Print entirely unavailable struct/union values as a single <unavailable>.
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include <string.h>
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "gdbcmd.h"
27 #include "target.h"
28 #include "language.h"
29 #include "annotate.h"
30 #include "valprint.h"
31 #include "floatformat.h"
32 #include "doublest.h"
33 #include "exceptions.h"
34 #include "dfp.h"
35 #include "python/python.h"
36 #include "ada-lang.h"
37 #include "gdb_obstack.h"
38 #include "charset.h"
39 #include <ctype.h>
40
41 #include <errno.h>
42
43 /* Maximum number of wchars returned from wchar_iterate. */
44 #define MAX_WCHARS 4
45
46 /* A convenience macro to compute the size of a wchar_t buffer containing X
47 characters. */
48 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
49
50 /* Character buffer size saved while iterating over wchars. */
51 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
52
53 /* A structure to encapsulate state information from iterated
54 character conversions. */
55 struct converted_character
56 {
57 /* The number of characters converted. */
58 int num_chars;
59
60 /* The result of the conversion. See charset.h for more. */
61 enum wchar_iterate_result result;
62
63 /* The (saved) converted character(s). */
64 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
65
66 /* The first converted target byte. */
67 const gdb_byte *buf;
68
69 /* The number of bytes converted. */
70 size_t buflen;
71
72 /* How many times this character(s) is repeated. */
73 int repeat_count;
74 };
75
76 typedef struct converted_character converted_character_d;
77 DEF_VEC_O (converted_character_d);
78
79 /* Command lists for set/show print raw. */
80 struct cmd_list_element *setprintrawlist;
81 struct cmd_list_element *showprintrawlist;
82
83 /* Prototypes for local functions */
84
85 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
86 int len, int *errptr);
87
88 static void show_print (char *, int);
89
90 static void set_print (char *, int);
91
92 static void set_radix (char *, int);
93
94 static void show_radix (char *, int);
95
96 static void set_input_radix (char *, int, struct cmd_list_element *);
97
98 static void set_input_radix_1 (int, unsigned);
99
100 static void set_output_radix (char *, int, struct cmd_list_element *);
101
102 static void set_output_radix_1 (int, unsigned);
103
104 void _initialize_valprint (void);
105
106 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
107
108 struct value_print_options user_print_options =
109 {
110 Val_prettyformat_default, /* prettyformat */
111 0, /* prettyformat_arrays */
112 0, /* prettyformat_structs */
113 0, /* vtblprint */
114 1, /* unionprint */
115 1, /* addressprint */
116 0, /* objectprint */
117 PRINT_MAX_DEFAULT, /* print_max */
118 10, /* repeat_count_threshold */
119 0, /* output_format */
120 0, /* format */
121 0, /* stop_print_at_null */
122 0, /* print_array_indexes */
123 0, /* deref_ref */
124 1, /* static_field_print */
125 1, /* pascal_static_field_print */
126 0, /* raw */
127 0, /* summary */
128 1 /* symbol_print */
129 };
130
131 /* Initialize *OPTS to be a copy of the user print options. */
132 void
133 get_user_print_options (struct value_print_options *opts)
134 {
135 *opts = user_print_options;
136 }
137
138 /* Initialize *OPTS to be a copy of the user print options, but with
139 pretty-formatting disabled. */
140 void
141 get_no_prettyformat_print_options (struct value_print_options *opts)
142 {
143 *opts = user_print_options;
144 opts->prettyformat = Val_no_prettyformat;
145 }
146
147 /* Initialize *OPTS to be a copy of the user print options, but using
148 FORMAT as the formatting option. */
149 void
150 get_formatted_print_options (struct value_print_options *opts,
151 char format)
152 {
153 *opts = user_print_options;
154 opts->format = format;
155 }
156
157 static void
158 show_print_max (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
160 {
161 fprintf_filtered (file,
162 _("Limit on string chars or array "
163 "elements to print is %s.\n"),
164 value);
165 }
166
167
168 /* Default input and output radixes, and output format letter. */
169
170 unsigned input_radix = 10;
171 static void
172 show_input_radix (struct ui_file *file, int from_tty,
173 struct cmd_list_element *c, const char *value)
174 {
175 fprintf_filtered (file,
176 _("Default input radix for entering numbers is %s.\n"),
177 value);
178 }
179
180 unsigned output_radix = 10;
181 static void
182 show_output_radix (struct ui_file *file, int from_tty,
183 struct cmd_list_element *c, const char *value)
184 {
185 fprintf_filtered (file,
186 _("Default output radix for printing of values is %s.\n"),
187 value);
188 }
189
190 /* By default we print arrays without printing the index of each element in
191 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
192
193 static void
194 show_print_array_indexes (struct ui_file *file, int from_tty,
195 struct cmd_list_element *c, const char *value)
196 {
197 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
198 }
199
200 /* Print repeat counts if there are more than this many repetitions of an
201 element in an array. Referenced by the low level language dependent
202 print routines. */
203
204 static void
205 show_repeat_count_threshold (struct ui_file *file, int from_tty,
206 struct cmd_list_element *c, const char *value)
207 {
208 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
209 value);
210 }
211
212 /* If nonzero, stops printing of char arrays at first null. */
213
214 static void
215 show_stop_print_at_null (struct ui_file *file, int from_tty,
216 struct cmd_list_element *c, const char *value)
217 {
218 fprintf_filtered (file,
219 _("Printing of char arrays to stop "
220 "at first null char is %s.\n"),
221 value);
222 }
223
224 /* Controls pretty printing of structures. */
225
226 static void
227 show_prettyformat_structs (struct ui_file *file, int from_tty,
228 struct cmd_list_element *c, const char *value)
229 {
230 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
231 }
232
233 /* Controls pretty printing of arrays. */
234
235 static void
236 show_prettyformat_arrays (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238 {
239 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
240 }
241
242 /* If nonzero, causes unions inside structures or other unions to be
243 printed. */
244
245 static void
246 show_unionprint (struct ui_file *file, int from_tty,
247 struct cmd_list_element *c, const char *value)
248 {
249 fprintf_filtered (file,
250 _("Printing of unions interior to structures is %s.\n"),
251 value);
252 }
253
254 /* If nonzero, causes machine addresses to be printed in certain contexts. */
255
256 static void
257 show_addressprint (struct ui_file *file, int from_tty,
258 struct cmd_list_element *c, const char *value)
259 {
260 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
261 }
262
263 static void
264 show_symbol_print (struct ui_file *file, int from_tty,
265 struct cmd_list_element *c, const char *value)
266 {
267 fprintf_filtered (file,
268 _("Printing of symbols when printing pointers is %s.\n"),
269 value);
270 }
271
272 \f
273
274 /* A helper function for val_print. When printing in "summary" mode,
275 we want to print scalar arguments, but not aggregate arguments.
276 This function distinguishes between the two. */
277
278 int
279 val_print_scalar_type_p (struct type *type)
280 {
281 CHECK_TYPEDEF (type);
282 while (TYPE_CODE (type) == TYPE_CODE_REF)
283 {
284 type = TYPE_TARGET_TYPE (type);
285 CHECK_TYPEDEF (type);
286 }
287 switch (TYPE_CODE (type))
288 {
289 case TYPE_CODE_ARRAY:
290 case TYPE_CODE_STRUCT:
291 case TYPE_CODE_UNION:
292 case TYPE_CODE_SET:
293 case TYPE_CODE_STRING:
294 return 0;
295 default:
296 return 1;
297 }
298 }
299
300 /* See its definition in value.h. */
301
302 int
303 valprint_check_validity (struct ui_file *stream,
304 struct type *type,
305 int embedded_offset,
306 const struct value *val)
307 {
308 CHECK_TYPEDEF (type);
309
310 if (TYPE_CODE (type) != TYPE_CODE_UNION
311 && TYPE_CODE (type) != TYPE_CODE_STRUCT
312 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
313 {
314 if (!value_bits_valid (val, TARGET_CHAR_BIT * embedded_offset,
315 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
316 {
317 val_print_optimized_out (val, stream);
318 return 0;
319 }
320
321 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
322 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
323 {
324 fputs_filtered (_("<synthetic pointer>"), stream);
325 return 0;
326 }
327
328 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
329 {
330 val_print_unavailable (stream);
331 return 0;
332 }
333 }
334
335 return 1;
336 }
337
338 void
339 val_print_optimized_out (const struct value *val, struct ui_file *stream)
340 {
341 if (val != NULL && value_lval_const (val) == lval_register)
342 fprintf_filtered (stream, _("<not saved>"));
343 else
344 fprintf_filtered (stream, _("<optimized out>"));
345 }
346
347 void
348 val_print_unavailable (struct ui_file *stream)
349 {
350 fprintf_filtered (stream, _("<unavailable>"));
351 }
352
353 void
354 val_print_invalid_address (struct ui_file *stream)
355 {
356 fprintf_filtered (stream, _("<invalid address>"));
357 }
358
359 /* A generic val_print that is suitable for use by language
360 implementations of the la_val_print method. This function can
361 handle most type codes, though not all, notably exception
362 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
363 the caller.
