* defs.h (extract_signed_integer, extract_unsigned_integer,
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33 #include "regcache.h"
34 #include "cp-abi.h"
35 #include "block.h"
36 #include "infcall.h"
37 #include "dictionary.h"
38 #include "cp-support.h"
39 #include "dfp.h"
40 #include "user-regs.h"
41
42 #include <errno.h>
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
46 #include "observer.h"
47 #include "objfiles.h"
48 #include "symtab.h"
49
50 extern int overload_debug;
51 /* Local functions. */
52
53 static int typecmp (int staticp, int varargs, int nargs,
54 struct field t1[], struct value *t2[]);
55
56 static struct value *search_struct_field (char *, struct value *,
57 int, struct type *, int);
58
59 static struct value *search_struct_method (char *, struct value **,
60 struct value **,
61 int, int *, struct type *);
62
63 static int find_oload_champ_namespace (struct type **, int,
64 const char *, const char *,
65 struct symbol ***,
66 struct badness_vector **);
67
68 static
69 int find_oload_champ_namespace_loop (struct type **, int,
70 const char *, const char *,
71 int, struct symbol ***,
72 struct badness_vector **, int *);
73
74 static int find_oload_champ (struct type **, int, int, int,
75 struct fn_field *, struct symbol **,
76 struct badness_vector **);
77
78 static int oload_method_static (int, struct fn_field *, int);
79
80 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
81
82 static enum
83 oload_classification classify_oload_match (struct badness_vector *,
84 int, int);
85
86 static struct value *value_struct_elt_for_reference (struct type *,
87 int, struct type *,
88 char *,
89 struct type *,
90 int, enum noside);
91
92 static struct value *value_namespace_elt (const struct type *,
93 char *, int , enum noside);
94
95 static struct value *value_maybe_namespace_elt (const struct type *,
96 char *, int,
97 enum noside);
98
99 static CORE_ADDR allocate_space_in_inferior (int);
100
101 static struct value *cast_into_complex (struct type *, struct value *);
102
103 static struct fn_field *find_method_list (struct value **, char *,
104 int, struct type *, int *,
105 struct type **, int *);
106
107 void _initialize_valops (void);
108
109 #if 0
110 /* Flag for whether we want to abandon failed expression evals by
111 default. */
112
113 static int auto_abandon = 0;
114 #endif
115
116 int overload_resolution = 0;
117 static void
118 show_overload_resolution (struct ui_file *file, int from_tty,
119 struct cmd_list_element *c,
120 const char *value)
121 {
122 fprintf_filtered (file, _("\
123 Overload resolution in evaluating C++ functions is %s.\n"),
124 value);
125 }
126
127 /* Find the address of function name NAME in the inferior. If OBJF_P
128 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
129 is defined. */
130
131 struct value *
132 find_function_in_inferior (const char *name, struct objfile **objf_p)
133 {
134 struct symbol *sym;
135 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
136 if (sym != NULL)
137 {
138 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
139 {
140 error (_("\"%s\" exists in this program but is not a function."),
141 name);
142 }
143
144 if (objf_p)
145 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
146
147 return value_of_variable (sym, NULL);
148 }
149 else
150 {
151 struct minimal_symbol *msymbol =
152 lookup_minimal_symbol (name, NULL, NULL);
153 if (msymbol != NULL)
154 {
155 struct objfile *objfile = msymbol_objfile (msymbol);
156 struct gdbarch *gdbarch = get_objfile_arch (objfile);
157
158 struct type *type;
159 CORE_ADDR maddr;
160 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
161 type = lookup_function_type (type);
162 type = lookup_pointer_type (type);
163 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
164
165 if (objf_p)
166 *objf_p = objfile;
167
168 return value_from_pointer (type, maddr);
169 }
170 else
171 {
172 if (!target_has_execution)
173 error (_("evaluation of this expression requires the target program to be active"));
174 else
175 error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
176 }
177 }
178 }
179
180 /* Allocate NBYTES of space in the inferior using the inferior's
181 malloc and return a value that is a pointer to the allocated
182 space. */
183
184 struct value *
185 value_allocate_space_in_inferior (int len)
186 {
187 struct objfile *objf;
188 struct value *val = find_function_in_inferior ("malloc", &objf);
189 struct gdbarch *gdbarch = get_objfile_arch (objf);
190 struct value *blocklen;
191
192 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
193 val = call_function_by_hand (val, 1, &blocklen);
194 if (value_logical_not (val))
195 {
196 if (!target_has_execution)
197 error (_("No memory available to program now: you need to start the target first"));
198 else
199 error (_("No memory available to program: call to malloc failed"));
200 }
201 return val;
202 }
203
204 static CORE_ADDR
205 allocate_space_in_inferior (int len)
206 {
207 return value_as_long (value_allocate_space_in_inferior (len));
208 }
209
210 /* Cast struct value VAL to type TYPE and return as a value.
211 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
212 for this to work. Typedef to one of the codes is permitted.
213 Returns NULL if the cast is neither an upcast nor a downcast. */
214
215 static struct value *
216 value_cast_structs (struct type *type, struct value *v2)
217 {
218 struct type *t1;
219 struct type *t2;
220 struct value *v;
221
222 gdb_assert (type != NULL && v2 != NULL);
223
224 t1 = check_typedef (type);
225 t2 = check_typedef (value_type (v2));
226
227 /* Check preconditions. */
228 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
229 || TYPE_CODE (t1) == TYPE_CODE_UNION)
230 && !!"Precondition is that type is of STRUCT or UNION kind.");
231 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
232 || TYPE_CODE (t2) == TYPE_CODE_UNION)
233 && !!"Precondition is that value is of STRUCT or UNION kind");
234
235 /* Upcasting: look in the type of the source to see if it contains the
236 type of the target as a superclass. If so, we'll need to
237 offset the pointer rather than just change its type. */
238 if (TYPE_NAME (t1) != NULL)
239 {
240 v = search_struct_field (type_name_no_tag (t1),
241 v2, 0, t2, 1);
242 if (v)
243 return v;
244 }
245
246 /* Downcasting: look in the type of the target to see if it contains the
247 type of the source as a superclass. If so, we'll need to
248 offset the pointer rather than just change its type.
249 FIXME: This fails silently with virtual inheritance. */
250 if (TYPE_NAME (t2) != NULL)
251 {
252 v = search_struct_field (type_name_no_tag (t2),
253 value_zero (t1, not_lval), 0, t1, 1);
254 if (v)
255 {
256 /* Downcasting is possible (t1 is superclass of v2). */
257 CORE_ADDR addr2 = value_address (v2);
258 addr2 -= value_address (v) + value_embedded_offset (v);
259 return value_at (type, addr2);
260 }
261 }
262
263 return NULL;
264 }
265
266 /* Cast one pointer or reference type to another. Both TYPE and
267 the type of ARG2 should be pointer types, or else both should be
268 reference types. Returns the new pointer or reference. */
269
270 struct value *
271 value_cast_pointers (struct type *type, struct value *arg2)
272 {
273 struct type *type1 = check_typedef (type);
274 struct type *type2 = check_typedef (value_type (arg2));
275 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
276 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
277
278 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
279 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
280 && !value_logical_not (arg2))
281 {
282 struct value *v2;
283
284 if (TYPE_CODE (type2) == TYPE_CODE_REF)
285 v2 = coerce_ref (arg2);
286 else
287 v2 = value_ind (arg2);
288 gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) == TYPE_CODE_STRUCT
289 && !!"Why did coercion fail?");
290 v2 = value_cast_structs (t1, v2);
291 /* At this point we have what we can have, un-dereference if needed. */
292 if (v2)
293 {
294 struct value *v = value_addr (v2);
295 deprecated_set_value_type (v, type);
296 return v;
297 }
298 }
299
300 /* No superclass found, just change the pointer type. */
301 arg2 = value_copy (arg2);
302 deprecated_set_value_type (arg2, type);
303 arg2 = value_change_enclosing_type (arg2, type);
304 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
305 return arg2;
306 }
307
308 /* Cast value ARG2 to type TYPE and return as a value.
309 More general than a C cast: accepts any two types of the same length,
310 and if ARG2 is an lvalue it can be cast into anything at all. */
311 /* In C++, casts may change pointer or object representations. */
312
313 struct value *
314 value_cast (struct type *type, struct value *arg2)
315 {
316 enum type_code code1;
317 enum type_code code2;
318 int scalar;
319 struct type *type2;
320
321 int convert_to_boolean = 0;
322
323 if (value_type (arg2) == type)
324 return arg2;
325
326 code1 = TYPE_CODE (check_typedef (type));
327
328 /* Check if we are casting struct reference to struct reference. */
329 if (code1 == TYPE_CODE_REF)
330 {
331 /* We dereference type; then we recurse and finally
332 we generate value of the given reference. Nothing wrong with
333 that. */
334 struct type *t1 = check_typedef (type);
335 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
336 struct value *val = value_cast (dereftype, arg2);
337 return value_ref (val);
338 }
339
340 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
341
342 if (code2 == TYPE_CODE_REF)
343 /* We deref the value and then do the cast. */
344 return value_cast (type, coerce_ref (arg2));
345
346 CHECK_TYPEDEF (type);
347 code1 = TYPE_CODE (type);
348 arg2 = coerce_ref (arg2);
349 type2 = check_typedef (value_type (arg2));
350
351 /* You can't cast to a reference type. See value_cast_pointers
352 instead. */
353 gdb_assert (code1 != TYPE_CODE_REF);
354
355 /* A cast to an undetermined-length array_type, such as
356 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
357 where N is sizeof(OBJECT)/sizeof(TYPE). */
358 if (code1 == TYPE_CODE_ARRAY)
359 {
360 struct type *element_type = TYPE_TARGET_TYPE (type);
361 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
362 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
363 {
364 struct type *range_type = TYPE_INDEX_TYPE (type);
365 int val_length = TYPE_LENGTH (type2);
366 LONGEST low_bound, high_bound, new_length;
367 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
368 low_bound = 0, high_bound = 0;
369 new_length = val_length / element_length;
370 if (val_length % element_length != 0)
371 warning (_("array element type size does not divide object size in cast"));
372 /* FIXME-type-allocation: need a way to free this type when
373 we are done with it. */
374 range_type = create_range_type ((struct type *) NULL,
375 TYPE_TARGET_TYPE (range_type),
376 low_bound,
377 new_length + low_bound - 1);
378 deprecated_set_value_type (arg2,
379 create_array_type ((struct type *) NULL,
380 element_type,
381 range_type));
382 return arg2;
383 }
384 }
385
386 if (current_language->c_style_arrays
387 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
388 arg2 = value_coerce_array (arg2);
389
390 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
391 arg2 = value_coerce_function (arg2);
392
393 type2 = check_typedef (value_type (arg2));
394 code2 = TYPE_CODE (type2);
395
396 if (code1 == TYPE_CODE_COMPLEX)
397 return cast_into_complex (type, arg2);
398 if (code1 == TYPE_CODE_BOOL)
399 {
400 code1 = TYPE_CODE_INT;
401 convert_to_boolean = 1;
402 }
403 if (code1 == TYPE_CODE_CHAR)
404 code1 = TYPE_CODE_INT;
405 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
406 code2 = TYPE_CODE_INT;
407
408 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
409 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
410 || code2 == TYPE_CODE_RANGE);
411
412 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
413 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
414 && TYPE_NAME (type) != 0)
415 {
416 struct value *v = value_cast_structs (type, arg2);
417 if (v)
418 return v;
419 }
420
421 if (code1 == TYPE_CODE_FLT && scalar)
422 return value_from_double (type, value_as_double (arg2));
423 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
424 {
425 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
426 int dec_len = TYPE_LENGTH (type);
427 gdb_byte dec[16];
428
429 if (code2 == TYPE_CODE_FLT)
430 decimal_from_floating (arg2, dec, dec_len, byte_order);
431 else if (code2 == TYPE_CODE_DECFLOAT)
432 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
433 byte_order, dec, dec_len, byte_order);
434 else
435 /* The only option left is an integral type. */
436 decimal_from_integral (arg2, dec, dec_len, byte_order);
437
438 return value_from_decfloat (type, dec);
439 }
440 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
441 || code1 == TYPE_CODE_RANGE)
442 && (scalar || code2 == TYPE_CODE_PTR
443 || code2 == TYPE_CODE_MEMBERPTR))
444 {
445 LONGEST longest;
446
447 /* When we cast pointers to integers, we mustn't use
448 gdbarch_pointer_to_address to find the address the pointer
449 represents, as value_as_long would. GDB should evaluate
450 expressions just as the compiler would --- and the compiler
451 sees a cast as a simple reinterpretation of the pointer's
452 bits. */
453 if (code2 == TYPE_CODE_PTR)
454 longest = extract_unsigned_integer
455 (value_contents (arg2), TYPE_LENGTH (type2),
456 gdbarch_byte_order (get_type_arch (type2)));
457 else
458 longest = value_as_long (arg2);
459 return value_from_longest (type, convert_to_boolean ?
