PR25745, powerpc64-ld overflows string buffer in --stats mode
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "target-float.h"
31 #include "extension.h"
32 #include "ada-lang.h"
33 #include "gdb_obstack.h"
34 #include "charset.h"
35 #include "typeprint.h"
36 #include <ctype.h>
37 #include <algorithm>
38 #include "gdbsupport/byte-vector.h"
39 #include "cli/cli-option.h"
40 #include "gdbarch.h"
41 #include "cli/cli-style.h"
42 #include "count-one-bits.h"
43
44 /* Maximum number of wchars returned from wchar_iterate. */
45 #define MAX_WCHARS 4
46
47 /* A convenience macro to compute the size of a wchar_t buffer containing X
48 characters. */
49 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
50
51 /* Character buffer size saved while iterating over wchars. */
52 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
53
54 /* A structure to encapsulate state information from iterated
55 character conversions. */
56 struct converted_character
57 {
58 /* The number of characters converted. */
59 int num_chars;
60
61 /* The result of the conversion. See charset.h for more. */
62 enum wchar_iterate_result result;
63
64 /* The (saved) converted character(s). */
65 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
66
67 /* The first converted target byte. */
68 const gdb_byte *buf;
69
70 /* The number of bytes converted. */
71 size_t buflen;
72
73 /* How many times this character(s) is repeated. */
74 int repeat_count;
75 };
76
77 /* Command lists for set/show print raw. */
78 struct cmd_list_element *setprintrawlist;
79 struct cmd_list_element *showprintrawlist;
80
81 /* Prototypes for local functions */
82
83 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
84 int len, int *errptr);
85
86 static void set_input_radix_1 (int, unsigned);
87
88 static void set_output_radix_1 (int, unsigned);
89
90 static void val_print_type_code_flags (struct type *type,
91 struct value *original_value,
92 int embedded_offset,
93 struct ui_file *stream);
94
95 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
96 #define PRINT_MAX_DEPTH_DEFAULT 20 /* Start print_max_depth off at this value. */
97
98 struct value_print_options user_print_options =
99 {
100 Val_prettyformat_default, /* prettyformat */
101 0, /* prettyformat_arrays */
102 0, /* prettyformat_structs */
103 0, /* vtblprint */
104 1, /* unionprint */
105 1, /* addressprint */
106 0, /* objectprint */
107 PRINT_MAX_DEFAULT, /* print_max */
108 10, /* repeat_count_threshold */
109 0, /* output_format */
110 0, /* format */
111 0, /* stop_print_at_null */
112 0, /* print_array_indexes */
113 0, /* deref_ref */
114 1, /* static_field_print */
115 1, /* pascal_static_field_print */
116 0, /* raw */
117 0, /* summary */
118 1, /* symbol_print */
119 PRINT_MAX_DEPTH_DEFAULT, /* max_depth */
120 1 /* finish_print */
121 };
122
123 /* Initialize *OPTS to be a copy of the user print options. */
124 void
125 get_user_print_options (struct value_print_options *opts)
126 {
127 *opts = user_print_options;
128 }
129
130 /* Initialize *OPTS to be a copy of the user print options, but with
131 pretty-formatting disabled. */
132 void
133 get_no_prettyformat_print_options (struct value_print_options *opts)
134 {
135 *opts = user_print_options;
136 opts->prettyformat = Val_no_prettyformat;
137 }
138
139 /* Initialize *OPTS to be a copy of the user print options, but using
140 FORMAT as the formatting option. */
141 void
142 get_formatted_print_options (struct value_print_options *opts,
143 char format)
144 {
145 *opts = user_print_options;
146 opts->format = format;
147 }
148
149 static void
150 show_print_max (struct ui_file *file, int from_tty,
151 struct cmd_list_element *c, const char *value)
152 {
153 fprintf_filtered (file,
154 _("Limit on string chars or array "
155 "elements to print is %s.\n"),
156 value);
157 }
158
159
160 /* Default input and output radixes, and output format letter. */
161
162 unsigned input_radix = 10;
163 static void
164 show_input_radix (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 fprintf_filtered (file,
168 _("Default input radix for entering numbers is %s.\n"),
169 value);
170 }
171
172 unsigned output_radix = 10;
173 static void
174 show_output_radix (struct ui_file *file, int from_tty,
175 struct cmd_list_element *c, const char *value)
176 {
177 fprintf_filtered (file,
178 _("Default output radix for printing of values is %s.\n"),
179 value);
180 }
181
182 /* By default we print arrays without printing the index of each element in
183 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
184
185 static void
186 show_print_array_indexes (struct ui_file *file, int from_tty,
187 struct cmd_list_element *c, const char *value)
188 {
189 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
190 }
191
192 /* Print repeat counts if there are more than this many repetitions of an
193 element in an array. Referenced by the low level language dependent
194 print routines. */
195
196 static void
197 show_repeat_count_threshold (struct ui_file *file, int from_tty,
198 struct cmd_list_element *c, const char *value)
199 {
200 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
201 value);
202 }
203
204 /* If nonzero, stops printing of char arrays at first null. */
205
206 static void
207 show_stop_print_at_null (struct ui_file *file, int from_tty,
208 struct cmd_list_element *c, const char *value)
209 {
210 fprintf_filtered (file,
211 _("Printing of char arrays to stop "
212 "at first null char is %s.\n"),
213 value);
214 }
215
216 /* Controls pretty printing of structures. */
217
218 static void
219 show_prettyformat_structs (struct ui_file *file, int from_tty,
220 struct cmd_list_element *c, const char *value)
221 {
222 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
223 }
224
225 /* Controls pretty printing of arrays. */
226
227 static void
228 show_prettyformat_arrays (struct ui_file *file, int from_tty,
229 struct cmd_list_element *c, const char *value)
230 {
231 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
232 }
233
234 /* If nonzero, causes unions inside structures or other unions to be
235 printed. */
236
237 static void
238 show_unionprint (struct ui_file *file, int from_tty,
239 struct cmd_list_element *c, const char *value)
240 {
241 fprintf_filtered (file,
242 _("Printing of unions interior to structures is %s.\n"),
243 value);
244 }
245
246 /* If nonzero, causes machine addresses to be printed in certain contexts. */
247
248 static void
249 show_addressprint (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251 {
252 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
253 }
254
255 static void
256 show_symbol_print (struct ui_file *file, int from_tty,
257 struct cmd_list_element *c, const char *value)
258 {
259 fprintf_filtered (file,
260 _("Printing of symbols when printing pointers is %s.\n"),
261 value);
262 }
263
264 \f
265
266 /* A helper function for val_print. When printing in "summary" mode,
267 we want to print scalar arguments, but not aggregate arguments.
268 This function distinguishes between the two. */
269
270 int
271 val_print_scalar_type_p (struct type *type)
272 {
273 type = check_typedef (type);
274 while (TYPE_IS_REFERENCE (type))
275 {
276 type = TYPE_TARGET_TYPE (type);
277 type = check_typedef (type);
278 }
279 switch (TYPE_CODE (type))
280 {
281 case TYPE_CODE_ARRAY:
282 case TYPE_CODE_STRUCT:
283 case TYPE_CODE_UNION:
284 case TYPE_CODE_SET:
285 case TYPE_CODE_STRING:
286 return 0;
287 default:
288 return 1;
289 }
290 }
291
292 /* A helper function for val_print. When printing with limited depth we
293 want to print string and scalar arguments, but not aggregate arguments.
294 This function distinguishes between the two. */
295
296 static bool
297 val_print_scalar_or_string_type_p (struct type *type,
298 const struct language_defn *language)
299 {
300 return (val_print_scalar_type_p (type)
301 || language->la_is_string_type_p (type));
302 }
303
304 /* See its definition in value.h. */
305
306 int
307 valprint_check_validity (struct ui_file *stream,
308 struct type *type,
309 LONGEST embedded_offset,
310 const struct value *val)
311 {
312 type = check_typedef (type);
313
314 if (type_not_associated (type))
315 {
316 val_print_not_associated (stream);
317 return 0;
318 }
319
320 if (type_not_allocated (type))
321 {
322 val_print_not_allocated (stream);
323 return 0;
324 }
325
326 if (TYPE_CODE (type) != TYPE_CODE_UNION
327 && TYPE_CODE (type) != TYPE_CODE_STRUCT
328 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
329 {
330 if (value_bits_any_optimized_out (val,
331 TARGET_CHAR_BIT * embedded_offset,
332 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
333 {
334 val_print_optimized_out (val, stream);
335 return 0;
336 }
337
338 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
339 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
340 {
341 const int is_ref = TYPE_CODE (type) == TYPE_CODE_REF;
342 int ref_is_addressable = 0;
343
344 if (is_ref)
345 {
346 const struct value *deref_val = coerce_ref_if_computed (val);
347
348 if (deref_val != NULL)
349 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
350 }
351
352 if (!is_ref || !ref_is_addressable)
353 fputs_styled (_("<synthetic pointer>"), metadata_style.style (),
354 stream);
355
356 /* C++ references should be valid even if they're synthetic. */
357 return is_ref;
358 }
359
360 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
361 {
362 val_print_unavailable (stream);
363 return 0;
364 }
365 }
366
367 return 1;
368 }
369
370 void
371 val_print_optimized_out (const struct value *val, struct ui_file *stream)
372 {
373 if (val != NULL && value_lval_const (val) == lval_register)
374 val_print_not_saved (stream);
375 else
376 fprintf_styled (stream, metadata_style.style (), _("<optimized out>"));
377 }
378
379 void
380 val_print_not_saved (struct ui_file *stream)
381 {
382 fprintf_styled (stream, metadata_style.style (), _("<not saved>"));
383 }
384
385 void
386 val_print_unavailable (struct ui_file *stream)
387 {
388 fprintf_styled (stream, metadata_style.style (), _("<unavailable>"));
389 }
390
391 void
392 val_print_invalid_address (struct ui_file *stream)
393 {
394 fprintf_styled (stream, metadata_style.style (), _("<invalid address>"));
395 }
396
397 /* Print a pointer based on the type of its target.