364
365 Most arguments are as to val_print.
366
367 The additional DECORATIONS argument can be used to customize the
368 output in some small, language-specific ways. */
369
370 void
371 generic_val_print (struct type *type, const gdb_byte *valaddr,
372 int embedded_offset, CORE_ADDR address,
373 struct ui_file *stream, int recurse,
374 const struct value *original_value,
375 const struct value_print_options *options,
376 const struct generic_val_print_decorations *decorations)
377 {
378 struct gdbarch *gdbarch = get_type_arch (type);
379 unsigned int i = 0; /* Number of characters printed. */
380 unsigned len;
381 struct type *elttype, *unresolved_elttype;
382 struct type *unresolved_type = type;
383 LONGEST val;
384 CORE_ADDR addr;
385
386 CHECK_TYPEDEF (type);
387 switch (TYPE_CODE (type))
388 {
389 case TYPE_CODE_ARRAY:
390 unresolved_elttype = TYPE_TARGET_TYPE (type);
391 elttype = check_typedef (unresolved_elttype);
392 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
393 {
394 LONGEST low_bound, high_bound;
395
396 if (!get_array_bounds (type, &low_bound, &high_bound))
397 error (_("Could not determine the array high bound"));
398
399 if (options->prettyformat_arrays)
400 {
401 print_spaces_filtered (2 + 2 * recurse, stream);
402 }
403
404 fprintf_filtered (stream, "{");
405 val_print_array_elements (type, valaddr, embedded_offset,
406 address, stream,
407 recurse, original_value, options, 0);
408 fprintf_filtered (stream, "}");
409 break;
410 }
411 /* Array of unspecified length: treat like pointer to first
412 elt. */
413 addr = address + embedded_offset;
414 goto print_unpacked_pointer;
415
416 case TYPE_CODE_MEMBERPTR:
417 val_print_scalar_formatted (type, valaddr, embedded_offset,
418 original_value, options, 0, stream);
419 break;
420
421 case TYPE_CODE_PTR:
422 if (options->format && options->format != 's')
423 {
424 val_print_scalar_formatted (type, valaddr, embedded_offset,
425 original_value, options, 0, stream);
426 break;
427 }
428 unresolved_elttype = TYPE_TARGET_TYPE (type);
429 elttype = check_typedef (unresolved_elttype);
430 {
431 addr = unpack_pointer (type, valaddr + embedded_offset);
432 print_unpacked_pointer:
433
434 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
435 {
436 /* Try to print what function it points to. */
437 print_function_pointer_address (options, gdbarch, addr, stream);
438 return;
439 }
440
441 if (options->symbol_print)
442 print_address_demangle (options, gdbarch, addr, stream, demangle);
443 else if (options->addressprint)
444 fputs_filtered (paddress (gdbarch, addr), stream);
445 }
446 break;
447
448 case TYPE_CODE_REF:
449 elttype = check_typedef (TYPE_TARGET_TYPE (type));
450 if (options->addressprint)
451 {
452 CORE_ADDR addr
453 = extract_typed_address (valaddr + embedded_offset, type);
454
455 fprintf_filtered (stream, "@");
456 fputs_filtered (paddress (gdbarch, addr), stream);
457 if (options->deref_ref)
458 fputs_filtered (": ", stream);
459 }
460 /* De-reference the reference. */
461 if (options->deref_ref)
462 {
463 if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
464 {
465 struct value *deref_val;
466
467 deref_val = coerce_ref_if_computed (original_value);
468 if (deref_val != NULL)
469 {
470 /* More complicated computed references are not supported. */
471 gdb_assert (embedded_offset == 0);
472 }
473 else
474 deref_val = value_at (TYPE_TARGET_TYPE (type),
475 unpack_pointer (type,
476 (valaddr
477 + embedded_offset)));
478
479 common_val_print (deref_val, stream, recurse, options,
480 current_language);
481 }
482 else
483 fputs_filtered ("???", stream);
484 }
485 break;
486
487 case TYPE_CODE_ENUM:
488 if (options->format)
489 {
490 val_print_scalar_formatted (type, valaddr, embedded_offset,
491 original_value, options, 0, stream);
492 break;
493 }
494 len = TYPE_NFIELDS (type);
495 val = unpack_long (type, valaddr + embedded_offset);
496 for (i = 0; i < len; i++)
497 {
498 QUIT;
499 if (val == TYPE_FIELD_ENUMVAL (type, i))
500 {
501 break;
502 }
503 }
504 if (i < len)
505 {
506 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
507 }
508 else if (TYPE_FLAG_ENUM (type))
509 {
510 int first = 1;
511
512 /* We have a "flag" enum, so we try to decompose it into
513 pieces as appropriate. A flag enum has disjoint
514 constants by definition. */
515 fputs_filtered ("(", stream);
516 for (i = 0; i < len; ++i)
517 {
518 QUIT;
519
520 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
521 {
522 if (!first)
523 fputs_filtered (" | ", stream);
524 first = 0;
525
526 val &= ~TYPE_FIELD_ENUMVAL (type, i);
527 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
528 }
529 }
530
531 if (first || val != 0)
532 {
533 if (!first)
534 fputs_filtered (" | ", stream);
535 fputs_filtered ("unknown: ", stream);
536 print_longest (stream, 'd', 0, val);
537 }
538
539 fputs_filtered (")", stream);
540 }
541 else
542 print_longest (stream, 'd', 0, val);
543 break;
544
545 case TYPE_CODE_FLAGS:
546 if (options->format)
547 val_print_scalar_formatted (type, valaddr, embedded_offset,
548 original_value, options, 0, stream);
549 else
550 val_print_type_code_flags (type, valaddr + embedded_offset,
551 stream);
552 break;
553
554 case TYPE_CODE_FUNC:
555 case TYPE_CODE_METHOD:
556 if (options->format)
557 {
558 val_print_scalar_formatted (type, valaddr, embedded_offset,
559 original_value, options, 0, stream);
560 break;
561 }
562 /* FIXME, we should consider, at least for ANSI C language,
563 eliminating the distinction made between FUNCs and POINTERs
564 to FUNCs. */
565 fprintf_filtered (stream, "{");
566 type_print (type, "", stream, -1);
567 fprintf_filtered (stream, "} ");
568 /* Try to print what function it points to, and its address. */
569 print_address_demangle (options, gdbarch, address, stream, demangle);
570 break;
571
572 case TYPE_CODE_BOOL:
573 if (options->format || options->output_format)
574 {
575 struct value_print_options opts = *options;
576 opts.format = (options->format ? options->format
577 : options->output_format);
578 val_print_scalar_formatted (type, valaddr, embedded_offset,
579 original_value, &opts, 0, stream);
580 }
581 else
582 {
583 val = unpack_long (type, valaddr + embedded_offset);
584 if (val == 0)
585 fputs_filtered (decorations->false_name, stream);
586 else if (val == 1)
587 fputs_filtered (decorations->true_name, stream);
588 else
589 print_longest (stream, 'd', 0, val);
590 }
591 break;
592
593 case TYPE_CODE_RANGE:
594 /* FIXME: create_range_type does not set the unsigned bit in a
595 range type (I think it probably should copy it from the
596 target type), so we won't print values which are too large to
597 fit in a signed integer correctly. */
598 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
599 print with the target type, though, because the size of our
600 type and the target type might differ). */
601
602 /* FALLTHROUGH */
603
604 case TYPE_CODE_INT:
605 if (options->format || options->output_format)
606 {
607 struct value_print_options opts = *options;
608
609 opts.format = (options->format ? options->format
610 : options->output_format);
611 val_print_scalar_formatted (type, valaddr, embedded_offset,
612 original_value, &opts, 0, stream);
613 }
614 else
615 val_print_type_code_int (type, valaddr + embedded_offset, stream);
616 break;
617
618 case TYPE_CODE_CHAR:
619 if (options->format || options->output_format)
620 {
621 struct value_print_options opts = *options;
622
623 opts.format = (options->format ? options->format
624 : options->output_format);
625 val_print_scalar_formatted (type, valaddr, embedded_offset,
626 original_value, &opts, 0, stream);
627 }
628 else
629 {
630 val = unpack_long (type, valaddr + embedded_offset);
631 if (TYPE_UNSIGNED (type))
632 fprintf_filtered (stream, "%u", (unsigned int) val);
633 else
634 fprintf_filtered (stream, "%d", (int) val);
635 fputs_filtered (" ", stream);
636 LA_PRINT_CHAR (val, unresolved_type, stream);
637 }
638 break;
639
640 case TYPE_CODE_FLT:
641 if (options->format)
642 {
643 val_print_scalar_formatted (type, valaddr, embedded_offset,
644 original_value, options, 0, stream);
645 }
646 else
647 {
648 print_floating (valaddr + embedded_offset, type, stream);
649 }
650 break;
651
652 case TYPE_CODE_DECFLOAT:
653 if (options->format)
654 val_print_scalar_formatted (type, valaddr, embedded_offset,
655 original_value, options, 0, stream);
656 else
657 print_decimal_floating (valaddr + embedded_offset,
658 type, stream);
659 break;
660
661 case TYPE_CODE_VOID:
662 fputs_filtered (decorations->void_name, stream);
663 break;
664
665 case TYPE_CODE_ERROR:
666 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
667 break;
668
669 case TYPE_CODE_UNDEF:
670 /* This happens (without TYPE_FLAG_STUB set) on systems which
671 don't use dbx xrefs (NO_DBX_XREFS in gcc) if a file has a
672 "struct foo *bar" and no complete type for struct foo in that
673 file. */
674 fprintf_filtered (stream, _("<incomplete type>"));
675 break;
676
677 case TYPE_CODE_COMPLEX:
678 fprintf_filtered (stream, "%s", decorations->complex_prefix);
679 if (options->format)
680 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
681 valaddr, embedded_offset,
682 original_value, options, 0, stream);
683 else
684 print_floating (valaddr + embedded_offset,
685 TYPE_TARGET_TYPE (type),
686 stream);
687 fprintf_filtered (stream, "%s", decorations->complex_infix);
688 if (options->format)
689 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
690 valaddr,
691 embedded_offset
692 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
693 original_value,
694 options, 0, stream);
695 else
696 print_floating (valaddr + embedded_offset
697 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
698 TYPE_TARGET_TYPE (type),
699 stream);
700 fprintf_filtered (stream, "%s", decorations->complex_suffix);
701 break;
702
703 case TYPE_CODE_UNION:
704 case TYPE_CODE_STRUCT:
705 case TYPE_CODE_METHODPTR:
706 default:
707 error (_("Unhandled type code %d in symbol table."),
708 TYPE_CODE (type));
709 }
710 gdb_flush (stream);
711 }
712
713 /* Print using the given LANGUAGE the data of type TYPE located at
714 VALADDR + EMBEDDED_OFFSET (within GDB), which came from the
715 inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream
716 STREAM according to OPTIONS. VAL is the whole object that came
717 from ADDRESS. VALADDR must point to the head of VAL's contents
718 buffer.
719
720 The language printers will pass down an adjusted EMBEDDED_OFFSET to
721 further helper subroutines as subfields of TYPE are printed. In
722 such cases, VALADDR is passed down unadjusted, as well as VAL, so
723 that VAL can be queried for metadata about the contents data being
724 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
725 buffer. For example: "has this field been optimized out", or "I'm
726 printing an object while inspecting a traceframe; has this
727 particular piece of data been collected?".