460 (LONGEST) (longest ? 1 : 0) : longest);
461 }
462 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
463 || code2 == TYPE_CODE_ENUM
464 || code2 == TYPE_CODE_RANGE))
465 {
466 /* TYPE_LENGTH (type) is the length of a pointer, but we really
467 want the length of an address! -- we are really dealing with
468 addresses (i.e., gdb representations) not pointers (i.e.,
469 target representations) here.
470
471 This allows things like "print *(int *)0x01000234" to work
472 without printing a misleading message -- which would
473 otherwise occur when dealing with a target having two byte
474 pointers and four byte addresses. */
475
476 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
477
478 LONGEST longest = value_as_long (arg2);
479 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
480 {
481 if (longest >= ((LONGEST) 1 << addr_bit)
482 || longest <= -((LONGEST) 1 << addr_bit))
483 warning (_("value truncated"));
484 }
485 return value_from_longest (type, longest);
486 }
487 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
488 && value_as_long (arg2) == 0)
489 {
490 struct value *result = allocate_value (type);
491 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
492 return result;
493 }
494 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
495 && value_as_long (arg2) == 0)
496 {
497 /* The Itanium C++ ABI represents NULL pointers to members as
498 minus one, instead of biasing the normal case. */
499 return value_from_longest (type, -1);
500 }
501 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
502 {
503 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
504 return value_cast_pointers (type, arg2);
505
506 arg2 = value_copy (arg2);
507 deprecated_set_value_type (arg2, type);
508 arg2 = value_change_enclosing_type (arg2, type);
509 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
510 return arg2;
511 }
512 else if (VALUE_LVAL (arg2) == lval_memory)
513 return value_at_lazy (type, value_address (arg2));
514 else if (code1 == TYPE_CODE_VOID)
515 {
516 return value_zero (type, not_lval);
517 }
518 else
519 {
520 error (_("Invalid cast."));
521 return 0;
522 }
523 }
524
525 /* Create a value of type TYPE that is zero, and return it. */
526
527 struct value *
528 value_zero (struct type *type, enum lval_type lv)
529 {
530 struct value *val = allocate_value (type);
531 VALUE_LVAL (val) = lv;
532
533 return val;
534 }
535
536 /* Create a value of numeric type TYPE that is one, and return it. */
537
538 struct value *
539 value_one (struct type *type, enum lval_type lv)
540 {
541 struct type *type1 = check_typedef (type);
542 struct value *val;
543
544 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
545 {
546 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
547 gdb_byte v[16];
548 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
549 val = value_from_decfloat (type, v);
550 }
551 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
552 {
553 val = value_from_double (type, (DOUBLEST) 1);
554 }
555 else if (is_integral_type (type1))
556 {
557 val = value_from_longest (type, (LONGEST) 1);
558 }
559 else
560 {
561 error (_("Not a numeric type."));
562 }
563
564 VALUE_LVAL (val) = lv;
565 return val;
566 }
567
568 /* Return a value with type TYPE located at ADDR.
569
570 Call value_at only if the data needs to be fetched immediately;
571 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
572 value_at_lazy instead. value_at_lazy simply records the address of
573 the data and sets the lazy-evaluation-required flag. The lazy flag
574 is tested in the value_contents macro, which is used if and when
575 the contents are actually required.
576
577 Note: value_at does *NOT* handle embedded offsets; perform such
578 adjustments before or after calling it. */
579
580 struct value *
581 value_at (struct type *type, CORE_ADDR addr)
582 {
583 struct value *val;
584
585 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
586 error (_("Attempt to dereference a generic pointer."));
587
588 val = allocate_value (type);
589
590 read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
591
592 VALUE_LVAL (val) = lval_memory;
593 set_value_address (val, addr);
594
595 return val;
596 }
597
598 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
599
600 struct value *
601 value_at_lazy (struct type *type, CORE_ADDR addr)
602 {
603 struct value *val;
604
605 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
606 error (_("Attempt to dereference a generic pointer."));
607
608 val = allocate_value_lazy (type);
609
610 VALUE_LVAL (val) = lval_memory;
611 set_value_address (val, addr);
612
613 return val;
614 }
615
616 /* Called only from the value_contents and value_contents_all()
617 macros, if the current data for a variable needs to be loaded into
618 value_contents(VAL). Fetches the data from the user's process, and
619 clears the lazy flag to indicate that the data in the buffer is
620 valid.
621
622 If the value is zero-length, we avoid calling read_memory, which
623 would abort. We mark the value as fetched anyway -- all 0 bytes of
624 it.
625
626 This function returns a value because it is used in the
627 value_contents macro as part of an expression, where a void would
628 not work. The value is ignored. */
629
630 int
631 value_fetch_lazy (struct value *val)
632 {
633 gdb_assert (value_lazy (val));
634 allocate_value_contents (val);
635 if (VALUE_LVAL (val) == lval_memory)
636 {
637 CORE_ADDR addr = value_address (val);
638 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
639
640 if (length)
641 read_memory (addr, value_contents_all_raw (val), length);
642 }
643 else if (VALUE_LVAL (val) == lval_register)
644 {
645 struct frame_info *frame;
646 int regnum;
647 struct type *type = check_typedef (value_type (val));
648 struct value *new_val = val, *mark = value_mark ();
649
650 /* Offsets are not supported here; lazy register values must
651 refer to the entire register. */
652 gdb_assert (value_offset (val) == 0);
653
654 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
655 {
656 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
657 regnum = VALUE_REGNUM (new_val);
658
659 gdb_assert (frame != NULL);
660
661 /* Convertible register routines are used for multi-register
662 values and for interpretation in different types
663 (e.g. float or int from a double register). Lazy
664 register values should have the register's natural type,
665 so they do not apply. */
666 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
667 regnum, type));
668
669 new_val = get_frame_register_value (frame, regnum);
670 }
671
672 /* If it's still lazy (for instance, a saved register on the
673 stack), fetch it. */
674 if (value_lazy (new_val))
675 value_fetch_lazy (new_val);
676
677 /* If the register was not saved, mark it unavailable. */
678 if (value_optimized_out (new_val))
679 set_value_optimized_out (val, 1);
680 else
681 memcpy (value_contents_raw (val), value_contents (new_val),
682 TYPE_LENGTH (type));
683
684 if (frame_debug)
685 {
686 struct gdbarch *gdbarch;
687 frame = frame_find_by_id (VALUE_FRAME_ID (val));
688 regnum = VALUE_REGNUM (val);
689 gdbarch = get_frame_arch (frame);
690
691 fprintf_unfiltered (gdb_stdlog, "\
692 { value_fetch_lazy (frame=%d,regnum=%d(%s),...) ",
693 frame_relative_level (frame), regnum,
694 user_reg_map_regnum_to_name (gdbarch, regnum));
695
696 fprintf_unfiltered (gdb_stdlog, "->");
697 if (value_optimized_out (new_val))
698 fprintf_unfiltered (gdb_stdlog, " optimized out");
699 else
700 {
701 int i;
702 const gdb_byte *buf = value_contents (new_val);
703
704 if (VALUE_LVAL (new_val) == lval_register)
705 fprintf_unfiltered (gdb_stdlog, " register=%d",
706 VALUE_REGNUM (new_val));
707 else if (VALUE_LVAL (new_val) == lval_memory)
708 fprintf_unfiltered (gdb_stdlog, " address=%s",
709 paddress (gdbarch,
710 value_address (new_val)));
711 else
712 fprintf_unfiltered (gdb_stdlog, " computed");
713
714 fprintf_unfiltered (gdb_stdlog, " bytes=");
715 fprintf_unfiltered (gdb_stdlog, "[");
716 for (i = 0; i < register_size (gdbarch, regnum); i++)
717 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
718 fprintf_unfiltered (gdb_stdlog, "]");
719 }
720
721 fprintf_unfiltered (gdb_stdlog, " }\n");
722 }
723
724 /* Dispose of the intermediate values. This prevents
725 watchpoints from trying to watch the saved frame pointer. */
726 value_free_to_mark (mark);
727 }
728 else if (VALUE_LVAL (val) == lval_computed)
729 value_computed_funcs (val)->read (val);
730 else
731 internal_error (__FILE__, __LINE__, "Unexpected lazy value type.");
732
733 set_value_lazy (val, 0);
734 return 0;
735 }
736
737
738 /* Store the contents of FROMVAL into the location of TOVAL.
