* varobj.c (varobj_create): Call do_cleanups on early exit path.
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33 #include "regcache.h"
34 #include "cp-abi.h"
35 #include "block.h"
36 #include "infcall.h"
37 #include "dictionary.h"
38 #include "cp-support.h"
39 #include "dfp.h"
40 #include "user-regs.h"
41 #include "tracepoint.h"
42 #include <errno.h>
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
46 #include "observer.h"
47 #include "objfiles.h"
48 #include "symtab.h"
49 #include "exceptions.h"
50
51 extern int overload_debug;
52 /* Local functions. */
53
54 static int typecmp (int staticp, int varargs, int nargs,
55 struct field t1[], struct value *t2[]);
56
57 static struct value *search_struct_field (const char *, struct value *,
58 int, struct type *, int);
59
60 static struct value *search_struct_method (const char *, struct value **,
61 struct value **,
62 int, int *, struct type *);
63
64 static int find_oload_champ_namespace (struct type **, int,
65 const char *, const char *,
66 struct symbol ***,
67 struct badness_vector **,
68 const int no_adl);
69
70 static
71 int find_oload_champ_namespace_loop (struct type **, int,
72 const char *, const char *,
73 int, struct symbol ***,
74 struct badness_vector **, int *,
75 const int no_adl);
76
77 static int find_oload_champ (struct type **, int, int, int,
78 struct fn_field *, struct symbol **,
79 struct badness_vector **);
80
81 static int oload_method_static (int, struct fn_field *, int);
82
83 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
84
85 static enum
86 oload_classification classify_oload_match (struct badness_vector *,
87 int, int);
88
89 static struct value *value_struct_elt_for_reference (struct type *,
90 int, struct type *,
91 char *,
92 struct type *,
93 int, enum noside);
94
95 static struct value *value_namespace_elt (const struct type *,
96 char *, int , enum noside);
97
98 static struct value *value_maybe_namespace_elt (const struct type *,
99 char *, int,
100 enum noside);
101
102 static CORE_ADDR allocate_space_in_inferior (int);
103
104 static struct value *cast_into_complex (struct type *, struct value *);
105
106 static struct fn_field *find_method_list (struct value **, const char *,
107 int, struct type *, int *,
108 struct type **, int *);
109
110 void _initialize_valops (void);
111
112 #if 0
113 /* Flag for whether we want to abandon failed expression evals by
114 default. */
115
116 static int auto_abandon = 0;
117 #endif
118
119 int overload_resolution = 0;
120 static void
121 show_overload_resolution (struct ui_file *file, int from_tty,
122 struct cmd_list_element *c,
123 const char *value)
124 {
125 fprintf_filtered (file, _("Overload resolution in evaluating "
126 "C++ functions is %s.\n"),
127 value);
128 }
129
130 /* Find the address of function name NAME in the inferior. If OBJF_P
131 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
132 is defined. */
133
134 struct value *
135 find_function_in_inferior (const char *name, struct objfile **objf_p)
136 {
137 struct symbol *sym;
138
139 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
140 if (sym != NULL)
141 {
142 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
143 {
144 error (_("\"%s\" exists in this program but is not a function."),
145 name);
146 }
147
148 if (objf_p)
149 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
150
151 return value_of_variable (sym, NULL);
152 }
153 else
154 {
155 struct minimal_symbol *msymbol =
156 lookup_minimal_symbol (name, NULL, NULL);
157
158 if (msymbol != NULL)
159 {
160 struct objfile *objfile = msymbol_objfile (msymbol);
161 struct gdbarch *gdbarch = get_objfile_arch (objfile);
162
163 struct type *type;
164 CORE_ADDR maddr;
165 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
166 type = lookup_function_type (type);
167 type = lookup_pointer_type (type);
168 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
169
170 if (objf_p)
171 *objf_p = objfile;
172
173 return value_from_pointer (type, maddr);
174 }
175 else
176 {
177 if (!target_has_execution)
178 error (_("evaluation of this expression "
179 "requires the target program to be active"));
180 else
181 error (_("evaluation of this expression requires the "
182 "program to have a function \"%s\"."),
183 name);
184 }
185 }
186 }
187
188 /* Allocate NBYTES of space in the inferior using the inferior's
189 malloc and return a value that is a pointer to the allocated
190 space. */
191
192 struct value *
193 value_allocate_space_in_inferior (int len)
194 {
195 struct objfile *objf;
196 struct value *val = find_function_in_inferior ("malloc", &objf);
197 struct gdbarch *gdbarch = get_objfile_arch (objf);
198 struct value *blocklen;
199
200 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
201 val = call_function_by_hand (val, 1, &blocklen);
202 if (value_logical_not (val))
203 {
204 if (!target_has_execution)
205 error (_("No memory available to program now: "
206 "you need to start the target first"));
207 else
208 error (_("No memory available to program: call to malloc failed"));
209 }
210 return val;
211 }
212
213 static CORE_ADDR
214 allocate_space_in_inferior (int len)
215 {
216 return value_as_long (value_allocate_space_in_inferior (len));
217 }
218
219 /* Cast struct value VAL to type TYPE and return as a value.
220 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
221 for this to work. Typedef to one of the codes is permitted.
222 Returns NULL if the cast is neither an upcast nor a downcast. */
223
224 static struct value *
225 value_cast_structs (struct type *type, struct value *v2)
226 {
227 struct type *t1;
228 struct type *t2;
229 struct value *v;
230
231 gdb_assert (type != NULL && v2 != NULL);
232
233 t1 = check_typedef (type);
234 t2 = check_typedef (value_type (v2));
235
236 /* Check preconditions. */
237 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
238 || TYPE_CODE (t1) == TYPE_CODE_UNION)
239 && !!"Precondition is that type is of STRUCT or UNION kind.");
240 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
241 || TYPE_CODE (t2) == TYPE_CODE_UNION)
242 && !!"Precondition is that value is of STRUCT or UNION kind");
243
244 if (TYPE_NAME (t1) != NULL
245 && TYPE_NAME (t2) != NULL
246 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
247 return NULL;
248
249 /* Upcasting: look in the type of the source to see if it contains the
250 type of the target as a superclass. If so, we'll need to
251 offset the pointer rather than just change its type. */
252 if (TYPE_NAME (t1) != NULL)
253 {
254 v = search_struct_field (type_name_no_tag (t1),
255 v2, 0, t2, 1);
256 if (v)
257 return v;
258 }
259
260 /* Downcasting: look in the type of the target to see if it contains the
261 type of the source as a superclass. If so, we'll need to
262 offset the pointer rather than just change its type. */
263 if (TYPE_NAME (t2) != NULL)
264 {
265 /* Try downcasting using the run-time type of the value. */
266 int full, top, using_enc;
267 struct type *real_type;
268
269 real_type = value_rtti_type (v2, &full, &top, &using_enc);
270 if (real_type)
271 {
272 v = value_full_object (v2, real_type, full, top, using_enc);
273 v = value_at_lazy (real_type, value_address (v));
274
275 /* We might be trying to cast to the outermost enclosing
276 type, in which case search_struct_field won't work. */
277 if (TYPE_NAME (real_type) != NULL
278 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
279 return v;
280
281 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
282 if (v)
283 return v;
284 }
285
286 /* Try downcasting using information from the destination type
287 T2. This wouldn't work properly for classes with virtual
288 bases, but those were handled above. */
289 v = search_struct_field (type_name_no_tag (t2),
290 value_zero (t1, not_lval), 0, t1, 1);
291 if (v)
292 {
293 /* Downcasting is possible (t1 is superclass of v2). */
294 CORE_ADDR addr2 = value_address (v2);
295
296 addr2 -= value_address (v) + value_embedded_offset (v);
297 return value_at (type, addr2);
298 }
299 }
300
301 return NULL;
302 }
303
304 /* Cast one pointer or reference type to another. Both TYPE and
305 the type of ARG2 should be pointer types, or else both should be
306 reference types. Returns the new pointer or reference. */
307
308 struct value *
309 value_cast_pointers (struct type *type, struct value *arg2)
310 {
311 struct type *type1 = check_typedef (type);
312 struct type *type2 = check_typedef (value_type (arg2));
313 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
314 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
315
316 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
317 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
318 && !value_logical_not (arg2))
319 {
320 struct value *v2;
321
322 if (TYPE_CODE (type2) == TYPE_CODE_REF)
323 v2 = coerce_ref (arg2);
324 else
325 v2 = value_ind (arg2);
326 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
327 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
328 v2 = value_cast_structs (t1, v2);
329 /* At this point we have what we can have, un-dereference if needed. */
330 if (v2)
331 {
332 struct value *v = value_addr (v2);
333
334 deprecated_set_value_type (v, type);
335 return v;
336 }
337 }
338
339 /* No superclass found, just change the pointer type. */
340 arg2 = value_copy (arg2);
341 deprecated_set_value_type (arg2, type);
342 set_value_enclosing_type (arg2, type);
343 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
344 return arg2;
345 }
346
347 /* Cast value ARG2 to type TYPE and return as a value.
348 More general than a C cast: accepts any two types of the same length,
349 and if ARG2 is an lvalue it can be cast into anything at all. */
350 /* In C++, casts may change pointer or object representations. */
351
352 struct value *
353 value_cast (struct type *type, struct value *arg2)
354 {
355 enum type_code code1;
356 enum type_code code2;
357 int scalar;
358 struct type *type2;
359
360 int convert_to_boolean = 0;
361
362 if (value_type (arg2) == type)
363 return arg2;
364
365 code1 = TYPE_CODE (check_typedef (type));
366
367 /* Check if we are casting struct reference to struct reference. */
368 if (code1 == TYPE_CODE_REF)
369 {
370 /* We dereference type; then we recurse and finally
371 we generate value of the given reference. Nothing wrong with
372 that. */
373 struct type *t1 = check_typedef (type);
374 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
375 struct value *val = value_cast (dereftype, arg2);
376
377 return value_ref (val);
378 }
379
380 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
381
382 if (code2 == TYPE_CODE_REF)
383 /* We deref the value and then do the cast. */
384 return value_cast (type, coerce_ref (arg2));
385
386 CHECK_TYPEDEF (type);
387 code1 = TYPE_CODE (type);
388 arg2 = coerce_ref (arg2);
389 type2 = check_typedef (value_type (arg2));
390
391 /* You can't cast to a reference type. See value_cast_pointers
392 instead. */
393 gdb_assert (code1 != TYPE_CODE_REF);
394
395 /* A cast to an undetermined-length array_type, such as
396 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
397 where N is sizeof(OBJECT)/sizeof(TYPE). */
398 if (code1 == TYPE_CODE_ARRAY)
399 {
400 struct type *element_type = TYPE_TARGET_TYPE (type);
401 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
402
403 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
404 {
405 struct type *range_type = TYPE_INDEX_TYPE (type);
406 int val_length = TYPE_LENGTH (type2);
407 LONGEST low_bound, high_bound, new_length;
408
409 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
410 low_bound = 0, high_bound = 0;
411 new_length = val_length / element_length;
412 if (val_length % element_length != 0)
413 warning (_("array element type size does not "
414 "divide object size in cast"));
415 /* FIXME-type-allocation: need a way to free this type when
416 we are done with it. */
417 range_type = create_range_type ((struct type *) NULL,
418 TYPE_TARGET_TYPE (range_type),
419 low_bound,
420 new_length + low_bound - 1);
421 deprecated_set_value_type (arg2,
422 create_array_type ((struct type *) NULL,
423 element_type,
424 range_type));
425 return arg2;
426 }
427 }
428
429 if (current_language->c_style_arrays
430 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
431 && !TYPE_VECTOR (type2))
432 arg2 = value_coerce_array (arg2);
433
434 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
435 arg2 = value_coerce_function (arg2);
436
437 type2 = check_typedef (value_type (arg2));
438 code2 = TYPE_CODE (type2);
439
440 if (code1 == TYPE_CODE_COMPLEX)
441 return cast_into_complex (type, arg2);
442 if (code1 == TYPE_CODE_BOOL)
443 {
444 code1 = TYPE_CODE_INT;
445 convert_to_boolean = 1;
446 }
447 if (code1 == TYPE_CODE_CHAR)
448 code1 = TYPE_CODE_INT;
449 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
450 code2 = TYPE_CODE_INT;
451
452 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
453 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
454 || code2 == TYPE_CODE_RANGE);
455
456 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
457 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
458 && TYPE_NAME (type) != 0)
459 {
460 struct value *v = value_cast_structs (type, arg2);
461
462 if (v)
463 return v;
464 }
465
466 if (code1 == TYPE_CODE_FLT && scalar)
467 return value_from_double (type, value_as_double (arg2));
468 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
469 {
470 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
471 int dec_len = TYPE_LENGTH (type);
472 gdb_byte dec[16];
473
474 if (code2 == TYPE_CODE_FLT)
475 decimal_from_floating (arg2, dec, dec_len, byte_order);
476 else if (code2 == TYPE_CODE_DECFLOAT)
477 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
478 byte_order, dec, dec_len, byte_order);
479 else
480 /* The only option left is an integral type. */
481 decimal_from_integral (arg2, dec, dec_len, byte_order);
482
483 return value_from_decfloat (type, dec);
484 }
485 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
486 || code1 == TYPE_CODE_RANGE)
487 && (scalar || code2 == TYPE_CODE_PTR
488 || code2 == TYPE_CODE_MEMBERPTR))
489 {
490 LONGEST longest;
491
492 /* When we cast pointers to integers, we mustn't use
493 gdbarch_pointer_to_address to find the address the pointer
494 represents, as value_as_long would. GDB should evaluate
495 expressions just as the compiler would --- and the compiler
496 sees a cast as a simple reinterpretation of the pointer's
497 bits. */
498 if (code2 == TYPE_CODE_PTR)
499 longest = extract_unsigned_integer
500 (value_contents (arg2), TYPE_LENGTH (type2),
501 gdbarch_byte_order (get_type_arch (type2)));
502 else
503 longest = value_as_long (arg2);
504 return value_from_longest (type, convert_to_boolean ?
