xfer_status status;
969 ULONGEST xfered_len;
970
971 status = target_xfer_partial (current_target.beneath,
972 TARGET_OBJECT_MEMORY, NULL,
973 buffer + xfered, NULL,
974 memaddr + xfered, length - xfered,
975 &xfered_len);
976
977 if (status == TARGET_XFER_OK)
978 /* nothing */;
979 else if (status == TARGET_XFER_UNAVAILABLE)
980 mark_value_bytes_unavailable (val, embedded_offset + xfered,
981 xfered_len);
982 else if (status == TARGET_XFER_EOF)
983 memory_error (TARGET_XFER_E_IO, memaddr + xfered);
984 else
985 memory_error (status, memaddr + xfered);
986
987 xfered += xfered_len;
988 QUIT;
989 }
990 }
991
992 /* Store the contents of FROMVAL into the location of TOVAL.
993 Return a new value with the location of TOVAL and contents of FROMVAL. */
994
995 struct value *
996 value_assign (struct value *toval, struct value *fromval)
997 {
998 struct type *type;
999 struct value *val;
1000 struct frame_id old_frame;
1001
1002 if (!deprecated_value_modifiable (toval))
1003 error (_("Left operand of assignment is not a modifiable lvalue."));
1004
1005 toval = coerce_ref (toval);
1006
1007 type = value_type (toval);
1008 if (VALUE_LVAL (toval) != lval_internalvar)
1009 fromval = value_cast (type, fromval);
1010 else
1011 {
1012 /* Coerce arrays and functions to pointers, except for arrays
1013 which only live in GDB's storage. */
1014 if (!value_must_coerce_to_target (fromval))
1015 fromval = coerce_array (fromval);
1016 }
1017
1018 CHECK_TYPEDEF (type);
1019
1020 /* Since modifying a register can trash the frame chain, and
1021 modifying memory can trash the frame cache, we save the old frame
1022 and then restore the new frame afterwards. */
1023 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1024
1025 switch (VALUE_LVAL (toval))
1026 {
1027 case lval_internalvar:
1028 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1029 return value_of_internalvar (get_type_arch (type),
1030 VALUE_INTERNALVAR (toval));
1031
1032 case lval_internalvar_component:
1033 {
1034 int offset = value_offset (toval);
1035
1036 /* Are we dealing with a bitfield?
1037
1038 It is important to mention that `value_parent (toval)' is
1039 non-NULL iff `value_bitsize (toval)' is non-zero. */
1040 if (value_bitsize (toval))
1041 {
1042 /* VALUE_INTERNALVAR below refers to the parent value, while
1043 the offset is relative to this parent value. */
1044 gdb_assert (value_parent (value_parent (toval)) == NULL);
1045 offset += value_offset (value_parent (toval));
1046 }
1047
1048 set_internalvar_component (VALUE_INTERNALVAR (toval),
1049 offset,
1050 value_bitpos (toval),
1051 value_bitsize (toval),
1052 fromval);
1053 }
1054 break;
1055
1056 case lval_memory:
1057 {
1058 const gdb_byte *dest_buffer;
1059 CORE_ADDR changed_addr;
1060 int changed_len;
1061 gdb_byte buffer[sizeof (LONGEST)];
1062
1063 if (value_bitsize (toval))
1064 {
1065 struct value *parent = value_parent (toval);
1066
1067 changed_addr = value_address (parent) + value_offset (toval);
1068 changed_len = (value_bitpos (toval)
1069 + value_bitsize (toval)
1070 + HOST_CHAR_BIT - 1)
1071 / HOST_CHAR_BIT;
1072
1073 /* If we can read-modify-write exactly the size of the
1074 containing type (e.g. short or int) then do so. This
1075 is safer for volatile bitfields mapped to hardware
1076 registers. */
1077 if (changed_len < TYPE_LENGTH (type)
1078 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1079 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1080 changed_len = TYPE_LENGTH (type);
1081
1082 if (changed_len > (int) sizeof (LONGEST))
1083 error (_("Can't handle bitfields which "
1084 "don't fit in a %d bit word."),
1085 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1086
1087 read_memory (changed_addr, buffer, changed_len);
1088 modify_field (type, buffer, value_as_long (fromval),
1089 value_bitpos (toval), value_bitsize (toval));
1090 dest_buffer = buffer;
1091 }
1092 else
1093 {
1094 changed_addr = value_address (toval);
1095 changed_len = TYPE_LENGTH (type);
1096 dest_buffer = value_contents (fromval);
1097 }
1098
1099 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1100 }
1101 break;
1102
1103 case lval_register:
1104 {
1105 struct frame_info *frame;
1106 struct gdbarch *gdbarch;
1107 int value_reg;
1108
1109 /* Figure out which frame this is in currently. */
1110 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1111 value_reg = VALUE_REGNUM (toval);
1112
1113 if (!frame)
1114 error (_("Value being assigned to is no longer active."));
1115
1116 gdbarch = get_frame_arch (frame);
1117 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1118 {
1119 /* If TOVAL is a special machine register requiring
1120 conversion of program values to a special raw
1121 format. */
1122 gdbarch_value_to_register (gdbarch, frame,
1123 VALUE_REGNUM (toval), type,
1124 value_contents (fromval));
1125 }
1126 else
1127 {
1128 if (value_bitsize (toval))
1129 {
1130 struct value *parent = value_parent (toval);
1131 int offset = value_offset (parent) + value_offset (toval);
1132 int changed_len;
1133 gdb_byte buffer[sizeof (LONGEST)];
1134 int optim, unavail;
1135
1136 changed_len = (value_bitpos (toval)
1137 + value_bitsize (toval)
1138 + HOST_CHAR_BIT - 1)
1139 / HOST_CHAR_BIT;
1140
1141 if (changed_len > (int) sizeof (LONGEST))
1142 error (_("Can't handle bitfields which "
1143 "don't fit in a %d bit word."),
1144 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1145
1146 if (!get_frame_register_bytes (frame, value_reg, offset,
1147 changed_len, buffer,
1148 &optim, &unavail))
1149 {
1150 if (optim)
1151 throw_error (OPTIMIZED_OUT_ERROR,
1152 _("value has been optimized out"));
1153 if (unavail)
1154 throw_error (NOT_AVAILABLE_ERROR,
1155 _("value is not available"));
1156 }
1157
1158 modify_field (type, buffer, value_as_long (fromval),
1159 value_bitpos (toval), value_bitsize (toval));
1160
1161 put_frame_register_bytes (frame, value_reg, offset,
1162 changed_len, buffer);
1163 }
1164 else
1165 {
1166 put_frame_register_bytes (frame, value_reg,
1167 value_offset (toval),
1168 TYPE_LENGTH (type),
1169 value_contents (fromval));
1170 }
1171 }
1172
1173 if (deprecated_register_changed_hook)
1174 deprecated_register_changed_hook (-1);
1175 break;
1176 }
1177
1178 case lval_computed:
1179 {
1180 const struct lval_funcs *funcs = value_computed_funcs (toval);
1181
1182 if (funcs->write != NULL)
1183 {
1184 funcs->write (toval, fromval);
1185 break;
1186 }
1187 }
1188 /* Fall through. */
1189
1190 default:
1191 error (_("Left operand of assignment is not an lvalue."));
1192 }
1193
1194 /* Assigning to the stack pointer, frame pointer, and other
1195 (architecture and calling convention specific) registers may
1196 cause the frame cache and regcache to be out of date. Assigning to memory
1197 also can. We just do this on all assignments to registers or
1198 memory, for simplicity's sake; I doubt the slowdown matters. */
1199 switch (VALUE_LVAL (toval))
1200 {
1201 case lval_memory:
1202 case lval_register:
1203 case lval_computed:
1204
1205 observer_notify_target_changed (&current_target);
1206
1207 /* Having destroyed the frame cache, restore the selected
1208 frame. */
1209
1210 /* FIXME: cagney/2002-11-02: There has to be a better way of
1211 doing this. Instead of constantly saving/restoring the
1212 frame. Why not create a get_selected_frame() function that,
1213 having saved the selected frame's ID can automatically
1214 re-find the previously selected frame automatically. */
1215
1216 {
1217 struct frame_info *fi = frame_find_by_id (old_frame);
1218
1219 if (fi != NULL)
1220 select_frame (fi);
1221 }
1222
1223 break;
1224 default:
1225 break;
1226 }
1227
1228 /* If the field does not entirely fill a LONGEST, then zero the sign
1229 bits. If the field is signed, and is negative, then sign
1230 extend. */
1231 if ((value_bitsize (toval) > 0)
1232 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1233 {
1234 LONGEST fieldval = value_as_long (fromval);
1235 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1236
1237 fieldval &= valmask;
1238 if (!TYPE_UNSIGNED (type)
1239 && (fieldval & (valmask ^ (valmask >> 1))))
1240 fieldval |= ~valmask;
1241
1242 fromval = value_from_longest (type, fieldval);
1243 }
1244
1245 /* The return value is a copy of TOVAL so it shares its location
1246 information, but its contents are updated from FROMVAL. This
1247 implies the returned value is not lazy, even if TOVAL was. */
1248 val = value_copy (toval);
1249 set_value_lazy (val, 0);
1250 memcpy (value_contents_raw (val), value_contents (fromval),
1251 TYPE_LENGTH (type));
1252
1253 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1254 in the case of pointer types. For object types, the enclosing type
1255 and embedded offset must *not* be copied: the target object refered
1256 to by TOVAL retains its original dynamic type after assignment. */
1257 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1258 {
1259 set_value_enclosing_type (val, value_enclosing_type (fromval));
1260 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1261 }
1262
1263 return val;
1264 }
1265
1266 /* Extend a value VAL to COUNT repetitions of its type. */
1267
1268 struct value *
1269 value_repeat (struct value *arg1, int count)
1270 {
1271 struct value *val;
1272
1273 if (VALUE_LVAL (arg1) != lval_memory)
1274 error (_("Only values in memory can be extended with '@'."));
1275 if (count < 1)
1276 error (_("Invalid number %d of repetitions."), count);
1277
1278 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1279
1280 VALUE_LVAL (val) = lval_memory;
1281 set_value_address (val, value_address (arg1));
1282
1283 read_value_memory (val, 0, value_stack (val), value_address (val),
1284 value_contents_all_raw (val),
1285 TYPE_LENGTH (value_enclosing_type (val)));
1286
1287 return val;
1288 }
1289
1290 struct value *
1291 value_of_variable (struct symbol *var, const struct block *b)
1292 {
1293 struct frame_info *frame;
1294
1295 if (!symbol_read_needs_frame (var))
1296 frame = NULL;
1297 else if (!b)
1298 frame = get_selected_frame (_("No frame selected."));
1299 else
1300 {
1301 frame = block_innermost_frame (b);
1302 if (!frame)
1303 {
1304 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1305 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1306 error (_("No frame is currently executing in block %s."),
1307 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1308 else
1309 error (_("No frame is currently executing in specified block"));
1310 }
1311 }
1312
1313 return read_var_value (var, frame);
1314 }
1315
1316 struct value *
1317 address_of_variable (struct symbol *var, const struct block *b)
1318 {
1319 struct type *type = SYMBOL_TYPE (var);
1320 struct value *val;
1321
1322 /* Evaluate it first; if the result is a memory address, we're fine.
