50b5a1ff50d9a4b418920242d20e881b8f6ebc2b
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "target-float.h"
31 #include "extension.h"
32 #include "ada-lang.h"
33 #include "gdb_obstack.h"
34 #include "charset.h"
35 #include "typeprint.h"
36 #include <ctype.h>
37 #include <algorithm>
38 #include "gdbsupport/byte-vector.h"
39 #include "cli/cli-option.h"
40 #include "gdbarch.h"
41 #include "cli/cli-style.h"
42 #include "count-one-bits.h"
43
44 /* Maximum number of wchars returned from wchar_iterate. */
45 #define MAX_WCHARS 4
46
47 /* A convenience macro to compute the size of a wchar_t buffer containing X
48 characters. */
49 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
50
51 /* Character buffer size saved while iterating over wchars. */
52 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
53
54 /* A structure to encapsulate state information from iterated
55 character conversions. */
56 struct converted_character
57 {
58 /* The number of characters converted. */
59 int num_chars;
60
61 /* The result of the conversion. See charset.h for more. */
62 enum wchar_iterate_result result;
63
64 /* The (saved) converted character(s). */
65 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
66
67 /* The first converted target byte. */
68 const gdb_byte *buf;
69
70 /* The number of bytes converted. */
71 size_t buflen;
72
73 /* How many times this character(s) is repeated. */
74 int repeat_count;
75 };
76
77 /* Command lists for set/show print raw. */
78 struct cmd_list_element *setprintrawlist;
79 struct cmd_list_element *showprintrawlist;
80
81 /* Prototypes for local functions */
82
83 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
84 int len, int *errptr);
85
86 static void set_input_radix_1 (int, unsigned);
87
88 static void set_output_radix_1 (int, unsigned);
89
90 static void val_print_type_code_flags (struct type *type,
91 const gdb_byte *valaddr,
92 struct ui_file *stream);
93
94 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
95 #define PRINT_MAX_DEPTH_DEFAULT 20 /* Start print_max_depth off at this value. */
96
97 struct value_print_options user_print_options =
98 {
99 Val_prettyformat_default, /* prettyformat */
100 0, /* prettyformat_arrays */
101 0, /* prettyformat_structs */
102 0, /* vtblprint */
103 1, /* unionprint */
104 1, /* addressprint */
105 0, /* objectprint */
106 PRINT_MAX_DEFAULT, /* print_max */
107 10, /* repeat_count_threshold */
108 0, /* output_format */
109 0, /* format */
110 0, /* stop_print_at_null */
111 0, /* print_array_indexes */
112 0, /* deref_ref */
113 1, /* static_field_print */
114 1, /* pascal_static_field_print */
115 0, /* raw */
116 0, /* summary */
117 1, /* symbol_print */
118 PRINT_MAX_DEPTH_DEFAULT, /* max_depth */
119 1 /* finish_print */
120 };
121
122 /* Initialize *OPTS to be a copy of the user print options. */
123 void
124 get_user_print_options (struct value_print_options *opts)
125 {
126 *opts = user_print_options;
127 }
128
129 /* Initialize *OPTS to be a copy of the user print options, but with
130 pretty-formatting disabled. */
131 void
132 get_no_prettyformat_print_options (struct value_print_options *opts)
133 {
134 *opts = user_print_options;
135 opts->prettyformat = Val_no_prettyformat;
136 }
137
138 /* Initialize *OPTS to be a copy of the user print options, but using
139 FORMAT as the formatting option. */
140 void
141 get_formatted_print_options (struct value_print_options *opts,
142 char format)
143 {
144 *opts = user_print_options;
145 opts->format = format;
146 }
147
148 static void
149 show_print_max (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151 {
152 fprintf_filtered (file,
153 _("Limit on string chars or array "
154 "elements to print is %s.\n"),
155 value);
156 }
157
158
159 /* Default input and output radixes, and output format letter. */
160
161 unsigned input_radix = 10;
162 static void
163 show_input_radix (struct ui_file *file, int from_tty,
164 struct cmd_list_element *c, const char *value)
165 {
166 fprintf_filtered (file,
167 _("Default input radix for entering numbers is %s.\n"),
168 value);
169 }
170
171 unsigned output_radix = 10;
172 static void
173 show_output_radix (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175 {
176 fprintf_filtered (file,
177 _("Default output radix for printing of values is %s.\n"),
178 value);
179 }
180
181 /* By default we print arrays without printing the index of each element in
182 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
183
184 static void
185 show_print_array_indexes (struct ui_file *file, int from_tty,
186 struct cmd_list_element *c, const char *value)
187 {
188 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
189 }
190
191 /* Print repeat counts if there are more than this many repetitions of an
192 element in an array. Referenced by the low level language dependent
193 print routines. */
194
195 static void
196 show_repeat_count_threshold (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198 {
199 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
200 value);
201 }
202
203 /* If nonzero, stops printing of char arrays at first null. */
204
205 static void
206 show_stop_print_at_null (struct ui_file *file, int from_tty,
207 struct cmd_list_element *c, const char *value)
208 {
209 fprintf_filtered (file,
210 _("Printing of char arrays to stop "
211 "at first null char is %s.\n"),
212 value);
213 }
214
215 /* Controls pretty printing of structures. */
216
217 static void
218 show_prettyformat_structs (struct ui_file *file, int from_tty,
219 struct cmd_list_element *c, const char *value)
220 {
221 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
222 }
223
224 /* Controls pretty printing of arrays. */
225
226 static void
227 show_prettyformat_arrays (struct ui_file *file, int from_tty,
228 struct cmd_list_element *c, const char *value)
229 {
230 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
231 }
232
233 /* If nonzero, causes unions inside structures or other unions to be
234 printed. */
235
236 static void
237 show_unionprint (struct ui_file *file, int from_tty,
238 struct cmd_list_element *c, const char *value)
239 {
240 fprintf_filtered (file,
241 _("Printing of unions interior to structures is %s.\n"),
242 value);
243 }
244
245 /* If nonzero, causes machine addresses to be printed in certain contexts. */
246
247 static void
248 show_addressprint (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250 {
251 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
252 }
253
254 static void
255 show_symbol_print (struct ui_file *file, int from_tty,
256 struct cmd_list_element *c, const char *value)
257 {
258 fprintf_filtered (file,
259 _("Printing of symbols when printing pointers is %s.\n"),
260 value);
261 }
262
263 \f
264
265 /* A helper function for val_print. When printing in "summary" mode,
266 we want to print scalar arguments, but not aggregate arguments.