505 (LONGEST) (longest ? 1 : 0) : longest);
506 }
507 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
508 || code2 == TYPE_CODE_ENUM
509 || code2 == TYPE_CODE_RANGE))
510 {
511 /* TYPE_LENGTH (type) is the length of a pointer, but we really
512 want the length of an address! -- we are really dealing with
513 addresses (i.e., gdb representations) not pointers (i.e.,
514 target representations) here.
515
516 This allows things like "print *(int *)0x01000234" to work
517 without printing a misleading message -- which would
518 otherwise occur when dealing with a target having two byte
519 pointers and four byte addresses. */
520
521 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
522 LONGEST longest = value_as_long (arg2);
523
524 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
525 {
526 if (longest >= ((LONGEST) 1 << addr_bit)
527 || longest <= -((LONGEST) 1 << addr_bit))
528 warning (_("value truncated"));
529 }
530 return value_from_longest (type, longest);
531 }
532 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
533 && value_as_long (arg2) == 0)
534 {
535 struct value *result = allocate_value (type);
536
537 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
538 return result;
539 }
540 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
541 && value_as_long (arg2) == 0)
542 {
543 /* The Itanium C++ ABI represents NULL pointers to members as
544 minus one, instead of biasing the normal case. */
545 return value_from_longest (type, -1);
546 }
547 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar)
548 {
549 /* Widen the scalar to a vector. */
550 struct type *eltype;
551 struct value *val;
552 LONGEST low_bound, high_bound;
553 int i;
554
555 if (!get_array_bounds (type, &low_bound, &high_bound))
556 error (_("Could not determine the vector bounds"));
557
558 eltype = check_typedef (TYPE_TARGET_TYPE (type));
559 arg2 = value_cast (eltype, arg2);
560 val = allocate_value (type);
561
562 for (i = 0; i < high_bound - low_bound + 1; i++)
563 {
564 /* Duplicate the contents of arg2 into the destination vector. */
565 memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)),
566 value_contents_all (arg2), TYPE_LENGTH (eltype));
567 }
568 return val;
569 }
570 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
571 {
572 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
573 return value_cast_pointers (type, arg2);
574
575 arg2 = value_copy (arg2);
576 deprecated_set_value_type (arg2, type);
577 set_value_enclosing_type (arg2, type);
578 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
579 return arg2;
580 }
581 else if (VALUE_LVAL (arg2) == lval_memory)
582 return value_at_lazy (type, value_address (arg2));
583 else if (code1 == TYPE_CODE_VOID)
584 {
585 return value_zero (type, not_lval);
586 }
587 else
588 {
589 error (_("Invalid cast."));
590 return 0;
591 }
592 }
593
594 /* The C++ reinterpret_cast operator. */
595
596 struct value *
597 value_reinterpret_cast (struct type *type, struct value *arg)
598 {
599 struct value *result;
600 struct type *real_type = check_typedef (type);
601 struct type *arg_type, *dest_type;
602 int is_ref = 0;
603 enum type_code dest_code, arg_code;
604
605 /* Do reference, function, and array conversion. */
606 arg = coerce_array (arg);
607
608 /* Attempt to preserve the type the user asked for. */
609 dest_type = type;
610
611 /* If we are casting to a reference type, transform
612 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
613 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
614 {
615 is_ref = 1;
616 arg = value_addr (arg);
617 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
618 real_type = lookup_pointer_type (real_type);
619 }
620
621 arg_type = value_type (arg);
622
623 dest_code = TYPE_CODE (real_type);
624 arg_code = TYPE_CODE (arg_type);
625
626 /* We can convert pointer types, or any pointer type to int, or int
627 type to pointer. */
628 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
629 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
630 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
631 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
632 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
633 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
634 || (dest_code == arg_code
635 && (dest_code == TYPE_CODE_PTR
636 || dest_code == TYPE_CODE_METHODPTR
637 || dest_code == TYPE_CODE_MEMBERPTR)))
638 result = value_cast (dest_type, arg);
639 else
640 error (_("Invalid reinterpret_cast"));
641
642 if (is_ref)
643 result = value_cast (type, value_ref (value_ind (result)));
644
645 return result;
646 }
647
648 /* A helper for value_dynamic_cast. This implements the first of two
649 runtime checks: we iterate over all the base classes of the value's
650 class which are equal to the desired class; if only one of these
651 holds the value, then it is the answer. */
652
653 static int
654 dynamic_cast_check_1 (struct type *desired_type,
655 const gdb_byte *valaddr,
656 int embedded_offset,
657 CORE_ADDR address,
658 struct value *val,
659 struct type *search_type,
660 CORE_ADDR arg_addr,
661 struct type *arg_type,
662 struct value **result)
663 {
664 int i, result_count = 0;
665
666 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
667 {
668 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
669 address, val);
670
671 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
672 {
673 if (address + embedded_offset + offset >= arg_addr
674 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
675 {
676 ++result_count;
677 if (!*result)
678 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
679 address + embedded_offset + offset);
680 }
681 }
682 else
683 result_count += dynamic_cast_check_1 (desired_type,
684 valaddr,
685 embedded_offset + offset,
686 address, val,
687 TYPE_BASECLASS (search_type, i),
688 arg_addr,
689 arg_type,
690 result);
691 }
692
693 return result_count;
694 }
695
696 /* A helper for value_dynamic_cast. This implements the second of two
697 runtime checks: we look for a unique public sibling class of the
698 argument's declared class. */
699
700 static int
701 dynamic_cast_check_2 (struct type *desired_type,
702 const gdb_byte *valaddr,
703 int embedded_offset,
704 CORE_ADDR address,
705 struct value *val,
706 struct type *search_type,
707 struct value **result)
708 {
709 int i, result_count = 0;
710
711 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
712 {
713 int offset;
714
715 if (! BASETYPE_VIA_PUBLIC (search_type, i))
716 continue;
717
718 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
719 address, val);
720 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
721 {
722 ++result_count;
723 if (*result == NULL)
724 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
725 address + embedded_offset + offset);
726 }
727 else
728 result_count += dynamic_cast_check_2 (desired_type,
729 valaddr,
730 embedded_offset + offset,
731 address, val,
732 TYPE_BASECLASS (search_type, i),
733 result);
734 }
735
736 return result_count;
737 }
738
739 /* The C++ dynamic_cast operator. */
740
741 struct value *
742 value_dynamic_cast (struct type *type, struct value *arg)
743 {
744 int full, top, using_enc;
745 struct type *resolved_type = check_typedef (type);
746 struct type *arg_type = check_typedef (value_type (arg));
747 struct type *class_type, *rtti_type;
748 struct value *result, *tem, *original_arg = arg;
749 CORE_ADDR addr;
750 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
751
752 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
753 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
754 error (_("Argument to dynamic_cast must be a pointer or reference type"));
755 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
756 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
757 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
758
759 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
760 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
761 {
762 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
763 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
764 && value_as_long (arg) == 0))
765 error (_("Argument to dynamic_cast does not have pointer type"));
766 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
767 {
768 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
769 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
770 error (_("Argument to dynamic_cast does "
771 "not have pointer to class type"));
772 }
773
774 /* Handle NULL pointers. */
775 if (value_as_long (arg) == 0)
776 return value_zero (type, not_lval);
777
778 arg = value_ind (arg);
779 }
780 else
781 {
782 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
783 error (_("Argument to dynamic_cast does not have class type"));
784 }
785
786 /* If the classes are the same, just return the argument. */
787 if (class_types_same_p (class_type, arg_type))
788 return value_cast (type, arg);
789
790 /* If the target type is a unique base class of the argument's
791 declared type, just cast it. */
792 if (is_ancestor (class_type, arg_type))
793 {
794 if (is_unique_ancestor (class_type, arg))
795 return value_cast (type, original_arg);
796 error (_("Ambiguous dynamic_cast"));
797 }
798
799 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
800 if (! rtti_type)
801 error (_("Couldn't determine value's most derived type for dynamic_cast"));
802
803 /* Compute the most derived object's address. */
804 addr = value_address (arg);
805 if (full)
806 {
807 /* Done. */
808 }
809 else if (using_enc)
810 addr += top;
811 else
812 addr += top + value_embedded_offset (arg);
813
814 /* dynamic_cast<void *> means to return a pointer to the
815 most-derived object. */
816 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
817 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
818 return value_at_lazy (type, addr);
819
820 tem = value_at (type, addr);
821
822 /* The first dynamic check specified in 5.2.7. */
823 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
824 {
825 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
826 return tem;
827 result = NULL;
828 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
829 value_contents_for_printing (tem),
830 value_embedded_offset (tem),
831 value_address (tem), tem,
832 rtti_type, addr,
833 arg_type,
834 &result) == 1)
835 return value_cast (type,
836 is_ref ? value_ref (result) : value_addr (result));
837 }
838
839 /* The second dynamic check specified in 5.2.7. */
840 result = NULL;
841 if (is_public_ancestor (arg_type, rtti_type)
842 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
843 value_contents_for_printing (tem),
844 value_embedded_offset (tem),
845 value_address (tem), tem,
846 rtti_type, &result) == 1)
847 return value_cast (type,
848 is_ref ? value_ref (result) : value_addr (result));
849
850 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
851 return value_zero (type, not_lval);
852
853 error (_("dynamic_cast failed"));
854 }
855
856 /* Create a value of type TYPE that is zero, and return it. */
857
858 struct value *
859 value_zero (struct type *type, enum lval_type lv)
860 {
861 struct value *val = allocate_value (type);
862
863 VALUE_LVAL (val) = lv;
864 return val;
865 }
866
867 /* Create a value of numeric type TYPE that is one, and return it. */
868
869 struct value *
870 value_one (struct type *type, enum lval_type lv)
871 {
872 struct type *type1 = check_typedef (type);
873 struct value *val;
874
875 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
876 {
877 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
878 gdb_byte v[16];
879
880 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
881 val = value_from_decfloat (type, v);
882 }
883 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
884 {
885 val = value_from_double (type, (DOUBLEST) 1);
886 }
887 else if (is_integral_type (type1))
888 {
889 val = value_from_longest (type, (LONGEST) 1);
890 }
891 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
892 {
893 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
894 int i;
895 LONGEST low_bound, high_bound;
896 struct value *tmp;
897
898 if (!get_array_bounds (type1, &low_bound, &high_bound))
899 error (_("Could not determine the vector bounds"));
900
901 val = allocate_value (type);
902 for (i = 0; i < high_bound - low_bound + 1; i++)
903 {
904 tmp = value_one (eltype, lv);
905 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
906 value_contents_all (tmp), TYPE_LENGTH (eltype));
907 }
908 }
909 else
910 {
911 error (_("Not a numeric type."));
912 }
913
914 VALUE_LVAL (val) = lv;
915 return val;
916 }
917
918 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
919
920 static struct value *
921 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
922 {
923 struct value *val;
924
925 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
926 error (_("Attempt to dereference a generic pointer."));
927
928 val = value_from_contents_and_address (type, NULL, addr);
929
930 if (!lazy)
931 value_fetch_lazy (val);
932
933 return val;
934 }
935
936 /* Return a value with type TYPE located at ADDR.
937
938 Call value_at only if the data needs to be fetched immediately;
939 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
940 value_at_lazy instead. value_at_lazy simply records the address of
941 the data and sets the lazy-evaluation-required flag. The lazy flag
942 is tested in the value_contents macro, which is used if and when
943 the contents are actually required.
944
945 Note: value_at does *NOT* handle embedded offsets; perform such
946 adjustments before or after calling it. */
947
948 struct value *
949 value_at (struct type *type, CORE_ADDR addr)
950 {
951 return get_value_at (type, addr, 0);
952 }
953
954 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
955
956 struct value *
957 value_at_lazy (struct type *type, CORE_ADDR addr)
958 {
959 return get_value_at (type, addr, 1);
960 }
961
962 /* Called only from the value_contents and value_contents_all()
963 macros, if the current data for a variable needs to be loaded into
964 value_contents(VAL). Fetches the data from the user's process, and
965 clears the lazy flag to indicate that the data in the buffer is
966 valid.
967
968 If the value is zero-length, we avoid calling read_memory, which
969 would abort. We mark the value as fetched anyway -- all 0 bytes of
970 it.