1323 Lazy evaluation pays off here. */
1324
1325 val = value_of_variable (var, b);
1326 type = value_type (val);
1327
1328 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1329 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1330 {
1331 CORE_ADDR addr = value_address (val);
1332
1333 return value_from_pointer (lookup_pointer_type (type), addr);
1334 }
1335
1336 /* Not a memory address; check what the problem was. */
1337 switch (VALUE_LVAL (val))
1338 {
1339 case lval_register:
1340 {
1341 struct frame_info *frame;
1342 const char *regname;
1343
1344 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1345 gdb_assert (frame);
1346
1347 regname = gdbarch_register_name (get_frame_arch (frame),
1348 VALUE_REGNUM (val));
1349 gdb_assert (regname && *regname);
1350
1351 error (_("Address requested for identifier "
1352 "\"%s\" which is in register $%s"),
1353 SYMBOL_PRINT_NAME (var), regname);
1354 break;
1355 }
1356
1357 default:
1358 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1359 SYMBOL_PRINT_NAME (var));
1360 break;
1361 }
1362
1363 return val;
1364 }
1365
1366 /* Return one if VAL does not live in target memory, but should in order
1367 to operate on it. Otherwise return zero. */
1368
1369 int
1370 value_must_coerce_to_target (struct value *val)
1371 {
1372 struct type *valtype;
1373
1374 /* The only lval kinds which do not live in target memory. */
1375 if (VALUE_LVAL (val) != not_lval
1376 && VALUE_LVAL (val) != lval_internalvar
1377 && VALUE_LVAL (val) != lval_xcallable)
1378 return 0;
1379
1380 valtype = check_typedef (value_type (val));
1381
1382 switch (TYPE_CODE (valtype))
1383 {
1384 case TYPE_CODE_ARRAY:
1385 return TYPE_VECTOR (valtype) ? 0 : 1;
1386 case TYPE_CODE_STRING:
1387 return 1;
1388 default:
1389 return 0;
1390 }
1391 }
1392
1393 /* Make sure that VAL lives in target memory if it's supposed to. For
1394 instance, strings are constructed as character arrays in GDB's
1395 storage, and this function copies them to the target. */
1396
1397 struct value *
1398 value_coerce_to_target (struct value *val)
1399 {
1400 LONGEST length;
1401 CORE_ADDR addr;
1402
1403 if (!value_must_coerce_to_target (val))
1404 return val;
1405
1406 length = TYPE_LENGTH (check_typedef (value_type (val)));
1407 addr = allocate_space_in_inferior (length);
1408 write_memory (addr, value_contents (val), length);
1409 return value_at_lazy (value_type (val), addr);
1410 }
1411
1412 /* Given a value which is an array, return a value which is a pointer
1413 to its first element, regardless of whether or not the array has a
1414 nonzero lower bound.
1415
1416 FIXME: A previous comment here indicated that this routine should
1417 be substracting the array's lower bound. It's not clear to me that
1418 this is correct. Given an array subscripting operation, it would
1419 certainly work to do the adjustment here, essentially computing:
1420
1421 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1422
1423 However I believe a more appropriate and logical place to account
1424 for the lower bound is to do so in value_subscript, essentially
1425 computing:
1426
1427 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1428
1429 As further evidence consider what would happen with operations
1430 other than array subscripting, where the caller would get back a
1431 value that had an address somewhere before the actual first element
1432 of the array, and the information about the lower bound would be
1433 lost because of the coercion to pointer type. */
1434
1435 struct value *
1436 value_coerce_array (struct value *arg1)
1437 {
1438 struct type *type = check_typedef (value_type (arg1));
1439
1440 /* If the user tries to do something requiring a pointer with an
1441 array that has not yet been pushed to the target, then this would
1442 be a good time to do so. */
1443 arg1 = value_coerce_to_target (arg1);
1444
1445 if (VALUE_LVAL (arg1) != lval_memory)
1446 error (_("Attempt to take address of value not located in memory."));
1447
1448 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1449 value_address (arg1));
1450 }
1451
1452 /* Given a value which is a function, return a value which is a pointer
1453 to it. */
1454
1455 struct value *
1456 value_coerce_function (struct value *arg1)
1457 {
1458 struct value *retval;
1459
1460 if (VALUE_LVAL (arg1) != lval_memory)
1461 error (_("Attempt to take address of value not located in memory."));
1462
1463 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1464 value_address (arg1));
1465 return retval;
1466 }
1467
1468 /* Return a pointer value for the object for which ARG1 is the
1469 contents. */
1470
1471 struct value *
1472 value_addr (struct value *arg1)
1473 {
1474 struct value *arg2;
1475 struct type *type = check_typedef (value_type (arg1));
1476
1477 if (TYPE_CODE (type) == TYPE_CODE_REF)
1478 {
1479 /* Copy the value, but change the type from (T&) to (T*). We
1480 keep the same location information, which is efficient, and
1481 allows &(&X) to get the location containing the reference. */
1482 arg2 = value_copy (arg1);
1483 deprecated_set_value_type (arg2,
1484 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1485 return arg2;
1486 }
1487 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1488 return value_coerce_function (arg1);
1489
1490 /* If this is an array that has not yet been pushed to the target,
1491 then this would be a good time to force it to memory. */
1492 arg1 = value_coerce_to_target (arg1);
1493
1494 if (VALUE_LVAL (arg1) != lval_memory)
1495 error (_("Attempt to take address of value not located in memory."));
1496
1497 /* Get target memory address. */
1498 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1499 (value_address (arg1)
1500 + value_embedded_offset (arg1)));
1501
1502 /* This may be a pointer to a base subobject; so remember the
1503 full derived object's type ... */
1504 set_value_enclosing_type (arg2,
1505 lookup_pointer_type (value_enclosing_type (arg1)));
1506 /* ... and also the relative position of the subobject in the full
1507 object. */
1508 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1509 return arg2;
1510 }
1511
1512 /* Return a reference value for the object for which ARG1 is the
1513 contents. */
1514
1515 struct value *
1516 value_ref (struct value *arg1)
1517 {
1518 struct value *arg2;
1519 struct type *type = check_typedef (value_type (arg1));
1520
1521 if (TYPE_CODE (type) == TYPE_CODE_REF)
1522 return arg1;
1523
1524 arg2 = value_addr (arg1);
1525 deprecated_set_value_type (arg2, lookup_reference_type (type));
1526 return arg2;
1527 }
1528
1529 /* Given a value of a pointer type, apply the C unary * operator to
1530 it. */
1531
1532 struct value *
1533 value_ind (struct value *arg1)
1534 {
1535 struct type *base_type;
1536 struct value *arg2;
1537
1538 arg1 = coerce_array (arg1);
1539
1540 base_type = check_typedef (value_type (arg1));
1541
1542 if (VALUE_LVAL (arg1) == lval_computed)
1543 {
1544 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1545
1546 if (funcs->indirect)
1547 {
1548 struct value *result = funcs->indirect (arg1);
1549
1550 if (result)
1551 return result;
1552 }
1553 }
1554
1555 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1556 {
1557 struct type *enc_type;
1558
1559 /* We may be pointing to something embedded in a larger object.
1560 Get the real type of the enclosing object. */
1561 enc_type = check_typedef (value_enclosing_type (arg1));
1562 enc_type = TYPE_TARGET_TYPE (enc_type);
1563
1564 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1565 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1566 /* For functions, go through find_function_addr, which knows
1567 how to handle function descriptors. */
1568 arg2 = value_at_lazy (enc_type,
1569 find_function_addr (arg1, NULL));
1570 else
1571 /* Retrieve the enclosing object pointed to. */
1572 arg2 = value_at_lazy (enc_type,
1573 (value_as_address (arg1)
1574 - value_pointed_to_offset (arg1)));
1575
1576 enc_type = value_type (arg2);
1577 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1578 }
1579
1580 error (_("Attempt to take contents of a non-pointer value."));
1581 return 0; /* For lint -- never reached. */
1582 }
1583 \f
1584 /* Create a value for an array by allocating space in GDB, copying the
1585 data into that space, and then setting up an array value.
1586
1587 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1588 is populated from the values passed in ELEMVEC.
1589
1590 The element type of the array is inherited from the type of the
1591 first element, and all elements must have the same size (though we
1592 don't currently enforce any restriction on their types). */
1593
1594 struct value *
1595 value_array (int lowbound, int highbound, struct value **elemvec)
1596 {
1597 int nelem;
1598 int idx;
1599 unsigned int typelength;
1600 struct value *val;
1601 struct type *arraytype;
1602
1603 /* Validate that the bounds are reasonable and that each of the
1604 elements have the same size. */
1605
1606 nelem = highbound - lowbound + 1;
1607 if (nelem <= 0)
1608 {
1609 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1610 }
1611 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1612 for (idx = 1; idx < nelem; idx++)
1613 {
1614 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1615 {
1616 error (_("array elements must all be the same size"));
1617 }
1618 }
1619
1620 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1621 lowbound, highbound);
1622
1623 if (!current_language->c_style_arrays)
1624 {
1625 val = allocate_value (arraytype);
1626 for (idx = 0; idx < nelem; idx++)
1627 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1628 typelength);
1629 return val;
1630 }
1631
1632 /* Allocate space to store the array, and then initialize it by
1633 copying in each element. */
1634
1635 val = allocate_value (arraytype);
1636 for (idx = 0; idx < nelem; idx++)
1637 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1638 return val;
1639 }
1640
1641 struct value *
1642 value_cstring (char *ptr, ssize_t len, struct type *char_type)
1643 {
1644 struct value *val;
1645 int lowbound = current_language->string_lower_bound;
1646 ssize_t highbound = len / TYPE_LENGTH (char_type);
1647 struct type *stringtype
1648 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1649
1650 val = allocate_value (stringtype);
1651 memcpy (value_contents_raw (val), ptr, len);
1652 return val;
1653 }
1654
1655 /* Create a value for a string constant by allocating space in the
1656 inferior, copying the data into that space, and returning the
1657 address with type TYPE_CODE_STRING. PTR points to the string
1658 constant data; LEN is number of characters.
1659
1660 Note that string types are like array of char types with a lower
1661 bound of zero and an upper bound of LEN - 1. Also note that the
1662 string may contain embedded null bytes. */
1663
1664 struct value *
1665 value_string (char *ptr, ssize_t len, struct type *char_type)
1666 {
1667 struct value *val;
1668 int lowbound = current_language->string_lower_bound;
1669 ssize_t highbound = len / TYPE_LENGTH (char_type);
1670 struct type *stringtype
1671 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1672
1673 val = allocate_value (stringtype);
1674 memcpy (value_contents_raw (val), ptr, len);
1675 return val;
1676 }
1677
1678 \f
1679 /* See if we can pass arguments in T2 to a function which takes
1680 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1681 a NULL-terminated vector. If some arguments need coercion of some
1682 sort, then the coerced values are written into T2. Return value is
1683 0 if the arguments could be matched, or the position at which they
1684 differ if not.
1685
1686 STATICP is nonzero if the T1 argument list came from a static
1687 member function. T2 will still include the ``this'' pointer, but
1688 it will be skipped.
