Introduce assign_operation
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "target-float.h"
31 #include "extension.h"
32 #include "ada-lang.h"
33 #include "gdb_obstack.h"
34 #include "charset.h"
35 #include "typeprint.h"
36 #include <ctype.h>
37 #include <algorithm>
38 #include "gdbsupport/byte-vector.h"
39 #include "cli/cli-option.h"
40 #include "gdbarch.h"
41 #include "cli/cli-style.h"
42 #include "count-one-bits.h"
43 #include "c-lang.h"
44 #include "cp-abi.h"
45
46 /* Maximum number of wchars returned from wchar_iterate. */
47 #define MAX_WCHARS 4
48
49 /* A convenience macro to compute the size of a wchar_t buffer containing X
50 characters. */
51 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
52
53 /* Character buffer size saved while iterating over wchars. */
54 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
55
56 /* A structure to encapsulate state information from iterated
57 character conversions. */
58 struct converted_character
59 {
60 /* The number of characters converted. */
61 int num_chars;
62
63 /* The result of the conversion. See charset.h for more. */
64 enum wchar_iterate_result result;
65
66 /* The (saved) converted character(s). */
67 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
68
69 /* The first converted target byte. */
70 const gdb_byte *buf;
71
72 /* The number of bytes converted. */
73 size_t buflen;
74
75 /* How many times this character(s) is repeated. */
76 int repeat_count;
77 };
78
79 /* Command lists for set/show print raw. */
80 struct cmd_list_element *setprintrawlist;
81 struct cmd_list_element *showprintrawlist;
82
83 /* Prototypes for local functions */
84
85 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
86 int len, int *errptr);
87
88 static void set_input_radix_1 (int, unsigned);
89
90 static void set_output_radix_1 (int, unsigned);
91
92 static void val_print_type_code_flags (struct type *type,
93 struct value *original_value,
94 int embedded_offset,
95 struct ui_file *stream);
96
97 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
98 #define PRINT_MAX_DEPTH_DEFAULT 20 /* Start print_max_depth off at this value. */
99
100 struct value_print_options user_print_options =
101 {
102 Val_prettyformat_default, /* prettyformat */
103 0, /* prettyformat_arrays */
104 0, /* prettyformat_structs */
105 0, /* vtblprint */
106 1, /* unionprint */
107 1, /* addressprint */
108 0, /* objectprint */
109 PRINT_MAX_DEFAULT, /* print_max */
110 10, /* repeat_count_threshold */
111 0, /* output_format */
112 0, /* format */
113 0, /* stop_print_at_null */
114 0, /* print_array_indexes */
115 0, /* deref_ref */
116 1, /* static_field_print */
117 1, /* pascal_static_field_print */
118 0, /* raw */
119 0, /* summary */
120 1, /* symbol_print */
121 PRINT_MAX_DEPTH_DEFAULT, /* max_depth */
122 1 /* finish_print */
123 };
124
125 /* Initialize *OPTS to be a copy of the user print options. */
126 void
127 get_user_print_options (struct value_print_options *opts)
128 {
129 *opts = user_print_options;
130 }
131
132 /* Initialize *OPTS to be a copy of the user print options, but with
133 pretty-formatting disabled. */
134 void
135 get_no_prettyformat_print_options (struct value_print_options *opts)
136 {
137 *opts = user_print_options;
138 opts->prettyformat = Val_no_prettyformat;
139 }
140
141 /* Initialize *OPTS to be a copy of the user print options, but using
142 FORMAT as the formatting option. */
143 void
144 get_formatted_print_options (struct value_print_options *opts,
145 char format)
146 {
147 *opts = user_print_options;
148 opts->format = format;
149 }
150
151 static void
152 show_print_max (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154 {
155 fprintf_filtered (file,
156 _("Limit on string chars or array "
157 "elements to print is %s.\n"),
158 value);
159 }
160
161
162 /* Default input and output radixes, and output format letter. */
163
164 unsigned input_radix = 10;
165 static void
166 show_input_radix (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file,
170 _("Default input radix for entering numbers is %s.\n"),
171 value);
172 }
173
174 unsigned output_radix = 10;
175 static void
176 show_output_radix (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 fprintf_filtered (file,
180 _("Default output radix for printing of values is %s.\n"),
181 value);
182 }
183
184 /* By default we print arrays without printing the index of each element in
185 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
186
187 static void
188 show_print_array_indexes (struct ui_file *file, int from_tty,
189 struct cmd_list_element *c, const char *value)
190 {
191 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
192 }
193
194 /* Print repeat counts if there are more than this many repetitions of an
195 element in an array. Referenced by the low level language dependent
196 print routines. */
197
198 static void
199 show_repeat_count_threshold (struct ui_file *file, int from_tty,
200 struct cmd_list_element *c, const char *value)
201 {
202 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
203 value);
204 }
205
206 /* If nonzero, stops printing of char arrays at first null. */
207
208 static void
209 show_stop_print_at_null (struct ui_file *file, int from_tty,
210 struct cmd_list_element *c, const char *value)
211 {
212 fprintf_filtered (file,
213 _("Printing of char arrays to stop "
214 "at first null char is %s.\n"),
215 value);
216 }
217
218 /* Controls pretty printing of structures. */
219
220 static void
221 show_prettyformat_structs (struct ui_file *file, int from_tty,
222 struct cmd_list_element *c, const char *value)
223 {
224 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
225 }
226
227 /* Controls pretty printing of arrays. */
228
229 static void
230 show_prettyformat_arrays (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232 {
233 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
234 }
235
236 /* If nonzero, causes unions inside structures or other unions to be
237 printed. */
238
239 static void
240 show_unionprint (struct ui_file *file, int from_tty,
241 struct cmd_list_element *c, const char *value)
242 {
243 fprintf_filtered (file,
244 _("Printing of unions interior to structures is %s.\n"),
245 value);
246 }
247
248 /* If nonzero, causes machine addresses to be printed in certain contexts. */
249
250 static void
251 show_addressprint (struct ui_file *file, int from_tty,
252 struct cmd_list_element *c, const char *value)
253 {
254 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
255 }
256
257 static void
258 show_symbol_print (struct ui_file *file, int from_tty,
259 struct cmd_list_element *c, const char *value)
260 {
261 fprintf_filtered (file,
262 _("Printing of symbols when printing pointers is %s.\n"),
263 value);
264 }
265
266 \f
267
268 /* A helper function for val_print. When printing in "summary" mode,
269 we want to print scalar arguments, but not aggregate arguments.
270 This function distinguishes between the two. */
271
272 int
273 val_print_scalar_type_p (struct type *type)
274 {
275 type = check_typedef (type);
276 while (TYPE_IS_REFERENCE (type))
277 {
278 type = TYPE_TARGET_TYPE (type);
279 type = check_typedef (type);
280 }
281 switch (type->code ())
282 {
283 case TYPE_CODE_ARRAY:
284 case TYPE_CODE_STRUCT:
285 case TYPE_CODE_UNION:
286 case TYPE_CODE_SET:
287 case TYPE_CODE_STRING:
288 return 0;
289 default:
290 return 1;
291 }
292 }
293
294 /* A helper function for val_print. When printing with limited depth we
295 want to print string and scalar arguments, but not aggregate arguments.
296 This function distinguishes between the two. */
297
298 static bool
299 val_print_scalar_or_string_type_p (struct type *type,
300 const struct language_defn *language)
301 {
302 return (val_print_scalar_type_p (type)
303 || language->is_string_type_p (type));
304 }
305
306 /* See valprint.h. */
307
308 int
309 valprint_check_validity (struct ui_file *stream,
310 struct type *type,
311 LONGEST embedded_offset,
312 const struct value *val)
313 {
314 type = check_typedef (type);
315
316 if (type_not_associated (type))
317 {
318 val_print_not_associated (stream);
319 return 0;
320 }
321
322 if (type_not_allocated (type))
323 {
324 val_print_not_allocated (stream);
325 return 0;
326 }
327
328 if (type->code () != TYPE_CODE_UNION
329 && type->code () != TYPE_CODE_STRUCT
330 && type->code () != TYPE_CODE_ARRAY)
331 {
332 if (value_bits_any_optimized_out (val,
333 TARGET_CHAR_BIT * embedded_offset,
334 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
335 {
336 val_print_optimized_out (val, stream);
337 return 0;
338 }
339
340 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
341 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
342 {
343 const int is_ref = type->code () == TYPE_CODE_REF;
344 int ref_is_addressable = 0;
345
346 if (is_ref)
347 {
348 const struct value *deref_val = coerce_ref_if_computed (val);
349
350 if (deref_val != NULL)
351 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
352 }
353
354 if (!is_ref || !ref_is_addressable)
355 fputs_styled (_("<synthetic pointer>"), metadata_style.style (),
356 stream);
357
358 /* C++ references should be valid even if they're synthetic. */
359 return is_ref;
360 }
361
362 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
363 {
364 val_print_unavailable (stream);
365 return 0;
366 }
367 }
368
369 return 1;
370 }
371
372 void
373 val_print_optimized_out (const struct value *val, struct ui_file *stream)
374 {
375 if (val != NULL && value_lval_const (val) == lval_register)
376 val_print_not_saved (stream);
377 else
378 fprintf_styled (stream, metadata_style.style (), _("<optimized out>"));
379 }
380
381 void
382 val_print_not_saved (struct ui_file *stream)
383 {
384 fprintf_styled (stream, metadata_style.style (), _("<not saved>"));
385 }
386
387 void
388 val_print_unavailable (struct ui_file *stream)
389 {
390 fprintf_styled (stream, metadata_style.style (), _("<unavailable>"));
391 }
392
393 void
394 val_print_invalid_address (struct ui_file *stream)
395 {
396 fprintf_styled (stream, metadata_style.style (), _("<invalid address>"));
397 }
398
399 /* Print a pointer based on the type of its target.
400
401 Arguments to this functions are roughly the same as those in
402 generic_val_print. A difference is that ADDRESS is the address to print,
403 with embedded_offset already added. ELTTYPE represents
404 the pointed type after check_typedef. */
405
406 static void
407 print_unpacked_pointer (struct type *type, struct type *elttype,
408 CORE_ADDR address, struct ui_file *stream,
409 const struct value_print_options *options)
410 {
411 struct gdbarch *gdbarch = type->arch ();
412
413 if (elttype->code () == TYPE_CODE_FUNC)
414 {
415 /* Try to print what function it points to. */
416 print_function_pointer_address (options, gdbarch, address, stream);
417 return;
418 }
419
420 if (options->symbol_print)
421 print_address_demangle (options, gdbarch, address, stream, demangle);
422 else if (options->addressprint)
423 fputs_filtered (paddress (gdbarch, address), stream);
424 }
425
426 /* generic_val_print helper for TYPE_CODE_ARRAY. */
427
428 static void
429 generic_val_print_array (struct value *val,
430 struct ui_file *stream, int recurse,
431 const struct value_print_options *options,
432 const struct
433 generic_val_print_decorations *decorations)
434 {
435 struct type *type = check_typedef (value_type (val));
436 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
437 struct type *elttype = check_typedef (unresolved_elttype);
438
439 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
440 {
441 LONGEST low_bound, high_bound;
442
443 if (!get_array_bounds (type, &low_bound, &high_bound))
444 error (_("Could not determine the array high bound"));
445
446 fputs_filtered (decorations->array_start, stream);
447 value_print_array_elements (val, stream, recurse, options, 0);
448 fputs_filtered (decorations->array_end, stream);
449 }
450 else
451 {
452 /* Array of unspecified length: treat like pointer to first elt. */
453 print_unpacked_pointer (type, elttype, value_address (val),
454 stream, options);
455 }
456
457 }
458
459 /* generic_value_print helper for TYPE_CODE_PTR. */
460
461 static void
462 generic_value_print_ptr (struct value *val, struct ui_file *stream,
463 const struct value_print_options *options)
464 {
465
466 if (options->format && options->format != 's')
467 value_print_scalar_formatted (val, options, 0, stream);
468 else
469 {
470 struct type *type = check_typedef (value_type (val));
471 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
472 const gdb_byte *valaddr = value_contents_for_printing (val);
473 CORE_ADDR addr = unpack_pointer (type, valaddr);
474
475 print_unpacked_pointer (type, elttype, addr, stream, options);
476 }
477 }
478
479
480 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
481
482 static void
483 print_ref_address (struct type *type, const gdb_byte *address_buffer,
484 int embedded_offset, struct ui_file *stream)
485 {
486 struct gdbarch *gdbarch = type->arch ();
487
488 if (address_buffer != NULL)
489 {
490 CORE_ADDR address
491 = extract_typed_address (address_buffer + embedded_offset, type);
492
493 fprintf_filtered (stream, "@");
494 fputs_filtered (paddress (gdbarch, address), stream);
495 }
496 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
497 }
498
499 /* If VAL is addressable, return the value contents buffer of a value that
500 represents a pointer to VAL. Otherwise return NULL. */
501
502 static const gdb_byte *
503 get_value_addr_contents (struct value *deref_val)
504 {
505 gdb_assert (deref_val != NULL);
506
507 if (value_lval_const (deref_val) == lval_memory)
508 return value_contents_for_printing_const (value_addr (deref_val));
509 else
510 {
511 /* We have a non-addressable value, such as a DW_AT_const_value. */
512 return NULL;
513 }
514 }
515
516 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
517
518 static void
519 generic_val_print_ref (struct type *type,
520 int embedded_offset, struct ui_file *stream, int recurse,
521 struct value *original_value,
522 const struct value_print_options *options)
523 {
524 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
525 struct value *deref_val = NULL;
526 const int value_is_synthetic
527 = value_bits_synthetic_pointer (original_value,
528 TARGET_CHAR_BIT * embedded_offset,
529 TARGET_CHAR_BIT * TYPE_LENGTH (type));
530 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
531 || options->deref_ref);
532 const int type_is_defined = elttype->code () != TYPE_CODE_UNDEF;
533 const gdb_byte *valaddr = value_contents_for_printing (original_value);
534
535 if (must_coerce_ref && type_is_defined)
536 {
537 deref_val = coerce_ref_if_computed (original_value);
538
539 if (deref_val != NULL)
540 {
541 /* More complicated computed references are not supported. */
542 gdb_assert (embedded_offset == 0);
543 }
544 else
545 deref_val = value_at (TYPE_TARGET_TYPE (type),
546 unpack_pointer (type, valaddr + embedded_offset));
547 }
548 /* Else, original_value isn't a synthetic reference or we don't have to print
549 the reference's contents.
