294c6a86e1445a65ff12c81e685d3949614037a8
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "floatformat.h"
31 #include "doublest.h"
32 #include "dfp.h"
33 #include "extension.h"
34 #include "ada-lang.h"
35 #include "gdb_obstack.h"
36 #include "charset.h"
37 #include <ctype.h>
38
39 /* Maximum number of wchars returned from wchar_iterate. */
40 #define MAX_WCHARS 4
41
42 /* A convenience macro to compute the size of a wchar_t buffer containing X
43 characters. */
44 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
45
46 /* Character buffer size saved while iterating over wchars. */
47 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
48
49 /* A structure to encapsulate state information from iterated
50 character conversions. */
51 struct converted_character
52 {
53 /* The number of characters converted. */
54 int num_chars;
55
56 /* The result of the conversion. See charset.h for more. */
57 enum wchar_iterate_result result;
58
59 /* The (saved) converted character(s). */
60 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
61
62 /* The first converted target byte. */
63 const gdb_byte *buf;
64
65 /* The number of bytes converted. */
66 size_t buflen;
67
68 /* How many times this character(s) is repeated. */
69 int repeat_count;
70 };
71
72 typedef struct converted_character converted_character_d;
73 DEF_VEC_O (converted_character_d);
74
75 /* Command lists for set/show print raw. */
76 struct cmd_list_element *setprintrawlist;
77 struct cmd_list_element *showprintrawlist;
78
79 /* Prototypes for local functions */
80
81 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
82 int len, int *errptr);
83
84 static void show_print (char *, int);
85
86 static void set_print (char *, int);
87
88 static void set_radix (char *, int);
89
90 static void show_radix (char *, int);
91
92 static void set_input_radix (char *, int, struct cmd_list_element *);
93
94 static void set_input_radix_1 (int, unsigned);
95
96 static void set_output_radix (char *, int, struct cmd_list_element *);
97
98 static void set_output_radix_1 (int, unsigned);
99
100 void _initialize_valprint (void);
101
102 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
103
104 struct value_print_options user_print_options =
105 {
106 Val_prettyformat_default, /* prettyformat */
107 0, /* prettyformat_arrays */
108 0, /* prettyformat_structs */
109 0, /* vtblprint */
110 1, /* unionprint */
111 1, /* addressprint */
112 0, /* objectprint */
113 PRINT_MAX_DEFAULT, /* print_max */
114 10, /* repeat_count_threshold */
115 0, /* output_format */
116 0, /* format */
117 0, /* stop_print_at_null */
118 0, /* print_array_indexes */
119 0, /* deref_ref */
120 1, /* static_field_print */
121 1, /* pascal_static_field_print */
122 0, /* raw */
123 0, /* summary */
124 1 /* symbol_print */
125 };
126
127 /* Initialize *OPTS to be a copy of the user print options. */
128 void
129 get_user_print_options (struct value_print_options *opts)
130 {
131 *opts = user_print_options;
132 }
133
134 /* Initialize *OPTS to be a copy of the user print options, but with
135 pretty-formatting disabled. */
136 void
137 get_no_prettyformat_print_options (struct value_print_options *opts)
138 {
139 *opts = user_print_options;
140 opts->prettyformat = Val_no_prettyformat;
141 }
142
143 /* Initialize *OPTS to be a copy of the user print options, but using
144 FORMAT as the formatting option. */
145 void
146 get_formatted_print_options (struct value_print_options *opts,
147 char format)
148 {
149 *opts = user_print_options;
150 opts->format = format;
151 }
152
153 static void
154 show_print_max (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156 {
157 fprintf_filtered (file,
158 _("Limit on string chars or array "
159 "elements to print is %s.\n"),
160 value);
161 }
162
163
164 /* Default input and output radixes, and output format letter. */
165
166 unsigned input_radix = 10;
167 static void
168 show_input_radix (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170 {
171 fprintf_filtered (file,
172 _("Default input radix for entering numbers is %s.\n"),
173 value);
174 }
175
176 unsigned output_radix = 10;
177 static void
178 show_output_radix (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file,
182 _("Default output radix for printing of values is %s.\n"),
183 value);
184 }
185
186 /* By default we print arrays without printing the index of each element in
187 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
188
189 static void
190 show_print_array_indexes (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192 {
193 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
194 }
195
196 /* Print repeat counts if there are more than this many repetitions of an
197 element in an array. Referenced by the low level language dependent
198 print routines. */
199
200 static void
201 show_repeat_count_threshold (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203 {
204 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
205 value);
206 }
207
208 /* If nonzero, stops printing of char arrays at first null. */
209
210 static void
211 show_stop_print_at_null (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
213 {
214 fprintf_filtered (file,
215 _("Printing of char arrays to stop "
216 "at first null char is %s.\n"),
217 value);
218 }
219
220 /* Controls pretty printing of structures. */
221
222 static void
223 show_prettyformat_structs (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
225 {
226 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
227 }
228
229 /* Controls pretty printing of arrays. */
230
231 static void
232 show_prettyformat_arrays (struct ui_file *file, int from_tty,
233 struct cmd_list_element *c, const char *value)
234 {
235 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
236 }
237
238 /* If nonzero, causes unions inside structures or other unions to be
239 printed. */
240
241 static void
242 show_unionprint (struct ui_file *file, int from_tty,
243 struct cmd_list_element *c, const char *value)
244 {
245 fprintf_filtered (file,
246 _("Printing of unions interior to structures is %s.\n"),
247 value);
248 }
249
250 /* If nonzero, causes machine addresses to be printed in certain contexts. */
251
252 static void
253 show_addressprint (struct ui_file *file, int from_tty,
254 struct cmd_list_element *c, const char *value)
255 {
256 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
257 }
258
259 static void
260 show_symbol_print (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262 {
263 fprintf_filtered (file,
264 _("Printing of symbols when printing pointers is %s.\n"),
265 value);
266 }
267
268 \f
269
270 /* A helper function for val_print. When printing in "summary" mode,
271 we want to print scalar arguments, but not aggregate arguments.
272 This function distinguishes between the two. */
273
274 int
275 val_print_scalar_type_p (struct type *type)
276 {
277 CHECK_TYPEDEF (type);
278 while (TYPE_CODE (type) == TYPE_CODE_REF)
279 {
280 type = TYPE_TARGET_TYPE (type);
281 CHECK_TYPEDEF (type);
282 }
283 switch (TYPE_CODE (type))
284 {
285 case TYPE_CODE_ARRAY:
286 case TYPE_CODE_STRUCT:
287 case TYPE_CODE_UNION:
288 case TYPE_CODE_SET:
289 case TYPE_CODE_STRING:
290 return 0;
291 default:
292 return 1;
293 }
294 }
295
296 /* See its definition in value.h. */
297
298 int
299 valprint_check_validity (struct ui_file *stream,
300 struct type *type,
301 int embedded_offset,
302 const struct value *val)
303 {
304 CHECK_TYPEDEF (type);
305
306 if (TYPE_CODE (type) != TYPE_CODE_UNION
307 && TYPE_CODE (type) != TYPE_CODE_STRUCT
308 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
309 {
310 if (value_bits_any_optimized_out (val,
311 TARGET_CHAR_BIT * embedded_offset,
312 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
313 {
314 val_print_optimized_out (val, stream);
315 return 0;
316 }
317
318 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
319 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
320 {
321 fputs_filtered (_("<synthetic pointer>"), stream);
322 return 0;
323 }
324
325 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
326 {
327 val_print_unavailable (stream);
328 return 0;
329 }
330 }
331
332 return 1;
333 }
334
335 void
336 val_print_optimized_out (const struct value *val, struct ui_file *stream)
337 {
338 if (val != NULL && value_lval_const (val) == lval_register)
339 val_print_not_saved (stream);
340 else
341 fprintf_filtered (stream, _("<optimized out>"));
342 }
343
344 void
345 val_print_not_saved (struct ui_file *stream)
346 {
347 fprintf_filtered (stream, _("<not saved>"));
348 }
349
350 void
351 val_print_unavailable (struct ui_file *stream)
352 {
353 fprintf_filtered (stream, _("<unavailable>"));
354 }
355
356 void
357 val_print_invalid_address (struct ui_file *stream)
358 {
359 fprintf_filtered (stream, _("<invalid address>"));
360 }
361
362 /* A generic val_print that is suitable for use by language
363 implementations of the la_val_print method. This function can
364 handle most type codes, though not all, notably exception
365 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
366 the caller.