739 Return a new value with the location of TOVAL and contents of FROMVAL. */
740
741 struct value *
742 value_assign (struct value *toval, struct value *fromval)
743 {
744 struct type *type;
745 struct value *val;
746 struct frame_id old_frame;
747
748 if (!deprecated_value_modifiable (toval))
749 error (_("Left operand of assignment is not a modifiable lvalue."));
750
751 toval = coerce_ref (toval);
752
753 type = value_type (toval);
754 if (VALUE_LVAL (toval) != lval_internalvar)
755 {
756 toval = value_coerce_to_target (toval);
757 fromval = value_cast (type, fromval);
758 }
759 else
760 {
761 /* Coerce arrays and functions to pointers, except for arrays
762 which only live in GDB's storage. */
763 if (!value_must_coerce_to_target (fromval))
764 fromval = coerce_array (fromval);
765 }
766
767 CHECK_TYPEDEF (type);
768
769 /* Since modifying a register can trash the frame chain, and
770 modifying memory can trash the frame cache, we save the old frame
771 and then restore the new frame afterwards. */
772 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
773
774 switch (VALUE_LVAL (toval))
775 {
776 case lval_internalvar:
777 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
778 val = value_copy (fromval);
779 val = value_change_enclosing_type (val,
780 value_enclosing_type (fromval));
781 set_value_embedded_offset (val, value_embedded_offset (fromval));
782 set_value_pointed_to_offset (val,
783 value_pointed_to_offset (fromval));
784 return val;
785
786 case lval_internalvar_component:
787 set_internalvar_component (VALUE_INTERNALVAR (toval),
788 value_offset (toval),
789 value_bitpos (toval),
790 value_bitsize (toval),
791 fromval);
792 break;
793
794 case lval_memory:
795 {
796 const gdb_byte *dest_buffer;
797 CORE_ADDR changed_addr;
798 int changed_len;
799 gdb_byte buffer[sizeof (LONGEST)];
800
801 if (value_bitsize (toval))
802 {
803 /* We assume that the argument to read_memory is in units
804 of host chars. FIXME: Is that correct? */
805 changed_len = (value_bitpos (toval)
806 + value_bitsize (toval)
807 + HOST_CHAR_BIT - 1)
808 / HOST_CHAR_BIT;
809
810 if (changed_len > (int) sizeof (LONGEST))
811 error (_("Can't handle bitfields which don't fit in a %d bit word."),
812 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
813
814 read_memory (value_address (toval), buffer, changed_len);
815 modify_field (type, buffer, value_as_long (fromval),
816 value_bitpos (toval), value_bitsize (toval));
817 changed_addr = value_address (toval);
818 dest_buffer = buffer;
819 }
820 else
821 {
822 changed_addr = value_address (toval);
823 changed_len = TYPE_LENGTH (type);
824 dest_buffer = value_contents (fromval);
825 }
826
827 write_memory (changed_addr, dest_buffer, changed_len);
828 if (deprecated_memory_changed_hook)
829 deprecated_memory_changed_hook (changed_addr, changed_len);
830 }
831 break;
832
833 case lval_register:
834 {
835 struct frame_info *frame;
836 struct gdbarch *gdbarch;
837 int value_reg;
838
839 /* Figure out which frame this is in currently. */
840 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
841 value_reg = VALUE_REGNUM (toval);
842
843 if (!frame)
844 error (_("Value being assigned to is no longer active."));
845
846 gdbarch = get_frame_arch (frame);
847 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
848 {
849 /* If TOVAL is a special machine register requiring
850 conversion of program values to a special raw
851 format. */
852 gdbarch_value_to_register (gdbarch, frame,
853 VALUE_REGNUM (toval), type,
854 value_contents (fromval));
855 }
856 else
857 {
858 if (value_bitsize (toval))
859 {
860 int changed_len;
861 gdb_byte buffer[sizeof (LONGEST)];
862
863 changed_len = (value_bitpos (toval)
864 + value_bitsize (toval)
865 + HOST_CHAR_BIT - 1)
866 / HOST_CHAR_BIT;
867
868 if (changed_len > (int) sizeof (LONGEST))
869 error (_("Can't handle bitfields which don't fit in a %d bit word."),
870 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
871
872 get_frame_register_bytes (frame, value_reg,
873 value_offset (toval),
874 changed_len, buffer);
875
876 modify_field (type, buffer, value_as_long (fromval),
877 value_bitpos (toval), value_bitsize (toval));
878
879 put_frame_register_bytes (frame, value_reg,
880 value_offset (toval),
881 changed_len, buffer);
882 }
883 else
884 {
885 put_frame_register_bytes (frame, value_reg,
886 value_offset (toval),
887 TYPE_LENGTH (type),
888 value_contents (fromval));
889 }
890 }
891
892 if (deprecated_register_changed_hook)
893 deprecated_register_changed_hook (-1);
894 observer_notify_target_changed (&current_target);
895 break;
896 }
897
898 case lval_computed:
899 {
900 struct lval_funcs *funcs = value_computed_funcs (toval);
901
902 funcs->write (toval, fromval);
903 }
904 break;
905
906 default:
907 error (_("Left operand of assignment is not an lvalue."));
908 }
909
910 /* Assigning to the stack pointer, frame pointer, and other
911 (architecture and calling convention specific) registers may
912 cause the frame cache to be out of date. Assigning to memory
913 also can. We just do this on all assignments to registers or
914 memory, for simplicity's sake; I doubt the slowdown matters. */
915 switch (VALUE_LVAL (toval))
916 {
917 case lval_memory:
918 case lval_register:
919
920 reinit_frame_cache ();
921
922 /* Having destroyed the frame cache, restore the selected
923 frame. */
924
925 /* FIXME: cagney/2002-11-02: There has to be a better way of
926 doing this. Instead of constantly saving/restoring the
927 frame. Why not create a get_selected_frame() function that,
928 having saved the selected frame's ID can automatically
929 re-find the previously selected frame automatically. */
930
931 {
932 struct frame_info *fi = frame_find_by_id (old_frame);
933 if (fi != NULL)
934 select_frame (fi);
935 }
936
937 break;
938 default:
939 break;
940 }
941
942 /* If the field does not entirely fill a LONGEST, then zero the sign
943 bits. If the field is signed, and is negative, then sign
944 extend. */
945 if ((value_bitsize (toval) > 0)
946 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
947 {
948 LONGEST fieldval = value_as_long (fromval);
949 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
950
951 fieldval &= valmask;
952 if (!TYPE_UNSIGNED (type)
953 && (fieldval & (valmask ^ (valmask >> 1))))
954 fieldval |= ~valmask;
955
956 fromval = value_from_longest (type, fieldval);
957 }
958
959 val = value_copy (toval);
960 memcpy (value_contents_raw (val), value_contents (fromval),
961 TYPE_LENGTH (type));
962 deprecated_set_value_type (val, type);
963 val = value_change_enclosing_type (val,
964 value_enclosing_type (fromval));
965 set_value_embedded_offset (val, value_embedded_offset (fromval));
966 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
967
968 return val;
969 }
970
971 /* Extend a value VAL to COUNT repetitions of its type. */
972
973 struct value *
974 value_repeat (struct value *arg1, int count)
975 {
976 struct value *val;
977
978 if (VALUE_LVAL (arg1) != lval_memory)
979 error (_("Only values in memory can be extended with '@'."));
980 if (count < 1)
981 error (_("Invalid number %d of repetitions."), count);
982
983 val = allocate_repeat_value (value_enclosing_type (arg1), count);
984
985 read_memory (value_address (arg1),
986 value_contents_all_raw (val),
987 TYPE_LENGTH (value_enclosing_type (val)));
988 VALUE_LVAL (val) = lval_memory;
989 set_value_address (val, value_address (arg1));
990
991 return val;
992 }
993
994 struct value *
995 value_of_variable (struct symbol *var, struct block *b)
996 {
997 struct value *val;
998 struct frame_info *frame;
999
1000 if (!symbol_read_needs_frame (var))
1001 frame = NULL;
1002 else if (!b)
1003 frame = get_selected_frame (_("No frame selected."));
1004 else
1005 {
1006 frame = block_innermost_frame (b);
1007 if (!frame)
1008 {
1009 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1010 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1011 error (_("No frame is currently executing in block %s."),
1012 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1013 else
1014 error (_("No frame is currently executing in specified block"));
1015 }
1016 }
1017
1018 val = read_var_value (var, frame);
1019 if (!val)
1020 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
1021
1022 return val;
1023 }
1024
1025 struct value *
1026 address_of_variable (struct symbol *var, struct block *b)
1027 {
1028 struct type *type = SYMBOL_TYPE (var);
1029 struct value *val;
1030
1031 /* Evaluate it first; if the result is a memory address, we're fine.
1032 Lazy evaluation pays off here. */
1033
1034 val = value_of_variable (var, b);
1035
1036 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1037 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1038 {
1039 CORE_ADDR addr = value_address (val);
1040 return value_from_pointer (lookup_pointer_type (type), addr);
1041 }
1042
1043 /* Not a memory address; check what the problem was. */
1044 switch (VALUE_LVAL (val))
1045 {
1046 case lval_register:
1047 {
1048 struct frame_info *frame;
1049 const char *regname;
1050
1051 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1052 gdb_assert (frame);
1053
1054 regname = gdbarch_register_name (get_frame_arch (frame),
1055 VALUE_REGNUM (val));
1056 gdb_assert (regname && *regname);
1057
1058 error (_("Address requested for identifier "
1059 "\"%s\" which is in register $%s"),
1060 SYMBOL_PRINT_NAME (var), regname);
1061 break;
1062 }
1063
1064 default:
1065 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1066 SYMBOL_PRINT_NAME (var));
1067 break;
1068 }
1069
1070 return val;
1071 }
1072
1073 /* Return one if VAL does not live in target memory, but should in order
1074 to operate on it. Otherwise return zero. */
1075
1076 int
1077 value_must_coerce_to_target (struct value *val)
1078 {
1079 struct type *valtype;
1080
1081 /* The only lval kinds which do not live in target memory. */
1082 if (VALUE_LVAL (val) != not_lval
1083 && VALUE_LVAL (val) != lval_internalvar)
1084 return 0;
1085
1086 valtype = check_typedef (value_type (val));
1087
1088 switch (TYPE_CODE (valtype))
1089 {
1090 case TYPE_CODE_ARRAY:
1091 case TYPE_CODE_STRING:
1092 return 1;
1093 default:
1094 return 0;
1095 }
1096 }
1097
1098 /* Make sure that VAL lives in target memory if it's supposed to. For instance,
1099 strings are constructed as character arrays in GDB's storage, and this
1100 function copies them to the target. */
1101
1102 struct value *
1103 value_coerce_to_target (struct value *val)
1104 {
1105 LONGEST length;
1106 CORE_ADDR addr;
1107
1108 if (!value_must_coerce_to_target (val))
1109 return val;
1110
1111 length = TYPE_LENGTH (check_typedef (value_type (val)));
1112 addr = allocate_space_in_inferior (length);
1113 write_memory (addr, value_contents (val), length);
1114 return value_at_lazy (value_type (val), addr);
1115 }
1116
1117 /* Given a value which is an array, return a value which is a pointer
1118 to its first element, regardless of whether or not the array has a
1119 nonzero lower bound.
1120
1121 FIXME: A previous comment here indicated that this routine should
1122 be substracting the array's lower bound. It's not clear to me that
1123 this is correct. Given an array subscripting operation, it would
1124 certainly work to do the adjustment here, essentially computing:
1125
1126 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1127
1128 However I believe a more appropriate and logical place to account
1129 for the lower bound is to do so in value_subscript, essentially
1130 computing:
1131
1132 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1133
1134 As further evidence consider what would happen with operations
1135 other than array subscripting, where the caller would get back a
1136 value that had an address somewhere before the actual first element
1137 of the array, and the information about the lower bound would be
1138 lost because of the coercion to pointer type.