550
551 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
552 cause original_value to be a not_lval instead of an lval_computed,
553 which will make value_bits_synthetic_pointer return false.
554 This happens because if options->objectprint is true, c_value_print will
555 overwrite original_value's contents with the result of coercing
556 the reference through value_addr, and then set its type back to
557 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
558 we can simply treat it as non-synthetic and move on. */
559
560 if (options->addressprint)
561 {
562 const gdb_byte *address = (value_is_synthetic && type_is_defined
563 ? get_value_addr_contents (deref_val)
564 : valaddr);
565
566 print_ref_address (type, address, embedded_offset, stream);
567
568 if (options->deref_ref)
569 fputs_filtered (": ", stream);
570 }
571
572 if (options->deref_ref)
573 {
574 if (type_is_defined)
575 common_val_print (deref_val, stream, recurse, options,
576 current_language);
577 else
578 fputs_filtered ("???", stream);
579 }
580 }
581
582 /* Helper function for generic_val_print_enum.
583 This is also used to print enums in TYPE_CODE_FLAGS values. */
584
585 static void
586 generic_val_print_enum_1 (struct type *type, LONGEST val,
587 struct ui_file *stream)
588 {
589 unsigned int i;
590 unsigned int len;
591
592 len = type->num_fields ();
593 for (i = 0; i < len; i++)
594 {
595 QUIT;
596 if (val == TYPE_FIELD_ENUMVAL (type, i))
597 {
598 break;
599 }
600 }
601 if (i < len)
602 {
603 fputs_styled (TYPE_FIELD_NAME (type, i), variable_name_style.style (),
604 stream);
605 }
606 else if (TYPE_FLAG_ENUM (type))
607 {
608 int first = 1;
609
610 /* We have a "flag" enum, so we try to decompose it into pieces as
611 appropriate. The enum may have multiple enumerators representing
612 the same bit, in which case we choose to only print the first one
613 we find. */
614 for (i = 0; i < len; ++i)
615 {
616 QUIT;
617
618 ULONGEST enumval = TYPE_FIELD_ENUMVAL (type, i);
619 int nbits = count_one_bits_ll (enumval);
620
621 gdb_assert (nbits == 0 || nbits == 1);
622
623 if ((val & enumval) != 0)
624 {
625 if (first)
626 {
627 fputs_filtered ("(", stream);
628 first = 0;
629 }
630 else
631 fputs_filtered (" | ", stream);
632
633 val &= ~TYPE_FIELD_ENUMVAL (type, i);
634 fputs_styled (TYPE_FIELD_NAME (type, i),
635 variable_name_style.style (), stream);
636 }
637 }
638
639 if (val != 0)
640 {
641 /* There are leftover bits, print them. */
642 if (first)
643 fputs_filtered ("(", stream);
644 else
645 fputs_filtered (" | ", stream);
646
647 fputs_filtered ("unknown: 0x", stream);
648 print_longest (stream, 'x', 0, val);
649 fputs_filtered (")", stream);
650 }
651 else if (first)
652 {
653 /* Nothing has been printed and the value is 0, the enum value must
654 have been 0. */
655 fputs_filtered ("0", stream);
656 }
657 else
658 {
659 /* Something has been printed, close the parenthesis. */
660 fputs_filtered (")", stream);
661 }
662 }
663 else
664 print_longest (stream, 'd', 0, val);
665 }
666
667 /* generic_val_print helper for TYPE_CODE_ENUM. */
668
669 static void
670 generic_val_print_enum (struct type *type,
671 int embedded_offset, struct ui_file *stream,
672 struct value *original_value,
673 const struct value_print_options *options)
674 {
675 LONGEST val;
676 struct gdbarch *gdbarch = type->arch ();
677 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
678
679 gdb_assert (!options->format);
680
681 const gdb_byte *valaddr = value_contents_for_printing (original_value);
682
683 val = unpack_long (type, valaddr + embedded_offset * unit_size);
684
685 generic_val_print_enum_1 (type, val, stream);
686 }
687
688 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
689
690 static void
691 generic_val_print_func (struct type *type,
692 int embedded_offset, CORE_ADDR address,
693 struct ui_file *stream,
694 struct value *original_value,
695 const struct value_print_options *options)
696 {
697 struct gdbarch *gdbarch = type->arch ();
698
699 gdb_assert (!options->format);
700
701 /* FIXME, we should consider, at least for ANSI C language,
702 eliminating the distinction made between FUNCs and POINTERs to
703 FUNCs. */
704 fprintf_filtered (stream, "{");
705 type_print (type, "", stream, -1);
706 fprintf_filtered (stream, "} ");
707 /* Try to print what function it points to, and its address. */
708 print_address_demangle (options, gdbarch, address, stream, demangle);
709 }
710
711 /* generic_value_print helper for TYPE_CODE_BOOL. */
712
713 static void
714 generic_value_print_bool
715 (struct value *value, struct ui_file *stream,
716 const struct value_print_options *options,
717 const struct generic_val_print_decorations *decorations)
718 {
719 if (options->format || options->output_format)
720 {
721 struct value_print_options opts = *options;
722 opts.format = (options->format ? options->format
723 : options->output_format);
724 value_print_scalar_formatted (value, &opts, 0, stream);
725 }
726 else
727 {
728 const gdb_byte *valaddr = value_contents_for_printing (value);
729 struct type *type = check_typedef (value_type (value));
730 LONGEST val = unpack_long (type, valaddr);
731 if (val == 0)
732 fputs_filtered (decorations->false_name, stream);
733 else if (val == 1)
734 fputs_filtered (decorations->true_name, stream);
735 else
736 print_longest (stream, 'd', 0, val);
737 }
738 }
739
740 /* generic_value_print helper for TYPE_CODE_INT. */
741
742 static void
743 generic_value_print_int (struct value *val, struct ui_file *stream,
744 const struct value_print_options *options)
745 {
746 struct value_print_options opts = *options;
747
748 opts.format = (options->format ? options->format
749 : options->output_format);
750 value_print_scalar_formatted (val, &opts, 0, stream);
751 }
752
753 /* generic_value_print helper for TYPE_CODE_CHAR. */
754
755 static void
756 generic_value_print_char (struct value *value, struct ui_file *stream,
757 const struct value_print_options *options)
758 {
759 if (options->format || options->output_format)
760 {
761 struct value_print_options opts = *options;
762
763 opts.format = (options->format ? options->format
764 : options->output_format);
765 value_print_scalar_formatted (value, &opts, 0, stream);
766 }
767 else
768 {
769 struct type *unresolved_type = value_type (value);
770 struct type *type = check_typedef (unresolved_type);
771 const gdb_byte *valaddr = value_contents_for_printing (value);
772
773 LONGEST val = unpack_long (type, valaddr);
774 if (type->is_unsigned ())
775 fprintf_filtered (stream, "%u", (unsigned int) val);
776 else
777 fprintf_filtered (stream, "%d", (int) val);
778 fputs_filtered (" ", stream);
779 LA_PRINT_CHAR (val, unresolved_type, stream);
780 }
781 }
782
783 /* generic_val_print helper for TYPE_CODE_FLT and TYPE_CODE_DECFLOAT. */
784
785 static void
786 generic_val_print_float (struct type *type, struct ui_file *stream,
787 struct value *original_value,
788 const struct value_print_options *options)
789 {
790 gdb_assert (!options->format);
791
792 const gdb_byte *valaddr = value_contents_for_printing (original_value);
793
794 print_floating (valaddr, type, stream);
795 }
796
797 /* generic_val_print helper for TYPE_CODE_FIXED_POINT. */
798
799 static void
800 generic_val_print_fixed_point (struct value *val, struct ui_file *stream,
801 const struct value_print_options *options)
802 {
803 if (options->format)
804 value_print_scalar_formatted (val, options, 0, stream);
805 else
806 {
807 struct type *type = value_type (val);
808
809 const gdb_byte *valaddr = value_contents_for_printing (val);
810 gdb_mpf f;
811
812 f.read_fixed_point (gdb::make_array_view (valaddr, TYPE_LENGTH (type)),
813 type_byte_order (type), type->is_unsigned (),
814 type->fixed_point_scaling_factor ());
815
816 const char *fmt = TYPE_LENGTH (type) < 4 ? "%.11Fg" : "%.17Fg";
817 std::string str = gmp_string_printf (fmt, f.val);
818 fprintf_filtered (stream, "%s", str.c_str ());
819 }
820 }
821
822 /* generic_value_print helper for TYPE_CODE_COMPLEX. */
823
824 static void
825 generic_value_print_complex (struct value *val, struct ui_file *stream,
826 const struct value_print_options *options,
827 const struct generic_val_print_decorations
828 *decorations)
829 {
830 fprintf_filtered (stream, "%s", decorations->complex_prefix);
831
832 struct value *real_part = value_real_part (val);
833 value_print_scalar_formatted (real_part, options, 0, stream);
834 fprintf_filtered (stream, "%s", decorations->complex_infix);
835
836 struct value *imag_part = value_imaginary_part (val);
837 value_print_scalar_formatted (imag_part, options, 0, stream);
838 fprintf_filtered (stream, "%s", decorations->complex_suffix);
839 }
840
841 /* generic_value_print helper for TYPE_CODE_MEMBERPTR. */
842
843 static void
844 generic_value_print_memberptr
845 (struct value *val, struct ui_file *stream,
846 int recurse,
847 const struct value_print_options *options,
848 const struct generic_val_print_decorations *decorations)
849 {
850 if (!options->format)
851 {
852 /* Member pointers are essentially specific to C++, and so if we
853 encounter one, we should print it according to C++ rules. */
854 struct type *type = check_typedef (value_type (val));
855 const gdb_byte *valaddr = value_contents_for_printing (val);
856 cp_print_class_member (valaddr, type, stream, "&");
857 }
858 else
859 generic_value_print (val, stream, recurse, options, decorations);
860 }
861
862 /* See valprint.h. */
863
864 void
865 generic_value_print (struct value *val, struct ui_file *stream, int recurse,
866 const struct value_print_options *options,
867 const struct generic_val_print_decorations *decorations)
868 {
869 struct type *type = value_type (val);
870
871 type = check_typedef (type);
872
873 if (is_fixed_point_type (type))
874 type = type->fixed_point_type_base_type ();
875
876 switch (type->code ())
877 {
878 case TYPE_CODE_ARRAY:
879 generic_val_print_array (val, stream, recurse, options, decorations);
880 break;
881
882 case TYPE_CODE_MEMBERPTR:
883 generic_value_print_memberptr (val, stream, recurse, options,
884 decorations);
885 break;
886
887 case TYPE_CODE_PTR:
888 generic_value_print_ptr (val, stream, options);
889 break;
890
891 case TYPE_CODE_REF:
892 case TYPE_CODE_RVALUE_REF:
893 generic_val_print_ref (type, 0, stream, recurse,
894 val, options);
895 break;
896
897 case TYPE_CODE_ENUM:
898 if (options->format)
899 value_print_scalar_formatted (val, options, 0, stream);
900 else
901 generic_val_print_enum (type, 0, stream, val, options);
902 break;
903
904 case TYPE_CODE_FLAGS:
905 if (options->format)
906 value_print_scalar_formatted (val, options, 0, stream);
907 else
908 val_print_type_code_flags (type, val, 0, stream);
909 break;
910
911 case TYPE_CODE_FUNC:
912 case TYPE_CODE_METHOD:
913 if (options->format)
914 value_print_scalar_formatted (val, options, 0, stream);