367
368 Most arguments are as to val_print.
369
370 The additional DECORATIONS argument can be used to customize the
371 output in some small, language-specific ways. */
372
373 void
374 generic_val_print (struct type *type, const gdb_byte *valaddr,
375 int embedded_offset, CORE_ADDR address,
376 struct ui_file *stream, int recurse,
377 const struct value *original_value,
378 const struct value_print_options *options,
379 const struct generic_val_print_decorations *decorations)
380 {
381 struct gdbarch *gdbarch = get_type_arch (type);
382 unsigned int i = 0; /* Number of characters printed. */
383 unsigned len;
384 struct type *elttype, *unresolved_elttype;
385 struct type *unresolved_type = type;
386 LONGEST val;
387 CORE_ADDR addr;
388
389 CHECK_TYPEDEF (type);
390 switch (TYPE_CODE (type))
391 {
392 case TYPE_CODE_ARRAY:
393 unresolved_elttype = TYPE_TARGET_TYPE (type);
394 elttype = check_typedef (unresolved_elttype);
395 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
396 {
397 LONGEST low_bound, high_bound;
398
399 if (!get_array_bounds (type, &low_bound, &high_bound))
400 error (_("Could not determine the array high bound"));
401
402 if (options->prettyformat_arrays)
403 {
404 print_spaces_filtered (2 + 2 * recurse, stream);
405 }
406
407 fprintf_filtered (stream, "{");
408 val_print_array_elements (type, valaddr, embedded_offset,
409 address, stream,
410 recurse, original_value, options, 0);
411 fprintf_filtered (stream, "}");
412 break;
413 }
414 /* Array of unspecified length: treat like pointer to first
415 elt. */
416 addr = address + embedded_offset;
417 goto print_unpacked_pointer;
418
419 case TYPE_CODE_MEMBERPTR:
420 val_print_scalar_formatted (type, valaddr, embedded_offset,
421 original_value, options, 0, stream);
422 break;
423
424 case TYPE_CODE_PTR:
425 if (options->format && options->format != 's')
426 {
427 val_print_scalar_formatted (type, valaddr, embedded_offset,
428 original_value, options, 0, stream);
429 break;
430 }
431 unresolved_elttype = TYPE_TARGET_TYPE (type);
432 elttype = check_typedef (unresolved_elttype);
433 {
434 addr = unpack_pointer (type, valaddr + embedded_offset);
435 print_unpacked_pointer:
436
437 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
438 {
439 /* Try to print what function it points to. */
440 print_function_pointer_address (options, gdbarch, addr, stream);
441 return;
442 }
443
444 if (options->symbol_print)
445 print_address_demangle (options, gdbarch, addr, stream, demangle);
446 else if (options->addressprint)
447 fputs_filtered (paddress (gdbarch, addr), stream);
448 }
449 break;
450
451 case TYPE_CODE_REF:
452 elttype = check_typedef (TYPE_TARGET_TYPE (type));
453 if (options->addressprint)
454 {
455 CORE_ADDR addr
456 = extract_typed_address (valaddr + embedded_offset, type);
457
458 fprintf_filtered (stream, "@");
459 fputs_filtered (paddress (gdbarch, addr), stream);
460 if (options->deref_ref)
461 fputs_filtered (": ", stream);
462 }
463 /* De-reference the reference. */
464 if (options->deref_ref)
465 {
466 if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
467 {
468 struct value *deref_val;
469
470 deref_val = coerce_ref_if_computed (original_value);
471 if (deref_val != NULL)
472 {
473 /* More complicated computed references are not supported. */
474 gdb_assert (embedded_offset == 0);
475 }
476 else
477 deref_val = value_at (TYPE_TARGET_TYPE (type),
478 unpack_pointer (type,
479 (valaddr
480 + embedded_offset)));
481
482 common_val_print (deref_val, stream, recurse, options,
483 current_language);
484 }
485 else
486 fputs_filtered ("???", stream);
487 }
488 break;
489
490 case TYPE_CODE_ENUM:
491 if (options->format)
492 {
493 val_print_scalar_formatted (type, valaddr, embedded_offset,
494 original_value, options, 0, stream);
495 break;
496 }
497 len = TYPE_NFIELDS (type);
498 val = unpack_long (type, valaddr + embedded_offset);
499 for (i = 0; i < len; i++)
500 {
501 QUIT;
502 if (val == TYPE_FIELD_ENUMVAL (type, i))
503 {
504 break;
505 }
506 }
507 if (i < len)
508 {
509 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
510 }
511 else if (TYPE_FLAG_ENUM (type))
512 {
513 int first = 1;
514
515 /* We have a "flag" enum, so we try to decompose it into
516 pieces as appropriate. A flag enum has disjoint
517 constants by definition. */
518 fputs_filtered ("(", stream);
519 for (i = 0; i < len; ++i)
520 {
521 QUIT;
522
523 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
524 {
525 if (!first)
526 fputs_filtered (" | ", stream);
527 first = 0;
528
529 val &= ~TYPE_FIELD_ENUMVAL (type, i);
530 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
531 }
532 }
533
534 if (first || val != 0)
535 {
536 if (!first)
537 fputs_filtered (" | ", stream);
538 fputs_filtered ("unknown: ", stream);
539 print_longest (stream, 'd', 0, val);
540 }
541
542 fputs_filtered (")", stream);
543 }
544 else
545 print_longest (stream, 'd', 0, val);
546 break;
547
548 case TYPE_CODE_FLAGS:
549 if (options->format)
550 val_print_scalar_formatted (type, valaddr, embedded_offset,
551 original_value, options, 0, stream);
552 else
553 val_print_type_code_flags (type, valaddr + embedded_offset,
554 stream);
555 break;
556
557 case TYPE_CODE_FUNC:
558 case TYPE_CODE_METHOD:
559 if (options->format)
560 {
561 val_print_scalar_formatted (type, valaddr, embedded_offset,
562 original_value, options, 0, stream);
563 break;
564 }
565 /* FIXME, we should consider, at least for ANSI C language,
566 eliminating the distinction made between FUNCs and POINTERs
567 to FUNCs. */
568 fprintf_filtered (stream, "{");
569 type_print (type, "", stream, -1);
570 fprintf_filtered (stream, "} ");
571 /* Try to print what function it points to, and its address. */
572 print_address_demangle (options, gdbarch, address, stream, demangle);
573 break;
574
575 case TYPE_CODE_BOOL:
576 if (options->format || options->output_format)
577 {
578 struct value_print_options opts = *options;
579 opts.format = (options->format ? options->format
580 : options->output_format);
581 val_print_scalar_formatted (type, valaddr, embedded_offset,
582 original_value, &opts, 0, stream);
583 }
584 else
585 {
586 val = unpack_long (type, valaddr + embedded_offset);
587 if (val == 0)
588 fputs_filtered (decorations->false_name, stream);
589 else if (val == 1)
590 fputs_filtered (decorations->true_name, stream);
591 else
592 print_longest (stream, 'd', 0, val);
593 }
594 break;
595
596 case TYPE_CODE_RANGE:
597 /* FIXME: create_static_range_type does not set the unsigned bit in a
598 range type (I think it probably should copy it from the
599 target type), so we won't print values which are too large to
600 fit in a signed integer correctly. */
601 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
602 print with the target type, though, because the size of our
603 type and the target type might differ). */
604
605 /* FALLTHROUGH */
606
607 case TYPE_CODE_INT:
608 if (options->format || options->output_format)
609 {
610 struct value_print_options opts = *options;
611
612 opts.format = (options->format ? options->format
613 : options->output_format);
614 val_print_scalar_formatted (type, valaddr, embedded_offset,
615 original_value, &opts, 0, stream);
616 }
617 else
618 val_print_type_code_int (type, valaddr + embedded_offset, stream);
619 break;
620
621 case TYPE_CODE_CHAR:
622 if (options->format || options->output_format)
623 {
624 struct value_print_options opts = *options;
625
626 opts.format = (options->format ? options->format
627 : options->output_format);
628 val_print_scalar_formatted (type, valaddr, embedded_offset,
629 original_value, &opts, 0, stream);
630 }
631 else
632 {
633 val = unpack_long (type, valaddr + embedded_offset);
634 if (TYPE_UNSIGNED (type))
635 fprintf_filtered (stream, "%u", (unsigned int) val);
636 else
637 fprintf_filtered (stream, "%d", (int) val);
638 fputs_filtered (" ", stream);
639 LA_PRINT_CHAR (val, unresolved_type, stream);
640 }
641 break;
642
643 case TYPE_CODE_FLT:
644 if (options->format)
645 {
646 val_print_scalar_formatted (type, valaddr, embedded_offset,
647 original_value, options, 0, stream);
648 }
649 else
650 {
651 print_floating (valaddr + embedded_offset, type, stream);
652 }
653 break;
654
655 case TYPE_CODE_DECFLOAT:
656 if (options->format)
657 val_print_scalar_formatted (type, valaddr, embedded_offset,
658 original_value, options, 0, stream);
659 else
660 print_decimal_floating (valaddr + embedded_offset,
661 type, stream);
662 break;
663
664 case TYPE_CODE_VOID:
665 fputs_filtered (decorations->void_name, stream);
666 break;
667
668 case TYPE_CODE_ERROR:
669 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
670 break;
671
672 case TYPE_CODE_UNDEF:
673 /* This happens (without TYPE_FLAG_STUB set) on systems which
674 don't use dbx xrefs (NO_DBX_XREFS in gcc) if a file has a
675 "struct foo *bar" and no complete type for struct foo in that
676 file. */
677 fprintf_filtered (stream, _("<incomplete type>"));
678 break;
679
680 case TYPE_CODE_COMPLEX:
681 fprintf_filtered (stream, "%s", decorations->complex_prefix);
682 if (options->format)
683 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
684 valaddr, embedded_offset,
685 original_value, options, 0, stream);
686 else
687 print_floating (valaddr + embedded_offset,
688 TYPE_TARGET_TYPE (type),
689 stream);
690 fprintf_filtered (stream, "%s", decorations->complex_infix);
691 if (options->format)
692 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
693 valaddr,
694 embedded_offset
695 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
696 original_value,
697 options, 0, stream);
698 else
699 print_floating (valaddr + embedded_offset
700 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
701 TYPE_TARGET_TYPE (type),
702 stream);
703 fprintf_filtered (stream, "%s", decorations->complex_suffix);
704 break;
705
706 case TYPE_CODE_UNION:
707 case TYPE_CODE_STRUCT:
708 case TYPE_CODE_METHODPTR:
709 default:
710 error (_("Unhandled type code %d in symbol table."),
711 TYPE_CODE (type));
712 }
713 gdb_flush (stream);
714 }
715
716 /* Print using the given LANGUAGE the data of type TYPE located at
717 VALADDR + EMBEDDED_OFFSET (within GDB), which came from the
718 inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream
719 STREAM according to OPTIONS. VAL is the whole object that came
720 from ADDRESS. VALADDR must point to the head of VAL's contents
721 buffer.
722
723 The language printers will pass down an adjusted EMBEDDED_OFFSET to
724 further helper subroutines as subfields of TYPE are printed. In
725 such cases, VALADDR is passed down unadjusted, as well as VAL, so
726 that VAL can be queried for metadata about the contents data being
727 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
728 buffer. For example: "has this field been optimized out", or "I'm
729 printing an object while inspecting a traceframe; has this
730 particular piece of data been collected?".
731
732 RECURSE indicates the amount of indentation to supply before
733 continuation lines; this amount is roughly twice the value of
734 RECURSE. */
735
736 void
737 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
738 CORE_ADDR address, struct ui_file *stream, int recurse,
739 const struct value *val,
740 const struct value_print_options *options,
741 const struct language_defn *language)
742 {
743 int ret = 0;
744 struct value_print_options local_opts = *options;
745 struct type *real_type = check_typedef (type);
746
747 if (local_opts.prettyformat == Val_prettyformat_default)
748 local_opts.prettyformat = (local_opts.prettyformat_structs
749 ? Val_prettyformat : Val_no_prettyformat);
750
751 QUIT;
752
753 /* Ensure that the type is complete and not just a stub. If the type is
754 only a stub and we can't find and substitute its complete type, then
755 print appropriate string and return. */
756
757 if (TYPE_STUB (real_type))
758 {
759 fprintf_filtered (stream, _("<incomplete type>"));
760 gdb_flush (stream);
761 return;
762 }
763
764 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
765 return;
766
767 if (!options->raw)
768 {
769 ret = apply_ext_lang_val_pretty_printer (type, valaddr, embedded_offset,
770 address, stream, recurse,
771 val, options, language);
772 if (ret)
773 return;
774 }
775
776 /* Handle summary mode. If the value is a scalar, print it;
777 otherwise, print an ellipsis. */
778 if (options->summary && !val_print_scalar_type_p (type))
779 {
780 fprintf_filtered (stream, "...");
781 return;
782 }
783
784 TRY
785 {
786 language->la_val_print (type, valaddr, embedded_offset, address,
787 stream, recurse, val,
788 &local_opts);
789 }
790 CATCH (except, RETURN_MASK_ERROR)
791 {
792 fprintf_filtered (stream, _("<error reading variable>"));
793 }
794 END_CATCH
795 }
796
797 /* Check whether the value VAL is printable. Return 1 if it is;
798 return 0 and print an appropriate error message to STREAM according to
799 OPTIONS if it is not. */
800
801 static int
802 value_check_printable (struct value *val, struct ui_file *stream,
803 const struct value_print_options *options)
804 {
805 if (val == 0)
806 {
807 fprintf_filtered (stream, _("<address of value unknown>"));
808 return 0;
809 }
810
811 if (value_entirely_optimized_out (val))
812 {
813 if (options->summary && !val_print_scalar_type_p (value_type (val)))
814 fprintf_filtered (stream, "...");
815 else
816 val_print_optimized_out (val, stream);
817 return 0;
818 }
819
820 if (value_entirely_unavailable (val))
821 {
822 if (options->summary && !val_print_scalar_type_p (value_type (val)))
823 fprintf_filtered (stream, "...");
824 else
825 val_print_unavailable (stream);
826 return 0;
827 }
828
829 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
830 {
831 fprintf_filtered (stream, _("<internal function %s>"),
832 value_internal_function_name (val));
833 return 0;
834 }
835
836 return 1;
837 }
838
839 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
840 to OPTIONS.