1689
1690 For non-static member functions, we ignore the first argument,
1691 which is the type of the instance variable. This is because we
1692 want to handle calls with objects from derived classes. This is
1693 not entirely correct: we should actually check to make sure that a
1694 requested operation is type secure, shouldn't we? FIXME. */
1695
1696 static int
1697 typecmp (int staticp, int varargs, int nargs,
1698 struct field t1[], struct value *t2[])
1699 {
1700 int i;
1701
1702 if (t2 == 0)
1703 internal_error (__FILE__, __LINE__,
1704 _("typecmp: no argument list"));
1705
1706 /* Skip ``this'' argument if applicable. T2 will always include
1707 THIS. */
1708 if (staticp)
1709 t2 ++;
1710
1711 for (i = 0;
1712 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1713 i++)
1714 {
1715 struct type *tt1, *tt2;
1716
1717 if (!t2[i])
1718 return i + 1;
1719
1720 tt1 = check_typedef (t1[i].type);
1721 tt2 = check_typedef (value_type (t2[i]));
1722
1723 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1724 /* We should be doing hairy argument matching, as below. */
1725 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1726 == TYPE_CODE (tt2)))
1727 {
1728 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1729 t2[i] = value_coerce_array (t2[i]);
1730 else
1731 t2[i] = value_ref (t2[i]);
1732 continue;
1733 }
1734
1735 /* djb - 20000715 - Until the new type structure is in the
1736 place, and we can attempt things like implicit conversions,
1737 we need to do this so you can take something like a map<const
1738 char *>, and properly access map["hello"], because the
1739 argument to [] will be a reference to a pointer to a char,
1740 and the argument will be a pointer to a char. */
1741 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1742 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1743 {
1744 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1745 }
1746 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1747 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1748 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1749 {
1750 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1751 }
1752 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1753 continue;
1754 /* Array to pointer is a `trivial conversion' according to the
1755 ARM. */
1756
1757 /* We should be doing much hairier argument matching (see
1758 section 13.2 of the ARM), but as a quick kludge, just check
1759 for the same type code. */
1760 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1761 return i + 1;
1762 }
1763 if (varargs || t2[i] == NULL)
1764 return 0;
1765 return i + 1;
1766 }
1767
1768 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1769 and *LAST_BOFFSET, and possibly throws an exception if the field
1770 search has yielded ambiguous results. */
1771
1772 static void
1773 update_search_result (struct value **result_ptr, struct value *v,
1774 int *last_boffset, int boffset,
1775 const char *name, struct type *type)
1776 {
1777 if (v != NULL)
1778 {
1779 if (*result_ptr != NULL
1780 /* The result is not ambiguous if all the classes that are
1781 found occupy the same space. */
1782 && *last_boffset != boffset)
1783 error (_("base class '%s' is ambiguous in type '%s'"),
1784 name, TYPE_SAFE_NAME (type));
1785 *result_ptr = v;
1786 *last_boffset = boffset;
1787 }
1788 }
1789
1790 /* A helper for search_struct_field. This does all the work; most
1791 arguments are as passed to search_struct_field. The result is
1792 stored in *RESULT_PTR, which must be initialized to NULL.
1793 OUTERMOST_TYPE is the type of the initial type passed to
1794 search_struct_field; this is used for error reporting when the
1795 lookup is ambiguous. */
1796
1797 static void
1798 do_search_struct_field (const char *name, struct value *arg1, int offset,
1799 struct type *type, int looking_for_baseclass,
1800 struct value **result_ptr,
1801 int *last_boffset,
1802 struct type *outermost_type)
1803 {
1804 int i;
1805 int nbases;
1806
1807 CHECK_TYPEDEF (type);
1808 nbases = TYPE_N_BASECLASSES (type);
1809
1810 if (!looking_for_baseclass)
1811 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1812 {
1813 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1814
1815 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1816 {
1817 struct value *v;
1818
1819 if (field_is_static (&TYPE_FIELD (type, i)))
1820 v = value_static_field (type, i);
1821 else
1822 v = value_primitive_field (arg1, offset, i, type);
1823 *result_ptr = v;
1824 return;
1825 }
1826
1827 if (t_field_name
1828 && (t_field_name[0] == '\0'
1829 || (TYPE_CODE (type) == TYPE_CODE_UNION
1830 && (strcmp_iw (t_field_name, "else") == 0))))
1831 {
1832 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1833
1834 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1835 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1836 {
1837 /* Look for a match through the fields of an anonymous
1838 union, or anonymous struct. C++ provides anonymous
1839 unions.
1840
1841 In the GNU Chill (now deleted from GDB)
1842 implementation of variant record types, each
1843 <alternative field> has an (anonymous) union type,
1844 each member of the union represents a <variant
1845 alternative>. Each <variant alternative> is
1846 represented as a struct, with a member for each
1847 <variant field>. */
1848
1849 struct value *v = NULL;
1850 int new_offset = offset;
1851
1852 /* This is pretty gross. In G++, the offset in an
1853 anonymous union is relative to the beginning of the
1854 enclosing struct. In the GNU Chill (now deleted
1855 from GDB) implementation of variant records, the
1856 bitpos is zero in an anonymous union field, so we
1857 have to add the offset of the union here. */
1858 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1859 || (TYPE_NFIELDS (field_type) > 0
1860 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1861 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1862
1863 do_search_struct_field (name, arg1, new_offset,
1864 field_type,
1865 looking_for_baseclass, &v,
1866 last_boffset,
1867 outermost_type);
1868 if (v)
1869 {
1870 *result_ptr = v;
1871 return;
1872 }
1873 }
1874 }
1875 }
1876
1877 for (i = 0; i < nbases; i++)
1878 {
1879 struct value *v = NULL;
1880 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1881 /* If we are looking for baseclasses, this is what we get when
1882 we hit them. But it could happen that the base part's member
1883 name is not yet filled in. */
1884 int found_baseclass = (looking_for_baseclass
1885 && TYPE_BASECLASS_NAME (type, i) != NULL
1886 && (strcmp_iw (name,
1887 TYPE_BASECLASS_NAME (type,
1888 i)) == 0));
1889 int boffset = value_embedded_offset (arg1) + offset;
1890
1891 if (BASETYPE_VIA_VIRTUAL (type, i))
1892 {
1893 struct value *v2;
1894
1895 boffset = baseclass_offset (type, i,
1896 value_contents_for_printing (arg1),
1897 value_embedded_offset (arg1) + offset,
1898 value_address (arg1),
1899 arg1);
1900
1901 /* The virtual base class pointer might have been clobbered
1902 by the user program. Make sure that it still points to a
1903 valid memory location. */
1904
1905 boffset += value_embedded_offset (arg1) + offset;
1906 if (boffset < 0
1907 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1908 {
1909 CORE_ADDR base_addr;
1910
1911 base_addr = value_address (arg1) + boffset;
1912 v2 = value_at_lazy (basetype, base_addr);
1913 if (target_read_memory (base_addr,
1914 value_contents_raw (v2),
1915 TYPE_LENGTH (value_type (v2))) != 0)
1916 error (_("virtual baseclass botch"));
1917 }
1918 else
1919 {
1920 v2 = value_copy (arg1);
1921 deprecated_set_value_type (v2, basetype);
1922 set_value_embedded_offset (v2, boffset);
1923 }
1924
1925 if (found_baseclass)
1926 v = v2;
1927 else
1928 {
1929 do_search_struct_field (name, v2, 0,
1930 TYPE_BASECLASS (type, i),
1931 looking_for_baseclass,
1932 result_ptr, last_boffset,
1933 outermost_type);
1934 }
1935 }
1936 else if (found_baseclass)
1937 v = value_primitive_field (arg1, offset, i, type);
1938 else
1939 {
1940 do_search_struct_field (name, arg1,
1941 offset + TYPE_BASECLASS_BITPOS (type,
1942 i) / 8,
1943 basetype, looking_for_baseclass,
1944 result_ptr, last_boffset,
1945 outermost_type);
1946 }
1947
1948 update_search_result (result_ptr, v, last_boffset,
1949 boffset, name, outermost_type);
1950 }
1951 }
1952
1953 /* Helper function used by value_struct_elt to recurse through
1954 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1955 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1956 TYPE. If found, return value, else return NULL.
1957
1958 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1959 fields, look for a baseclass named NAME. */
1960
1961 static struct value *
1962 search_struct_field (const char *name, struct value *arg1, int offset,
1963 struct type *type, int looking_for_baseclass)
1964 {
1965 struct value *result = NULL;
1966 int boffset = 0;
1967
1968 do_search_struct_field (name, arg1, offset, type, looking_for_baseclass,
1969 &result, &boffset, type);
1970 return result;
1971 }
1972
1973 /* Helper function used by value_struct_elt to recurse through
1974 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1975 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1976 TYPE.
1977
1978 If found, return value, else if name matched and args not return
1979 (value) -1, else return NULL. */
1980
1981 static struct value *
1982 search_struct_method (const char *name, struct value **arg1p,
1983 struct value **args, int offset,
1984 int *static_memfuncp, struct type *type)
1985 {
1986 int i;
1987 struct value *v;
1988 int name_matched = 0;
1989 char dem_opname[64];
1990
1991 CHECK_TYPEDEF (type);
1992 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1993 {
1994 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1995
1996 /* FIXME! May need to check for ARM demangling here. */
1997 if (strncmp (t_field_name, "__", 2) == 0 ||
1998 strncmp (t_field_name, "op", 2) == 0 ||
1999 strncmp (t_field_name, "type", 4) == 0)
2000 {
2001 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2002 t_field_name = dem_opname;
2003 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2004 t_field_name = dem_opname;
2005 }
2006 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2007 {
2008 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2009 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2010
2011 name_matched = 1;
2012 check_stub_method_group (type, i);
2013 if (j > 0 && args == 0)
2014 error (_("cannot resolve overloaded method "
2015 "`%s': no arguments supplied"), name);
2016 else if (j == 0 && args == 0)
2017 {
2018 v = value_fn_field (arg1p, f, j, type, offset);
2019 if (v != NULL)
2020 return v;
2021 }
2022 else
2023 while (j >= 0)
2024 {
2025 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2026 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2027 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2028 TYPE_FN_FIELD_ARGS (f, j), args))
2029 {
2030 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2031 return value_virtual_fn_field (arg1p, f, j,
2032 type, offset);
2033 if (TYPE_FN_FIELD_STATIC_P (f, j)
2034 && static_memfuncp)
2035 *static_memfuncp = 1;
2036 v = value_fn_field (arg1p, f, j, type, offset);
2037 if (v != NULL)
2038 return v;
2039 }
2040 j--;
2041 }
2042 }
2043 }
2044
2045 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2046 {
2047 int base_offset;
2048 int this_offset;
2049
2050 if (BASETYPE_VIA_VIRTUAL (type, i))
2051 {
2052 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2053 struct value *base_val;
2054 const gdb_byte *base_valaddr;
2055
2056 /* The virtual base class pointer might have been
2057 clobbered by the user program. Make sure that it
2058 still points to a valid memory location. */
2059
2060 if (offset < 0 || offset >= TYPE_LENGTH (type))
2061 {
2062 gdb_byte *tmp;
2063 struct cleanup *back_to;
2064 CORE_ADDR address;
2065
2066 tmp = xmalloc (TYPE_LENGTH (baseclass));
2067 back_to = make_cleanup (xfree, tmp);
2068 address = value_address (*arg1p);
2069
2070 if (target_read_memory (address + offset,
2071 tmp, TYPE_LENGTH (baseclass)) != 0)
2072 error (_("virtual baseclass botch"));
2073
2074 base_val = value_from_contents_and_address (baseclass,
2075 tmp,
2076 address + offset);
2077 base_valaddr = value_contents_for_printing (base_val);
2078 this_offset = 0;
2079 do_cleanups (back_to);
2080 }
2081 else
2082 {
2083 base_val = *arg1p;
2084 base_valaddr = value_contents_for_printing (*arg1p);
2085 this_offset = offset;
2086 }
2087
2088 base_offset = baseclass_offset (type, i, base_valaddr,
2089 this_offset, value_address (base_val),
2090 base_val);
2091 }
2092 else
2093 {
2094 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2095 }
2096 v = search_struct_method (name, arg1p, args, base_offset + offset,
2097 static_memfuncp, TYPE_BASECLASS (type, i));
2098 if (v == (struct value *) - 1)
2099 {
2100 name_matched = 1;
2101 }
2102 else if (v)
2103 {
2104 /* FIXME-bothner: Why is this commented out? Why is it here? */
2105 /* *arg1p = arg1_tmp; */
2106 return v;
2107 }
2108 }
2109 if (name_matched)
2110 return (struct value *) - 1;
2111 else
2112 return NULL;
2113 }
2114
2115 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2116 extract the component named NAME from the ultimate target
2117 structure/union and return it as a value with its appropriate type.