915 else
916 generic_val_print_func (type, 0, value_address (val), stream,
917 val, options);
918 break;
919
920 case TYPE_CODE_BOOL:
921 generic_value_print_bool (val, stream, options, decorations);
922 break;
923
924 case TYPE_CODE_RANGE:
925 case TYPE_CODE_INT:
926 generic_value_print_int (val, stream, options);
927 break;
928
929 case TYPE_CODE_CHAR:
930 generic_value_print_char (val, stream, options);
931 break;
932
933 case TYPE_CODE_FLT:
934 case TYPE_CODE_DECFLOAT:
935 if (options->format)
936 value_print_scalar_formatted (val, options, 0, stream);
937 else
938 generic_val_print_float (type, stream, val, options);
939 break;
940
941 case TYPE_CODE_FIXED_POINT:
942 generic_val_print_fixed_point (val, stream, options);
943 break;
944
945 case TYPE_CODE_VOID:
946 fputs_filtered (decorations->void_name, stream);
947 break;
948
949 case TYPE_CODE_ERROR:
950 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
951 break;
952
953 case TYPE_CODE_UNDEF:
954 /* This happens (without TYPE_STUB set) on systems which don't use
955 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
956 and no complete type for struct foo in that file. */
957 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
958 break;
959
960 case TYPE_CODE_COMPLEX:
961 generic_value_print_complex (val, stream, options, decorations);
962 break;
963
964 case TYPE_CODE_METHODPTR:
965 cplus_print_method_ptr (value_contents_for_printing (val), type,
966 stream);
967 break;
968
969 case TYPE_CODE_UNION:
970 case TYPE_CODE_STRUCT:
971 default:
972 error (_("Unhandled type code %d in symbol table."),
973 type->code ());
974 }
975 }
976
977 /* Helper function for val_print and common_val_print that does the
978 work. Arguments are as to val_print, but FULL_VALUE, if given, is
979 the value to be printed. */
980
981 static void
982 do_val_print (struct value *value, struct ui_file *stream, int recurse,
983 const struct value_print_options *options,
984 const struct language_defn *language)
985 {
986 int ret = 0;
987 struct value_print_options local_opts = *options;
988 struct type *type = value_type (value);
989 struct type *real_type = check_typedef (type);
990
991 if (local_opts.prettyformat == Val_prettyformat_default)
992 local_opts.prettyformat = (local_opts.prettyformat_structs
993 ? Val_prettyformat : Val_no_prettyformat);
994
995 QUIT;
996
997 /* Ensure that the type is complete and not just a stub. If the type is
998 only a stub and we can't find and substitute its complete type, then
999 print appropriate string and return. */
1000
1001 if (real_type->is_stub ())
1002 {
1003 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
1004 return;
1005 }
1006
1007 if (!valprint_check_validity (stream, real_type, 0, value))
1008 return;
1009
1010 if (!options->raw)
1011 {
1012 ret = apply_ext_lang_val_pretty_printer (value, stream, recurse, options,
1013 language);
1014 if (ret)
1015 return;
1016 }
1017
1018 /* Handle summary mode. If the value is a scalar, print it;
1019 otherwise, print an ellipsis. */
1020 if (options->summary && !val_print_scalar_type_p (type))
1021 {
1022 fprintf_filtered (stream, "...");
1023 return;
1024 }
1025
1026 /* If this value is too deep then don't print it. */
1027 if (!val_print_scalar_or_string_type_p (type, language)
1028 && val_print_check_max_depth (stream, recurse, options, language))
1029 return;
1030
1031 try
1032 {
1033 language->value_print_inner (value, stream, recurse, &local_opts);
1034 }
1035 catch (const gdb_exception_error &except)
1036 {
1037 fprintf_styled (stream, metadata_style.style (),
1038 _("<error reading variable>"));
1039 }
1040 }
1041
1042 /* See valprint.h. */
1043
1044 bool
1045 val_print_check_max_depth (struct ui_file *stream, int recurse,
1046 const struct value_print_options *options,
1047 const struct language_defn *language)
1048 {
1049 if (options->max_depth > -1 && recurse >= options->max_depth)
1050 {
1051 gdb_assert (language->struct_too_deep_ellipsis () != NULL);
1052 fputs_filtered (language->struct_too_deep_ellipsis (), stream);
1053 return true;
1054 }
1055
1056 return false;
1057 }
1058
1059 /* Check whether the value VAL is printable. Return 1 if it is;
1060 return 0 and print an appropriate error message to STREAM according to
1061 OPTIONS if it is not. */
1062
1063 static int
1064 value_check_printable (struct value *val, struct ui_file *stream,
1065 const struct value_print_options *options)
1066 {
1067 if (val == 0)
1068 {
1069 fprintf_styled (stream, metadata_style.style (),
1070 _("<address of value unknown>"));
1071 return 0;
1072 }
1073
1074 if (value_entirely_optimized_out (val))
1075 {
1076 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1077 fprintf_filtered (stream, "...");
1078 else
1079 val_print_optimized_out (val, stream);
1080 return 0;
1081 }
1082
1083 if (value_entirely_unavailable (val))
1084 {
1085 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1086 fprintf_filtered (stream, "...");
1087 else
1088 val_print_unavailable (stream);
1089 return 0;
1090 }
1091
1092 if (value_type (val)->code () == TYPE_CODE_INTERNAL_FUNCTION)
1093 {
1094 fprintf_styled (stream, metadata_style.style (),
1095 _("<internal function %s>"),
1096 value_internal_function_name (val));
1097 return 0;
1098 }
1099
1100 if (type_not_associated (value_type (val)))
1101 {
1102 val_print_not_associated (stream);
1103 return 0;
1104 }
1105
1106 if (type_not_allocated (value_type (val)))
1107 {
1108 val_print_not_allocated (stream);
1109 return 0;
1110 }
1111
1112 return 1;
1113 }
1114
1115 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1116 to OPTIONS.
1117
1118 This is a preferable interface to val_print, above, because it uses
1119 GDB's value mechanism. */
1120
1121 void
1122 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1123 const struct value_print_options *options,
1124 const struct language_defn *language)
1125 {
1126 if (language->la_language == language_ada)
1127 /* The value might have a dynamic type, which would cause trouble
1128 below when trying to extract the value contents (since the value
1129 size is determined from the type size which is unknown). So
1130 get a fixed representation of our value. */
1131 val = ada_to_fixed_value (val);
1132
1133 if (value_lazy (val))
1134 value_fetch_lazy (val);
1135
1136 do_val_print (val, stream, recurse, options, language);
1137 }
1138
1139 /* See valprint.h. */
1140
1141 void
1142 common_val_print_checked (struct value *val, struct ui_file *stream,
1143 int recurse,
1144 const struct value_print_options *options,
1145 const struct language_defn *language)
1146 {
1147 if (!value_check_printable (val, stream, options))
1148 return;
1149 common_val_print (val, stream, recurse, options, language);
1150 }
1151
1152 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1153 is printed using the current_language syntax. */
1154
1155 void
1156 value_print (struct value *val, struct ui_file *stream,
1157 const struct value_print_options *options)
1158 {
1159 scoped_value_mark free_values;
1160
1161 if (!value_check_printable (val, stream, options))
1162 return;
1163
1164 if (!options->raw)
1165 {
1166 int r
1167 = apply_ext_lang_val_pretty_printer (val, stream, 0, options,
1168 current_language);
1169
1170 if (r)
1171 return;
1172 }
1173
1174 current_language->value_print (val, stream, options);
1175 }
1176
1177 static void
1178 val_print_type_code_flags (struct type *type, struct value *original_value,
1179 int embedded_offset, struct ui_file *stream)
1180 {
1181 const gdb_byte *valaddr = (value_contents_for_printing (original_value)
1182 + embedded_offset);
1183 ULONGEST val = unpack_long (type, valaddr);
1184 int field, nfields = type->num_fields ();
1185 struct gdbarch *gdbarch = type->arch ();
1186 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1187
1188 fputs_filtered ("[", stream);
1189 for (field = 0; field < nfields; field++)
1190 {
1191 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1192 {
1193 struct type *field_type = type->field (field).type ();
1194
1195 if (field_type == bool_type
1196 /* We require boolean types here to be one bit wide. This is a
1197 problematic place to notify the user of an internal error
1198 though. Instead just fall through and print the field as an
1199 int. */
1200 && TYPE_FIELD_BITSIZE (type, field) == 1)
1201 {
1202 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1203 fprintf_filtered
1204 (stream, " %ps",
1205 styled_string (variable_name_style.style (),
1206 TYPE_FIELD_NAME (type, field)));
1207 }
1208 else
1209 {
1210 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1211 ULONGEST field_val
1212 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1213
1214 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1215 field_val &= ((ULONGEST) 1 << field_len) - 1;
1216 fprintf_filtered (stream, " %ps=",
1217 styled_string (variable_name_style.style (),
1218 TYPE_FIELD_NAME (type, field)));
1219 if (field_type->code () == TYPE_CODE_ENUM)
1220 generic_val_print_enum_1 (field_type, field_val, stream);
1221 else
1222 print_longest (stream, 'd', 0, field_val);
1223 }
1224 }
1225 }
1226 fputs_filtered (" ]", stream);
1227 }
1228
1229 /* See valprint.h. */
1230
1231 void
1232 value_print_scalar_formatted (struct value *val,
1233 const struct value_print_options *options,
1234 int size,
1235 struct ui_file *stream)
1236 {
1237 struct type *type = check_typedef (value_type (val));
1238
1239 gdb_assert (val != NULL);
1240
1241 /* If we get here with a string format, try again without it. Go
1242 all the way back to the language printers, which may call us
1243 again. */
1244 if (options->format == 's')
1245 {
1246 struct value_print_options opts = *options;
1247 opts.format = 0;
1248 opts.deref_ref = 0;
1249 common_val_print (val, stream, 0, &opts, current_language);
1250 return;
1251 }
1252
1253 /* value_contents_for_printing fetches all VAL's contents. They are
1254 needed to check whether VAL is optimized-out or unavailable
1255 below. */
1256 const gdb_byte *valaddr = value_contents_for_printing (val);
1257
1258 /* A scalar object that does not have all bits available can't be
1259 printed, because all bits contribute to its representation. */
1260 if (value_bits_any_optimized_out (val, 0,
1261 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1262 val_print_optimized_out (val, stream);
1263 else if (!value_bytes_available (val, 0, TYPE_LENGTH (type)))
1264 val_print_unavailable (stream);
1265 else
1266 print_scalar_formatted (valaddr, type, options, size, stream);
1267 }
1268
1269 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1270 The raison d'etre of this function is to consolidate printing of
1271 LONG_LONG's into this one function. The format chars b,h,w,g are
1272 from print_scalar_formatted(). Numbers are printed using C
1273 format.