971
972 This function returns a value because it is used in the
973 value_contents macro as part of an expression, where a void would
974 not work. The value is ignored. */
975
976 int
977 value_fetch_lazy (struct value *val)
978 {
979 gdb_assert (value_lazy (val));
980 allocate_value_contents (val);
981 if (value_bitsize (val))
982 {
983 /* To read a lazy bitfield, read the entire enclosing value. This
984 prevents reading the same block of (possibly volatile) memory once
985 per bitfield. It would be even better to read only the containing
986 word, but we have no way to record that just specific bits of a
987 value have been fetched. */
988 struct type *type = check_typedef (value_type (val));
989 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
990 struct value *parent = value_parent (val);
991 LONGEST offset = value_offset (val);
992 LONGEST num;
993 int length = TYPE_LENGTH (type);
994
995 if (!value_bits_valid (val,
996 TARGET_CHAR_BIT * offset + value_bitpos (val),
997 value_bitsize (val)))
998 error (_("value has been optimized out"));
999
1000 if (!unpack_value_bits_as_long (value_type (val),
1001 value_contents_for_printing (parent),
1002 offset,
1003 value_bitpos (val),
1004 value_bitsize (val), parent, &num))
1005 mark_value_bytes_unavailable (val,
1006 value_embedded_offset (val),
1007 length);
1008 else
1009 store_signed_integer (value_contents_raw (val), length,
1010 byte_order, num);
1011 }
1012 else if (VALUE_LVAL (val) == lval_memory)
1013 {
1014 CORE_ADDR addr = value_address (val);
1015 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
1016
1017 if (length)
1018 read_value_memory (val, 0, value_stack (val),
1019 addr, value_contents_all_raw (val), length);
1020 }
1021 else if (VALUE_LVAL (val) == lval_register)
1022 {
1023 struct frame_info *frame;
1024 int regnum;
1025 struct type *type = check_typedef (value_type (val));
1026 struct value *new_val = val, *mark = value_mark ();
1027
1028 /* Offsets are not supported here; lazy register values must
1029 refer to the entire register. */
1030 gdb_assert (value_offset (val) == 0);
1031
1032 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
1033 {
1034 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
1035 regnum = VALUE_REGNUM (new_val);
1036
1037 gdb_assert (frame != NULL);
1038
1039 /* Convertible register routines are used for multi-register
1040 values and for interpretation in different types
1041 (e.g. float or int from a double register). Lazy
1042 register values should have the register's natural type,
1043 so they do not apply. */
1044 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
1045 regnum, type));
1046
1047 new_val = get_frame_register_value (frame, regnum);
1048 }
1049
1050 /* If it's still lazy (for instance, a saved register on the
1051 stack), fetch it. */
1052 if (value_lazy (new_val))
1053 value_fetch_lazy (new_val);
1054
1055 /* If the register was not saved, mark it optimized out. */
1056 if (value_optimized_out (new_val))
1057 set_value_optimized_out (val, 1);
1058 else
1059 {
1060 set_value_lazy (val, 0);
1061 value_contents_copy (val, value_embedded_offset (val),
1062 new_val, value_embedded_offset (new_val),
1063 TYPE_LENGTH (type));
1064 }
1065
1066 if (frame_debug)
1067 {
1068 struct gdbarch *gdbarch;
1069 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1070 regnum = VALUE_REGNUM (val);
1071 gdbarch = get_frame_arch (frame);
1072
1073 fprintf_unfiltered (gdb_stdlog,
1074 "{ value_fetch_lazy "
1075 "(frame=%d,regnum=%d(%s),...) ",
1076 frame_relative_level (frame), regnum,
1077 user_reg_map_regnum_to_name (gdbarch, regnum));
1078
1079 fprintf_unfiltered (gdb_stdlog, "->");
1080 if (value_optimized_out (new_val))
1081 fprintf_unfiltered (gdb_stdlog, " optimized out");
1082 else
1083 {
1084 int i;
1085 const gdb_byte *buf = value_contents (new_val);
1086
1087 if (VALUE_LVAL (new_val) == lval_register)
1088 fprintf_unfiltered (gdb_stdlog, " register=%d",
1089 VALUE_REGNUM (new_val));
1090 else if (VALUE_LVAL (new_val) == lval_memory)
1091 fprintf_unfiltered (gdb_stdlog, " address=%s",
1092 paddress (gdbarch,
1093 value_address (new_val)));
1094 else
1095 fprintf_unfiltered (gdb_stdlog, " computed");
1096
1097 fprintf_unfiltered (gdb_stdlog, " bytes=");
1098 fprintf_unfiltered (gdb_stdlog, "[");
1099 for (i = 0; i < register_size (gdbarch, regnum); i++)
1100 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1101 fprintf_unfiltered (gdb_stdlog, "]");
1102 }
1103
1104 fprintf_unfiltered (gdb_stdlog, " }\n");
1105 }
1106
1107 /* Dispose of the intermediate values. This prevents
1108 watchpoints from trying to watch the saved frame pointer. */
1109 value_free_to_mark (mark);
1110 }
1111 else if (VALUE_LVAL (val) == lval_computed)
1112 value_computed_funcs (val)->read (val);
1113 else if (value_optimized_out (val))
1114 /* Keep it optimized out. */;
1115 else
1116 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
1117
1118 set_value_lazy (val, 0);
1119 return 0;
1120 }
1121
1122 void
1123 read_value_memory (struct value *val, int embedded_offset,
1124 int stack, CORE_ADDR memaddr,
1125 gdb_byte *buffer, size_t length)
1126 {
1127 if (length)
1128 {
1129 VEC(mem_range_s) *available_memory;
1130
1131 if (get_traceframe_number () < 0
1132 || !traceframe_available_memory (&available_memory, memaddr, length))
1133 {
1134 if (stack)
1135 read_stack (memaddr, buffer, length);
1136 else
1137 read_memory (memaddr, buffer, length);
1138 }
1139 else
1140 {
1141 struct target_section_table *table;
1142 struct cleanup *old_chain;
1143 CORE_ADDR unavail;
1144 mem_range_s *r;
1145 int i;
1146
1147 /* Fallback to reading from read-only sections. */
1148 table = target_get_section_table (&exec_ops);
1149 available_memory =
1150 section_table_available_memory (available_memory,
1151 memaddr, length,
1152 table->sections,
1153 table->sections_end);
1154
1155 old_chain = make_cleanup (VEC_cleanup(mem_range_s),
1156 &available_memory);
1157
1158 normalize_mem_ranges (available_memory);
1159
1160 /* Mark which bytes are unavailable, and read those which
1161 are available. */
1162
1163 unavail = memaddr;
1164
1165 for (i = 0;
1166 VEC_iterate (mem_range_s, available_memory, i, r);
1167 i++)
1168 {
1169 if (mem_ranges_overlap (r->start, r->length,
1170 memaddr, length))
1171 {
1172 CORE_ADDR lo1, hi1, lo2, hi2;
1173 CORE_ADDR start, end;
1174
1175 /* Get the intersection window. */
1176 lo1 = memaddr;
1177 hi1 = memaddr + length;
1178 lo2 = r->start;
1179 hi2 = r->start + r->length;
1180 start = max (lo1, lo2);
1181 end = min (hi1, hi2);
1182
1183 gdb_assert (end - memaddr <= length);
1184
1185 if (start > unavail)
1186 mark_value_bytes_unavailable (val,
1187 (embedded_offset
1188 + unavail - memaddr),
1189 start - unavail);
1190 unavail = end;
1191
1192 read_memory (start, buffer + start - memaddr, end - start);
1193 }
1194 }
1195
1196 if (unavail != memaddr + length)
1197 mark_value_bytes_unavailable (val,
1198 embedded_offset + unavail - memaddr,
1199 (memaddr + length) - unavail);
1200
1201 do_cleanups (old_chain);
1202 }
1203 }
1204 }
1205
1206 /* Store the contents of FROMVAL into the location of TOVAL.
1207 Return a new value with the location of TOVAL and contents of FROMVAL. */
1208
1209 struct value *
1210 value_assign (struct value *toval, struct value *fromval)
1211 {
1212 struct type *type;
1213 struct value *val;
1214 struct frame_id old_frame;
1215
1216 if (!deprecated_value_modifiable (toval))
1217 error (_("Left operand of assignment is not a modifiable lvalue."));
1218
1219 toval = coerce_ref (toval);
1220
1221 type = value_type (toval);
1222 if (VALUE_LVAL (toval) != lval_internalvar)
1223 fromval = value_cast (type, fromval);
1224 else
1225 {
1226 /* Coerce arrays and functions to pointers, except for arrays
1227 which only live in GDB's storage. */
1228 if (!value_must_coerce_to_target (fromval))
1229 fromval = coerce_array (fromval);
1230 }
1231
1232 CHECK_TYPEDEF (type);
1233
1234 /* Since modifying a register can trash the frame chain, and
1235 modifying memory can trash the frame cache, we save the old frame
1236 and then restore the new frame afterwards. */
1237 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1238
1239 switch (VALUE_LVAL (toval))
1240 {
1241 case lval_internalvar:
1242 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1243 return value_of_internalvar (get_type_arch (type),
1244 VALUE_INTERNALVAR (toval));
1245
1246 case lval_internalvar_component:
1247 set_internalvar_component (VALUE_INTERNALVAR (toval),
1248 value_offset (toval),
1249 value_bitpos (toval),
1250 value_bitsize (toval),
1251 fromval);
1252 break;
1253
1254 case lval_memory:
1255 {
1256 const gdb_byte *dest_buffer;
1257 CORE_ADDR changed_addr;
1258 int changed_len;
1259 gdb_byte buffer[sizeof (LONGEST)];
1260
1261 if (value_bitsize (toval))
1262 {
1263 struct value *parent = value_parent (toval);
1264
1265 changed_addr = value_address (parent) + value_offset (toval);
1266 changed_len = (value_bitpos (toval)
1267 + value_bitsize (toval)
1268 + HOST_CHAR_BIT - 1)
1269 / HOST_CHAR_BIT;
1270
1271 /* If we can read-modify-write exactly the size of the
1272 containing type (e.g. short or int) then do so. This
1273 is safer for volatile bitfields mapped to hardware
1274 registers. */
1275 if (changed_len < TYPE_LENGTH (type)
1276 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1277 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1278 changed_len = TYPE_LENGTH (type);
1279
1280 if (changed_len > (int) sizeof (LONGEST))
1281 error (_("Can't handle bitfields which "
1282 "don't fit in a %d bit word."),
1283 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1284
1285 read_memory (changed_addr, buffer, changed_len);
1286 modify_field (type, buffer, value_as_long (fromval),
1287 value_bitpos (toval), value_bitsize (toval));
1288 dest_buffer = buffer;
1289 }
1290 else
1291 {
1292 changed_addr = value_address (toval);
1293 changed_len = TYPE_LENGTH (type);
1294 dest_buffer = value_contents (fromval);
1295 }
1296
1297 write_memory (changed_addr, dest_buffer, changed_len);
1298 observer_notify_memory_changed (changed_addr, changed_len,
1299 dest_buffer);
1300 }
1301 break;
1302
1303 case lval_register:
1304 {
1305 struct frame_info *frame;
1306 struct gdbarch *gdbarch;
1307 int value_reg;
1308
1309 /* Figure out which frame this is in currently. */
1310 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1311 value_reg = VALUE_REGNUM (toval);
1312
1313 if (!frame)
1314 error (_("Value being assigned to is no longer active."));
1315
1316 gdbarch = get_frame_arch (frame);
1317 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1318 {
1319 /* If TOVAL is a special machine register requiring
1320 conversion of program values to a special raw
1321 format. */
1322 gdbarch_value_to_register (gdbarch, frame,
1323 VALUE_REGNUM (toval), type,
1324 value_contents (fromval));
1325 }
1326 else
1327 {
1328 if (value_bitsize (toval))
1329 {
1330 struct value *parent = value_parent (toval);
1331 int offset = value_offset (parent) + value_offset (toval);
1332 int changed_len;
1333 gdb_byte buffer[sizeof (LONGEST)];
1334 int optim, unavail;
1335
1336 changed_len = (value_bitpos (toval)
1337 + value_bitsize (toval)
1338 + HOST_CHAR_BIT - 1)
1339 / HOST_CHAR_BIT;
1340
1341 if (changed_len > (int) sizeof (LONGEST))
1342 error (_("Can't handle bitfields which "
1343 "don't fit in a %d bit word."),
1344 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1345
1346 if (!get_frame_register_bytes (frame, value_reg, offset,
1347 changed_len, buffer,
1348 &optim, &unavail))
1349 {
1350 if (optim)
1351 error (_("value has been optimized out"));
1352 if (unavail)
1353 throw_error (NOT_AVAILABLE_ERROR,
1354 _("value is not available"));
1355 }
1356
1357 modify_field (type, buffer, value_as_long (fromval),
1358 value_bitpos (toval), value_bitsize (toval));
1359
1360 put_frame_register_bytes (frame, value_reg, offset,
1361 changed_len, buffer);
1362 }
1363 else
1364 {
1365 put_frame_register_bytes (frame, value_reg,
1366 value_offset (toval),
1367 TYPE_LENGTH (type),
1368 value_contents (fromval));
1369 }
1370 }
1371
1372 if (deprecated_register_changed_hook)
1373 deprecated_register_changed_hook (-1);
1374 observer_notify_target_changed (&current_target);
1375 break;
1376 }
1377
1378 case lval_computed:
1379 {
1380 struct lval_funcs *funcs = value_computed_funcs (toval);
1381
1382 funcs->write (toval, fromval);
1383 }
1384 break;
1385
1386 default:
1387 error (_("Left operand of assignment is not an lvalue."));
1388 }
1389
1390 /* Assigning to the stack pointer, frame pointer, and other
1391 (architecture and calling convention specific) registers may
1392 cause the frame cache to be out of date. Assigning to memory
1393 also can. We just do this on all assignments to registers or
1394 memory, for simplicity's sake; I doubt the slowdown matters. */
1395 switch (VALUE_LVAL (toval))
1396 {
1397 case lval_memory:
1398 case lval_register:
1399 case lval_computed:
1400
1401 reinit_frame_cache ();
1402
1403 /* Having destroyed the frame cache, restore the selected
1404 frame. */
1405
1406 /* FIXME: cagney/2002-11-02: There has to be a better way of
1407 doing this. Instead of constantly saving/restoring the
1408 frame. Why not create a get_selected_frame() function that,
1409 having saved the selected frame's ID can automatically
1410 re-find the previously selected frame automatically. */
1411
1412 {
1413 struct frame_info *fi = frame_find_by_id (old_frame);
1414
1415 if (fi != NULL)
1416 select_frame (fi);
1417 }
1418
1419 break;
1420 default:
1421 break;
1422 }
1423
1424 /* If the field does not entirely fill a LONGEST, then zero the sign
1425 bits. If the field is signed, and is negative, then sign
1426 extend. */
1427 if ((value_bitsize (toval) > 0)
1428 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1429 {
1430 LONGEST fieldval = value_as_long (fromval);
1431 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1432
1433 fieldval &= valmask;
1434 if (!TYPE_UNSIGNED (type)
1435 && (fieldval & (valmask ^ (valmask >> 1))))
1436 fieldval |= ~valmask;
1437
1438 fromval = value_from_longest (type, fieldval);
1439 }
1440
1441 /* The return value is a copy of TOVAL so it shares its location
1442 information, but its contents are updated from FROMVAL. This
1443 implies the returned value is not lazy, even if TOVAL was. */
1444 val = value_copy (toval);
1445 set_value_lazy (val, 0);
1446 memcpy (value_contents_raw (val), value_contents (fromval),
1447 TYPE_LENGTH (type));
1448
1449 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1450 in the case of pointer types. For object types, the enclosing type
1451 and embedded offset must *not* be copied: the target object refered
1452 to by TOVAL retains its original dynamic type after assignment. */
1453 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1454 {
1455 set_value_enclosing_type (val, value_enclosing_type (fromval));
1456 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1457 }
1458
1459 return val;
1460 }
1461
1462 /* Extend a value VAL to COUNT repetitions of its type. */
1463
1464 struct value *
1465 value_repeat (struct value *arg1, int count)
1466 {
1467 struct value *val;
1468
1469 if (VALUE_LVAL (arg1) != lval_memory)
1470 error (_("Only values in memory can be extended with '@'."));
1471 if (count < 1)
1472 error (_("Invalid number %d of repetitions."), count);
1473
1474 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1475
1476 VALUE_LVAL (val) = lval_memory;
1477 set_value_address (val, value_address (arg1));
1478
1479 read_value_memory (val, 0, value_stack (val), value_address (val),
1480 value_contents_all_raw (val),
1481 TYPE_LENGTH (value_enclosing_type (val)));
1482
1483 return val;
1484 }
1485
1486 struct value *
1487 value_of_variable (struct symbol *var, struct block *b)
1488 {
1489 struct value *val;
1490 struct frame_info *frame;
1491
1492 if (!symbol_read_needs_frame (var))
1493 frame = NULL;
1494 else if (!b)
1495 frame = get_selected_frame (_("No frame selected."));
1496 else
1497 {
1498 frame = block_innermost_frame (b);
1499 if (!frame)
1500 {
1501 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1502 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1503 error (_("No frame is currently executing in block %s."),
1504 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1505 else
1506 error (_("No frame is currently executing in specified block"));
1507 }
1508 }
1509
1510 val = read_var_value (var, frame);
1511 if (!val)
1512 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
1513
1514 return val;
1515 }
1516
1517 struct value *
1518 address_of_variable (struct symbol *var, struct block *b)
1519 {
1520 struct type *type = SYMBOL_TYPE (var);
1521 struct value *val;
1522
1523 /* Evaluate it first; if the result is a memory address, we're fine.