728
729 RECURSE indicates the amount of indentation to supply before
730 continuation lines; this amount is roughly twice the value of
731 RECURSE. */
732
733 void
734 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
735 CORE_ADDR address, struct ui_file *stream, int recurse,
736 const struct value *val,
737 const struct value_print_options *options,
738 const struct language_defn *language)
739 {
740 volatile struct gdb_exception except;
741 int ret = 0;
742 struct value_print_options local_opts = *options;
743 struct type *real_type = check_typedef (type);
744
745 if (local_opts.prettyformat == Val_prettyformat_default)
746 local_opts.prettyformat = (local_opts.prettyformat_structs
747 ? Val_prettyformat : Val_no_prettyformat);
748
749 QUIT;
750
751 /* Ensure that the type is complete and not just a stub. If the type is
752 only a stub and we can't find and substitute its complete type, then
753 print appropriate string and return. */
754
755 if (TYPE_STUB (real_type))
756 {
757 fprintf_filtered (stream, _("<incomplete type>"));
758 gdb_flush (stream);
759 return;
760 }
761
762 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
763 return;
764
765 if (!options->raw)
766 {
767 ret = apply_val_pretty_printer (type, valaddr, embedded_offset,
768 address, stream, recurse,
769 val, options, language);
770 if (ret)
771 return;
772 }
773
774 /* Handle summary mode. If the value is a scalar, print it;
775 otherwise, print an ellipsis. */
776 if (options->summary && !val_print_scalar_type_p (type))
777 {
778 fprintf_filtered (stream, "...");
779 return;
780 }
781
782 TRY_CATCH (except, RETURN_MASK_ERROR)
783 {
784 language->la_val_print (type, valaddr, embedded_offset, address,
785 stream, recurse, val,
786 &local_opts);
787 }
788 if (except.reason < 0)
789 fprintf_filtered (stream, _("<error reading variable>"));
790 }
791
792 /* Check whether the value VAL is printable. Return 1 if it is;
793 return 0 and print an appropriate error message to STREAM according to
794 OPTIONS if it is not. */
795
796 static int
797 value_check_printable (struct value *val, struct ui_file *stream,
798 const struct value_print_options *options)
799 {
800 if (val == 0)
801 {
802 fprintf_filtered (stream, _("<address of value unknown>"));
803 return 0;
804 }
805
806 if (value_entirely_optimized_out (val))
807 {
808 if (options->summary && !val_print_scalar_type_p (value_type (val)))
809 fprintf_filtered (stream, "...");
810 else
811 val_print_optimized_out (val, stream);
812 return 0;
813 }
814
815 if (value_entirely_unavailable (val))
816 {
817 if (options->summary && !val_print_scalar_type_p (value_type (val)))
818 fprintf_filtered (stream, "...");
819 else
820 val_print_unavailable (stream);
821 return 0;
822 }
823
824 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
825 {
826 fprintf_filtered (stream, _("<internal function %s>"),
827 value_internal_function_name (val));
828 return 0;
829 }
830
831 return 1;
832 }
833
834 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
835 to OPTIONS.
836
837 This is a preferable interface to val_print, above, because it uses
838 GDB's value mechanism. */
839
840 void
841 common_val_print (struct value *val, struct ui_file *stream, int recurse,
842 const struct value_print_options *options,
843 const struct language_defn *language)
844 {
845 if (!value_check_printable (val, stream, options))
846 return;
847
848 if (language->la_language == language_ada)
849 /* The value might have a dynamic type, which would cause trouble
850 below when trying to extract the value contents (since the value
851 size is determined from the type size which is unknown). So
852 get a fixed representation of our value. */
853 val = ada_to_fixed_value (val);
854
855 val_print (value_type (val), value_contents_for_printing (val),
856 value_embedded_offset (val), value_address (val),
857 stream, recurse,
858 val, options, language);
859 }
860
861 /* Print on stream STREAM the value VAL according to OPTIONS. The value
862 is printed using the current_language syntax. */
863
864 void
865 value_print (struct value *val, struct ui_file *stream,
866 const struct value_print_options *options)
867 {
868 if (!value_check_printable (val, stream, options))
869 return;
870
871 if (!options->raw)
872 {
873 int r = apply_val_pretty_printer (value_type (val),
874 value_contents_for_printing (val),
875 value_embedded_offset (val),
876 value_address (val),
877 stream, 0,
878 val, options, current_language);
879
880 if (r)
881 return;
882 }
883
884 LA_VALUE_PRINT (val, stream, options);
885 }
886
887 /* Called by various <lang>_val_print routines to print
888 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
889 value. STREAM is where to print the value. */
890
891 void
892 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
893 struct ui_file *stream)
894 {
895 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
896
897 if (TYPE_LENGTH (type) > sizeof (LONGEST))
898 {
899 LONGEST val;
900
901 if (TYPE_UNSIGNED (type)
902 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
903 byte_order, &val))
904 {
905 print_longest (stream, 'u', 0, val);
906 }
907 else
908 {
909 /* Signed, or we couldn't turn an unsigned value into a
910 LONGEST. For signed values, one could assume two's
911 complement (a reasonable assumption, I think) and do
912 better than this. */
913 print_hex_chars (stream, (unsigned char *) valaddr,
914 TYPE_LENGTH (type), byte_order);
915 }
916 }
917 else
918 {
919 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
920 unpack_long (type, valaddr));
921 }
922 }
923
924 void
925 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
926 struct ui_file *stream)
927 {
928 ULONGEST val = unpack_long (type, valaddr);
929 int bitpos, nfields = TYPE_NFIELDS (type);
930
931 fputs_filtered ("[ ", stream);
932 for (bitpos = 0; bitpos < nfields; bitpos++)
933 {
934 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
935 && (val & ((ULONGEST)1 << bitpos)))
936 {
937 if (TYPE_FIELD_NAME (type, bitpos))
938 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
939 else
940 fprintf_filtered (stream, "#%d ", bitpos);
941 }
942 }
943 fputs_filtered ("]", stream);
944 }
945
946 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
947 according to OPTIONS and SIZE on STREAM. Format i is not supported
948 at this level.
949
950 This is how the elements of an array or structure are printed
951 with a format. */
952
953 void
954 val_print_scalar_formatted (struct type *type,
955 const gdb_byte *valaddr, int embedded_offset,
956 const struct value *val,
957 const struct value_print_options *options,
958 int size,
959 struct ui_file *stream)
960 {
961 gdb_assert (val != NULL);
962 gdb_assert (valaddr == value_contents_for_printing_const (val));
963
964 /* If we get here with a string format, try again without it. Go
965 all the way back to the language printers, which may call us
966 again. */
967 if (options->format == 's')
968 {
969 struct value_print_options opts = *options;
970 opts.format = 0;
971 opts.deref_ref = 0;
972 val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts,
973 current_language);
974 return;
975 }
976
977 /* A scalar object that does not have all bits available can't be
978 printed, because all bits contribute to its representation. */
979 if (!value_bits_valid (val, TARGET_CHAR_BIT * embedded_offset,
980 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
981 val_print_optimized_out (val, stream);
982 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
983 val_print_unavailable (stream);
984 else
985 print_scalar_formatted (valaddr + embedded_offset, type,
986 options, size, stream);
987 }
988
989 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
990 The raison d'etre of this function is to consolidate printing of
991 LONG_LONG's into this one function. The format chars b,h,w,g are
992 from print_scalar_formatted(). Numbers are printed using C
993 format.
994
995 USE_C_FORMAT means to use C format in all cases. Without it,
996 'o' and 'x' format do not include the standard C radix prefix
997 (leading 0 or 0x).
998
999 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1000 and was intended to request formating according to the current
1001 language and would be used for most integers that GDB prints. The
1002 exceptional cases were things like protocols where the format of
1003 the integer is a protocol thing, not a user-visible thing). The
1004 parameter remains to preserve the information of what things might
1005 be printed with language-specific format, should we ever resurrect
1006 that capability. */
1007
1008 void
1009 print_longest (struct ui_file *stream, int format, int use_c_format,
1010 LONGEST val_long)
1011 {
1012 const char *val;
1013
1014 switch (format)
1015 {
1016 case 'd':
1017 val = int_string (val_long, 10, 1, 0, 1); break;
1018 case 'u':
1019 val = int_string (val_long, 10, 0, 0, 1); break;
1020 case 'x':
1021 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1022 case 'b':
1023 val = int_string (val_long, 16, 0, 2, 1); break;
1024 case 'h':
1025 val = int_string (val_long, 16, 0, 4, 1); break;
1026 case 'w':
1027 val = int_string (val_long, 16, 0, 8, 1); break;
1028 case 'g':
1029 val = int_string (val_long, 16, 0, 16, 1); break;
1030 break;
1031 case 'o':
1032 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1033 default:
1034 internal_error (__FILE__, __LINE__,
1035 _("failed internal consistency check"));
1036 }
1037 fputs_filtered (val, stream);
1038 }
1039
1040 /* This used to be a macro, but I don't think it is called often enough
1041 to merit such treatment. */
1042 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1043 arguments to a function, number in a value history, register number, etc.)
1044 where the value must not be larger than can fit in an int. */
1045
1046 int
1047 longest_to_int (LONGEST arg)
1048 {
1049 /* Let the compiler do the work. */
1050 int rtnval = (int) arg;
1051
1052 /* Check for overflows or underflows. */
1053 if (sizeof (LONGEST) > sizeof (int))
1054 {
1055 if (rtnval != arg)
1056 {
1057 error (_("Value out of range."));
1058 }
1059 }
1060 return (rtnval);
1061 }
1062
1063 /* Print a floating point value of type TYPE (not always a
1064 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
1065
1066 void
1067 print_floating (const gdb_byte *valaddr, struct type *type,
1068 struct ui_file *stream)
1069 {
1070 DOUBLEST doub;
1071 int inv;
1072 const struct floatformat *fmt = NULL;
1073 unsigned len = TYPE_LENGTH (type);
1074 enum float_kind kind;
1075
1076 /* If it is a floating-point, check for obvious problems. */
1077 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1078 fmt = floatformat_from_type (type);
1079 if (fmt != NULL)
1080 {
1081 kind = floatformat_classify (fmt, valaddr);
1082 if (kind == float_nan)
1083 {
1084 if (floatformat_is_negative (fmt, valaddr))
1085 fprintf_filtered (stream, "-");
1086 fprintf_filtered (stream, "nan(");
1087 fputs_filtered ("0x", stream);
1088 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1089 fprintf_filtered (stream, ")");
1090 return;
1091 }
1092 else if (kind == float_infinite)
1093 {
1094 if (floatformat_is_negative (fmt, valaddr))
1095 fputs_filtered ("-", stream);
1096 fputs_filtered ("inf", stream);
1097 return;
1098 }
1099 }
1100
1101 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1102 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1103 needs to be used as that takes care of any necessary type
1104 conversions. Such conversions are of course direct to DOUBLEST
1105 and disregard any possible target floating point limitations.
1106 For instance, a u64 would be converted and displayed exactly on a
1107 host with 80 bit DOUBLEST but with loss of information on a host
1108 with 64 bit DOUBLEST. */
1109
1110 doub = unpack_double (type, valaddr, &inv);
1111 if (inv)
1112 {
1113 fprintf_filtered (stream, "<invalid float value>");
1114 return;
1115 }
1116
1117 /* FIXME: kettenis/2001-01-20: The following code makes too much
1118 assumptions about the host and target floating point format. */
1119
1120 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
1121 not necessarily be a TYPE_CODE_FLT, the below ignores that and
1122 instead uses the type's length to determine the precision of the
1123 floating-point value being printed. */
1124
1125 if (len < sizeof (double))
1126 fprintf_filtered (stream, "%.9g", (double) doub);
1127 else if (len == sizeof (double))
1128 fprintf_filtered (stream, "%.17g", (double) doub);
1129 else
1130 #ifdef PRINTF_HAS_LONG_DOUBLE
1131 fprintf_filtered (stream, "%.35Lg", doub);
1132 #else
1133 /* This at least wins with values that are representable as
1134 doubles. */
1135 fprintf_filtered (stream, "%.17g", (double) doub);
1136 #endif
1137 }
1138
1139 void
1140 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1141 struct ui_file *stream)
1142 {
1143 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1144 char decstr[MAX_DECIMAL_STRING];
1145 unsigned len = TYPE_LENGTH (type);
1146
1147 decimal_to_string (valaddr, len, byte_order, decstr);
1148 fputs_filtered (decstr, stream);
1149 return;
1150 }
1151
1152 void
1153 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1154 unsigned len, enum bfd_endian byte_order)
1155 {
1156
1157 #define BITS_IN_BYTES 8
1158
1159 const gdb_byte *p;
1160 unsigned int i;
1161 int b;
1162
1163 /* Declared "int" so it will be signed.