1139 */
1140
1141 struct value *
1142 value_coerce_array (struct value *arg1)
1143 {
1144 struct type *type = check_typedef (value_type (arg1));
1145
1146 /* If the user tries to do something requiring a pointer with an
1147 array that has not yet been pushed to the target, then this would
1148 be a good time to do so. */
1149 arg1 = value_coerce_to_target (arg1);
1150
1151 if (VALUE_LVAL (arg1) != lval_memory)
1152 error (_("Attempt to take address of value not located in memory."));
1153
1154 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1155 value_address (arg1));
1156 }
1157
1158 /* Given a value which is a function, return a value which is a pointer
1159 to it. */
1160
1161 struct value *
1162 value_coerce_function (struct value *arg1)
1163 {
1164 struct value *retval;
1165
1166 if (VALUE_LVAL (arg1) != lval_memory)
1167 error (_("Attempt to take address of value not located in memory."));
1168
1169 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1170 value_address (arg1));
1171 return retval;
1172 }
1173
1174 /* Return a pointer value for the object for which ARG1 is the
1175 contents. */
1176
1177 struct value *
1178 value_addr (struct value *arg1)
1179 {
1180 struct value *arg2;
1181
1182 struct type *type = check_typedef (value_type (arg1));
1183 if (TYPE_CODE (type) == TYPE_CODE_REF)
1184 {
1185 /* Copy the value, but change the type from (T&) to (T*). We
1186 keep the same location information, which is efficient, and
1187 allows &(&X) to get the location containing the reference. */
1188 arg2 = value_copy (arg1);
1189 deprecated_set_value_type (arg2,
1190 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1191 return arg2;
1192 }
1193 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1194 return value_coerce_function (arg1);
1195
1196 /* If this is an array that has not yet been pushed to the target,
1197 then this would be a good time to force it to memory. */
1198 arg1 = value_coerce_to_target (arg1);
1199
1200 if (VALUE_LVAL (arg1) != lval_memory)
1201 error (_("Attempt to take address of value not located in memory."));
1202
1203 /* Get target memory address */
1204 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1205 (value_address (arg1)
1206 + value_embedded_offset (arg1)));
1207
1208 /* This may be a pointer to a base subobject; so remember the
1209 full derived object's type ... */
1210 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1)));
1211 /* ... and also the relative position of the subobject in the full
1212 object. */
1213 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1214 return arg2;
1215 }
1216
1217 /* Return a reference value for the object for which ARG1 is the
1218 contents. */
1219
1220 struct value *
1221 value_ref (struct value *arg1)
1222 {
1223 struct value *arg2;
1224
1225 struct type *type = check_typedef (value_type (arg1));
1226 if (TYPE_CODE (type) == TYPE_CODE_REF)
1227 return arg1;
1228
1229 arg2 = value_addr (arg1);
1230 deprecated_set_value_type (arg2, lookup_reference_type (type));
1231 return arg2;
1232 }
1233
1234 /* Given a value of a pointer type, apply the C unary * operator to
1235 it. */
1236
1237 struct value *
1238 value_ind (struct value *arg1)
1239 {
1240 struct type *base_type;
1241 struct value *arg2;
1242
1243 arg1 = coerce_array (arg1);
1244
1245 base_type = check_typedef (value_type (arg1));
1246
1247 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1248 {
1249 struct type *enc_type;
1250 /* We may be pointing to something embedded in a larger object.
1251 Get the real type of the enclosing object. */
1252 enc_type = check_typedef (value_enclosing_type (arg1));
1253 enc_type = TYPE_TARGET_TYPE (enc_type);
1254
1255 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1256 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1257 /* For functions, go through find_function_addr, which knows
1258 how to handle function descriptors. */
1259 arg2 = value_at_lazy (enc_type,
1260 find_function_addr (arg1, NULL));
1261 else
1262 /* Retrieve the enclosing object pointed to */
1263 arg2 = value_at_lazy (enc_type,
1264 (value_as_address (arg1)
1265 - value_pointed_to_offset (arg1)));
1266
1267 /* Re-adjust type. */
1268 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
1269 /* Add embedding info. */
1270 arg2 = value_change_enclosing_type (arg2, enc_type);
1271 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
1272
1273 /* We may be pointing to an object of some derived type. */
1274 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1275 return arg2;
1276 }
1277
1278 error (_("Attempt to take contents of a non-pointer value."));
1279 return 0; /* For lint -- never reached. */
1280 }
1281 \f
1282 /* Create a value for an array by allocating space in GDB, copying
1283 copying the data into that space, and then setting up an array
1284 value.
1285
1286 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1287 is populated from the values passed in ELEMVEC.
1288
1289 The element type of the array is inherited from the type of the
1290 first element, and all elements must have the same size (though we
1291 don't currently enforce any restriction on their types). */
1292
1293 struct value *
1294 value_array (int lowbound, int highbound, struct value **elemvec)
1295 {
1296 int nelem;
1297 int idx;
1298 unsigned int typelength;
1299 struct value *val;
1300 struct type *arraytype;
1301 CORE_ADDR addr;
1302
1303 /* Validate that the bounds are reasonable and that each of the
1304 elements have the same size. */
1305
1306 nelem = highbound - lowbound + 1;
1307 if (nelem <= 0)
1308 {
1309 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1310 }
1311 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1312 for (idx = 1; idx < nelem; idx++)
1313 {
1314 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1315 {
1316 error (_("array elements must all be the same size"));
1317 }
1318 }
1319
1320 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1321 lowbound, highbound);
1322
1323 if (!current_language->c_style_arrays)
1324 {
1325 val = allocate_value (arraytype);
1326 for (idx = 0; idx < nelem; idx++)
1327 {
1328 memcpy (value_contents_all_raw (val) + (idx * typelength),
1329 value_contents_all (elemvec[idx]),
1330 typelength);
1331 }
1332 return val;
1333 }
1334
1335 /* Allocate space to store the array, and then initialize it by
1336 copying in each element. */
1337
1338 val = allocate_value (arraytype);
1339 for (idx = 0; idx < nelem; idx++)
1340 memcpy (value_contents_writeable (val) + (idx * typelength),
1341 value_contents_all (elemvec[idx]),
1342 typelength);
1343 return val;
1344 }
1345
1346 struct value *
1347 value_cstring (char *ptr, int len, struct type *char_type)
1348 {
1349 struct value *val;
1350 int lowbound = current_language->string_lower_bound;
1351 int highbound = len / TYPE_LENGTH (char_type);
1352 struct type *stringtype
1353 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1354
1355 val = allocate_value (stringtype);
1356 memcpy (value_contents_raw (val), ptr, len);
1357 return val;
1358 }
1359
1360 /* Create a value for a string constant by allocating space in the
1361 inferior, copying the data into that space, and returning the
1362 address with type TYPE_CODE_STRING. PTR points to the string
1363 constant data; LEN is number of characters.
1364
1365 Note that string types are like array of char types with a lower
1366 bound of zero and an upper bound of LEN - 1. Also note that the
1367 string may contain embedded null bytes. */
1368
1369 struct value *
1370 value_string (char *ptr, int len, struct type *char_type)
1371 {
1372 struct value *val;
1373 int lowbound = current_language->string_lower_bound;
1374 int highbound = len / TYPE_LENGTH (char_type);
1375 struct type *stringtype
1376 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1377
1378 val = allocate_value (stringtype);
1379 memcpy (value_contents_raw (val), ptr, len);
1380 return val;
1381 }
1382
1383 struct value *
1384 value_bitstring (char *ptr, int len, struct type *index_type)
1385 {
1386 struct value *val;
1387 struct type *domain_type
1388 = create_range_type (NULL, index_type, 0, len - 1);
1389 struct type *type = create_set_type (NULL, domain_type);
1390 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1391 val = allocate_value (type);
1392 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1393 return val;
1394 }
1395 \f
1396 /* See if we can pass arguments in T2 to a function which takes
1397 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1398 a NULL-terminated vector. If some arguments need coercion of some
1399 sort, then the coerced values are written into T2. Return value is
1400 0 if the arguments could be matched, or the position at which they
1401 differ if not.
1402
1403 STATICP is nonzero if the T1 argument list came from a static
1404 member function. T2 will still include the ``this'' pointer, but
1405 it will be skipped.
1406
1407 For non-static member functions, we ignore the first argument,
1408 which is the type of the instance variable. This is because we
1409 want to handle calls with objects from derived classes. This is
1410 not entirely correct: we should actually check to make sure that a
1411 requested operation is type secure, shouldn't we? FIXME. */
1412
1413 static int
1414 typecmp (int staticp, int varargs, int nargs,
1415 struct field t1[], struct value *t2[])
1416 {
1417 int i;
1418
1419 if (t2 == 0)
1420 internal_error (__FILE__, __LINE__,
1421 _("typecmp: no argument list"));
1422
1423 /* Skip ``this'' argument if applicable. T2 will always include
1424 THIS. */
1425 if (staticp)
1426 t2 ++;
1427
1428 for (i = 0;
1429 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1430 i++)
1431 {
1432 struct type *tt1, *tt2;
1433
1434 if (!t2[i])
1435 return i + 1;
1436
1437 tt1 = check_typedef (t1[i].type);
1438 tt2 = check_typedef (value_type (t2[i]));
1439
1440 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1441 /* We should be doing hairy argument matching, as below. */
1442 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1443 {
1444 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1445 t2[i] = value_coerce_array (t2[i]);
1446 else
1447 t2[i] = value_ref (t2[i]);
1448 continue;
1449 }
1450
1451 /* djb - 20000715 - Until the new type structure is in the
1452 place, and we can attempt things like implicit conversions,
1453 we need to do this so you can take something like a map<const
1454 char *>, and properly access map["hello"], because the
1455 argument to [] will be a reference to a pointer to a char,
1456 and the argument will be a pointer to a char. */
1457 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1458 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1459 {
1460 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1461 }
1462 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1463 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1464 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1465 {
1466 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1467 }
1468 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1469 continue;
1470 /* Array to pointer is a `trivial conversion' according to the
1471 ARM. */
1472
1473 /* We should be doing much hairier argument matching (see
1474 section 13.2 of the ARM), but as a quick kludge, just check
1475 for the same type code. */
1476 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1477 return i + 1;
1478 }
1479 if (varargs || t2[i] == NULL)
1480 return 0;
1481 return i + 1;
1482 }
1483
1484 /* Helper function used by value_struct_elt to recurse through
1485 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1486 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1487 TYPE. If found, return value, else return NULL.
1488
1489 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1490 fields, look for a baseclass named NAME. */
1491
1492 static struct value *
1493 search_struct_field (char *name, struct value *arg1, int offset,
1494 struct type *type, int looking_for_baseclass)
1495 {
1496 int i;
1497 int nbases = TYPE_N_BASECLASSES (type);
1498
1499 CHECK_TYPEDEF (type);
1500
1501 if (!looking_for_baseclass)
1502 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1503 {
1504 char *t_field_name = TYPE_FIELD_NAME (type, i);
1505
1506 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1507 {
1508 struct value *v;
1509 if (field_is_static (&TYPE_FIELD (type, i)))
1510 {
1511 v = value_static_field (type, i);
1512 if (v == 0)
1513 error (_("field %s is nonexistent or has been optimised out"),
1514 name);
1515 }
1516 else
1517 {
1518 v = value_primitive_field (arg1, offset, i, type);
1519 if (v == 0)
1520 error (_("there is no field named %s"), name);
1521 }
1522 return v;
1523 }
1524
1525 if (t_field_name
1526 && (t_field_name[0] == '\0'
1527 || (TYPE_CODE (type) == TYPE_CODE_UNION
1528 && (strcmp_iw (t_field_name, "else") == 0))))
1529 {
1530 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1531 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1532 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1533 {
1534 /* Look for a match through the fields of an anonymous
1535 union, or anonymous struct. C++ provides anonymous
1536 unions.