1524 Lazy evaluation pays off here. */
1525
1526 val = value_of_variable (var, b);
1527
1528 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1529 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1530 {
1531 CORE_ADDR addr = value_address (val);
1532
1533 return value_from_pointer (lookup_pointer_type (type), addr);
1534 }
1535
1536 /* Not a memory address; check what the problem was. */
1537 switch (VALUE_LVAL (val))
1538 {
1539 case lval_register:
1540 {
1541 struct frame_info *frame;
1542 const char *regname;
1543
1544 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1545 gdb_assert (frame);
1546
1547 regname = gdbarch_register_name (get_frame_arch (frame),
1548 VALUE_REGNUM (val));
1549 gdb_assert (regname && *regname);
1550
1551 error (_("Address requested for identifier "
1552 "\"%s\" which is in register $%s"),
1553 SYMBOL_PRINT_NAME (var), regname);
1554 break;
1555 }
1556
1557 default:
1558 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1559 SYMBOL_PRINT_NAME (var));
1560 break;
1561 }
1562
1563 return val;
1564 }
1565
1566 /* Return one if VAL does not live in target memory, but should in order
1567 to operate on it. Otherwise return zero. */
1568
1569 int
1570 value_must_coerce_to_target (struct value *val)
1571 {
1572 struct type *valtype;
1573
1574 /* The only lval kinds which do not live in target memory. */
1575 if (VALUE_LVAL (val) != not_lval
1576 && VALUE_LVAL (val) != lval_internalvar)
1577 return 0;
1578
1579 valtype = check_typedef (value_type (val));
1580
1581 switch (TYPE_CODE (valtype))
1582 {
1583 case TYPE_CODE_ARRAY:
1584 return TYPE_VECTOR (valtype) ? 0 : 1;
1585 case TYPE_CODE_STRING:
1586 return 1;
1587 default:
1588 return 0;
1589 }
1590 }
1591
1592 /* Make sure that VAL lives in target memory if it's supposed to. For
1593 instance, strings are constructed as character arrays in GDB's
1594 storage, and this function copies them to the target. */
1595
1596 struct value *
1597 value_coerce_to_target (struct value *val)
1598 {
1599 LONGEST length;
1600 CORE_ADDR addr;
1601
1602 if (!value_must_coerce_to_target (val))
1603 return val;
1604
1605 length = TYPE_LENGTH (check_typedef (value_type (val)));
1606 addr = allocate_space_in_inferior (length);
1607 write_memory (addr, value_contents (val), length);
1608 return value_at_lazy (value_type (val), addr);
1609 }
1610
1611 /* Given a value which is an array, return a value which is a pointer
1612 to its first element, regardless of whether or not the array has a
1613 nonzero lower bound.
1614
1615 FIXME: A previous comment here indicated that this routine should
1616 be substracting the array's lower bound. It's not clear to me that
1617 this is correct. Given an array subscripting operation, it would
1618 certainly work to do the adjustment here, essentially computing:
1619
1620 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1621
1622 However I believe a more appropriate and logical place to account
1623 for the lower bound is to do so in value_subscript, essentially
1624 computing:
1625
1626 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1627
1628 As further evidence consider what would happen with operations
1629 other than array subscripting, where the caller would get back a
1630 value that had an address somewhere before the actual first element
1631 of the array, and the information about the lower bound would be
1632 lost because of the coercion to pointer type. */
1633
1634 struct value *
1635 value_coerce_array (struct value *arg1)
1636 {
1637 struct type *type = check_typedef (value_type (arg1));
1638
1639 /* If the user tries to do something requiring a pointer with an
1640 array that has not yet been pushed to the target, then this would
1641 be a good time to do so. */
1642 arg1 = value_coerce_to_target (arg1);
1643
1644 if (VALUE_LVAL (arg1) != lval_memory)
1645 error (_("Attempt to take address of value not located in memory."));
1646
1647 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1648 value_address (arg1));
1649 }
1650
1651 /* Given a value which is a function, return a value which is a pointer
1652 to it. */
1653
1654 struct value *
1655 value_coerce_function (struct value *arg1)
1656 {
1657 struct value *retval;
1658
1659 if (VALUE_LVAL (arg1) != lval_memory)
1660 error (_("Attempt to take address of value not located in memory."));
1661
1662 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1663 value_address (arg1));
1664 return retval;
1665 }
1666
1667 /* Return a pointer value for the object for which ARG1 is the
1668 contents. */
1669
1670 struct value *
1671 value_addr (struct value *arg1)
1672 {
1673 struct value *arg2;
1674 struct type *type = check_typedef (value_type (arg1));
1675
1676 if (TYPE_CODE (type) == TYPE_CODE_REF)
1677 {
1678 /* Copy the value, but change the type from (T&) to (T*). We
1679 keep the same location information, which is efficient, and
1680 allows &(&X) to get the location containing the reference. */
1681 arg2 = value_copy (arg1);
1682 deprecated_set_value_type (arg2,
1683 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1684 return arg2;
1685 }
1686 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1687 return value_coerce_function (arg1);
1688
1689 /* If this is an array that has not yet been pushed to the target,
1690 then this would be a good time to force it to memory. */
1691 arg1 = value_coerce_to_target (arg1);
1692
1693 if (VALUE_LVAL (arg1) != lval_memory)
1694 error (_("Attempt to take address of value not located in memory."));
1695
1696 /* Get target memory address. */
1697 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1698 (value_address (arg1)
1699 + value_embedded_offset (arg1)));
1700
1701 /* This may be a pointer to a base subobject; so remember the
1702 full derived object's type ... */
1703 set_value_enclosing_type (arg2,
1704 lookup_pointer_type (value_enclosing_type (arg1)));
1705 /* ... and also the relative position of the subobject in the full
1706 object. */
1707 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1708 return arg2;
1709 }
1710
1711 /* Return a reference value for the object for which ARG1 is the
1712 contents. */
1713
1714 struct value *
1715 value_ref (struct value *arg1)
1716 {
1717 struct value *arg2;
1718 struct type *type = check_typedef (value_type (arg1));
1719
1720 if (TYPE_CODE (type) == TYPE_CODE_REF)
1721 return arg1;
1722
1723 arg2 = value_addr (arg1);
1724 deprecated_set_value_type (arg2, lookup_reference_type (type));
1725 return arg2;
1726 }
1727
1728 /* Given a value of a pointer type, apply the C unary * operator to
1729 it. */
1730
1731 struct value *
1732 value_ind (struct value *arg1)
1733 {
1734 struct type *base_type;
1735 struct value *arg2;
1736
1737 arg1 = coerce_array (arg1);
1738
1739 base_type = check_typedef (value_type (arg1));
1740
1741 if (VALUE_LVAL (arg1) == lval_computed)
1742 {
1743 struct lval_funcs *funcs = value_computed_funcs (arg1);
1744
1745 if (funcs->indirect)
1746 {
1747 struct value *result = funcs->indirect (arg1);
1748
1749 if (result)
1750 return result;
1751 }
1752 }
1753
1754 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1755 {
1756 struct type *enc_type;
1757
1758 /* We may be pointing to something embedded in a larger object.
1759 Get the real type of the enclosing object. */
1760 enc_type = check_typedef (value_enclosing_type (arg1));
1761 enc_type = TYPE_TARGET_TYPE (enc_type);
1762
1763 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1764 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1765 /* For functions, go through find_function_addr, which knows
1766 how to handle function descriptors. */
1767 arg2 = value_at_lazy (enc_type,
1768 find_function_addr (arg1, NULL));
1769 else
1770 /* Retrieve the enclosing object pointed to. */
1771 arg2 = value_at_lazy (enc_type,
1772 (value_as_address (arg1)
1773 - value_pointed_to_offset (arg1)));
1774
1775 /* Re-adjust type. */
1776 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
1777 /* Add embedding info. */
1778 set_value_enclosing_type (arg2, enc_type);
1779 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
1780
1781 /* We may be pointing to an object of some derived type. */
1782 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1783 return arg2;
1784 }
1785
1786 error (_("Attempt to take contents of a non-pointer value."));
1787 return 0; /* For lint -- never reached. */
1788 }
1789 \f
1790 /* Create a value for an array by allocating space in GDB, copying the
1791 data into that space, and then setting up an array value.
1792
1793 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1794 is populated from the values passed in ELEMVEC.
1795
1796 The element type of the array is inherited from the type of the
1797 first element, and all elements must have the same size (though we
1798 don't currently enforce any restriction on their types). */
1799
1800 struct value *
1801 value_array (int lowbound, int highbound, struct value **elemvec)
1802 {
1803 int nelem;
1804 int idx;
1805 unsigned int typelength;
1806 struct value *val;
1807 struct type *arraytype;
1808
1809 /* Validate that the bounds are reasonable and that each of the
1810 elements have the same size. */
1811
1812 nelem = highbound - lowbound + 1;
1813 if (nelem <= 0)
1814 {
1815 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1816 }
1817 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1818 for (idx = 1; idx < nelem; idx++)
1819 {
1820 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1821 {
1822 error (_("array elements must all be the same size"));
1823 }
1824 }
1825
1826 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1827 lowbound, highbound);
1828
1829 if (!current_language->c_style_arrays)
1830 {
1831 val = allocate_value (arraytype);
1832 for (idx = 0; idx < nelem; idx++)
1833 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1834 typelength);
1835 return val;
1836 }
1837
1838 /* Allocate space to store the array, and then initialize it by
1839 copying in each element. */
1840
1841 val = allocate_value (arraytype);
1842 for (idx = 0; idx < nelem; idx++)
1843 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1844 return val;
1845 }
1846
1847 struct value *
1848 value_cstring (char *ptr, int len, struct type *char_type)
1849 {
1850 struct value *val;
1851 int lowbound = current_language->string_lower_bound;
1852 int highbound = len / TYPE_LENGTH (char_type);
1853 struct type *stringtype
1854 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1855
1856 val = allocate_value (stringtype);
1857 memcpy (value_contents_raw (val), ptr, len);
1858 return val;
1859 }
1860
1861 /* Create a value for a string constant by allocating space in the
1862 inferior, copying the data into that space, and returning the
1863 address with type TYPE_CODE_STRING. PTR points to the string
1864 constant data; LEN is number of characters.
1865
1866 Note that string types are like array of char types with a lower
1867 bound of zero and an upper bound of LEN - 1. Also note that the
1868 string may contain embedded null bytes. */
1869
1870 struct value *
1871 value_string (char *ptr, int len, struct type *char_type)
1872 {
1873 struct value *val;
1874 int lowbound = current_language->string_lower_bound;
1875 int highbound = len / TYPE_LENGTH (char_type);
1876 struct type *stringtype
1877 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1878
1879 val = allocate_value (stringtype);
1880 memcpy (value_contents_raw (val), ptr, len);
1881 return val;
1882 }
1883
1884 struct value *
1885 value_bitstring (char *ptr, int len, struct type *index_type)
1886 {
1887 struct value *val;
1888 struct type *domain_type
1889 = create_range_type (NULL, index_type, 0, len - 1);
1890 struct type *type = create_set_type (NULL, domain_type);
1891
1892 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1893 val = allocate_value (type);
1894 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1895 return val;
1896 }
1897 \f
1898 /* See if we can pass arguments in T2 to a function which takes
1899 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1900 a NULL-terminated vector. If some arguments need coercion of some
1901 sort, then the coerced values are written into T2. Return value is
1902 0 if the arguments could be matched, or the position at which they
1903 differ if not.
1904
1905 STATICP is nonzero if the T1 argument list came from a static
1906 member function. T2 will still include the ``this'' pointer, but
1907 it will be skipped.