1274
1275 USE_C_FORMAT means to use C format in all cases. Without it,
1276 'o' and 'x' format do not include the standard C radix prefix
1277 (leading 0 or 0x).
1278
1279 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1280 and was intended to request formatting according to the current
1281 language and would be used for most integers that GDB prints. The
1282 exceptional cases were things like protocols where the format of
1283 the integer is a protocol thing, not a user-visible thing). The
1284 parameter remains to preserve the information of what things might
1285 be printed with language-specific format, should we ever resurrect
1286 that capability. */
1287
1288 void
1289 print_longest (struct ui_file *stream, int format, int use_c_format,
1290 LONGEST val_long)
1291 {
1292 const char *val;
1293
1294 switch (format)
1295 {
1296 case 'd':
1297 val = int_string (val_long, 10, 1, 0, 1); break;
1298 case 'u':
1299 val = int_string (val_long, 10, 0, 0, 1); break;
1300 case 'x':
1301 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1302 case 'b':
1303 val = int_string (val_long, 16, 0, 2, 1); break;
1304 case 'h':
1305 val = int_string (val_long, 16, 0, 4, 1); break;
1306 case 'w':
1307 val = int_string (val_long, 16, 0, 8, 1); break;
1308 case 'g':
1309 val = int_string (val_long, 16, 0, 16, 1); break;
1310 break;
1311 case 'o':
1312 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1313 default:
1314 internal_error (__FILE__, __LINE__,
1315 _("failed internal consistency check"));
1316 }
1317 fputs_filtered (val, stream);
1318 }
1319
1320 /* This used to be a macro, but I don't think it is called often enough
1321 to merit such treatment. */
1322 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1323 arguments to a function, number in a value history, register number, etc.)
1324 where the value must not be larger than can fit in an int. */
1325
1326 int
1327 longest_to_int (LONGEST arg)
1328 {
1329 /* Let the compiler do the work. */
1330 int rtnval = (int) arg;
1331
1332 /* Check for overflows or underflows. */
1333 if (sizeof (LONGEST) > sizeof (int))
1334 {
1335 if (rtnval != arg)
1336 {
1337 error (_("Value out of range."));
1338 }
1339 }
1340 return (rtnval);
1341 }
1342
1343 /* Print a floating point value of floating-point type TYPE,
1344 pointed to in GDB by VALADDR, on STREAM. */
1345
1346 void
1347 print_floating (const gdb_byte *valaddr, struct type *type,
1348 struct ui_file *stream)
1349 {
1350 std::string str = target_float_to_string (valaddr, type);
1351 fputs_filtered (str.c_str (), stream);
1352 }
1353
1354 void
1355 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1356 unsigned len, enum bfd_endian byte_order, bool zero_pad)
1357 {
1358 const gdb_byte *p;
1359 unsigned int i;
1360 int b;
1361 bool seen_a_one = false;
1362
1363 /* Declared "int" so it will be signed.
1364 This ensures that right shift will shift in zeros. */
1365
1366 const int mask = 0x080;
1367
1368 if (byte_order == BFD_ENDIAN_BIG)
1369 {
1370 for (p = valaddr;
1371 p < valaddr + len;
1372 p++)
1373 {
1374 /* Every byte has 8 binary characters; peel off
1375 and print from the MSB end. */
1376
1377 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1378 {
1379 if (*p & (mask >> i))
1380 b = '1';
1381 else
1382 b = '0';
1383
1384 if (zero_pad || seen_a_one || b == '1')
1385 fputc_filtered (b, stream);
1386 if (b == '1')
1387 seen_a_one = true;
1388 }
1389 }
1390 }
1391 else
1392 {
1393 for (p = valaddr + len - 1;
1394 p >= valaddr;
1395 p--)
1396 {
1397 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1398 {
1399 if (*p & (mask >> i))
1400 b = '1';
1401 else
1402 b = '0';
1403
1404 if (zero_pad || seen_a_one || b == '1')
1405 fputc_filtered (b, stream);
1406 if (b == '1')
1407 seen_a_one = true;
1408 }
1409 }
1410 }
1411
1412 /* When not zero-padding, ensure that something is printed when the
1413 input is 0. */
1414 if (!zero_pad && !seen_a_one)
1415 fputc_filtered ('0', stream);
1416 }
1417
1418 /* A helper for print_octal_chars that emits a single octal digit,
1419 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1420
1421 static void
1422 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1423 {
1424 if (*seen_a_one || digit != 0)
1425 fprintf_filtered (stream, "%o", digit);
1426 if (digit != 0)
1427 *seen_a_one = true;
1428 }
1429
1430 /* VALADDR points to an integer of LEN bytes.
1431 Print it in octal on stream or format it in buf. */
1432
1433 void
1434 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1435 unsigned len, enum bfd_endian byte_order)
1436 {
1437 const gdb_byte *p;
1438 unsigned char octa1, octa2, octa3, carry;
1439 int cycle;
1440
1441 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1442 * the extra bits, which cycle every three bytes:
1443 *
1444 * Byte side: 0 1 2 3
1445 * | | | |
1446 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1447 *
1448 * Octal side: 0 1 carry 3 4 carry ...
1449 *
1450 * Cycle number: 0 1 2
1451 *
1452 * But of course we are printing from the high side, so we have to
1453 * figure out where in the cycle we are so that we end up with no
1454 * left over bits at the end.
1455 */
1456 #define BITS_IN_OCTAL 3
1457 #define HIGH_ZERO 0340
1458 #define LOW_ZERO 0034
1459 #define CARRY_ZERO 0003
1460 static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
1461 "cycle zero constants are wrong");
1462 #define HIGH_ONE 0200
1463 #define MID_ONE 0160
1464 #define LOW_ONE 0016
1465 #define CARRY_ONE 0001
1466 static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
1467 "cycle one constants are wrong");
1468 #define HIGH_TWO 0300
1469 #define MID_TWO 0070
1470 #define LOW_TWO 0007
1471 static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
1472 "cycle two constants are wrong");
1473
1474 /* For 32 we start in cycle 2, with two bits and one bit carry;
1475 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1476
1477 cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
1478 carry = 0;
1479
1480 fputs_filtered ("0", stream);
1481 bool seen_a_one = false;
1482 if (byte_order == BFD_ENDIAN_BIG)
1483 {
1484 for (p = valaddr;
1485 p < valaddr + len;
1486 p++)
1487 {
1488 switch (cycle)
1489 {
1490 case 0:
1491 /* No carry in, carry out two bits. */
1492
1493 octa1 = (HIGH_ZERO & *p) >> 5;
1494 octa2 = (LOW_ZERO & *p) >> 2;
1495 carry = (CARRY_ZERO & *p);
1496 emit_octal_digit (stream, &seen_a_one, octa1);
1497 emit_octal_digit (stream, &seen_a_one, octa2);
1498 break;
1499
1500 case 1:
1501 /* Carry in two bits, carry out one bit. */
1502
1503 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1504 octa2 = (MID_ONE & *p) >> 4;
1505 octa3 = (LOW_ONE & *p) >> 1;
1506 carry = (CARRY_ONE & *p);
1507 emit_octal_digit (stream, &seen_a_one, octa1);
1508 emit_octal_digit (stream, &seen_a_one, octa2);
1509 emit_octal_digit (stream, &seen_a_one, octa3);
1510 break;
1511
1512 case 2:
1513 /* Carry in one bit, no carry out. */
1514
1515 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1516 octa2 = (MID_TWO & *p) >> 3;
1517 octa3 = (LOW_TWO & *p);
1518 carry = 0;
1519 emit_octal_digit (stream, &seen_a_one, octa1);
1520 emit_octal_digit (stream, &seen_a_one, octa2);
1521 emit_octal_digit (stream, &seen_a_one, octa3);
1522 break;
1523
1524 default:
1525 error (_("Internal error in octal conversion;"));
1526 }
1527
1528 cycle++;
1529 cycle = cycle % BITS_IN_OCTAL;
1530 }
1531 }
1532 else
1533 {
1534 for (p = valaddr + len - 1;
1535 p >= valaddr;
1536 p--)
1537 {
1538 switch (cycle)
1539 {
1540 case 0:
1541 /* Carry out, no carry in */
1542
1543 octa1 = (HIGH_ZERO & *p) >> 5;
1544 octa2 = (LOW_ZERO & *p) >> 2;
1545 carry = (CARRY_ZERO & *p);
1546 emit_octal_digit (stream, &seen_a_one, octa1);
1547 emit_octal_digit (stream, &seen_a_one, octa2);
1548 break;
1549
1550 case 1:
1551 /* Carry in, carry out */
1552
1553 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1554 octa2 = (MID_ONE & *p) >> 4;
1555 octa3 = (LOW_ONE & *p) >> 1;
1556 carry = (CARRY_ONE & *p);
1557 emit_octal_digit (stream, &seen_a_one, octa1);
1558 emit_octal_digit (stream, &seen_a_one, octa2);
1559 emit_octal_digit (stream, &seen_a_one, octa3);
1560 break;
1561
1562 case 2:
1563 /* Carry in, no carry out */
1564
1565 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1566 octa2 = (MID_TWO & *p) >> 3;
1567 octa3 = (LOW_TWO & *p);
1568 carry = 0;
1569 emit_octal_digit (stream, &seen_a_one, octa1);
1570 emit_octal_digit (stream, &seen_a_one, octa2);
1571 emit_octal_digit (stream, &seen_a_one, octa3);
1572 break;
1573
1574 default:
1575 error (_("Internal error in octal conversion;"));
1576 }
1577
1578 cycle++;
1579 cycle = cycle % BITS_IN_OCTAL;
1580 }
1581 }
1582
1583 }
1584
1585 /* Possibly negate the integer represented by BYTES. It contains LEN
1586 bytes in the specified byte order. If the integer is negative,
1587 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1588 nothing and return false. */
1589
1590 static bool
1591 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1592 enum bfd_endian byte_order,
1593 gdb::byte_vector *out_vec)
1594 {
1595 gdb_byte sign_byte;
1596 gdb_assert (len > 0);
1597 if (byte_order == BFD_ENDIAN_BIG)
1598 sign_byte = bytes[0];
1599 else
1600 sign_byte = bytes[len - 1];
1601 if ((sign_byte & 0x80) == 0)
1602 return false;
1603
1604 out_vec->resize (len);
1605
1606 /* Compute -x == 1 + ~x. */
1607 if (byte_order == BFD_ENDIAN_LITTLE)
1608 {
1609 unsigned carry = 1;
1610 for (unsigned i = 0; i < len; ++i)
1611 {
1612 unsigned tem = (0xff & ~bytes[i]) + carry;
1613 (*out_vec)[i] = tem & 0xff;
1614 carry = tem / 256;
1615 }
1616 }
1617 else
1618 {
1619 unsigned carry = 1;
1620 for (unsigned i = len; i > 0; --i)
1621 {
1622 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1623 (*out_vec)[i - 1] = tem & 0xff;
1624 carry = tem / 256;
1625 }
1626 }
1627
1628 return true;
1629 }
1630
1631 /* VALADDR points to an integer of LEN bytes.
1632 Print it in decimal on stream or format it in buf. */
1633
1634 void
1635 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1636 unsigned len, bool is_signed,
1637 enum bfd_endian byte_order)
1638 {
1639 #define TEN 10
1640 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1641 #define CARRY_LEFT( x ) ((x) % TEN)
1642 #define SHIFT( x ) ((x) << 4)
1643 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1644 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1645
1646 const gdb_byte *p;
1647 int carry;
1648 int decimal_len;
1649 int i, j, decimal_digits;
1650 int dummy;
1651 int flip;
1652
1653 gdb::byte_vector negated_bytes;
1654 if (is_signed
1655 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1656 {
1657 fputs_filtered ("-", stream);
1658 valaddr = negated_bytes.data ();
1659 }
1660
1661 /* Base-ten number is less than twice as many digits
1662 as the base 16 number, which is 2 digits per byte. */
1663
1664 decimal_len = len * 2 * 2;
1665 std::vector<unsigned char> digits (decimal_len, 0);
1666
1667 /* Ok, we have an unknown number of bytes of data to be printed in
1668 * decimal.