841
842 This is a preferable interface to val_print, above, because it uses
843 GDB's value mechanism. */
844
845 void
846 common_val_print (struct value *val, struct ui_file *stream, int recurse,
847 const struct value_print_options *options,
848 const struct language_defn *language)
849 {
850 if (!value_check_printable (val, stream, options))
851 return;
852
853 if (language->la_language == language_ada)
854 /* The value might have a dynamic type, which would cause trouble
855 below when trying to extract the value contents (since the value
856 size is determined from the type size which is unknown). So
857 get a fixed representation of our value. */
858 val = ada_to_fixed_value (val);
859
860 val_print (value_type (val), value_contents_for_printing (val),
861 value_embedded_offset (val), value_address (val),
862 stream, recurse,
863 val, options, language);
864 }
865
866 /* Print on stream STREAM the value VAL according to OPTIONS. The value
867 is printed using the current_language syntax. */
868
869 void
870 value_print (struct value *val, struct ui_file *stream,
871 const struct value_print_options *options)
872 {
873 if (!value_check_printable (val, stream, options))
874 return;
875
876 if (!options->raw)
877 {
878 int r
879 = apply_ext_lang_val_pretty_printer (value_type (val),
880 value_contents_for_printing (val),
881 value_embedded_offset (val),
882 value_address (val),
883 stream, 0,
884 val, options, current_language);
885
886 if (r)
887 return;
888 }
889
890 LA_VALUE_PRINT (val, stream, options);
891 }
892
893 /* Called by various <lang>_val_print routines to print
894 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
895 value. STREAM is where to print the value. */
896
897 void
898 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
899 struct ui_file *stream)
900 {
901 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
902
903 if (TYPE_LENGTH (type) > sizeof (LONGEST))
904 {
905 LONGEST val;
906
907 if (TYPE_UNSIGNED (type)
908 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
909 byte_order, &val))
910 {
911 print_longest (stream, 'u', 0, val);
912 }
913 else
914 {
915 /* Signed, or we couldn't turn an unsigned value into a
916 LONGEST. For signed values, one could assume two's
917 complement (a reasonable assumption, I think) and do
918 better than this. */
919 print_hex_chars (stream, (unsigned char *) valaddr,
920 TYPE_LENGTH (type), byte_order);
921 }
922 }
923 else
924 {
925 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
926 unpack_long (type, valaddr));
927 }
928 }
929
930 void
931 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
932 struct ui_file *stream)
933 {
934 ULONGEST val = unpack_long (type, valaddr);
935 int bitpos, nfields = TYPE_NFIELDS (type);
936
937 fputs_filtered ("[ ", stream);
938 for (bitpos = 0; bitpos < nfields; bitpos++)
939 {
940 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
941 && (val & ((ULONGEST)1 << bitpos)))
942 {
943 if (TYPE_FIELD_NAME (type, bitpos))
944 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
945 else
946 fprintf_filtered (stream, "#%d ", bitpos);
947 }
948 }
949 fputs_filtered ("]", stream);
950 }
951
952 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
953 according to OPTIONS and SIZE on STREAM. Format i is not supported
954 at this level.
955
956 This is how the elements of an array or structure are printed
957 with a format. */
958
959 void
960 val_print_scalar_formatted (struct type *type,
961 const gdb_byte *valaddr, int embedded_offset,
962 const struct value *val,
963 const struct value_print_options *options,
964 int size,
965 struct ui_file *stream)
966 {
967 gdb_assert (val != NULL);
968 gdb_assert (valaddr == value_contents_for_printing_const (val));
969
970 /* If we get here with a string format, try again without it. Go
971 all the way back to the language printers, which may call us
972 again. */
973 if (options->format == 's')
974 {
975 struct value_print_options opts = *options;
976 opts.format = 0;
977 opts.deref_ref = 0;
978 val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts,
979 current_language);
980 return;
981 }
982
983 /* A scalar object that does not have all bits available can't be
984 printed, because all bits contribute to its representation. */
985 if (value_bits_any_optimized_out (val,
986 TARGET_CHAR_BIT * embedded_offset,
987 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
988 val_print_optimized_out (val, stream);
989 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
990 val_print_unavailable (stream);
991 else
992 print_scalar_formatted (valaddr + embedded_offset, type,
993 options, size, stream);
994 }
995
996 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
997 The raison d'etre of this function is to consolidate printing of
998 LONG_LONG's into this one function. The format chars b,h,w,g are
999 from print_scalar_formatted(). Numbers are printed using C
1000 format.
1001
1002 USE_C_FORMAT means to use C format in all cases. Without it,
1003 'o' and 'x' format do not include the standard C radix prefix
1004 (leading 0 or 0x).
1005
1006 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1007 and was intended to request formating according to the current
1008 language and would be used for most integers that GDB prints. The
1009 exceptional cases were things like protocols where the format of
1010 the integer is a protocol thing, not a user-visible thing). The
1011 parameter remains to preserve the information of what things might
1012 be printed with language-specific format, should we ever resurrect
1013 that capability. */
1014
1015 void
1016 print_longest (struct ui_file *stream, int format, int use_c_format,
1017 LONGEST val_long)
1018 {
1019 const char *val;
1020
1021 switch (format)
1022 {
1023 case 'd':
1024 val = int_string (val_long, 10, 1, 0, 1); break;
1025 case 'u':
1026 val = int_string (val_long, 10, 0, 0, 1); break;
1027 case 'x':
1028 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1029 case 'b':
1030 val = int_string (val_long, 16, 0, 2, 1); break;
1031 case 'h':
1032 val = int_string (val_long, 16, 0, 4, 1); break;
1033 case 'w':
1034 val = int_string (val_long, 16, 0, 8, 1); break;
1035 case 'g':
1036 val = int_string (val_long, 16, 0, 16, 1); break;
1037 break;
1038 case 'o':
1039 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1040 default:
1041 internal_error (__FILE__, __LINE__,
1042 _("failed internal consistency check"));
1043 }
1044 fputs_filtered (val, stream);
1045 }
1046
1047 /* This used to be a macro, but I don't think it is called often enough
1048 to merit such treatment. */
1049 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1050 arguments to a function, number in a value history, register number, etc.)
1051 where the value must not be larger than can fit in an int. */
1052
1053 int
1054 longest_to_int (LONGEST arg)
1055 {
1056 /* Let the compiler do the work. */
1057 int rtnval = (int) arg;
1058
1059 /* Check for overflows or underflows. */
1060 if (sizeof (LONGEST) > sizeof (int))
1061 {
1062 if (rtnval != arg)
1063 {
1064 error (_("Value out of range."));
1065 }
1066 }
1067 return (rtnval);
1068 }
1069
1070 /* Print a floating point value of type TYPE (not always a
1071 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
1072
1073 void
1074 print_floating (const gdb_byte *valaddr, struct type *type,
1075 struct ui_file *stream)
1076 {
1077 DOUBLEST doub;
1078 int inv;
1079 const struct floatformat *fmt = NULL;
1080 unsigned len = TYPE_LENGTH (type);
1081 enum float_kind kind;
1082
1083 /* If it is a floating-point, check for obvious problems. */
1084 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1085 fmt = floatformat_from_type (type);
1086 if (fmt != NULL)
1087 {
1088 kind = floatformat_classify (fmt, valaddr);
1089 if (kind == float_nan)
1090 {
1091 if (floatformat_is_negative (fmt, valaddr))
1092 fprintf_filtered (stream, "-");
1093 fprintf_filtered (stream, "nan(");
1094 fputs_filtered ("0x", stream);
1095 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1096 fprintf_filtered (stream, ")");
1097 return;
1098 }
1099 else if (kind == float_infinite)
1100 {
1101 if (floatformat_is_negative (fmt, valaddr))
1102 fputs_filtered ("-", stream);
1103 fputs_filtered ("inf", stream);
1104 return;
1105 }
1106 }
1107
1108 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1109 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1110 needs to be used as that takes care of any necessary type
1111 conversions. Such conversions are of course direct to DOUBLEST
1112 and disregard any possible target floating point limitations.
1113 For instance, a u64 would be converted and displayed exactly on a
1114 host with 80 bit DOUBLEST but with loss of information on a host
1115 with 64 bit DOUBLEST. */
1116
1117 doub = unpack_double (type, valaddr, &inv);
1118 if (inv)
1119 {
1120 fprintf_filtered (stream, "<invalid float value>");
1121 return;
1122 }
1123
1124 /* FIXME: kettenis/2001-01-20: The following code makes too much
1125 assumptions about the host and target floating point format. */
1126
1127 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
1128 not necessarily be a TYPE_CODE_FLT, the below ignores that and
1129 instead uses the type's length to determine the precision of the
1130 floating-point value being printed. */
1131
1132 if (len < sizeof (double))
1133 fprintf_filtered (stream, "%.9g", (double) doub);
1134 else if (len == sizeof (double))
1135 fprintf_filtered (stream, "%.17g", (double) doub);
1136 else
1137 #ifdef PRINTF_HAS_LONG_DOUBLE
1138 fprintf_filtered (stream, "%.35Lg", doub);
1139 #else
1140 /* This at least wins with values that are representable as
1141 doubles. */
1142 fprintf_filtered (stream, "%.17g", (double) doub);
1143 #endif
1144 }
1145
1146 void
1147 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1148 struct ui_file *stream)
1149 {
1150 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1151 char decstr[MAX_DECIMAL_STRING];
1152 unsigned len = TYPE_LENGTH (type);
1153
1154 decimal_to_string (valaddr, len, byte_order, decstr);
1155 fputs_filtered (decstr, stream);
1156 return;
1157 }
1158
1159 void
1160 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1161 unsigned len, enum bfd_endian byte_order)
1162 {
1163
1164 #define BITS_IN_BYTES 8
1165
1166 const gdb_byte *p;
1167 unsigned int i;
1168 int b;
1169
1170 /* Declared "int" so it will be signed.