1908
1909 For non-static member functions, we ignore the first argument,
1910 which is the type of the instance variable. This is because we
1911 want to handle calls with objects from derived classes. This is
1912 not entirely correct: we should actually check to make sure that a
1913 requested operation is type secure, shouldn't we? FIXME. */
1914
1915 static int
1916 typecmp (int staticp, int varargs, int nargs,
1917 struct field t1[], struct value *t2[])
1918 {
1919 int i;
1920
1921 if (t2 == 0)
1922 internal_error (__FILE__, __LINE__,
1923 _("typecmp: no argument list"));
1924
1925 /* Skip ``this'' argument if applicable. T2 will always include
1926 THIS. */
1927 if (staticp)
1928 t2 ++;
1929
1930 for (i = 0;
1931 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1932 i++)
1933 {
1934 struct type *tt1, *tt2;
1935
1936 if (!t2[i])
1937 return i + 1;
1938
1939 tt1 = check_typedef (t1[i].type);
1940 tt2 = check_typedef (value_type (t2[i]));
1941
1942 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1943 /* We should be doing hairy argument matching, as below. */
1944 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1945 == TYPE_CODE (tt2)))
1946 {
1947 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1948 t2[i] = value_coerce_array (t2[i]);
1949 else
1950 t2[i] = value_ref (t2[i]);
1951 continue;
1952 }
1953
1954 /* djb - 20000715 - Until the new type structure is in the
1955 place, and we can attempt things like implicit conversions,
1956 we need to do this so you can take something like a map<const
1957 char *>, and properly access map["hello"], because the
1958 argument to [] will be a reference to a pointer to a char,
1959 and the argument will be a pointer to a char. */
1960 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1961 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1962 {
1963 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1964 }
1965 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1966 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1967 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1968 {
1969 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1970 }
1971 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1972 continue;
1973 /* Array to pointer is a `trivial conversion' according to the
1974 ARM. */
1975
1976 /* We should be doing much hairier argument matching (see
1977 section 13.2 of the ARM), but as a quick kludge, just check
1978 for the same type code. */
1979 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1980 return i + 1;
1981 }
1982 if (varargs || t2[i] == NULL)
1983 return 0;
1984 return i + 1;
1985 }
1986
1987 /* Helper function used by value_struct_elt to recurse through
1988 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1989 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1990 TYPE. If found, return value, else return NULL.
1991
1992 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1993 fields, look for a baseclass named NAME. */
1994
1995 static struct value *
1996 search_struct_field (const char *name, struct value *arg1, int offset,
1997 struct type *type, int looking_for_baseclass)
1998 {
1999 int i;
2000 int nbases;
2001
2002 CHECK_TYPEDEF (type);
2003 nbases = TYPE_N_BASECLASSES (type);
2004
2005 if (!looking_for_baseclass)
2006 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2007 {
2008 char *t_field_name = TYPE_FIELD_NAME (type, i);
2009
2010 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2011 {
2012 struct value *v;
2013
2014 if (field_is_static (&TYPE_FIELD (type, i)))
2015 {
2016 v = value_static_field (type, i);
2017 if (v == 0)
2018 error (_("field %s is nonexistent or "
2019 "has been optimized out"),
2020 name);
2021 }
2022 else
2023 {
2024 v = value_primitive_field (arg1, offset, i, type);
2025 if (v == 0)
2026 error (_("there is no field named %s"), name);
2027 }
2028 return v;
2029 }
2030
2031 if (t_field_name
2032 && (t_field_name[0] == '\0'
2033 || (TYPE_CODE (type) == TYPE_CODE_UNION
2034 && (strcmp_iw (t_field_name, "else") == 0))))
2035 {
2036 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2037
2038 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2039 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2040 {
2041 /* Look for a match through the fields of an anonymous
2042 union, or anonymous struct. C++ provides anonymous
2043 unions.
2044
2045 In the GNU Chill (now deleted from GDB)
2046 implementation of variant record types, each
2047 <alternative field> has an (anonymous) union type,
2048 each member of the union represents a <variant
2049 alternative>. Each <variant alternative> is
2050 represented as a struct, with a member for each
2051 <variant field>. */
2052
2053 struct value *v;
2054 int new_offset = offset;
2055
2056 /* This is pretty gross. In G++, the offset in an
2057 anonymous union is relative to the beginning of the
2058 enclosing struct. In the GNU Chill (now deleted
2059 from GDB) implementation of variant records, the
2060 bitpos is zero in an anonymous union field, so we
2061 have to add the offset of the union here. */
2062 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2063 || (TYPE_NFIELDS (field_type) > 0
2064 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2065 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2066
2067 v = search_struct_field (name, arg1, new_offset,
2068 field_type,
2069 looking_for_baseclass);
2070 if (v)
2071 return v;
2072 }
2073 }
2074 }
2075
2076 for (i = 0; i < nbases; i++)
2077 {
2078 struct value *v;
2079 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2080 /* If we are looking for baseclasses, this is what we get when
2081 we hit them. But it could happen that the base part's member
2082 name is not yet filled in. */
2083 int found_baseclass = (looking_for_baseclass
2084 && TYPE_BASECLASS_NAME (type, i) != NULL
2085 && (strcmp_iw (name,
2086 TYPE_BASECLASS_NAME (type,
2087 i)) == 0));
2088
2089 if (BASETYPE_VIA_VIRTUAL (type, i))
2090 {
2091 int boffset;
2092 struct value *v2;
2093
2094 boffset = baseclass_offset (type, i,
2095 value_contents_for_printing (arg1),
2096 value_embedded_offset (arg1) + offset,
2097 value_address (arg1),
2098 arg1);
2099
2100 /* The virtual base class pointer might have been clobbered
2101 by the user program. Make sure that it still points to a
2102 valid memory location. */
2103
2104 boffset += value_embedded_offset (arg1) + offset;
2105 if (boffset < 0
2106 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
2107 {
2108 CORE_ADDR base_addr;
2109
2110 v2 = allocate_value (basetype);
2111 base_addr = value_address (arg1) + boffset;
2112 if (target_read_memory (base_addr,
2113 value_contents_raw (v2),
2114 TYPE_LENGTH (basetype)) != 0)
2115 error (_("virtual baseclass botch"));
2116 VALUE_LVAL (v2) = lval_memory;
2117 set_value_address (v2, base_addr);
2118 }
2119 else
2120 {
2121 v2 = value_copy (arg1);
2122 deprecated_set_value_type (v2, basetype);
2123 set_value_embedded_offset (v2, boffset);
2124 }
2125
2126 if (found_baseclass)
2127 return v2;
2128 v = search_struct_field (name, v2, 0,
2129 TYPE_BASECLASS (type, i),
2130 looking_for_baseclass);
2131 }
2132 else if (found_baseclass)
2133 v = value_primitive_field (arg1, offset, i, type);
2134 else
2135 v = search_struct_field (name, arg1,
2136 offset + TYPE_BASECLASS_BITPOS (type,
2137 i) / 8,
2138 basetype, looking_for_baseclass);
2139 if (v)
2140 return v;
2141 }
2142 return NULL;
2143 }
2144
2145 /* Helper function used by value_struct_elt to recurse through
2146 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2147 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2148 TYPE.
2149
2150 If found, return value, else if name matched and args not return
2151 (value) -1, else return NULL. */
2152
2153 static struct value *
2154 search_struct_method (const char *name, struct value **arg1p,
2155 struct value **args, int offset,
2156 int *static_memfuncp, struct type *type)
2157 {
2158 int i;
2159 struct value *v;
2160 int name_matched = 0;
2161 char dem_opname[64];
2162
2163 CHECK_TYPEDEF (type);
2164 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2165 {
2166 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2167
2168 /* FIXME! May need to check for ARM demangling here. */
2169 if (strncmp (t_field_name, "__", 2) == 0 ||
2170 strncmp (t_field_name, "op", 2) == 0 ||
2171 strncmp (t_field_name, "type", 4) == 0)
2172 {
2173 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2174 t_field_name = dem_opname;
2175 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2176 t_field_name = dem_opname;
2177 }
2178 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2179 {
2180 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2181 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2182
2183 name_matched = 1;
2184 check_stub_method_group (type, i);
2185 if (j > 0 && args == 0)
2186 error (_("cannot resolve overloaded method "
2187 "`%s': no arguments supplied"), name);
2188 else if (j == 0 && args == 0)
2189 {
2190 v = value_fn_field (arg1p, f, j, type, offset);
2191 if (v != NULL)
2192 return v;
2193 }
2194 else
2195 while (j >= 0)
2196 {
2197 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2198 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2199 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2200 TYPE_FN_FIELD_ARGS (f, j), args))
2201 {
2202 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2203 return value_virtual_fn_field (arg1p, f, j,
2204 type, offset);
2205 if (TYPE_FN_FIELD_STATIC_P (f, j)
2206 && static_memfuncp)
2207 *static_memfuncp = 1;
2208 v = value_fn_field (arg1p, f, j, type, offset);
2209 if (v != NULL)
2210 return v;
2211 }
2212 j--;
2213 }
2214 }
2215 }
2216
2217 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2218 {
2219 int base_offset;
2220 int skip = 0;
2221 int this_offset;
2222
2223 if (BASETYPE_VIA_VIRTUAL (type, i))
2224 {
2225 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2226 struct value *base_val;
2227 const gdb_byte *base_valaddr;
2228
2229 /* The virtual base class pointer might have been
2230 clobbered by the user program. Make sure that it
2231 still points to a valid memory location. */
2232
2233 if (offset < 0 || offset >= TYPE_LENGTH (type))
2234 {
2235 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
2236 CORE_ADDR address = value_address (*arg1p);
2237
2238 if (target_read_memory (address + offset,
2239 tmp, TYPE_LENGTH (baseclass)) != 0)
2240 error (_("virtual baseclass botch"));
2241
2242 base_val = value_from_contents_and_address (baseclass,
2243 tmp,
2244 address + offset);
2245 base_valaddr = value_contents_for_printing (base_val);
2246 this_offset = 0;
2247 }
2248 else
2249 {
2250 base_val = *arg1p;
2251 base_valaddr = value_contents_for_printing (*arg1p);
2252 this_offset = offset;
2253 }
2254
2255 base_offset = baseclass_offset (type, i, base_valaddr,
2256 this_offset, value_address (base_val),
2257 base_val);
2258 }
2259 else
2260 {
2261 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2262 }
2263 v = search_struct_method (name, arg1p, args, base_offset + offset,
2264 static_memfuncp, TYPE_BASECLASS (type, i));
2265 if (v == (struct value *) - 1)
2266 {
2267 name_matched = 1;
2268 }
2269 else if (v)
2270 {
2271 /* FIXME-bothner: Why is this commented out? Why is it here? */
2272 /* *arg1p = arg1_tmp; */
2273 return v;
2274 }
2275 }
2276 if (name_matched)
2277 return (struct value *) - 1;
2278 else
2279 return NULL;
2280 }
2281
2282 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2283 extract the component named NAME from the ultimate target
2284 structure/union and return it as a value with its appropriate type.
2285 ERR is used in the error message if *ARGP's type is wrong.
2286
2287 C++: ARGS is a list of argument types to aid in the selection of
2288 an appropriate method. Also, handle derived types.
2289
2290 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2291 where the truthvalue of whether the function that was resolved was
2292 a static member function or not is stored.
2293
2294 ERR is an error message to be printed in case the field is not
2295 found. */
2296
2297 struct value *
2298 value_struct_elt (struct value **argp, struct value **args,
2299 const char *name, int *static_memfuncp, const char *err)
2300 {
2301 struct type *t;
2302 struct value *v;
2303
2304 *argp = coerce_array (*argp);
2305
2306 t = check_typedef (value_type (*argp));
2307
2308 /* Follow pointers until we get to a non-pointer. */
2309
2310 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2311 {
2312 *argp = value_ind (*argp);
2313 /* Don't coerce fn pointer to fn and then back again! */
2314 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2315 *argp = coerce_array (*argp);
2316 t = check_typedef (value_type (*argp));
2317 }
2318
2319 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2320 && TYPE_CODE (t) != TYPE_CODE_UNION)
2321 error (_("Attempt to extract a component of a value that is not a %s."),
2322 err);
2323
2324 /* Assume it's not, unless we see that it is. */
2325 if (static_memfuncp)
2326 *static_memfuncp = 0;
2327
2328 if (!args)
2329 {
2330 /* if there are no arguments ...do this... */
2331
2332 /* Try as a field first, because if we succeed, there is less
2333 work to be done. */
2334 v = search_struct_field (name, *argp, 0, t, 0);
2335 if (v)
2336 return v;
2337
2338 /* C++: If it was not found as a data field, then try to
2339 return it as a pointer to a method. */
2340 v = search_struct_method (name, argp, args, 0,
2341 static_memfuncp, t);
2342
2343 if (v == (struct value *) - 1)
2344 error (_("Cannot take address of method %s."), name);
2345 else if (v == 0)
2346 {
2347 if (TYPE_NFN_FIELDS (t))
2348 error (_("There is no member or method named %s."), name);
2349 else
2350 error (_("There is no member named %s."), name);
2351 }
2352 return v;
2353 }
2354
2355 v = search_struct_method (name, argp, args, 0,
2356 static_memfuncp, t);
2357
2358 if (v == (struct value *) - 1)
2359 {
2360 error (_("One of the arguments you tried to pass to %s could not "
2361 "be converted to what the function wants."), name);
2362 }
2363 else if (v == 0)
2364 {
2365 /* See if user tried to invoke data as function. If so, hand it
2366 back. If it's not callable (i.e., a pointer to function),
2367 gdb should give an error. */
2368 v = search_struct_field (name, *argp, 0, t, 0);
2369 /* If we found an ordinary field, then it is not a method call.
2370 So, treat it as if it were a static member function. */
2371 if (v && static_memfuncp)
2372 *static_memfuncp = 1;
2373 }
2374
2375 if (!v)
2376 throw_error (NOT_FOUND_ERROR,
2377 _("Structure has no component named %s."), name);
2378 return v;
2379 }
2380
2381 /* Search through the methods of an object (and its bases) to find a
2382 specified method. Return the pointer to the fn_field list of
2383 overloaded instances.
2384
2385 Helper function for value_find_oload_list.
2386 ARGP is a pointer to a pointer to a value (the object).
2387 METHOD is a string containing the method name.
2388 OFFSET is the offset within the value.
2389 TYPE is the assumed type of the object.
2390 NUM_FNS is the number of overloaded instances.
2391 BASETYPE is set to the actual type of the subobject where the
2392 method is found.