1537
1538 In the GNU Chill (now deleted from GDB)
1539 implementation of variant record types, each
1540 <alternative field> has an (anonymous) union type,
1541 each member of the union represents a <variant
1542 alternative>. Each <variant alternative> is
1543 represented as a struct, with a member for each
1544 <variant field>. */
1545
1546 struct value *v;
1547 int new_offset = offset;
1548
1549 /* This is pretty gross. In G++, the offset in an
1550 anonymous union is relative to the beginning of the
1551 enclosing struct. In the GNU Chill (now deleted
1552 from GDB) implementation of variant records, the
1553 bitpos is zero in an anonymous union field, so we
1554 have to add the offset of the union here. */
1555 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1556 || (TYPE_NFIELDS (field_type) > 0
1557 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1558 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1559
1560 v = search_struct_field (name, arg1, new_offset,
1561 field_type,
1562 looking_for_baseclass);
1563 if (v)
1564 return v;
1565 }
1566 }
1567 }
1568
1569 for (i = 0; i < nbases; i++)
1570 {
1571 struct value *v;
1572 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1573 /* If we are looking for baseclasses, this is what we get when
1574 we hit them. But it could happen that the base part's member
1575 name is not yet filled in. */
1576 int found_baseclass = (looking_for_baseclass
1577 && TYPE_BASECLASS_NAME (type, i) != NULL
1578 && (strcmp_iw (name,
1579 TYPE_BASECLASS_NAME (type,
1580 i)) == 0));
1581
1582 if (BASETYPE_VIA_VIRTUAL (type, i))
1583 {
1584 int boffset;
1585 struct value *v2;
1586
1587 boffset = baseclass_offset (type, i,
1588 value_contents (arg1) + offset,
1589 value_address (arg1) + offset);
1590 if (boffset == -1)
1591 error (_("virtual baseclass botch"));
1592
1593 /* The virtual base class pointer might have been clobbered
1594 by the user program. Make sure that it still points to a
1595 valid memory location. */
1596
1597 boffset += offset;
1598 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
1599 {
1600 CORE_ADDR base_addr;
1601
1602 v2 = allocate_value (basetype);
1603 base_addr = value_address (arg1) + boffset;
1604 if (target_read_memory (base_addr,
1605 value_contents_raw (v2),
1606 TYPE_LENGTH (basetype)) != 0)
1607 error (_("virtual baseclass botch"));
1608 VALUE_LVAL (v2) = lval_memory;
1609 set_value_address (v2, base_addr);
1610 }
1611 else
1612 {
1613 if (VALUE_LVAL (arg1) == lval_memory && value_lazy (arg1))
1614 v2 = allocate_value_lazy (basetype);
1615 else
1616 {
1617 v2 = allocate_value (basetype);
1618 memcpy (value_contents_raw (v2),
1619 value_contents_raw (arg1) + boffset,
1620 TYPE_LENGTH (basetype));
1621 }
1622 set_value_component_location (v2, arg1);
1623 VALUE_FRAME_ID (v2) = VALUE_FRAME_ID (arg1);
1624 set_value_offset (v2, value_offset (arg1) + boffset);
1625 }
1626
1627 if (found_baseclass)
1628 return v2;
1629 v = search_struct_field (name, v2, 0,
1630 TYPE_BASECLASS (type, i),
1631 looking_for_baseclass);
1632 }
1633 else if (found_baseclass)
1634 v = value_primitive_field (arg1, offset, i, type);
1635 else
1636 v = search_struct_field (name, arg1,
1637 offset + TYPE_BASECLASS_BITPOS (type,
1638 i) / 8,
1639 basetype, looking_for_baseclass);
1640 if (v)
1641 return v;
1642 }
1643 return NULL;
1644 }
1645
1646 /* Helper function used by value_struct_elt to recurse through
1647 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1648 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1649 TYPE.
1650
1651 If found, return value, else if name matched and args not return
1652 (value) -1, else return NULL. */
1653
1654 static struct value *
1655 search_struct_method (char *name, struct value **arg1p,
1656 struct value **args, int offset,
1657 int *static_memfuncp, struct type *type)
1658 {
1659 int i;
1660 struct value *v;
1661 int name_matched = 0;
1662 char dem_opname[64];
1663
1664 CHECK_TYPEDEF (type);
1665 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1666 {
1667 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1668 /* FIXME! May need to check for ARM demangling here */
1669 if (strncmp (t_field_name, "__", 2) == 0 ||
1670 strncmp (t_field_name, "op", 2) == 0 ||
1671 strncmp (t_field_name, "type", 4) == 0)
1672 {
1673 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
1674 t_field_name = dem_opname;
1675 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
1676 t_field_name = dem_opname;
1677 }
1678 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1679 {
1680 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1681 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1682 name_matched = 1;
1683
1684 check_stub_method_group (type, i);
1685 if (j > 0 && args == 0)
1686 error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
1687 else if (j == 0 && args == 0)
1688 {
1689 v = value_fn_field (arg1p, f, j, type, offset);
1690 if (v != NULL)
1691 return v;
1692 }
1693 else
1694 while (j >= 0)
1695 {
1696 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1697 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
1698 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
1699 TYPE_FN_FIELD_ARGS (f, j), args))
1700 {
1701 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1702 return value_virtual_fn_field (arg1p, f, j,
1703 type, offset);
1704 if (TYPE_FN_FIELD_STATIC_P (f, j)
1705 && static_memfuncp)
1706 *static_memfuncp = 1;
1707 v = value_fn_field (arg1p, f, j, type, offset);
1708 if (v != NULL)
1709 return v;
1710 }
1711 j--;
1712 }
1713 }
1714 }
1715
1716 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1717 {
1718 int base_offset;
1719
1720 if (BASETYPE_VIA_VIRTUAL (type, i))
1721 {
1722 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1723 const gdb_byte *base_valaddr;
1724
1725 /* The virtual base class pointer might have been
1726 clobbered by the user program. Make sure that it
1727 still points to a valid memory location. */
1728
1729 if (offset < 0 || offset >= TYPE_LENGTH (type))
1730 {
1731 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
1732 if (target_read_memory (value_address (*arg1p) + offset,
1733 tmp, TYPE_LENGTH (baseclass)) != 0)
1734 error (_("virtual baseclass botch"));
1735 base_valaddr = tmp;
1736 }
1737 else
1738 base_valaddr = value_contents (*arg1p) + offset;
1739
1740 base_offset = baseclass_offset (type, i, base_valaddr,
1741 value_address (*arg1p) + offset);
1742 if (base_offset == -1)
1743 error (_("virtual baseclass botch"));
1744 }
1745 else
1746 {
1747 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1748 }
1749 v = search_struct_method (name, arg1p, args, base_offset + offset,
1750 static_memfuncp, TYPE_BASECLASS (type, i));
1751 if (v == (struct value *) - 1)
1752 {
1753 name_matched = 1;
1754 }
1755 else if (v)
1756 {
1757 /* FIXME-bothner: Why is this commented out? Why is it here? */
1758 /* *arg1p = arg1_tmp; */
1759 return v;
1760 }
1761 }
1762 if (name_matched)
1763 return (struct value *) - 1;
1764 else
1765 return NULL;
1766 }
1767
1768 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1769 extract the component named NAME from the ultimate target
1770 structure/union and return it as a value with its appropriate type.
1771 ERR is used in the error message if *ARGP's type is wrong.
1772
1773 C++: ARGS is a list of argument types to aid in the selection of
1774 an appropriate method. Also, handle derived types.
1775
1776 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1777 where the truthvalue of whether the function that was resolved was
1778 a static member function or not is stored.
1779
1780 ERR is an error message to be printed in case the field is not
1781 found. */
1782
1783 struct value *
1784 value_struct_elt (struct value **argp, struct value **args,
1785 char *name, int *static_memfuncp, char *err)
1786 {
1787 struct type *t;
1788 struct value *v;
1789
1790 *argp = coerce_array (*argp);
1791
1792 t = check_typedef (value_type (*argp));
1793
1794 /* Follow pointers until we get to a non-pointer. */
1795
1796 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1797 {
1798 *argp = value_ind (*argp);
1799 /* Don't coerce fn pointer to fn and then back again! */
1800 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1801 *argp = coerce_array (*argp);
1802 t = check_typedef (value_type (*argp));
1803 }
1804
1805 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1806 && TYPE_CODE (t) != TYPE_CODE_UNION)
1807 error (_("Attempt to extract a component of a value that is not a %s."), err);
1808
1809 /* Assume it's not, unless we see that it is. */
1810 if (static_memfuncp)
1811 *static_memfuncp = 0;
1812
1813 if (!args)
1814 {
1815 /* if there are no arguments ...do this... */
1816
1817 /* Try as a field first, because if we succeed, there is less
1818 work to be done. */
1819 v = search_struct_field (name, *argp, 0, t, 0);
1820 if (v)
1821 return v;
1822
1823 /* C++: If it was not found as a data field, then try to
1824 return it as a pointer to a method. */
1825 v = search_struct_method (name, argp, args, 0,
1826 static_memfuncp, t);
1827
1828 if (v == (struct value *) - 1)
1829 error (_("Cannot take address of method %s."), name);
1830 else if (v == 0)
1831 {
1832 if (TYPE_NFN_FIELDS (t))
1833 error (_("There is no member or method named %s."), name);
1834 else
1835 error (_("There is no member named %s."), name);
1836 }
1837 return v;
1838 }
1839
1840 v = search_struct_method (name, argp, args, 0,
1841 static_memfuncp, t);
1842
1843 if (v == (struct value *) - 1)
1844 {
1845 error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
1846 }
1847 else if (v == 0)
1848 {
1849 /* See if user tried to invoke data as function. If so, hand it
1850 back. If it's not callable (i.e., a pointer to function),
1851 gdb should give an error. */
1852 v = search_struct_field (name, *argp, 0, t, 0);
1853 /* If we found an ordinary field, then it is not a method call.
1854 So, treat it as if it were a static member function. */
1855 if (v && static_memfuncp)
1856 *static_memfuncp = 1;
1857 }
1858
1859 if (!v)
1860 error (_("Structure has no component named %s."), name);
1861 return v;
1862 }
1863
1864 /* Search through the methods of an object (and its bases) to find a
1865 specified method. Return the pointer to the fn_field list of
1866 overloaded instances.
1867
1868 Helper function for value_find_oload_list.
1869 ARGP is a pointer to a pointer to a value (the object).
1870 METHOD is a string containing the method name.
1871 OFFSET is the offset within the value.
1872 TYPE is the assumed type of the object.
1873 NUM_FNS is the number of overloaded instances.
1874 BASETYPE is set to the actual type of the subobject where the
1875 method is found.
1876 BOFFSET is the offset of the base subobject where the method is found.
1877 */
1878
1879 static struct fn_field *
1880 find_method_list (struct value **argp, char *method,
1881 int offset, struct type *type, int *num_fns,
1882 struct type **basetype, int *boffset)
1883 {
1884 int i;
1885 struct fn_field *f;
1886 CHECK_TYPEDEF (type);
1887
1888 *num_fns = 0;
1889
1890 /* First check in object itself. */
1891 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1892 {
1893 /* pai: FIXME What about operators and type conversions? */
1894 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1895 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
1896 {
1897 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
1898 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1899
1900 *num_fns = len;
1901 *basetype = type;
1902 *boffset = offset;
1903
1904 /* Resolve any stub methods. */
1905 check_stub_method_group (type, i);
1906
1907 return f;
1908 }
1909 }
1910
1911 /* Not found in object, check in base subobjects. */
1912 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1913 {
1914 int base_offset;
1915 if (BASETYPE_VIA_VIRTUAL (type, i))
1916 {
1917 base_offset = value_offset (*argp) + offset;
1918 base_offset = baseclass_offset (type, i,
1919 value_contents (*argp) + base_offset,
1920 value_address (*argp) + base_offset);
1921 if (base_offset == -1)
1922 error (_("virtual baseclass botch"));
1923 }
1924 else /* Non-virtual base, simply use bit position from debug
1925 info. */
1926 {
1927 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1928 }
1929 f = find_method_list (argp, method, base_offset + offset,
1930 TYPE_BASECLASS (type, i), num_fns,
1931 basetype, boffset);
1932 if (f)
1933 return f;
1934 }
1935 return NULL;
1936 }
1937
1938 /* Return the list of overloaded methods of a specified name.
1939
1940 ARGP is a pointer to a pointer to a value (the object).
1941 METHOD is the method name.
1942 OFFSET is the offset within the value contents.
1943 NUM_FNS is the number of overloaded instances.
1944 BASETYPE is set to the type of the base subobject that defines the
1945 method.
