* i386-tdep.c (i386_frame_prev_register): Unwind SP from memory
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009, 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "language.h"
31 #include "annotate.h"
32 #include "valprint.h"
33 #include "floatformat.h"
34 #include "doublest.h"
35 #include "exceptions.h"
36 #include "dfp.h"
37 #include "python/python.h"
38 #include "ada-lang.h"
39
40 #include <errno.h>
41
42 /* Prototypes for local functions */
43
44 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
45 int len, int *errnoptr);
46
47 static void show_print (char *, int);
48
49 static void set_print (char *, int);
50
51 static void set_radix (char *, int);
52
53 static void show_radix (char *, int);
54
55 static void set_input_radix (char *, int, struct cmd_list_element *);
56
57 static void set_input_radix_1 (int, unsigned);
58
59 static void set_output_radix (char *, int, struct cmd_list_element *);
60
61 static void set_output_radix_1 (int, unsigned);
62
63 void _initialize_valprint (void);
64
65 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
66
67 struct value_print_options user_print_options =
68 {
69 Val_pretty_default, /* pretty */
70 0, /* prettyprint_arrays */
71 0, /* prettyprint_structs */
72 0, /* vtblprint */
73 1, /* unionprint */
74 1, /* addressprint */
75 0, /* objectprint */
76 PRINT_MAX_DEFAULT, /* print_max */
77 10, /* repeat_count_threshold */
78 0, /* output_format */
79 0, /* format */
80 0, /* stop_print_at_null */
81 0, /* inspect_it */
82 0, /* print_array_indexes */
83 0, /* deref_ref */
84 1, /* static_field_print */
85 1, /* pascal_static_field_print */
86 0, /* raw */
87 0 /* summary */
88 };
89
90 /* Initialize *OPTS to be a copy of the user print options. */
91 void
92 get_user_print_options (struct value_print_options *opts)
93 {
94 *opts = user_print_options;
95 }
96
97 /* Initialize *OPTS to be a copy of the user print options, but with
98 pretty-printing disabled. */
99 void
100 get_raw_print_options (struct value_print_options *opts)
101 {
102 *opts = user_print_options;
103 opts->pretty = Val_no_prettyprint;
104 }
105
106 /* Initialize *OPTS to be a copy of the user print options, but using
107 FORMAT as the formatting option. */
108 void
109 get_formatted_print_options (struct value_print_options *opts,
110 char format)
111 {
112 *opts = user_print_options;
113 opts->format = format;
114 }
115
116 static void
117 show_print_max (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119 {
120 fprintf_filtered (file,
121 _("Limit on string chars or array "
122 "elements to print is %s.\n"),
123 value);
124 }
125
126
127 /* Default input and output radixes, and output format letter. */
128
129 unsigned input_radix = 10;
130 static void
131 show_input_radix (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c, const char *value)
133 {
134 fprintf_filtered (file,
135 _("Default input radix for entering numbers is %s.\n"),
136 value);
137 }
138
139 unsigned output_radix = 10;
140 static void
141 show_output_radix (struct ui_file *file, int from_tty,
142 struct cmd_list_element *c, const char *value)
143 {
144 fprintf_filtered (file,
145 _("Default output radix for printing of values is %s.\n"),
146 value);
147 }
148
149 /* By default we print arrays without printing the index of each element in
150 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
151
152 static void
153 show_print_array_indexes (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
157 }
158
159 /* Print repeat counts if there are more than this many repetitions of an
160 element in an array. Referenced by the low level language dependent
161 print routines. */
162
163 static void
164 show_repeat_count_threshold (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
168 value);
169 }
170
171 /* If nonzero, stops printing of char arrays at first null. */
172
173 static void
174 show_stop_print_at_null (struct ui_file *file, int from_tty,
175 struct cmd_list_element *c, const char *value)
176 {
177 fprintf_filtered (file,
178 _("Printing of char arrays to stop "
179 "at first null char is %s.\n"),
180 value);
181 }
182
183 /* Controls pretty printing of structures. */
184
185 static void
186 show_prettyprint_structs (struct ui_file *file, int from_tty,
187 struct cmd_list_element *c, const char *value)
188 {
189 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
190 }
191
192 /* Controls pretty printing of arrays. */
193
194 static void
195 show_prettyprint_arrays (struct ui_file *file, int from_tty,
196 struct cmd_list_element *c, const char *value)
197 {
198 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
199 }
200
201 /* If nonzero, causes unions inside structures or other unions to be
202 printed. */
203
204 static void
205 show_unionprint (struct ui_file *file, int from_tty,
206 struct cmd_list_element *c, const char *value)
207 {
208 fprintf_filtered (file,
209 _("Printing of unions interior to structures is %s.\n"),
210 value);
211 }
212
213 /* If nonzero, causes machine addresses to be printed in certain contexts. */
214
215 static void
216 show_addressprint (struct ui_file *file, int from_tty,
217 struct cmd_list_element *c, const char *value)
218 {
219 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
220 }
221 \f
222
223 /* A helper function for val_print. When printing in "summary" mode,
224 we want to print scalar arguments, but not aggregate arguments.
225 This function distinguishes between the two. */
226
227 static int
228 scalar_type_p (struct type *type)
229 {
230 CHECK_TYPEDEF (type);
231 while (TYPE_CODE (type) == TYPE_CODE_REF)
232 {
233 type = TYPE_TARGET_TYPE (type);
234 CHECK_TYPEDEF (type);
235 }
236 switch (TYPE_CODE (type))
237 {
238 case TYPE_CODE_ARRAY:
239 case TYPE_CODE_STRUCT:
240 case TYPE_CODE_UNION:
241 case TYPE_CODE_SET:
242 case TYPE_CODE_STRING:
243 case TYPE_CODE_BITSTRING:
244 return 0;
245 default:
246 return 1;
247 }
248 }
249
250 /* Helper function to check the validity of some bits of a value.
251
252 If TYPE represents some aggregate type (e.g., a structure), return 1.
253
254 Otherwise, any of the bytes starting at OFFSET and extending for
255 TYPE_LENGTH(TYPE) bytes are invalid, print a message to STREAM and
256 return 0. The checking is done using FUNCS.