1171 This ensures that right shift will shift in zeros. */
1172
1173 const int mask = 0x080;
1174
1175 /* FIXME: We should be not printing leading zeroes in most cases. */
1176
1177 if (byte_order == BFD_ENDIAN_BIG)
1178 {
1179 for (p = valaddr;
1180 p < valaddr + len;
1181 p++)
1182 {
1183 /* Every byte has 8 binary characters; peel off
1184 and print from the MSB end. */
1185
1186 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1187 {
1188 if (*p & (mask >> i))
1189 b = 1;
1190 else
1191 b = 0;
1192
1193 fprintf_filtered (stream, "%1d", b);
1194 }
1195 }
1196 }
1197 else
1198 {
1199 for (p = valaddr + len - 1;
1200 p >= valaddr;
1201 p--)
1202 {
1203 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1204 {
1205 if (*p & (mask >> i))
1206 b = 1;
1207 else
1208 b = 0;
1209
1210 fprintf_filtered (stream, "%1d", b);
1211 }
1212 }
1213 }
1214 }
1215
1216 /* VALADDR points to an integer of LEN bytes.
1217 Print it in octal on stream or format it in buf. */
1218
1219 void
1220 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1221 unsigned len, enum bfd_endian byte_order)
1222 {
1223 const gdb_byte *p;
1224 unsigned char octa1, octa2, octa3, carry;
1225 int cycle;
1226
1227 /* FIXME: We should be not printing leading zeroes in most cases. */
1228
1229
1230 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1231 * the extra bits, which cycle every three bytes:
1232 *
1233 * Byte side: 0 1 2 3
1234 * | | | |
1235 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1236 *
1237 * Octal side: 0 1 carry 3 4 carry ...
1238 *
1239 * Cycle number: 0 1 2
1240 *
1241 * But of course we are printing from the high side, so we have to
1242 * figure out where in the cycle we are so that we end up with no
1243 * left over bits at the end.
1244 */
1245 #define BITS_IN_OCTAL 3
1246 #define HIGH_ZERO 0340
1247 #define LOW_ZERO 0016
1248 #define CARRY_ZERO 0003
1249 #define HIGH_ONE 0200
1250 #define MID_ONE 0160
1251 #define LOW_ONE 0016
1252 #define CARRY_ONE 0001
1253 #define HIGH_TWO 0300
1254 #define MID_TWO 0070
1255 #define LOW_TWO 0007
1256
1257 /* For 32 we start in cycle 2, with two bits and one bit carry;
1258 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1259
1260 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1261 carry = 0;
1262
1263 fputs_filtered ("0", stream);
1264 if (byte_order == BFD_ENDIAN_BIG)
1265 {
1266 for (p = valaddr;
1267 p < valaddr + len;
1268 p++)
1269 {
1270 switch (cycle)
1271 {
1272 case 0:
1273 /* No carry in, carry out two bits. */
1274
1275 octa1 = (HIGH_ZERO & *p) >> 5;
1276 octa2 = (LOW_ZERO & *p) >> 2;
1277 carry = (CARRY_ZERO & *p);
1278 fprintf_filtered (stream, "%o", octa1);
1279 fprintf_filtered (stream, "%o", octa2);
1280 break;
1281
1282 case 1:
1283 /* Carry in two bits, carry out one bit. */
1284
1285 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1286 octa2 = (MID_ONE & *p) >> 4;
1287 octa3 = (LOW_ONE & *p) >> 1;
1288 carry = (CARRY_ONE & *p);
1289 fprintf_filtered (stream, "%o", octa1);
1290 fprintf_filtered (stream, "%o", octa2);
1291 fprintf_filtered (stream, "%o", octa3);
1292 break;
1293
1294 case 2:
1295 /* Carry in one bit, no carry out. */
1296
1297 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1298 octa2 = (MID_TWO & *p) >> 3;
1299 octa3 = (LOW_TWO & *p);
1300 carry = 0;
1301 fprintf_filtered (stream, "%o", octa1);
1302 fprintf_filtered (stream, "%o", octa2);
1303 fprintf_filtered (stream, "%o", octa3);
1304 break;
1305
1306 default:
1307 error (_("Internal error in octal conversion;"));
1308 }
1309
1310 cycle++;
1311 cycle = cycle % BITS_IN_OCTAL;
1312 }
1313 }
1314 else
1315 {
1316 for (p = valaddr + len - 1;
1317 p >= valaddr;
1318 p--)
1319 {
1320 switch (cycle)
1321 {
1322 case 0:
1323 /* Carry out, no carry in */
1324
1325 octa1 = (HIGH_ZERO & *p) >> 5;
1326 octa2 = (LOW_ZERO & *p) >> 2;
1327 carry = (CARRY_ZERO & *p);
1328 fprintf_filtered (stream, "%o", octa1);
1329 fprintf_filtered (stream, "%o", octa2);
1330 break;
1331
1332 case 1:
1333 /* Carry in, carry out */
1334
1335 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1336 octa2 = (MID_ONE & *p) >> 4;
1337 octa3 = (LOW_ONE & *p) >> 1;
1338 carry = (CARRY_ONE & *p);
1339 fprintf_filtered (stream, "%o", octa1);
1340 fprintf_filtered (stream, "%o", octa2);
1341 fprintf_filtered (stream, "%o", octa3);
1342 break;
1343
1344 case 2:
1345 /* Carry in, no carry out */
1346
1347 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1348 octa2 = (MID_TWO & *p) >> 3;
1349 octa3 = (LOW_TWO & *p);
1350 carry = 0;
1351 fprintf_filtered (stream, "%o", octa1);
1352 fprintf_filtered (stream, "%o", octa2);
1353 fprintf_filtered (stream, "%o", octa3);
1354 break;
1355
1356 default:
1357 error (_("Internal error in octal conversion;"));
1358 }
1359
1360 cycle++;
1361 cycle = cycle % BITS_IN_OCTAL;
1362 }
1363 }
1364
1365 }
1366
1367 /* VALADDR points to an integer of LEN bytes.
1368 Print it in decimal on stream or format it in buf. */
1369
1370 void
1371 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1372 unsigned len, enum bfd_endian byte_order)
1373 {
1374 #define TEN 10
1375 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1376 #define CARRY_LEFT( x ) ((x) % TEN)
1377 #define SHIFT( x ) ((x) << 4)
1378 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1379 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1380
1381 const gdb_byte *p;
1382 unsigned char *digits;
1383 int carry;
1384 int decimal_len;
1385 int i, j, decimal_digits;
1386 int dummy;
1387 int flip;
1388
1389 /* Base-ten number is less than twice as many digits
1390 as the base 16 number, which is 2 digits per byte. */
1391
1392 decimal_len = len * 2 * 2;
1393 digits = xmalloc (decimal_len);
1394
1395 for (i = 0; i < decimal_len; i++)
1396 {
1397 digits[i] = 0;
1398 }
1399
1400 /* Ok, we have an unknown number of bytes of data to be printed in
1401 * decimal.
1402 *
1403 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1404 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1405 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1406 *
1407 * The trick is that "digits" holds a base-10 number, but sometimes
1408 * the individual digits are > 10.
1409 *
1410 * Outer loop is per nibble (hex digit) of input, from MSD end to
1411 * LSD end.
1412 */
1413 decimal_digits = 0; /* Number of decimal digits so far */
1414 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1415 flip = 0;
1416 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1417 {
1418 /*
1419 * Multiply current base-ten number by 16 in place.
1420 * Each digit was between 0 and 9, now is between
1421 * 0 and 144.
1422 */
1423 for (j = 0; j < decimal_digits; j++)
1424 {
1425 digits[j] = SHIFT (digits[j]);
1426 }
1427
1428 /* Take the next nibble off the input and add it to what
1429 * we've got in the LSB position. Bottom 'digit' is now
1430 * between 0 and 159.
1431 *
1432 * "flip" is used to run this loop twice for each byte.
1433 */
1434 if (flip == 0)
1435 {
1436 /* Take top nibble. */
1437
1438 digits[0] += HIGH_NIBBLE (*p);
1439 flip = 1;
1440 }
1441 else
1442 {
1443 /* Take low nibble and bump our pointer "p". */
1444
1445 digits[0] += LOW_NIBBLE (*p);
1446 if (byte_order == BFD_ENDIAN_BIG)
1447 p++;
1448 else
1449 p--;
1450 flip = 0;
1451 }
1452
1453 /* Re-decimalize. We have to do this often enough
1454 * that we don't overflow, but once per nibble is
1455 * overkill. Easier this way, though. Note that the
1456 * carry is often larger than 10 (e.g. max initial
1457 * carry out of lowest nibble is 15, could bubble all
1458 * the way up greater than 10). So we have to do
1459 * the carrying beyond the last current digit.
1460 */
1461 carry = 0;
1462 for (j = 0; j < decimal_len - 1; j++)
1463 {
1464 digits[j] += carry;
1465
1466 /* "/" won't handle an unsigned char with
1467 * a value that if signed would be negative.
1468 * So extend to longword int via "dummy".
1469 */
1470 dummy = digits[j];
1471 carry = CARRY_OUT (dummy);
1472 digits[j] = CARRY_LEFT (dummy);
1473
1474 if (j >= decimal_digits && carry == 0)
1475 {
1476 /*
1477 * All higher digits are 0 and we
1478 * no longer have a carry.
1479 *
1480 * Note: "j" is 0-based, "decimal_digits" is
1481 * 1-based.
1482 */
1483 decimal_digits = j + 1;
1484 break;
1485 }
1486 }
1487 }
1488
1489 /* Ok, now "digits" is the decimal representation, with
1490 the "decimal_digits" actual digits. Print! */
1491
1492 for (i = decimal_digits - 1; i >= 0; i--)
1493 {
1494 fprintf_filtered (stream, "%1d", digits[i]);
1495 }
1496 xfree (digits);
1497 }
1498
1499 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1500
1501 void
1502 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1503 unsigned len, enum bfd_endian byte_order)
1504 {
1505 const gdb_byte *p;
1506
1507 /* FIXME: We should be not printing leading zeroes in most cases. */
1508
1509 fputs_filtered ("0x", stream);
1510 if (byte_order == BFD_ENDIAN_BIG)
1511 {
1512 for (p = valaddr;
1513 p < valaddr + len;
1514 p++)
1515 {
1516 fprintf_filtered (stream, "%02x", *p);
1517 }
1518 }
1519 else
1520 {
1521 for (p = valaddr + len - 1;
1522 p >= valaddr;
1523 p--)
1524 {
1525 fprintf_filtered (stream, "%02x", *p);
1526 }
1527 }
1528 }
1529
1530 /* VALADDR points to a char integer of LEN bytes.