398
399 Arguments to this functions are roughly the same as those in
400 generic_val_print. A difference is that ADDRESS is the address to print,
401 with embedded_offset already added. ELTTYPE represents
402 the pointed type after check_typedef. */
403
404 static void
405 print_unpacked_pointer (struct type *type, struct type *elttype,
406 CORE_ADDR address, struct ui_file *stream,
407 const struct value_print_options *options)
408 {
409 struct gdbarch *gdbarch = get_type_arch (type);
410
411 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
412 {
413 /* Try to print what function it points to. */
414 print_function_pointer_address (options, gdbarch, address, stream);
415 return;
416 }
417
418 if (options->symbol_print)
419 print_address_demangle (options, gdbarch, address, stream, demangle);
420 else if (options->addressprint)
421 fputs_filtered (paddress (gdbarch, address), stream);
422 }
423
424 /* generic_val_print helper for TYPE_CODE_ARRAY. */
425
426 static void
427 generic_val_print_array (struct value *val,
428 struct ui_file *stream, int recurse,
429 const struct value_print_options *options,
430 const struct
431 generic_val_print_decorations *decorations)
432 {
433 struct type *type = check_typedef (value_type (val));
434 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
435 struct type *elttype = check_typedef (unresolved_elttype);
436
437 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
438 {
439 LONGEST low_bound, high_bound;
440
441 if (!get_array_bounds (type, &low_bound, &high_bound))
442 error (_("Could not determine the array high bound"));
443
444 if (options->prettyformat_arrays)
445 {
446 print_spaces_filtered (2 + 2 * recurse, stream);
447 }
448
449 fputs_filtered (decorations->array_start, stream);
450 value_print_array_elements (val, stream, recurse, options, 0);
451 fputs_filtered (decorations->array_end, stream);
452 }
453 else
454 {
455 /* Array of unspecified length: treat like pointer to first elt. */
456 print_unpacked_pointer (type, elttype, value_address (val),
457 stream, options);
458 }
459
460 }
461
462 /* generic_value_print helper for TYPE_CODE_PTR. */
463
464 static void
465 generic_value_print_ptr (struct value *val, struct ui_file *stream,
466 const struct value_print_options *options)
467 {
468
469 if (options->format && options->format != 's')
470 value_print_scalar_formatted (val, options, 0, stream);
471 else
472 {
473 struct type *type = check_typedef (value_type (val));
474 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
475 const gdb_byte *valaddr = value_contents_for_printing (val);
476 CORE_ADDR addr = unpack_pointer (type, valaddr);
477
478 print_unpacked_pointer (type, elttype, addr, stream, options);
479 }
480 }
481
482
483 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
484
485 static void
486 print_ref_address (struct type *type, const gdb_byte *address_buffer,
487 int embedded_offset, struct ui_file *stream)
488 {
489 struct gdbarch *gdbarch = get_type_arch (type);
490
491 if (address_buffer != NULL)
492 {
493 CORE_ADDR address
494 = extract_typed_address (address_buffer + embedded_offset, type);
495
496 fprintf_filtered (stream, "@");
497 fputs_filtered (paddress (gdbarch, address), stream);
498 }
499 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
500 }
501
502 /* If VAL is addressable, return the value contents buffer of a value that
503 represents a pointer to VAL. Otherwise return NULL. */
504
505 static const gdb_byte *
506 get_value_addr_contents (struct value *deref_val)
507 {
508 gdb_assert (deref_val != NULL);
509
510 if (value_lval_const (deref_val) == lval_memory)
511 return value_contents_for_printing_const (value_addr (deref_val));
512 else
513 {
514 /* We have a non-addressable value, such as a DW_AT_const_value. */
515 return NULL;
516 }
517 }
518
519 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
520
521 static void
522 generic_val_print_ref (struct type *type,
523 int embedded_offset, struct ui_file *stream, int recurse,
524 struct value *original_value,
525 const struct value_print_options *options)
526 {
527 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
528 struct value *deref_val = NULL;
529 const int value_is_synthetic
530 = value_bits_synthetic_pointer (original_value,
531 TARGET_CHAR_BIT * embedded_offset,
532 TARGET_CHAR_BIT * TYPE_LENGTH (type));
533 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
534 || options->deref_ref);
535 const int type_is_defined = TYPE_CODE (elttype) != TYPE_CODE_UNDEF;
536 const gdb_byte *valaddr = value_contents_for_printing (original_value);
537
538 if (must_coerce_ref && type_is_defined)
539 {
540 deref_val = coerce_ref_if_computed (original_value);
541
542 if (deref_val != NULL)
543 {
544 /* More complicated computed references are not supported. */
545 gdb_assert (embedded_offset == 0);
546 }
547 else
548 deref_val = value_at (TYPE_TARGET_TYPE (type),
549 unpack_pointer (type, valaddr + embedded_offset));
550 }
551 /* Else, original_value isn't a synthetic reference or we don't have to print
552 the reference's contents.
553
554 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
555 cause original_value to be a not_lval instead of an lval_computed,
556 which will make value_bits_synthetic_pointer return false.
557 This happens because if options->objectprint is true, c_value_print will
558 overwrite original_value's contents with the result of coercing
559 the reference through value_addr, and then set its type back to
560 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
561 we can simply treat it as non-synthetic and move on. */
562
563 if (options->addressprint)
564 {
565 const gdb_byte *address = (value_is_synthetic && type_is_defined
566 ? get_value_addr_contents (deref_val)
567 : valaddr);
568
569 print_ref_address (type, address, embedded_offset, stream);
570
571 if (options->deref_ref)
572 fputs_filtered (": ", stream);
573 }
574
575 if (options->deref_ref)
576 {
577 if (type_is_defined)
578 common_val_print (deref_val, stream, recurse, options,
579 current_language);
580 else
581 fputs_filtered ("???", stream);
582 }
583 }
584
585 /* Helper function for generic_val_print_enum.
586 This is also used to print enums in TYPE_CODE_FLAGS values. */
587
588 static void
589 generic_val_print_enum_1 (struct type *type, LONGEST val,
590 struct ui_file *stream)
591 {
592 unsigned int i;
593 unsigned int len;
594
595 len = TYPE_NFIELDS (type);
596 for (i = 0; i < len; i++)
597 {
598 QUIT;
599 if (val == TYPE_FIELD_ENUMVAL (type, i))
600 {
601 break;
602 }
603 }
604 if (i < len)
605 {
606 fputs_styled (TYPE_FIELD_NAME (type, i), variable_name_style.style (),
607 stream);
608 }
609 else if (TYPE_FLAG_ENUM (type))
610 {
611 int first = 1;
612
613 /* We have a "flag" enum, so we try to decompose it into pieces as
614 appropriate. The enum may have multiple enumerators representing
615 the same bit, in which case we choose to only print the first one
616 we find. */
617 for (i = 0; i < len; ++i)
618 {
619 QUIT;
620
621 ULONGEST enumval = TYPE_FIELD_ENUMVAL (type, i);
622 int nbits = count_one_bits_ll (enumval);
623
624 gdb_assert (nbits == 0 || nbits == 1);
625
626 if ((val & enumval) != 0)
627 {
628 if (first)
629 {
630 fputs_filtered ("(", stream);
631 first = 0;
632 }
633 else
634 fputs_filtered (" | ", stream);
635
636 val &= ~TYPE_FIELD_ENUMVAL (type, i);
637 fputs_styled (TYPE_FIELD_NAME (type, i),
638 variable_name_style.style (), stream);
639 }
640 }
641
642 if (val != 0)
643 {
644 /* There are leftover bits, print them. */
645 if (first)
646 fputs_filtered ("(", stream);
647 else
648 fputs_filtered (" | ", stream);
649
650 fputs_filtered ("unknown: 0x", stream);
651 print_longest (stream, 'x', 0, val);
652 fputs_filtered (")", stream);
653 }
654 else if (first)
655 {
656 /* Nothing has been printed and the value is 0, the enum value must
657 have been 0. */
658 fputs_filtered ("0", stream);
659 }
660 else
661 {
662 /* Something has been printed, close the parenthesis. */
663 fputs_filtered (")", stream);
664 }
665 }
666 else
667 print_longest (stream, 'd', 0, val);
668 }
669
670 /* generic_val_print helper for TYPE_CODE_ENUM. */
671
672 static void
673 generic_val_print_enum (struct type *type,
674 int embedded_offset, struct ui_file *stream,
675 struct value *original_value,
676 const struct value_print_options *options)
677 {
678 LONGEST val;
679 struct gdbarch *gdbarch = get_type_arch (type);
680 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
681
682 gdb_assert (!options->format);
683
684 const gdb_byte *valaddr = value_contents_for_printing (original_value);
685
686 val = unpack_long (type, valaddr + embedded_offset * unit_size);
687
688 generic_val_print_enum_1 (type, val, stream);
689 }
690
691 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
692
693 static void
694 generic_val_print_func (struct type *type,
695 int embedded_offset, CORE_ADDR address,
696 struct ui_file *stream,
697 struct value *original_value,
698 const struct value_print_options *options)
699 {
700 struct gdbarch *gdbarch = get_type_arch (type);
701
702 gdb_assert (!options->format);
703
704 /* FIXME, we should consider, at least for ANSI C language,
705 eliminating the distinction made between FUNCs and POINTERs to
706 FUNCs. */
707 fprintf_filtered (stream, "{");
708 type_print (type, "", stream, -1);
709 fprintf_filtered (stream, "} ");
710 /* Try to print what function it points to, and its address. */
711 print_address_demangle (options, gdbarch, address, stream, demangle);
712 }
713
714 /* generic_value_print helper for TYPE_CODE_BOOL. */
715
716 static void
717 generic_value_print_bool
718 (struct value *value, struct ui_file *stream,
719 const struct value_print_options *options,
720 const struct generic_val_print_decorations *decorations)
721 {
722 if (options->format || options->output_format)
723 {
724 struct value_print_options opts = *options;
725 opts.format = (options->format ? options->format
726 : options->output_format);
727 value_print_scalar_formatted (value, &opts, 0, stream);
728 }
729 else
730 {
731 const gdb_byte *valaddr = value_contents_for_printing (value);
732 struct type *type = check_typedef (value_type (value));
733 LONGEST val = unpack_long (type, valaddr);
734 if (val == 0)
735 fputs_filtered (decorations->false_name, stream);
736 else if (val == 1)
737 fputs_filtered (decorations->true_name, stream);
738 else
739 print_longest (stream, 'd', 0, val);
740 }
741 }
742
743 /* generic_value_print helper for TYPE_CODE_INT. */
744
745 static void
746 generic_value_print_int (struct value *val, struct ui_file *stream,
747 const struct value_print_options *options)
748 {
749 struct value_print_options opts = *options;
750
751 opts.format = (options->format ? options->format
752 : options->output_format);
753 value_print_scalar_formatted (val, &opts, 0, stream);
754 }
755
756 /* generic_value_print helper for TYPE_CODE_CHAR. */
757
758 static void
759 generic_value_print_char (struct value *value, struct ui_file *stream,
760 const struct value_print_options *options)
761 {
762 if (options->format || options->output_format)
763 {
764 struct value_print_options opts = *options;
765
766 opts.format = (options->format ? options->format
767 : options->output_format);
768 value_print_scalar_formatted (value, &opts, 0, stream);
769 }
770 else
771 {
772 struct type *unresolved_type = value_type (value);
773 struct type *type = check_typedef (unresolved_type);
774 const gdb_byte *valaddr = value_contents_for_printing (value);
775
776 LONGEST val = unpack_long (type, valaddr);
777 if (TYPE_UNSIGNED (type))
778 fprintf_filtered (stream, "%u", (unsigned int) val);
779 else
780 fprintf_filtered (stream, "%d", (int) val);
781 fputs_filtered (" ", stream);
782 LA_PRINT_CHAR (val, unresolved_type, stream);
783 }
784 }
785
786 /* generic_val_print helper for TYPE_CODE_FLT and TYPE_CODE_DECFLOAT. */
787
788 static void
789 generic_val_print_float (struct type *type,
790 int embedded_offset, struct ui_file *stream,
791 struct value *original_value,
792 const struct value_print_options *options)
793 {
794 struct gdbarch *gdbarch = get_type_arch (type);
795 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
796
797 gdb_assert (!options->format);
798
799 const gdb_byte *valaddr = value_contents_for_printing (original_value);
800
801 print_floating (valaddr + embedded_offset * unit_size, type, stream);
802 }
803
804 /* generic_value_print helper for TYPE_CODE_COMPLEX. */
805
806 static void
807 generic_value_print_complex (struct value *val, struct ui_file *stream,
808 const struct value_print_options *options,
809 const struct generic_val_print_decorations
810 *decorations)
811 {
812 fprintf_filtered (stream, "%s", decorations->complex_prefix);
813
814 struct type *type = check_typedef (value_type (val));
815 struct value *real_part
816 = value_from_component (val, TYPE_TARGET_TYPE (type), 0);
817 value_print_scalar_formatted (real_part, options, 0, stream);
818 fprintf_filtered (stream, "%s", decorations->complex_infix);
819
820 struct value *imag_part
821 = value_from_component (val, TYPE_TARGET_TYPE (type),
822 TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
823
824 value_print_scalar_formatted (imag_part, options, 0, stream);
825 fprintf_filtered (stream, "%s", decorations->complex_suffix);
826 }
827
828 /* See valprint.h. */
829
830 void
831 generic_value_print (struct value *val, struct ui_file *stream, int recurse,
832 const struct value_print_options *options,
833 const struct generic_val_print_decorations *decorations)
834 {
835 struct type *type = value_type (val);
836
837 type = check_typedef (type);
838 switch (TYPE_CODE (type))
839 {
840 case TYPE_CODE_ARRAY:
841 generic_val_print_array (val, stream, recurse, options, decorations);
842 break;
843
844 case TYPE_CODE_MEMBERPTR:
845 value_print_scalar_formatted (val, options, 0, stream);
846 break;
847
848 case TYPE_CODE_PTR:
849 generic_value_print_ptr (val, stream, options);
850 break;
851
852 case TYPE_CODE_REF:
853 case TYPE_CODE_RVALUE_REF:
854 generic_val_print_ref (type, 0, stream, recurse,
855 val, options);
856 break;
857
858 case TYPE_CODE_ENUM:
859 if (options->format)
860 value_print_scalar_formatted (val, options, 0, stream);
861 else
862 generic_val_print_enum (type, 0, stream, val, options);
863 break;
864
865 case TYPE_CODE_FLAGS:
866 if (options->format)
867 value_print_scalar_formatted (val, options, 0, stream);
868 else
869 val_print_type_code_flags (type, val, 0, stream);
870 break;
871
872 case TYPE_CODE_FUNC:
873 case TYPE_CODE_METHOD:
874 if (options->format)
875 value_print_scalar_formatted (val, options, 0, stream);
876 else
877 generic_val_print_func (type, 0, value_address (val), stream,
878 val, options);
879 break;
880
881 case TYPE_CODE_BOOL:
882 generic_value_print_bool (val, stream, options, decorations);
883 break;
884
885 case TYPE_CODE_RANGE:
886 /* FIXME: create_static_range_type does not set the unsigned bit in a
887 range type (I think it probably should copy it from the
888 target type), so we won't print values which are too large to
889 fit in a signed integer correctly. */
890 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
891 print with the target type, though, because the size of our
892 type and the target type might differ). */
893
894 /* FALLTHROUGH */
895
896 case TYPE_CODE_INT:
897 generic_value_print_int (val, stream, options);
898 break;
899
900 case TYPE_CODE_CHAR:
901 generic_value_print_char (val, stream, options);
902 break;
903
904 case TYPE_CODE_FLT:
905 case TYPE_CODE_DECFLOAT:
906 if (options->format)
907 value_print_scalar_formatted (val, options, 0, stream);
908 else
909 generic_val_print_float (type, 0, stream,
910 val, options);
911 break;
912
913 case TYPE_CODE_VOID:
914 fputs_filtered (decorations->void_name, stream);
915 break;
916
917 case TYPE_CODE_ERROR:
918 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
919 break;
920
921 case TYPE_CODE_UNDEF:
922 /* This happens (without TYPE_STUB set) on systems which don't use
923 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
924 and no complete type for struct foo in that file. */
925 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
926 break;
927
928 case TYPE_CODE_COMPLEX:
929 generic_value_print_complex (val, stream, options, decorations);
930 break;
931
932 case TYPE_CODE_UNION:
933 case TYPE_CODE_STRUCT:
934 case TYPE_CODE_METHODPTR:
935 default:
936 error (_("Unhandled type code %d in symbol table."),
937 TYPE_CODE (type));
938 }
939 }
940
941 /* Helper function for val_print and common_val_print that does the
942 work. Arguments are as to val_print, but FULL_VALUE, if given, is
943 the value to be printed. */
944
945 static void
946 do_val_print (struct value *value, struct ui_file *stream, int recurse,
947 const struct value_print_options *options,
948 const struct language_defn *language)
949 {
950 int ret = 0;
951 struct value_print_options local_opts = *options;
952 struct type *type = value_type (value);
953 struct type *real_type = check_typedef (type);
954
955 if (local_opts.prettyformat == Val_prettyformat_default)
956 local_opts.prettyformat = (local_opts.prettyformat_structs
957 ? Val_prettyformat : Val_no_prettyformat);
958
959 QUIT;
960
961 /* Ensure that the type is complete and not just a stub. If the type is
962 only a stub and we can't find and substitute its complete type, then
963 print appropriate string and return. */
964
965 if (TYPE_STUB (real_type))
966 {
967 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
968 return;
969 }
970
971 if (!valprint_check_validity (stream, real_type, 0, value))
972 return;
973
974 if (!options->raw)
975 {
976 ret = apply_ext_lang_val_pretty_printer (value, stream, recurse, options,
977 language);
978 if (ret)
979 return;
980 }
981
982 /* Handle summary mode. If the value is a scalar, print it;
983 otherwise, print an ellipsis. */
984 if (options->summary && !val_print_scalar_type_p (type))
985 {
986 fprintf_filtered (stream, "...");
987 return;
988 }
989
990 /* If this value is too deep then don't print it. */
991 if (!val_print_scalar_or_string_type_p (type, language)
992 && val_print_check_max_depth (stream, recurse, options, language))
993 return;
994
995 try
996 {
997 language->la_value_print_inner (value, stream, recurse, &local_opts);
998 }
999 catch (const gdb_exception_error &except)
1000 {
1001 fprintf_styled (stream, metadata_style.style (),
1002 _("<error reading variable>"));
1003 }
1004 }
1005
1006 /* See valprint.h. */
1007
1008 bool
1009 val_print_check_max_depth (struct ui_file *stream, int recurse,
1010 const struct value_print_options *options,
1011 const struct language_defn *language)
1012 {
1013 if (options->max_depth > -1 && recurse >= options->max_depth)
1014 {
1015 gdb_assert (language->la_struct_too_deep_ellipsis != NULL);
1016 fputs_filtered (language->la_struct_too_deep_ellipsis, stream);
1017 return true;
1018 }
1019
1020 return false;
1021 }
1022
1023 /* Check whether the value VAL is printable. Return 1 if it is;
1024 return 0 and print an appropriate error message to STREAM according to
1025 OPTIONS if it is not. */
1026
1027 static int
1028 value_check_printable (struct value *val, struct ui_file *stream,
1029 const struct value_print_options *options)
1030 {
1031 if (val == 0)
1032 {
1033 fprintf_styled (stream, metadata_style.style (),
1034 _("<address of value unknown>"));
1035 return 0;
1036 }
1037
1038 if (value_entirely_optimized_out (val))
1039 {
1040 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1041 fprintf_filtered (stream, "...");
1042 else
1043 val_print_optimized_out (val, stream);
1044 return 0;
1045 }
1046
1047 if (value_entirely_unavailable (val))
1048 {
1049 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1050 fprintf_filtered (stream, "...");
1051 else
1052 val_print_unavailable (stream);
1053 return 0;
1054 }
1055
1056 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1057 {
1058 fprintf_styled (stream, metadata_style.style (),
1059 _("<internal function %s>"),
1060 value_internal_function_name (val));
1061 return 0;
1062 }
1063
1064 if (type_not_associated (value_type (val)))
1065 {
1066 val_print_not_associated (stream);
1067 return 0;
1068 }
1069
1070 if (type_not_allocated (value_type (val)))
1071 {
1072 val_print_not_allocated (stream);
1073 return 0;
1074 }
1075
1076 return 1;
1077 }
1078
1079 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1080 to OPTIONS.
1081
1082 This is a preferable interface to val_print, above, because it uses
1083 GDB's value mechanism. */
1084
1085 void
1086 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1087 const struct value_print_options *options,
1088 const struct language_defn *language)
1089 {
1090 if (language->la_language == language_ada)
1091 /* The value might have a dynamic type, which would cause trouble
1092 below when trying to extract the value contents (since the value
1093 size is determined from the type size which is unknown). So
1094 get a fixed representation of our value. */
1095 val = ada_to_fixed_value (val);
1096
1097 if (value_lazy (val))
1098 value_fetch_lazy (val);
1099
1100 do_val_print (val, stream, recurse, options, language);
1101 }
1102
1103 /* See valprint.h. */
1104
1105 void
1106 common_val_print_checked (struct value *val, struct ui_file *stream,
1107 int recurse,
1108 const struct value_print_options *options,
1109 const struct language_defn *language)
1110 {
1111 if (!value_check_printable (val, stream, options))
1112 return;
1113 common_val_print (val, stream, recurse, options, language);
1114 }
1115
1116 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1117 is printed using the current_language syntax. */
1118
1119 void
1120 value_print (struct value *val, struct ui_file *stream,
1121 const struct value_print_options *options)
1122 {
1123 scoped_value_mark free_values;
1124
1125 if (!value_check_printable (val, stream, options))
1126 return;
1127
1128 if (!options->raw)
1129 {
1130 int r
1131 = apply_ext_lang_val_pretty_printer (val, stream, 0, options,
1132 current_language);
1133
1134 if (r)
1135 return;
1136 }
1137
1138 LA_VALUE_PRINT (val, stream, options);
1139 }
1140
1141 static void
1142 val_print_type_code_flags (struct type *type, struct value *original_value,
1143 int embedded_offset, struct ui_file *stream)
1144 {
1145 const gdb_byte *valaddr = (value_contents_for_printing (original_value)
1146 + embedded_offset);
1147 ULONGEST val = unpack_long (type, valaddr);
1148 int field, nfields = TYPE_NFIELDS (type);
1149 struct gdbarch *gdbarch = get_type_arch (type);
1150 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1151
1152 fputs_filtered ("[", stream);
1153 for (field = 0; field < nfields; field++)
1154 {
1155 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1156 {
1157 struct type *field_type = TYPE_FIELD_TYPE (type, field);
1158
1159 if (field_type == bool_type
1160 /* We require boolean types here to be one bit wide. This is a
1161 problematic place to notify the user of an internal error
1162 though. Instead just fall through and print the field as an
1163 int. */
1164 && TYPE_FIELD_BITSIZE (type, field) == 1)
1165 {
1166 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1167 fprintf_filtered
1168 (stream, " %ps",
1169 styled_string (variable_name_style.style (),
1170 TYPE_FIELD_NAME (type, field)));
1171 }
1172 else
1173 {
1174 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1175 ULONGEST field_val
1176 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1177
1178 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1179 field_val &= ((ULONGEST) 1 << field_len) - 1;
1180 fprintf_filtered (stream, " %ps=",
1181 styled_string (variable_name_style.style (),
1182 TYPE_FIELD_NAME (type, field)));
1183 if (TYPE_CODE (field_type) == TYPE_CODE_ENUM)
1184 generic_val_print_enum_1 (field_type, field_val, stream);
1185 else
1186 print_longest (stream, 'd', 0, field_val);
1187 }
1188 }
1189 }
1190 fputs_filtered (" ]", stream);
1191 }
1192
1193 /* See valprint.h. */
1194
1195 void
1196 value_print_scalar_formatted (struct value *val,
1197 const struct value_print_options *options,
1198 int size,
1199 struct ui_file *stream)
1200 {
1201 struct type *type = check_typedef (value_type (val));
1202
1203 gdb_assert (val != NULL);
1204
1205 /* If we get here with a string format, try again without it. Go
1206 all the way back to the language printers, which may call us
1207 again. */
1208 if (options->format == 's')
1209 {
1210 struct value_print_options opts = *options;
1211 opts.format = 0;
1212 opts.deref_ref = 0;
1213 common_val_print (val, stream, 0, &opts, current_language);
1214 return;
1215 }
1216
1217 /* value_contents_for_printing fetches all VAL's contents. They are
1218 needed to check whether VAL is optimized-out or unavailable
1219 below. */
1220 const gdb_byte *valaddr = value_contents_for_printing (val);
1221
1222 /* A scalar object that does not have all bits available can't be
1223 printed, because all bits contribute to its representation. */
1224 if (value_bits_any_optimized_out (val, 0,
1225 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1226 val_print_optimized_out (val, stream);
1227 else if (!value_bytes_available (val, 0, TYPE_LENGTH (type)))
1228 val_print_unavailable (stream);
1229 else
1230 print_scalar_formatted (valaddr, type, options, size, stream);
1231 }
1232
1233 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1234 The raison d'etre of this function is to consolidate printing of
1235 LONG_LONG's into this one function. The format chars b,h,w,g are
1236 from print_scalar_formatted(). Numbers are printed using C
1237 format.
1238
1239 USE_C_FORMAT means to use C format in all cases. Without it,
1240 'o' and 'x' format do not include the standard C radix prefix
1241 (leading 0 or 0x).
1242
1243 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1244 and was intended to request formatting according to the current
1245 language and would be used for most integers that GDB prints. The
1246 exceptional cases were things like protocols where the format of
1247 the integer is a protocol thing, not a user-visible thing). The
1248 parameter remains to preserve the information of what things might
1249 be printed with language-specific format, should we ever resurrect
1250 that capability. */
1251
1252 void
1253 print_longest (struct ui_file *stream, int format, int use_c_format,
1254 LONGEST val_long)
1255 {
1256 const char *val;
1257
1258 switch (format)
1259 {
1260 case 'd':
1261 val = int_string (val_long, 10, 1, 0, 1); break;
1262 case 'u':
1263 val = int_string (val_long, 10, 0, 0, 1); break;
1264 case 'x':
1265 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1266 case 'b':
1267 val = int_string (val_long, 16, 0, 2, 1); break;
1268 case 'h':
1269 val = int_string (val_long, 16, 0, 4, 1); break;
1270 case 'w':
1271 val = int_string (val_long, 16, 0, 8, 1); break;
1272 case 'g':
1273 val = int_string (val_long, 16, 0, 16, 1); break;
1274 break;
1275 case 'o':
1276 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1277 default:
1278 internal_error (__FILE__, __LINE__,
1279 _("failed internal consistency check"));
1280 }
1281 fputs_filtered (val, stream);
1282 }
1283
1284 /* This used to be a macro, but I don't think it is called often enough
1285 to merit such treatment. */
1286 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1287 arguments to a function, number in a value history, register number, etc.)