257
258 Otherwise, return 1. */
259
260 static int
261 valprint_check_validity (struct ui_file *stream,
262 struct type *type,
263 int embedded_offset,
264 const struct value *val)
265 {
266 CHECK_TYPEDEF (type);
267
268 if (TYPE_CODE (type) != TYPE_CODE_UNION
269 && TYPE_CODE (type) != TYPE_CODE_STRUCT
270 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
271 {
272 if (!value_bits_valid (val, TARGET_CHAR_BIT * embedded_offset,
273 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
274 {
275 val_print_optimized_out (stream);
276 return 0;
277 }
278
279 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
280 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
281 {
282 fputs_filtered (_("<synthetic pointer>"), stream);
283 return 0;
284 }
285
286 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
287 {
288 val_print_unavailable (stream);
289 return 0;
290 }
291 }
292
293 return 1;
294 }
295
296 void
297 val_print_optimized_out (struct ui_file *stream)
298 {
299 fprintf_filtered (stream, _("<optimized out>"));
300 }
301
302 void
303 val_print_unavailable (struct ui_file *stream)
304 {
305 fprintf_filtered (stream, _("<unavailable>"));
306 }
307
308 void
309 val_print_invalid_address (struct ui_file *stream)
310 {
311 fprintf_filtered (stream, _("<invalid address>"));
312 }
313
314 /* Print using the given LANGUAGE the data of type TYPE located at
315 VALADDR + EMBEDDED_OFFSET (within GDB), which came from the
316 inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream
317 STREAM according to OPTIONS. VAL is the whole object that came
318 from ADDRESS. VALADDR must point to the head of VAL's contents
319 buffer.
320
321 The language printers will pass down an adjusted EMBEDDED_OFFSET to
322 further helper subroutines as subfields of TYPE are printed. In
323 such cases, VALADDR is passed down unadjusted, as well as VAL, so
324 that VAL can be queried for metadata about the contents data being
325 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
326 buffer. For example: "has this field been optimized out", or "I'm
327 printing an object while inspecting a traceframe; has this
328 particular piece of data been collected?".
329
330 RECURSE indicates the amount of indentation to supply before
331 continuation lines; this amount is roughly twice the value of
332 RECURSE.
333
334 If the data is printed as a string, returns the number of string
335 characters printed. */
336
337 int
338 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
339 CORE_ADDR address, struct ui_file *stream, int recurse,
340 const struct value *val,
341 const struct value_print_options *options,
342 const struct language_defn *language)
343 {
344 volatile struct gdb_exception except;
345 int ret = 0;
346 struct value_print_options local_opts = *options;
347 struct type *real_type = check_typedef (type);
348
349 if (local_opts.pretty == Val_pretty_default)
350 local_opts.pretty = (local_opts.prettyprint_structs
351 ? Val_prettyprint : Val_no_prettyprint);
352
353 QUIT;
354
355 /* Ensure that the type is complete and not just a stub. If the type is
356 only a stub and we can't find and substitute its complete type, then
357 print appropriate string and return. */
358
359 if (TYPE_STUB (real_type))
360 {
361 fprintf_filtered (stream, _("<incomplete type>"));
362 gdb_flush (stream);
363 return (0);
364 }
365
366 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
367 return 0;
368
369 if (!options->raw)
370 {
371 ret = apply_val_pretty_printer (type, valaddr, embedded_offset,
372 address, stream, recurse,
373 val, options, language);
374 if (ret)
375 return ret;
376 }
377
378 /* Handle summary mode. If the value is a scalar, print it;
379 otherwise, print an ellipsis. */
380 if (options->summary && !scalar_type_p (type))
381 {
382 fprintf_filtered (stream, "...");
383 return 0;
384 }
385
386 TRY_CATCH (except, RETURN_MASK_ERROR)
387 {
388 ret = language->la_val_print (type, valaddr, embedded_offset, address,
389 stream, recurse, val,
390 &local_opts);
391 }
392 if (except.reason < 0)
393 fprintf_filtered (stream, _("<error reading variable>"));
394
395 return ret;
396 }
397
398 /* Check whether the value VAL is printable. Return 1 if it is;
399 return 0 and print an appropriate error message to STREAM if it
400 is not. */
401
402 static int
403 value_check_printable (struct value *val, struct ui_file *stream)
404 {
405 if (val == 0)
406 {
407 fprintf_filtered (stream, _("<address of value unknown>"));
408 return 0;
409 }
410
411 if (value_entirely_optimized_out (val))
412 {
413 val_print_optimized_out (stream);
414 return 0;
415 }
416
417 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
418 {
419 fprintf_filtered (stream, _("<internal function %s>"),
420 value_internal_function_name (val));
421 return 0;
422 }
423
424 return 1;
425 }
426
427 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
428 to OPTIONS.
429
430 If the data are a string pointer, returns the number of string characters
431 printed.
432
433 This is a preferable interface to val_print, above, because it uses
434 GDB's value mechanism. */
435
436 int
437 common_val_print (struct value *val, struct ui_file *stream, int recurse,
438 const struct value_print_options *options,
439 const struct language_defn *language)
440 {
441 if (!value_check_printable (val, stream))
442 return 0;
443
444 if (language->la_language == language_ada)
445 /* The value might have a dynamic type, which would cause trouble
446 below when trying to extract the value contents (since the value
447 size is determined from the type size which is unknown). So
448 get a fixed representation of our value. */
449 val = ada_to_fixed_value (val);
450
451 return val_print (value_type (val), value_contents_for_printing (val),
452 value_embedded_offset (val), value_address (val),
453 stream, recurse,
454 val, options, language);
455 }
456
457 /* Print on stream STREAM the value VAL according to OPTIONS. The value
458 is printed using the current_language syntax.
459
460 If the object printed is a string pointer, return the number of string
461 bytes printed. */
462
463 int
464 value_print (struct value *val, struct ui_file *stream,
465 const struct value_print_options *options)
466 {
467 if (!value_check_printable (val, stream))
468 return 0;
469
470 if (!options->raw)
471 {
472 int r = apply_val_pretty_printer (value_type (val),
473 value_contents_for_printing (val),
474 value_embedded_offset (val),
475 value_address (val),
476 stream, 0,
477 val, options, current_language);
478
479 if (r)
480 return r;
481 }
482
483 return LA_VALUE_PRINT (val, stream, options);
484 }
485
486 /* Called by various <lang>_val_print routines to print
487 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
488 value. STREAM is where to print the value. */
489
490 void
491 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
492 struct ui_file *stream)
493 {
494 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
495
496 if (TYPE_LENGTH (type) > sizeof (LONGEST))
497 {
498 LONGEST val;
499
500 if (TYPE_UNSIGNED (type)
501 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
502 byte_order, &val))
503 {
504 print_longest (stream, 'u', 0, val);
505 }
506 else
507 {
508 /* Signed, or we couldn't turn an unsigned value into a
509 LONGEST. For signed values, one could assume two's
510 complement (a reasonable assumption, I think) and do
511 better than this. */
512 print_hex_chars (stream, (unsigned char *) valaddr,
513 TYPE_LENGTH (type), byte_order);
514 }
515 }
516 else
517 {
518 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
519 unpack_long (type, valaddr));
520 }
521 }
522
523 void
524 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
525 struct ui_file *stream)
526 {
527 ULONGEST val = unpack_long (type, valaddr);
528 int bitpos, nfields = TYPE_NFIELDS (type);
529
530 fputs_filtered ("[ ", stream);
531 for (bitpos = 0; bitpos < nfields; bitpos++)
532 {
533 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
534 && (val & ((ULONGEST)1 << bitpos)))
535 {
536 if (TYPE_FIELD_NAME (type, bitpos))
537 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
538 else
539 fprintf_filtered (stream, "#%d ", bitpos);
540 }
541 }
542 fputs_filtered ("]", stream);
543
544 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
545 according to OPTIONS and SIZE on STREAM. Format i is not supported
546 at this level.