1669 *
1670 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1671 * decimalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1672 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1673 *
1674 * The trick is that "digits" holds a base-10 number, but sometimes
1675 * the individual digits are > 10.
1676 *
1677 * Outer loop is per nibble (hex digit) of input, from MSD end to
1678 * LSD end.
1679 */
1680 decimal_digits = 0; /* Number of decimal digits so far */
1681 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1682 flip = 0;
1683 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1684 {
1685 /*
1686 * Multiply current base-ten number by 16 in place.
1687 * Each digit was between 0 and 9, now is between
1688 * 0 and 144.
1689 */
1690 for (j = 0; j < decimal_digits; j++)
1691 {
1692 digits[j] = SHIFT (digits[j]);
1693 }
1694
1695 /* Take the next nibble off the input and add it to what
1696 * we've got in the LSB position. Bottom 'digit' is now
1697 * between 0 and 159.
1698 *
1699 * "flip" is used to run this loop twice for each byte.
1700 */
1701 if (flip == 0)
1702 {
1703 /* Take top nibble. */
1704
1705 digits[0] += HIGH_NIBBLE (*p);
1706 flip = 1;
1707 }
1708 else
1709 {
1710 /* Take low nibble and bump our pointer "p". */
1711
1712 digits[0] += LOW_NIBBLE (*p);
1713 if (byte_order == BFD_ENDIAN_BIG)
1714 p++;
1715 else
1716 p--;
1717 flip = 0;
1718 }
1719
1720 /* Re-decimalize. We have to do this often enough
1721 * that we don't overflow, but once per nibble is
1722 * overkill. Easier this way, though. Note that the
1723 * carry is often larger than 10 (e.g. max initial
1724 * carry out of lowest nibble is 15, could bubble all
1725 * the way up greater than 10). So we have to do
1726 * the carrying beyond the last current digit.
1727 */
1728 carry = 0;
1729 for (j = 0; j < decimal_len - 1; j++)
1730 {
1731 digits[j] += carry;
1732
1733 /* "/" won't handle an unsigned char with
1734 * a value that if signed would be negative.
1735 * So extend to longword int via "dummy".
1736 */
1737 dummy = digits[j];
1738 carry = CARRY_OUT (dummy);
1739 digits[j] = CARRY_LEFT (dummy);
1740
1741 if (j >= decimal_digits && carry == 0)
1742 {
1743 /*
1744 * All higher digits are 0 and we
1745 * no longer have a carry.
1746 *
1747 * Note: "j" is 0-based, "decimal_digits" is
1748 * 1-based.
1749 */
1750 decimal_digits = j + 1;
1751 break;
1752 }
1753 }
1754 }
1755
1756 /* Ok, now "digits" is the decimal representation, with
1757 the "decimal_digits" actual digits. Print! */
1758
1759 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
1760 ;
1761
1762 for (; i >= 0; i--)
1763 {
1764 fprintf_filtered (stream, "%1d", digits[i]);
1765 }
1766 }
1767
1768 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1769
1770 void
1771 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1772 unsigned len, enum bfd_endian byte_order,
1773 bool zero_pad)
1774 {
1775 const gdb_byte *p;
1776
1777 fputs_filtered ("0x", stream);
1778 if (byte_order == BFD_ENDIAN_BIG)
1779 {
1780 p = valaddr;
1781
1782 if (!zero_pad)
1783 {
1784 /* Strip leading 0 bytes, but be sure to leave at least a
1785 single byte at the end. */
1786 for (; p < valaddr + len - 1 && !*p; ++p)
1787 ;
1788 }
1789
1790 const gdb_byte *first = p;
1791 for (;
1792 p < valaddr + len;
1793 p++)
1794 {
1795 /* When not zero-padding, use a different format for the
1796 very first byte printed. */
1797 if (!zero_pad && p == first)
1798 fprintf_filtered (stream, "%x", *p);
1799 else
1800 fprintf_filtered (stream, "%02x", *p);
1801 }
1802 }
1803 else
1804 {
1805 p = valaddr + len - 1;
1806
1807 if (!zero_pad)
1808 {
1809 /* Strip leading 0 bytes, but be sure to leave at least a
1810 single byte at the end. */
1811 for (; p >= valaddr + 1 && !*p; --p)
1812 ;
1813 }
1814
1815 const gdb_byte *first = p;
1816 for (;
1817 p >= valaddr;
1818 p--)
1819 {
1820 /* When not zero-padding, use a different format for the
1821 very first byte printed. */
1822 if (!zero_pad && p == first)
1823 fprintf_filtered (stream, "%x", *p);
1824 else
1825 fprintf_filtered (stream, "%02x", *p);
1826 }
1827 }
1828 }
1829
1830 /* Print function pointer with inferior address ADDRESS onto stdio
1831 stream STREAM. */
1832
1833 void
1834 print_function_pointer_address (const struct value_print_options *options,
1835 struct gdbarch *gdbarch,
1836 CORE_ADDR address,
1837 struct ui_file *stream)
1838 {
1839 CORE_ADDR func_addr
1840 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1841 current_top_target ());
1842
1843 /* If the function pointer is represented by a description, print
1844 the address of the description. */
1845 if (options->addressprint && func_addr != address)
1846 {
1847 fputs_filtered ("@", stream);
1848 fputs_filtered (paddress (gdbarch, address), stream);
1849 fputs_filtered (": ", stream);
1850 }
1851 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1852 }
1853
1854
1855 /* Print on STREAM using the given OPTIONS the index for the element
1856 at INDEX of an array whose index type is INDEX_TYPE. */
1857
1858 void
1859 maybe_print_array_index (struct type *index_type, LONGEST index,
1860 struct ui_file *stream,
1861 const struct value_print_options *options)
1862 {
1863 if (!options->print_array_indexes)
1864 return;
1865
1866 current_language->print_array_index (index_type, index, stream, options);
1867 }
1868
1869 /* See valprint.h. */
1870
1871 void
1872 value_print_array_elements (struct value *val, struct ui_file *stream,
1873 int recurse,
1874 const struct value_print_options *options,
1875 unsigned int i)
1876 {
1877 unsigned int things_printed = 0;
1878 unsigned len;
1879 struct type *elttype, *index_type;
1880 unsigned eltlen;
1881 /* Position of the array element we are examining to see
1882 whether it is repeated. */
1883 unsigned int rep1;
1884 /* Number of repetitions we have detected so far. */
1885 unsigned int reps;
1886 LONGEST low_bound, high_bound;
1887
1888 struct type *type = check_typedef (value_type (val));
1889
1890 elttype = TYPE_TARGET_TYPE (type);
1891 eltlen = type_length_units (check_typedef (elttype));
1892 index_type = type->index_type ();
1893 if (index_type->code () == TYPE_CODE_RANGE)
1894 index_type = TYPE_TARGET_TYPE (index_type);
1895
1896 if (get_array_bounds (type, &low_bound, &high_bound))
1897 {
1898 /* The array length should normally be HIGH_BOUND - LOW_BOUND +
1899 1. But we have to be a little extra careful, because some
1900 languages such as Ada allow LOW_BOUND to be greater than
1901 HIGH_BOUND for empty arrays. In that situation, the array
1902 length is just zero, not negative! */
1903 if (low_bound > high_bound)
1904 len = 0;
1905 else
1906 len = high_bound - low_bound + 1;
1907 }
1908 else
1909 {
1910 warning (_("unable to get bounds of array, assuming null array"));
1911 low_bound = 0;
1912 len = 0;
1913 }
1914
1915 annotate_array_section_begin (i, elttype);
1916
1917 for (; i < len && things_printed < options->print_max; i++)
1918 {
1919 scoped_value_mark free_values;
1920
1921 if (i != 0)
1922 {
1923 if (options->prettyformat_arrays)
1924 {
1925 fprintf_filtered (stream, ",\n");
1926 print_spaces_filtered (2 + 2 * recurse, stream);
1927 }
1928 else
1929 fprintf_filtered (stream, ", ");
1930 }
1931 else if (options->prettyformat_arrays)
1932 {
1933 fprintf_filtered (stream, "\n");
1934 print_spaces_filtered (2 + 2 * recurse, stream);
1935 }
1936 wrap_here (n_spaces (2 + 2 * recurse));
1937 maybe_print_array_index (index_type, i + low_bound,
1938 stream, options);
1939
1940 rep1 = i + 1;
1941 reps = 1;
1942 /* Only check for reps if repeat_count_threshold is not set to
1943 UINT_MAX (unlimited). */
1944 if (options->repeat_count_threshold < UINT_MAX)
1945 {
1946 while (rep1 < len
1947 && value_contents_eq (val, i * eltlen,
1948 val, rep1 * eltlen,
1949 eltlen))
1950 {
1951 ++reps;
1952 ++rep1;
1953 }
1954 }
1955
1956 struct value *element = value_from_component (val, elttype, eltlen * i);
1957 common_val_print (element, stream, recurse + 1, options,
1958 current_language);
1959
1960 if (reps > options->repeat_count_threshold)
1961 {
1962 annotate_elt_rep (reps);
1963 fprintf_filtered (stream, " %p[<repeats %u times>%p]",
1964 metadata_style.style ().ptr (), reps, nullptr);
1965 annotate_elt_rep_end ();
1966
1967 i = rep1 - 1;
1968 things_printed += options->repeat_count_threshold;
1969 }
1970 else
1971 {
1972 annotate_elt ();
1973 things_printed++;
1974 }
1975 }
1976 annotate_array_section_end ();
1977 if (i < len)
1978 fprintf_filtered (stream, "...");
1979 if (options->prettyformat_arrays)
1980 {
1981 fprintf_filtered (stream, "\n");
1982 print_spaces_filtered (2 * recurse, stream);
1983 }
1984 }
1985
1986 /* Read LEN bytes of target memory at address MEMADDR, placing the
1987 results in GDB's memory at MYADDR. Returns a count of the bytes
1988 actually read, and optionally a target_xfer_status value in the
1989 location pointed to by ERRPTR if ERRPTR is non-null. */
1990
1991 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1992 function be eliminated. */
1993
1994 static int
1995 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
1996 int len, int *errptr)
1997 {
1998 int nread; /* Number of bytes actually read. */
1999 int errcode; /* Error from last read. */
2000
2001 /* First try a complete read. */
2002 errcode = target_read_memory (memaddr, myaddr, len);
2003 if (errcode == 0)
2004 {
2005 /* Got it all. */
2006 nread = len;
2007 }
2008 else
2009 {
2010 /* Loop, reading one byte at a time until we get as much as we can. */
2011 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2012 {
2013 errcode = target_read_memory (memaddr++, myaddr++, 1);
2014 }
2015 /* If an error, the last read was unsuccessful, so adjust count. */
2016 if (errcode != 0)
2017 {
2018 nread--;
2019 }
2020 }
2021 if (errptr != NULL)
2022 {
2023 *errptr = errcode;
2024 }
2025 return (nread);
2026 }
2027
2028 /* Read a string from the inferior, at ADDR, with LEN characters of
2029 WIDTH bytes each. Fetch at most FETCHLIMIT characters. BUFFER
2030 will be set to a newly allocated buffer containing the string, and
2031 BYTES_READ will be set to the number of bytes read. Returns 0 on
2032 success, or a target_xfer_status on failure.
2033
2034 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2035 (including eventual NULs in the middle or end of the string).
2036
2037 If LEN is -1, stops at the first null character (not necessarily
2038 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2039 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2040 the string.