1531 Print it out in appropriate language form on stream.
1532 Omit any leading zero chars. */
1533
1534 void
1535 print_char_chars (struct ui_file *stream, struct type *type,
1536 const gdb_byte *valaddr,
1537 unsigned len, enum bfd_endian byte_order)
1538 {
1539 const gdb_byte *p;
1540
1541 if (byte_order == BFD_ENDIAN_BIG)
1542 {
1543 p = valaddr;
1544 while (p < valaddr + len - 1 && *p == 0)
1545 ++p;
1546
1547 while (p < valaddr + len)
1548 {
1549 LA_EMIT_CHAR (*p, type, stream, '\'');
1550 ++p;
1551 }
1552 }
1553 else
1554 {
1555 p = valaddr + len - 1;
1556 while (p > valaddr && *p == 0)
1557 --p;
1558
1559 while (p >= valaddr)
1560 {
1561 LA_EMIT_CHAR (*p, type, stream, '\'');
1562 --p;
1563 }
1564 }
1565 }
1566
1567 /* Print function pointer with inferior address ADDRESS onto stdio
1568 stream STREAM. */
1569
1570 void
1571 print_function_pointer_address (const struct value_print_options *options,
1572 struct gdbarch *gdbarch,
1573 CORE_ADDR address,
1574 struct ui_file *stream)
1575 {
1576 CORE_ADDR func_addr
1577 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1578 &current_target);
1579
1580 /* If the function pointer is represented by a description, print
1581 the address of the description. */
1582 if (options->addressprint && func_addr != address)
1583 {
1584 fputs_filtered ("@", stream);
1585 fputs_filtered (paddress (gdbarch, address), stream);
1586 fputs_filtered (": ", stream);
1587 }
1588 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1589 }
1590
1591
1592 /* Print on STREAM using the given OPTIONS the index for the element
1593 at INDEX of an array whose index type is INDEX_TYPE. */
1594
1595 void
1596 maybe_print_array_index (struct type *index_type, LONGEST index,
1597 struct ui_file *stream,
1598 const struct value_print_options *options)
1599 {
1600 struct value *index_value;
1601
1602 if (!options->print_array_indexes)
1603 return;
1604
1605 index_value = value_from_longest (index_type, index);
1606
1607 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1608 }
1609
1610 /* Called by various <lang>_val_print routines to print elements of an
1611 array in the form "<elem1>, <elem2>, <elem3>, ...".
1612
1613 (FIXME?) Assumes array element separator is a comma, which is correct
1614 for all languages currently handled.
1615 (FIXME?) Some languages have a notation for repeated array elements,
1616 perhaps we should try to use that notation when appropriate. */
1617
1618 void
1619 val_print_array_elements (struct type *type,
1620 const gdb_byte *valaddr, int embedded_offset,
1621 CORE_ADDR address, struct ui_file *stream,
1622 int recurse,
1623 const struct value *val,
1624 const struct value_print_options *options,
1625 unsigned int i)
1626 {
1627 unsigned int things_printed = 0;
1628 unsigned len;
1629 struct type *elttype, *index_type, *base_index_type;
1630 unsigned eltlen;
1631 /* Position of the array element we are examining to see
1632 whether it is repeated. */
1633 unsigned int rep1;
1634 /* Number of repetitions we have detected so far. */
1635 unsigned int reps;
1636 LONGEST low_bound, high_bound;
1637 LONGEST low_pos, high_pos;
1638
1639 elttype = TYPE_TARGET_TYPE (type);
1640 eltlen = TYPE_LENGTH (check_typedef (elttype));
1641 index_type = TYPE_INDEX_TYPE (type);
1642
1643 if (get_array_bounds (type, &low_bound, &high_bound))
1644 {
1645 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
1646 base_index_type = TYPE_TARGET_TYPE (index_type);
1647 else
1648 base_index_type = index_type;
1649
1650 /* Non-contiguous enumerations types can by used as index types
1651 in some languages (e.g. Ada). In this case, the array length
1652 shall be computed from the positions of the first and last
1653 literal in the enumeration type, and not from the values
1654 of these literals. */
1655 if (!discrete_position (base_index_type, low_bound, &low_pos)
1656 || !discrete_position (base_index_type, high_bound, &high_pos))
1657 {
1658 warning (_("unable to get positions in array, use bounds instead"));
1659 low_pos = low_bound;
1660 high_pos = high_bound;
1661 }
1662
1663 /* The array length should normally be HIGH_POS - LOW_POS + 1.
1664 But we have to be a little extra careful, because some languages
1665 such as Ada allow LOW_POS to be greater than HIGH_POS for
1666 empty arrays. In that situation, the array length is just zero,
1667 not negative! */
1668 if (low_pos > high_pos)
1669 len = 0;
1670 else
1671 len = high_pos - low_pos + 1;
1672 }
1673 else
1674 {
1675 warning (_("unable to get bounds of array, assuming null array"));
1676 low_bound = 0;
1677 len = 0;
1678 }
1679
1680 annotate_array_section_begin (i, elttype);
1681
1682 for (; i < len && things_printed < options->print_max; i++)
1683 {
1684 if (i != 0)
1685 {
1686 if (options->prettyformat_arrays)
1687 {
1688 fprintf_filtered (stream, ",\n");
1689 print_spaces_filtered (2 + 2 * recurse, stream);
1690 }
1691 else
1692 {
1693 fprintf_filtered (stream, ", ");
1694 }
1695 }
1696 wrap_here (n_spaces (2 + 2 * recurse));
1697 maybe_print_array_index (index_type, i + low_bound,
1698 stream, options);
1699
1700 rep1 = i + 1;
1701 reps = 1;
1702 /* Only check for reps if repeat_count_threshold is not set to
1703 UINT_MAX (unlimited). */
1704 if (options->repeat_count_threshold < UINT_MAX)
1705 {
1706 while (rep1 < len
1707 && value_contents_eq (val,
1708 embedded_offset + i * eltlen,
1709 val,
1710 (embedded_offset
1711 + rep1 * eltlen),
1712 eltlen))
1713 {
1714 ++reps;
1715 ++rep1;
1716 }
1717 }
1718
1719 if (reps > options->repeat_count_threshold)
1720 {
1721 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1722 address, stream, recurse + 1, val, options,
1723 current_language);
1724 annotate_elt_rep (reps);
1725 fprintf_filtered (stream, " <repeats %u times>", reps);
1726 annotate_elt_rep_end ();
1727
1728 i = rep1 - 1;
1729 things_printed += options->repeat_count_threshold;
1730 }
1731 else
1732 {
1733 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1734 address,
1735 stream, recurse + 1, val, options, current_language);
1736 annotate_elt ();
1737 things_printed++;
1738 }
1739 }
1740 annotate_array_section_end ();
1741 if (i < len)
1742 {
1743 fprintf_filtered (stream, "...");
1744 }
1745 }
1746
1747 /* Read LEN bytes of target memory at address MEMADDR, placing the
1748 results in GDB's memory at MYADDR. Returns a count of the bytes
1749 actually read, and optionally a target_xfer_status value in the
1750 location pointed to by ERRPTR if ERRPTR is non-null. */
1751
1752 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1753 function be eliminated. */
1754
1755 static int
1756 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
1757 int len, int *errptr)
1758 {
1759 int nread; /* Number of bytes actually read. */
1760 int errcode; /* Error from last read. */
1761
1762 /* First try a complete read. */
1763 errcode = target_read_memory (memaddr, myaddr, len);
1764 if (errcode == 0)
1765 {
1766 /* Got it all. */
1767 nread = len;
1768 }
1769 else
1770 {
1771 /* Loop, reading one byte at a time until we get as much as we can. */
1772 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1773 {
1774 errcode = target_read_memory (memaddr++, myaddr++, 1);
1775 }
1776 /* If an error, the last read was unsuccessful, so adjust count. */
1777 if (errcode != 0)
1778 {
1779 nread--;
1780 }
1781 }
1782 if (errptr != NULL)
1783 {
1784 *errptr = errcode;
1785 }
1786 return (nread);
1787 }
1788
1789 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1790 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1791 allocated buffer containing the string, which the caller is responsible to
1792 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1793 success, or a target_xfer_status on failure.
1794
1795 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
1796 (including eventual NULs in the middle or end of the string).
1797
1798 If LEN is -1, stops at the first null character (not necessarily
1799 the first null byte) up to a maximum of FETCHLIMIT characters. Set
1800 FETCHLIMIT to UINT_MAX to read as many characters as possible from
1801 the string.
1802
1803 Unless an exception is thrown, BUFFER will always be allocated, even on
1804 failure. In this case, some characters might have been read before the
1805 failure happened. Check BYTES_READ to recognize this situation.
1806
1807 Note: There was a FIXME asking to make this code use target_read_string,
1808 but this function is more general (can read past null characters, up to
1809 given LEN). Besides, it is used much more often than target_read_string
1810 so it is more tested. Perhaps callers of target_read_string should use
1811 this function instead? */
1812
1813 int
1814 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1815 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
1816 {
1817 int errcode; /* Errno returned from bad reads. */
1818 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1819 gdb_byte *bufptr; /* Pointer to next available byte in
1820 buffer. */
1821 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1822
1823 /* Loop until we either have all the characters, or we encounter
1824 some error, such as bumping into the end of the address space. */
1825
1826 *buffer = NULL;
1827
1828 old_chain = make_cleanup (free_current_contents, buffer);
1829
1830 if (len > 0)
1831 {
1832 /* We want fetchlimit chars, so we might as well read them all in
1833 one operation. */
1834 unsigned int fetchlen = min (len, fetchlimit);
1835
1836 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
1837 bufptr = *buffer;
1838
1839 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
1840 / width;
1841 addr += nfetch * width;
1842 bufptr += nfetch * width;
1843 }
1844 else if (len == -1)
1845 {
1846 unsigned long bufsize = 0;
1847 unsigned int chunksize; /* Size of each fetch, in chars. */
1848 int found_nul; /* Non-zero if we found the nul char. */
1849 gdb_byte *limit; /* First location past end of fetch buffer. */
1850
1851 found_nul = 0;
1852 /* We are looking for a NUL terminator to end the fetching, so we
1853 might as well read in blocks that are large enough to be efficient,
1854 but not so large as to be slow if fetchlimit happens to be large.