547
548 This is how the elements of an array or structure are printed
549 with a format. */
550 }
551
552 void
553 val_print_scalar_formatted (struct type *type,
554 const gdb_byte *valaddr, int embedded_offset,
555 const struct value *val,
556 const struct value_print_options *options,
557 int size,
558 struct ui_file *stream)
559 {
560 gdb_assert (val != NULL);
561 gdb_assert (valaddr == value_contents_for_printing_const (val));
562
563 /* If we get here with a string format, try again without it. Go
564 all the way back to the language printers, which may call us
565 again. */
566 if (options->format == 's')
567 {
568 struct value_print_options opts = *options;
569 opts.format = 0;
570 opts.deref_ref = 0;
571 val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts,
572 current_language);
573 return;
574 }
575
576 /* A scalar object that does not have all bits available can't be
577 printed, because all bits contribute to its representation. */
578 if (!value_bits_valid (val, TARGET_CHAR_BIT * embedded_offset,
579 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
580 val_print_optimized_out (stream);
581 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
582 val_print_unavailable (stream);
583 else
584 print_scalar_formatted (valaddr + embedded_offset, type,
585 options, size, stream);
586 }
587
588 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
589 The raison d'etre of this function is to consolidate printing of
590 LONG_LONG's into this one function. The format chars b,h,w,g are
591 from print_scalar_formatted(). Numbers are printed using C
592 format.
593
594 USE_C_FORMAT means to use C format in all cases. Without it,
595 'o' and 'x' format do not include the standard C radix prefix
596 (leading 0 or 0x).
597
598 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
599 and was intended to request formating according to the current
600 language and would be used for most integers that GDB prints. The
601 exceptional cases were things like protocols where the format of
602 the integer is a protocol thing, not a user-visible thing). The
603 parameter remains to preserve the information of what things might
604 be printed with language-specific format, should we ever resurrect
605 that capability. */
606
607 void
608 print_longest (struct ui_file *stream, int format, int use_c_format,
609 LONGEST val_long)
610 {
611 const char *val;
612
613 switch (format)
614 {
615 case 'd':
616 val = int_string (val_long, 10, 1, 0, 1); break;
617 case 'u':
618 val = int_string (val_long, 10, 0, 0, 1); break;
619 case 'x':
620 val = int_string (val_long, 16, 0, 0, use_c_format); break;
621 case 'b':
622 val = int_string (val_long, 16, 0, 2, 1); break;
623 case 'h':
624 val = int_string (val_long, 16, 0, 4, 1); break;
625 case 'w':
626 val = int_string (val_long, 16, 0, 8, 1); break;
627 case 'g':
628 val = int_string (val_long, 16, 0, 16, 1); break;
629 break;
630 case 'o':
631 val = int_string (val_long, 8, 0, 0, use_c_format); break;
632 default:
633 internal_error (__FILE__, __LINE__,
634 _("failed internal consistency check"));
635 }
636 fputs_filtered (val, stream);
637 }
638
639 /* This used to be a macro, but I don't think it is called often enough
640 to merit such treatment. */
641 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
642 arguments to a function, number in a value history, register number, etc.)
643 where the value must not be larger than can fit in an int. */
644
645 int
646 longest_to_int (LONGEST arg)
647 {
648 /* Let the compiler do the work. */
649 int rtnval = (int) arg;
650
651 /* Check for overflows or underflows. */
652 if (sizeof (LONGEST) > sizeof (int))
653 {
654 if (rtnval != arg)
655 {
656 error (_("Value out of range."));
657 }
658 }
659 return (rtnval);
660 }
661
662 /* Print a floating point value of type TYPE (not always a
663 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
664
665 void
666 print_floating (const gdb_byte *valaddr, struct type *type,
667 struct ui_file *stream)
668 {
669 DOUBLEST doub;
670 int inv;
671 const struct floatformat *fmt = NULL;
672 unsigned len = TYPE_LENGTH (type);
673 enum float_kind kind;
674
675 /* If it is a floating-point, check for obvious problems. */
676 if (TYPE_CODE (type) == TYPE_CODE_FLT)
677 fmt = floatformat_from_type (type);
678 if (fmt != NULL)
679 {
680 kind = floatformat_classify (fmt, valaddr);
681 if (kind == float_nan)
682 {
683 if (floatformat_is_negative (fmt, valaddr))
684 fprintf_filtered (stream, "-");
685 fprintf_filtered (stream, "nan(");
686 fputs_filtered ("0x", stream);
687 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
688 fprintf_filtered (stream, ")");
689 return;
690 }
691 else if (kind == float_infinite)
692 {
693 if (floatformat_is_negative (fmt, valaddr))
694 fputs_filtered ("-", stream);
695 fputs_filtered ("inf", stream);
696 return;
697 }
698 }
699
700 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
701 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
702 needs to be used as that takes care of any necessary type
703 conversions. Such conversions are of course direct to DOUBLEST
704 and disregard any possible target floating point limitations.
705 For instance, a u64 would be converted and displayed exactly on a
706 host with 80 bit DOUBLEST but with loss of information on a host
707 with 64 bit DOUBLEST. */
708
709 doub = unpack_double (type, valaddr, &inv);
710 if (inv)
711 {
712 fprintf_filtered (stream, "<invalid float value>");
713 return;
714 }
715
716 /* FIXME: kettenis/2001-01-20: The following code makes too much
717 assumptions about the host and target floating point format. */
718
719 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
720 not necessarily be a TYPE_CODE_FLT, the below ignores that and
721 instead uses the type's length to determine the precision of the
722 floating-point value being printed. */
723
724 if (len < sizeof (double))
725 fprintf_filtered (stream, "%.9g", (double) doub);
726 else if (len == sizeof (double))
727 fprintf_filtered (stream, "%.17g", (double) doub);
728 else
729 #ifdef PRINTF_HAS_LONG_DOUBLE
730 fprintf_filtered (stream, "%.35Lg", doub);
731 #else
732 /* This at least wins with values that are representable as
733 doubles. */
734 fprintf_filtered (stream, "%.17g", (double) doub);
735 #endif
736 }
737
738 void
739 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
740 struct ui_file *stream)
741 {
742 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
743 char decstr[MAX_DECIMAL_STRING];
744 unsigned len = TYPE_LENGTH (type);
745
746 decimal_to_string (valaddr, len, byte_order, decstr);
747 fputs_filtered (decstr, stream);
748 return;
749 }
750
751 void
752 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
753 unsigned len, enum bfd_endian byte_order)
754 {
755
756 #define BITS_IN_BYTES 8
757
758 const gdb_byte *p;
759 unsigned int i;
760 int b;
761
762 /* Declared "int" so it will be signed.