2041
2042 Unless an exception is thrown, BUFFER will always be allocated, even on
2043 failure. In this case, some characters might have been read before the
2044 failure happened. Check BYTES_READ to recognize this situation. */
2045
2046 int
2047 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2048 enum bfd_endian byte_order, gdb::unique_xmalloc_ptr<gdb_byte> *buffer,
2049 int *bytes_read)
2050 {
2051 int errcode; /* Errno returned from bad reads. */
2052 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2053 gdb_byte *bufptr; /* Pointer to next available byte in
2054 buffer. */
2055
2056 /* Loop until we either have all the characters, or we encounter
2057 some error, such as bumping into the end of the address space. */
2058
2059 buffer->reset (nullptr);
2060
2061 if (len > 0)
2062 {
2063 /* We want fetchlimit chars, so we might as well read them all in
2064 one operation. */
2065 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2066
2067 buffer->reset ((gdb_byte *) xmalloc (fetchlen * width));
2068 bufptr = buffer->get ();
2069
2070 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2071 / width;
2072 addr += nfetch * width;
2073 bufptr += nfetch * width;
2074 }
2075 else if (len == -1)
2076 {
2077 unsigned long bufsize = 0;
2078 unsigned int chunksize; /* Size of each fetch, in chars. */
2079 int found_nul; /* Non-zero if we found the nul char. */
2080 gdb_byte *limit; /* First location past end of fetch buffer. */
2081
2082 found_nul = 0;
2083 /* We are looking for a NUL terminator to end the fetching, so we
2084 might as well read in blocks that are large enough to be efficient,
2085 but not so large as to be slow if fetchlimit happens to be large.
2086 So we choose the minimum of 8 and fetchlimit. We used to use 200
2087 instead of 8 but 200 is way too big for remote debugging over a
2088 serial line. */
2089 chunksize = std::min (8u, fetchlimit);
2090
2091 do
2092 {
2093 QUIT;
2094 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2095
2096 if (*buffer == NULL)
2097 buffer->reset ((gdb_byte *) xmalloc (nfetch * width));
2098 else
2099 buffer->reset ((gdb_byte *) xrealloc (buffer->release (),
2100 (nfetch + bufsize) * width));
2101
2102 bufptr = buffer->get () + bufsize * width;
2103 bufsize += nfetch;
2104
2105 /* Read as much as we can. */
2106 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2107 / width;
2108
2109 /* Scan this chunk for the null character that terminates the string
2110 to print. If found, we don't need to fetch any more. Note
2111 that bufptr is explicitly left pointing at the next character
2112 after the null character, or at the next character after the end
2113 of the buffer. */
2114
2115 limit = bufptr + nfetch * width;
2116 while (bufptr < limit)
2117 {
2118 unsigned long c;
2119
2120 c = extract_unsigned_integer (bufptr, width, byte_order);
2121 addr += width;
2122 bufptr += width;
2123 if (c == 0)
2124 {
2125 /* We don't care about any error which happened after
2126 the NUL terminator. */
2127 errcode = 0;
2128 found_nul = 1;
2129 break;
2130 }
2131 }
2132 }
2133 while (errcode == 0 /* no error */
2134 && bufptr - buffer->get () < fetchlimit * width /* no overrun */
2135 && !found_nul); /* haven't found NUL yet */
2136 }
2137 else
2138 { /* Length of string is really 0! */
2139 /* We always allocate *buffer. */
2140 buffer->reset ((gdb_byte *) xmalloc (1));
2141 bufptr = buffer->get ();
2142 errcode = 0;
2143 }
2144
2145 /* bufptr and addr now point immediately beyond the last byte which we
2146 consider part of the string (including a '\0' which ends the string). */
2147 *bytes_read = bufptr - buffer->get ();
2148
2149 QUIT;
2150
2151 return errcode;
2152 }
2153
2154 /* Return true if print_wchar can display W without resorting to a
2155 numeric escape, false otherwise. */
2156
2157 static int
2158 wchar_printable (gdb_wchar_t w)
2159 {
2160 return (gdb_iswprint (w)
2161 || w == LCST ('\a') || w == LCST ('\b')
2162 || w == LCST ('\f') || w == LCST ('\n')
2163 || w == LCST ('\r') || w == LCST ('\t')
2164 || w == LCST ('\v'));
2165 }
2166
2167 /* A helper function that converts the contents of STRING to wide
2168 characters and then appends them to OUTPUT. */
2169
2170 static void
2171 append_string_as_wide (const char *string,
2172 struct obstack *output)
2173 {
2174 for (; *string; ++string)
2175 {
2176 gdb_wchar_t w = gdb_btowc (*string);
2177 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2178 }
2179 }
2180
2181 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2182 original (target) bytes representing the character, ORIG_LEN is the
2183 number of valid bytes. WIDTH is the number of bytes in a base
2184 characters of the type. OUTPUT is an obstack to which wide
2185 characters are emitted. QUOTER is a (narrow) character indicating
2186 the style of quotes surrounding the character to be printed.
2187 NEED_ESCAPE is an in/out flag which is used to track numeric
2188 escapes across calls. */
2189
2190 static void
2191 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2192 int orig_len, int width,
2193 enum bfd_endian byte_order,
2194 struct obstack *output,
2195 int quoter, int *need_escapep)
2196 {
2197 int need_escape = *need_escapep;
2198
2199 *need_escapep = 0;
2200
2201 /* iswprint implementation on Windows returns 1 for tab character.
2202 In order to avoid different printout on this host, we explicitly
2203 use wchar_printable function. */
2204 switch (w)
2205 {
2206 case LCST ('\a'):
2207 obstack_grow_wstr (output, LCST ("\\a"));
2208 break;
2209 case LCST ('\b'):
2210 obstack_grow_wstr (output, LCST ("\\b"));
2211 break;
2212 case LCST ('\f'):
2213 obstack_grow_wstr (output, LCST ("\\f"));
2214 break;
2215 case LCST ('\n'):
2216 obstack_grow_wstr (output, LCST ("\\n"));
2217 break;
2218 case LCST ('\r'):
2219 obstack_grow_wstr (output, LCST ("\\r"));
2220 break;
2221 case LCST ('\t'):
2222 obstack_grow_wstr (output, LCST ("\\t"));
2223 break;
2224 case LCST ('\v'):
2225 obstack_grow_wstr (output, LCST ("\\v"));
2226 break;
2227 default:
2228 {
2229 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2230 && w != LCST ('8')
2231 && w != LCST ('9'))))
2232 {
2233 gdb_wchar_t wchar = w;
2234
2235 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2236 obstack_grow_wstr (output, LCST ("\\"));
2237 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2238 }
2239 else
2240 {
2241 int i;
2242
2243 for (i = 0; i + width <= orig_len; i += width)
2244 {
2245 char octal[30];
2246 ULONGEST value;
2247
2248 value = extract_unsigned_integer (&orig[i], width,
2249 byte_order);
2250 /* If the value fits in 3 octal digits, print it that
2251 way. Otherwise, print it as a hex escape. */
2252 if (value <= 0777)
2253 xsnprintf (octal, sizeof (octal), "\\%.3o",
2254 (int) (value & 0777));
2255 else
2256 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2257 append_string_as_wide (octal, output);
2258 }
2259 /* If we somehow have extra bytes, print them now. */
2260 while (i < orig_len)
2261 {
2262 char octal[5];
2263
2264 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2265 append_string_as_wide (octal, output);
2266 ++i;
2267 }
2268
2269 *need_escapep = 1;
2270 }
2271 break;
2272 }
2273 }
2274 }
2275
2276 /* Print the character C on STREAM as part of the contents of a
2277 literal string whose delimiter is QUOTER. ENCODING names the
2278 encoding of C. */
2279
2280 void
2281 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2282 int quoter, const char *encoding)
2283 {
2284 enum bfd_endian byte_order
2285 = type_byte_order (type);
2286 gdb_byte *c_buf;
2287 int need_escape = 0;
2288
2289 c_buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2290 pack_long (c_buf, type, c);
2291
2292 wchar_iterator iter (c_buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2293
2294 /* This holds the printable form of the wchar_t data. */
2295 auto_obstack wchar_buf;
2296
2297 while (1)
2298 {
2299 int num_chars;
2300 gdb_wchar_t *chars;
2301 const gdb_byte *buf;
2302 size_t buflen;
2303 int print_escape = 1;
2304 enum wchar_iterate_result result;
2305
2306 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2307 if (num_chars < 0)
2308 break;
2309 if (num_chars > 0)
2310 {
2311 /* If all characters are printable, print them. Otherwise,
2312 we're going to have to print an escape sequence. We
2313 check all characters because we want to print the target
2314 bytes in the escape sequence, and we don't know character
2315 boundaries there. */
2316 int i;
2317
2318 print_escape = 0;
2319 for (i = 0; i < num_chars; ++i)
2320 if (!wchar_printable (chars[i]))
2321 {
2322 print_escape = 1;
2323 break;
2324 }
2325
2326 if (!print_escape)
2327 {
2328 for (i = 0; i < num_chars; ++i)
2329 print_wchar (chars[i], buf, buflen,
2330 TYPE_LENGTH (type), byte_order,
2331 &wchar_buf, quoter, &need_escape);
2332 }
2333 }
2334
2335 /* This handles the NUM_CHARS == 0 case as well. */
2336 if (print_escape)
2337 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2338 byte_order, &wchar_buf, quoter, &need_escape);
2339 }
2340
2341 /* The output in the host encoding. */
2342 auto_obstack output;
2343
2344 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2345 (gdb_byte *) obstack_base (&wchar_buf),
2346 obstack_object_size (&wchar_buf),
2347 sizeof (gdb_wchar_t), &output, translit_char);
2348 obstack_1grow (&output, '\0');
2349
2350 fputs_filtered ((const char *) obstack_base (&output), stream);
2351 }
2352
2353 /* Return the repeat count of the next character/byte in ITER,
2354 storing the result in VEC. */
2355
2356 static int
2357 count_next_character (wchar_iterator *iter,
2358 std::vector<converted_character> *vec)
2359 {
2360 struct converted_character *current;
2361
2362 if (vec->empty ())
2363 {
2364 struct converted_character tmp;
2365 gdb_wchar_t *chars;
2366
2367 tmp.num_chars
2368 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2369 if (tmp.num_chars > 0)
2370 {
2371 gdb_assert (tmp.num_chars < MAX_WCHARS);
2372 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2373 }
2374 vec->push_back (tmp);
2375 }
2376
2377 current = &vec->back ();
2378
2379 /* Count repeated characters or bytes. */
2380 current->repeat_count = 1;
2381 if (current->num_chars == -1)
2382 {
2383 /* EOF */
2384 return -1;
2385 }
2386 else
2387 {
2388 gdb_wchar_t *chars;
2389 struct converted_character d;
2390 int repeat;
2391
2392 d.repeat_count = 0;
2393
2394 while (1)
2395 {
2396 /* Get the next character. */
2397 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2398
2399 /* If a character was successfully converted, save the character
2400 into the converted character. */
2401 if (d.num_chars > 0)
2402 {
2403 gdb_assert (d.num_chars < MAX_WCHARS);
2404 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2405 }
2406
2407 /* Determine if the current character is the same as this
2408 new character. */
2409 if (d.num_chars == current->num_chars && d.result == current->result)
2410 {
2411 /* There are two cases to consider:
2412
2413 1) Equality of converted character (num_chars > 0)
2414 2) Equality of non-converted character (num_chars == 0) */
2415 if ((current->num_chars > 0
2416 && memcmp (current->chars, d.chars,
2417 WCHAR_BUFLEN (current->num_chars)) == 0)
2418 || (current->num_chars == 0
2419 && current->buflen == d.buflen
2420 && memcmp (current->buf, d.buf, current->buflen) == 0))
2421 ++current->repeat_count;
2422 else
2423 break;
2424 }
2425 else
2426 break;
2427 }
2428
2429 /* Push this next converted character onto the result vector. */
2430 repeat = current->repeat_count;
2431 vec->push_back (d);
2432 return repeat;
2433 }
2434 }
2435
2436 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2437 character to use with string output. WIDTH is the size of the output
2438 character type. BYTE_ORDER is the target byte order. OPTIONS
2439 is the user's print options. */
2440
2441 static void
2442 print_converted_chars_to_obstack (struct obstack *obstack,
2443 const std::vector<converted_character> &chars,
2444 int quote_char, int width,
2445 enum bfd_endian byte_order,
2446 const struct value_print_options *options)
2447 {
2448 unsigned int idx;
2449 const converted_character *elem;
2450 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2451 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2452 int need_escape = 0;
2453
2454 /* Set the start state. */
2455 idx = 0;