1855 So we choose the minimum of 8 and fetchlimit. We used to use 200
1856 instead of 8 but 200 is way too big for remote debugging over a
1857 serial line. */
1858 chunksize = min (8, fetchlimit);
1859
1860 do
1861 {
1862 QUIT;
1863 nfetch = min (chunksize, fetchlimit - bufsize);
1864
1865 if (*buffer == NULL)
1866 *buffer = (gdb_byte *) xmalloc (nfetch * width);
1867 else
1868 *buffer = (gdb_byte *) xrealloc (*buffer,
1869 (nfetch + bufsize) * width);
1870
1871 bufptr = *buffer + bufsize * width;
1872 bufsize += nfetch;
1873
1874 /* Read as much as we can. */
1875 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1876 / width;
1877
1878 /* Scan this chunk for the null character that terminates the string
1879 to print. If found, we don't need to fetch any more. Note
1880 that bufptr is explicitly left pointing at the next character
1881 after the null character, or at the next character after the end
1882 of the buffer. */
1883
1884 limit = bufptr + nfetch * width;
1885 while (bufptr < limit)
1886 {
1887 unsigned long c;
1888
1889 c = extract_unsigned_integer (bufptr, width, byte_order);
1890 addr += width;
1891 bufptr += width;
1892 if (c == 0)
1893 {
1894 /* We don't care about any error which happened after
1895 the NUL terminator. */
1896 errcode = 0;
1897 found_nul = 1;
1898 break;
1899 }
1900 }
1901 }
1902 while (errcode == 0 /* no error */
1903 && bufptr - *buffer < fetchlimit * width /* no overrun */
1904 && !found_nul); /* haven't found NUL yet */
1905 }
1906 else
1907 { /* Length of string is really 0! */
1908 /* We always allocate *buffer. */
1909 *buffer = bufptr = xmalloc (1);
1910 errcode = 0;
1911 }
1912
1913 /* bufptr and addr now point immediately beyond the last byte which we
1914 consider part of the string (including a '\0' which ends the string). */
1915 *bytes_read = bufptr - *buffer;
1916
1917 QUIT;
1918
1919 discard_cleanups (old_chain);
1920
1921 return errcode;
1922 }
1923
1924 /* Return true if print_wchar can display W without resorting to a
1925 numeric escape, false otherwise. */
1926
1927 static int
1928 wchar_printable (gdb_wchar_t w)
1929 {
1930 return (gdb_iswprint (w)
1931 || w == LCST ('\a') || w == LCST ('\b')
1932 || w == LCST ('\f') || w == LCST ('\n')
1933 || w == LCST ('\r') || w == LCST ('\t')
1934 || w == LCST ('\v'));
1935 }
1936
1937 /* A helper function that converts the contents of STRING to wide
1938 characters and then appends them to OUTPUT. */
1939
1940 static void
1941 append_string_as_wide (const char *string,
1942 struct obstack *output)
1943 {
1944 for (; *string; ++string)
1945 {
1946 gdb_wchar_t w = gdb_btowc (*string);
1947 obstack_grow (output, &w, sizeof (gdb_wchar_t));
1948 }
1949 }
1950
1951 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
1952 original (target) bytes representing the character, ORIG_LEN is the
1953 number of valid bytes. WIDTH is the number of bytes in a base
1954 characters of the type. OUTPUT is an obstack to which wide
1955 characters are emitted. QUOTER is a (narrow) character indicating
1956 the style of quotes surrounding the character to be printed.
1957 NEED_ESCAPE is an in/out flag which is used to track numeric
1958 escapes across calls. */
1959
1960 static void
1961 print_wchar (gdb_wint_t w, const gdb_byte *orig,
1962 int orig_len, int width,
1963 enum bfd_endian byte_order,
1964 struct obstack *output,
1965 int quoter, int *need_escapep)
1966 {
1967 int need_escape = *need_escapep;
1968
1969 *need_escapep = 0;
1970
1971 /* iswprint implementation on Windows returns 1 for tab character.
1972 In order to avoid different printout on this host, we explicitly
1973 use wchar_printable function. */
1974 switch (w)
1975 {
1976 case LCST ('\a'):
1977 obstack_grow_wstr (output, LCST ("\\a"));
1978 break;
1979 case LCST ('\b'):
1980 obstack_grow_wstr (output, LCST ("\\b"));
1981 break;
1982 case LCST ('\f'):
1983 obstack_grow_wstr (output, LCST ("\\f"));
1984 break;
1985 case LCST ('\n'):
1986 obstack_grow_wstr (output, LCST ("\\n"));
1987 break;
1988 case LCST ('\r'):
1989 obstack_grow_wstr (output, LCST ("\\r"));
1990 break;
1991 case LCST ('\t'):
1992 obstack_grow_wstr (output, LCST ("\\t"));
1993 break;
1994 case LCST ('\v'):
1995 obstack_grow_wstr (output, LCST ("\\v"));
1996 break;
1997 default:
1998 {
1999 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2000 && w != LCST ('8')
2001 && w != LCST ('9'))))
2002 {
2003 gdb_wchar_t wchar = w;
2004
2005 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2006 obstack_grow_wstr (output, LCST ("\\"));
2007 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2008 }
2009 else
2010 {
2011 int i;
2012
2013 for (i = 0; i + width <= orig_len; i += width)
2014 {
2015 char octal[30];
2016 ULONGEST value;
2017
2018 value = extract_unsigned_integer (&orig[i], width,
2019 byte_order);
2020 /* If the value fits in 3 octal digits, print it that
2021 way. Otherwise, print it as a hex escape. */
2022 if (value <= 0777)
2023 xsnprintf (octal, sizeof (octal), "\\%.3o",
2024 (int) (value & 0777));
2025 else
2026 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2027 append_string_as_wide (octal, output);
2028 }
2029 /* If we somehow have extra bytes, print them now. */
2030 while (i < orig_len)
2031 {
2032 char octal[5];
2033
2034 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2035 append_string_as_wide (octal, output);
2036 ++i;
2037 }
2038
2039 *need_escapep = 1;
2040 }
2041 break;
2042 }
2043 }
2044 }
2045
2046 /* Print the character C on STREAM as part of the contents of a
2047 literal string whose delimiter is QUOTER. ENCODING names the
2048 encoding of C. */
2049
2050 void
2051 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2052 int quoter, const char *encoding)
2053 {
2054 enum bfd_endian byte_order
2055 = gdbarch_byte_order (get_type_arch (type));
2056 struct obstack wchar_buf, output;
2057 struct cleanup *cleanups;
2058 gdb_byte *buf;
2059 struct wchar_iterator *iter;
2060 int need_escape = 0;
2061
2062 buf = alloca (TYPE_LENGTH (type));
2063 pack_long (buf, type, c);
2064
2065 iter = make_wchar_iterator (buf, TYPE_LENGTH (type),
2066 encoding, TYPE_LENGTH (type));
2067 cleanups = make_cleanup_wchar_iterator (iter);
2068
2069 /* This holds the printable form of the wchar_t data. */
2070 obstack_init (&wchar_buf);
2071 make_cleanup_obstack_free (&wchar_buf);
2072
2073 while (1)
2074 {
2075 int num_chars;
2076 gdb_wchar_t *chars;
2077 const gdb_byte *buf;
2078 size_t buflen;
2079 int print_escape = 1;
2080 enum wchar_iterate_result result;
2081
2082 num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen);
2083 if (num_chars < 0)
2084 break;
2085 if (num_chars > 0)
2086 {
2087 /* If all characters are printable, print them. Otherwise,
2088 we're going to have to print an escape sequence. We
2089 check all characters because we want to print the target
2090 bytes in the escape sequence, and we don't know character
2091 boundaries there. */
2092 int i;
2093
2094 print_escape = 0;
2095 for (i = 0; i < num_chars; ++i)
2096 if (!wchar_printable (chars[i]))
2097 {
2098 print_escape = 1;
2099 break;
2100 }
2101
2102 if (!print_escape)
2103 {
2104 for (i = 0; i < num_chars; ++i)
2105 print_wchar (chars[i], buf, buflen,
2106 TYPE_LENGTH (type), byte_order,
2107 &wchar_buf, quoter, &need_escape);
2108 }
2109 }
2110
2111 /* This handles the NUM_CHARS == 0 case as well. */
2112 if (print_escape)
2113 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2114 byte_order, &wchar_buf, quoter, &need_escape);
2115 }
2116
2117 /* The output in the host encoding. */
2118 obstack_init (&output);
2119 make_cleanup_obstack_free (&output);
2120
2121 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2122 (gdb_byte *) obstack_base (&wchar_buf),
2123 obstack_object_size (&wchar_buf),
2124 sizeof (gdb_wchar_t), &output, translit_char);
2125 obstack_1grow (&output, '\0');
2126
2127 fputs_filtered (obstack_base (&output), stream);
2128
2129 do_cleanups (cleanups);
2130 }
2131
2132 /* Return the repeat count of the next character/byte in ITER,
2133 storing the result in VEC. */
2134
2135 static int
2136 count_next_character (struct wchar_iterator *iter,
2137 VEC (converted_character_d) **vec)
2138 {
2139 struct converted_character *current;
2140
2141 if (VEC_empty (converted_character_d, *vec))
2142 {
2143 struct converted_character tmp;
2144 gdb_wchar_t *chars;
2145
2146 tmp.num_chars
2147 = wchar_iterate (iter, &tmp.result, &chars, &tmp.buf, &tmp.buflen);
2148 if (tmp.num_chars > 0)
2149 {
2150 gdb_assert (tmp.num_chars < MAX_WCHARS);
2151 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2152 }
2153 VEC_safe_push (converted_character_d, *vec, &tmp);
2154 }
2155
2156 current = VEC_last (converted_character_d, *vec);
2157
2158 /* Count repeated characters or bytes. */
2159 current->repeat_count = 1;
2160 if (current->num_chars == -1)
2161 {
2162 /* EOF */
2163 return -1;
2164 }
2165 else
2166 {
2167 gdb_wchar_t *chars;
2168 struct converted_character d;
2169 int repeat;
2170
2171 d.repeat_count = 0;
2172
2173 while (1)
2174 {
2175 /* Get the next character. */
2176 d.num_chars
2177 = wchar_iterate (iter, &d.result, &chars, &d.buf, &d.buflen);
2178
2179 /* If a character was successfully converted, save the character
2180 into the converted character. */
2181 if (d.num_chars > 0)
2182 {
2183 gdb_assert (d.num_chars < MAX_WCHARS);
2184 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2185 }
2186
2187 /* Determine if the current character is the same as this
2188 new character. */
2189 if (d.num_chars == current->num_chars && d.result == current->result)
2190 {
2191 /* There are two cases to consider:
2192
2193 1) Equality of converted character (num_chars > 0)
2194 2) Equality of non-converted character (num_chars == 0) */
2195 if ((current->num_chars > 0
2196 && memcmp (current->chars, d.chars,
2197 WCHAR_BUFLEN (current->num_chars)) == 0)
2198 || (current->num_chars == 0
2199 && current->buflen == d.buflen
2200 && memcmp (current->buf, d.buf, current->buflen) == 0))
2201 ++current->repeat_count;
2202 else
2203 break;
2204 }
2205 else
2206 break;
2207 }
2208
2209 /* Push this next converted character onto the result vector. */
2210 repeat = current->repeat_count;
2211 VEC_safe_push (converted_character_d, *vec, &d);
2212 return repeat;
2213 }
2214 }
2215
2216 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2217 character to use with string output. WIDTH is the size of the output
2218 character type. BYTE_ORDER is the the target byte order. OPTIONS
2219 is the user's print options. */
2220
2221 static void
2222 print_converted_chars_to_obstack (struct obstack *obstack,
2223 VEC (converted_character_d) *chars,
2224 int quote_char, int width,
2225 enum bfd_endian byte_order,
2226 const struct value_print_options *options)
2227 {
2228 unsigned int idx;