763 This ensures that right shift will shift in zeros. */
764
765 const int mask = 0x080;
766
767 /* FIXME: We should be not printing leading zeroes in most cases. */
768
769 if (byte_order == BFD_ENDIAN_BIG)
770 {
771 for (p = valaddr;
772 p < valaddr + len;
773 p++)
774 {
775 /* Every byte has 8 binary characters; peel off
776 and print from the MSB end. */
777
778 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
779 {
780 if (*p & (mask >> i))
781 b = 1;
782 else
783 b = 0;
784
785 fprintf_filtered (stream, "%1d", b);
786 }
787 }
788 }
789 else
790 {
791 for (p = valaddr + len - 1;
792 p >= valaddr;
793 p--)
794 {
795 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
796 {
797 if (*p & (mask >> i))
798 b = 1;
799 else
800 b = 0;
801
802 fprintf_filtered (stream, "%1d", b);
803 }
804 }
805 }
806 }
807
808 /* VALADDR points to an integer of LEN bytes.
809 Print it in octal on stream or format it in buf. */
810
811 void
812 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
813 unsigned len, enum bfd_endian byte_order)
814 {
815 const gdb_byte *p;
816 unsigned char octa1, octa2, octa3, carry;
817 int cycle;
818
819 /* FIXME: We should be not printing leading zeroes in most cases. */
820
821
822 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
823 * the extra bits, which cycle every three bytes:
824 *
825 * Byte side: 0 1 2 3
826 * | | | |
827 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
828 *
829 * Octal side: 0 1 carry 3 4 carry ...
830 *
831 * Cycle number: 0 1 2
832 *
833 * But of course we are printing from the high side, so we have to
834 * figure out where in the cycle we are so that we end up with no
835 * left over bits at the end.
836 */
837 #define BITS_IN_OCTAL 3
838 #define HIGH_ZERO 0340
839 #define LOW_ZERO 0016
840 #define CARRY_ZERO 0003
841 #define HIGH_ONE 0200
842 #define MID_ONE 0160
843 #define LOW_ONE 0016
844 #define CARRY_ONE 0001
845 #define HIGH_TWO 0300
846 #define MID_TWO 0070
847 #define LOW_TWO 0007
848
849 /* For 32 we start in cycle 2, with two bits and one bit carry;
850 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
851
852 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
853 carry = 0;
854
855 fputs_filtered ("0", stream);
856 if (byte_order == BFD_ENDIAN_BIG)
857 {
858 for (p = valaddr;
859 p < valaddr + len;
860 p++)
861 {
862 switch (cycle)
863 {
864 case 0:
865 /* No carry in, carry out two bits. */
866
867 octa1 = (HIGH_ZERO & *p) >> 5;
868 octa2 = (LOW_ZERO & *p) >> 2;
869 carry = (CARRY_ZERO & *p);
870 fprintf_filtered (stream, "%o", octa1);
871 fprintf_filtered (stream, "%o", octa2);
872 break;
873
874 case 1:
875 /* Carry in two bits, carry out one bit. */
876
877 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
878 octa2 = (MID_ONE & *p) >> 4;
879 octa3 = (LOW_ONE & *p) >> 1;
880 carry = (CARRY_ONE & *p);
881 fprintf_filtered (stream, "%o", octa1);
882 fprintf_filtered (stream, "%o", octa2);
883 fprintf_filtered (stream, "%o", octa3);
884 break;
885
886 case 2:
887 /* Carry in one bit, no carry out. */
888
889 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
890 octa2 = (MID_TWO & *p) >> 3;
891 octa3 = (LOW_TWO & *p);
892 carry = 0;
893 fprintf_filtered (stream, "%o", octa1);
894 fprintf_filtered (stream, "%o", octa2);
895 fprintf_filtered (stream, "%o", octa3);
896 break;
897
898 default:
899 error (_("Internal error in octal conversion;"));
900 }
901
902 cycle++;
903 cycle = cycle % BITS_IN_OCTAL;
904 }
905 }
906 else
907 {
908 for (p = valaddr + len - 1;
909 p >= valaddr;
910 p--)
911 {
912 switch (cycle)
913 {
914 case 0:
915 /* Carry out, no carry in */
916
917 octa1 = (HIGH_ZERO & *p) >> 5;
918 octa2 = (LOW_ZERO & *p) >> 2;
919 carry = (CARRY_ZERO & *p);
920 fprintf_filtered (stream, "%o", octa1);
921 fprintf_filtered (stream, "%o", octa2);
922 break;
923
924 case 1:
925 /* Carry in, carry out */
926
927 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
928 octa2 = (MID_ONE & *p) >> 4;
929 octa3 = (LOW_ONE & *p) >> 1;
930 carry = (CARRY_ONE & *p);
931 fprintf_filtered (stream, "%o", octa1);
932 fprintf_filtered (stream, "%o", octa2);
933 fprintf_filtered (stream, "%o", octa3);
934 break;
935
936 case 2:
937 /* Carry in, no carry out */
938
939 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
940 octa2 = (MID_TWO & *p) >> 3;
941 octa3 = (LOW_TWO & *p);
942 carry = 0;
943 fprintf_filtered (stream, "%o", octa1);
944 fprintf_filtered (stream, "%o", octa2);
945 fprintf_filtered (stream, "%o", octa3);
946 break;
947
948 default:
949 error (_("Internal error in octal conversion;"));
950 }
951
952 cycle++;
953 cycle = cycle % BITS_IN_OCTAL;
954 }
955 }
956
957 }
958
959 /* VALADDR points to an integer of LEN bytes.
960 Print it in decimal on stream or format it in buf. */
961
962 void
963 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
964 unsigned len, enum bfd_endian byte_order)
965 {
966 #define TEN 10
967 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
968 #define CARRY_LEFT( x ) ((x) % TEN)
969 #define SHIFT( x ) ((x) << 4)
970 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
971 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
972
973 const gdb_byte *p;
974 unsigned char *digits;
975 int carry;
976 int decimal_len;
977 int i, j, decimal_digits;
978 int dummy;
979 int flip;
980
981 /* Base-ten number is less than twice as many digits
982 as the base 16 number, which is 2 digits per byte. */
983
984 decimal_len = len * 2 * 2;
985 digits = xmalloc (decimal_len);
986
987 for (i = 0; i < decimal_len; i++)
988 {
989 digits[i] = 0;
990 }
991
992 /* Ok, we have an unknown number of bytes of data to be printed in
993 * decimal.