1288 where the value must not be larger than can fit in an int. */
1289
1290 int
1291 longest_to_int (LONGEST arg)
1292 {
1293 /* Let the compiler do the work. */
1294 int rtnval = (int) arg;
1295
1296 /* Check for overflows or underflows. */
1297 if (sizeof (LONGEST) > sizeof (int))
1298 {
1299 if (rtnval != arg)
1300 {
1301 error (_("Value out of range."));
1302 }
1303 }
1304 return (rtnval);
1305 }
1306
1307 /* Print a floating point value of floating-point type TYPE,
1308 pointed to in GDB by VALADDR, on STREAM. */
1309
1310 void
1311 print_floating (const gdb_byte *valaddr, struct type *type,
1312 struct ui_file *stream)
1313 {
1314 std::string str = target_float_to_string (valaddr, type);
1315 fputs_filtered (str.c_str (), stream);
1316 }
1317
1318 void
1319 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1320 unsigned len, enum bfd_endian byte_order, bool zero_pad)
1321 {
1322 const gdb_byte *p;
1323 unsigned int i;
1324 int b;
1325 bool seen_a_one = false;
1326
1327 /* Declared "int" so it will be signed.
1328 This ensures that right shift will shift in zeros. */
1329
1330 const int mask = 0x080;
1331
1332 if (byte_order == BFD_ENDIAN_BIG)
1333 {
1334 for (p = valaddr;
1335 p < valaddr + len;
1336 p++)
1337 {
1338 /* Every byte has 8 binary characters; peel off
1339 and print from the MSB end. */
1340
1341 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1342 {
1343 if (*p & (mask >> i))
1344 b = '1';
1345 else
1346 b = '0';
1347
1348 if (zero_pad || seen_a_one || b == '1')
1349 fputc_filtered (b, stream);
1350 if (b == '1')
1351 seen_a_one = true;
1352 }
1353 }
1354 }
1355 else
1356 {
1357 for (p = valaddr + len - 1;
1358 p >= valaddr;
1359 p--)
1360 {
1361 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1362 {
1363 if (*p & (mask >> i))
1364 b = '1';
1365 else
1366 b = '0';
1367
1368 if (zero_pad || seen_a_one || b == '1')
1369 fputc_filtered (b, stream);
1370 if (b == '1')
1371 seen_a_one = true;
1372 }
1373 }
1374 }
1375
1376 /* When not zero-padding, ensure that something is printed when the
1377 input is 0. */
1378 if (!zero_pad && !seen_a_one)
1379 fputc_filtered ('0', stream);
1380 }
1381
1382 /* A helper for print_octal_chars that emits a single octal digit,
1383 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1384
1385 static void
1386 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1387 {
1388 if (*seen_a_one || digit != 0)
1389 fprintf_filtered (stream, "%o", digit);
1390 if (digit != 0)
1391 *seen_a_one = true;
1392 }
1393
1394 /* VALADDR points to an integer of LEN bytes.
1395 Print it in octal on stream or format it in buf. */
1396
1397 void
1398 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1399 unsigned len, enum bfd_endian byte_order)
1400 {
1401 const gdb_byte *p;
1402 unsigned char octa1, octa2, octa3, carry;
1403 int cycle;
1404
1405 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1406 * the extra bits, which cycle every three bytes:
1407 *
1408 * Byte side: 0 1 2 3
1409 * | | | |
1410 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1411 *
1412 * Octal side: 0 1 carry 3 4 carry ...
1413 *
1414 * Cycle number: 0 1 2
1415 *
1416 * But of course we are printing from the high side, so we have to
1417 * figure out where in the cycle we are so that we end up with no
1418 * left over bits at the end.
1419 */
1420 #define BITS_IN_OCTAL 3
1421 #define HIGH_ZERO 0340
1422 #define LOW_ZERO 0034
1423 #define CARRY_ZERO 0003
1424 static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
1425 "cycle zero constants are wrong");
1426 #define HIGH_ONE 0200
1427 #define MID_ONE 0160
1428 #define LOW_ONE 0016
1429 #define CARRY_ONE 0001
1430 static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
1431 "cycle one constants are wrong");
1432 #define HIGH_TWO 0300
1433 #define MID_TWO 0070
1434 #define LOW_TWO 0007
1435 static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
1436 "cycle two constants are wrong");
1437
1438 /* For 32 we start in cycle 2, with two bits and one bit carry;
1439 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1440
1441 cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
1442 carry = 0;
1443
1444 fputs_filtered ("0", stream);
1445 bool seen_a_one = false;
1446 if (byte_order == BFD_ENDIAN_BIG)
1447 {
1448 for (p = valaddr;
1449 p < valaddr + len;
1450 p++)
1451 {
1452 switch (cycle)
1453 {
1454 case 0:
1455 /* No carry in, carry out two bits. */
1456
1457 octa1 = (HIGH_ZERO & *p) >> 5;
1458 octa2 = (LOW_ZERO & *p) >> 2;
1459 carry = (CARRY_ZERO & *p);
1460 emit_octal_digit (stream, &seen_a_one, octa1);
1461 emit_octal_digit (stream, &seen_a_one, octa2);
1462 break;
1463
1464 case 1:
1465 /* Carry in two bits, carry out one bit. */
1466
1467 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1468 octa2 = (MID_ONE & *p) >> 4;
1469 octa3 = (LOW_ONE & *p) >> 1;
1470 carry = (CARRY_ONE & *p);
1471 emit_octal_digit (stream, &seen_a_one, octa1);
1472 emit_octal_digit (stream, &seen_a_one, octa2);
1473 emit_octal_digit (stream, &seen_a_one, octa3);
1474 break;
1475
1476 case 2:
1477 /* Carry in one bit, no carry out. */
1478
1479 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1480 octa2 = (MID_TWO & *p) >> 3;
1481 octa3 = (LOW_TWO & *p);
1482 carry = 0;
1483 emit_octal_digit (stream, &seen_a_one, octa1);
1484 emit_octal_digit (stream, &seen_a_one, octa2);
1485 emit_octal_digit (stream, &seen_a_one, octa3);
1486 break;
1487
1488 default:
1489 error (_("Internal error in octal conversion;"));
1490 }
1491
1492 cycle++;
1493 cycle = cycle % BITS_IN_OCTAL;
1494 }
1495 }
1496 else
1497 {
1498 for (p = valaddr + len - 1;
1499 p >= valaddr;
1500 p--)
1501 {
1502 switch (cycle)
1503 {
1504 case 0:
1505 /* Carry out, no carry in */
1506
1507 octa1 = (HIGH_ZERO & *p) >> 5;
1508 octa2 = (LOW_ZERO & *p) >> 2;
1509 carry = (CARRY_ZERO & *p);
1510 emit_octal_digit (stream, &seen_a_one, octa1);
1511 emit_octal_digit (stream, &seen_a_one, octa2);
1512 break;
1513
1514 case 1:
1515 /* Carry in, carry out */
1516
1517 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1518 octa2 = (MID_ONE & *p) >> 4;
1519 octa3 = (LOW_ONE & *p) >> 1;
1520 carry = (CARRY_ONE & *p);
1521 emit_octal_digit (stream, &seen_a_one, octa1);
1522 emit_octal_digit (stream, &seen_a_one, octa2);
1523 emit_octal_digit (stream, &seen_a_one, octa3);
1524 break;
1525
1526 case 2:
1527 /* Carry in, no carry out */
1528
1529 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1530 octa2 = (MID_TWO & *p) >> 3;
1531 octa3 = (LOW_TWO & *p);
1532 carry = 0;
1533 emit_octal_digit (stream, &seen_a_one, octa1);
1534 emit_octal_digit (stream, &seen_a_one, octa2);
1535 emit_octal_digit (stream, &seen_a_one, octa3);
1536 break;
1537
1538 default:
1539 error (_("Internal error in octal conversion;"));
1540 }
1541
1542 cycle++;
1543 cycle = cycle % BITS_IN_OCTAL;
1544 }
1545 }
1546
1547 }
1548
1549 /* Possibly negate the integer represented by BYTES. It contains LEN
1550 bytes in the specified byte order. If the integer is negative,
1551 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1552 nothing and return false. */
1553
1554 static bool
1555 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1556 enum bfd_endian byte_order,
1557 gdb::byte_vector *out_vec)
1558 {
1559 gdb_byte sign_byte;
1560 gdb_assert (len > 0);
1561 if (byte_order == BFD_ENDIAN_BIG)
1562 sign_byte = bytes[0];
1563 else
1564 sign_byte = bytes[len - 1];
1565 if ((sign_byte & 0x80) == 0)
1566 return false;
1567
1568 out_vec->resize (len);
1569
1570 /* Compute -x == 1 + ~x. */
1571 if (byte_order == BFD_ENDIAN_LITTLE)
1572 {
1573 unsigned carry = 1;
1574 for (unsigned i = 0; i < len; ++i)
1575 {
1576 unsigned tem = (0xff & ~bytes[i]) + carry;
1577 (*out_vec)[i] = tem & 0xff;
1578 carry = tem / 256;
1579 }
1580 }
1581 else
1582 {
1583 unsigned carry = 1;
1584 for (unsigned i = len; i > 0; --i)
1585 {
1586 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1587 (*out_vec)[i - 1] = tem & 0xff;
1588 carry = tem / 256;
1589 }
1590 }
1591
1592 return true;
1593 }
1594
1595 /* VALADDR points to an integer of LEN bytes.
1596 Print it in decimal on stream or format it in buf. */
1597
1598 void
1599 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1600 unsigned len, bool is_signed,
1601 enum bfd_endian byte_order)
1602 {
1603 #define TEN 10
1604 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1605 #define CARRY_LEFT( x ) ((x) % TEN)
1606 #define SHIFT( x ) ((x) << 4)
1607 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1608 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1609
1610 const gdb_byte *p;
1611 int carry;
1612 int decimal_len;
1613 int i, j, decimal_digits;
1614 int dummy;
1615 int flip;
1616
1617 gdb::byte_vector negated_bytes;
1618 if (is_signed
1619 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1620 {
1621 fputs_filtered ("-", stream);
1622 valaddr = negated_bytes.data ();
1623 }
1624
1625 /* Base-ten number is less than twice as many digits
1626 as the base 16 number, which is 2 digits per byte. */
1627
1628 decimal_len = len * 2 * 2;
1629 std::vector<unsigned char> digits (decimal_len, 0);
1630
1631 /* Ok, we have an unknown number of bytes of data to be printed in
1632 * decimal.
1633 *
1634 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1635 * decimalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1636 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1637 *
1638 * The trick is that "digits" holds a base-10 number, but sometimes
1639 * the individual digits are > 10.
1640 *
1641 * Outer loop is per nibble (hex digit) of input, from MSD end to
1642 * LSD end.
1643 */
1644 decimal_digits = 0; /* Number of decimal digits so far */
1645 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1646 flip = 0;
1647 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1648 {
1649 /*
1650 * Multiply current base-ten number by 16 in place.
1651 * Each digit was between 0 and 9, now is between
1652 * 0 and 144.
1653 */
1654 for (j = 0; j < decimal_digits; j++)
1655 {
1656 digits[j] = SHIFT (digits[j]);
1657 }
1658
1659 /* Take the next nibble off the input and add it to what
1660 * we've got in the LSB position. Bottom 'digit' is now
1661 * between 0 and 159.
1662 *
1663 * "flip" is used to run this loop twice for each byte.
1664 */
1665 if (flip == 0)
1666 {
1667 /* Take top nibble. */
1668
1669 digits[0] += HIGH_NIBBLE (*p);
1670 flip = 1;
1671 }
1672 else
1673 {
1674 /* Take low nibble and bump our pointer "p". */
1675
1676 digits[0] += LOW_NIBBLE (*p);
1677 if (byte_order == BFD_ENDIAN_BIG)
1678 p++;
1679 else
1680 p--;
1681 flip = 0;
1682 }
1683
1684 /* Re-decimalize. We have to do this often enough
1685 * that we don't overflow, but once per nibble is
1686 * overkill. Easier this way, though. Note that the
1687 * carry is often larger than 10 (e.g. max initial
1688 * carry out of lowest nibble is 15, could bubble all
1689 * the way up greater than 10). So we have to do
1690 * the carrying beyond the last current digit.