2229 struct converted_character *elem;
2230 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2231 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2232 int need_escape = 0;
2233
2234 /* Set the start state. */
2235 idx = 0;
2236 last = state = START;
2237 elem = NULL;
2238
2239 while (1)
2240 {
2241 switch (state)
2242 {
2243 case START:
2244 /* Nothing to do. */
2245 break;
2246
2247 case SINGLE:
2248 {
2249 int j;
2250
2251 /* We are outputting a single character
2252 (< options->repeat_count_threshold). */
2253
2254 if (last != SINGLE)
2255 {
2256 /* We were outputting some other type of content, so we
2257 must output and a comma and a quote. */
2258 if (last != START)
2259 obstack_grow_wstr (obstack, LCST (", "));
2260 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2261 }
2262 /* Output the character. */
2263 for (j = 0; j < elem->repeat_count; ++j)
2264 {
2265 if (elem->result == wchar_iterate_ok)
2266 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2267 byte_order, obstack, quote_char, &need_escape);
2268 else
2269 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2270 byte_order, obstack, quote_char, &need_escape);
2271 }
2272 }
2273 break;
2274
2275 case REPEAT:
2276 {
2277 int j;
2278 char *s;
2279
2280 /* We are outputting a character with a repeat count
2281 greater than options->repeat_count_threshold. */
2282
2283 if (last == SINGLE)
2284 {
2285 /* We were outputting a single string. Terminate the
2286 string. */
2287 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2288 }
2289 if (last != START)
2290 obstack_grow_wstr (obstack, LCST (", "));
2291
2292 /* Output the character and repeat string. */
2293 obstack_grow_wstr (obstack, LCST ("'"));
2294 if (elem->result == wchar_iterate_ok)
2295 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2296 byte_order, obstack, quote_char, &need_escape);
2297 else
2298 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2299 byte_order, obstack, quote_char, &need_escape);
2300 obstack_grow_wstr (obstack, LCST ("'"));
2301 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2302 for (j = 0; s[j]; ++j)
2303 {
2304 gdb_wchar_t w = gdb_btowc (s[j]);
2305 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2306 }
2307 xfree (s);
2308 }
2309 break;
2310
2311 case INCOMPLETE:
2312 /* We are outputting an incomplete sequence. */
2313 if (last == SINGLE)
2314 {
2315 /* If we were outputting a string of SINGLE characters,
2316 terminate the quote. */
2317 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2318 }
2319 if (last != START)
2320 obstack_grow_wstr (obstack, LCST (", "));
2321
2322 /* Output the incomplete sequence string. */
2323 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2324 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2325 obstack, 0, &need_escape);
2326 obstack_grow_wstr (obstack, LCST (">"));
2327
2328 /* We do not attempt to outupt anything after this. */
2329 state = FINISH;
2330 break;
2331
2332 case FINISH:
2333 /* All done. If we were outputting a string of SINGLE
2334 characters, the string must be terminated. Otherwise,
2335 REPEAT and INCOMPLETE are always left properly terminated. */
2336 if (last == SINGLE)
2337 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2338
2339 return;
2340 }
2341
2342 /* Get the next element and state. */
2343 last = state;
2344 if (state != FINISH)
2345 {
2346 elem = VEC_index (converted_character_d, chars, idx++);
2347 switch (elem->result)
2348 {
2349 case wchar_iterate_ok:
2350 case wchar_iterate_invalid:
2351 if (elem->repeat_count > options->repeat_count_threshold)
2352 state = REPEAT;
2353 else
2354 state = SINGLE;
2355 break;
2356
2357 case wchar_iterate_incomplete:
2358 state = INCOMPLETE;
2359 break;
2360
2361 case wchar_iterate_eof:
2362 state = FINISH;
2363 break;
2364 }
2365 }
2366 }
2367 }
2368
2369 /* Print the character string STRING, printing at most LENGTH
2370 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2371 the type of each character. OPTIONS holds the printing options;
2372 printing stops early if the number hits print_max; repeat counts
2373 are printed as appropriate. Print ellipses at the end if we had to
2374 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2375 QUOTE_CHAR is the character to print at each end of the string. If
2376 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2377 omitted. */
2378
2379 void
2380 generic_printstr (struct ui_file *stream, struct type *type,
2381 const gdb_byte *string, unsigned int length,
2382 const char *encoding, int force_ellipses,
2383 int quote_char, int c_style_terminator,
2384 const struct value_print_options *options)
2385 {
2386 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2387 unsigned int i;
2388 int width = TYPE_LENGTH (type);
2389 struct obstack wchar_buf, output;
2390 struct cleanup *cleanup;
2391 struct wchar_iterator *iter;
2392 int finished = 0;
2393 struct converted_character *last;
2394 VEC (converted_character_d) *converted_chars;
2395
2396 if (length == -1)
2397 {
2398 unsigned long current_char = 1;
2399
2400 for (i = 0; current_char; ++i)
2401 {
2402 QUIT;
2403 current_char = extract_unsigned_integer (string + i * width,
2404 width, byte_order);
2405 }
2406 length = i;
2407 }
2408
2409 /* If the string was not truncated due to `set print elements', and
2410 the last byte of it is a null, we don't print that, in
2411 traditional C style. */
2412 if (c_style_terminator
2413 && !force_ellipses
2414 && length > 0
2415 && (extract_unsigned_integer (string + (length - 1) * width,
2416 width, byte_order) == 0))
2417 length--;
2418
2419 if (length == 0)
2420 {
2421 fputs_filtered ("\"\"", stream);
2422 return;
2423 }
2424
2425 /* Arrange to iterate over the characters, in wchar_t form. */
2426 iter = make_wchar_iterator (string, length * width, encoding, width);
2427 cleanup = make_cleanup_wchar_iterator (iter);
2428 converted_chars = NULL;
2429 make_cleanup (VEC_cleanup (converted_character_d), &converted_chars);
2430
2431 /* Convert characters until the string is over or the maximum
2432 number of printed characters has been reached. */
2433 i = 0;
2434 while (i < options->print_max)
2435 {
2436 int r;
2437
2438 QUIT;
2439
2440 /* Grab the next character and repeat count. */
2441 r = count_next_character (iter, &converted_chars);
2442
2443 /* If less than zero, the end of the input string was reached. */
2444 if (r < 0)
2445 break;
2446
2447 /* Otherwise, add the count to the total print count and get
2448 the next character. */
2449 i += r;
2450 }
2451
2452 /* Get the last element and determine if the entire string was
2453 processed. */
2454 last = VEC_last (converted_character_d, converted_chars);
2455 finished = (last->result == wchar_iterate_eof);
2456
2457 /* Ensure that CONVERTED_CHARS is terminated. */
2458 last->result = wchar_iterate_eof;
2459
2460 /* WCHAR_BUF is the obstack we use to represent the string in
2461 wchar_t form. */
2462 obstack_init (&wchar_buf);
2463 make_cleanup_obstack_free (&wchar_buf);
2464
2465 /* Print the output string to the obstack. */
2466 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2467 width, byte_order, options);
2468
2469 if (force_ellipses || !finished)
2470 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2471
2472 /* OUTPUT is where we collect `char's for printing. */
2473 obstack_init (&output);
2474 make_cleanup_obstack_free (&output);
2475
2476 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2477 (gdb_byte *) obstack_base (&wchar_buf),
2478 obstack_object_size (&wchar_buf),
2479 sizeof (gdb_wchar_t), &output, translit_char);
2480 obstack_1grow (&output, '\0');
2481
2482 fputs_filtered (obstack_base (&output), stream);
2483
2484 do_cleanups (cleanup);
2485 }
2486
2487 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2488 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2489 stops at the first null byte, otherwise printing proceeds (including null
2490 bytes) until either print_max or LEN characters have been printed,
2491 whichever is smaller. ENCODING is the name of the string's
2492 encoding. It can be NULL, in which case the target encoding is
2493 assumed. */
2494
2495 int
2496 val_print_string (struct type *elttype, const char *encoding,
2497 CORE_ADDR addr, int len,
2498 struct ui_file *stream,
2499 const struct value_print_options *options)
2500 {
2501 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2502 int errcode; /* Errno returned from bad reads. */
2503 int found_nul; /* Non-zero if we found the nul char. */
2504 unsigned int fetchlimit; /* Maximum number of chars to print. */
2505 int bytes_read;
2506 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2507 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2508 struct gdbarch *gdbarch = get_type_arch (elttype);
2509 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2510 int width = TYPE_LENGTH (elttype);
2511
2512 /* First we need to figure out the limit on the number of characters we are
2513 going to attempt to fetch and print. This is actually pretty simple. If
2514 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2515 LEN is -1, then the limit is print_max. This is true regardless of
2516 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2517 because finding the null byte (or available memory) is what actually
2518 limits the fetch. */
2519
2520 fetchlimit = (len == -1 ? options->print_max : min (len,
2521 options->print_max));
2522
2523 errcode = read_string (addr, len, width, fetchlimit, byte_order,
2524 &buffer, &bytes_read);
2525 old_chain = make_cleanup (xfree, buffer);
2526
2527 addr += bytes_read;
2528
2529 /* We now have either successfully filled the buffer to fetchlimit,
2530 or terminated early due to an error or finding a null char when
2531 LEN is -1. */
2532
2533 /* Determine found_nul by looking at the last character read. */
2534 found_nul = 0;
2535 if (bytes_read >= width)
2536 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2537 byte_order) == 0;
2538 if (len == -1 && !found_nul)
2539 {
2540 gdb_byte *peekbuf;
2541
2542 /* We didn't find a NUL terminator we were looking for. Attempt
2543 to peek at the next character. If not successful, or it is not
2544 a null byte, then force ellipsis to be printed. */
2545
2546 peekbuf = (gdb_byte *) alloca (width);
2547
2548 if (target_read_memory (addr, peekbuf, width) == 0
2549 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2550 force_ellipsis = 1;
2551 }
2552 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
2553 {
2554 /* Getting an error when we have a requested length, or fetching less
2555 than the number of characters actually requested, always make us
2556 print ellipsis. */
2557 force_ellipsis = 1;
2558 }
2559
2560 /* If we get an error before fetching anything, don't print a string.