994 *
995 * Given a hex number (in nibbles) as XYZ, we start by taking X and
996 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
997 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
998 *
999 * The trick is that "digits" holds a base-10 number, but sometimes
1000 * the individual digits are > 10.
1001 *
1002 * Outer loop is per nibble (hex digit) of input, from MSD end to
1003 * LSD end.
1004 */
1005 decimal_digits = 0; /* Number of decimal digits so far */
1006 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1007 flip = 0;
1008 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1009 {
1010 /*
1011 * Multiply current base-ten number by 16 in place.
1012 * Each digit was between 0 and 9, now is between
1013 * 0 and 144.
1014 */
1015 for (j = 0; j < decimal_digits; j++)
1016 {
1017 digits[j] = SHIFT (digits[j]);
1018 }
1019
1020 /* Take the next nibble off the input and add it to what
1021 * we've got in the LSB position. Bottom 'digit' is now
1022 * between 0 and 159.
1023 *
1024 * "flip" is used to run this loop twice for each byte.
1025 */
1026 if (flip == 0)
1027 {
1028 /* Take top nibble. */
1029
1030 digits[0] += HIGH_NIBBLE (*p);
1031 flip = 1;
1032 }
1033 else
1034 {
1035 /* Take low nibble and bump our pointer "p". */
1036
1037 digits[0] += LOW_NIBBLE (*p);
1038 if (byte_order == BFD_ENDIAN_BIG)
1039 p++;
1040 else
1041 p--;
1042 flip = 0;
1043 }
1044
1045 /* Re-decimalize. We have to do this often enough
1046 * that we don't overflow, but once per nibble is
1047 * overkill. Easier this way, though. Note that the
1048 * carry is often larger than 10 (e.g. max initial
1049 * carry out of lowest nibble is 15, could bubble all
1050 * the way up greater than 10). So we have to do
1051 * the carrying beyond the last current digit.
1052 */
1053 carry = 0;
1054 for (j = 0; j < decimal_len - 1; j++)
1055 {
1056 digits[j] += carry;
1057
1058 /* "/" won't handle an unsigned char with
1059 * a value that if signed would be negative.
1060 * So extend to longword int via "dummy".
1061 */
1062 dummy = digits[j];
1063 carry = CARRY_OUT (dummy);
1064 digits[j] = CARRY_LEFT (dummy);
1065
1066 if (j >= decimal_digits && carry == 0)
1067 {
1068 /*
1069 * All higher digits are 0 and we
1070 * no longer have a carry.
1071 *
1072 * Note: "j" is 0-based, "decimal_digits" is
1073 * 1-based.
1074 */
1075 decimal_digits = j + 1;
1076 break;
1077 }
1078 }
1079 }
1080
1081 /* Ok, now "digits" is the decimal representation, with
1082 the "decimal_digits" actual digits. Print! */
1083
1084 for (i = decimal_digits - 1; i >= 0; i--)
1085 {
1086 fprintf_filtered (stream, "%1d", digits[i]);
1087 }
1088 xfree (digits);
1089 }
1090
1091 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1092
1093 void
1094 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1095 unsigned len, enum bfd_endian byte_order)
1096 {
1097 const gdb_byte *p;
1098
1099 /* FIXME: We should be not printing leading zeroes in most cases. */
1100
1101 fputs_filtered ("0x", stream);
1102 if (byte_order == BFD_ENDIAN_BIG)
1103 {
1104 for (p = valaddr;
1105 p < valaddr + len;
1106 p++)
1107 {
1108 fprintf_filtered (stream, "%02x", *p);
1109 }
1110 }
1111 else
1112 {
1113 for (p = valaddr + len - 1;
1114 p >= valaddr;
1115 p--)
1116 {
1117 fprintf_filtered (stream, "%02x", *p);
1118 }
1119 }
1120 }
1121
1122 /* VALADDR points to a char integer of LEN bytes.
1123 Print it out in appropriate language form on stream.
1124 Omit any leading zero chars. */
1125
1126 void
1127 print_char_chars (struct ui_file *stream, struct type *type,
1128 const gdb_byte *valaddr,
1129 unsigned len, enum bfd_endian byte_order)
1130 {
1131 const gdb_byte *p;
1132
1133 if (byte_order == BFD_ENDIAN_BIG)
1134 {
1135 p = valaddr;
1136 while (p < valaddr + len - 1 && *p == 0)
1137 ++p;
1138
1139 while (p < valaddr + len)
1140 {
1141 LA_EMIT_CHAR (*p, type, stream, '\'');
1142 ++p;
1143 }
1144 }
1145 else
1146 {
1147 p = valaddr + len - 1;
1148 while (p > valaddr && *p == 0)
1149 --p;
1150
1151 while (p >= valaddr)
1152 {
1153 LA_EMIT_CHAR (*p, type, stream, '\'');
1154 --p;
1155 }
1156 }
1157 }
1158
1159 /* Print on STREAM using the given OPTIONS the index for the element
1160 at INDEX of an array whose index type is INDEX_TYPE. */
1161
1162 void
1163 maybe_print_array_index (struct type *index_type, LONGEST index,
1164 struct ui_file *stream,
1165 const struct value_print_options *options)
1166 {
1167 struct value *index_value;
1168
1169 if (!options->print_array_indexes)
1170 return;
1171
1172 index_value = value_from_longest (index_type, index);
1173
1174 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1175 }
1176
1177 /* Called by various <lang>_val_print routines to print elements of an
1178 array in the form "<elem1>, <elem2>, <elem3>, ...".
1179
1180 (FIXME?) Assumes array element separator is a comma, which is correct
1181 for all languages currently handled.
1182 (FIXME?) Some languages have a notation for repeated array elements,
1183 perhaps we should try to use that notation when appropriate. */
1184
1185 void
1186 val_print_array_elements (struct type *type,
1187 const gdb_byte *valaddr, int embedded_offset,
1188 CORE_ADDR address, struct ui_file *stream,
1189 int recurse,
1190 const struct value *val,
1191 const struct value_print_options *options,
1192 unsigned int i)
1193 {
1194 unsigned int things_printed = 0;
1195 unsigned len;
1196 struct type *elttype, *index_type;
1197 unsigned eltlen;
1198 /* Position of the array element we are examining to see
1199 whether it is repeated. */
1200 unsigned int rep1;
1201 /* Number of repetitions we have detected so far. */
1202 unsigned int reps;
1203 LONGEST low_bound, high_bound;
1204
1205 elttype = TYPE_TARGET_TYPE (type);
1206 eltlen = TYPE_LENGTH (check_typedef (elttype));
1207 index_type = TYPE_INDEX_TYPE (type);
1208
1209 if (get_array_bounds (type, &low_bound, &high_bound))
1210 {
1211 /* The array length should normally be HIGH_BOUND - LOW_BOUND + 1.