1691 */
1692 carry = 0;
1693 for (j = 0; j < decimal_len - 1; j++)
1694 {
1695 digits[j] += carry;
1696
1697 /* "/" won't handle an unsigned char with
1698 * a value that if signed would be negative.
1699 * So extend to longword int via "dummy".
1700 */
1701 dummy = digits[j];
1702 carry = CARRY_OUT (dummy);
1703 digits[j] = CARRY_LEFT (dummy);
1704
1705 if (j >= decimal_digits && carry == 0)
1706 {
1707 /*
1708 * All higher digits are 0 and we
1709 * no longer have a carry.
1710 *
1711 * Note: "j" is 0-based, "decimal_digits" is
1712 * 1-based.
1713 */
1714 decimal_digits = j + 1;
1715 break;
1716 }
1717 }
1718 }
1719
1720 /* Ok, now "digits" is the decimal representation, with
1721 the "decimal_digits" actual digits. Print! */
1722
1723 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
1724 ;
1725
1726 for (; i >= 0; i--)
1727 {
1728 fprintf_filtered (stream, "%1d", digits[i]);
1729 }
1730 }
1731
1732 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1733
1734 void
1735 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1736 unsigned len, enum bfd_endian byte_order,
1737 bool zero_pad)
1738 {
1739 const gdb_byte *p;
1740
1741 fputs_filtered ("0x", stream);
1742 if (byte_order == BFD_ENDIAN_BIG)
1743 {
1744 p = valaddr;
1745
1746 if (!zero_pad)
1747 {
1748 /* Strip leading 0 bytes, but be sure to leave at least a
1749 single byte at the end. */
1750 for (; p < valaddr + len - 1 && !*p; ++p)
1751 ;
1752 }
1753
1754 const gdb_byte *first = p;
1755 for (;
1756 p < valaddr + len;
1757 p++)
1758 {
1759 /* When not zero-padding, use a different format for the
1760 very first byte printed. */
1761 if (!zero_pad && p == first)
1762 fprintf_filtered (stream, "%x", *p);
1763 else
1764 fprintf_filtered (stream, "%02x", *p);
1765 }
1766 }
1767 else
1768 {
1769 p = valaddr + len - 1;
1770
1771 if (!zero_pad)
1772 {
1773 /* Strip leading 0 bytes, but be sure to leave at least a
1774 single byte at the end. */
1775 for (; p >= valaddr + 1 && !*p; --p)
1776 ;
1777 }
1778
1779 const gdb_byte *first = p;
1780 for (;
1781 p >= valaddr;
1782 p--)
1783 {
1784 /* When not zero-padding, use a different format for the
1785 very first byte printed. */
1786 if (!zero_pad && p == first)
1787 fprintf_filtered (stream, "%x", *p);
1788 else
1789 fprintf_filtered (stream, "%02x", *p);
1790 }
1791 }
1792 }
1793
1794 /* VALADDR points to a char integer of LEN bytes.
1795 Print it out in appropriate language form on stream.
1796 Omit any leading zero chars. */
1797
1798 void
1799 print_char_chars (struct ui_file *stream, struct type *type,
1800 const gdb_byte *valaddr,
1801 unsigned len, enum bfd_endian byte_order)
1802 {
1803 const gdb_byte *p;
1804
1805 if (byte_order == BFD_ENDIAN_BIG)
1806 {
1807 p = valaddr;
1808 while (p < valaddr + len - 1 && *p == 0)
1809 ++p;
1810
1811 while (p < valaddr + len)
1812 {
1813 LA_EMIT_CHAR (*p, type, stream, '\'');
1814 ++p;
1815 }
1816 }
1817 else
1818 {
1819 p = valaddr + len - 1;
1820 while (p > valaddr && *p == 0)
1821 --p;
1822
1823 while (p >= valaddr)
1824 {
1825 LA_EMIT_CHAR (*p, type, stream, '\'');
1826 --p;
1827 }
1828 }
1829 }
1830
1831 /* Print function pointer with inferior address ADDRESS onto stdio
1832 stream STREAM. */
1833
1834 void
1835 print_function_pointer_address (const struct value_print_options *options,
1836 struct gdbarch *gdbarch,
1837 CORE_ADDR address,
1838 struct ui_file *stream)
1839 {
1840 CORE_ADDR func_addr
1841 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1842 current_top_target ());
1843
1844 /* If the function pointer is represented by a description, print
1845 the address of the description. */
1846 if (options->addressprint && func_addr != address)
1847 {
1848 fputs_filtered ("@", stream);
1849 fputs_filtered (paddress (gdbarch, address), stream);
1850 fputs_filtered (": ", stream);
1851 }
1852 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1853 }
1854
1855
1856 /* Print on STREAM using the given OPTIONS the index for the element
1857 at INDEX of an array whose index type is INDEX_TYPE. */
1858
1859 void
1860 maybe_print_array_index (struct type *index_type, LONGEST index,
1861 struct ui_file *stream,
1862 const struct value_print_options *options)
1863 {
1864 struct value *index_value;
1865
1866 if (!options->print_array_indexes)
1867 return;
1868
1869 index_value = value_from_longest (index_type, index);
1870
1871 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1872 }
1873
1874 /* See valprint.h. */
1875
1876 void
1877 value_print_array_elements (struct value *val, struct ui_file *stream,
1878 int recurse,
1879 const struct value_print_options *options,
1880 unsigned int i)
1881 {
1882 unsigned int things_printed = 0;
1883 unsigned len;
1884 struct type *elttype, *index_type, *base_index_type;
1885 unsigned eltlen;
1886 /* Position of the array element we are examining to see
1887 whether it is repeated. */
1888 unsigned int rep1;
1889 /* Number of repetitions we have detected so far. */
1890 unsigned int reps;
1891 LONGEST low_bound, high_bound;
1892 LONGEST low_pos, high_pos;
1893
1894 struct type *type = check_typedef (value_type (val));
1895
1896 elttype = TYPE_TARGET_TYPE (type);
1897 eltlen = type_length_units (check_typedef (elttype));
1898 index_type = TYPE_INDEX_TYPE (type);
1899
1900 if (get_array_bounds (type, &low_bound, &high_bound))
1901 {
1902 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
1903 base_index_type = TYPE_TARGET_TYPE (index_type);
1904 else
1905 base_index_type = index_type;
1906
1907 /* Non-contiguous enumerations types can by used as index types
1908 in some languages (e.g. Ada). In this case, the array length
1909 shall be computed from the positions of the first and last
1910 literal in the enumeration type, and not from the values
1911 of these literals. */
1912 if (!discrete_position (base_index_type, low_bound, &low_pos)
1913 || !discrete_position (base_index_type, high_bound, &high_pos))
1914 {
1915 warning (_("unable to get positions in array, use bounds instead"));
1916 low_pos = low_bound;
1917 high_pos = high_bound;
1918 }
1919
1920 /* The array length should normally be HIGH_POS - LOW_POS + 1.
1921 But we have to be a little extra careful, because some languages
1922 such as Ada allow LOW_POS to be greater than HIGH_POS for
1923 empty arrays. In that situation, the array length is just zero,
1924 not negative! */
1925 if (low_pos > high_pos)
1926 len = 0;
1927 else
1928 len = high_pos - low_pos + 1;
1929 }
1930 else
1931 {
1932 warning (_("unable to get bounds of array, assuming null array"));
1933 low_bound = 0;
1934 len = 0;
1935 }
1936
1937 annotate_array_section_begin (i, elttype);
1938
1939 for (; i < len && things_printed < options->print_max; i++)
1940 {
1941 scoped_value_mark free_values;
1942
1943 if (i != 0)
1944 {
1945 if (options->prettyformat_arrays)
1946 {
1947 fprintf_filtered (stream, ",\n");
1948 print_spaces_filtered (2 + 2 * recurse, stream);
1949 }
1950 else
1951 fprintf_filtered (stream, ", ");
1952 }
1953 wrap_here (n_spaces (2 + 2 * recurse));
1954 maybe_print_array_index (index_type, i + low_bound,
1955 stream, options);
1956
1957 rep1 = i + 1;
1958 reps = 1;
1959 /* Only check for reps if repeat_count_threshold is not set to
1960 UINT_MAX (unlimited). */
1961 if (options->repeat_count_threshold < UINT_MAX)
1962 {
1963 while (rep1 < len
1964 && value_contents_eq (val, i * eltlen,
1965 val, rep1 * eltlen,
1966 eltlen))
1967 {
1968 ++reps;
1969 ++rep1;
1970 }
1971 }
1972
1973 struct value *element = value_from_component (val, elttype, eltlen * i);
1974 common_val_print (element, stream, recurse + 1, options,
1975 current_language);
1976
1977 if (reps > options->repeat_count_threshold)
1978 {
1979 annotate_elt_rep (reps);
1980 fprintf_filtered (stream, " %p[<repeats %u times>%p]",
1981 metadata_style.style ().ptr (), reps, nullptr);
1982 annotate_elt_rep_end ();
1983
1984 i = rep1 - 1;
1985 things_printed += options->repeat_count_threshold;
1986 }
1987 else
1988 {
1989 annotate_elt ();
1990 things_printed++;
1991 }
1992 }
1993 annotate_array_section_end ();
1994 if (i < len)
1995 fprintf_filtered (stream, "...");
1996 }
1997
1998 /* Read LEN bytes of target memory at address MEMADDR, placing the
1999 results in GDB's memory at MYADDR. Returns a count of the bytes
2000 actually read, and optionally a target_xfer_status value in the
2001 location pointed to by ERRPTR if ERRPTR is non-null. */
2002
2003 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2004 function be eliminated. */
2005
2006 static int
2007 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2008 int len, int *errptr)
2009 {
2010 int nread; /* Number of bytes actually read. */
2011 int errcode; /* Error from last read. */
2012
2013 /* First try a complete read. */
2014 errcode = target_read_memory (memaddr, myaddr, len);
2015 if (errcode == 0)
2016 {
2017 /* Got it all. */
2018 nread = len;
2019 }
2020 else
2021 {
2022 /* Loop, reading one byte at a time until we get as much as we can. */
2023 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2024 {
2025 errcode = target_read_memory (memaddr++, myaddr++, 1);
2026 }
2027 /* If an error, the last read was unsuccessful, so adjust count. */
2028 if (errcode != 0)
2029 {
2030 nread--;
2031 }
2032 }
2033 if (errptr != NULL)
2034 {
2035 *errptr = errcode;
2036 }
2037 return (nread);
2038 }
2039
2040 /* Read a string from the inferior, at ADDR, with LEN characters of
2041 WIDTH bytes each. Fetch at most FETCHLIMIT characters. BUFFER
2042 will be set to a newly allocated buffer containing the string, and
2043 BYTES_READ will be set to the number of bytes read. Returns 0 on
2044 success, or a target_xfer_status on failure.
2045
2046 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2047 (including eventual NULs in the middle or end of the string).
2048
2049 If LEN is -1, stops at the first null character (not necessarily
2050 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2051 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2052 the string.
2053
2054 Unless an exception is thrown, BUFFER will always be allocated, even on
2055 failure. In this case, some characters might have been read before the
2056 failure happened. Check BYTES_READ to recognize this situation.
2057
2058 Note: There was a FIXME asking to make this code use target_read_string,
2059 but this function is more general (can read past null characters, up to
2060 given LEN). Besides, it is used much more often than target_read_string
2061 so it is more tested. Perhaps callers of target_read_string should use
2062 this function instead? */
2063
2064 int
2065 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2066 enum bfd_endian byte_order, gdb::unique_xmalloc_ptr<gdb_byte> *buffer,
2067 int *bytes_read)
2068 {
2069 int errcode; /* Errno returned from bad reads. */
2070 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2071 gdb_byte *bufptr; /* Pointer to next available byte in
2072 buffer. */
2073
2074 /* Loop until we either have all the characters, or we encounter
2075 some error, such as bumping into the end of the address space. */
2076
2077 buffer->reset (nullptr);
2078
2079 if (len > 0)
2080 {
2081 /* We want fetchlimit chars, so we might as well read them all in
2082 one operation. */
2083 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2084
2085 buffer->reset ((gdb_byte *) xmalloc (fetchlen * width));
2086 bufptr = buffer->get ();
2087
2088 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2089 / width;
2090 addr += nfetch * width;
2091 bufptr += nfetch * width;
2092 }
2093 else if (len == -1)
2094 {
2095 unsigned long bufsize = 0;
2096 unsigned int chunksize; /* Size of each fetch, in chars. */
2097 int found_nul; /* Non-zero if we found the nul char. */
2098 gdb_byte *limit; /* First location past end of fetch buffer. */
2099
2100 found_nul = 0;
2101 /* We are looking for a NUL terminator to end the fetching, so we
2102 might as well read in blocks that are large enough to be efficient,
2103 but not so large as to be slow if fetchlimit happens to be large.