2456 last = state = START;
2457 elem = NULL;
2458
2459 while (1)
2460 {
2461 switch (state)
2462 {
2463 case START:
2464 /* Nothing to do. */
2465 break;
2466
2467 case SINGLE:
2468 {
2469 int j;
2470
2471 /* We are outputting a single character
2472 (< options->repeat_count_threshold). */
2473
2474 if (last != SINGLE)
2475 {
2476 /* We were outputting some other type of content, so we
2477 must output and a comma and a quote. */
2478 if (last != START)
2479 obstack_grow_wstr (obstack, LCST (", "));
2480 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2481 }
2482 /* Output the character. */
2483 for (j = 0; j < elem->repeat_count; ++j)
2484 {
2485 if (elem->result == wchar_iterate_ok)
2486 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2487 byte_order, obstack, quote_char, &need_escape);
2488 else
2489 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2490 byte_order, obstack, quote_char, &need_escape);
2491 }
2492 }
2493 break;
2494
2495 case REPEAT:
2496 {
2497 int j;
2498
2499 /* We are outputting a character with a repeat count
2500 greater than options->repeat_count_threshold. */
2501
2502 if (last == SINGLE)
2503 {
2504 /* We were outputting a single string. Terminate the
2505 string. */
2506 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2507 }
2508 if (last != START)
2509 obstack_grow_wstr (obstack, LCST (", "));
2510
2511 /* Output the character and repeat string. */
2512 obstack_grow_wstr (obstack, LCST ("'"));
2513 if (elem->result == wchar_iterate_ok)
2514 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2515 byte_order, obstack, quote_char, &need_escape);
2516 else
2517 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2518 byte_order, obstack, quote_char, &need_escape);
2519 obstack_grow_wstr (obstack, LCST ("'"));
2520 std::string s = string_printf (_(" <repeats %u times>"),
2521 elem->repeat_count);
2522 for (j = 0; s[j]; ++j)
2523 {
2524 gdb_wchar_t w = gdb_btowc (s[j]);
2525 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2526 }
2527 }
2528 break;
2529
2530 case INCOMPLETE:
2531 /* We are outputting an incomplete sequence. */
2532 if (last == SINGLE)
2533 {
2534 /* If we were outputting a string of SINGLE characters,
2535 terminate the quote. */
2536 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2537 }
2538 if (last != START)
2539 obstack_grow_wstr (obstack, LCST (", "));
2540
2541 /* Output the incomplete sequence string. */
2542 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2543 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2544 obstack, 0, &need_escape);
2545 obstack_grow_wstr (obstack, LCST (">"));
2546
2547 /* We do not attempt to output anything after this. */
2548 state = FINISH;
2549 break;
2550
2551 case FINISH:
2552 /* All done. If we were outputting a string of SINGLE
2553 characters, the string must be terminated. Otherwise,
2554 REPEAT and INCOMPLETE are always left properly terminated. */
2555 if (last == SINGLE)
2556 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2557
2558 return;
2559 }
2560
2561 /* Get the next element and state. */
2562 last = state;
2563 if (state != FINISH)
2564 {
2565 elem = &chars[idx++];
2566 switch (elem->result)
2567 {
2568 case wchar_iterate_ok:
2569 case wchar_iterate_invalid:
2570 if (elem->repeat_count > options->repeat_count_threshold)
2571 state = REPEAT;
2572 else
2573 state = SINGLE;
2574 break;
2575
2576 case wchar_iterate_incomplete:
2577 state = INCOMPLETE;
2578 break;
2579
2580 case wchar_iterate_eof:
2581 state = FINISH;
2582 break;
2583 }
2584 }
2585 }
2586 }
2587
2588 /* Print the character string STRING, printing at most LENGTH
2589 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2590 the type of each character. OPTIONS holds the printing options;
2591 printing stops early if the number hits print_max; repeat counts
2592 are printed as appropriate. Print ellipses at the end if we had to
2593 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2594 QUOTE_CHAR is the character to print at each end of the string. If
2595 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2596 omitted. */
2597
2598 void
2599 generic_printstr (struct ui_file *stream, struct type *type,
2600 const gdb_byte *string, unsigned int length,
2601 const char *encoding, int force_ellipses,
2602 int quote_char, int c_style_terminator,
2603 const struct value_print_options *options)
2604 {
2605 enum bfd_endian byte_order = type_byte_order (type);
2606 unsigned int i;
2607 int width = TYPE_LENGTH (type);
2608 int finished = 0;
2609 struct converted_character *last;
2610
2611 if (length == -1)
2612 {
2613 unsigned long current_char = 1;
2614
2615 for (i = 0; current_char; ++i)
2616 {
2617 QUIT;
2618 current_char = extract_unsigned_integer (string + i * width,
2619 width, byte_order);
2620 }
2621 length = i;
2622 }
2623
2624 /* If the string was not truncated due to `set print elements', and
2625 the last byte of it is a null, we don't print that, in
2626 traditional C style. */
2627 if (c_style_terminator
2628 && !force_ellipses
2629 && length > 0
2630 && (extract_unsigned_integer (string + (length - 1) * width,
2631 width, byte_order) == 0))
2632 length--;
2633
2634 if (length == 0)
2635 {
2636 fputs_filtered ("\"\"", stream);
2637 return;
2638 }
2639
2640 /* Arrange to iterate over the characters, in wchar_t form. */
2641 wchar_iterator iter (string, length * width, encoding, width);
2642 std::vector<converted_character> converted_chars;
2643
2644 /* Convert characters until the string is over or the maximum
2645 number of printed characters has been reached. */
2646 i = 0;
2647 while (i < options->print_max)
2648 {
2649 int r;
2650
2651 QUIT;
2652
2653 /* Grab the next character and repeat count. */
2654 r = count_next_character (&iter, &converted_chars);
2655
2656 /* If less than zero, the end of the input string was reached. */
2657 if (r < 0)
2658 break;
2659
2660 /* Otherwise, add the count to the total print count and get
2661 the next character. */
2662 i += r;
2663 }
2664
2665 /* Get the last element and determine if the entire string was
2666 processed. */
2667 last = &converted_chars.back ();
2668 finished = (last->result == wchar_iterate_eof);
2669
2670 /* Ensure that CONVERTED_CHARS is terminated. */
2671 last->result = wchar_iterate_eof;
2672
2673 /* WCHAR_BUF is the obstack we use to represent the string in
2674 wchar_t form. */
2675 auto_obstack wchar_buf;
2676
2677 /* Print the output string to the obstack. */
2678 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2679 width, byte_order, options);
2680
2681 if (force_ellipses || !finished)
2682 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2683
2684 /* OUTPUT is where we collect `char's for printing. */
2685 auto_obstack output;
2686
2687 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2688 (gdb_byte *) obstack_base (&wchar_buf),
2689 obstack_object_size (&wchar_buf),
2690 sizeof (gdb_wchar_t), &output, translit_char);
2691 obstack_1grow (&output, '\0');
2692
2693 fputs_filtered ((const char *) obstack_base (&output), stream);
2694 }
2695
2696 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2697 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2698 stops at the first null byte, otherwise printing proceeds (including null
2699 bytes) until either print_max or LEN characters have been printed,
2700 whichever is smaller. ENCODING is the name of the string's
2701 encoding. It can be NULL, in which case the target encoding is
2702 assumed. */
2703
2704 int
2705 val_print_string (struct type *elttype, const char *encoding,
2706 CORE_ADDR addr, int len,
2707 struct ui_file *stream,
2708 const struct value_print_options *options)
2709 {
2710 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2711 int err; /* Non-zero if we got a bad read. */
2712 int found_nul; /* Non-zero if we found the nul char. */
2713 unsigned int fetchlimit; /* Maximum number of chars to print. */
2714 int bytes_read;
2715 gdb::unique_xmalloc_ptr<gdb_byte> buffer; /* Dynamically growable fetch buffer. */
2716 struct gdbarch *gdbarch = elttype->arch ();
2717 enum bfd_endian byte_order = type_byte_order (elttype);
2718 int width = TYPE_LENGTH (elttype);
2719
2720 /* First we need to figure out the limit on the number of characters we are
2721 going to attempt to fetch and print. This is actually pretty simple. If
2722 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2723 LEN is -1, then the limit is print_max. This is true regardless of
2724 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2725 because finding the null byte (or available memory) is what actually
2726 limits the fetch. */
2727
2728 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2729 options->print_max));
2730
2731 err = read_string (addr, len, width, fetchlimit, byte_order,
2732 &buffer, &bytes_read);
2733
2734 addr += bytes_read;
2735
2736 /* We now have either successfully filled the buffer to fetchlimit,
2737 or terminated early due to an error or finding a null char when
2738 LEN is -1. */
2739
2740 /* Determine found_nul by looking at the last character read. */
2741 found_nul = 0;
2742 if (bytes_read >= width)
2743 found_nul = extract_unsigned_integer (buffer.get () + bytes_read - width,
2744 width, byte_order) == 0;
2745 if (len == -1 && !found_nul)
2746 {
2747 gdb_byte *peekbuf;
2748
2749 /* We didn't find a NUL terminator we were looking for. Attempt
2750 to peek at the next character. If not successful, or it is not
2751 a null byte, then force ellipsis to be printed. */
2752
2753 peekbuf = (gdb_byte *) alloca (width);
2754
2755 if (target_read_memory (addr, peekbuf, width) == 0
2756 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2757 force_ellipsis = 1;
2758 }
2759 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2760 {
2761 /* Getting an error when we have a requested length, or fetching less
2762 than the number of characters actually requested, always make us
2763 print ellipsis. */
2764 force_ellipsis = 1;
2765 }
2766
2767 /* If we get an error before fetching anything, don't print a string.
2768 But if we fetch something and then get an error, print the string
2769 and then the error message. */
2770 if (err == 0 || bytes_read > 0)
2771 {
2772 LA_PRINT_STRING (stream, elttype, buffer.get (), bytes_read / width,
2773 encoding, force_ellipsis, options);
2774 }
2775
2776 if (err != 0)
2777 {
2778 std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2779
2780 fprintf_filtered (stream, _("<error: %ps>"),
2781 styled_string (metadata_style.style (),
2782 str.c_str ()));
2783 }
2784
2785 return (bytes_read / width);
2786 }
2787
2788 /* Handle 'show print max-depth'. */
2789
2790 static void
2791 show_print_max_depth (struct ui_file *file, int from_tty,
2792 struct cmd_list_element *c, const char *value)
2793 {
2794 fprintf_filtered (file, _("Maximum print depth is %s.\n"), value);
2795 }
2796 \f
2797
2798 /* The 'set input-radix' command writes to this auxiliary variable.
2799 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2800 it is left unchanged. */
2801
2802 static unsigned input_radix_1 = 10;
2803
2804 /* Validate an input or output radix setting, and make sure the user
2805 knows what they really did here. Radix setting is confusing, e.g.
2806 setting the input radix to "10" never changes it! */
2807
2808 static void
2809 set_input_radix (const char *args, int from_tty, struct cmd_list_element *c)
2810 {
2811 set_input_radix_1 (from_tty, input_radix_1);
2812 }
2813
2814 static void
2815 set_input_radix_1 (int from_tty, unsigned radix)
2816 {
2817 /* We don't currently disallow any input radix except 0 or 1, which don't
2818 make any mathematical sense. In theory, we can deal with any input
2819 radix greater than 1, even if we don't have unique digits for every
2820 value from 0 to radix-1, but in practice we lose on large radix values.
2821 We should either fix the lossage or restrict the radix range more.
2822 (FIXME). */
2823
2824 if (radix < 2)
2825 {
2826 input_radix_1 = input_radix;
2827 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2828 radix);
2829 }
2830 input_radix_1 = input_radix = radix;
2831 if (from_tty)
2832 {
2833 printf_filtered (_("Input radix now set to "
2834 "decimal %u, hex %x, octal %o.\n"),
2835 radix, radix, radix);
2836 }
2837 }
2838
2839 /* The 'set output-radix' command writes to this auxiliary variable.