1164 This ensures that right shift will shift in zeros. */
1165
1166 const int mask = 0x080;
1167
1168 /* FIXME: We should be not printing leading zeroes in most cases. */
1169
1170 if (byte_order == BFD_ENDIAN_BIG)
1171 {
1172 for (p = valaddr;
1173 p < valaddr + len;
1174 p++)
1175 {
1176 /* Every byte has 8 binary characters; peel off
1177 and print from the MSB end. */
1178
1179 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1180 {
1181 if (*p & (mask >> i))
1182 b = 1;
1183 else
1184 b = 0;
1185
1186 fprintf_filtered (stream, "%1d", b);
1187 }
1188 }
1189 }
1190 else
1191 {
1192 for (p = valaddr + len - 1;
1193 p >= valaddr;
1194 p--)
1195 {
1196 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1197 {
1198 if (*p & (mask >> i))
1199 b = 1;
1200 else
1201 b = 0;
1202
1203 fprintf_filtered (stream, "%1d", b);
1204 }
1205 }
1206 }
1207 }
1208
1209 /* VALADDR points to an integer of LEN bytes.
1210 Print it in octal on stream or format it in buf. */
1211
1212 void
1213 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1214 unsigned len, enum bfd_endian byte_order)
1215 {
1216 const gdb_byte *p;
1217 unsigned char octa1, octa2, octa3, carry;
1218 int cycle;
1219
1220 /* FIXME: We should be not printing leading zeroes in most cases. */
1221
1222
1223 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1224 * the extra bits, which cycle every three bytes:
1225 *
1226 * Byte side: 0 1 2 3
1227 * | | | |
1228 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1229 *
1230 * Octal side: 0 1 carry 3 4 carry ...
1231 *
1232 * Cycle number: 0 1 2
1233 *
1234 * But of course we are printing from the high side, so we have to
1235 * figure out where in the cycle we are so that we end up with no
1236 * left over bits at the end.
1237 */
1238 #define BITS_IN_OCTAL 3
1239 #define HIGH_ZERO 0340
1240 #define LOW_ZERO 0016
1241 #define CARRY_ZERO 0003
1242 #define HIGH_ONE 0200
1243 #define MID_ONE 0160
1244 #define LOW_ONE 0016
1245 #define CARRY_ONE 0001
1246 #define HIGH_TWO 0300
1247 #define MID_TWO 0070
1248 #define LOW_TWO 0007
1249
1250 /* For 32 we start in cycle 2, with two bits and one bit carry;
1251 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1252
1253 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1254 carry = 0;
1255
1256 fputs_filtered ("0", stream);
1257 if (byte_order == BFD_ENDIAN_BIG)
1258 {
1259 for (p = valaddr;
1260 p < valaddr + len;
1261 p++)
1262 {
1263 switch (cycle)
1264 {
1265 case 0:
1266 /* No carry in, carry out two bits. */
1267
1268 octa1 = (HIGH_ZERO & *p) >> 5;
1269 octa2 = (LOW_ZERO & *p) >> 2;
1270 carry = (CARRY_ZERO & *p);
1271 fprintf_filtered (stream, "%o", octa1);
1272 fprintf_filtered (stream, "%o", octa2);
1273 break;
1274
1275 case 1:
1276 /* Carry in two bits, carry out one bit. */
1277
1278 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1279 octa2 = (MID_ONE & *p) >> 4;
1280 octa3 = (LOW_ONE & *p) >> 1;
1281 carry = (CARRY_ONE & *p);
1282 fprintf_filtered (stream, "%o", octa1);
1283 fprintf_filtered (stream, "%o", octa2);
1284 fprintf_filtered (stream, "%o", octa3);
1285 break;
1286
1287 case 2:
1288 /* Carry in one bit, no carry out. */
1289
1290 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1291 octa2 = (MID_TWO & *p) >> 3;
1292 octa3 = (LOW_TWO & *p);
1293 carry = 0;
1294 fprintf_filtered (stream, "%o", octa1);
1295 fprintf_filtered (stream, "%o", octa2);
1296 fprintf_filtered (stream, "%o", octa3);
1297 break;
1298
1299 default:
1300 error (_("Internal error in octal conversion;"));
1301 }
1302
1303 cycle++;
1304 cycle = cycle % BITS_IN_OCTAL;
1305 }
1306 }
1307 else
1308 {
1309 for (p = valaddr + len - 1;
1310 p >= valaddr;
1311 p--)
1312 {
1313 switch (cycle)
1314 {
1315 case 0:
1316 /* Carry out, no carry in */
1317
1318 octa1 = (HIGH_ZERO & *p) >> 5;
1319 octa2 = (LOW_ZERO & *p) >> 2;
1320 carry = (CARRY_ZERO & *p);
1321 fprintf_filtered (stream, "%o", octa1);
1322 fprintf_filtered (stream, "%o", octa2);
1323 break;
1324
1325 case 1:
1326 /* Carry in, carry out */
1327
1328 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1329 octa2 = (MID_ONE & *p) >> 4;
1330 octa3 = (LOW_ONE & *p) >> 1;
1331 carry = (CARRY_ONE & *p);
1332 fprintf_filtered (stream, "%o", octa1);
1333 fprintf_filtered (stream, "%o", octa2);
1334 fprintf_filtered (stream, "%o", octa3);
1335 break;
1336
1337 case 2:
1338 /* Carry in, no carry out */
1339
1340 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1341 octa2 = (MID_TWO & *p) >> 3;
1342 octa3 = (LOW_TWO & *p);
1343 carry = 0;
1344 fprintf_filtered (stream, "%o", octa1);
1345 fprintf_filtered (stream, "%o", octa2);
1346 fprintf_filtered (stream, "%o", octa3);
1347 break;
1348
1349 default:
1350 error (_("Internal error in octal conversion;"));
1351 }
1352
1353 cycle++;
1354 cycle = cycle % BITS_IN_OCTAL;
1355 }
1356 }
1357
1358 }
1359
1360 /* VALADDR points to an integer of LEN bytes.
1361 Print it in decimal on stream or format it in buf. */
1362
1363 void
1364 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1365 unsigned len, enum bfd_endian byte_order)
1366 {
1367 #define TEN 10
1368 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1369 #define CARRY_LEFT( x ) ((x) % TEN)
1370 #define SHIFT( x ) ((x) << 4)
1371 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1372 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1373
1374 const gdb_byte *p;
1375 unsigned char *digits;
1376 int carry;
1377 int decimal_len;
1378 int i, j, decimal_digits;
1379 int dummy;
1380 int flip;
1381
1382 /* Base-ten number is less than twice as many digits
1383 as the base 16 number, which is 2 digits per byte. */
1384
1385 decimal_len = len * 2 * 2;
1386 digits = xmalloc (decimal_len);
1387
1388 for (i = 0; i < decimal_len; i++)
1389 {
1390 digits[i] = 0;
1391 }
1392
1393 /* Ok, we have an unknown number of bytes of data to be printed in
1394 * decimal.
1395 *
1396 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1397 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1398 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1399 *
1400 * The trick is that "digits" holds a base-10 number, but sometimes
1401 * the individual digits are > 10.
1402 *
1403 * Outer loop is per nibble (hex digit) of input, from MSD end to
1404 * LSD end.
1405 */
1406 decimal_digits = 0; /* Number of decimal digits so far */
1407 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1408 flip = 0;
1409 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1410 {
1411 /*
1412 * Multiply current base-ten number by 16 in place.
1413 * Each digit was between 0 and 9, now is between
1414 * 0 and 144.
1415 */
1416 for (j = 0; j < decimal_digits; j++)
1417 {
1418 digits[j] = SHIFT (digits[j]);
1419 }
1420
1421 /* Take the next nibble off the input and add it to what
1422 * we've got in the LSB position. Bottom 'digit' is now
1423 * between 0 and 159.
1424 *
1425 * "flip" is used to run this loop twice for each byte.
1426 */
1427 if (flip == 0)
1428 {
1429 /* Take top nibble. */
1430
1431 digits[0] += HIGH_NIBBLE (*p);
1432 flip = 1;
1433 }
1434 else
1435 {
1436 /* Take low nibble and bump our pointer "p". */
1437
1438 digits[0] += LOW_NIBBLE (*p);
1439 if (byte_order == BFD_ENDIAN_BIG)
1440 p++;
1441 else
1442 p--;
1443 flip = 0;
1444 }
1445
1446 /* Re-decimalize. We have to do this often enough
1447 * that we don't overflow, but once per nibble is
1448 * overkill. Easier this way, though. Note that the
1449 * carry is often larger than 10 (e.g. max initial
1450 * carry out of lowest nibble is 15, could bubble all
1451 * the way up greater than 10). So we have to do
1452 * the carrying beyond the last current digit.
1453 */
1454 carry = 0;
1455 for (j = 0; j < decimal_len - 1; j++)
1456 {
1457 digits[j] += carry;
1458
1459 /* "/" won't handle an unsigned char with
1460 * a value that if signed would be negative.
1461 * So extend to longword int via "dummy".
1462 */
1463 dummy = digits[j];
1464 carry = CARRY_OUT (dummy);
1465 digits[j] = CARRY_LEFT (dummy);
1466
1467 if (j >= decimal_digits && carry == 0)
1468 {
1469 /*
1470 * All higher digits are 0 and we
1471 * no longer have a carry.
1472 *
1473 * Note: "j" is 0-based, "decimal_digits" is
1474 * 1-based.