2104 So we choose the minimum of 8 and fetchlimit. We used to use 200
2105 instead of 8 but 200 is way too big for remote debugging over a
2106 serial line. */
2107 chunksize = std::min (8u, fetchlimit);
2108
2109 do
2110 {
2111 QUIT;
2112 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2113
2114 if (*buffer == NULL)
2115 buffer->reset ((gdb_byte *) xmalloc (nfetch * width));
2116 else
2117 buffer->reset ((gdb_byte *) xrealloc (buffer->release (),
2118 (nfetch + bufsize) * width));
2119
2120 bufptr = buffer->get () + bufsize * width;
2121 bufsize += nfetch;
2122
2123 /* Read as much as we can. */
2124 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2125 / width;
2126
2127 /* Scan this chunk for the null character that terminates the string
2128 to print. If found, we don't need to fetch any more. Note
2129 that bufptr is explicitly left pointing at the next character
2130 after the null character, or at the next character after the end
2131 of the buffer. */
2132
2133 limit = bufptr + nfetch * width;
2134 while (bufptr < limit)
2135 {
2136 unsigned long c;
2137
2138 c = extract_unsigned_integer (bufptr, width, byte_order);
2139 addr += width;
2140 bufptr += width;
2141 if (c == 0)
2142 {
2143 /* We don't care about any error which happened after
2144 the NUL terminator. */
2145 errcode = 0;
2146 found_nul = 1;
2147 break;
2148 }
2149 }
2150 }
2151 while (errcode == 0 /* no error */
2152 && bufptr - buffer->get () < fetchlimit * width /* no overrun */
2153 && !found_nul); /* haven't found NUL yet */
2154 }
2155 else
2156 { /* Length of string is really 0! */
2157 /* We always allocate *buffer. */
2158 buffer->reset ((gdb_byte *) xmalloc (1));
2159 bufptr = buffer->get ();
2160 errcode = 0;
2161 }
2162
2163 /* bufptr and addr now point immediately beyond the last byte which we
2164 consider part of the string (including a '\0' which ends the string). */
2165 *bytes_read = bufptr - buffer->get ();
2166
2167 QUIT;
2168
2169 return errcode;
2170 }
2171
2172 /* Return true if print_wchar can display W without resorting to a
2173 numeric escape, false otherwise. */
2174
2175 static int
2176 wchar_printable (gdb_wchar_t w)
2177 {
2178 return (gdb_iswprint (w)
2179 || w == LCST ('\a') || w == LCST ('\b')
2180 || w == LCST ('\f') || w == LCST ('\n')
2181 || w == LCST ('\r') || w == LCST ('\t')
2182 || w == LCST ('\v'));
2183 }
2184
2185 /* A helper function that converts the contents of STRING to wide
2186 characters and then appends them to OUTPUT. */
2187
2188 static void
2189 append_string_as_wide (const char *string,
2190 struct obstack *output)
2191 {
2192 for (; *string; ++string)
2193 {
2194 gdb_wchar_t w = gdb_btowc (*string);
2195 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2196 }
2197 }
2198
2199 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2200 original (target) bytes representing the character, ORIG_LEN is the
2201 number of valid bytes. WIDTH is the number of bytes in a base
2202 characters of the type. OUTPUT is an obstack to which wide
2203 characters are emitted. QUOTER is a (narrow) character indicating
2204 the style of quotes surrounding the character to be printed.
2205 NEED_ESCAPE is an in/out flag which is used to track numeric
2206 escapes across calls. */
2207
2208 static void
2209 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2210 int orig_len, int width,
2211 enum bfd_endian byte_order,
2212 struct obstack *output,
2213 int quoter, int *need_escapep)
2214 {
2215 int need_escape = *need_escapep;
2216
2217 *need_escapep = 0;
2218
2219 /* iswprint implementation on Windows returns 1 for tab character.
2220 In order to avoid different printout on this host, we explicitly
2221 use wchar_printable function. */
2222 switch (w)
2223 {
2224 case LCST ('\a'):
2225 obstack_grow_wstr (output, LCST ("\\a"));
2226 break;
2227 case LCST ('\b'):
2228 obstack_grow_wstr (output, LCST ("\\b"));
2229 break;
2230 case LCST ('\f'):
2231 obstack_grow_wstr (output, LCST ("\\f"));
2232 break;
2233 case LCST ('\n'):
2234 obstack_grow_wstr (output, LCST ("\\n"));
2235 break;
2236 case LCST ('\r'):
2237 obstack_grow_wstr (output, LCST ("\\r"));
2238 break;
2239 case LCST ('\t'):
2240 obstack_grow_wstr (output, LCST ("\\t"));
2241 break;
2242 case LCST ('\v'):
2243 obstack_grow_wstr (output, LCST ("\\v"));
2244 break;
2245 default:
2246 {
2247 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2248 && w != LCST ('8')
2249 && w != LCST ('9'))))
2250 {
2251 gdb_wchar_t wchar = w;
2252
2253 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2254 obstack_grow_wstr (output, LCST ("\\"));
2255 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2256 }
2257 else
2258 {
2259 int i;
2260
2261 for (i = 0; i + width <= orig_len; i += width)
2262 {
2263 char octal[30];
2264 ULONGEST value;
2265
2266 value = extract_unsigned_integer (&orig[i], width,
2267 byte_order);
2268 /* If the value fits in 3 octal digits, print it that
2269 way. Otherwise, print it as a hex escape. */
2270 if (value <= 0777)
2271 xsnprintf (octal, sizeof (octal), "\\%.3o",
2272 (int) (value & 0777));
2273 else
2274 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2275 append_string_as_wide (octal, output);
2276 }
2277 /* If we somehow have extra bytes, print them now. */
2278 while (i < orig_len)
2279 {
2280 char octal[5];
2281
2282 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2283 append_string_as_wide (octal, output);
2284 ++i;
2285 }
2286
2287 *need_escapep = 1;
2288 }
2289 break;
2290 }
2291 }
2292 }
2293
2294 /* Print the character C on STREAM as part of the contents of a
2295 literal string whose delimiter is QUOTER. ENCODING names the
2296 encoding of C. */
2297
2298 void
2299 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2300 int quoter, const char *encoding)
2301 {
2302 enum bfd_endian byte_order
2303 = type_byte_order (type);
2304 gdb_byte *c_buf;
2305 int need_escape = 0;
2306
2307 c_buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2308 pack_long (c_buf, type, c);
2309
2310 wchar_iterator iter (c_buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2311
2312 /* This holds the printable form of the wchar_t data. */
2313 auto_obstack wchar_buf;
2314
2315 while (1)
2316 {
2317 int num_chars;
2318 gdb_wchar_t *chars;
2319 const gdb_byte *buf;
2320 size_t buflen;
2321 int print_escape = 1;
2322 enum wchar_iterate_result result;
2323
2324 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2325 if (num_chars < 0)
2326 break;
2327 if (num_chars > 0)
2328 {
2329 /* If all characters are printable, print them. Otherwise,
2330 we're going to have to print an escape sequence. We
2331 check all characters because we want to print the target
2332 bytes in the escape sequence, and we don't know character
2333 boundaries there. */
2334 int i;
2335
2336 print_escape = 0;
2337 for (i = 0; i < num_chars; ++i)
2338 if (!wchar_printable (chars[i]))
2339 {
2340 print_escape = 1;
2341 break;
2342 }
2343
2344 if (!print_escape)
2345 {
2346 for (i = 0; i < num_chars; ++i)
2347 print_wchar (chars[i], buf, buflen,
2348 TYPE_LENGTH (type), byte_order,
2349 &wchar_buf, quoter, &need_escape);
2350 }
2351 }
2352
2353 /* This handles the NUM_CHARS == 0 case as well. */
2354 if (print_escape)
2355 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2356 byte_order, &wchar_buf, quoter, &need_escape);
2357 }
2358
2359 /* The output in the host encoding. */
2360 auto_obstack output;
2361
2362 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2363 (gdb_byte *) obstack_base (&wchar_buf),
2364 obstack_object_size (&wchar_buf),
2365 sizeof (gdb_wchar_t), &output, translit_char);
2366 obstack_1grow (&output, '\0');
2367
2368 fputs_filtered ((const char *) obstack_base (&output), stream);
2369 }
2370
2371 /* Return the repeat count of the next character/byte in ITER,
2372 storing the result in VEC. */
2373
2374 static int
2375 count_next_character (wchar_iterator *iter,
2376 std::vector<converted_character> *vec)
2377 {
2378 struct converted_character *current;
2379
2380 if (vec->empty ())
2381 {
2382 struct converted_character tmp;
2383 gdb_wchar_t *chars;
2384
2385 tmp.num_chars
2386 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2387 if (tmp.num_chars > 0)
2388 {
2389 gdb_assert (tmp.num_chars < MAX_WCHARS);
2390 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2391 }
2392 vec->push_back (tmp);
2393 }
2394
2395 current = &vec->back ();
2396
2397 /* Count repeated characters or bytes. */
2398 current->repeat_count = 1;
2399 if (current->num_chars == -1)
2400 {
2401 /* EOF */
2402 return -1;
2403 }
2404 else
2405 {
2406 gdb_wchar_t *chars;
2407 struct converted_character d;
2408 int repeat;
2409
2410 d.repeat_count = 0;
2411
2412 while (1)
2413 {
2414 /* Get the next character. */
2415 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2416
2417 /* If a character was successfully converted, save the character
2418 into the converted character. */
2419 if (d.num_chars > 0)
2420 {
2421 gdb_assert (d.num_chars < MAX_WCHARS);
2422 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2423 }
2424
2425 /* Determine if the current character is the same as this
2426 new character. */
2427 if (d.num_chars == current->num_chars && d.result == current->result)
2428 {
2429 /* There are two cases to consider:
2430
2431 1) Equality of converted character (num_chars > 0)
2432 2) Equality of non-converted character (num_chars == 0) */
2433 if ((current->num_chars > 0
2434 && memcmp (current->chars, d.chars,
2435 WCHAR_BUFLEN (current->num_chars)) == 0)
2436 || (current->num_chars == 0
2437 && current->buflen == d.buflen
2438 && memcmp (current->buf, d.buf, current->buflen) == 0))
2439 ++current->repeat_count;
2440 else
2441 break;
2442 }
2443 else
2444 break;
2445 }
2446
2447 /* Push this next converted character onto the result vector. */
2448 repeat = current->repeat_count;
2449 vec->push_back (d);
2450 return repeat;
2451 }
2452 }
2453
2454 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2455 character to use with string output. WIDTH is the size of the output
2456 character type. BYTE_ORDER is the target byte order. OPTIONS
2457 is the user's print options. */
2458
2459 static void
2460 print_converted_chars_to_obstack (struct obstack *obstack,
2461 const std::vector<converted_character> &chars,
2462 int quote_char, int width,
2463 enum bfd_endian byte_order,
2464 const struct value_print_options *options)
2465 {
2466 unsigned int idx;
2467 const converted_character *elem;
2468 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2469 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2470 int need_escape = 0;
2471
2472 /* Set the start state. */
2473 idx = 0;
2474 last = state = START;
2475 elem = NULL;
2476
2477 while (1)
2478 {
2479 switch (state)
2480 {
2481 case START:
2482 /* Nothing to do. */
2483 break;
2484
2485 case SINGLE:
2486 {
2487 int j;
2488
2489 /* We are outputting a single character
2490 (< options->repeat_count_threshold). */
2491
2492 if (last != SINGLE)
2493 {
2494 /* We were outputting some other type of content, so we
2495 must output and a comma and a quote. */
2496 if (last != START)
2497 obstack_grow_wstr (obstack, LCST (", "));
2498 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2499 }
2500 /* Output the character. */
2501 for (j = 0; j < elem->repeat_count; ++j)
2502 {
2503 if (elem->result == wchar_iterate_ok)
2504 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2505 byte_order, obstack, quote_char, &need_escape);
2506 else
2507 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2508 byte_order, obstack, quote_char, &need_escape);
2509 }
2510 }
2511 break;
2512
2513 case REPEAT:
2514 {
2515 int j;
2516
2517 /* We are outputting a character with a repeat count
2518 greater than options->repeat_count_threshold. */
2519
2520 if (last == SINGLE)
2521 {
2522 /* We were outputting a single string. Terminate the
2523 string. */
2524 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2525 }
2526 if (last != START)
2527 obstack_grow_wstr (obstack, LCST (", "));
2528
2529 /* Output the character and repeat string. */
2530 obstack_grow_wstr (obstack, LCST ("'"));
2531 if (elem->result == wchar_iterate_ok)