1212 But we have to be a little extra careful, because some languages
1213 such as Ada allow LOW_BOUND to be greater than HIGH_BOUND for
1214 empty arrays. In that situation, the array length is just zero,
1215 not negative! */
1216 if (low_bound > high_bound)
1217 len = 0;
1218 else
1219 len = high_bound - low_bound + 1;
1220 }
1221 else
1222 {
1223 warning (_("unable to get bounds of array, assuming null array"));
1224 low_bound = 0;
1225 len = 0;
1226 }
1227
1228 annotate_array_section_begin (i, elttype);
1229
1230 for (; i < len && things_printed < options->print_max; i++)
1231 {
1232 if (i != 0)
1233 {
1234 if (options->prettyprint_arrays)
1235 {
1236 fprintf_filtered (stream, ",\n");
1237 print_spaces_filtered (2 + 2 * recurse, stream);
1238 }
1239 else
1240 {
1241 fprintf_filtered (stream, ", ");
1242 }
1243 }
1244 wrap_here (n_spaces (2 + 2 * recurse));
1245 maybe_print_array_index (index_type, i + low_bound,
1246 stream, options);
1247
1248 rep1 = i + 1;
1249 reps = 1;
1250 while (rep1 < len
1251 && value_available_contents_eq (val,
1252 embedded_offset + i * eltlen,
1253 val,
1254 embedded_offset + rep1 * eltlen,
1255 eltlen))
1256 {
1257 ++reps;
1258 ++rep1;
1259 }
1260
1261 if (reps > options->repeat_count_threshold)
1262 {
1263 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1264 address, stream, recurse + 1, val, options,
1265 current_language);
1266 annotate_elt_rep (reps);
1267 fprintf_filtered (stream, " <repeats %u times>", reps);
1268 annotate_elt_rep_end ();
1269
1270 i = rep1 - 1;
1271 things_printed += options->repeat_count_threshold;
1272 }
1273 else
1274 {
1275 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1276 address,
1277 stream, recurse + 1, val, options, current_language);
1278 annotate_elt ();
1279 things_printed++;
1280 }
1281 }
1282 annotate_array_section_end ();
1283 if (i < len)
1284 {
1285 fprintf_filtered (stream, "...");
1286 }
1287 }
1288
1289 /* Read LEN bytes of target memory at address MEMADDR, placing the
1290 results in GDB's memory at MYADDR. Returns a count of the bytes
1291 actually read, and optionally an errno value in the location
1292 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1293
1294 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1295 function be eliminated. */
1296
1297 static int
1298 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
1299 int len, int *errnoptr)
1300 {
1301 int nread; /* Number of bytes actually read. */
1302 int errcode; /* Error from last read. */
1303
1304 /* First try a complete read. */
1305 errcode = target_read_memory (memaddr, myaddr, len);
1306 if (errcode == 0)
1307 {
1308 /* Got it all. */
1309 nread = len;
1310 }
1311 else
1312 {
1313 /* Loop, reading one byte at a time until we get as much as we can. */
1314 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1315 {
1316 errcode = target_read_memory (memaddr++, myaddr++, 1);
1317 }
1318 /* If an error, the last read was unsuccessful, so adjust count. */
1319 if (errcode != 0)
1320 {
1321 nread--;
1322 }
1323 }
1324 if (errnoptr != NULL)
1325 {
1326 *errnoptr = errcode;
1327 }
1328 return (nread);
1329 }
1330
1331 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1332 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1333 allocated buffer containing the string, which the caller is responsible to
1334 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1335 success, or errno on failure.
1336
1337 If LEN > 0, reads exactly LEN characters (including eventual NULs in
1338 the middle or end of the string). If LEN is -1, stops at the first
1339 null character (not necessarily the first null byte) up to a maximum
1340 of FETCHLIMIT characters. Set FETCHLIMIT to UINT_MAX to read as many
1341 characters as possible from the string.
1342
1343 Unless an exception is thrown, BUFFER will always be allocated, even on
1344 failure. In this case, some characters might have been read before the
1345 failure happened. Check BYTES_READ to recognize this situation.
1346
1347 Note: There was a FIXME asking to make this code use target_read_string,
1348 but this function is more general (can read past null characters, up to
1349 given LEN). Besides, it is used much more often than target_read_string
1350 so it is more tested. Perhaps callers of target_read_string should use
1351 this function instead? */
1352
1353 int
1354 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1355 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
1356 {
1357 int found_nul; /* Non-zero if we found the nul char. */
1358 int errcode; /* Errno returned from bad reads. */
1359 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1360 unsigned int chunksize; /* Size of each fetch, in chars. */
1361 gdb_byte *bufptr; /* Pointer to next available byte in
1362 buffer. */
1363 gdb_byte *limit; /* First location past end of fetch buffer. */
1364 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1365
1366 /* Decide how large of chunks to try to read in one operation. This
1367 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1368 so we might as well read them all in one operation. If LEN is -1, we
1369 are looking for a NUL terminator to end the fetching, so we might as
1370 well read in blocks that are large enough to be efficient, but not so
1371 large as to be slow if fetchlimit happens to be large. So we choose the
1372 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1373 200 is way too big for remote debugging over a serial line. */
1374
1375 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1376
1377 /* Loop until we either have all the characters, or we encounter
1378 some error, such as bumping into the end of the address space. */
1379
1380 found_nul = 0;
1381 *buffer = NULL;
1382
1383 old_chain = make_cleanup (free_current_contents, buffer);
1384
1385 if (len > 0)
1386 {
1387 *buffer = (gdb_byte *) xmalloc (len * width);
1388 bufptr = *buffer;
1389
1390 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1391 / width;
1392 addr += nfetch * width;
1393 bufptr += nfetch * width;
1394 }
1395 else if (len == -1)
1396 {
1397 unsigned long bufsize = 0;
1398
1399 do
1400 {
1401 QUIT;
1402 nfetch = min (chunksize, fetchlimit - bufsize);
1403
1404 if (*buffer == NULL)
1405 *buffer = (gdb_byte *) xmalloc (nfetch * width);
1406 else
1407 *buffer = (gdb_byte *) xrealloc (*buffer,
1408 (nfetch + bufsize) * width);
1409
1410 bufptr = *buffer + bufsize * width;
1411 bufsize += nfetch;
1412
1413 /* Read as much as we can. */
1414 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1415 / width;
1416
1417 /* Scan this chunk for the null character that terminates the string
1418 to print. If found, we don't need to fetch any more. Note
1419 that bufptr is explicitly left pointing at the next character
1420 after the null character, or at the next character after the end
1421 of the buffer. */
1422
1423 limit = bufptr + nfetch * width;
1424 while (bufptr < limit)
1425 {
1426 unsigned long c;
1427
1428 c = extract_unsigned_integer (bufptr, width, byte_order);
1429 addr += width;
1430 bufptr += width;
1431 if (c == 0)
1432 {
1433 /* We don't care about any error which happened after
1434 the NUL terminator. */
1435 errcode = 0;
1436 found_nul = 1;
1437 break;
1438 }
1439 }
1440 }
1441 while (errcode == 0 /* no error */