1475 */
1476 decimal_digits = j + 1;
1477 break;
1478 }
1479 }
1480 }
1481
1482 /* Ok, now "digits" is the decimal representation, with
1483 the "decimal_digits" actual digits. Print! */
1484
1485 for (i = decimal_digits - 1; i >= 0; i--)
1486 {
1487 fprintf_filtered (stream, "%1d", digits[i]);
1488 }
1489 xfree (digits);
1490 }
1491
1492 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1493
1494 void
1495 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1496 unsigned len, enum bfd_endian byte_order)
1497 {
1498 const gdb_byte *p;
1499
1500 /* FIXME: We should be not printing leading zeroes in most cases. */
1501
1502 fputs_filtered ("0x", stream);
1503 if (byte_order == BFD_ENDIAN_BIG)
1504 {
1505 for (p = valaddr;
1506 p < valaddr + len;
1507 p++)
1508 {
1509 fprintf_filtered (stream, "%02x", *p);
1510 }
1511 }
1512 else
1513 {
1514 for (p = valaddr + len - 1;
1515 p >= valaddr;
1516 p--)
1517 {
1518 fprintf_filtered (stream, "%02x", *p);
1519 }
1520 }
1521 }
1522
1523 /* VALADDR points to a char integer of LEN bytes.
1524 Print it out in appropriate language form on stream.
1525 Omit any leading zero chars. */
1526
1527 void
1528 print_char_chars (struct ui_file *stream, struct type *type,
1529 const gdb_byte *valaddr,
1530 unsigned len, enum bfd_endian byte_order)
1531 {
1532 const gdb_byte *p;
1533
1534 if (byte_order == BFD_ENDIAN_BIG)
1535 {
1536 p = valaddr;
1537 while (p < valaddr + len - 1 && *p == 0)
1538 ++p;
1539
1540 while (p < valaddr + len)
1541 {
1542 LA_EMIT_CHAR (*p, type, stream, '\'');
1543 ++p;
1544 }
1545 }
1546 else
1547 {
1548 p = valaddr + len - 1;
1549 while (p > valaddr && *p == 0)
1550 --p;
1551
1552 while (p >= valaddr)
1553 {
1554 LA_EMIT_CHAR (*p, type, stream, '\'');
1555 --p;
1556 }
1557 }
1558 }
1559
1560 /* Print function pointer with inferior address ADDRESS onto stdio
1561 stream STREAM. */
1562
1563 void
1564 print_function_pointer_address (const struct value_print_options *options,
1565 struct gdbarch *gdbarch,
1566 CORE_ADDR address,
1567 struct ui_file *stream)
1568 {
1569 CORE_ADDR func_addr
1570 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1571 &current_target);
1572
1573 /* If the function pointer is represented by a description, print
1574 the address of the description. */
1575 if (options->addressprint && func_addr != address)
1576 {
1577 fputs_filtered ("@", stream);
1578 fputs_filtered (paddress (gdbarch, address), stream);
1579 fputs_filtered (": ", stream);
1580 }
1581 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1582 }
1583
1584
1585 /* Print on STREAM using the given OPTIONS the index for the element
1586 at INDEX of an array whose index type is INDEX_TYPE. */
1587
1588 void
1589 maybe_print_array_index (struct type *index_type, LONGEST index,
1590 struct ui_file *stream,
1591 const struct value_print_options *options)
1592 {
1593 struct value *index_value;
1594
1595 if (!options->print_array_indexes)
1596 return;
1597
1598 index_value = value_from_longest (index_type, index);
1599
1600 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1601 }
1602
1603 /* Called by various <lang>_val_print routines to print elements of an
1604 array in the form "<elem1>, <elem2>, <elem3>, ...".
1605
1606 (FIXME?) Assumes array element separator is a comma, which is correct
1607 for all languages currently handled.
1608 (FIXME?) Some languages have a notation for repeated array elements,
1609 perhaps we should try to use that notation when appropriate. */
1610
1611 void
1612 val_print_array_elements (struct type *type,
1613 const gdb_byte *valaddr, int embedded_offset,
1614 CORE_ADDR address, struct ui_file *stream,
1615 int recurse,
1616 const struct value *val,
1617 const struct value_print_options *options,
1618 unsigned int i)
1619 {
1620 unsigned int things_printed = 0;
1621 unsigned len;
1622 struct type *elttype, *index_type;
1623 unsigned eltlen;
1624 /* Position of the array element we are examining to see
1625 whether it is repeated. */
1626 unsigned int rep1;
1627 /* Number of repetitions we have detected so far. */
1628 unsigned int reps;
1629 LONGEST low_bound, high_bound;
1630
1631 elttype = TYPE_TARGET_TYPE (type);
1632 eltlen = TYPE_LENGTH (check_typedef (elttype));
1633 index_type = TYPE_INDEX_TYPE (type);
1634
1635 if (get_array_bounds (type, &low_bound, &high_bound))
1636 {
1637 /* The array length should normally be HIGH_BOUND - LOW_BOUND + 1.
1638 But we have to be a little extra careful, because some languages
1639 such as Ada allow LOW_BOUND to be greater than HIGH_BOUND for
1640 empty arrays. In that situation, the array length is just zero,
1641 not negative! */
1642 if (low_bound > high_bound)
1643 len = 0;
1644 else
1645 len = high_bound - low_bound + 1;
1646 }
1647 else
1648 {
1649 warning (_("unable to get bounds of array, assuming null array"));
1650 low_bound = 0;
1651 len = 0;
1652 }
1653
1654 annotate_array_section_begin (i, elttype);
1655
1656 for (; i < len && things_printed < options->print_max; i++)
1657 {
1658 if (i != 0)
1659 {
1660 if (options->prettyformat_arrays)
1661 {
1662 fprintf_filtered (stream, ",\n");
1663 print_spaces_filtered (2 + 2 * recurse, stream);
1664 }
1665 else
1666 {
1667 fprintf_filtered (stream, ", ");
1668 }
1669 }
1670 wrap_here (n_spaces (2 + 2 * recurse));
1671 maybe_print_array_index (index_type, i + low_bound,
1672 stream, options);
1673
1674 rep1 = i + 1;
1675 reps = 1;
1676 /* Only check for reps if repeat_count_threshold is not set to
1677 UINT_MAX (unlimited). */
1678 if (options->repeat_count_threshold < UINT_MAX)
1679 {
1680 while (rep1 < len
1681 && value_available_contents_eq (val,
1682 embedded_offset + i * eltlen,
1683 val,
1684 (embedded_offset
1685 + rep1 * eltlen),
1686 eltlen))
1687 {
1688 ++reps;
1689 ++rep1;
1690 }
1691 }
1692
1693 if (reps > options->repeat_count_threshold)
1694 {
1695 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1696 address, stream, recurse + 1, val, options,
1697 current_language);
1698 annotate_elt_rep (reps);
1699 fprintf_filtered (stream, " <repeats %u times>", reps);
1700 annotate_elt_rep_end ();
1701
1702 i = rep1 - 1;
1703 things_printed += options->repeat_count_threshold;
1704 }
1705 else
1706 {
1707 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1708 address,
1709 stream, recurse + 1, val, options, current_language);
1710 annotate_elt ();
1711 things_printed++;
1712 }
1713 }
1714 annotate_array_section_end ();
1715 if (i < len)
1716 {
1717 fprintf_filtered (stream, "...");
1718 }
1719 }
1720
1721 /* Read LEN bytes of target memory at address MEMADDR, placing the
1722 results in GDB's memory at MYADDR. Returns a count of the bytes
1723 actually read, and optionally a target_xfer_error value in the
1724 location pointed to by ERRPTR if ERRPTR is non-null. */
1725
1726 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1727 function be eliminated. */
1728
1729 static int
1730 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
1731 int len, int *errptr)
1732 {
1733 int nread; /* Number of bytes actually read. */
1734 int errcode; /* Error from last read. */
1735
1736 /* First try a complete read. */
1737 errcode = target_read_memory (memaddr, myaddr, len);
1738 if (errcode == 0)
1739 {
1740 /* Got it all. */
1741 nread = len;
1742 }
1743 else
1744 {
1745 /* Loop, reading one byte at a time until we get as much as we can. */
1746 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1747 {
1748 errcode = target_read_memory (memaddr++, myaddr++, 1);
1749 }
1750 /* If an error, the last read was unsuccessful, so adjust count. */
1751 if (errcode != 0)
1752 {
1753 nread--;
1754 }
1755 }
1756 if (errptr != NULL)
1757 {
1758 *errptr = errcode;
1759 }
1760 return (nread);
1761 }
1762
1763 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1764 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1765 allocated buffer containing the string, which the caller is responsible to
1766 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1767 success, or a target_xfer_error on failure.
1768
1769 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
1770 (including eventual NULs in the middle or end of the string).
1771
1772 If LEN is -1, stops at the first null character (not necessarily
1773 the first null byte) up to a maximum of FETCHLIMIT characters. Set
1774 FETCHLIMIT to UINT_MAX to read as many characters as possible from
1775 the string.
1776
1777 Unless an exception is thrown, BUFFER will always be allocated, even on
1778 failure. In this case, some characters might have been read before the
1779 failure happened. Check BYTES_READ to recognize this situation.