2393 BOFFSET is the offset of the base subobject where the method is found. */
2394
2395 static struct fn_field *
2396 find_method_list (struct value **argp, const char *method,
2397 int offset, struct type *type, int *num_fns,
2398 struct type **basetype, int *boffset)
2399 {
2400 int i;
2401 struct fn_field *f;
2402 CHECK_TYPEDEF (type);
2403
2404 *num_fns = 0;
2405
2406 /* First check in object itself. */
2407 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2408 {
2409 /* pai: FIXME What about operators and type conversions? */
2410 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2411
2412 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2413 {
2414 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2415 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2416
2417 *num_fns = len;
2418 *basetype = type;
2419 *boffset = offset;
2420
2421 /* Resolve any stub methods. */
2422 check_stub_method_group (type, i);
2423
2424 return f;
2425 }
2426 }
2427
2428 /* Not found in object, check in base subobjects. */
2429 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2430 {
2431 int base_offset;
2432
2433 if (BASETYPE_VIA_VIRTUAL (type, i))
2434 {
2435 base_offset = baseclass_offset (type, i,
2436 value_contents_for_printing (*argp),
2437 value_offset (*argp) + offset,
2438 value_address (*argp), *argp);
2439 }
2440 else /* Non-virtual base, simply use bit position from debug
2441 info. */
2442 {
2443 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2444 }
2445 f = find_method_list (argp, method, base_offset + offset,
2446 TYPE_BASECLASS (type, i), num_fns,
2447 basetype, boffset);
2448 if (f)
2449 return f;
2450 }
2451 return NULL;
2452 }
2453
2454 /* Return the list of overloaded methods of a specified name.
2455
2456 ARGP is a pointer to a pointer to a value (the object).
2457 METHOD is the method name.
2458 OFFSET is the offset within the value contents.
2459 NUM_FNS is the number of overloaded instances.
2460 BASETYPE is set to the type of the base subobject that defines the
2461 method.
2462 BOFFSET is the offset of the base subobject which defines the method. */
2463
2464 struct fn_field *
2465 value_find_oload_method_list (struct value **argp, const char *method,
2466 int offset, int *num_fns,
2467 struct type **basetype, int *boffset)
2468 {
2469 struct type *t;
2470
2471 t = check_typedef (value_type (*argp));
2472
2473 /* Code snarfed from value_struct_elt. */
2474 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2475 {
2476 *argp = value_ind (*argp);
2477 /* Don't coerce fn pointer to fn and then back again! */
2478 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2479 *argp = coerce_array (*argp);
2480 t = check_typedef (value_type (*argp));
2481 }
2482
2483 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2484 && TYPE_CODE (t) != TYPE_CODE_UNION)
2485 error (_("Attempt to extract a component of a "
2486 "value that is not a struct or union"));
2487
2488 return find_method_list (argp, method, 0, t, num_fns,
2489 basetype, boffset);
2490 }
2491
2492 /* Given an array of argument types (ARGTYPES) (which includes an
2493 entry for "this" in the case of C++ methods), the number of
2494 arguments NARGS, the NAME of a function whether it's a method or
2495 not (METHOD), and the degree of laxness (LAX) in conforming to
2496 overload resolution rules in ANSI C++, find the best function that
2497 matches on the argument types according to the overload resolution
2498 rules.
2499
2500 METHOD can be one of three values:
2501 NON_METHOD for non-member functions.
2502 METHOD: for member functions.
2503 BOTH: used for overload resolution of operators where the
2504 candidates are expected to be either member or non member
2505 functions. In this case the first argument ARGTYPES
2506 (representing 'this') is expected to be a reference to the
2507 target object, and will be dereferenced when attempting the
2508 non-member search.
2509
2510 In the case of class methods, the parameter OBJ is an object value
2511 in which to search for overloaded methods.
2512
2513 In the case of non-method functions, the parameter FSYM is a symbol
2514 corresponding to one of the overloaded functions.
2515
2516 Return value is an integer: 0 -> good match, 10 -> debugger applied
2517 non-standard coercions, 100 -> incompatible.
2518
2519 If a method is being searched for, VALP will hold the value.
2520 If a non-method is being searched for, SYMP will hold the symbol
2521 for it.
2522
2523 If a method is being searched for, and it is a static method,
2524 then STATICP will point to a non-zero value.
2525
2526 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2527 ADL overload candidates when performing overload resolution for a fully
2528 qualified name.
2529
2530 Note: This function does *not* check the value of
2531 overload_resolution. Caller must check it to see whether overload
2532 resolution is permitted. */
2533
2534 int
2535 find_overload_match (struct type **arg_types, int nargs,
2536 const char *name, enum oload_search_type method,
2537 int lax, struct value **objp, struct symbol *fsym,
2538 struct value **valp, struct symbol **symp,
2539 int *staticp, const int no_adl)
2540 {
2541 struct value *obj = (objp ? *objp : NULL);
2542 /* Index of best overloaded function. */
2543 int func_oload_champ = -1;
2544 int method_oload_champ = -1;
2545
2546 /* The measure for the current best match. */
2547 struct badness_vector *method_badness = NULL;
2548 struct badness_vector *func_badness = NULL;
2549
2550 struct value *temp = obj;
2551 /* For methods, the list of overloaded methods. */
2552 struct fn_field *fns_ptr = NULL;
2553 /* For non-methods, the list of overloaded function symbols. */
2554 struct symbol **oload_syms = NULL;
2555 /* Number of overloaded instances being considered. */
2556 int num_fns = 0;
2557 struct type *basetype = NULL;
2558 int boffset;
2559
2560 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2561
2562 const char *obj_type_name = NULL;
2563 const char *func_name = NULL;
2564 enum oload_classification match_quality;
2565 enum oload_classification method_match_quality = INCOMPATIBLE;
2566 enum oload_classification func_match_quality = INCOMPATIBLE;
2567
2568 /* Get the list of overloaded methods or functions. */
2569 if (method == METHOD || method == BOTH)
2570 {
2571 gdb_assert (obj);
2572
2573 /* OBJ may be a pointer value rather than the object itself. */
2574 obj = coerce_ref (obj);
2575 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2576 obj = coerce_ref (value_ind (obj));
2577 obj_type_name = TYPE_NAME (value_type (obj));
2578
2579 /* First check whether this is a data member, e.g. a pointer to
2580 a function. */
2581 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2582 {
2583 *valp = search_struct_field (name, obj, 0,
2584 check_typedef (value_type (obj)), 0);
2585 if (*valp)
2586 {
2587 *staticp = 1;
2588 do_cleanups (all_cleanups);
2589 return 0;
2590 }
2591 }
2592
2593 /* Retrieve the list of methods with the name NAME. */
2594 fns_ptr = value_find_oload_method_list (&temp, name,
2595 0, &num_fns,
2596 &basetype, &boffset);
2597 /* If this is a method only search, and no methods were found
2598 the search has faild. */
2599 if (method == METHOD && (!fns_ptr || !num_fns))
2600 error (_("Couldn't find method %s%s%s"),
2601 obj_type_name,
2602 (obj_type_name && *obj_type_name) ? "::" : "",
2603 name);
2604 /* If we are dealing with stub method types, they should have
2605 been resolved by find_method_list via
2606 value_find_oload_method_list above. */
2607 if (fns_ptr)
2608 {
2609 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2610 method_oload_champ = find_oload_champ (arg_types, nargs, method,
2611 num_fns, fns_ptr,
2612 oload_syms, &method_badness);
2613
2614 method_match_quality =
2615 classify_oload_match (method_badness, nargs,
2616 oload_method_static (method, fns_ptr,
2617 method_oload_champ));
2618
2619 make_cleanup (xfree, method_badness);
2620 }
2621
2622 }
2623
2624 if (method == NON_METHOD || method == BOTH)
2625 {
2626 const char *qualified_name = NULL;
2627
2628 /* If the overload match is being search for both as a method
2629 and non member function, the first argument must now be
2630 dereferenced. */
2631 if (method == BOTH)
2632 arg_types[0] = TYPE_TARGET_TYPE (arg_types[0]);
2633
2634 if (fsym)
2635 {
2636 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2637
2638 /* If we have a function with a C++ name, try to extract just
2639 the function part. Do not try this for non-functions (e.g.
2640 function pointers). */
2641 if (qualified_name
2642 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2643 == TYPE_CODE_FUNC)
2644 {
2645 char *temp;
2646
2647 temp = cp_func_name (qualified_name);
2648
2649 /* If cp_func_name did not remove anything, the name of the
2650 symbol did not include scope or argument types - it was
2651 probably a C-style function. */
2652 if (temp)
2653 {
2654 make_cleanup (xfree, temp);
2655 if (strcmp (temp, qualified_name) == 0)
2656 func_name = NULL;
2657 else
2658 func_name = temp;
2659 }
2660 }
2661 }
2662 else
2663 {
2664 func_name = name;
2665 qualified_name = name;
2666 }
2667
2668 /* If there was no C++ name, this must be a C-style function or
2669 not a function at all. Just return the same symbol. Do the
2670 same if cp_func_name fails for some reason. */
2671 if (func_name == NULL)
2672 {
2673 *symp = fsym;
2674 do_cleanups (all_cleanups);
2675 return 0;
2676 }
2677
2678 func_oload_champ = find_oload_champ_namespace (arg_types, nargs,
2679 func_name,
2680 qualified_name,
2681 &oload_syms,
2682 &func_badness,
2683 no_adl);
2684
2685 if (func_oload_champ >= 0)
2686 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2687
2688 make_cleanup (xfree, oload_syms);
2689 make_cleanup (xfree, func_badness);
2690 }
2691
2692 /* Did we find a match ? */
2693 if (method_oload_champ == -1 && func_oload_champ == -1)
2694 throw_error (NOT_FOUND_ERROR,
2695 _("No symbol \"%s\" in current context."),
2696 name);
2697
2698 /* If we have found both a method match and a function
2699 match, find out which one is better, and calculate match
2700 quality. */
2701 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2702 {
2703 switch (compare_badness (func_badness, method_badness))
2704 {
2705 case 0: /* Top two contenders are equally good. */
2706 /* FIXME: GDB does not support the general ambiguous case.
2707 All candidates should be collected and presented the
2708 user. */
2709 error (_("Ambiguous overload resolution"));
2710 break;
2711 case 1: /* Incomparable top contenders. */
2712 /* This is an error incompatible candidates
2713 should not have been proposed. */
2714 error (_("Internal error: incompatible "
2715 "overload candidates proposed"));
2716 break;
2717 case 2: /* Function champion. */
2718 method_oload_champ = -1;
2719 match_quality = func_match_quality;
2720 break;
2721 case 3: /* Method champion. */
2722 func_oload_champ = -1;
2723 match_quality = method_match_quality;
2724 break;
2725 default:
2726 error (_("Internal error: unexpected overload comparison result"));
2727 break;
2728 }
2729 }
2730 else
2731 {
2732 /* We have either a method match or a function match. */
2733 if (method_oload_champ >= 0)
2734 match_quality = method_match_quality;
2735 else
2736 match_quality = func_match_quality;
2737 }
2738
2739 if (match_quality == INCOMPATIBLE)
2740 {
2741 if (method == METHOD)
2742 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2743 obj_type_name,
2744 (obj_type_name && *obj_type_name) ? "::" : "",
2745 name);
2746 else
2747 error (_("Cannot resolve function %s to any overloaded instance"),
2748 func_name);
2749 }
2750 else if (match_quality == NON_STANDARD)
2751 {
2752 if (method == METHOD)
2753 warning (_("Using non-standard conversion to match "
2754 "method %s%s%s to supplied arguments"),
2755 obj_type_name,
2756 (obj_type_name && *obj_type_name) ? "::" : "",
2757 name);
2758 else
2759 warning (_("Using non-standard conversion to match "
2760 "function %s to supplied arguments"),
2761 func_name);
2762 }
2763
2764 if (staticp != NULL)
2765 *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2766
2767 if (method_oload_champ >= 0)
2768 {
2769 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2770 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2771 basetype, boffset);
2772 else
2773 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2774 basetype, boffset);
2775 }
2776 else
2777 *symp = oload_syms[func_oload_champ];
2778
2779 if (objp)
2780 {
2781 struct type *temp_type = check_typedef (value_type (temp));
2782 struct type *obj_type = check_typedef (value_type (*objp));
2783
2784 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2785 && (TYPE_CODE (obj_type) == TYPE_CODE_PTR
2786 || TYPE_CODE (obj_type) == TYPE_CODE_REF))
2787 {
2788 temp = value_addr (temp);
2789 }
2790 *objp = temp;
2791 }
2792
2793 do_cleanups (all_cleanups);
2794
2795 switch (match_quality)
2796 {
2797 case INCOMPATIBLE:
2798 return 100;
2799 case NON_STANDARD:
2800 return 10;
2801 default: /* STANDARD */
2802 return 0;
2803 }
2804 }
2805
2806 /* Find the best overload match, searching for FUNC_NAME in namespaces
2807 contained in QUALIFIED_NAME until it either finds a good match or
2808 runs out of namespaces. It stores the overloaded functions in
2809 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2810 calling function is responsible for freeing *OLOAD_SYMS and
2811 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2812 performned. */
2813
2814 static int
2815 find_oload_champ_namespace (struct type **arg_types, int nargs,
2816 const char *func_name,
2817 const char *qualified_name,
2818 struct symbol ***oload_syms,
2819 struct badness_vector **oload_champ_bv,
2820 const int no_adl)
2821 {
2822 int oload_champ;
2823
2824 find_oload_champ_namespace_loop (arg_types, nargs,
2825 func_name,
2826 qualified_name, 0,
2827 oload_syms, oload_champ_bv,
2828 &oload_champ,
2829 no_adl);
2830
2831 return oload_champ;
2832 }
2833
2834 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2835 how deep we've looked for namespaces, and the champ is stored in
2836 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2837 if it isn't. Other arguments are the same as in
2838 find_oload_champ_namespace
2839
2840 It is the caller's responsibility to free *OLOAD_SYMS and
2841 *OLOAD_CHAMP_BV. */
2842
2843 static int
2844 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2845 const char *func_name,
2846 const char *qualified_name,
2847 int namespace_len,
2848 struct symbol ***oload_syms,
2849 struct badness_vector **oload_champ_bv,
2850 int *oload_champ,
2851 const int no_adl)
2852 {
2853 int next_namespace_len = namespace_len;
2854 int searched_deeper = 0;
2855 int num_fns = 0;
2856 struct cleanup *old_cleanups;
2857 int new_oload_champ;
2858 struct symbol **new_oload_syms;
2859 struct badness_vector *new_oload_champ_bv;
2860 char *new_namespace;
2861
2862 if (next_namespace_len != 0)
2863 {
2864 gdb_assert (qualified_name[next_namespace_len] == ':');
2865 next_namespace_len += 2;
2866 }
2867 next_namespace_len +=
2868 cp_find_first_component (qualified_name + next_namespace_len);
2869
2870 /* Initialize these to values that can safely be xfree'd. */
2871 *oload_syms = NULL;
2872 *oload_champ_bv = NULL;
2873
2874 /* First, see if we have a deeper namespace we can search in.