1946 BOFFSET is the offset of the base subobject which defines the method.
1947 */
1948
1949 struct fn_field *
1950 value_find_oload_method_list (struct value **argp, char *method,
1951 int offset, int *num_fns,
1952 struct type **basetype, int *boffset)
1953 {
1954 struct type *t;
1955
1956 t = check_typedef (value_type (*argp));
1957
1958 /* Code snarfed from value_struct_elt. */
1959 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1960 {
1961 *argp = value_ind (*argp);
1962 /* Don't coerce fn pointer to fn and then back again! */
1963 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1964 *argp = coerce_array (*argp);
1965 t = check_typedef (value_type (*argp));
1966 }
1967
1968 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1969 && TYPE_CODE (t) != TYPE_CODE_UNION)
1970 error (_("Attempt to extract a component of a value that is not a struct or union"));
1971
1972 return find_method_list (argp, method, 0, t, num_fns,
1973 basetype, boffset);
1974 }
1975
1976 /* Given an array of argument types (ARGTYPES) (which includes an
1977 entry for "this" in the case of C++ methods), the number of
1978 arguments NARGS, the NAME of a function whether it's a method or
1979 not (METHOD), and the degree of laxness (LAX) in conforming to
1980 overload resolution rules in ANSI C++, find the best function that
1981 matches on the argument types according to the overload resolution
1982 rules.
1983
1984 In the case of class methods, the parameter OBJ is an object value
1985 in which to search for overloaded methods.
1986
1987 In the case of non-method functions, the parameter FSYM is a symbol
1988 corresponding to one of the overloaded functions.
1989
1990 Return value is an integer: 0 -> good match, 10 -> debugger applied
1991 non-standard coercions, 100 -> incompatible.
1992
1993 If a method is being searched for, VALP will hold the value.
1994 If a non-method is being searched for, SYMP will hold the symbol
1995 for it.
1996
1997 If a method is being searched for, and it is a static method,
1998 then STATICP will point to a non-zero value.
1999
2000 Note: This function does *not* check the value of
2001 overload_resolution. Caller must check it to see whether overload
2002 resolution is permitted.
2003 */
2004
2005 int
2006 find_overload_match (struct type **arg_types, int nargs,
2007 char *name, int method, int lax,
2008 struct value **objp, struct symbol *fsym,
2009 struct value **valp, struct symbol **symp,
2010 int *staticp)
2011 {
2012 struct value *obj = (objp ? *objp : NULL);
2013 /* Index of best overloaded function. */
2014 int oload_champ;
2015 /* The measure for the current best match. */
2016 struct badness_vector *oload_champ_bv = NULL;
2017 struct value *temp = obj;
2018 /* For methods, the list of overloaded methods. */
2019 struct fn_field *fns_ptr = NULL;
2020 /* For non-methods, the list of overloaded function symbols. */
2021 struct symbol **oload_syms = NULL;
2022 /* Number of overloaded instances being considered. */
2023 int num_fns = 0;
2024 struct type *basetype = NULL;
2025 int boffset;
2026 int ix;
2027 int static_offset;
2028 struct cleanup *old_cleanups = NULL;
2029
2030 const char *obj_type_name = NULL;
2031 char *func_name = NULL;
2032 enum oload_classification match_quality;
2033
2034 /* Get the list of overloaded methods or functions. */
2035 if (method)
2036 {
2037 gdb_assert (obj);
2038 obj_type_name = TYPE_NAME (value_type (obj));
2039 /* Hack: evaluate_subexp_standard often passes in a pointer
2040 value rather than the object itself, so try again. */
2041 if ((!obj_type_name || !*obj_type_name)
2042 && (TYPE_CODE (value_type (obj)) == TYPE_CODE_PTR))
2043 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj)));
2044
2045 fns_ptr = value_find_oload_method_list (&temp, name,
2046 0, &num_fns,
2047 &basetype, &boffset);
2048 if (!fns_ptr || !num_fns)
2049 error (_("Couldn't find method %s%s%s"),
2050 obj_type_name,
2051 (obj_type_name && *obj_type_name) ? "::" : "",
2052 name);
2053 /* If we are dealing with stub method types, they should have
2054 been resolved by find_method_list via
2055 value_find_oload_method_list above. */
2056 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2057 oload_champ = find_oload_champ (arg_types, nargs, method,
2058 num_fns, fns_ptr,
2059 oload_syms, &oload_champ_bv);
2060 }
2061 else
2062 {
2063 const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym);
2064
2065 /* If we have a C++ name, try to extract just the function
2066 part. */
2067 if (qualified_name)
2068 func_name = cp_func_name (qualified_name);
2069
2070 /* If there was no C++ name, this must be a C-style function.
2071 Just return the same symbol. Do the same if cp_func_name
2072 fails for some reason. */
2073 if (func_name == NULL)
2074 {
2075 *symp = fsym;
2076 return 0;
2077 }
2078
2079 old_cleanups = make_cleanup (xfree, func_name);
2080 make_cleanup (xfree, oload_syms);
2081 make_cleanup (xfree, oload_champ_bv);
2082
2083 oload_champ = find_oload_champ_namespace (arg_types, nargs,
2084 func_name,
2085 qualified_name,
2086 &oload_syms,
2087 &oload_champ_bv);
2088 }
2089
2090 /* Check how bad the best match is. */
2091
2092 match_quality =
2093 classify_oload_match (oload_champ_bv, nargs,
2094 oload_method_static (method, fns_ptr,
2095 oload_champ));
2096
2097 if (match_quality == INCOMPATIBLE)
2098 {
2099 if (method)
2100 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2101 obj_type_name,
2102 (obj_type_name && *obj_type_name) ? "::" : "",
2103 name);
2104 else
2105 error (_("Cannot resolve function %s to any overloaded instance"),
2106 func_name);
2107 }
2108 else if (match_quality == NON_STANDARD)
2109 {
2110 if (method)
2111 warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
2112 obj_type_name,
2113 (obj_type_name && *obj_type_name) ? "::" : "",
2114 name);
2115 else
2116 warning (_("Using non-standard conversion to match function %s to supplied arguments"),
2117 func_name);
2118 }
2119
2120 if (method)
2121 {
2122 if (staticp != NULL)
2123 *staticp = oload_method_static (method, fns_ptr, oload_champ);
2124 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2125 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ,
2126 basetype, boffset);
2127 else
2128 *valp = value_fn_field (&temp, fns_ptr, oload_champ,
2129 basetype, boffset);
2130 }
2131 else
2132 {
2133 *symp = oload_syms[oload_champ];
2134 }
2135
2136 if (objp)
2137 {
2138 struct type *temp_type = check_typedef (value_type (temp));
2139 struct type *obj_type = check_typedef (value_type (*objp));
2140 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2141 && (TYPE_CODE (obj_type) == TYPE_CODE_PTR
2142 || TYPE_CODE (obj_type) == TYPE_CODE_REF))
2143 {
2144 temp = value_addr (temp);
2145 }
2146 *objp = temp;
2147 }
2148 if (old_cleanups != NULL)
2149 do_cleanups (old_cleanups);
2150
2151 switch (match_quality)
2152 {
2153 case INCOMPATIBLE:
2154 return 100;
2155 case NON_STANDARD:
2156 return 10;
2157 default: /* STANDARD */
2158 return 0;
2159 }
2160 }
2161
2162 /* Find the best overload match, searching for FUNC_NAME in namespaces
2163 contained in QUALIFIED_NAME until it either finds a good match or
2164 runs out of namespaces. It stores the overloaded functions in
2165 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2166 calling function is responsible for freeing *OLOAD_SYMS and
2167 *OLOAD_CHAMP_BV. */
2168
2169 static int
2170 find_oload_champ_namespace (struct type **arg_types, int nargs,
2171 const char *func_name,
2172 const char *qualified_name,
2173 struct symbol ***oload_syms,
2174 struct badness_vector **oload_champ_bv)
2175 {
2176 int oload_champ;
2177
2178 find_oload_champ_namespace_loop (arg_types, nargs,
2179 func_name,
2180 qualified_name, 0,
2181 oload_syms, oload_champ_bv,
2182 &oload_champ);
2183
2184 return oload_champ;
2185 }
2186
2187 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2188 how deep we've looked for namespaces, and the champ is stored in
2189 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2190 if it isn't.
2191
2192 It is the caller's responsibility to free *OLOAD_SYMS and
2193 *OLOAD_CHAMP_BV. */
2194
2195 static int
2196 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2197 const char *func_name,
2198 const char *qualified_name,
2199 int namespace_len,
2200 struct symbol ***oload_syms,
2201 struct badness_vector **oload_champ_bv,
2202 int *oload_champ)
2203 {
2204 int next_namespace_len = namespace_len;
2205 int searched_deeper = 0;
2206 int num_fns = 0;
2207 struct cleanup *old_cleanups;
2208 int new_oload_champ;
2209 struct symbol **new_oload_syms;
2210 struct badness_vector *new_oload_champ_bv;
2211 char *new_namespace;
2212
2213 if (next_namespace_len != 0)
2214 {
2215 gdb_assert (qualified_name[next_namespace_len] == ':');
2216 next_namespace_len += 2;
2217 }
2218 next_namespace_len +=
2219 cp_find_first_component (qualified_name + next_namespace_len);
2220
2221 /* Initialize these to values that can safely be xfree'd. */
2222 *oload_syms = NULL;
2223 *oload_champ_bv = NULL;
2224
2225 /* First, see if we have a deeper namespace we can search in.
2226 If we get a good match there, use it. */
2227
2228 if (qualified_name[next_namespace_len] == ':')
2229 {
2230 searched_deeper = 1;
2231
2232 if (find_oload_champ_namespace_loop (arg_types, nargs,
2233 func_name, qualified_name,
2234 next_namespace_len,
2235 oload_syms, oload_champ_bv,
2236 oload_champ))
2237 {
2238 return 1;
2239 }
2240 };
2241
2242 /* If we reach here, either we're in the deepest namespace or we
2243 didn't find a good match in a deeper namespace. But, in the
2244 latter case, we still have a bad match in a deeper namespace;
2245 note that we might not find any match at all in the current
2246 namespace. (There's always a match in the deepest namespace,
2247 because this overload mechanism only gets called if there's a
2248 function symbol to start off with.) */
2249
2250 old_cleanups = make_cleanup (xfree, *oload_syms);
2251 old_cleanups = make_cleanup (xfree, *oload_champ_bv);
2252 new_namespace = alloca (namespace_len + 1);
2253 strncpy (new_namespace, qualified_name, namespace_len);
2254 new_namespace[namespace_len] = '\0';
2255 new_oload_syms = make_symbol_overload_list (func_name,
2256 new_namespace);
2257 while (new_oload_syms[num_fns])
2258 ++num_fns;
2259
2260 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2261 NULL, new_oload_syms,
2262 &new_oload_champ_bv);
2263
2264 /* Case 1: We found a good match. Free earlier matches (if any),
2265 and return it. Case 2: We didn't find a good match, but we're
2266 not the deepest function. Then go with the bad match that the
2267 deeper function found. Case 3: We found a bad match, and we're
2268 the deepest function. Then return what we found, even though
2269 it's a bad match. */
2270
2271 if (new_oload_champ != -1
2272 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2273 {
2274 *oload_syms = new_oload_syms;
2275 *oload_champ = new_oload_champ;
2276 *oload_champ_bv = new_oload_champ_bv;
2277 do_cleanups (old_cleanups);
2278 return 1;
2279 }
2280 else if (searched_deeper)
2281 {
2282 xfree (new_oload_syms);
2283 xfree (new_oload_champ_bv);
2284 discard_cleanups (old_cleanups);
2285 return 0;
2286 }
2287 else
2288 {
2289 gdb_assert (new_oload_champ != -1);
2290 *oload_syms = new_oload_syms;
2291 *oload_champ = new_oload_champ;
2292 *oload_champ_bv = new_oload_champ_bv;
2293 discard_cleanups (old_cleanups);
2294 return 0;
2295 }
2296 }
2297
2298 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2299 the best match from among the overloaded methods or functions
2300 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2301 The number of methods/functions in the list is given by NUM_FNS.