1780
1781 Note: There was a FIXME asking to make this code use target_read_string,
1782 but this function is more general (can read past null characters, up to
1783 given LEN). Besides, it is used much more often than target_read_string
1784 so it is more tested. Perhaps callers of target_read_string should use
1785 this function instead? */
1786
1787 int
1788 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1789 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
1790 {
1791 int found_nul; /* Non-zero if we found the nul char. */
1792 int errcode; /* Errno returned from bad reads. */
1793 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1794 unsigned int chunksize; /* Size of each fetch, in chars. */
1795 gdb_byte *bufptr; /* Pointer to next available byte in
1796 buffer. */
1797 gdb_byte *limit; /* First location past end of fetch buffer. */
1798 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1799
1800 /* Decide how large of chunks to try to read in one operation. This
1801 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1802 so we might as well read them all in one operation. If LEN is -1, we
1803 are looking for a NUL terminator to end the fetching, so we might as
1804 well read in blocks that are large enough to be efficient, but not so
1805 large as to be slow if fetchlimit happens to be large. So we choose the
1806 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1807 200 is way too big for remote debugging over a serial line. */
1808
1809 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1810
1811 /* Loop until we either have all the characters, or we encounter
1812 some error, such as bumping into the end of the address space. */
1813
1814 found_nul = 0;
1815 *buffer = NULL;
1816
1817 old_chain = make_cleanup (free_current_contents, buffer);
1818
1819 if (len > 0)
1820 {
1821 unsigned int fetchlen = min (len, fetchlimit);
1822
1823 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
1824 bufptr = *buffer;
1825
1826 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
1827 / width;
1828 addr += nfetch * width;
1829 bufptr += nfetch * width;
1830 }
1831 else if (len == -1)
1832 {
1833 unsigned long bufsize = 0;
1834
1835 do
1836 {
1837 QUIT;
1838 nfetch = min (chunksize, fetchlimit - bufsize);
1839
1840 if (*buffer == NULL)
1841 *buffer = (gdb_byte *) xmalloc (nfetch * width);
1842 else
1843 *buffer = (gdb_byte *) xrealloc (*buffer,
1844 (nfetch + bufsize) * width);
1845
1846 bufptr = *buffer + bufsize * width;
1847 bufsize += nfetch;
1848
1849 /* Read as much as we can. */
1850 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1851 / width;
1852
1853 /* Scan this chunk for the null character that terminates the string
1854 to print. If found, we don't need to fetch any more. Note
1855 that bufptr is explicitly left pointing at the next character
1856 after the null character, or at the next character after the end
1857 of the buffer. */
1858
1859 limit = bufptr + nfetch * width;
1860 while (bufptr < limit)
1861 {
1862 unsigned long c;
1863
1864 c = extract_unsigned_integer (bufptr, width, byte_order);
1865 addr += width;
1866 bufptr += width;
1867 if (c == 0)
1868 {
1869 /* We don't care about any error which happened after
1870 the NUL terminator. */
1871 errcode = 0;
1872 found_nul = 1;
1873 break;
1874 }
1875 }
1876 }
1877 while (errcode == 0 /* no error */
1878 && bufptr - *buffer < fetchlimit * width /* no overrun */
1879 && !found_nul); /* haven't found NUL yet */
1880 }
1881 else
1882 { /* Length of string is really 0! */
1883 /* We always allocate *buffer. */
1884 *buffer = bufptr = xmalloc (1);
1885 errcode = 0;
1886 }
1887
1888 /* bufptr and addr now point immediately beyond the last byte which we
1889 consider part of the string (including a '\0' which ends the string). */
1890 *bytes_read = bufptr - *buffer;
1891
1892 QUIT;
1893
1894 discard_cleanups (old_chain);
1895
1896 return errcode;
1897 }
1898
1899 /* Return true if print_wchar can display W without resorting to a
1900 numeric escape, false otherwise. */
1901
1902 static int
1903 wchar_printable (gdb_wchar_t w)
1904 {
1905 return (gdb_iswprint (w)
1906 || w == LCST ('\a') || w == LCST ('\b')
1907 || w == LCST ('\f') || w == LCST ('\n')
1908 || w == LCST ('\r') || w == LCST ('\t')
1909 || w == LCST ('\v'));
1910 }
1911
1912 /* A helper function that converts the contents of STRING to wide
1913 characters and then appends them to OUTPUT. */
1914
1915 static void
1916 append_string_as_wide (const char *string,
1917 struct obstack *output)
1918 {
1919 for (; *string; ++string)
1920 {
1921 gdb_wchar_t w = gdb_btowc (*string);
1922 obstack_grow (output, &w, sizeof (gdb_wchar_t));
1923 }
1924 }
1925
1926 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
1927 original (target) bytes representing the character, ORIG_LEN is the
1928 number of valid bytes. WIDTH is the number of bytes in a base
1929 characters of the type. OUTPUT is an obstack to which wide
1930 characters are emitted. QUOTER is a (narrow) character indicating
1931 the style of quotes surrounding the character to be printed.
1932 NEED_ESCAPE is an in/out flag which is used to track numeric
1933 escapes across calls. */
1934
1935 static void
1936 print_wchar (gdb_wint_t w, const gdb_byte *orig,
1937 int orig_len, int width,
1938 enum bfd_endian byte_order,
1939 struct obstack *output,
1940 int quoter, int *need_escapep)
1941 {
1942 int need_escape = *need_escapep;
1943
1944 *need_escapep = 0;
1945 if (gdb_iswprint (w) && (!need_escape || (!gdb_iswdigit (w)
1946 && w != LCST ('8')
1947 && w != LCST ('9'))))
1948 {
1949 gdb_wchar_t wchar = w;
1950
1951 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
1952 obstack_grow_wstr (output, LCST ("\\"));
1953 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
1954 }
1955 else
1956 {
1957 switch (w)
1958 {
1959 case LCST ('\a'):
1960 obstack_grow_wstr (output, LCST ("\\a"));
1961 break;
1962 case LCST ('\b'):
1963 obstack_grow_wstr (output, LCST ("\\b"));
1964 break;
1965 case LCST ('\f'):
1966 obstack_grow_wstr (output, LCST ("\\f"));
1967 break;
1968 case LCST ('\n'):
1969 obstack_grow_wstr (output, LCST ("\\n"));
1970 break;
1971 case LCST ('\r'):
1972 obstack_grow_wstr (output, LCST ("\\r"));
1973 break;
1974 case LCST ('\t'):
1975 obstack_grow_wstr (output, LCST ("\\t"));
1976 break;
1977 case LCST ('\v'):
1978 obstack_grow_wstr (output, LCST ("\\v"));
1979 break;
1980 default:
1981 {
1982 int i;
1983
1984 for (i = 0; i + width <= orig_len; i += width)
1985 {
1986 char octal[30];
1987 ULONGEST value;
1988
1989 value = extract_unsigned_integer (&orig[i], width,
1990 byte_order);
1991 /* If the value fits in 3 octal digits, print it that
1992 way. Otherwise, print it as a hex escape. */
1993 if (value <= 0777)
1994 xsnprintf (octal, sizeof (octal), "\\%.3o",
1995 (int) (value & 0777));
1996 else
1997 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
1998 append_string_as_wide (octal, output);
1999 }
2000 /* If we somehow have extra bytes, print them now. */
2001 while (i < orig_len)
2002 {
2003 char octal[5];
2004
2005 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2006 append_string_as_wide (octal, output);
2007 ++i;
2008 }
2009
2010 *need_escapep = 1;
2011 }
2012 break;
2013 }
2014 }
2015 }
2016
2017 /* Print the character C on STREAM as part of the contents of a
2018 literal string whose delimiter is QUOTER. ENCODING names the
2019 encoding of C. */
2020
2021 void
2022 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2023 int quoter, const char *encoding)
2024 {
2025 enum bfd_endian byte_order
2026 = gdbarch_byte_order (get_type_arch (type));
2027 struct obstack wchar_buf, output;
2028 struct cleanup *cleanups;
2029 gdb_byte *buf;
2030 struct wchar_iterator *iter;
2031 int need_escape = 0;
2032
2033 buf = alloca (TYPE_LENGTH (type));
2034 pack_long (buf, type, c);
2035
2036 iter = make_wchar_iterator (buf, TYPE_LENGTH (type),
2037 encoding, TYPE_LENGTH (type));
2038 cleanups = make_cleanup_wchar_iterator (iter);
2039
2040 /* This holds the printable form of the wchar_t data. */
2041 obstack_init (&wchar_buf);
2042 make_cleanup_obstack_free (&wchar_buf);
2043
2044 while (1)
2045 {
2046 int num_chars;
2047 gdb_wchar_t *chars;
2048 const gdb_byte *buf;
2049 size_t buflen;
2050 int print_escape = 1;
2051 enum wchar_iterate_result result;
2052
2053 num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen);
2054 if (num_chars < 0)
2055 break;
2056 if (num_chars > 0)
2057 {
2058 /* If all characters are printable, print them. Otherwise,
2059 we're going to have to print an escape sequence. We
2060 check all characters because we want to print the target
2061 bytes in the escape sequence, and we don't know character
2062 boundaries there. */
2063 int i;
2064
2065 print_escape = 0;
2066 for (i = 0; i < num_chars; ++i)
2067 if (!wchar_printable (chars[i]))
2068 {
2069 print_escape = 1;
2070 break;
2071 }
2072
2073 if (!print_escape)
2074 {
2075 for (i = 0; i < num_chars; ++i)
2076 print_wchar (chars[i], buf, buflen,
2077 TYPE_LENGTH (type), byte_order,
2078 &wchar_buf, quoter, &need_escape);
2079 }
2080 }
2081
2082 /* This handles the NUM_CHARS == 0 case as well. */
2083 if (print_escape)
2084 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2085 byte_order, &wchar_buf, quoter, &need_escape);
2086 }
2087
2088 /* The output in the host encoding. */
2089 obstack_init (&output);
2090 make_cleanup_obstack_free (&output);
2091
2092 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2093 (gdb_byte *) obstack_base (&wchar_buf),
2094 obstack_object_size (&wchar_buf),
2095 sizeof (gdb_wchar_t), &output, translit_char);
2096 obstack_1grow (&output, '\0');
2097
2098 fputs_filtered (obstack_base (&output), stream);
2099
2100 do_cleanups (cleanups);
2101 }
2102
2103 /* Return the repeat count of the next character/byte in ITER,
2104 storing the result in VEC. */
2105
2106 static int
2107 count_next_character (struct wchar_iterator *iter,
2108 VEC (converted_character_d) **vec)
2109 {
2110 struct converted_character *current;
2111
2112 if (VEC_empty (converted_character_d, *vec))
2113 {
2114 struct converted_character tmp;
2115 gdb_wchar_t *chars;
2116
2117 tmp.num_chars
2118 = wchar_iterate (iter, &tmp.result, &chars, &tmp.buf, &tmp.buflen);
2119 if (tmp.num_chars > 0)
2120 {
2121 gdb_assert (tmp.num_chars < MAX_WCHARS);
2122 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2123 }
2124 VEC_safe_push (converted_character_d, *vec, &tmp);
2125 }
2126
2127 current = VEC_last (converted_character_d, *vec);
2128
2129 /* Count repeated characters or bytes. */
2130 current->repeat_count = 1;
2131 if (current->num_chars == -1)
2132 {
2133 /* EOF */
2134 return -1;
2135 }
2136 else
2137 {
2138 gdb_wchar_t *chars;
2139 struct converted_character d;
2140 int repeat;
2141
2142 d.repeat_count = 0;
2143
2144 while (1)
2145 {
2146 /* Get the next character. */
2147 d.num_chars
2148 = wchar_iterate (iter, &d.result, &chars, &d.buf, &d.buflen);
2149
2150 /* If a character was successfully converted, save the character
2151 into the converted character. */
2152 if (d.num_chars > 0)
2153 {
2154 gdb_assert (d.num_chars < MAX_WCHARS);
2155 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2156 }
2157
2158 /* Determine if the current character is the same as this
2159 new character. */
2160 if (d.num_chars == current->num_chars && d.result == current->result)
2161 {
2162 /* There are two cases to consider:
2163
2164 1) Equality of converted character (num_chars > 0)
2165 2) Equality of non-converted character (num_chars == 0) */
2166 if ((current->num_chars > 0
2167 && memcmp (current->chars, d.chars,
2168 WCHAR_BUFLEN (current->num_chars)) == 0)