2118 ERR is used in the error message if *ARGP's type is wrong.
2119
2120 C++: ARGS is a list of argument types to aid in the selection of
2121 an appropriate method. Also, handle derived types.
2122
2123 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2124 where the truthvalue of whether the function that was resolved was
2125 a static member function or not is stored.
2126
2127 ERR is an error message to be printed in case the field is not
2128 found. */
2129
2130 struct value *
2131 value_struct_elt (struct value **argp, struct value **args,
2132 const char *name, int *static_memfuncp, const char *err)
2133 {
2134 struct type *t;
2135 struct value *v;
2136
2137 *argp = coerce_array (*argp);
2138
2139 t = check_typedef (value_type (*argp));
2140
2141 /* Follow pointers until we get to a non-pointer. */
2142
2143 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2144 {
2145 *argp = value_ind (*argp);
2146 /* Don't coerce fn pointer to fn and then back again! */
2147 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2148 *argp = coerce_array (*argp);
2149 t = check_typedef (value_type (*argp));
2150 }
2151
2152 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2153 && TYPE_CODE (t) != TYPE_CODE_UNION)
2154 error (_("Attempt to extract a component of a value that is not a %s."),
2155 err);
2156
2157 /* Assume it's not, unless we see that it is. */
2158 if (static_memfuncp)
2159 *static_memfuncp = 0;
2160
2161 if (!args)
2162 {
2163 /* if there are no arguments ...do this... */
2164
2165 /* Try as a field first, because if we succeed, there is less
2166 work to be done. */
2167 v = search_struct_field (name, *argp, 0, t, 0);
2168 if (v)
2169 return v;
2170
2171 /* C++: If it was not found as a data field, then try to
2172 return it as a pointer to a method. */
2173 v = search_struct_method (name, argp, args, 0,
2174 static_memfuncp, t);
2175
2176 if (v == (struct value *) - 1)
2177 error (_("Cannot take address of method %s."), name);
2178 else if (v == 0)
2179 {
2180 if (TYPE_NFN_FIELDS (t))
2181 error (_("There is no member or method named %s."), name);
2182 else
2183 error (_("There is no member named %s."), name);
2184 }
2185 return v;
2186 }
2187
2188 v = search_struct_method (name, argp, args, 0,
2189 static_memfuncp, t);
2190
2191 if (v == (struct value *) - 1)
2192 {
2193 error (_("One of the arguments you tried to pass to %s could not "
2194 "be converted to what the function wants."), name);
2195 }
2196 else if (v == 0)
2197 {
2198 /* See if user tried to invoke data as function. If so, hand it
2199 back. If it's not callable (i.e., a pointer to function),
2200 gdb should give an error. */
2201 v = search_struct_field (name, *argp, 0, t, 0);
2202 /* If we found an ordinary field, then it is not a method call.
2203 So, treat it as if it were a static member function. */
2204 if (v && static_memfuncp)
2205 *static_memfuncp = 1;
2206 }
2207
2208 if (!v)
2209 throw_error (NOT_FOUND_ERROR,
2210 _("Structure has no component named %s."), name);
2211 return v;
2212 }
2213
2214 /* Given *ARGP, a value of type structure or union, or a pointer/reference
2215 to a structure or union, extract and return its component (field) of
2216 type FTYPE at the specified BITPOS.
2217 Throw an exception on error. */
2218
2219 struct value *
2220 value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
2221 const char *err)
2222 {
2223 struct type *t;
2224 struct value *v;
2225 int i;
2226 int nbases;
2227
2228 *argp = coerce_array (*argp);
2229
2230 t = check_typedef (value_type (*argp));
2231
2232 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2233 {
2234 *argp = value_ind (*argp);
2235 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2236 *argp = coerce_array (*argp);
2237 t = check_typedef (value_type (*argp));
2238 }
2239
2240 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2241 && TYPE_CODE (t) != TYPE_CODE_UNION)
2242 error (_("Attempt to extract a component of a value that is not a %s."),
2243 err);
2244
2245 for (i = TYPE_N_BASECLASSES (t); i < TYPE_NFIELDS (t); i++)
2246 {
2247 if (!field_is_static (&TYPE_FIELD (t, i))
2248 && bitpos == TYPE_FIELD_BITPOS (t, i)
2249 && types_equal (ftype, TYPE_FIELD_TYPE (t, i)))
2250 return value_primitive_field (*argp, 0, i, t);
2251 }
2252
2253 error (_("No field with matching bitpos and type."));
2254
2255 /* Never hit. */
2256 return NULL;
2257 }
2258
2259 /* Search through the methods of an object (and its bases) to find a
2260 specified method. Return the pointer to the fn_field list FN_LIST of
2261 overloaded instances defined in the source language. If available
2262 and matching, a vector of matching xmethods defined in extension
2263 languages are also returned in XM_WORKER_VEC
2264
2265 Helper function for value_find_oload_list.
2266 ARGP is a pointer to a pointer to a value (the object).
2267 METHOD is a string containing the method name.
2268 OFFSET is the offset within the value.
2269 TYPE is the assumed type of the object.
2270 FN_LIST is the pointer to matching overloaded instances defined in
2271 source language. Since this is a recursive function, *FN_LIST
2272 should be set to NULL when calling this function.
2273 NUM_FNS is the number of overloaded instances. *NUM_FNS should be set to
2274 0 when calling this function.
2275 XM_WORKER_VEC is the vector of matching xmethod workers. *XM_WORKER_VEC
2276 should also be set to NULL when calling this function.
2277 BASETYPE is set to the actual type of the subobject where the
2278 method is found.
2279 BOFFSET is the offset of the base subobject where the method is found. */
2280
2281 static void
2282 find_method_list (struct value **argp, const char *method,
2283 int offset, struct type *type,
2284 struct fn_field **fn_list, int *num_fns,
2285 VEC (xmethod_worker_ptr) **xm_worker_vec,
2286 struct type **basetype, int *boffset)
2287 {
2288 int i;
2289 struct fn_field *f = NULL;
2290 VEC (xmethod_worker_ptr) *worker_vec = NULL, *new_vec = NULL;
2291
2292 gdb_assert (fn_list != NULL && xm_worker_vec != NULL);
2293 CHECK_TYPEDEF (type);
2294
2295 /* First check in object itself.
2296 This function is called recursively to search through base classes.
2297 If there is a source method match found at some stage, then we need not
2298 look for source methods in consequent recursive calls. */
2299 if ((*fn_list) == NULL)
2300 {
2301 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2302 {
2303 /* pai: FIXME What about operators and type conversions? */
2304 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2305
2306 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2307 {
2308 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2309 f = TYPE_FN_FIELDLIST1 (type, i);
2310 *fn_list = f;
2311
2312 *num_fns = len;
2313 *basetype = type;
2314 *boffset = offset;
2315
2316 /* Resolve any stub methods. */
2317 check_stub_method_group (type, i);
2318
2319 break;
2320 }
2321 }
2322 }
2323
2324 /* Unlike source methods, xmethods can be accumulated over successive
2325 recursive calls. In other words, an xmethod named 'm' in a class
2326 will not hide an xmethod named 'm' in its base class(es). We want
2327 it to be this way because xmethods are after all convenience functions
2328 and hence there is no point restricting them with something like method
2329 hiding. Moreover, if hiding is done for xmethods as well, then we will
2330 have to provide a mechanism to un-hide (like the 'using' construct). */
2331 worker_vec = get_matching_xmethod_workers (type, method);
2332 new_vec = VEC_merge (xmethod_worker_ptr, *xm_worker_vec, worker_vec);
2333
2334 VEC_free (xmethod_worker_ptr, *xm_worker_vec);
2335 VEC_free (xmethod_worker_ptr, worker_vec);
2336 *xm_worker_vec = new_vec;
2337
2338 /* If source methods are not found in current class, look for them in the
2339 base classes. We also have to go through the base classes to gather
2340 extension methods. */
2341 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2342 {
2343 int base_offset;
2344
2345 if (BASETYPE_VIA_VIRTUAL (type, i))
2346 {
2347 base_offset = baseclass_offset (type, i,
2348 value_contents_for_printing (*argp),
2349 value_offset (*argp) + offset,
2350 value_address (*argp), *argp);
2351 }
2352 else /* Non-virtual base, simply use bit position from debug
2353 info. */
2354 {
2355 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2356 }
2357
2358 find_method_list (argp, method, base_offset + offset,
2359 TYPE_BASECLASS (type, i), fn_list, num_fns,
2360 xm_worker_vec, basetype, boffset);
2361 }
2362 }
2363
2364 /* Return the list of overloaded methods of a specified name. The methods
2365 could be those GDB finds in the binary, or xmethod. Methods found in
2366 the binary are returned in FN_LIST, and xmethods are returned in
2367 XM_WORKER_VEC.
2368
2369 ARGP is a pointer to a pointer to a value (the object).
2370 METHOD is the method name.
2371 OFFSET is the offset within the value contents.
2372 FN_LIST is the pointer to matching overloaded instances defined in
2373 source language.
2374 NUM_FNS is the number of overloaded instances.
2375 XM_WORKER_VEC is the vector of matching xmethod workers defined in
2376 extension languages.
2377 BASETYPE is set to the type of the base subobject that defines the
2378 method.
2379 BOFFSET is the offset of the base subobject which defines the method. */
2380
2381 static void
2382 value_find_oload_method_list (struct value **argp, const char *method,
2383 int offset, struct fn_field **fn_list,
2384 int *num_fns,
2385 VEC (xmethod_worker_ptr) **xm_worker_vec,
2386 struct type **basetype, int *boffset)
2387 {
2388 struct type *t;
2389
2390 t = check_typedef (value_type (*argp));
2391
2392 /* Code snarfed from value_struct_elt. */
2393 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2394 {
2395 *argp = value_ind (*argp);
2396 /* Don't coerce fn pointer to fn and then back again! */
2397 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2398 *argp = coerce_array (*argp);
2399 t = check_typedef (value_type (*argp));
2400 }
2401
2402 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2403 && TYPE_CODE (t) != TYPE_CODE_UNION)
2404 error (_("Attempt to extract a component of a "
2405 "value that is not a struct or union"));
2406
2407 gdb_assert (fn_list != NULL && xm_worker_vec != NULL);
2408
2409 /* Clear the lists. */
2410 *fn_list = NULL;
2411 *num_fns = 0;
2412 *xm_worker_vec = NULL;
2413
2414 find_method_list (argp, method, 0, t, fn_list, num_fns, xm_worker_vec,
2415 basetype, boffset);
2416 }
2417
2418 /* Given an array of arguments (ARGS) (which includes an
2419 entry for "this" in the case of C++ methods), the number of
2420 arguments NARGS, the NAME of a function, and whether it's a method or
2421 not (METHOD), find the best function that matches on the argument types
2422 according to the overload resolution rules.
2423
2424 METHOD can be one of three values:
2425 NON_METHOD for non-member functions.
2426 METHOD: for member functions.
2427 BOTH: used for overload resolution of operators where the
2428 candidates are expected to be either member or non member
2429 functions. In this case the first argument ARGTYPES
2430 (representing 'this') is expected to be a reference to the
2431 target object, and will be dereferenced when attempting the
2432 non-member search.