2302 Return the index of the best match; store an indication of the
2303 quality of the match in OLOAD_CHAMP_BV.
2304
2305 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2306
2307 static int
2308 find_oload_champ (struct type **arg_types, int nargs, int method,
2309 int num_fns, struct fn_field *fns_ptr,
2310 struct symbol **oload_syms,
2311 struct badness_vector **oload_champ_bv)
2312 {
2313 int ix;
2314 /* A measure of how good an overloaded instance is. */
2315 struct badness_vector *bv;
2316 /* Index of best overloaded function. */
2317 int oload_champ = -1;
2318 /* Current ambiguity state for overload resolution. */
2319 int oload_ambiguous = 0;
2320 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2321
2322 *oload_champ_bv = NULL;
2323
2324 /* Consider each candidate in turn. */
2325 for (ix = 0; ix < num_fns; ix++)
2326 {
2327 int jj;
2328 int static_offset = oload_method_static (method, fns_ptr, ix);
2329 int nparms;
2330 struct type **parm_types;
2331
2332 if (method)
2333 {
2334 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2335 }
2336 else
2337 {
2338 /* If it's not a method, this is the proper place. */
2339 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2340 }
2341
2342 /* Prepare array of parameter types. */
2343 parm_types = (struct type **)
2344 xmalloc (nparms * (sizeof (struct type *)));
2345 for (jj = 0; jj < nparms; jj++)
2346 parm_types[jj] = (method
2347 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2348 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2349 jj));
2350
2351 /* Compare parameter types to supplied argument types. Skip
2352 THIS for static methods. */
2353 bv = rank_function (parm_types, nparms,
2354 arg_types + static_offset,
2355 nargs - static_offset);
2356
2357 if (!*oload_champ_bv)
2358 {
2359 *oload_champ_bv = bv;
2360 oload_champ = 0;
2361 }
2362 else /* See whether current candidate is better or worse than
2363 previous best. */
2364 switch (compare_badness (bv, *oload_champ_bv))
2365 {
2366 case 0: /* Top two contenders are equally good. */
2367 oload_ambiguous = 1;
2368 break;
2369 case 1: /* Incomparable top contenders. */
2370 oload_ambiguous = 2;
2371 break;
2372 case 2: /* New champion, record details. */
2373 *oload_champ_bv = bv;
2374 oload_ambiguous = 0;
2375 oload_champ = ix;
2376 break;
2377 case 3:
2378 default:
2379 break;
2380 }
2381 xfree (parm_types);
2382 if (overload_debug)
2383 {
2384 if (method)
2385 fprintf_filtered (gdb_stderr,
2386 "Overloaded method instance %s, # of parms %d\n",
2387 fns_ptr[ix].physname, nparms);
2388 else
2389 fprintf_filtered (gdb_stderr,
2390 "Overloaded function instance %s # of parms %d\n",
2391 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2392 nparms);
2393 for (jj = 0; jj < nargs - static_offset; jj++)
2394 fprintf_filtered (gdb_stderr,
2395 "...Badness @ %d : %d\n",
2396 jj, bv->rank[jj]);
2397 fprintf_filtered (gdb_stderr,
2398 "Overload resolution champion is %d, ambiguous? %d\n",
2399 oload_champ, oload_ambiguous);
2400 }
2401 }
2402
2403 return oload_champ;
2404 }
2405
2406 /* Return 1 if we're looking at a static method, 0 if we're looking at
2407 a non-static method or a function that isn't a method. */
2408
2409 static int
2410 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2411 {
2412 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2413 return 1;
2414 else
2415 return 0;
2416 }
2417
2418 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2419
2420 static enum oload_classification
2421 classify_oload_match (struct badness_vector *oload_champ_bv,
2422 int nargs,
2423 int static_offset)
2424 {
2425 int ix;
2426
2427 for (ix = 1; ix <= nargs - static_offset; ix++)
2428 {
2429 if (oload_champ_bv->rank[ix] >= 100)
2430 return INCOMPATIBLE; /* Truly mismatched types. */
2431 else if (oload_champ_bv->rank[ix] >= 10)
2432 return NON_STANDARD; /* Non-standard type conversions
2433 needed. */
2434 }
2435
2436 return STANDARD; /* Only standard conversions needed. */
2437 }
2438
2439 /* C++: return 1 is NAME is a legitimate name for the destructor of
2440 type TYPE. If TYPE does not have a destructor, or if NAME is
2441 inappropriate for TYPE, an error is signaled. */
2442 int
2443 destructor_name_p (const char *name, const struct type *type)
2444 {
2445 if (name[0] == '~')
2446 {
2447 char *dname = type_name_no_tag (type);
2448 char *cp = strchr (dname, '<');
2449 unsigned int len;
2450
2451 /* Do not compare the template part for template classes. */
2452 if (cp == NULL)
2453 len = strlen (dname);
2454 else
2455 len = cp - dname;
2456 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2457 error (_("name of destructor must equal name of class"));
2458 else
2459 return 1;
2460 }
2461 return 0;
2462 }
2463
2464 /* Given TYPE, a structure/union,
2465 return 1 if the component named NAME from the ultimate target
2466 structure/union is defined, otherwise, return 0. */
2467
2468 int
2469 check_field (struct type *type, const char *name)
2470 {
2471 int i;
2472
2473 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2474 {
2475 char *t_field_name = TYPE_FIELD_NAME (type, i);
2476 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2477 return 1;
2478 }
2479
2480 /* C++: If it was not found as a data field, then try to return it
2481 as a pointer to a method. */
2482
2483 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2484 {
2485 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2486 return 1;
2487 }
2488
2489 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2490 if (check_field (TYPE_BASECLASS (type, i), name))
2491 return 1;
2492
2493 return 0;
2494 }
2495
2496 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2497 return the appropriate member (or the address of the member, if
2498 WANT_ADDRESS). This function is used to resolve user expressions
2499 of the form "DOMAIN::NAME". For more details on what happens, see
2500 the comment before value_struct_elt_for_reference. */
2501
2502 struct value *
2503 value_aggregate_elt (struct type *curtype,
2504 char *name, int want_address,
2505 enum noside noside)
2506 {
2507 switch (TYPE_CODE (curtype))
2508 {
2509 case TYPE_CODE_STRUCT:
2510 case TYPE_CODE_UNION:
2511 return value_struct_elt_for_reference (curtype, 0, curtype,
2512 name, NULL,
2513 want_address, noside);
2514 case TYPE_CODE_NAMESPACE:
2515 return value_namespace_elt (curtype, name,
2516 want_address, noside);
2517 default:
2518 internal_error (__FILE__, __LINE__,
2519 _("non-aggregate type in value_aggregate_elt"));
2520 }
2521 }
2522
2523 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2524 return the address of this member as a "pointer to member" type.
2525 If INTYPE is non-null, then it will be the type of the member we
2526 are looking for. This will help us resolve "pointers to member
2527 functions". This function is used to resolve user expressions of
2528 the form "DOMAIN::NAME". */
2529
2530 static struct value *
2531 value_struct_elt_for_reference (struct type *domain, int offset,
2532 struct type *curtype, char *name,
2533 struct type *intype,
2534 int want_address,
2535 enum noside noside)
2536 {
2537 struct type *t = curtype;
2538 int i;
2539 struct value *v, *result;
2540
2541 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2542 && TYPE_CODE (t) != TYPE_CODE_UNION)
2543 error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
2544
2545 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2546 {
2547 char *t_field_name = TYPE_FIELD_NAME (t, i);
2548
2549 if (t_field_name && strcmp (t_field_name, name) == 0)
2550 {
2551 if (field_is_static (&TYPE_FIELD (t, i)))
2552 {
2553 v = value_static_field (t, i);
2554 if (v == NULL)
2555 error (_("static field %s has been optimized out"),
2556 name);
2557 if (want_address)
2558 v = value_addr (v);
2559 return v;
2560 }
2561 if (TYPE_FIELD_PACKED (t, i))
2562 error (_("pointers to bitfield members not allowed"));
2563
2564 if (want_address)
2565 return value_from_longest
2566 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
2567 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2568 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2569 return allocate_value (TYPE_FIELD_TYPE (t, i));
2570 else
2571 error (_("Cannot reference non-static field \"%s\""), name);
2572 }
2573 }
2574
2575 /* C++: If it was not found as a data field, then try to return it
2576 as a pointer to a method. */
2577
2578 /* Perform all necessary dereferencing. */
2579 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2580 intype = TYPE_TARGET_TYPE (intype);
2581
2582 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2583 {
2584 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2585 char dem_opname[64];
2586
2587 if (strncmp (t_field_name, "__", 2) == 0
2588 || strncmp (t_field_name, "op", 2) == 0
2589 || strncmp (t_field_name, "type", 4) == 0)
2590 {
2591 if (cplus_demangle_opname (t_field_name,
2592 dem_opname, DMGL_ANSI))
2593 t_field_name = dem_opname;
2594 else if (cplus_demangle_opname (t_field_name,
2595 dem_opname, 0))
2596 t_field_name = dem_opname;
2597 }
2598 if (t_field_name && strcmp (t_field_name, name) == 0)
2599 {
2600 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
2601 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
2602
2603 check_stub_method_group (t, i);
2604
2605 if (intype == 0 && j > 1)
2606 error (_("non-unique member `%s' requires type instantiation"), name);
2607 if (intype)
2608 {
2609 while (j--)
2610 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
2611 break;
2612 if (j < 0)
2613 error (_("no member function matches that type instantiation"));
2614 }
2615 else
2616 j = 0;
2617
2618 if (TYPE_FN_FIELD_STATIC_P (f, j))
2619 {
2620 struct symbol *s =
2621 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2622 0, VAR_DOMAIN, 0);
2623 if (s == NULL)
2624 return NULL;
2625
2626 if (want_address)
2627 return value_addr (read_var_value (s, 0));
2628 else
2629 return read_var_value (s, 0);
2630 }
2631
2632 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2633 {
2634 if (want_address)
2635 {
2636 result = allocate_value
2637 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2638 cplus_make_method_ptr (value_type (result),
2639 value_contents_writeable (result),
2640 TYPE_FN_FIELD_VOFFSET (f, j), 1);
2641 }
2642 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2643 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
2644 else
2645 error (_("Cannot reference virtual member function \"%s\""),
2646 name);
2647 }
2648 else
2649 {
2650 struct symbol *s =
2651 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2652 0, VAR_DOMAIN, 0);
2653 if (s == NULL)
2654 return NULL;
2655
2656 v = read_var_value (s, 0);
2657 if (!want_address)
2658 result = v;
2659 else
2660 {
2661 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2662 cplus_make_method_ptr (value_type (result),
2663 value_contents_writeable (result),
2664 value_address (v), 0);
2665 }
2666 }
2667 return result;
2668 }
2669 }
2670 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
2671 {
2672 struct value *v;
2673 int base_offset;
2674
2675 if (BASETYPE_VIA_VIRTUAL (t, i))
2676 base_offset = 0;
2677 else
2678 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
2679 v = value_struct_elt_for_reference (domain,
2680 offset + base_offset,
2681 TYPE_BASECLASS (t, i),
2682 name, intype,
2683 want_address, noside);
2684 if (v)
2685 return v;
2686 }
2687
2688 /* As a last chance, pretend that CURTYPE is a namespace, and look
2689 it up that way; this (frequently) works for types nested inside
2690 classes. */
2691
2692 return value_maybe_namespace_elt (curtype, name,
2693 want_address, noside);
2694 }
2695
2696 /* C++: Return the member NAME of the namespace given by the type
2697 CURTYPE. */
2698
2699 static struct value *
2700 value_namespace_elt (const struct type *curtype,
2701 char *name, int want_address,
2702 enum noside noside)
2703 {
2704 struct value *retval = value_maybe_namespace_elt (curtype, name,
2705 want_address,
2706 noside);
2707
2708 if (retval == NULL)
2709 error (_("No symbol \"%s\" in namespace \"%s\"."),
2710 name, TYPE_TAG_NAME (curtype));
2711
2712 return retval;
2713 }
2714
2715 /* A helper function used by value_namespace_elt and
2716 value_struct_elt_for_reference. It looks up NAME inside the
2717 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
2718 is a class and NAME refers to a type in CURTYPE itself (as opposed
2719 to, say, some base class of CURTYPE). */
2720
2721 static struct value *
2722 value_maybe_namespace_elt (const struct type *curtype,
2723 char *name, int want_address,
2724 enum noside noside)
2725 {
2726 const char *namespace_name = TYPE_TAG_NAME (curtype);
2727 struct symbol *sym;
2728 struct value *result;
2729
2730 sym = cp_lookup_symbol_namespace (namespace_name, name, NULL,
2731 get_selected_block (0),
2732 VAR_DOMAIN);
2733
2734 if (sym == NULL)
2735 return NULL;
2736 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
2737 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
2738 result = allocate_value (SYMBOL_TYPE (sym));
2739 else
2740 result = value_of_variable (sym, get_selected_block (0));
2741
2742 if (result && want_address)
2743 result = value_addr (result);
2744
2745 return result;
2746 }
2747
2748 /* Given a pointer value V, find the real (RTTI) type of the object it
2749 points to.