2169 || (current->num_chars == 0
2170 && current->buflen == d.buflen
2171 && memcmp (current->buf, d.buf, current->buflen) == 0))
2172 ++current->repeat_count;
2173 else
2174 break;
2175 }
2176 else
2177 break;
2178 }
2179
2180 /* Push this next converted character onto the result vector. */
2181 repeat = current->repeat_count;
2182 VEC_safe_push (converted_character_d, *vec, &d);
2183 return repeat;
2184 }
2185 }
2186
2187 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2188 character to use with string output. WIDTH is the size of the output
2189 character type. BYTE_ORDER is the the target byte order. OPTIONS
2190 is the user's print options. */
2191
2192 static void
2193 print_converted_chars_to_obstack (struct obstack *obstack,
2194 VEC (converted_character_d) *chars,
2195 int quote_char, int width,
2196 enum bfd_endian byte_order,
2197 const struct value_print_options *options)
2198 {
2199 unsigned int idx;
2200 struct converted_character *elem;
2201 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2202 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2203 int need_escape = 0;
2204
2205 /* Set the start state. */
2206 idx = 0;
2207 last = state = START;
2208 elem = NULL;
2209
2210 while (1)
2211 {
2212 switch (state)
2213 {
2214 case START:
2215 /* Nothing to do. */
2216 break;
2217
2218 case SINGLE:
2219 {
2220 int j;
2221
2222 /* We are outputting a single character
2223 (< options->repeat_count_threshold). */
2224
2225 if (last != SINGLE)
2226 {
2227 /* We were outputting some other type of content, so we
2228 must output and a comma and a quote. */
2229 if (last != START)
2230 obstack_grow_wstr (obstack, LCST (", "));
2231 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2232 }
2233 /* Output the character. */
2234 for (j = 0; j < elem->repeat_count; ++j)
2235 {
2236 if (elem->result == wchar_iterate_ok)
2237 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2238 byte_order, obstack, quote_char, &need_escape);
2239 else
2240 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2241 byte_order, obstack, quote_char, &need_escape);
2242 }
2243 }
2244 break;
2245
2246 case REPEAT:
2247 {
2248 int j;
2249 char *s;
2250
2251 /* We are outputting a character with a repeat count
2252 greater than options->repeat_count_threshold. */
2253
2254 if (last == SINGLE)
2255 {
2256 /* We were outputting a single string. Terminate the
2257 string. */
2258 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2259 }
2260 if (last != START)
2261 obstack_grow_wstr (obstack, LCST (", "));
2262
2263 /* Output the character and repeat string. */
2264 obstack_grow_wstr (obstack, LCST ("'"));
2265 if (elem->result == wchar_iterate_ok)
2266 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2267 byte_order, obstack, quote_char, &need_escape);
2268 else
2269 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2270 byte_order, obstack, quote_char, &need_escape);
2271 obstack_grow_wstr (obstack, LCST ("'"));
2272 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2273 for (j = 0; s[j]; ++j)
2274 {
2275 gdb_wchar_t w = gdb_btowc (s[j]);
2276 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2277 }
2278 xfree (s);
2279 }
2280 break;
2281
2282 case INCOMPLETE:
2283 /* We are outputting an incomplete sequence. */
2284 if (last == SINGLE)
2285 {
2286 /* If we were outputting a string of SINGLE characters,
2287 terminate the quote. */
2288 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2289 }
2290 if (last != START)
2291 obstack_grow_wstr (obstack, LCST (", "));
2292
2293 /* Output the incomplete sequence string. */
2294 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2295 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2296 obstack, 0, &need_escape);
2297 obstack_grow_wstr (obstack, LCST (">"));
2298
2299 /* We do not attempt to outupt anything after this. */
2300 state = FINISH;
2301 break;
2302
2303 case FINISH:
2304 /* All done. If we were outputting a string of SINGLE
2305 characters, the string must be terminated. Otherwise,
2306 REPEAT and INCOMPLETE are always left properly terminated. */
2307 if (last == SINGLE)
2308 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2309
2310 return;
2311 }
2312
2313 /* Get the next element and state. */
2314 last = state;
2315 if (state != FINISH)
2316 {
2317 elem = VEC_index (converted_character_d, chars, idx++);
2318 switch (elem->result)
2319 {
2320 case wchar_iterate_ok:
2321 case wchar_iterate_invalid:
2322 if (elem->repeat_count > options->repeat_count_threshold)
2323 state = REPEAT;
2324 else
2325 state = SINGLE;
2326 break;
2327
2328 case wchar_iterate_incomplete:
2329 state = INCOMPLETE;
2330 break;
2331
2332 case wchar_iterate_eof:
2333 state = FINISH;
2334 break;
2335 }
2336 }
2337 }
2338 }
2339
2340 /* Print the character string STRING, printing at most LENGTH
2341 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2342 the type of each character. OPTIONS holds the printing options;
2343 printing stops early if the number hits print_max; repeat counts
2344 are printed as appropriate. Print ellipses at the end if we had to
2345 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2346 QUOTE_CHAR is the character to print at each end of the string. If
2347 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2348 omitted. */
2349
2350 void
2351 generic_printstr (struct ui_file *stream, struct type *type,
2352 const gdb_byte *string, unsigned int length,
2353 const char *encoding, int force_ellipses,
2354 int quote_char, int c_style_terminator,
2355 const struct value_print_options *options)
2356 {
2357 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2358 unsigned int i;
2359 int width = TYPE_LENGTH (type);
2360 struct obstack wchar_buf, output;
2361 struct cleanup *cleanup;
2362 struct wchar_iterator *iter;
2363 int finished = 0;
2364 struct converted_character *last;
2365 VEC (converted_character_d) *converted_chars;
2366
2367 if (length == -1)
2368 {
2369 unsigned long current_char = 1;
2370
2371 for (i = 0; current_char; ++i)
2372 {
2373 QUIT;
2374 current_char = extract_unsigned_integer (string + i * width,
2375 width, byte_order);
2376 }
2377 length = i;
2378 }
2379
2380 /* If the string was not truncated due to `set print elements', and
2381 the last byte of it is a null, we don't print that, in
2382 traditional C style. */
2383 if (c_style_terminator
2384 && !force_ellipses
2385 && length > 0
2386 && (extract_unsigned_integer (string + (length - 1) * width,
2387 width, byte_order) == 0))
2388 length--;
2389
2390 if (length == 0)
2391 {
2392 fputs_filtered ("\"\"", stream);
2393 return;
2394 }
2395
2396 /* Arrange to iterate over the characters, in wchar_t form. */
2397 iter = make_wchar_iterator (string, length * width, encoding, width);
2398 cleanup = make_cleanup_wchar_iterator (iter);
2399 converted_chars = NULL;
2400 make_cleanup (VEC_cleanup (converted_character_d), &converted_chars);
2401
2402 /* Convert characters until the string is over or the maximum
2403 number of printed characters has been reached. */
2404 i = 0;
2405 while (i < options->print_max)
2406 {
2407 int r;
2408
2409 QUIT;
2410
2411 /* Grab the next character and repeat count. */
2412 r = count_next_character (iter, &converted_chars);
2413
2414 /* If less than zero, the end of the input string was reached. */
2415 if (r < 0)
2416 break;
2417
2418 /* Otherwise, add the count to the total print count and get
2419 the next character. */
2420 i += r;
2421 }
2422
2423 /* Get the last element and determine if the entire string was
2424 processed. */
2425 last = VEC_last (converted_character_d, converted_chars);
2426 finished = (last->result == wchar_iterate_eof);
2427
2428 /* Ensure that CONVERTED_CHARS is terminated. */
2429 last->result = wchar_iterate_eof;
2430
2431 /* WCHAR_BUF is the obstack we use to represent the string in
2432 wchar_t form. */
2433 obstack_init (&wchar_buf);
2434 make_cleanup_obstack_free (&wchar_buf);
2435
2436 /* Print the output string to the obstack. */
2437 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2438 width, byte_order, options);
2439
2440 if (force_ellipses || !finished)
2441 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2442
2443 /* OUTPUT is where we collect `char's for printing. */
2444 obstack_init (&output);
2445 make_cleanup_obstack_free (&output);
2446
2447 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2448 (gdb_byte *) obstack_base (&wchar_buf),
2449 obstack_object_size (&wchar_buf),
2450 sizeof (gdb_wchar_t), &output, translit_char);
2451 obstack_1grow (&output, '\0');
2452
2453 fputs_filtered (obstack_base (&output), stream);
2454
2455 do_cleanups (cleanup);
2456 }
2457
2458 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2459 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2460 stops at the first null byte, otherwise printing proceeds (including null
2461 bytes) until either print_max or LEN characters have been printed,
2462 whichever is smaller. ENCODING is the name of the string's
2463 encoding. It can be NULL, in which case the target encoding is
2464 assumed. */
2465
2466 int
2467 val_print_string (struct type *elttype, const char *encoding,
2468 CORE_ADDR addr, int len,
2469 struct ui_file *stream,
2470 const struct value_print_options *options)
2471 {
2472 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2473 int errcode; /* Errno returned from bad reads. */
2474 int found_nul; /* Non-zero if we found the nul char. */
2475 unsigned int fetchlimit; /* Maximum number of chars to print. */
2476 int bytes_read;
2477 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2478 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2479 struct gdbarch *gdbarch = get_type_arch (elttype);
2480 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2481 int width = TYPE_LENGTH (elttype);
2482
2483 /* First we need to figure out the limit on the number of characters we are
2484 going to attempt to fetch and print. This is actually pretty simple. If
2485 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2486 LEN is -1, then the limit is print_max. This is true regardless of
2487 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2488 because finding the null byte (or available memory) is what actually
2489 limits the fetch. */
2490
2491 fetchlimit = (len == -1 ? options->print_max : min (len,
2492 options->print_max));
2493
2494 errcode = read_string (addr, len, width, fetchlimit, byte_order,
2495 &buffer, &bytes_read);
2496 old_chain = make_cleanup (xfree, buffer);
2497
2498 addr += bytes_read;
2499
2500 /* We now have either successfully filled the buffer to fetchlimit,
2501 or terminated early due to an error or finding a null char when
2502 LEN is -1. */
2503
2504 /* Determine found_nul by looking at the last character read. */
2505 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2506 byte_order) == 0;
2507 if (len == -1 && !found_nul)
2508 {
2509 gdb_byte *peekbuf;
2510
2511 /* We didn't find a NUL terminator we were looking for. Attempt
2512 to peek at the next character. If not successful, or it is not
2513 a null byte, then force ellipsis to be printed. */
2514
2515 peekbuf = (gdb_byte *) alloca (width);
2516
2517 if (target_read_memory (addr, peekbuf, width) == 0
2518 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2519 force_ellipsis = 1;
2520 }
2521 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
2522 {
2523 /* Getting an error when we have a requested length, or fetching less
2524 than the number of characters actually requested, always make us
2525 print ellipsis. */
2526 force_ellipsis = 1;
2527 }
2528
2529 /* If we get an error before fetching anything, don't print a string.