2840 If the requested radix is valid, OUTPUT_RADIX is updated,
2841 otherwise, it is left unchanged. */
2842
2843 static unsigned output_radix_1 = 10;
2844
2845 static void
2846 set_output_radix (const char *args, int from_tty, struct cmd_list_element *c)
2847 {
2848 set_output_radix_1 (from_tty, output_radix_1);
2849 }
2850
2851 static void
2852 set_output_radix_1 (int from_tty, unsigned radix)
2853 {
2854 /* Validate the radix and disallow ones that we aren't prepared to
2855 handle correctly, leaving the radix unchanged. */
2856 switch (radix)
2857 {
2858 case 16:
2859 user_print_options.output_format = 'x'; /* hex */
2860 break;
2861 case 10:
2862 user_print_options.output_format = 0; /* decimal */
2863 break;
2864 case 8:
2865 user_print_options.output_format = 'o'; /* octal */
2866 break;
2867 default:
2868 output_radix_1 = output_radix;
2869 error (_("Unsupported output radix ``decimal %u''; "
2870 "output radix unchanged."),
2871 radix);
2872 }
2873 output_radix_1 = output_radix = radix;
2874 if (from_tty)
2875 {
2876 printf_filtered (_("Output radix now set to "
2877 "decimal %u, hex %x, octal %o.\n"),
2878 radix, radix, radix);
2879 }
2880 }
2881
2882 /* Set both the input and output radix at once. Try to set the output radix
2883 first, since it has the most restrictive range. An radix that is valid as
2884 an output radix is also valid as an input radix.
2885
2886 It may be useful to have an unusual input radix. If the user wishes to
2887 set an input radix that is not valid as an output radix, he needs to use
2888 the 'set input-radix' command. */
2889
2890 static void
2891 set_radix (const char *arg, int from_tty)
2892 {
2893 unsigned radix;
2894
2895 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2896 set_output_radix_1 (0, radix);
2897 set_input_radix_1 (0, radix);
2898 if (from_tty)
2899 {
2900 printf_filtered (_("Input and output radices now set to "
2901 "decimal %u, hex %x, octal %o.\n"),
2902 radix, radix, radix);
2903 }
2904 }
2905
2906 /* Show both the input and output radices. */
2907
2908 static void
2909 show_radix (const char *arg, int from_tty)
2910 {
2911 if (from_tty)
2912 {
2913 if (input_radix == output_radix)
2914 {
2915 printf_filtered (_("Input and output radices set to "
2916 "decimal %u, hex %x, octal %o.\n"),
2917 input_radix, input_radix, input_radix);
2918 }
2919 else
2920 {
2921 printf_filtered (_("Input radix set to decimal "
2922 "%u, hex %x, octal %o.\n"),
2923 input_radix, input_radix, input_radix);
2924 printf_filtered (_("Output radix set to decimal "
2925 "%u, hex %x, octal %o.\n"),
2926 output_radix, output_radix, output_radix);
2927 }
2928 }
2929 }
2930 \f
2931
2932 /* Controls printing of vtbl's. */
2933 static void
2934 show_vtblprint (struct ui_file *file, int from_tty,
2935 struct cmd_list_element *c, const char *value)
2936 {
2937 fprintf_filtered (file, _("\
2938 Printing of C++ virtual function tables is %s.\n"),
2939 value);
2940 }
2941
2942 /* Controls looking up an object's derived type using what we find in
2943 its vtables. */
2944 static void
2945 show_objectprint (struct ui_file *file, int from_tty,
2946 struct cmd_list_element *c,
2947 const char *value)
2948 {
2949 fprintf_filtered (file, _("\
2950 Printing of object's derived type based on vtable info is %s.\n"),
2951 value);
2952 }
2953
2954 static void
2955 show_static_field_print (struct ui_file *file, int from_tty,
2956 struct cmd_list_element *c,
2957 const char *value)
2958 {
2959 fprintf_filtered (file,
2960 _("Printing of C++ static members is %s.\n"),
2961 value);
2962 }
2963
2964 \f
2965
2966 /* A couple typedefs to make writing the options a bit more
2967 convenient. */
2968 using boolean_option_def
2969 = gdb::option::boolean_option_def<value_print_options>;
2970 using uinteger_option_def
2971 = gdb::option::uinteger_option_def<value_print_options>;
2972 using zuinteger_unlimited_option_def
2973 = gdb::option::zuinteger_unlimited_option_def<value_print_options>;
2974
2975 /* Definitions of options for the "print" and "compile print"
2976 commands. */
2977 static const gdb::option::option_def value_print_option_defs[] = {
2978
2979 boolean_option_def {
2980 "address",
2981 [] (value_print_options *opt) { return &opt->addressprint; },
2982 show_addressprint, /* show_cmd_cb */
2983 N_("Set printing of addresses."),
2984 N_("Show printing of addresses."),
2985 NULL, /* help_doc */
2986 },
2987
2988 boolean_option_def {
2989 "array",
2990 [] (value_print_options *opt) { return &opt->prettyformat_arrays; },
2991 show_prettyformat_arrays, /* show_cmd_cb */
2992 N_("Set pretty formatting of arrays."),
2993 N_("Show pretty formatting of arrays."),
2994 NULL, /* help_doc */
2995 },
2996
2997 boolean_option_def {
2998 "array-indexes",
2999 [] (value_print_options *opt) { return &opt->print_array_indexes; },
3000 show_print_array_indexes, /* show_cmd_cb */
3001 N_("Set printing of array indexes."),
3002 N_("Show printing of array indexes."),
3003 NULL, /* help_doc */
3004 },
3005
3006 uinteger_option_def {
3007 "elements",
3008 [] (value_print_options *opt) { return &opt->print_max; },
3009 show_print_max, /* show_cmd_cb */
3010 N_("Set limit on string chars or array elements to print."),
3011 N_("Show limit on string chars or array elements to print."),
3012 N_("\"unlimited\" causes there to be no limit."),
3013 },
3014
3015 zuinteger_unlimited_option_def {
3016 "max-depth",
3017 [] (value_print_options *opt) { return &opt->max_depth; },
3018 show_print_max_depth, /* show_cmd_cb */
3019 N_("Set maximum print depth for nested structures, unions and arrays."),
3020 N_("Show maximum print depth for nested structures, unions, and arrays."),
3021 N_("When structures, unions, or arrays are nested beyond this depth then they\n\
3022 will be replaced with either '{...}' or '(...)' depending on the language.\n\
3023 Use \"unlimited\" to print the complete structure.")
3024 },
3025
3026 boolean_option_def {
3027 "null-stop",
3028 [] (value_print_options *opt) { return &opt->stop_print_at_null; },
3029 show_stop_print_at_null, /* show_cmd_cb */
3030 N_("Set printing of char arrays to stop at first null char."),
3031 N_("Show printing of char arrays to stop at first null char."),
3032 NULL, /* help_doc */
3033 },
3034
3035 boolean_option_def {
3036 "object",
3037 [] (value_print_options *opt) { return &opt->objectprint; },
3038 show_objectprint, /* show_cmd_cb */
3039 _("Set printing of C++ virtual function tables."),
3040 _("Show printing of C++ virtual function tables."),
3041 NULL, /* help_doc */
3042 },
3043
3044 boolean_option_def {
3045 "pretty",
3046 [] (value_print_options *opt) { return &opt->prettyformat_structs; },
3047 show_prettyformat_structs, /* show_cmd_cb */
3048 N_("Set pretty formatting of structures."),
3049 N_("Show pretty formatting of structures."),
3050 NULL, /* help_doc */
3051 },
3052
3053 boolean_option_def {
3054 "raw-values",
3055 [] (value_print_options *opt) { return &opt->raw; },
3056 NULL, /* show_cmd_cb */
3057 N_("Set whether to print values in raw form."),
3058 N_("Show whether to print values in raw form."),
3059 N_("If set, values are printed in raw form, bypassing any\n\
3060 pretty-printers for that value.")
3061 },
3062
3063 uinteger_option_def {
3064 "repeats",
3065 [] (value_print_options *opt) { return &opt->repeat_count_threshold; },
3066 show_repeat_count_threshold, /* show_cmd_cb */
3067 N_("Set threshold for repeated print elements."),
3068 N_("Show threshold for repeated print elements."),
3069 N_("\"unlimited\" causes all elements to be individually printed."),
3070 },
3071
3072 boolean_option_def {
3073 "static-members",
3074 [] (value_print_options *opt) { return &opt->static_field_print; },
3075 show_static_field_print, /* show_cmd_cb */
3076 N_("Set printing of C++ static members."),
3077 N_("Show printing of C++ static members."),
3078 NULL, /* help_doc */
3079 },
3080
3081 boolean_option_def {
3082 "symbol",
3083 [] (value_print_options *opt) { return &opt->symbol_print; },
3084 show_symbol_print, /* show_cmd_cb */
3085 N_("Set printing of symbol names when printing pointers."),
3086 N_("Show printing of symbol names when printing pointers."),
3087 NULL, /* help_doc */
3088 },
3089
3090 boolean_option_def {
3091 "union",
3092 [] (value_print_options *opt) { return &opt->unionprint; },
3093 show_unionprint, /* show_cmd_cb */
3094 N_("Set printing of unions interior to structures."),
3095 N_("Show printing of unions interior to structures."),
3096 NULL, /* help_doc */
3097 },
3098
3099 boolean_option_def {
3100 "vtbl",
3101 [] (value_print_options *opt) { return &opt->vtblprint; },
3102 show_vtblprint, /* show_cmd_cb */
3103 N_("Set printing of C++ virtual function tables."),
3104 N_("Show printing of C++ virtual function tables."),
3105 NULL, /* help_doc */
3106 },
3107 };
3108
3109 /* See valprint.h. */
3110
3111 gdb::option::option_def_group
3112 make_value_print_options_def_group (value_print_options *opts)
3113 {
3114 return {{value_print_option_defs}, opts};
3115 }
3116
3117 void _initialize_valprint ();
3118 void
3119 _initialize_valprint ()
3120 {
3121 cmd_list_element *cmd;
3122
3123 add_basic_prefix_cmd ("print", no_class,
3124 _("Generic command for setting how things print."),
3125 &setprintlist, "set print ", 0, &setlist);
3126 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3127 /* Prefer set print to set prompt. */
3128 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3129
3130 add_show_prefix_cmd ("print", no_class,
3131 _("Generic command for showing print settings."),
3132 &showprintlist, "show print ", 0, &showlist);
3133 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3134 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3135
3136 cmd = add_basic_prefix_cmd ("raw", no_class,
3137 _("\
3138 Generic command for setting what things to print in \"raw\" mode."),
3139 &setprintrawlist, "set print raw ", 0,
3140 &setprintlist);
3141 deprecate_cmd (cmd, nullptr);
3142
3143 cmd = add_show_prefix_cmd ("raw", no_class,
3144 _("Generic command for showing \"print raw\" settings."),
3145 &showprintrawlist, "show print raw ", 0,
3146 &showprintlist);
3147 deprecate_cmd (cmd, nullptr);
3148
3149 gdb::option::add_setshow_cmds_for_options
3150 (class_support, &user_print_options, value_print_option_defs,
3151 &setprintlist, &showprintlist);
3152
3153 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3154 _("\
3155 Set default input radix for entering numbers."), _("\
3156 Show default input radix for entering numbers."), NULL,
3157 set_input_radix,
3158 show_input_radix,
3159 &setlist, &showlist);
3160
3161 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3162 _("\
3163 Set default output radix for printing of values."), _("\
3164 Show default output radix for printing of values."), NULL,
3165 set_output_radix,
3166 show_output_radix,
3167 &setlist, &showlist);
3168
3169 /* The "set radix" and "show radix" commands are special in that
3170 they are like normal set and show commands but allow two normally
3171 independent variables to be either set or shown with a single
3172 command. So the usual deprecated_add_set_cmd() and [deleted]
3173 add_show_from_set() commands aren't really appropriate. */
3174 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3175 longer true - show can display anything. */
3176 add_cmd ("radix", class_support, set_radix, _("\
3177 Set default input and output number radices.\n\
3178 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3179 Without an argument, sets both radices back to the default value of 10."),
3180 &setlist);
3181 add_cmd ("radix", class_support, show_radix, _("\
3182 Show the default input and output number radices.\n\
3183 Use 'show input-radix' or 'show output-radix' to independently show each."),
3184 &showlist);
3185 }
This page took 0.098925 seconds and 4 git commands to generate.