2433
2434 In the case of class methods, the parameter OBJ is an object value
2435 in which to search for overloaded methods.
2436
2437 In the case of non-method functions, the parameter FSYM is a symbol
2438 corresponding to one of the overloaded functions.
2439
2440 Return value is an integer: 0 -> good match, 10 -> debugger applied
2441 non-standard coercions, 100 -> incompatible.
2442
2443 If a method is being searched for, VALP will hold the value.
2444 If a non-method is being searched for, SYMP will hold the symbol
2445 for it.
2446
2447 If a method is being searched for, and it is a static method,
2448 then STATICP will point to a non-zero value.
2449
2450 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2451 ADL overload candidates when performing overload resolution for a fully
2452 qualified name.
2453
2454 Note: This function does *not* check the value of
2455 overload_resolution. Caller must check it to see whether overload
2456 resolution is permitted. */
2457
2458 int
2459 find_overload_match (struct value **args, int nargs,
2460 const char *name, enum oload_search_type method,
2461 struct value **objp, struct symbol *fsym,
2462 struct value **valp, struct symbol **symp,
2463 int *staticp, const int no_adl)
2464 {
2465 struct value *obj = (objp ? *objp : NULL);
2466 struct type *obj_type = obj ? value_type (obj) : NULL;
2467 /* Index of best overloaded function. */
2468 int func_oload_champ = -1;
2469 int method_oload_champ = -1;
2470 int src_method_oload_champ = -1;
2471 int ext_method_oload_champ = -1;
2472 int src_and_ext_equal = 0;
2473
2474 /* The measure for the current best match. */
2475 struct badness_vector *method_badness = NULL;
2476 struct badness_vector *func_badness = NULL;
2477 struct badness_vector *ext_method_badness = NULL;
2478 struct badness_vector *src_method_badness = NULL;
2479
2480 struct value *temp = obj;
2481 /* For methods, the list of overloaded methods. */
2482 struct fn_field *fns_ptr = NULL;
2483 /* For non-methods, the list of overloaded function symbols. */
2484 struct symbol **oload_syms = NULL;
2485 /* For xmethods, the VEC of xmethod workers. */
2486 VEC (xmethod_worker_ptr) *xm_worker_vec = NULL;
2487 /* Number of overloaded instances being considered. */
2488 int num_fns = 0;
2489 struct type *basetype = NULL;
2490 int boffset;
2491
2492 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2493
2494 const char *obj_type_name = NULL;
2495 const char *func_name = NULL;
2496 enum oload_classification match_quality;
2497 enum oload_classification method_match_quality = INCOMPATIBLE;
2498 enum oload_classification src_method_match_quality = INCOMPATIBLE;
2499 enum oload_classification ext_method_match_quality = INCOMPATIBLE;
2500 enum oload_classification func_match_quality = INCOMPATIBLE;
2501
2502 /* Get the list of overloaded methods or functions. */
2503 if (method == METHOD || method == BOTH)
2504 {
2505 gdb_assert (obj);
2506
2507 /* OBJ may be a pointer value rather than the object itself. */
2508 obj = coerce_ref (obj);
2509 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2510 obj = coerce_ref (value_ind (obj));
2511 obj_type_name = TYPE_NAME (value_type (obj));
2512
2513 /* First check whether this is a data member, e.g. a pointer to
2514 a function. */
2515 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2516 {
2517 *valp = search_struct_field (name, obj, 0,
2518 check_typedef (value_type (obj)), 0);
2519 if (*valp)
2520 {
2521 *staticp = 1;
2522 do_cleanups (all_cleanups);
2523 return 0;
2524 }
2525 }
2526
2527 /* Retrieve the list of methods with the name NAME. */
2528 value_find_oload_method_list (&temp, name, 0, &fns_ptr, &num_fns,
2529 &xm_worker_vec, &basetype, &boffset);
2530 /* If this is a method only search, and no methods were found
2531 the search has faild. */
2532 if (method == METHOD && (!fns_ptr || !num_fns) && !xm_worker_vec)
2533 error (_("Couldn't find method %s%s%s"),
2534 obj_type_name,
2535 (obj_type_name && *obj_type_name) ? "::" : "",
2536 name);
2537 /* If we are dealing with stub method types, they should have
2538 been resolved by find_method_list via
2539 value_find_oload_method_list above. */
2540 if (fns_ptr)
2541 {
2542 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2543
2544 src_method_oload_champ = find_oload_champ (args, nargs,
2545 num_fns, fns_ptr, NULL,
2546 NULL, &src_method_badness);
2547
2548 src_method_match_quality = classify_oload_match
2549 (src_method_badness, nargs,
2550 oload_method_static_p (fns_ptr, src_method_oload_champ));
2551
2552 make_cleanup (xfree, src_method_badness);
2553 }
2554
2555 if (VEC_length (xmethod_worker_ptr, xm_worker_vec) > 0)
2556 {
2557 ext_method_oload_champ = find_oload_champ (args, nargs,
2558 0, NULL, xm_worker_vec,
2559 NULL, &ext_method_badness);
2560 ext_method_match_quality = classify_oload_match (ext_method_badness,
2561 nargs, 0);
2562 make_cleanup (xfree, ext_method_badness);
2563 make_cleanup (free_xmethod_worker_vec, xm_worker_vec);
2564 }
2565
2566 if (src_method_oload_champ >= 0 && ext_method_oload_champ >= 0)
2567 {
2568 switch (compare_badness (ext_method_badness, src_method_badness))
2569 {
2570 case 0: /* Src method and xmethod are equally good. */
2571 src_and_ext_equal = 1;
2572 /* If src method and xmethod are equally good, then
2573 xmethod should be the winner. Hence, fall through to the
2574 case where a xmethod is better than the source
2575 method, except when the xmethod match quality is
2576 non-standard. */
2577 /* FALLTHROUGH */
2578 case 1: /* Src method and ext method are incompatible. */
2579 /* If ext method match is not standard, then let source method
2580 win. Otherwise, fallthrough to let xmethod win. */
2581 if (ext_method_match_quality != STANDARD)
2582 {
2583 method_oload_champ = src_method_oload_champ;
2584 method_badness = src_method_badness;
2585 ext_method_oload_champ = -1;
2586 method_match_quality = src_method_match_quality;
2587 break;
2588 }
2589 /* FALLTHROUGH */
2590 case 2: /* Ext method is champion. */
2591 method_oload_champ = ext_method_oload_champ;
2592 method_badness = ext_method_badness;
2593 src_method_oload_champ = -1;
2594 method_match_quality = ext_method_match_quality;
2595 break;
2596 case 3: /* Src method is champion. */
2597 method_oload_champ = src_method_oload_champ;
2598 method_badness = src_method_badness;
2599 ext_method_oload_champ = -1;
2600 method_match_quality = src_method_match_quality;
2601 break;
2602 default:
2603 gdb_assert_not_reached ("Unexpected overload comparison "
2604 "result");
2605 break;
2606 }
2607 }
2608 else if (src_method_oload_champ >= 0)
2609 {
2610 method_oload_champ = src_method_oload_champ;
2611 method_badness = src_method_badness;
2612 method_match_quality = src_method_match_quality;
2613 }
2614 else if (ext_method_oload_champ >= 0)
2615 {
2616 method_oload_champ = ext_method_oload_champ;
2617 method_badness = ext_method_badness;
2618 method_match_quality = ext_method_match_quality;
2619 }
2620 }
2621
2622 if (method == NON_METHOD || method == BOTH)
2623 {
2624 const char *qualified_name = NULL;
2625
2626 /* If the overload match is being search for both as a method
2627 and non member function, the first argument must now be
2628 dereferenced. */
2629 if (method == BOTH)
2630 args[0] = value_ind (args[0]);
2631
2632 if (fsym)
2633 {
2634 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2635
2636 /* If we have a function with a C++ name, try to extract just
2637 the function part. Do not try this for non-functions (e.g.
2638 function pointers). */
2639 if (qualified_name
2640 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2641 == TYPE_CODE_FUNC)
2642 {
2643 char *temp;
2644
2645 temp = cp_func_name (qualified_name);
2646
2647 /* If cp_func_name did not remove anything, the name of the
2648 symbol did not include scope or argument types - it was
2649 probably a C-style function. */
2650 if (temp)
2651 {
2652 make_cleanup (xfree, temp);
2653 if (strcmp (temp, qualified_name) == 0)
2654 func_name = NULL;
2655 else
2656 func_name = temp;
2657 }
2658 }
2659 }
2660 else
2661 {
2662 func_name = name;
2663 qualified_name = name;
2664 }
2665
2666 /* If there was no C++ name, this must be a C-style function or
2667 not a function at all. Just return the same symbol. Do the
2668 same if cp_func_name fails for some reason. */
2669 if (func_name == NULL)
2670 {
2671 *symp = fsym;
2672 do_cleanups (all_cleanups);
2673 return 0;
2674 }
2675
2676 func_oload_champ = find_oload_champ_namespace (args, nargs,
2677 func_name,
2678 qualified_name,
2679 &oload_syms,
2680 &func_badness,
2681 no_adl);
2682
2683 if (func_oload_champ >= 0)
2684 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2685
2686 make_cleanup (xfree, oload_syms);
2687 make_cleanup (xfree, func_badness);
2688 }
2689
2690 /* Did we find a match ? */
2691 if (method_oload_champ == -1 && func_oload_champ == -1)
2692 throw_error (NOT_FOUND_ERROR,
2693 _("No symbol \"%s\" in current context."),
2694 name);
2695
2696 /* If we have found both a method match and a function
2697 match, find out which one is better, and calculate match
2698 quality. */
2699 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2700 {
2701 switch (compare_badness (func_badness, method_badness))
2702 {
2703 case 0: /* Top two contenders are equally good. */
2704 /* FIXME: GDB does not support the general ambiguous case.