2530 But if we fetch something and then get an error, print the string
2531 and then the error message. */
2532 if (errcode == 0 || bytes_read > 0)
2533 {
2534 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
2535 encoding, force_ellipsis, options);
2536 }
2537
2538 if (errcode != 0)
2539 {
2540 char *str;
2541
2542 str = memory_error_message (errcode, gdbarch, addr);
2543 make_cleanup (xfree, str);
2544
2545 fprintf_filtered (stream, "<error: ");
2546 fputs_filtered (str, stream);
2547 fprintf_filtered (stream, ">");
2548 }
2549
2550 gdb_flush (stream);
2551 do_cleanups (old_chain);
2552
2553 return (bytes_read / width);
2554 }
2555 \f
2556
2557 /* The 'set input-radix' command writes to this auxiliary variable.
2558 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2559 it is left unchanged. */
2560
2561 static unsigned input_radix_1 = 10;
2562
2563 /* Validate an input or output radix setting, and make sure the user
2564 knows what they really did here. Radix setting is confusing, e.g.
2565 setting the input radix to "10" never changes it! */
2566
2567 static void
2568 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
2569 {
2570 set_input_radix_1 (from_tty, input_radix_1);
2571 }
2572
2573 static void
2574 set_input_radix_1 (int from_tty, unsigned radix)
2575 {
2576 /* We don't currently disallow any input radix except 0 or 1, which don't
2577 make any mathematical sense. In theory, we can deal with any input
2578 radix greater than 1, even if we don't have unique digits for every
2579 value from 0 to radix-1, but in practice we lose on large radix values.
2580 We should either fix the lossage or restrict the radix range more.
2581 (FIXME). */
2582
2583 if (radix < 2)
2584 {
2585 input_radix_1 = input_radix;
2586 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2587 radix);
2588 }
2589 input_radix_1 = input_radix = radix;
2590 if (from_tty)
2591 {
2592 printf_filtered (_("Input radix now set to "
2593 "decimal %u, hex %x, octal %o.\n"),
2594 radix, radix, radix);
2595 }
2596 }
2597
2598 /* The 'set output-radix' command writes to this auxiliary variable.
2599 If the requested radix is valid, OUTPUT_RADIX is updated,
2600 otherwise, it is left unchanged. */
2601
2602 static unsigned output_radix_1 = 10;
2603
2604 static void
2605 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
2606 {
2607 set_output_radix_1 (from_tty, output_radix_1);
2608 }
2609
2610 static void
2611 set_output_radix_1 (int from_tty, unsigned radix)
2612 {
2613 /* Validate the radix and disallow ones that we aren't prepared to
2614 handle correctly, leaving the radix unchanged. */
2615 switch (radix)
2616 {
2617 case 16:
2618 user_print_options.output_format = 'x'; /* hex */
2619 break;
2620 case 10:
2621 user_print_options.output_format = 0; /* decimal */
2622 break;
2623 case 8:
2624 user_print_options.output_format = 'o'; /* octal */
2625 break;
2626 default:
2627 output_radix_1 = output_radix;
2628 error (_("Unsupported output radix ``decimal %u''; "
2629 "output radix unchanged."),
2630 radix);
2631 }
2632 output_radix_1 = output_radix = radix;
2633 if (from_tty)
2634 {
2635 printf_filtered (_("Output radix now set to "
2636 "decimal %u, hex %x, octal %o.\n"),
2637 radix, radix, radix);
2638 }
2639 }
2640
2641 /* Set both the input and output radix at once. Try to set the output radix
2642 first, since it has the most restrictive range. An radix that is valid as
2643 an output radix is also valid as an input radix.
2644
2645 It may be useful to have an unusual input radix. If the user wishes to
2646 set an input radix that is not valid as an output radix, he needs to use
2647 the 'set input-radix' command. */
2648
2649 static void
2650 set_radix (char *arg, int from_tty)
2651 {
2652 unsigned radix;
2653
2654 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2655 set_output_radix_1 (0, radix);
2656 set_input_radix_1 (0, radix);
2657 if (from_tty)
2658 {
2659 printf_filtered (_("Input and output radices now set to "
2660 "decimal %u, hex %x, octal %o.\n"),
2661 radix, radix, radix);
2662 }
2663 }
2664
2665 /* Show both the input and output radices. */
2666
2667 static void
2668 show_radix (char *arg, int from_tty)
2669 {
2670 if (from_tty)
2671 {
2672 if (input_radix == output_radix)
2673 {
2674 printf_filtered (_("Input and output radices set to "
2675 "decimal %u, hex %x, octal %o.\n"),
2676 input_radix, input_radix, input_radix);
2677 }
2678 else
2679 {
2680 printf_filtered (_("Input radix set to decimal "
2681 "%u, hex %x, octal %o.\n"),
2682 input_radix, input_radix, input_radix);
2683 printf_filtered (_("Output radix set to decimal "
2684 "%u, hex %x, octal %o.\n"),
2685 output_radix, output_radix, output_radix);
2686 }
2687 }
2688 }
2689 \f
2690
2691 static void
2692 set_print (char *arg, int from_tty)
2693 {
2694 printf_unfiltered (
2695 "\"set print\" must be followed by the name of a print subcommand.\n");
2696 help_list (setprintlist, "set print ", -1, gdb_stdout);
2697 }
2698
2699 static void
2700 show_print (char *args, int from_tty)
2701 {
2702 cmd_show_list (showprintlist, from_tty, "");
2703 }
2704
2705 static void
2706 set_print_raw (char *arg, int from_tty)
2707 {
2708 printf_unfiltered (
2709 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
2710 help_list (setprintrawlist, "set print raw ", -1, gdb_stdout);
2711 }
2712
2713 static void
2714 show_print_raw (char *args, int from_tty)
2715 {
2716 cmd_show_list (showprintrawlist, from_tty, "");
2717 }
2718
2719 \f
2720 void
2721 _initialize_valprint (void)
2722 {
2723 add_prefix_cmd ("print", no_class, set_print,
2724 _("Generic command for setting how things print."),
2725 &setprintlist, "set print ", 0, &setlist);
2726 add_alias_cmd ("p", "print", no_class, 1, &setlist);
2727 /* Prefer set print to set prompt. */
2728 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
2729
2730 add_prefix_cmd ("print", no_class, show_print,
2731 _("Generic command for showing print settings."),
2732 &showprintlist, "show print ", 0, &showlist);
2733 add_alias_cmd ("p", "print", no_class, 1, &showlist);
2734 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
2735
2736 add_prefix_cmd ("raw", no_class, set_print_raw,
2737 _("\
2738 Generic command for setting what things to print in \"raw\" mode."),
2739 &setprintrawlist, "set print raw ", 0, &setprintlist);
2740 add_prefix_cmd ("raw", no_class, show_print_raw,
2741 _("Generic command for showing \"print raw\" settings."),
2742 &showprintrawlist, "show print raw ", 0, &showprintlist);
2743
2744 add_setshow_uinteger_cmd ("elements", no_class,
2745 &user_print_options.print_max, _("\
2746 Set limit on string chars or array elements to print."), _("\
2747 Show limit on string chars or array elements to print."), _("\
2748 \"set print elements unlimited\" causes there to be no limit."),
2749 NULL,
2750 show_print_max,
2751 &setprintlist, &showprintlist);
2752
2753 add_setshow_boolean_cmd ("null-stop", no_class,
2754 &user_print_options.stop_print_at_null, _("\
2755 Set printing of char arrays to stop at first null char."), _("\
2756 Show printing of char arrays to stop at first null char."), NULL,
2757 NULL,
2758 show_stop_print_at_null,
2759 &setprintlist, &showprintlist);
2760
2761 add_setshow_uinteger_cmd ("repeats", no_class,
2762 &user_print_options.repeat_count_threshold, _("\
2763 Set threshold for repeated print elements."), _("\
2764 Show threshold for repeated print elements."), _("\
2765 \"set print repeats unlimited\" causes all elements to be individually printed."),
2766 NULL,
2767 show_repeat_count_threshold,
2768 &setprintlist, &showprintlist);
2769
2770 add_setshow_boolean_cmd ("pretty", class_support,
2771 &user_print_options.prettyformat_structs, _("\
2772 Set pretty formatting of structures."), _("\
2773 Show pretty formatting of structures."), NULL,
2774 NULL,
2775 show_prettyformat_structs,
2776 &setprintlist, &showprintlist);
2777
2778 add_setshow_boolean_cmd ("union", class_support,
2779 &user_print_options.unionprint, _("\
2780 Set printing of unions interior to structures."), _("\
2781 Show printing of unions interior to structures."), NULL,
2782 NULL,
2783 show_unionprint,
2784 &setprintlist, &showprintlist);
2785
2786 add_setshow_boolean_cmd ("array", class_support,
2787 &user_print_options.prettyformat_arrays, _("\
2788 Set pretty formatting of arrays."), _("\
2789 Show pretty formatting of arrays."), NULL,
2790 NULL,
2791 show_prettyformat_arrays,
2792 &setprintlist, &showprintlist);
2793
2794 add_setshow_boolean_cmd ("address", class_support,
2795 &user_print_options.addressprint, _("\
2796 Set printing of addresses."), _("\
2797 Show printing of addresses."), NULL,
2798 NULL,
2799 show_addressprint,
2800 &setprintlist, &showprintlist);
2801
2802 add_setshow_boolean_cmd ("symbol", class_support,
2803 &user_print_options.symbol_print, _("\
2804 Set printing of symbol names when printing pointers."), _("\
2805 Show printing of symbol names when printing pointers."),
2806 NULL, NULL,
2807 show_symbol_print,
2808 &setprintlist, &showprintlist);
2809
2810 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
2811 _("\
2812 Set default input radix for entering numbers."), _("\
2813 Show default input radix for entering numbers."), NULL,
2814 set_input_radix,
2815 show_input_radix,
2816 &setlist, &showlist);
2817
2818 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
2819 _("\
2820 Set default output radix for printing of values."), _("\
2821 Show default output radix for printing of values."), NULL,
2822 set_output_radix,
2823 show_output_radix,
2824 &setlist, &showlist);
2825
2826 /* The "set radix" and "show radix" commands are special in that
2827 they are like normal set and show commands but allow two normally
2828 independent variables to be either set or shown with a single
2829 command. So the usual deprecated_add_set_cmd() and [deleted]
2830 add_show_from_set() commands aren't really appropriate. */
2831 /* FIXME: i18n: With the new add_setshow_integer command, that is no
2832 longer true - show can display anything. */
2833 add_cmd ("radix", class_support, set_radix, _("\
2834 Set default input and output number radices.\n\
2835 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
2836 Without an argument, sets both radices back to the default value of 10."),
2837 &setlist);
2838 add_cmd ("radix", class_support, show_radix, _("\
2839 Show the default input and output number radices.\n\
2840 Use 'show input-radix' or 'show output-radix' to independently show each."),
2841 &showlist);
2842
2843 add_setshow_boolean_cmd ("array-indexes", class_support,
2844 &user_print_options.print_array_indexes, _("\
2845 Set printing of array indexes."), _("\
2846 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
2847 &setprintlist, &showprintlist);
2848 }
This page took 0.095665 seconds and 4 git commands to generate.