2532 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2533 byte_order, obstack, quote_char, &need_escape);
2534 else
2535 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2536 byte_order, obstack, quote_char, &need_escape);
2537 obstack_grow_wstr (obstack, LCST ("'"));
2538 std::string s = string_printf (_(" <repeats %u times>"),
2539 elem->repeat_count);
2540 for (j = 0; s[j]; ++j)
2541 {
2542 gdb_wchar_t w = gdb_btowc (s[j]);
2543 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2544 }
2545 }
2546 break;
2547
2548 case INCOMPLETE:
2549 /* We are outputting an incomplete sequence. */
2550 if (last == SINGLE)
2551 {
2552 /* If we were outputting a string of SINGLE characters,
2553 terminate the quote. */
2554 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2555 }
2556 if (last != START)
2557 obstack_grow_wstr (obstack, LCST (", "));
2558
2559 /* Output the incomplete sequence string. */
2560 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2561 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2562 obstack, 0, &need_escape);
2563 obstack_grow_wstr (obstack, LCST (">"));
2564
2565 /* We do not attempt to output anything after this. */
2566 state = FINISH;
2567 break;
2568
2569 case FINISH:
2570 /* All done. If we were outputting a string of SINGLE
2571 characters, the string must be terminated. Otherwise,
2572 REPEAT and INCOMPLETE are always left properly terminated. */
2573 if (last == SINGLE)
2574 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2575
2576 return;
2577 }
2578
2579 /* Get the next element and state. */
2580 last = state;
2581 if (state != FINISH)
2582 {
2583 elem = &chars[idx++];
2584 switch (elem->result)
2585 {
2586 case wchar_iterate_ok:
2587 case wchar_iterate_invalid:
2588 if (elem->repeat_count > options->repeat_count_threshold)
2589 state = REPEAT;
2590 else
2591 state = SINGLE;
2592 break;
2593
2594 case wchar_iterate_incomplete:
2595 state = INCOMPLETE;
2596 break;
2597
2598 case wchar_iterate_eof:
2599 state = FINISH;
2600 break;
2601 }
2602 }
2603 }
2604 }
2605
2606 /* Print the character string STRING, printing at most LENGTH
2607 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2608 the type of each character. OPTIONS holds the printing options;
2609 printing stops early if the number hits print_max; repeat counts
2610 are printed as appropriate. Print ellipses at the end if we had to
2611 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2612 QUOTE_CHAR is the character to print at each end of the string. If
2613 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2614 omitted. */
2615
2616 void
2617 generic_printstr (struct ui_file *stream, struct type *type,
2618 const gdb_byte *string, unsigned int length,
2619 const char *encoding, int force_ellipses,
2620 int quote_char, int c_style_terminator,
2621 const struct value_print_options *options)
2622 {
2623 enum bfd_endian byte_order = type_byte_order (type);
2624 unsigned int i;
2625 int width = TYPE_LENGTH (type);
2626 int finished = 0;
2627 struct converted_character *last;
2628
2629 if (length == -1)
2630 {
2631 unsigned long current_char = 1;
2632
2633 for (i = 0; current_char; ++i)
2634 {
2635 QUIT;
2636 current_char = extract_unsigned_integer (string + i * width,
2637 width, byte_order);
2638 }
2639 length = i;
2640 }
2641
2642 /* If the string was not truncated due to `set print elements', and
2643 the last byte of it is a null, we don't print that, in
2644 traditional C style. */
2645 if (c_style_terminator
2646 && !force_ellipses
2647 && length > 0
2648 && (extract_unsigned_integer (string + (length - 1) * width,
2649 width, byte_order) == 0))
2650 length--;
2651
2652 if (length == 0)
2653 {
2654 fputs_filtered ("\"\"", stream);
2655 return;
2656 }
2657
2658 /* Arrange to iterate over the characters, in wchar_t form. */
2659 wchar_iterator iter (string, length * width, encoding, width);
2660 std::vector<converted_character> converted_chars;
2661
2662 /* Convert characters until the string is over or the maximum
2663 number of printed characters has been reached. */
2664 i = 0;
2665 while (i < options->print_max)
2666 {
2667 int r;
2668
2669 QUIT;
2670
2671 /* Grab the next character and repeat count. */
2672 r = count_next_character (&iter, &converted_chars);
2673
2674 /* If less than zero, the end of the input string was reached. */
2675 if (r < 0)
2676 break;
2677
2678 /* Otherwise, add the count to the total print count and get
2679 the next character. */
2680 i += r;
2681 }
2682
2683 /* Get the last element and determine if the entire string was
2684 processed. */
2685 last = &converted_chars.back ();
2686 finished = (last->result == wchar_iterate_eof);
2687
2688 /* Ensure that CONVERTED_CHARS is terminated. */
2689 last->result = wchar_iterate_eof;
2690
2691 /* WCHAR_BUF is the obstack we use to represent the string in
2692 wchar_t form. */
2693 auto_obstack wchar_buf;
2694
2695 /* Print the output string to the obstack. */
2696 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2697 width, byte_order, options);
2698
2699 if (force_ellipses || !finished)
2700 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2701
2702 /* OUTPUT is where we collect `char's for printing. */
2703 auto_obstack output;
2704
2705 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2706 (gdb_byte *) obstack_base (&wchar_buf),
2707 obstack_object_size (&wchar_buf),
2708 sizeof (gdb_wchar_t), &output, translit_char);
2709 obstack_1grow (&output, '\0');
2710
2711 fputs_filtered ((const char *) obstack_base (&output), stream);
2712 }
2713
2714 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2715 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2716 stops at the first null byte, otherwise printing proceeds (including null
2717 bytes) until either print_max or LEN characters have been printed,
2718 whichever is smaller. ENCODING is the name of the string's
2719 encoding. It can be NULL, in which case the target encoding is
2720 assumed. */
2721
2722 int
2723 val_print_string (struct type *elttype, const char *encoding,
2724 CORE_ADDR addr, int len,
2725 struct ui_file *stream,
2726 const struct value_print_options *options)
2727 {
2728 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2729 int err; /* Non-zero if we got a bad read. */
2730 int found_nul; /* Non-zero if we found the nul char. */
2731 unsigned int fetchlimit; /* Maximum number of chars to print. */
2732 int bytes_read;
2733 gdb::unique_xmalloc_ptr<gdb_byte> buffer; /* Dynamically growable fetch buffer. */
2734 struct gdbarch *gdbarch = get_type_arch (elttype);
2735 enum bfd_endian byte_order = type_byte_order (elttype);
2736 int width = TYPE_LENGTH (elttype);
2737
2738 /* First we need to figure out the limit on the number of characters we are
2739 going to attempt to fetch and print. This is actually pretty simple. If
2740 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2741 LEN is -1, then the limit is print_max. This is true regardless of
2742 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2743 because finding the null byte (or available memory) is what actually
2744 limits the fetch. */
2745
2746 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2747 options->print_max));
2748
2749 err = read_string (addr, len, width, fetchlimit, byte_order,
2750 &buffer, &bytes_read);
2751
2752 addr += bytes_read;
2753
2754 /* We now have either successfully filled the buffer to fetchlimit,
2755 or terminated early due to an error or finding a null char when
2756 LEN is -1. */
2757
2758 /* Determine found_nul by looking at the last character read. */
2759 found_nul = 0;
2760 if (bytes_read >= width)
2761 found_nul = extract_unsigned_integer (buffer.get () + bytes_read - width,
2762 width, byte_order) == 0;
2763 if (len == -1 && !found_nul)
2764 {
2765 gdb_byte *peekbuf;
2766
2767 /* We didn't find a NUL terminator we were looking for. Attempt
2768 to peek at the next character. If not successful, or it is not
2769 a null byte, then force ellipsis to be printed. */
2770
2771 peekbuf = (gdb_byte *) alloca (width);
2772
2773 if (target_read_memory (addr, peekbuf, width) == 0
2774 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2775 force_ellipsis = 1;
2776 }
2777 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2778 {
2779 /* Getting an error when we have a requested length, or fetching less
2780 than the number of characters actually requested, always make us
2781 print ellipsis. */
2782 force_ellipsis = 1;
2783 }
2784
2785 /* If we get an error before fetching anything, don't print a string.
2786 But if we fetch something and then get an error, print the string
2787 and then the error message. */
2788 if (err == 0 || bytes_read > 0)
2789 {
2790 LA_PRINT_STRING (stream, elttype, buffer.get (), bytes_read / width,
2791 encoding, force_ellipsis, options);
2792 }
2793
2794 if (err != 0)
2795 {
2796 std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2797
2798 fprintf_filtered (stream, _("<error: %ps>"),
2799 styled_string (metadata_style.style (),
2800 str.c_str ()));
2801 }
2802
2803 return (bytes_read / width);
2804 }
2805
2806 /* Handle 'show print max-depth'. */
2807
2808 static void
2809 show_print_max_depth (struct ui_file *file, int from_tty,
2810 struct cmd_list_element *c, const char *value)
2811 {
2812 fprintf_filtered (file, _("Maximum print depth is %s.\n"), value);
2813 }
2814 \f
2815
2816 /* The 'set input-radix' command writes to this auxiliary variable.
2817 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2818 it is left unchanged. */
2819
2820 static unsigned input_radix_1 = 10;
2821
2822 /* Validate an input or output radix setting, and make sure the user
2823 knows what they really did here. Radix setting is confusing, e.g.
2824 setting the input radix to "10" never changes it! */
2825
2826 static void
2827 set_input_radix (const char *args, int from_tty, struct cmd_list_element *c)
2828 {
2829 set_input_radix_1 (from_tty, input_radix_1);
2830 }
2831
2832 static void
2833 set_input_radix_1 (int from_tty, unsigned radix)
2834 {
2835 /* We don't currently disallow any input radix except 0 or 1, which don't
2836 make any mathematical sense. In theory, we can deal with any input
2837 radix greater than 1, even if we don't have unique digits for every
2838 value from 0 to radix-1, but in practice we lose on large radix values.
2839 We should either fix the lossage or restrict the radix range more.
2840 (FIXME). */
2841
2842 if (radix < 2)
2843 {
2844 input_radix_1 = input_radix;
2845 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2846 radix);
2847 }
2848 input_radix_1 = input_radix = radix;
2849 if (from_tty)
2850 {
2851 printf_filtered (_("Input radix now set to "
2852 "decimal %u, hex %x, octal %o.\n"),
2853 radix, radix, radix);
2854 }
2855 }
2856
2857 /* The 'set output-radix' command writes to this auxiliary variable.
2858 If the requested radix is valid, OUTPUT_RADIX is updated,
2859 otherwise, it is left unchanged. */
2860
2861 static unsigned output_radix_1 = 10;
2862
2863 static void
2864 set_output_radix (const char *args, int from_tty, struct cmd_list_element *c)
2865 {
2866 set_output_radix_1 (from_tty, output_radix_1);
2867 }
2868
2869 static void
2870 set_output_radix_1 (int from_tty, unsigned radix)
2871 {
2872 /* Validate the radix and disallow ones that we aren't prepared to
2873 handle correctly, leaving the radix unchanged. */
2874 switch (radix)
2875 {
2876 case 16:
2877 user_print_options.output_format = 'x'; /* hex */
2878 break;
2879 case 10:
2880 user_print_options.output_format = 0; /* decimal */
2881 break;
2882 case 8:
2883 user_print_options.output_format = 'o'; /* octal */
2884 break;
2885 default:
2886 output_radix_1 = output_radix;
2887 error (_("Unsupported output radix ``decimal %u''; "
2888 "output radix unchanged."),
2889 radix);
2890 }
2891 output_radix_1 = output_radix = radix;
2892 if (from_tty)
2893 {
2894 printf_filtered (_("Output radix now set to "
2895 "decimal %u, hex %x, octal %o.\n"),
2896 radix, radix, radix);
2897 }
2898 }
2899
2900 /* Set both the input and output radix at once. Try to set the output radix
2901 first, since it has the most restrictive range. An radix that is valid as
2902 an output radix is also valid as an input radix.