2705 All candidates should be collected and presented the
2706 user. */
2707 error (_("Ambiguous overload resolution"));
2708 break;
2709 case 1: /* Incomparable top contenders. */
2710 /* This is an error incompatible candidates
2711 should not have been proposed. */
2712 error (_("Internal error: incompatible "
2713 "overload candidates proposed"));
2714 break;
2715 case 2: /* Function champion. */
2716 method_oload_champ = -1;
2717 match_quality = func_match_quality;
2718 break;
2719 case 3: /* Method champion. */
2720 func_oload_champ = -1;
2721 match_quality = method_match_quality;
2722 break;
2723 default:
2724 error (_("Internal error: unexpected overload comparison result"));
2725 break;
2726 }
2727 }
2728 else
2729 {
2730 /* We have either a method match or a function match. */
2731 if (method_oload_champ >= 0)
2732 match_quality = method_match_quality;
2733 else
2734 match_quality = func_match_quality;
2735 }
2736
2737 if (match_quality == INCOMPATIBLE)
2738 {
2739 if (method == METHOD)
2740 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2741 obj_type_name,
2742 (obj_type_name && *obj_type_name) ? "::" : "",
2743 name);
2744 else
2745 error (_("Cannot resolve function %s to any overloaded instance"),
2746 func_name);
2747 }
2748 else if (match_quality == NON_STANDARD)
2749 {
2750 if (method == METHOD)
2751 warning (_("Using non-standard conversion to match "
2752 "method %s%s%s to supplied arguments"),
2753 obj_type_name,
2754 (obj_type_name && *obj_type_name) ? "::" : "",
2755 name);
2756 else
2757 warning (_("Using non-standard conversion to match "
2758 "function %s to supplied arguments"),
2759 func_name);
2760 }
2761
2762 if (staticp != NULL)
2763 *staticp = oload_method_static_p (fns_ptr, method_oload_champ);
2764
2765 if (method_oload_champ >= 0)
2766 {
2767 if (src_method_oload_champ >= 0)
2768 {
2769 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2770 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2771 basetype, boffset);
2772 else
2773 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2774 basetype, boffset);
2775 }
2776 else
2777 {
2778 *valp = value_of_xmethod (clone_xmethod_worker
2779 (VEC_index (xmethod_worker_ptr, xm_worker_vec,
2780 ext_method_oload_champ)));
2781 }
2782 }
2783 else
2784 *symp = oload_syms[func_oload_champ];
2785
2786 if (objp)
2787 {
2788 struct type *temp_type = check_typedef (value_type (temp));
2789 struct type *objtype = check_typedef (obj_type);
2790
2791 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2792 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2793 || TYPE_CODE (objtype) == TYPE_CODE_REF))
2794 {
2795 temp = value_addr (temp);
2796 }
2797 *objp = temp;
2798 }
2799
2800 do_cleanups (all_cleanups);
2801
2802 switch (match_quality)
2803 {
2804 case INCOMPATIBLE:
2805 return 100;
2806 case NON_STANDARD:
2807 return 10;
2808 default: /* STANDARD */
2809 return 0;
2810 }
2811 }
2812
2813 /* Find the best overload match, searching for FUNC_NAME in namespaces
2814 contained in QUALIFIED_NAME until it either finds a good match or
2815 runs out of namespaces. It stores the overloaded functions in
2816 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2817 calling function is responsible for freeing *OLOAD_SYMS and
2818 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2819 performned. */
2820
2821 static int
2822 find_oload_champ_namespace (struct value **args, int nargs,
2823 const char *func_name,
2824 const char *qualified_name,
2825 struct symbol ***oload_syms,
2826 struct badness_vector **oload_champ_bv,
2827 const int no_adl)
2828 {
2829 int oload_champ;
2830
2831 find_oload_champ_namespace_loop (args, nargs,
2832 func_name,
2833 qualified_name, 0,
2834 oload_syms, oload_champ_bv,
2835 &oload_champ,
2836 no_adl);
2837
2838 return oload_champ;
2839 }
2840
2841 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2842 how deep we've looked for namespaces, and the champ is stored in
2843 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2844 if it isn't. Other arguments are the same as in
2845 find_oload_champ_namespace
2846
2847 It is the caller's responsibility to free *OLOAD_SYMS and
2848 *OLOAD_CHAMP_BV. */
2849
2850 static int
2851 find_oload_champ_namespace_loop (struct value **args, int nargs,
2852 const char *func_name,
2853 const char *qualified_name,
2854 int namespace_len,
2855 struct symbol ***oload_syms,
2856 struct badness_vector **oload_champ_bv,
2857 int *oload_champ,
2858 const int no_adl)
2859 {
2860 int next_namespace_len = namespace_len;
2861 int searched_deeper = 0;
2862 int num_fns = 0;
2863 struct cleanup *old_cleanups;
2864 int new_oload_champ;
2865 struct symbol **new_oload_syms;
2866 struct badness_vector *new_oload_champ_bv;
2867 char *new_namespace;
2868
2869 if (next_namespace_len != 0)
2870 {
2871 gdb_assert (qualified_name[next_namespace_len] == ':');
2872 next_namespace_len += 2;
2873 }
2874 next_namespace_len +=
2875 cp_find_first_component (qualified_name + next_namespace_len);
2876
2877 /* Initialize these to values that can safely be xfree'd. */
2878 *oload_syms = NULL;
2879 *oload_champ_bv = NULL;
2880
2881 /* First, see if we have a deeper namespace we can search in.
2882 If we get a good match there, use it. */
2883
2884 if (qualified_name[next_namespace_len] == ':')
2885 {
2886 searched_deeper = 1;
2887
2888 if (find_oload_champ_namespace_loop (args, nargs,
2889 func_name, qualified_name,
2890 next_namespace_len,
2891 oload_syms, oload_champ_bv,
2892 oload_champ, no_adl))
2893 {
2894 return 1;
2895 }
2896 };
2897
2898 /* If we reach here, either we're in the deepest namespace or we
2899 didn't find a good match in a deeper namespace. But, in the
2900 latter case, we still have a bad match in a deeper namespace;
2901 note that we might not find any match at all in the current
2902 namespace. (There's always a match in the deepest namespace,
2903 because this overload mechanism only gets called if there's a
2904 function symbol to start off with.) */
2905
2906 old_cleanups = make_cleanup (xfree, *oload_syms);
2907 make_cleanup (xfree, *oload_champ_bv);
2908 new_namespace = alloca (namespace_len + 1);
2909 strncpy (new_namespace, qualified_name, namespace_len);
2910 new_namespace[namespace_len] = '\0';
2911 new_oload_syms = make_symbol_overload_list (func_name,
2912 new_namespace);
2913
2914 /* If we have reached the deepest level perform argument
2915 determined lookup. */
2916 if (!searched_deeper && !no_adl)
2917 {
2918 int ix;
2919 struct type **arg_types;
2920
2921 /* Prepare list of argument types for overload resolution. */
2922 arg_types = (struct type **)
2923 alloca (nargs * (sizeof (struct type *)));
2924 for (ix = 0; ix < nargs; ix++)
2925 arg_types[ix] = value_type (args[ix]);
2926 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2927 }
2928
2929 while (new_oload_syms[num_fns])
2930 ++num_fns;
2931
2932 new_oload_champ = find_oload_champ (args, nargs, num_fns,
2933 NULL, NULL, new_oload_syms,
2934 &new_oload_champ_bv);
2935
2936 /* Case 1: We found a good match. Free earlier matches (if any),
2937 and return it. Case 2: We didn't find a good match, but we're
2938 not the deepest function. Then go with the bad match that the
2939 deeper function found. Case 3: We found a bad match, and we're
2940 the deepest function. Then return what we found, even though
2941 it's a bad match. */
2942
2943 if (new_oload_champ != -1
2944 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2945 {
2946 *oload_syms = new_oload_syms;
2947 *oload_champ = new_oload_champ;
2948 *oload_champ_bv = new_oload_champ_bv;
2949 do_cleanups (old_cleanups);
2950 return 1;
2951 }
2952 else if (searched_deeper)
2953 {
2954 xfree (new_oload_syms);
2955 xfree (new_oload_champ_bv);
2956 discard_cleanups (old_cleanups);
2957 return 0;
2958 }
2959 else
2960 {
2961 *oload_syms = new_oload_syms;
2962 *oload_champ = new_oload_champ;
2963 *oload_champ_bv = new_oload_champ_bv;
2964 do_cleanups (old_cleanups);
2965 return 0;
2966 }
2967 }
2968
2969 /* Look for a function to take NARGS args of ARGS. Find
2970 the best match from among the overloaded methods or functions
2971 given by FNS_PTR or OLOAD_SYMS or XM_WORKER_VEC, respectively.
2972 One, and only one of FNS_PTR, OLOAD_SYMS and XM_WORKER_VEC can be
2973 non-NULL.
2974
2975 If XM_WORKER_VEC is NULL, then the length of the arrays FNS_PTR
2976 or OLOAD_SYMS (whichever is non-NULL) is specified in NUM_FNS.
2977
2978 Return the index of the best match; store an indication of the
2979 quality of the match in OLOAD_CHAMP_BV.
2980
2981 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2982
2983 static int
2984 find_oload_champ (struct value **args, int nargs,
2985 int num_fns, struct fn_field *fns_ptr,
2986 VEC (xmethod_worker_ptr) *xm_worker_vec,
2987 struct symbol **oload_syms,
2988 struct badness_vector **oload_champ_bv)
2989 {
2990 int ix;
2991 int fn_count;
2992 int xm_worker_vec_n = VEC_length (xmethod_worker_ptr, xm_worker_vec);
2993 /* A measure of how good an overloaded instance is. */
2994 struct badness_vector *bv;
2995 /* Index of best overloaded function. */
2996 int oload_champ = -1;
2997 /* Current ambiguity state for overload resolution. */
2998 int oload_ambiguous = 0;
2999 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
3000
3001 /* A champion can be found among methods alone, or among functions
3002 alone, or in xmethods alone, but not in more than one of these
3003 groups. */
3004 gdb_assert ((fns_ptr != NULL) + (oload_syms != NULL) + (xm_worker_vec != NULL)
3005 == 1);
3006
3007 *oload_champ_bv = NULL;
3008
3009 fn_count = (xm_worker_vec != NULL
3010 ? VEC_length (xmethod_worker_ptr, xm_worker_vec)
3011 : num_fns);
3012 /* Consider each candidate in turn. */
3013 for (ix = 0; ix < fn_count; ix++)
3014 {
3015 int jj;
3016 int static_offset = 0;
3017 int nparms;
3018 struct type **parm_types;
3019 struct xmethod_worker *worker = NULL;
3020
3021 if (xm_worker_vec != NULL)
3022 {
3023 worker = VEC_index (xmethod_worker_ptr, xm_worker_vec, ix);
3024 parm_types = get_xmethod_arg_types (worker, &nparms);
3025 }
3026 else
3027 {
3028 if (fns_ptr != NULL)
3029 {
3030 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
3031 static_offset = oload_method_static_p (fns_ptr, ix);
3032 }
3033 else
3034 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
3035
3036 parm_types = (struct type **)
3037 xmalloc (nparms * (sizeof (struct type *)));
3038 for (jj = 0; jj < nparms; jj++)
3039 parm_types[jj] = (fns_ptr != NULL
3040 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
3041 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
3042 jj));
3043 }
3044
3045 /* Compare parameter types to supplied argument types. Skip
3046 THIS for static methods. */
3047 bv = rank_function (parm_types, nparms,
3048 args + static_offset,
3049 nargs - static_offset);
3050
3051 if (!*oload_champ_bv)
3052 {
3053 *oload_champ_bv = bv;
3054 oload_champ = 0;
3055 }
3056 else /* See whether current candidate is better or worse than
3057 previous best. */
3058 switch (compare_badness (bv, *oload_champ_bv))
3059 {
3060 case 0: /* Top two contenders are equally good. */
3061 oload_ambiguous = 1;
3062 break;
3063 case 1: /* Incomparable top contenders. */