2875 If we get a good match there, use it. */
2876
2877 if (qualified_name[next_namespace_len] == ':')
2878 {
2879 searched_deeper = 1;
2880
2881 if (find_oload_champ_namespace_loop (arg_types, nargs,
2882 func_name, qualified_name,
2883 next_namespace_len,
2884 oload_syms, oload_champ_bv,
2885 oload_champ, no_adl))
2886 {
2887 return 1;
2888 }
2889 };
2890
2891 /* If we reach here, either we're in the deepest namespace or we
2892 didn't find a good match in a deeper namespace. But, in the
2893 latter case, we still have a bad match in a deeper namespace;
2894 note that we might not find any match at all in the current
2895 namespace. (There's always a match in the deepest namespace,
2896 because this overload mechanism only gets called if there's a
2897 function symbol to start off with.) */
2898
2899 old_cleanups = make_cleanup (xfree, *oload_syms);
2900 make_cleanup (xfree, *oload_champ_bv);
2901 new_namespace = alloca (namespace_len + 1);
2902 strncpy (new_namespace, qualified_name, namespace_len);
2903 new_namespace[namespace_len] = '\0';
2904 new_oload_syms = make_symbol_overload_list (func_name,
2905 new_namespace);
2906
2907 /* If we have reached the deepest level perform argument
2908 determined lookup. */
2909 if (!searched_deeper && !no_adl)
2910 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2911
2912 while (new_oload_syms[num_fns])
2913 ++num_fns;
2914
2915 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2916 NULL, new_oload_syms,
2917 &new_oload_champ_bv);
2918
2919 /* Case 1: We found a good match. Free earlier matches (if any),
2920 and return it. Case 2: We didn't find a good match, but we're
2921 not the deepest function. Then go with the bad match that the
2922 deeper function found. Case 3: We found a bad match, and we're
2923 the deepest function. Then return what we found, even though
2924 it's a bad match. */
2925
2926 if (new_oload_champ != -1
2927 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2928 {
2929 *oload_syms = new_oload_syms;
2930 *oload_champ = new_oload_champ;
2931 *oload_champ_bv = new_oload_champ_bv;
2932 do_cleanups (old_cleanups);
2933 return 1;
2934 }
2935 else if (searched_deeper)
2936 {
2937 xfree (new_oload_syms);
2938 xfree (new_oload_champ_bv);
2939 discard_cleanups (old_cleanups);
2940 return 0;
2941 }
2942 else
2943 {
2944 *oload_syms = new_oload_syms;
2945 *oload_champ = new_oload_champ;
2946 *oload_champ_bv = new_oload_champ_bv;
2947 do_cleanups (old_cleanups);
2948 return 0;
2949 }
2950 }
2951
2952 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2953 the best match from among the overloaded methods or functions
2954 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2955 The number of methods/functions in the list is given by NUM_FNS.
2956 Return the index of the best match; store an indication of the
2957 quality of the match in OLOAD_CHAMP_BV.
2958
2959 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2960
2961 static int
2962 find_oload_champ (struct type **arg_types, int nargs, int method,
2963 int num_fns, struct fn_field *fns_ptr,
2964 struct symbol **oload_syms,
2965 struct badness_vector **oload_champ_bv)
2966 {
2967 int ix;
2968 /* A measure of how good an overloaded instance is. */
2969 struct badness_vector *bv;
2970 /* Index of best overloaded function. */
2971 int oload_champ = -1;
2972 /* Current ambiguity state for overload resolution. */
2973 int oload_ambiguous = 0;
2974 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2975
2976 *oload_champ_bv = NULL;
2977
2978 /* Consider each candidate in turn. */
2979 for (ix = 0; ix < num_fns; ix++)
2980 {
2981 int jj;
2982 int static_offset = oload_method_static (method, fns_ptr, ix);
2983 int nparms;
2984 struct type **parm_types;
2985
2986 if (method)
2987 {
2988 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2989 }
2990 else
2991 {
2992 /* If it's not a method, this is the proper place. */
2993 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2994 }
2995
2996 /* Prepare array of parameter types. */
2997 parm_types = (struct type **)
2998 xmalloc (nparms * (sizeof (struct type *)));
2999 for (jj = 0; jj < nparms; jj++)
3000 parm_types[jj] = (method
3001 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
3002 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
3003 jj));
3004
3005 /* Compare parameter types to supplied argument types. Skip
3006 THIS for static methods. */
3007 bv = rank_function (parm_types, nparms,
3008 arg_types + static_offset,
3009 nargs - static_offset);
3010
3011 if (!*oload_champ_bv)
3012 {
3013 *oload_champ_bv = bv;
3014 oload_champ = 0;
3015 }
3016 else /* See whether current candidate is better or worse than
3017 previous best. */
3018 switch (compare_badness (bv, *oload_champ_bv))
3019 {
3020 case 0: /* Top two contenders are equally good. */
3021 oload_ambiguous = 1;
3022 break;
3023 case 1: /* Incomparable top contenders. */
3024 oload_ambiguous = 2;
3025 break;
3026 case 2: /* New champion, record details. */
3027 *oload_champ_bv = bv;
3028 oload_ambiguous = 0;
3029 oload_champ = ix;
3030 break;
3031 case 3:
3032 default:
3033 break;
3034 }
3035 xfree (parm_types);
3036 if (overload_debug)
3037 {
3038 if (method)
3039 fprintf_filtered (gdb_stderr,
3040 "Overloaded method instance %s, # of parms %d\n",
3041 fns_ptr[ix].physname, nparms);
3042 else
3043 fprintf_filtered (gdb_stderr,
3044 "Overloaded function instance "
3045 "%s # of parms %d\n",
3046 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
3047 nparms);
3048 for (jj = 0; jj < nargs - static_offset; jj++)
3049 fprintf_filtered (gdb_stderr,
3050 "...Badness @ %d : %d\n",
3051 jj, bv->rank[jj].rank);
3052 fprintf_filtered (gdb_stderr, "Overload resolution "
3053 "champion is %d, ambiguous? %d\n",
3054 oload_champ, oload_ambiguous);
3055 }
3056 }
3057
3058 return oload_champ;
3059 }
3060
3061 /* Return 1 if we're looking at a static method, 0 if we're looking at
3062 a non-static method or a function that isn't a method. */
3063
3064 static int
3065 oload_method_static (int method, struct fn_field *fns_ptr, int index)
3066 {
3067 if (method && fns_ptr && index >= 0
3068 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3069 return 1;
3070 else
3071 return 0;
3072 }
3073
3074 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3075
3076 static enum oload_classification
3077 classify_oload_match (struct badness_vector *oload_champ_bv,
3078 int nargs,
3079 int static_offset)
3080 {
3081 int ix;
3082
3083 for (ix = 1; ix <= nargs - static_offset; ix++)
3084 {
3085 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3086 or worse return INCOMPATIBLE. */
3087 if (compare_ranks (oload_champ_bv->rank[ix],
3088 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3089 return INCOMPATIBLE; /* Truly mismatched types. */
3090 /* Otherwise If this conversion is as bad as
3091 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3092 else if (compare_ranks (oload_champ_bv->rank[ix],
3093 NS_POINTER_CONVERSION_BADNESS) <= 0)
3094 return NON_STANDARD; /* Non-standard type conversions
3095 needed. */
3096 }
3097
3098 return STANDARD; /* Only standard conversions needed. */
3099 }
3100
3101 /* C++: return 1 is NAME is a legitimate name for the destructor of
3102 type TYPE. If TYPE does not have a destructor, or if NAME is
3103 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3104 have CHECK_TYPEDEF applied, this function will apply it itself. */
3105
3106 int
3107 destructor_name_p (const char *name, struct type *type)
3108 {
3109 if (name[0] == '~')
3110 {
3111 const char *dname = type_name_no_tag_or_error (type);
3112 const char *cp = strchr (dname, '<');
3113 unsigned int len;
3114
3115 /* Do not compare the template part for template classes. */
3116 if (cp == NULL)
3117 len = strlen (dname);
3118 else
3119 len = cp - dname;
3120 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3121 error (_("name of destructor must equal name of class"));
3122 else
3123 return 1;
3124 }
3125 return 0;
3126 }
3127
3128 /* Given TYPE, a structure/union,
3129 return 1 if the component named NAME from the ultimate target
3130 structure/union is defined, otherwise, return 0. */
3131
3132 int
3133 check_field (struct type *type, const char *name)
3134 {
3135 int i;
3136
3137 /* The type may be a stub. */
3138 CHECK_TYPEDEF (type);
3139
3140 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
3141 {
3142 char *t_field_name = TYPE_FIELD_NAME (type, i);
3143
3144 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
3145 return 1;
3146 }
3147
3148 /* C++: If it was not found as a data field, then try to return it
3149 as a pointer to a method. */
3150
3151 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
3152 {
3153 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
3154 return 1;
3155 }
3156
3157 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3158 if (check_field (TYPE_BASECLASS (type, i), name))
3159 return 1;
3160
3161 return 0;
3162 }
3163
3164 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3165 return the appropriate member (or the address of the member, if
3166 WANT_ADDRESS). This function is used to resolve user expressions
3167 of the form "DOMAIN::NAME". For more details on what happens, see
3168 the comment before value_struct_elt_for_reference. */
3169
3170 struct value *
3171 value_aggregate_elt (struct type *curtype, char *name,
3172 struct type *expect_type, int want_address,
3173 enum noside noside)
3174 {
3175 switch (TYPE_CODE (curtype))
3176 {
3177 case TYPE_CODE_STRUCT:
3178 case TYPE_CODE_UNION:
3179 return value_struct_elt_for_reference (curtype, 0, curtype,
3180 name, expect_type,
3181 want_address, noside);
3182 case TYPE_CODE_NAMESPACE:
3183 return value_namespace_elt (curtype, name,
3184 want_address, noside);
3185 default:
3186 internal_error (__FILE__, __LINE__,
3187 _("non-aggregate type in value_aggregate_elt"));
3188 }
3189 }
3190
3191 /* Compares the two method/function types T1 and T2 for "equality"
3192 with respect to the methods' parameters. If the types of the
3193 two parameter lists are the same, returns 1; 0 otherwise. This
3194 comparison may ignore any artificial parameters in T1 if
3195 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3196 the first artificial parameter in T1, assumed to be a 'this' pointer.
3197
3198 The type T2 is expected to have come from make_params (in eval.c). */
3199
3200 static int
3201 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3202 {
3203 int start = 0;
3204
3205 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3206 ++start;
3207
3208 /* If skipping artificial fields, find the first real field
3209 in T1. */
3210 if (skip_artificial)
3211 {
3212 while (start < TYPE_NFIELDS (t1)
3213 && TYPE_FIELD_ARTIFICIAL (t1, start))
3214 ++start;
3215 }
3216
3217 /* Now compare parameters. */
3218
3219 /* Special case: a method taking void. T1 will contain no
3220 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3221 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3222 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3223 return 1;
3224
3225 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3226 {
3227 int i;
3228
3229 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3230 {
3231 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3232 TYPE_FIELD_TYPE (t2, i)),
3233 EXACT_MATCH_BADNESS) != 0)
3234 return 0;
3235 }
3236
3237 return 1;
3238 }
3239
3240 return 0;
3241 }
3242
3243 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3244 return the address of this member as a "pointer to member" type.
3245 If INTYPE is non-null, then it will be the type of the member we
3246 are looking for. This will help us resolve "pointers to member
3247 functions". This function is used to resolve user expressions of
3248 the form "DOMAIN::NAME". */
3249
3250 static struct value *
3251 value_struct_elt_for_reference (struct type *domain, int offset,
3252 struct type *curtype, char *name,
3253 struct type *intype,
3254 int want_address,
3255 enum noside noside)
3256 {
3257 struct type *t = curtype;
3258 int i;
3259 struct value *v, *result;
3260
3261 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3262 && TYPE_CODE (t) != TYPE_CODE_UNION)
3263 error (_("Internal error: non-aggregate type "
3264 "to value_struct_elt_for_reference"));
3265
3266 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3267 {
3268 char *t_field_name = TYPE_FIELD_NAME (t, i);
3269
3270 if (t_field_name && strcmp (t_field_name, name) == 0)
3271 {
3272 if (field_is_static (&TYPE_FIELD (t, i)))
3273 {
3274 v = value_static_field (t, i);
3275 if (v == NULL)
3276 error (_("static field %s has been optimized out"),
3277 name);
3278 if (want_address)
3279 v = value_addr (v);
3280 return v;
3281 }
3282 if (TYPE_FIELD_PACKED (t, i))
3283 error (_("pointers to bitfield members not allowed"));
3284
3285 if (want_address)
3286 return value_from_longest
3287 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3288 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3289 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3290 return allocate_value (TYPE_FIELD_TYPE (t, i));
3291 else
3292 error (_("Cannot reference non-static field \"%s\""), name);
3293 }
3294 }
3295
3296 /* C++: If it was not found as a data field, then try to return it
3297 as a pointer to a method. */
3298
3299 /* Perform all necessary dereferencing. */
3300 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3301 intype = TYPE_TARGET_TYPE (intype);
3302
3303 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3304 {
3305 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3306 char dem_opname[64];
3307
3308 if (strncmp (t_field_name, "__", 2) == 0
3309 || strncmp (t_field_name, "op", 2) == 0
3310 || strncmp (t_field_name, "type", 4) == 0)
3311 {
3312 if (cplus_demangle_opname (t_field_name,
3313 dem_opname, DMGL_ANSI))
3314 t_field_name = dem_opname;
3315 else if (cplus_demangle_opname (t_field_name,
3316 dem_opname, 0))
3317 t_field_name = dem_opname;
3318 }
3319 if (t_field_name && strcmp (t_field_name, name) == 0)
3320 {
3321 int j;
3322 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3323 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3324
3325 check_stub_method_group (t, i);
3326
3327 if (intype)
3328 {
3329 for (j = 0; j < len; ++j)
3330 {
3331 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3332 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3333 intype, 1))
3334 break;
3335 }
3336
3337 if (j == len)
3338 error (_("no member function matches "
3339 "that type instantiation"));
3340 }
3341 else
3342 {
3343 int ii;
3344
3345 j = -1;
3346 for (ii = 0; ii < len; ++ii)
3347 {
3348 /* Skip artificial methods. This is necessary if,
3349 for example, the user wants to "print
3350 subclass::subclass" with only one user-defined
3351 constructor. There is no ambiguity in this case.