2561 But if we fetch something and then get an error, print the string
2562 and then the error message. */
2563 if (errcode == 0 || bytes_read > 0)
2564 {
2565 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
2566 encoding, force_ellipsis, options);
2567 }
2568
2569 if (errcode != 0)
2570 {
2571 char *str;
2572
2573 str = memory_error_message (errcode, gdbarch, addr);
2574 make_cleanup (xfree, str);
2575
2576 fprintf_filtered (stream, "<error: ");
2577 fputs_filtered (str, stream);
2578 fprintf_filtered (stream, ">");
2579 }
2580
2581 gdb_flush (stream);
2582 do_cleanups (old_chain);
2583
2584 return (bytes_read / width);
2585 }
2586 \f
2587
2588 /* The 'set input-radix' command writes to this auxiliary variable.
2589 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2590 it is left unchanged. */
2591
2592 static unsigned input_radix_1 = 10;
2593
2594 /* Validate an input or output radix setting, and make sure the user
2595 knows what they really did here. Radix setting is confusing, e.g.
2596 setting the input radix to "10" never changes it! */
2597
2598 static void
2599 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
2600 {
2601 set_input_radix_1 (from_tty, input_radix_1);
2602 }
2603
2604 static void
2605 set_input_radix_1 (int from_tty, unsigned radix)
2606 {
2607 /* We don't currently disallow any input radix except 0 or 1, which don't
2608 make any mathematical sense. In theory, we can deal with any input
2609 radix greater than 1, even if we don't have unique digits for every
2610 value from 0 to radix-1, but in practice we lose on large radix values.
2611 We should either fix the lossage or restrict the radix range more.
2612 (FIXME). */
2613
2614 if (radix < 2)
2615 {
2616 input_radix_1 = input_radix;
2617 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2618 radix);
2619 }
2620 input_radix_1 = input_radix = radix;
2621 if (from_tty)
2622 {
2623 printf_filtered (_("Input radix now set to "
2624 "decimal %u, hex %x, octal %o.\n"),
2625 radix, radix, radix);
2626 }
2627 }
2628
2629 /* The 'set output-radix' command writes to this auxiliary variable.
2630 If the requested radix is valid, OUTPUT_RADIX is updated,
2631 otherwise, it is left unchanged. */
2632
2633 static unsigned output_radix_1 = 10;
2634
2635 static void
2636 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
2637 {
2638 set_output_radix_1 (from_tty, output_radix_1);
2639 }
2640
2641 static void
2642 set_output_radix_1 (int from_tty, unsigned radix)
2643 {
2644 /* Validate the radix and disallow ones that we aren't prepared to
2645 handle correctly, leaving the radix unchanged. */
2646 switch (radix)
2647 {
2648 case 16:
2649 user_print_options.output_format = 'x'; /* hex */
2650 break;
2651 case 10:
2652 user_print_options.output_format = 0; /* decimal */
2653 break;
2654 case 8:
2655 user_print_options.output_format = 'o'; /* octal */
2656 break;
2657 default:
2658 output_radix_1 = output_radix;
2659 error (_("Unsupported output radix ``decimal %u''; "
2660 "output radix unchanged."),
2661 radix);
2662 }
2663 output_radix_1 = output_radix = radix;
2664 if (from_tty)
2665 {
2666 printf_filtered (_("Output radix now set to "
2667 "decimal %u, hex %x, octal %o.\n"),
2668 radix, radix, radix);
2669 }
2670 }
2671
2672 /* Set both the input and output radix at once. Try to set the output radix
2673 first, since it has the most restrictive range. An radix that is valid as
2674 an output radix is also valid as an input radix.
2675
2676 It may be useful to have an unusual input radix. If the user wishes to
2677 set an input radix that is not valid as an output radix, he needs to use
2678 the 'set input-radix' command. */
2679
2680 static void
2681 set_radix (char *arg, int from_tty)
2682 {
2683 unsigned radix;
2684
2685 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2686 set_output_radix_1 (0, radix);
2687 set_input_radix_1 (0, radix);
2688 if (from_tty)
2689 {
2690 printf_filtered (_("Input and output radices now set to "
2691 "decimal %u, hex %x, octal %o.\n"),
2692 radix, radix, radix);
2693 }
2694 }
2695
2696 /* Show both the input and output radices. */
2697
2698 static void
2699 show_radix (char *arg, int from_tty)
2700 {
2701 if (from_tty)
2702 {
2703 if (input_radix == output_radix)
2704 {
2705 printf_filtered (_("Input and output radices set to "
2706 "decimal %u, hex %x, octal %o.\n"),
2707 input_radix, input_radix, input_radix);
2708 }
2709 else
2710 {
2711 printf_filtered (_("Input radix set to decimal "
2712 "%u, hex %x, octal %o.\n"),
2713 input_radix, input_radix, input_radix);
2714 printf_filtered (_("Output radix set to decimal "
2715 "%u, hex %x, octal %o.\n"),
2716 output_radix, output_radix, output_radix);
2717 }
2718 }
2719 }
2720 \f
2721
2722 static void
2723 set_print (char *arg, int from_tty)
2724 {
2725 printf_unfiltered (
2726 "\"set print\" must be followed by the name of a print subcommand.\n");
2727 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
2728 }
2729
2730 static void
2731 show_print (char *args, int from_tty)
2732 {
2733 cmd_show_list (showprintlist, from_tty, "");
2734 }
2735
2736 static void
2737 set_print_raw (char *arg, int from_tty)
2738 {
2739 printf_unfiltered (
2740 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
2741 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
2742 }
2743
2744 static void
2745 show_print_raw (char *args, int from_tty)
2746 {
2747 cmd_show_list (showprintrawlist, from_tty, "");
2748 }
2749
2750 \f
2751 void
2752 _initialize_valprint (void)
2753 {
2754 add_prefix_cmd ("print", no_class, set_print,
2755 _("Generic command for setting how things print."),
2756 &setprintlist, "set print ", 0, &setlist);
2757 add_alias_cmd ("p", "print", no_class, 1, &setlist);
2758 /* Prefer set print to set prompt. */
2759 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
2760
2761 add_prefix_cmd ("print", no_class, show_print,
2762 _("Generic command for showing print settings."),
2763 &showprintlist, "show print ", 0, &showlist);
2764 add_alias_cmd ("p", "print", no_class, 1, &showlist);
2765 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
2766
2767 add_prefix_cmd ("raw", no_class, set_print_raw,
2768 _("\
2769 Generic command for setting what things to print in \"raw\" mode."),
2770 &setprintrawlist, "set print raw ", 0, &setprintlist);
2771 add_prefix_cmd ("raw", no_class, show_print_raw,
2772 _("Generic command for showing \"print raw\" settings."),
2773 &showprintrawlist, "show print raw ", 0, &showprintlist);
2774
2775 add_setshow_uinteger_cmd ("elements", no_class,
2776 &user_print_options.print_max, _("\
2777 Set limit on string chars or array elements to print."), _("\
2778 Show limit on string chars or array elements to print."), _("\
2779 \"set print elements unlimited\" causes there to be no limit."),
2780 NULL,
2781 show_print_max,
2782 &setprintlist, &showprintlist);
2783
2784 add_setshow_boolean_cmd ("null-stop", no_class,
2785 &user_print_options.stop_print_at_null, _("\
2786 Set printing of char arrays to stop at first null char."), _("\
2787 Show printing of char arrays to stop at first null char."), NULL,
2788 NULL,
2789 show_stop_print_at_null,
2790 &setprintlist, &showprintlist);
2791
2792 add_setshow_uinteger_cmd ("repeats", no_class,
2793 &user_print_options.repeat_count_threshold, _("\
2794 Set threshold for repeated print elements."), _("\
2795 Show threshold for repeated print elements."), _("\
2796 \"set print repeats unlimited\" causes all elements to be individually printed."),
2797 NULL,
2798 show_repeat_count_threshold,
2799 &setprintlist, &showprintlist);
2800
2801 add_setshow_boolean_cmd ("pretty", class_support,
2802 &user_print_options.prettyformat_structs, _("\
2803 Set pretty formatting of structures."), _("\
2804 Show pretty formatting of structures."), NULL,
2805 NULL,
2806 show_prettyformat_structs,
2807 &setprintlist, &showprintlist);
2808
2809 add_setshow_boolean_cmd ("union", class_support,
2810 &user_print_options.unionprint, _("\
2811 Set printing of unions interior to structures."), _("\
2812 Show printing of unions interior to structures."), NULL,
2813 NULL,
2814 show_unionprint,
2815 &setprintlist, &showprintlist);
2816
2817 add_setshow_boolean_cmd ("array", class_support,
2818 &user_print_options.prettyformat_arrays, _("\
2819 Set pretty formatting of arrays."), _("\
2820 Show pretty formatting of arrays."), NULL,
2821 NULL,
2822 show_prettyformat_arrays,
2823 &setprintlist, &showprintlist);
2824
2825 add_setshow_boolean_cmd ("address", class_support,
2826 &user_print_options.addressprint, _("\
2827 Set printing of addresses."), _("\
2828 Show printing of addresses."), NULL,
2829 NULL,
2830 show_addressprint,
2831 &setprintlist, &showprintlist);
2832
2833 add_setshow_boolean_cmd ("symbol", class_support,
2834 &user_print_options.symbol_print, _("\
2835 Set printing of symbol names when printing pointers."), _("\
2836 Show printing of symbol names when printing pointers."),
2837 NULL, NULL,
2838 show_symbol_print,
2839 &setprintlist, &showprintlist);
2840
2841 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
2842 _("\
2843 Set default input radix for entering numbers."), _("\
2844 Show default input radix for entering numbers."), NULL,
2845 set_input_radix,
2846 show_input_radix,
2847 &setlist, &showlist);
2848
2849 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
2850 _("\
2851 Set default output radix for printing of values."), _("\
2852 Show default output radix for printing of values."), NULL,
2853 set_output_radix,
2854 show_output_radix,
2855 &setlist, &showlist);
2856
2857 /* The "set radix" and "show radix" commands are special in that
2858 they are like normal set and show commands but allow two normally
2859 independent variables to be either set or shown with a single
2860 command. So the usual deprecated_add_set_cmd() and [deleted]
2861 add_show_from_set() commands aren't really appropriate. */
2862 /* FIXME: i18n: With the new add_setshow_integer command, that is no
2863 longer true - show can display anything. */
2864 add_cmd ("radix", class_support, set_radix, _("\
2865 Set default input and output number radices.\n\
2866 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
2867 Without an argument, sets both radices back to the default value of 10."),
2868 &setlist);
2869 add_cmd ("radix", class_support, show_radix, _("\
2870 Show the default input and output number radices.\n\
2871 Use 'show input-radix' or 'show output-radix' to independently show each."),
2872 &showlist);
2873
2874 add_setshow_boolean_cmd ("array-indexes", class_support,
2875 &user_print_options.print_array_indexes, _("\
2876 Set printing of array indexes."), _("\
2877 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
2878 &setprintlist, &showprintlist);
2879 }
This page took 0.122415 seconds and 4 git commands to generate.