2903
2904 It may be useful to have an unusual input radix. If the user wishes to
2905 set an input radix that is not valid as an output radix, he needs to use
2906 the 'set input-radix' command. */
2907
2908 static void
2909 set_radix (const char *arg, int from_tty)
2910 {
2911 unsigned radix;
2912
2913 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2914 set_output_radix_1 (0, radix);
2915 set_input_radix_1 (0, radix);
2916 if (from_tty)
2917 {
2918 printf_filtered (_("Input and output radices now set to "
2919 "decimal %u, hex %x, octal %o.\n"),
2920 radix, radix, radix);
2921 }
2922 }
2923
2924 /* Show both the input and output radices. */
2925
2926 static void
2927 show_radix (const char *arg, int from_tty)
2928 {
2929 if (from_tty)
2930 {
2931 if (input_radix == output_radix)
2932 {
2933 printf_filtered (_("Input and output radices set to "
2934 "decimal %u, hex %x, octal %o.\n"),
2935 input_radix, input_radix, input_radix);
2936 }
2937 else
2938 {
2939 printf_filtered (_("Input radix set to decimal "
2940 "%u, hex %x, octal %o.\n"),
2941 input_radix, input_radix, input_radix);
2942 printf_filtered (_("Output radix set to decimal "
2943 "%u, hex %x, octal %o.\n"),
2944 output_radix, output_radix, output_radix);
2945 }
2946 }
2947 }
2948 \f
2949
2950 static void
2951 set_print (const char *arg, int from_tty)
2952 {
2953 printf_unfiltered (
2954 "\"set print\" must be followed by the name of a print subcommand.\n");
2955 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
2956 }
2957
2958 static void
2959 show_print (const char *args, int from_tty)
2960 {
2961 cmd_show_list (showprintlist, from_tty, "");
2962 }
2963
2964 static void
2965 set_print_raw (const char *arg, int from_tty)
2966 {
2967 printf_unfiltered (
2968 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
2969 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
2970 }
2971
2972 static void
2973 show_print_raw (const char *args, int from_tty)
2974 {
2975 cmd_show_list (showprintrawlist, from_tty, "");
2976 }
2977
2978 /* Controls printing of vtbl's. */
2979 static void
2980 show_vtblprint (struct ui_file *file, int from_tty,
2981 struct cmd_list_element *c, const char *value)
2982 {
2983 fprintf_filtered (file, _("\
2984 Printing of C++ virtual function tables is %s.\n"),
2985 value);
2986 }
2987
2988 /* Controls looking up an object's derived type using what we find in
2989 its vtables. */
2990 static void
2991 show_objectprint (struct ui_file *file, int from_tty,
2992 struct cmd_list_element *c,
2993 const char *value)
2994 {
2995 fprintf_filtered (file, _("\
2996 Printing of object's derived type based on vtable info is %s.\n"),
2997 value);
2998 }
2999
3000 static void
3001 show_static_field_print (struct ui_file *file, int from_tty,
3002 struct cmd_list_element *c,
3003 const char *value)
3004 {
3005 fprintf_filtered (file,
3006 _("Printing of C++ static members is %s.\n"),
3007 value);
3008 }
3009
3010 \f
3011
3012 /* A couple typedefs to make writing the options a bit more
3013 convenient. */
3014 using boolean_option_def
3015 = gdb::option::boolean_option_def<value_print_options>;
3016 using uinteger_option_def
3017 = gdb::option::uinteger_option_def<value_print_options>;
3018 using zuinteger_unlimited_option_def
3019 = gdb::option::zuinteger_unlimited_option_def<value_print_options>;
3020
3021 /* Definitions of options for the "print" and "compile print"
3022 commands. */
3023 static const gdb::option::option_def value_print_option_defs[] = {
3024
3025 boolean_option_def {
3026 "address",
3027 [] (value_print_options *opt) { return &opt->addressprint; },
3028 show_addressprint, /* show_cmd_cb */
3029 N_("Set printing of addresses."),
3030 N_("Show printing of addresses."),
3031 NULL, /* help_doc */
3032 },
3033
3034 boolean_option_def {
3035 "array",
3036 [] (value_print_options *opt) { return &opt->prettyformat_arrays; },
3037 show_prettyformat_arrays, /* show_cmd_cb */
3038 N_("Set pretty formatting of arrays."),
3039 N_("Show pretty formatting of arrays."),
3040 NULL, /* help_doc */
3041 },
3042
3043 boolean_option_def {
3044 "array-indexes",
3045 [] (value_print_options *opt) { return &opt->print_array_indexes; },
3046 show_print_array_indexes, /* show_cmd_cb */
3047 N_("Set printing of array indexes."),
3048 N_("Show printing of array indexes."),
3049 NULL, /* help_doc */
3050 },
3051
3052 uinteger_option_def {
3053 "elements",
3054 [] (value_print_options *opt) { return &opt->print_max; },
3055 show_print_max, /* show_cmd_cb */
3056 N_("Set limit on string chars or array elements to print."),
3057 N_("Show limit on string chars or array elements to print."),
3058 N_("\"unlimited\" causes there to be no limit."),
3059 },
3060
3061 zuinteger_unlimited_option_def {
3062 "max-depth",
3063 [] (value_print_options *opt) { return &opt->max_depth; },
3064 show_print_max_depth, /* show_cmd_cb */
3065 N_("Set maximum print depth for nested structures, unions and arrays."),
3066 N_("Show maximum print depth for nested structures, unions, and arrays."),
3067 N_("When structures, unions, or arrays are nested beyond this depth then they\n\
3068 will be replaced with either '{...}' or '(...)' depending on the language.\n\
3069 Use \"unlimited\" to print the complete structure.")
3070 },
3071
3072 boolean_option_def {
3073 "null-stop",
3074 [] (value_print_options *opt) { return &opt->stop_print_at_null; },
3075 show_stop_print_at_null, /* show_cmd_cb */
3076 N_("Set printing of char arrays to stop at first null char."),
3077 N_("Show printing of char arrays to stop at first null char."),
3078 NULL, /* help_doc */
3079 },
3080
3081 boolean_option_def {
3082 "object",
3083 [] (value_print_options *opt) { return &opt->objectprint; },
3084 show_objectprint, /* show_cmd_cb */
3085 _("Set printing of C++ virtual function tables."),
3086 _("Show printing of C++ virtual function tables."),
3087 NULL, /* help_doc */
3088 },
3089
3090 boolean_option_def {
3091 "pretty",
3092 [] (value_print_options *opt) { return &opt->prettyformat_structs; },
3093 show_prettyformat_structs, /* show_cmd_cb */
3094 N_("Set pretty formatting of structures."),
3095 N_("Show pretty formatting of structures."),
3096 NULL, /* help_doc */
3097 },
3098
3099 boolean_option_def {
3100 "raw-values",
3101 [] (value_print_options *opt) { return &opt->raw; },
3102 NULL, /* show_cmd_cb */
3103 N_("Set whether to print values in raw form."),
3104 N_("Show whether to print values in raw form."),
3105 N_("If set, values are printed in raw form, bypassing any\n\
3106 pretty-printers for that value.")
3107 },
3108
3109 uinteger_option_def {
3110 "repeats",
3111 [] (value_print_options *opt) { return &opt->repeat_count_threshold; },
3112 show_repeat_count_threshold, /* show_cmd_cb */
3113 N_("Set threshold for repeated print elements."),
3114 N_("Show threshold for repeated print elements."),
3115 N_("\"unlimited\" causes all elements to be individually printed."),
3116 },
3117
3118 boolean_option_def {
3119 "static-members",
3120 [] (value_print_options *opt) { return &opt->static_field_print; },
3121 show_static_field_print, /* show_cmd_cb */
3122 N_("Set printing of C++ static members."),
3123 N_("Show printing of C++ static members."),
3124 NULL, /* help_doc */
3125 },
3126
3127 boolean_option_def {
3128 "symbol",
3129 [] (value_print_options *opt) { return &opt->symbol_print; },
3130 show_symbol_print, /* show_cmd_cb */
3131 N_("Set printing of symbol names when printing pointers."),
3132 N_("Show printing of symbol names when printing pointers."),
3133 NULL, /* help_doc */
3134 },
3135
3136 boolean_option_def {
3137 "union",
3138 [] (value_print_options *opt) { return &opt->unionprint; },
3139 show_unionprint, /* show_cmd_cb */
3140 N_("Set printing of unions interior to structures."),
3141 N_("Show printing of unions interior to structures."),
3142 NULL, /* help_doc */
3143 },
3144
3145 boolean_option_def {
3146 "vtbl",
3147 [] (value_print_options *opt) { return &opt->vtblprint; },
3148 show_vtblprint, /* show_cmd_cb */
3149 N_("Set printing of C++ virtual function tables."),
3150 N_("Show printing of C++ virtual function tables."),
3151 NULL, /* help_doc */
3152 },
3153 };
3154
3155 /* See valprint.h. */
3156
3157 gdb::option::option_def_group
3158 make_value_print_options_def_group (value_print_options *opts)
3159 {
3160 return {{value_print_option_defs}, opts};
3161 }
3162
3163 void _initialize_valprint ();
3164 void
3165 _initialize_valprint ()
3166 {
3167 cmd_list_element *cmd;
3168
3169 add_prefix_cmd ("print", no_class, set_print,
3170 _("Generic command for setting how things print."),
3171 &setprintlist, "set print ", 0, &setlist);
3172 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3173 /* Prefer set print to set prompt. */
3174 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3175
3176 add_prefix_cmd ("print", no_class, show_print,
3177 _("Generic command for showing print settings."),
3178 &showprintlist, "show print ", 0, &showlist);
3179 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3180 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3181
3182 cmd = add_prefix_cmd ("raw", no_class, set_print_raw,
3183 _("\
3184 Generic command for setting what things to print in \"raw\" mode."),
3185 &setprintrawlist, "set print raw ", 0,
3186 &setprintlist);
3187 deprecate_cmd (cmd, nullptr);
3188
3189 cmd = add_prefix_cmd ("raw", no_class, show_print_raw,
3190 _("Generic command for showing \"print raw\" settings."),
3191 &showprintrawlist, "show print raw ", 0,
3192 &showprintlist);
3193 deprecate_cmd (cmd, nullptr);
3194
3195 gdb::option::add_setshow_cmds_for_options
3196 (class_support, &user_print_options, value_print_option_defs,
3197 &setprintlist, &showprintlist);
3198
3199 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3200 _("\
3201 Set default input radix for entering numbers."), _("\
3202 Show default input radix for entering numbers."), NULL,
3203 set_input_radix,
3204 show_input_radix,
3205 &setlist, &showlist);
3206
3207 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3208 _("\
3209 Set default output radix for printing of values."), _("\
3210 Show default output radix for printing of values."), NULL,
3211 set_output_radix,
3212 show_output_radix,
3213 &setlist, &showlist);
3214
3215 /* The "set radix" and "show radix" commands are special in that
3216 they are like normal set and show commands but allow two normally
3217 independent variables to be either set or shown with a single
3218 command. So the usual deprecated_add_set_cmd() and [deleted]
3219 add_show_from_set() commands aren't really appropriate. */
3220 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3221 longer true - show can display anything. */
3222 add_cmd ("radix", class_support, set_radix, _("\
3223 Set default input and output number radices.\n\
3224 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3225 Without an argument, sets both radices back to the default value of 10."),
3226 &setlist);
3227 add_cmd ("radix", class_support, show_radix, _("\
3228 Show the default input and output number radices.\n\
3229 Use 'show input-radix' or 'show output-radix' to independently show each."),
3230 &showlist);
3231 }
This page took 0.120523 seconds and 4 git commands to generate.