3064 oload_ambiguous = 2;
3065 break;
3066 case 2: /* New champion, record details. */
3067 *oload_champ_bv = bv;
3068 oload_ambiguous = 0;
3069 oload_champ = ix;
3070 break;
3071 case 3:
3072 default:
3073 break;
3074 }
3075 xfree (parm_types);
3076 if (overload_debug)
3077 {
3078 if (fns_ptr != NULL)
3079 fprintf_filtered (gdb_stderr,
3080 "Overloaded method instance %s, # of parms %d\n",
3081 fns_ptr[ix].physname, nparms);
3082 else if (xm_worker_vec != NULL)
3083 fprintf_filtered (gdb_stderr,
3084 "Xmethod worker, # of parms %d\n",
3085 nparms);
3086 else
3087 fprintf_filtered (gdb_stderr,
3088 "Overloaded function instance "
3089 "%s # of parms %d\n",
3090 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
3091 nparms);
3092 for (jj = 0; jj < nargs - static_offset; jj++)
3093 fprintf_filtered (gdb_stderr,
3094 "...Badness @ %d : %d\n",
3095 jj, bv->rank[jj].rank);
3096 fprintf_filtered (gdb_stderr, "Overload resolution "
3097 "champion is %d, ambiguous? %d\n",
3098 oload_champ, oload_ambiguous);
3099 }
3100 }
3101
3102 return oload_champ;
3103 }
3104
3105 /* Return 1 if we're looking at a static method, 0 if we're looking at
3106 a non-static method or a function that isn't a method. */
3107
3108 static int
3109 oload_method_static_p (struct fn_field *fns_ptr, int index)
3110 {
3111 if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3112 return 1;
3113 else
3114 return 0;
3115 }
3116
3117 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3118
3119 static enum oload_classification
3120 classify_oload_match (struct badness_vector *oload_champ_bv,
3121 int nargs,
3122 int static_offset)
3123 {
3124 int ix;
3125 enum oload_classification worst = STANDARD;
3126
3127 for (ix = 1; ix <= nargs - static_offset; ix++)
3128 {
3129 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3130 or worse return INCOMPATIBLE. */
3131 if (compare_ranks (oload_champ_bv->rank[ix],
3132 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3133 return INCOMPATIBLE; /* Truly mismatched types. */
3134 /* Otherwise If this conversion is as bad as
3135 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3136 else if (compare_ranks (oload_champ_bv->rank[ix],
3137 NS_POINTER_CONVERSION_BADNESS) <= 0)
3138 worst = NON_STANDARD; /* Non-standard type conversions
3139 needed. */
3140 }
3141
3142 /* If no INCOMPATIBLE classification was found, return the worst one
3143 that was found (if any). */
3144 return worst;
3145 }
3146
3147 /* C++: return 1 is NAME is a legitimate name for the destructor of
3148 type TYPE. If TYPE does not have a destructor, or if NAME is
3149 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3150 have CHECK_TYPEDEF applied, this function will apply it itself. */
3151
3152 int
3153 destructor_name_p (const char *name, struct type *type)
3154 {
3155 if (name[0] == '~')
3156 {
3157 const char *dname = type_name_no_tag_or_error (type);
3158 const char *cp = strchr (dname, '<');
3159 unsigned int len;
3160
3161 /* Do not compare the template part for template classes. */
3162 if (cp == NULL)
3163 len = strlen (dname);
3164 else
3165 len = cp - dname;
3166 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3167 error (_("name of destructor must equal name of class"));
3168 else
3169 return 1;
3170 }
3171 return 0;
3172 }
3173
3174 /* Find an enum constant named NAME in TYPE. TYPE must be an "enum
3175 class". If the name is found, return a value representing it;
3176 otherwise throw an exception. */
3177
3178 static struct value *
3179 enum_constant_from_type (struct type *type, const char *name)
3180 {
3181 int i;
3182 int name_len = strlen (name);
3183
3184 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ENUM
3185 && TYPE_DECLARED_CLASS (type));
3186
3187 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); ++i)
3188 {
3189 const char *fname = TYPE_FIELD_NAME (type, i);
3190 int len;
3191
3192 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_ENUMVAL
3193 || fname == NULL)
3194 continue;
3195
3196 /* Look for the trailing "::NAME", since enum class constant
3197 names are qualified here. */
3198 len = strlen (fname);
3199 if (len + 2 >= name_len
3200 && fname[len - name_len - 2] == ':'
3201 && fname[len - name_len - 1] == ':'
3202 && strcmp (&fname[len - name_len], name) == 0)
3203 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, i));
3204 }
3205
3206 error (_("no constant named \"%s\" in enum \"%s\""),
3207 name, TYPE_TAG_NAME (type));
3208 }
3209
3210 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3211 return the appropriate member (or the address of the member, if
3212 WANT_ADDRESS). This function is used to resolve user expressions
3213 of the form "DOMAIN::NAME". For more details on what happens, see
3214 the comment before value_struct_elt_for_reference. */
3215
3216 struct value *
3217 value_aggregate_elt (struct type *curtype, const char *name,
3218 struct type *expect_type, int want_address,
3219 enum noside noside)
3220 {
3221 switch (TYPE_CODE (curtype))
3222 {
3223 case TYPE_CODE_STRUCT:
3224 case TYPE_CODE_UNION:
3225 return value_struct_elt_for_reference (curtype, 0, curtype,
3226 name, expect_type,
3227 want_address, noside);
3228 case TYPE_CODE_NAMESPACE:
3229 return value_namespace_elt (curtype, name,
3230 want_address, noside);
3231
3232 case TYPE_CODE_ENUM:
3233 return enum_constant_from_type (curtype, name);
3234
3235 default:
3236 internal_error (__FILE__, __LINE__,
3237 _("non-aggregate type in value_aggregate_elt"));
3238 }
3239 }
3240
3241 /* Compares the two method/function types T1 and T2 for "equality"
3242 with respect to the methods' parameters. If the types of the
3243 two parameter lists are the same, returns 1; 0 otherwise. This
3244 comparison may ignore any artificial parameters in T1 if
3245 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3246 the first artificial parameter in T1, assumed to be a 'this' pointer.
3247
3248 The type T2 is expected to have come from make_params (in eval.c). */
3249
3250 static int
3251 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3252 {
3253 int start = 0;
3254
3255 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3256 ++start;
3257
3258 /* If skipping artificial fields, find the first real field
3259 in T1. */
3260 if (skip_artificial)
3261 {
3262 while (start < TYPE_NFIELDS (t1)
3263 && TYPE_FIELD_ARTIFICIAL (t1, start))
3264 ++start;
3265 }
3266
3267 /* Now compare parameters. */
3268
3269 /* Special case: a method taking void. T1 will contain no
3270 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3271 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3272 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3273 return 1;
3274
3275 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3276 {
3277 int i;
3278
3279 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3280 {
3281 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3282 TYPE_FIELD_TYPE (t2, i), NULL),
3283 EXACT_MATCH_BADNESS) != 0)
3284 return 0;
3285 }
3286
3287 return 1;
3288 }
3289
3290 return 0;
3291 }
3292
3293 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3294 return the address of this member as a "pointer to member" type.
3295 If INTYPE is non-null, then it will be the type of the member we
3296 are looking for. This will help us resolve "pointers to member
3297 functions". This function is used to resolve user expressions of
3298 the form "DOMAIN::NAME". */
3299
3300 static struct value *
3301 value_struct_elt_for_reference (struct type *domain, int offset,
3302 struct type *curtype, const char *name,
3303 struct type *intype,
3304 int want_address,
3305 enum noside noside)
3306 {
3307 struct type *t = curtype;
3308 int i;
3309 struct value *v, *result;
3310
3311 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3312 && TYPE_CODE (t) != TYPE_CODE_UNION)
3313 error (_("Internal error: non-aggregate type "
3314 "to value_struct_elt_for_reference"));
3315
3316 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3317 {
3318 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3319
3320 if (t_field_name && strcmp (t_field_name, name) == 0)
3321 {
3322 if (field_is_static (&TYPE_FIELD (t, i)))
3323 {
3324 v = value_static_field (t, i);
3325 if (want_address)
3326 v = value_addr (v);
3327 return v;
3328 }
3329 if (TYPE_FIELD_PACKED (t, i))
3330 error (_("pointers to bitfield members not allowed"));
3331
3332 if (want_address)
3333 return value_from_longest
3334 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3335 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3336 else if (noside != EVAL_NORMAL)
3337 return allocate_value (TYPE_FIELD_TYPE (t, i));
3338 else
3339 {
3340 /* Try to evaluate NAME as a qualified name with implicit
3341 this pointer. In this case, attempt to return the
3342 equivalent to `this->*(&TYPE::NAME)'. */
3343 v = value_of_this_silent (current_language);
3344 if (v != NULL)
3345 {
3346 struct value *ptr;
3347 long mem_offset;
3348 struct type *type, *tmp;
3349
3350 ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
3351 type = check_typedef (value_type (ptr));
3352 gdb_assert (type != NULL
3353 && TYPE_CODE (type) == TYPE_CODE_MEMBERPTR);
3354 tmp = lookup_pointer_type (TYPE_DOMAIN_TYPE (type));
3355 v = value_cast_pointers (tmp, v, 1);
3356 mem_offset = value_as_long (ptr);
3357 tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type));
3358 result = value_from_pointer (tmp,
3359 value_as_long (v) + mem_offset);
3360 return value_ind (result);
3361 }
3362
3363 error (_("Cannot reference non-static field \"%s\""), name);
3364 }
3365 }
3366 }
3367
3368 /* C++: If it was not found as a data field, then try to return it
3369 as a pointer to a method. */
3370
3371 /* Perform all necessary dereferencing. */
3372 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3373 intype = TYPE_TARGET_TYPE (intype);
3374
3375 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3376 {
3377 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3378 char dem_opname[64];
3379
3380 if (strncmp (t_field_name, "__", 2) == 0
3381 || strncmp (t_field_name, "op", 2) == 0
3382 || strncmp (t_field_name, "type", 4) == 0)
3383 {
3384 if (cplus_demangle_opname (t_field_name,
3385 dem_opname, DMGL_ANSI))
3386 t_field_name = dem_opname;
3387 else if (cplus_demangle_opname (t_field_name,
3388 dem_opname, 0))
3389 t_field_name = dem_opname;
3390 }
3391 if (t_field_name && strcmp (t_field_name, name) == 0)
3392 {
3393 int j;
3394 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3395 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3396
3397 check_stub_method_group (t, i);
3398
3399 if (intype)
3400 {
3401 for (j = 0; j < len; ++j)
3402 {
3403 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3404 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3405 intype, 1))
3406 break;
3407 }
3408
3409 if (j == len)
3410 error (_("no member function matches "
3411 "that type instantiation"));
3412 }
3413 else
3414 {
3415 int ii;
3416
3417 j = -1;
3418 for (ii = 0; ii < len; ++ii)
3419 {
3420 /* Skip artificial methods. This is necessary if,
3421 for example, the user wants to "print
3422 subclass::subclass" with only one user-defined
3423 constructor. There is no ambiguity in this case.