3352 We are careful here to allow artificial methods
3353 if they are the unique result. */
3354 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3355 {
3356 if (j == -1)
3357 j = ii;
3358 continue;
3359 }
3360
3361 /* Desired method is ambiguous if more than one
3362 method is defined. */
3363 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3364 error (_("non-unique member `%s' requires "
3365 "type instantiation"), name);
3366
3367 j = ii;
3368 }
3369
3370 if (j == -1)
3371 error (_("no matching member function"));
3372 }
3373
3374 if (TYPE_FN_FIELD_STATIC_P (f, j))
3375 {
3376 struct symbol *s =
3377 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3378 0, VAR_DOMAIN, 0);
3379
3380 if (s == NULL)
3381 return NULL;
3382
3383 if (want_address)
3384 return value_addr (read_var_value (s, 0));
3385 else
3386 return read_var_value (s, 0);
3387 }
3388
3389 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3390 {
3391 if (want_address)
3392 {
3393 result = allocate_value
3394 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3395 cplus_make_method_ptr (value_type (result),
3396 value_contents_writeable (result),
3397 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3398 }
3399 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3400 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3401 else
3402 error (_("Cannot reference virtual member function \"%s\""),
3403 name);
3404 }
3405 else
3406 {
3407 struct symbol *s =
3408 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3409 0, VAR_DOMAIN, 0);
3410
3411 if (s == NULL)
3412 return NULL;
3413
3414 v = read_var_value (s, 0);
3415 if (!want_address)
3416 result = v;
3417 else
3418 {
3419 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3420 cplus_make_method_ptr (value_type (result),
3421 value_contents_writeable (result),
3422 value_address (v), 0);
3423 }
3424 }
3425 return result;
3426 }
3427 }
3428 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3429 {
3430 struct value *v;
3431 int base_offset;
3432
3433 if (BASETYPE_VIA_VIRTUAL (t, i))
3434 base_offset = 0;
3435 else
3436 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3437 v = value_struct_elt_for_reference (domain,
3438 offset + base_offset,
3439 TYPE_BASECLASS (t, i),
3440 name, intype,
3441 want_address, noside);
3442 if (v)
3443 return v;
3444 }
3445
3446 /* As a last chance, pretend that CURTYPE is a namespace, and look
3447 it up that way; this (frequently) works for types nested inside
3448 classes. */
3449
3450 return value_maybe_namespace_elt (curtype, name,
3451 want_address, noside);
3452 }
3453
3454 /* C++: Return the member NAME of the namespace given by the type
3455 CURTYPE. */
3456
3457 static struct value *
3458 value_namespace_elt (const struct type *curtype,
3459 char *name, int want_address,
3460 enum noside noside)
3461 {
3462 struct value *retval = value_maybe_namespace_elt (curtype, name,
3463 want_address,
3464 noside);
3465
3466 if (retval == NULL)
3467 error (_("No symbol \"%s\" in namespace \"%s\"."),
3468 name, TYPE_TAG_NAME (curtype));
3469
3470 return retval;
3471 }
3472
3473 /* A helper function used by value_namespace_elt and
3474 value_struct_elt_for_reference. It looks up NAME inside the
3475 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3476 is a class and NAME refers to a type in CURTYPE itself (as opposed
3477 to, say, some base class of CURTYPE). */
3478
3479 static struct value *
3480 value_maybe_namespace_elt (const struct type *curtype,
3481 char *name, int want_address,
3482 enum noside noside)
3483 {
3484 const char *namespace_name = TYPE_TAG_NAME (curtype);
3485 struct symbol *sym;
3486 struct value *result;
3487
3488 sym = cp_lookup_symbol_namespace (namespace_name, name,
3489 get_selected_block (0), VAR_DOMAIN);
3490
3491 if (sym == NULL)
3492 {
3493 char *concatenated_name = alloca (strlen (namespace_name) + 2
3494 + strlen (name) + 1);
3495
3496 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3497 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3498 }
3499
3500 if (sym == NULL)
3501 return NULL;
3502 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3503 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3504 result = allocate_value (SYMBOL_TYPE (sym));
3505 else
3506 result = value_of_variable (sym, get_selected_block (0));
3507
3508 if (result && want_address)
3509 result = value_addr (result);
3510
3511 return result;
3512 }
3513
3514 /* Given a pointer value V, find the real (RTTI) type of the object it
3515 points to.
3516
3517 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3518 and refer to the values computed for the object pointed to. */
3519
3520 struct type *
3521 value_rtti_target_type (struct value *v, int *full,
3522 int *top, int *using_enc)
3523 {
3524 struct value *target;
3525
3526 target = value_ind (v);
3527
3528 return value_rtti_type (target, full, top, using_enc);
3529 }
3530
3531 /* Given a value pointed to by ARGP, check its real run-time type, and
3532 if that is different from the enclosing type, create a new value
3533 using the real run-time type as the enclosing type (and of the same
3534 type as ARGP) and return it, with the embedded offset adjusted to
3535 be the correct offset to the enclosed object. RTYPE is the type,
3536 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3537 by value_rtti_type(). If these are available, they can be supplied
3538 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3539 NULL if they're not available. */
3540
3541 struct value *
3542 value_full_object (struct value *argp,
3543 struct type *rtype,
3544 int xfull, int xtop,
3545 int xusing_enc)
3546 {
3547 struct type *real_type;
3548 int full = 0;
3549 int top = -1;
3550 int using_enc = 0;
3551 struct value *new_val;
3552
3553 if (rtype)
3554 {
3555 real_type = rtype;
3556 full = xfull;
3557 top = xtop;
3558 using_enc = xusing_enc;
3559 }
3560 else
3561 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3562
3563 /* If no RTTI data, or if object is already complete, do nothing. */
3564 if (!real_type || real_type == value_enclosing_type (argp))
3565 return argp;
3566
3567 /* If we have the full object, but for some reason the enclosing
3568 type is wrong, set it. */
3569 /* pai: FIXME -- sounds iffy */
3570 if (full)
3571 {
3572 argp = value_copy (argp);
3573 set_value_enclosing_type (argp, real_type);
3574 return argp;
3575 }
3576
3577 /* Check if object is in memory. */
3578 if (VALUE_LVAL (argp) != lval_memory)
3579 {
3580 warning (_("Couldn't retrieve complete object of RTTI "
3581 "type %s; object may be in register(s)."),
3582 TYPE_NAME (real_type));
3583
3584 return argp;
3585 }
3586
3587 /* All other cases -- retrieve the complete object. */
3588 /* Go back by the computed top_offset from the beginning of the
3589 object, adjusting for the embedded offset of argp if that's what
3590 value_rtti_type used for its computation. */
3591 new_val = value_at_lazy (real_type, value_address (argp) - top +
3592 (using_enc ? 0 : value_embedded_offset (argp)));
3593 deprecated_set_value_type (new_val, value_type (argp));
3594 set_value_embedded_offset (new_val, (using_enc
3595 ? top + value_embedded_offset (argp)
3596 : top));
3597 return new_val;
3598 }
3599
3600
3601 /* Return the value of the local variable, if one exists.
3602 Flag COMPLAIN signals an error if the request is made in an
3603 inappropriate context. */
3604
3605 struct value *
3606 value_of_this (const struct language_defn *lang, int complain)
3607 {
3608 struct symbol *sym;
3609 struct block *b;
3610 struct value * ret;
3611 struct frame_info *frame;
3612
3613 if (!lang->la_name_of_this)
3614 {
3615 if (complain)
3616 error (_("no `this' in current language"));
3617 return 0;
3618 }
3619
3620 if (complain)
3621 frame = get_selected_frame (_("no frame selected"));
3622 else
3623 {
3624 frame = deprecated_safe_get_selected_frame ();
3625 if (frame == 0)
3626 return 0;
3627 }
3628
3629 b = get_frame_block (frame, NULL);
3630
3631 sym = lookup_language_this (lang, b);
3632 if (sym == NULL)
3633 {
3634 if (complain)
3635 error (_("current stack frame does not contain a variable named `%s'"),
3636 lang->la_name_of_this);
3637 else
3638 return NULL;
3639 }
3640
3641 ret = read_var_value (sym, frame);
3642 if (ret == 0 && complain)
3643 error (_("`%s' argument unreadable"), lang->la_name_of_this);
3644 return ret;
3645 }
3646
3647 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3648 elements long, starting at LOWBOUND. The result has the same lower
3649 bound as the original ARRAY. */
3650
3651 struct value *
3652 value_slice (struct value *array, int lowbound, int length)
3653 {
3654 struct type *slice_range_type, *slice_type, *range_type;
3655 LONGEST lowerbound, upperbound;
3656 struct value *slice;
3657 struct type *array_type;
3658
3659 array_type = check_typedef (value_type (array));
3660 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3661 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3662 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3663 error (_("cannot take slice of non-array"));
3664
3665 range_type = TYPE_INDEX_TYPE (array_type);
3666 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3667 error (_("slice from bad array or bitstring"));
3668
3669 if (lowbound < lowerbound || length < 0
3670 || lowbound + length - 1 > upperbound)
3671 error (_("slice out of range"));
3672
3673 /* FIXME-type-allocation: need a way to free this type when we are
3674 done with it. */
3675 slice_range_type = create_range_type ((struct type *) NULL,
3676 TYPE_TARGET_TYPE (range_type),
3677 lowbound,
3678 lowbound + length - 1);
3679 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3680 {
3681 int i;
3682
3683 slice_type = create_set_type ((struct type *) NULL,
3684 slice_range_type);
3685 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3686 slice = value_zero (slice_type, not_lval);
3687
3688 for (i = 0; i < length; i++)
3689 {
3690 int element = value_bit_index (array_type,
3691 value_contents (array),
3692 lowbound + i);
3693
3694 if (element < 0)
3695 error (_("internal error accessing bitstring"));
3696 else if (element > 0)
3697 {
3698 int j = i % TARGET_CHAR_BIT;
3699
3700 if (gdbarch_bits_big_endian (get_type_arch (array_type)))
3701 j = TARGET_CHAR_BIT - 1 - j;
3702 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3703 }
3704 }
3705 /* We should set the address, bitssize, and bitspos, so the
3706 slice can be used on the LHS, but that may require extensions
3707 to value_assign. For now, just leave as a non_lval.
3708 FIXME. */
3709 }
3710 else
3711 {
3712 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3713 LONGEST offset =
3714 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3715
3716 slice_type = create_array_type ((struct type *) NULL,
3717 element_type,
3718 slice_range_type);
3719 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3720
3721 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3722 slice = allocate_value_lazy (slice_type);
3723 else
3724 {
3725 slice = allocate_value (slice_type);
3726 value_contents_copy (slice, 0, array, offset,
3727 TYPE_LENGTH (slice_type));
3728 }
3729
3730 set_value_component_location (slice, array);
3731 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3732 set_value_offset (slice, value_offset (array) + offset);
3733 }
3734 return slice;
3735 }
3736
3737 /* Create a value for a FORTRAN complex number. Currently most of the
3738 time values are coerced to COMPLEX*16 (i.e. a complex number
3739 composed of 2 doubles. This really should be a smarter routine
3740 that figures out precision inteligently as opposed to assuming
3741 doubles. FIXME: fmb */
3742
3743 struct value *
3744 value_literal_complex (struct value *arg1,
3745 struct value *arg2,
3746 struct type *type)
3747 {
3748 struct value *val;
3749 struct type *real_type = TYPE_TARGET_TYPE (type);
3750
3751 val = allocate_value (type);
3752 arg1 = value_cast (real_type, arg1);
3753 arg2 = value_cast (real_type, arg2);
3754
3755 memcpy (value_contents_raw (val),
3756 value_contents (arg1), TYPE_LENGTH (real_type));
3757 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3758 value_contents (arg2), TYPE_LENGTH (real_type));
3759 return val;
3760 }
3761
3762 /* Cast a value into the appropriate complex data type. */
3763
3764 static struct value *
3765 cast_into_complex (struct type *type, struct value *val)
3766 {
3767 struct type *real_type = TYPE_TARGET_TYPE (type);
3768
3769 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3770 {
3771 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3772 struct value *re_val = allocate_value (val_real_type);
3773 struct value *im_val = allocate_value (val_real_type);
3774
3775 memcpy (value_contents_raw (re_val),
3776 value_contents (val), TYPE_LENGTH (val_real_type));
3777 memcpy (value_contents_raw (im_val),
3778 value_contents (val) + TYPE_LENGTH (val_real_type),
3779 TYPE_LENGTH (val_real_type));
3780
3781 return value_literal_complex (re_val, im_val, type);
3782 }
3783 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3784 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3785 return value_literal_complex (val,
3786 value_zero (real_type, not_lval),
3787 type);
3788 else
3789 error (_("cannot cast non-number to complex"));
3790 }
3791
3792 void
3793 _initialize_valops (void)
3794 {
3795 add_setshow_boolean_cmd ("overload-resolution", class_support,
3796 &overload_resolution, _("\
3797 Set overload resolution in evaluating C++ functions."), _("\
3798 Show overload resolution in evaluating C++ functions."),
3799 NULL, NULL,
3800 show_overload_resolution,
3801 &setlist, &showlist);
3802 overload_resolution = 1;
3803 }
This page took 0.103104 seconds and 5 git commands to generate.