2750
2751 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
2752 and refer to the values computed for the object pointed to. */
2753
2754 struct type *
2755 value_rtti_target_type (struct value *v, int *full,
2756 int *top, int *using_enc)
2757 {
2758 struct value *target;
2759
2760 target = value_ind (v);
2761
2762 return value_rtti_type (target, full, top, using_enc);
2763 }
2764
2765 /* Given a value pointed to by ARGP, check its real run-time type, and
2766 if that is different from the enclosing type, create a new value
2767 using the real run-time type as the enclosing type (and of the same
2768 type as ARGP) and return it, with the embedded offset adjusted to
2769 be the correct offset to the enclosed object. RTYPE is the type,
2770 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
2771 by value_rtti_type(). If these are available, they can be supplied
2772 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
2773 NULL if they're not available. */
2774
2775 struct value *
2776 value_full_object (struct value *argp,
2777 struct type *rtype,
2778 int xfull, int xtop,
2779 int xusing_enc)
2780 {
2781 struct type *real_type;
2782 int full = 0;
2783 int top = -1;
2784 int using_enc = 0;
2785 struct value *new_val;
2786
2787 if (rtype)
2788 {
2789 real_type = rtype;
2790 full = xfull;
2791 top = xtop;
2792 using_enc = xusing_enc;
2793 }
2794 else
2795 real_type = value_rtti_type (argp, &full, &top, &using_enc);
2796
2797 /* If no RTTI data, or if object is already complete, do nothing. */
2798 if (!real_type || real_type == value_enclosing_type (argp))
2799 return argp;
2800
2801 /* If we have the full object, but for some reason the enclosing
2802 type is wrong, set it. */
2803 /* pai: FIXME -- sounds iffy */
2804 if (full)
2805 {
2806 argp = value_change_enclosing_type (argp, real_type);
2807 return argp;
2808 }
2809
2810 /* Check if object is in memory */
2811 if (VALUE_LVAL (argp) != lval_memory)
2812 {
2813 warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."),
2814 TYPE_NAME (real_type));
2815
2816 return argp;
2817 }
2818
2819 /* All other cases -- retrieve the complete object. */
2820 /* Go back by the computed top_offset from the beginning of the
2821 object, adjusting for the embedded offset of argp if that's what
2822 value_rtti_type used for its computation. */
2823 new_val = value_at_lazy (real_type, value_address (argp) - top +
2824 (using_enc ? 0 : value_embedded_offset (argp)));
2825 deprecated_set_value_type (new_val, value_type (argp));
2826 set_value_embedded_offset (new_val, (using_enc
2827 ? top + value_embedded_offset (argp)
2828 : top));
2829 return new_val;
2830 }
2831
2832
2833 /* Return the value of the local variable, if one exists.
2834 Flag COMPLAIN signals an error if the request is made in an
2835 inappropriate context. */
2836
2837 struct value *
2838 value_of_local (const char *name, int complain)
2839 {
2840 struct symbol *func, *sym;
2841 struct block *b;
2842 struct value * ret;
2843 struct frame_info *frame;
2844
2845 if (complain)
2846 frame = get_selected_frame (_("no frame selected"));
2847 else
2848 {
2849 frame = deprecated_safe_get_selected_frame ();
2850 if (frame == 0)
2851 return 0;
2852 }
2853
2854 func = get_frame_function (frame);
2855 if (!func)
2856 {
2857 if (complain)
2858 error (_("no `%s' in nameless context"), name);
2859 else
2860 return 0;
2861 }
2862
2863 b = SYMBOL_BLOCK_VALUE (func);
2864 if (dict_empty (BLOCK_DICT (b)))
2865 {
2866 if (complain)
2867 error (_("no args, no `%s'"), name);
2868 else
2869 return 0;
2870 }
2871
2872 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2873 symbol instead of the LOC_ARG one (if both exist). */
2874 sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN);
2875 if (sym == NULL)
2876 {
2877 if (complain)
2878 error (_("current stack frame does not contain a variable named `%s'"),
2879 name);
2880 else
2881 return NULL;
2882 }
2883
2884 ret = read_var_value (sym, frame);
2885 if (ret == 0 && complain)
2886 error (_("`%s' argument unreadable"), name);
2887 return ret;
2888 }
2889
2890 /* C++/Objective-C: return the value of the class instance variable,
2891 if one exists. Flag COMPLAIN signals an error if the request is
2892 made in an inappropriate context. */
2893
2894 struct value *
2895 value_of_this (int complain)
2896 {
2897 if (!current_language->la_name_of_this)
2898 return 0;
2899 return value_of_local (current_language->la_name_of_this, complain);
2900 }
2901
2902 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
2903 elements long, starting at LOWBOUND. The result has the same lower
2904 bound as the original ARRAY. */
2905
2906 struct value *
2907 value_slice (struct value *array, int lowbound, int length)
2908 {
2909 struct type *slice_range_type, *slice_type, *range_type;
2910 LONGEST lowerbound, upperbound;
2911 struct value *slice;
2912 struct type *array_type;
2913
2914 array_type = check_typedef (value_type (array));
2915 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
2916 && TYPE_CODE (array_type) != TYPE_CODE_STRING
2917 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
2918 error (_("cannot take slice of non-array"));
2919
2920 range_type = TYPE_INDEX_TYPE (array_type);
2921 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2922 error (_("slice from bad array or bitstring"));
2923
2924 if (lowbound < lowerbound || length < 0
2925 || lowbound + length - 1 > upperbound)
2926 error (_("slice out of range"));
2927
2928 /* FIXME-type-allocation: need a way to free this type when we are
2929 done with it. */
2930 slice_range_type = create_range_type ((struct type *) NULL,
2931 TYPE_TARGET_TYPE (range_type),
2932 lowbound,
2933 lowbound + length - 1);
2934 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
2935 {
2936 int i;
2937
2938 slice_type = create_set_type ((struct type *) NULL,
2939 slice_range_type);
2940 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
2941 slice = value_zero (slice_type, not_lval);
2942
2943 for (i = 0; i < length; i++)
2944 {
2945 int element = value_bit_index (array_type,
2946 value_contents (array),
2947 lowbound + i);
2948 if (element < 0)
2949 error (_("internal error accessing bitstring"));
2950 else if (element > 0)
2951 {
2952 int j = i % TARGET_CHAR_BIT;
2953 if (gdbarch_bits_big_endian (get_type_arch (array_type)))
2954 j = TARGET_CHAR_BIT - 1 - j;
2955 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
2956 }
2957 }
2958 /* We should set the address, bitssize, and bitspos, so the
2959 slice can be used on the LHS, but that may require extensions
2960 to value_assign. For now, just leave as a non_lval.
2961 FIXME. */
2962 }
2963 else
2964 {
2965 struct type *element_type = TYPE_TARGET_TYPE (array_type);
2966 LONGEST offset =
2967 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
2968
2969 slice_type = create_array_type ((struct type *) NULL,
2970 element_type,
2971 slice_range_type);
2972 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
2973
2974 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
2975 slice = allocate_value_lazy (slice_type);
2976 else
2977 {
2978 slice = allocate_value (slice_type);
2979 memcpy (value_contents_writeable (slice),
2980 value_contents (array) + offset,
2981 TYPE_LENGTH (slice_type));
2982 }
2983
2984 set_value_component_location (slice, array);
2985 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
2986 set_value_offset (slice, value_offset (array) + offset);
2987 }
2988 return slice;
2989 }
2990
2991 /* Create a value for a FORTRAN complex number. Currently most of the
2992 time values are coerced to COMPLEX*16 (i.e. a complex number
2993 composed of 2 doubles. This really should be a smarter routine
2994 that figures out precision inteligently as opposed to assuming
2995 doubles. FIXME: fmb */
2996
2997 struct value *
2998 value_literal_complex (struct value *arg1,
2999 struct value *arg2,
3000 struct type *type)
3001 {
3002 struct value *val;
3003 struct type *real_type = TYPE_TARGET_TYPE (type);
3004
3005 val = allocate_value (type);
3006 arg1 = value_cast (real_type, arg1);
3007 arg2 = value_cast (real_type, arg2);
3008
3009 memcpy (value_contents_raw (val),
3010 value_contents (arg1), TYPE_LENGTH (real_type));
3011 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3012 value_contents (arg2), TYPE_LENGTH (real_type));
3013 return val;
3014 }
3015
3016 /* Cast a value into the appropriate complex data type. */
3017
3018 static struct value *
3019 cast_into_complex (struct type *type, struct value *val)
3020 {
3021 struct type *real_type = TYPE_TARGET_TYPE (type);
3022
3023 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3024 {
3025 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3026 struct value *re_val = allocate_value (val_real_type);
3027 struct value *im_val = allocate_value (val_real_type);
3028
3029 memcpy (value_contents_raw (re_val),
3030 value_contents (val), TYPE_LENGTH (val_real_type));
3031 memcpy (value_contents_raw (im_val),
3032 value_contents (val) + TYPE_LENGTH (val_real_type),
3033 TYPE_LENGTH (val_real_type));
3034
3035 return value_literal_complex (re_val, im_val, type);
3036 }
3037 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3038 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3039 return value_literal_complex (val,
3040 value_zero (real_type, not_lval),
3041 type);
3042 else
3043 error (_("cannot cast non-number to complex"));
3044 }
3045
3046 void
3047 _initialize_valops (void)
3048 {
3049 add_setshow_boolean_cmd ("overload-resolution", class_support,
3050 &overload_resolution, _("\
3051 Set overload resolution in evaluating C++ functions."), _("\
3052 Show overload resolution in evaluating C++ functions."),
3053 NULL, NULL,
3054 show_overload_resolution,
3055 &setlist, &showlist);
3056 overload_resolution = 1;
3057 }
This page took 0.08828 seconds and 5 git commands to generate.