1442 && bufptr - *buffer < fetchlimit * width /* no overrun */
1443 && !found_nul); /* haven't found NUL yet */
1444 }
1445 else
1446 { /* Length of string is really 0! */
1447 /* We always allocate *buffer. */
1448 *buffer = bufptr = xmalloc (1);
1449 errcode = 0;
1450 }
1451
1452 /* bufptr and addr now point immediately beyond the last byte which we
1453 consider part of the string (including a '\0' which ends the string). */
1454 *bytes_read = bufptr - *buffer;
1455
1456 QUIT;
1457
1458 discard_cleanups (old_chain);
1459
1460 return errcode;
1461 }
1462
1463 /* Print a string from the inferior, starting at ADDR and printing up to LEN
1464 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1465 stops at the first null byte, otherwise printing proceeds (including null
1466 bytes) until either print_max or LEN characters have been printed,
1467 whichever is smaller. ENCODING is the name of the string's
1468 encoding. It can be NULL, in which case the target encoding is
1469 assumed. */
1470
1471 int
1472 val_print_string (struct type *elttype, const char *encoding,
1473 CORE_ADDR addr, int len,
1474 struct ui_file *stream,
1475 const struct value_print_options *options)
1476 {
1477 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1478 int errcode; /* Errno returned from bad reads. */
1479 int found_nul; /* Non-zero if we found the nul char. */
1480 unsigned int fetchlimit; /* Maximum number of chars to print. */
1481 int bytes_read;
1482 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
1483 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1484 struct gdbarch *gdbarch = get_type_arch (elttype);
1485 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1486 int width = TYPE_LENGTH (elttype);
1487
1488 /* First we need to figure out the limit on the number of characters we are
1489 going to attempt to fetch and print. This is actually pretty simple. If
1490 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1491 LEN is -1, then the limit is print_max. This is true regardless of
1492 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1493 because finding the null byte (or available memory) is what actually
1494 limits the fetch. */
1495
1496 fetchlimit = (len == -1 ? options->print_max : min (len,
1497 options->print_max));
1498
1499 errcode = read_string (addr, len, width, fetchlimit, byte_order,
1500 &buffer, &bytes_read);
1501 old_chain = make_cleanup (xfree, buffer);
1502
1503 addr += bytes_read;
1504
1505 /* We now have either successfully filled the buffer to fetchlimit,
1506 or terminated early due to an error or finding a null char when
1507 LEN is -1. */
1508
1509 /* Determine found_nul by looking at the last character read. */
1510 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
1511 byte_order) == 0;
1512 if (len == -1 && !found_nul)
1513 {
1514 gdb_byte *peekbuf;
1515
1516 /* We didn't find a NUL terminator we were looking for. Attempt
1517 to peek at the next character. If not successful, or it is not
1518 a null byte, then force ellipsis to be printed. */
1519
1520 peekbuf = (gdb_byte *) alloca (width);
1521
1522 if (target_read_memory (addr, peekbuf, width) == 0
1523 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
1524 force_ellipsis = 1;
1525 }
1526 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
1527 {
1528 /* Getting an error when we have a requested length, or fetching less
1529 than the number of characters actually requested, always make us
1530 print ellipsis. */
1531 force_ellipsis = 1;
1532 }
1533
1534 /* If we get an error before fetching anything, don't print a string.
1535 But if we fetch something and then get an error, print the string
1536 and then the error message. */
1537 if (errcode == 0 || bytes_read > 0)
1538 {
1539 if (options->addressprint)
1540 {
1541 fputs_filtered (" ", stream);
1542 }
1543 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
1544 encoding, force_ellipsis, options);
1545 }
1546
1547 if (errcode != 0)
1548 {
1549 if (errcode == EIO)
1550 {
1551 fprintf_filtered (stream, " <Address ");
1552 fputs_filtered (paddress (gdbarch, addr), stream);
1553 fprintf_filtered (stream, " out of bounds>");
1554 }
1555 else
1556 {
1557 fprintf_filtered (stream, " <Error reading address ");
1558 fputs_filtered (paddress (gdbarch, addr), stream);
1559 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1560 }
1561 }
1562
1563 gdb_flush (stream);
1564 do_cleanups (old_chain);
1565
1566 return (bytes_read / width);
1567 }
1568 \f
1569
1570 /* The 'set input-radix' command writes to this auxiliary variable.
1571 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
1572 it is left unchanged. */
1573
1574 static unsigned input_radix_1 = 10;
1575
1576 /* Validate an input or output radix setting, and make sure the user
1577 knows what they really did here. Radix setting is confusing, e.g.
1578 setting the input radix to "10" never changes it! */
1579
1580 static void
1581 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
1582 {
1583 set_input_radix_1 (from_tty, input_radix_1);
1584 }
1585
1586 static void
1587 set_input_radix_1 (int from_tty, unsigned radix)
1588 {
1589 /* We don't currently disallow any input radix except 0 or 1, which don't
1590 make any mathematical sense. In theory, we can deal with any input
1591 radix greater than 1, even if we don't have unique digits for every
1592 value from 0 to radix-1, but in practice we lose on large radix values.
1593 We should either fix the lossage or restrict the radix range more.
1594 (FIXME). */
1595
1596 if (radix < 2)
1597 {
1598 input_radix_1 = input_radix;
1599 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
1600 radix);
1601 }
1602 input_radix_1 = input_radix = radix;
1603 if (from_tty)
1604 {
1605 printf_filtered (_("Input radix now set to "
1606 "decimal %u, hex %x, octal %o.\n"),
1607 radix, radix, radix);
1608 }
1609 }
1610
1611 /* The 'set output-radix' command writes to this auxiliary variable.
1612 If the requested radix is valid, OUTPUT_RADIX is updated,
1613 otherwise, it is left unchanged. */
1614
1615 static unsigned output_radix_1 = 10;
1616
1617 static void
1618 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
1619 {
1620 set_output_radix_1 (from_tty, output_radix_1);
1621 }
1622
1623 static void
1624 set_output_radix_1 (int from_tty, unsigned radix)
1625 {
1626 /* Validate the radix and disallow ones that we aren't prepared to
1627 handle correctly, leaving the radix unchanged. */
1628 switch (radix)
1629 {
1630 case 16:
1631 user_print_options.output_format = 'x'; /* hex */
1632 break;
1633 case 10:
1634 user_print_options.output_format = 0; /* decimal */
1635 break;
1636 case 8:
1637 user_print_options.output_format = 'o'; /* octal */
1638 break;
1639 default:
1640 output_radix_1 = output_radix;
1641 error (_("Unsupported output radix ``decimal %u''; "
1642 "output radix unchanged."),
1643 radix);
1644 }
1645 output_radix_1 = output_radix = radix;
1646 if (from_tty)
1647 {
1648 printf_filtered (_("Output radix now set to "
1649 "decimal %u, hex %x, octal %o.\n"),
1650 radix, radix, radix);
1651 }
1652 }
1653
1654 /* Set both the input and output radix at once. Try to set the output radix
1655 first, since it has the most restrictive range. An radix that is valid as
1656 an output radix is also valid as an input radix.