3424 We are careful here to allow artificial methods
3425 if they are the unique result. */
3426 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3427 {
3428 if (j == -1)
3429 j = ii;
3430 continue;
3431 }
3432
3433 /* Desired method is ambiguous if more than one
3434 method is defined. */
3435 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3436 error (_("non-unique member `%s' requires "
3437 "type instantiation"), name);
3438
3439 j = ii;
3440 }
3441
3442 if (j == -1)
3443 error (_("no matching member function"));
3444 }
3445
3446 if (TYPE_FN_FIELD_STATIC_P (f, j))
3447 {
3448 struct symbol *s =
3449 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3450 0, VAR_DOMAIN, 0);
3451
3452 if (s == NULL)
3453 return NULL;
3454
3455 if (want_address)
3456 return value_addr (read_var_value (s, 0));
3457 else
3458 return read_var_value (s, 0);
3459 }
3460
3461 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3462 {
3463 if (want_address)
3464 {
3465 result = allocate_value
3466 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3467 cplus_make_method_ptr (value_type (result),
3468 value_contents_writeable (result),
3469 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3470 }
3471 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3472 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3473 else
3474 error (_("Cannot reference virtual member function \"%s\""),
3475 name);
3476 }
3477 else
3478 {
3479 struct symbol *s =
3480 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3481 0, VAR_DOMAIN, 0);
3482
3483 if (s == NULL)
3484 return NULL;
3485
3486 v = read_var_value (s, 0);
3487 if (!want_address)
3488 result = v;
3489 else
3490 {
3491 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3492 cplus_make_method_ptr (value_type (result),
3493 value_contents_writeable (result),
3494 value_address (v), 0);
3495 }
3496 }
3497 return result;
3498 }
3499 }
3500 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3501 {
3502 struct value *v;
3503 int base_offset;
3504
3505 if (BASETYPE_VIA_VIRTUAL (t, i))
3506 base_offset = 0;
3507 else
3508 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3509 v = value_struct_elt_for_reference (domain,
3510 offset + base_offset,
3511 TYPE_BASECLASS (t, i),
3512 name, intype,
3513 want_address, noside);
3514 if (v)
3515 return v;
3516 }
3517
3518 /* As a last chance, pretend that CURTYPE is a namespace, and look
3519 it up that way; this (frequently) works for types nested inside
3520 classes. */
3521
3522 return value_maybe_namespace_elt (curtype, name,
3523 want_address, noside);
3524 }
3525
3526 /* C++: Return the member NAME of the namespace given by the type
3527 CURTYPE. */
3528
3529 static struct value *
3530 value_namespace_elt (const struct type *curtype,
3531 const char *name, int want_address,
3532 enum noside noside)
3533 {
3534 struct value *retval = value_maybe_namespace_elt (curtype, name,
3535 want_address,
3536 noside);
3537
3538 if (retval == NULL)
3539 error (_("No symbol \"%s\" in namespace \"%s\"."),
3540 name, TYPE_TAG_NAME (curtype));
3541
3542 return retval;
3543 }
3544
3545 /* A helper function used by value_namespace_elt and
3546 value_struct_elt_for_reference. It looks up NAME inside the
3547 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3548 is a class and NAME refers to a type in CURTYPE itself (as opposed
3549 to, say, some base class of CURTYPE). */
3550
3551 static struct value *
3552 value_maybe_namespace_elt (const struct type *curtype,
3553 const char *name, int want_address,
3554 enum noside noside)
3555 {
3556 const char *namespace_name = TYPE_TAG_NAME (curtype);
3557 struct symbol *sym;
3558 struct value *result;
3559
3560 sym = cp_lookup_symbol_namespace (namespace_name, name,
3561 get_selected_block (0), VAR_DOMAIN);
3562
3563 if (sym == NULL)
3564 {
3565 char *concatenated_name = alloca (strlen (namespace_name) + 2
3566 + strlen (name) + 1);
3567
3568 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3569 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3570 }
3571
3572 if (sym == NULL)
3573 return NULL;
3574 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3575 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3576 result = allocate_value (SYMBOL_TYPE (sym));
3577 else
3578 result = value_of_variable (sym, get_selected_block (0));
3579
3580 if (result && want_address)
3581 result = value_addr (result);
3582
3583 return result;
3584 }
3585
3586 /* Given a pointer or a reference value V, find its real (RTTI) type.
3587
3588 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3589 and refer to the values computed for the object pointed to. */
3590
3591 struct type *
3592 value_rtti_indirect_type (struct value *v, int *full,
3593 int *top, int *using_enc)
3594 {
3595 struct value *target;
3596 struct type *type, *real_type, *target_type;
3597
3598 type = value_type (v);
3599 type = check_typedef (type);
3600 if (TYPE_CODE (type) == TYPE_CODE_REF)
3601 target = coerce_ref (v);
3602 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3603 target = value_ind (v);
3604 else
3605 return NULL;
3606
3607 real_type = value_rtti_type (target, full, top, using_enc);
3608
3609 if (real_type)
3610 {
3611 /* Copy qualifiers to the referenced object. */
3612 target_type = value_type (target);
3613 real_type = make_cv_type (TYPE_CONST (target_type),
3614 TYPE_VOLATILE (target_type), real_type, NULL);
3615 if (TYPE_CODE (type) == TYPE_CODE_REF)
3616 real_type = lookup_reference_type (real_type);
3617 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3618 real_type = lookup_pointer_type (real_type);
3619 else
3620 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3621
3622 /* Copy qualifiers to the pointer/reference. */
3623 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3624 real_type, NULL);
3625 }
3626
3627 return real_type;
3628 }
3629
3630 /* Given a value pointed to by ARGP, check its real run-time type, and
3631 if that is different from the enclosing type, create a new value
3632 using the real run-time type as the enclosing type (and of the same
3633 type as ARGP) and return it, with the embedded offset adjusted to
3634 be the correct offset to the enclosed object. RTYPE is the type,
3635 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3636 by value_rtti_type(). If these are available, they can be supplied
3637 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3638 NULL if they're not available. */
3639
3640 struct value *
3641 value_full_object (struct value *argp,
3642 struct type *rtype,
3643 int xfull, int xtop,
3644 int xusing_enc)
3645 {
3646 struct type *real_type;
3647 int full = 0;
3648 int top = -1;
3649 int using_enc = 0;
3650 struct value *new_val;
3651
3652 if (rtype)
3653 {
3654 real_type = rtype;
3655 full = xfull;
3656 top = xtop;
3657 using_enc = xusing_enc;
3658 }
3659 else
3660 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3661
3662 /* If no RTTI data, or if object is already complete, do nothing. */
3663 if (!real_type || real_type == value_enclosing_type (argp))
3664 return argp;
3665
3666 /* In a destructor we might see a real type that is a superclass of
3667 the object's type. In this case it is better to leave the object
3668 as-is. */
3669 if (full
3670 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3671 return argp;
3672
3673 /* If we have the full object, but for some reason the enclosing
3674 type is wrong, set it. */
3675 /* pai: FIXME -- sounds iffy */
3676 if (full)
3677 {
3678 argp = value_copy (argp);
3679 set_value_enclosing_type (argp, real_type);
3680 return argp;
3681 }
3682
3683 /* Check if object is in memory. */
3684 if (VALUE_LVAL (argp) != lval_memory)
3685 {
3686 warning (_("Couldn't retrieve complete object of RTTI "
3687 "type %s; object may be in register(s)."),
3688 TYPE_NAME (real_type));
3689
3690 return argp;
3691 }
3692
3693 /* All other cases -- retrieve the complete object. */
3694 /* Go back by the computed top_offset from the beginning of the
3695 object, adjusting for the embedded offset of argp if that's what
3696 value_rtti_type used for its computation. */
3697 new_val = value_at_lazy (real_type, value_address (argp) - top +
3698 (using_enc ? 0 : value_embedded_offset (argp)));
3699 deprecated_set_value_type (new_val, value_type (argp));
3700 set_value_embedded_offset (new_val, (using_enc
3701 ? top + value_embedded_offset (argp)
3702 : top));
3703 return new_val;
3704 }
3705
3706
3707 /* Return the value of the local variable, if one exists. Throw error
3708 otherwise, such as if the request is made in an inappropriate context. */
3709
3710 struct value *
3711 value_of_this (const struct language_defn *lang)
3712 {
3713 struct symbol *sym;
3714 const struct block *b;
3715 struct frame_info *frame;
3716
3717 if (!lang->la_name_of_this)
3718 error (_("no `this' in current language"));
3719
3720 frame = get_selected_frame (_("no frame selected"));
3721
3722 b = get_frame_block (frame, NULL);
3723
3724 sym = lookup_language_this (lang, b);
3725 if (sym == NULL)
3726 error (_("current stack frame does not contain a variable named `%s'"),
3727 lang->la_name_of_this);
3728
3729 return read_var_value (sym, frame);
3730 }
3731
3732 /* Return the value of the local variable, if one exists. Return NULL
3733 otherwise. Never throw error. */
3734
3735 struct value *
3736 value_of_this_silent (const struct language_defn *lang)
3737 {
3738 struct value *ret = NULL;
3739 volatile struct gdb_exception except;
3740
3741 TRY_CATCH (except, RETURN_MASK_ERROR)
3742 {
3743 ret = value_of_this (lang);
3744 }
3745
3746 return ret;
3747 }
3748
3749 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3750 elements long, starting at LOWBOUND. The result has the same lower
3751 bound as the original ARRAY. */
3752
3753 struct value *
3754 value_slice (struct value *array, int lowbound, int length)
3755 {
3756 struct type *slice_range_type, *slice_type, *range_type;
3757 LONGEST lowerbound, upperbound;
3758 struct value *slice;
3759 struct type *array_type;
3760
3761 array_type = check_typedef (value_type (array));
3762 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3763 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
3764 error (_("cannot take slice of non-array"));
3765
3766 range_type = TYPE_INDEX_TYPE (array_type);
3767 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3768 error (_("slice from bad array or bitstring"));
3769
3770 if (lowbound < lowerbound || length < 0
3771 || lowbound + length - 1 > upperbound)
3772 error (_("slice out of range"));
3773
3774 /* FIXME-type-allocation: need a way to free this type when we are
3775 done with it. */
3776 slice_range_type = create_static_range_type ((struct type *) NULL,
3777 TYPE_TARGET_TYPE (range_type),
3778 lowbound,
3779 lowbound + length - 1);
3780
3781 {
3782 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3783 LONGEST offset
3784 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3785
3786 slice_type = create_array_type ((struct type *) NULL,
3787 element_type,
3788 slice_range_type);
3789 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3790
3791 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3792 slice = allocate_value_lazy (slice_type);
3793 else
3794 {
3795 slice = allocate_value (slice_type);
3796 value_contents_copy (slice, 0, array, offset,
3797 TYPE_LENGTH (slice_type));
3798 }
3799
3800 set_value_component_location (slice, array);
3801 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3802 set_value_offset (slice, value_offset (array) + offset);
3803 }
3804
3805 return slice;
3806 }
3807
3808 /* Create a value for a FORTRAN complex number. Currently most of the
3809 time values are coerced to COMPLEX*16 (i.e. a complex number
3810 composed of 2 doubles. This really should be a smarter routine
3811 that figures out precision inteligently as opposed to assuming
3812 doubles. FIXME: fmb */
3813
3814 struct value *
3815 value_literal_complex (struct value *arg1,
3816 struct value *arg2,
3817 struct type *type)
3818 {
3819 struct value *val;
3820 struct type *real_type = TYPE_TARGET_TYPE (type);
3821
3822 val = allocate_value (type);
3823 arg1 = value_cast (real_type, arg1);
3824 arg2 = value_cast (real_type, arg2);
3825
3826 memcpy (value_contents_raw (val),
3827 value_contents (arg1), TYPE_LENGTH (real_type));
3828 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3829 value_contents (arg2), TYPE_LENGTH (real_type));
3830 return val;
3831 }
3832
3833 /* Cast a value into the appropriate complex data type. */
3834
3835 static struct value *
3836 cast_into_complex (struct type *type, struct value *val)
3837 {
3838 struct type *real_type = TYPE_TARGET_TYPE (type);
3839
3840 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3841 {
3842 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3843 struct value *re_val = allocate_value (val_real_type);
3844 struct value *im_val = allocate_value (val_real_type);
3845
3846 memcpy (value_contents_raw (re_val),
3847 value_contents (val), TYPE_LENGTH (val_real_type));
3848 memcpy (value_contents_raw (im_val),
3849 value_contents (val) + TYPE_LENGTH (val_real_type),
3850 TYPE_LENGTH (val_real_type));
3851
3852 return value_literal_complex (re_val, im_val, type);
3853 }
3854 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3855 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3856 return value_literal_complex (val,
3857 value_zero (real_type, not_lval),
3858 type);
3859 else
3860 error (_("cannot cast non-number to complex"));
3861 }
3862
3863 void
3864 _initialize_valops (void)
3865 {
3866 add_setshow_boolean_cmd ("overload-resolution", class_support,
3867 &overload_resolution, _("\
3868 Set overload resolution in evaluating C++ functions."), _("\
3869 Show overload resolution in evaluating C++ functions."),
3870 NULL, NULL,
3871 show_overload_resolution,
3872 &setlist, &showlist);
3873 overload_resolution = 1;
3874 }
This page took 0.108064 seconds and 5 git commands to generate.