1657
1658 It may be useful to have an unusual input radix. If the user wishes to
1659 set an input radix that is not valid as an output radix, he needs to use
1660 the 'set input-radix' command. */
1661
1662 static void
1663 set_radix (char *arg, int from_tty)
1664 {
1665 unsigned radix;
1666
1667 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
1668 set_output_radix_1 (0, radix);
1669 set_input_radix_1 (0, radix);
1670 if (from_tty)
1671 {
1672 printf_filtered (_("Input and output radices now set to "
1673 "decimal %u, hex %x, octal %o.\n"),
1674 radix, radix, radix);
1675 }
1676 }
1677
1678 /* Show both the input and output radices. */
1679
1680 static void
1681 show_radix (char *arg, int from_tty)
1682 {
1683 if (from_tty)
1684 {
1685 if (input_radix == output_radix)
1686 {
1687 printf_filtered (_("Input and output radices set to "
1688 "decimal %u, hex %x, octal %o.\n"),
1689 input_radix, input_radix, input_radix);
1690 }
1691 else
1692 {
1693 printf_filtered (_("Input radix set to decimal "
1694 "%u, hex %x, octal %o.\n"),
1695 input_radix, input_radix, input_radix);
1696 printf_filtered (_("Output radix set to decimal "
1697 "%u, hex %x, octal %o.\n"),
1698 output_radix, output_radix, output_radix);
1699 }
1700 }
1701 }
1702 \f
1703
1704 static void
1705 set_print (char *arg, int from_tty)
1706 {
1707 printf_unfiltered (
1708 "\"set print\" must be followed by the name of a print subcommand.\n");
1709 help_list (setprintlist, "set print ", -1, gdb_stdout);
1710 }
1711
1712 static void
1713 show_print (char *args, int from_tty)
1714 {
1715 cmd_show_list (showprintlist, from_tty, "");
1716 }
1717 \f
1718 void
1719 _initialize_valprint (void)
1720 {
1721 add_prefix_cmd ("print", no_class, set_print,
1722 _("Generic command for setting how things print."),
1723 &setprintlist, "set print ", 0, &setlist);
1724 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1725 /* Prefer set print to set prompt. */
1726 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1727
1728 add_prefix_cmd ("print", no_class, show_print,
1729 _("Generic command for showing print settings."),
1730 &showprintlist, "show print ", 0, &showlist);
1731 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1732 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1733
1734 add_setshow_uinteger_cmd ("elements", no_class,
1735 &user_print_options.print_max, _("\
1736 Set limit on string chars or array elements to print."), _("\
1737 Show limit on string chars or array elements to print."), _("\
1738 \"set print elements 0\" causes there to be no limit."),
1739 NULL,
1740 show_print_max,
1741 &setprintlist, &showprintlist);
1742
1743 add_setshow_boolean_cmd ("null-stop", no_class,
1744 &user_print_options.stop_print_at_null, _("\
1745 Set printing of char arrays to stop at first null char."), _("\
1746 Show printing of char arrays to stop at first null char."), NULL,
1747 NULL,
1748 show_stop_print_at_null,
1749 &setprintlist, &showprintlist);
1750
1751 add_setshow_uinteger_cmd ("repeats", no_class,
1752 &user_print_options.repeat_count_threshold, _("\
1753 Set threshold for repeated print elements."), _("\
1754 Show threshold for repeated print elements."), _("\
1755 \"set print repeats 0\" causes all elements to be individually printed."),
1756 NULL,
1757 show_repeat_count_threshold,
1758 &setprintlist, &showprintlist);
1759
1760 add_setshow_boolean_cmd ("pretty", class_support,
1761 &user_print_options.prettyprint_structs, _("\
1762 Set prettyprinting of structures."), _("\
1763 Show prettyprinting of structures."), NULL,
1764 NULL,
1765 show_prettyprint_structs,
1766 &setprintlist, &showprintlist);
1767
1768 add_setshow_boolean_cmd ("union", class_support,
1769 &user_print_options.unionprint, _("\
1770 Set printing of unions interior to structures."), _("\
1771 Show printing of unions interior to structures."), NULL,
1772 NULL,
1773 show_unionprint,
1774 &setprintlist, &showprintlist);
1775
1776 add_setshow_boolean_cmd ("array", class_support,
1777 &user_print_options.prettyprint_arrays, _("\
1778 Set prettyprinting of arrays."), _("\
1779 Show prettyprinting of arrays."), NULL,
1780 NULL,
1781 show_prettyprint_arrays,
1782 &setprintlist, &showprintlist);
1783
1784 add_setshow_boolean_cmd ("address", class_support,
1785 &user_print_options.addressprint, _("\
1786 Set printing of addresses."), _("\
1787 Show printing of addresses."), NULL,
1788 NULL,
1789 show_addressprint,
1790 &setprintlist, &showprintlist);
1791
1792 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
1793 _("\
1794 Set default input radix for entering numbers."), _("\
1795 Show default input radix for entering numbers."), NULL,
1796 set_input_radix,
1797 show_input_radix,
1798 &setlist, &showlist);
1799
1800 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
1801 _("\
1802 Set default output radix for printing of values."), _("\
1803 Show default output radix for printing of values."), NULL,
1804 set_output_radix,
1805 show_output_radix,
1806 &setlist, &showlist);
1807
1808 /* The "set radix" and "show radix" commands are special in that
1809 they are like normal set and show commands but allow two normally
1810 independent variables to be either set or shown with a single
1811 command. So the usual deprecated_add_set_cmd() and [deleted]
1812 add_show_from_set() commands aren't really appropriate. */
1813 /* FIXME: i18n: With the new add_setshow_integer command, that is no
1814 longer true - show can display anything. */
1815 add_cmd ("radix", class_support, set_radix, _("\
1816 Set default input and output number radices.\n\
1817 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1818 Without an argument, sets both radices back to the default value of 10."),
1819 &setlist);
1820 add_cmd ("radix", class_support, show_radix, _("\
1821 Show the default input and output number radices.\n\
1822 Use 'show input-radix' or 'show output-radix' to independently show each."),
1823 &showlist);
1824
1825 add_setshow_boolean_cmd ("array-indexes", class_support,
1826 &user_print_options.print_array_indexes, _("\
1827 Set printing of array indexes."), _("\
1828 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
1829 &setprintlist, &showprintlist);
1830 }
This page took 0.068526 seconds and 4 git commands to generate.