267 This function distinguishes between the two. */
268
269 int
270 val_print_scalar_type_p (struct type *type)
271 {
272 type = check_typedef (type);
273 while (TYPE_IS_REFERENCE (type))
274 {
275 type = TYPE_TARGET_TYPE (type);
276 type = check_typedef (type);
277 }
278 switch (TYPE_CODE (type))
279 {
280 case TYPE_CODE_ARRAY:
281 case TYPE_CODE_STRUCT:
282 case TYPE_CODE_UNION:
283 case TYPE_CODE_SET:
284 case TYPE_CODE_STRING:
285 return 0;
286 default:
287 return 1;
288 }
289 }
290
291 /* A helper function for val_print. When printing with limited depth we
292 want to print string and scalar arguments, but not aggregate arguments.
293 This function distinguishes between the two. */
294
295 static bool
296 val_print_scalar_or_string_type_p (struct type *type,
297 const struct language_defn *language)
298 {
299 return (val_print_scalar_type_p (type)
300 || language->la_is_string_type_p (type));
301 }
302
303 /* See its definition in value.h. */
304
305 int
306 valprint_check_validity (struct ui_file *stream,
307 struct type *type,
308 LONGEST embedded_offset,
309 const struct value *val)
310 {
311 type = check_typedef (type);
312
313 if (type_not_associated (type))
314 {
315 val_print_not_associated (stream);
316 return 0;
317 }
318
319 if (type_not_allocated (type))
320 {
321 val_print_not_allocated (stream);
322 return 0;
323 }
324
325 if (TYPE_CODE (type) != TYPE_CODE_UNION
326 && TYPE_CODE (type) != TYPE_CODE_STRUCT
327 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
328 {
329 if (value_bits_any_optimized_out (val,
330 TARGET_CHAR_BIT * embedded_offset,
331 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
332 {
333 val_print_optimized_out (val, stream);
334 return 0;
335 }
336
337 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
338 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
339 {
340 const int is_ref = TYPE_CODE (type) == TYPE_CODE_REF;
341 int ref_is_addressable = 0;
342
343 if (is_ref)
344 {
345 const struct value *deref_val = coerce_ref_if_computed (val);
346
347 if (deref_val != NULL)
348 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
349 }
350
351 if (!is_ref || !ref_is_addressable)
352 fputs_styled (_("<synthetic pointer>"), metadata_style.style (),
353 stream);
354
355 /* C++ references should be valid even if they're synthetic. */
356 return is_ref;
357 }
358
359 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
360 {
361 val_print_unavailable (stream);
362 return 0;
363 }
364 }
365
366 return 1;
367 }
368
369 void
370 val_print_optimized_out (const struct value *val, struct ui_file *stream)
371 {
372 if (val != NULL && value_lval_const (val) == lval_register)
373 val_print_not_saved (stream);
374 else
375 fprintf_styled (stream, metadata_style.style (), _("<optimized out>"));
376 }
377
378 void
379 val_print_not_saved (struct ui_file *stream)
380 {
381 fprintf_styled (stream, metadata_style.style (), _("<not saved>"));
382 }
383
384 void
385 val_print_unavailable (struct ui_file *stream)
386 {
387 fprintf_styled (stream, metadata_style.style (), _("<unavailable>"));
388 }
389
390 void
391 val_print_invalid_address (struct ui_file *stream)
392 {
393 fprintf_styled (stream, metadata_style.style (), _("<invalid address>"));
394 }
395
396 /* Print a pointer based on the type of its target.
397
398 Arguments to this functions are roughly the same as those in
399 generic_val_print. A difference is that ADDRESS is the address to print,
400 with embedded_offset already added. ELTTYPE represents
401 the pointed type after check_typedef. */
402
403 static void
404 print_unpacked_pointer (struct type *type, struct type *elttype,
405 CORE_ADDR address, struct ui_file *stream,
406 const struct value_print_options *options)
407 {
408 struct gdbarch *gdbarch = get_type_arch (type);
409
410 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
411 {
412 /* Try to print what function it points to. */
413 print_function_pointer_address (options, gdbarch, address, stream);
414 return;
415 }
416
417 if (options->symbol_print)
418 print_address_demangle (options, gdbarch, address, stream, demangle);
419 else if (options->addressprint)
420 fputs_filtered (paddress (gdbarch, address), stream);
421 }
422
423 /* generic_val_print helper for TYPE_CODE_ARRAY. */
424
425 static void
426 generic_val_print_array (struct type *type,
427 int embedded_offset, CORE_ADDR address,
428 struct ui_file *stream, int recurse,
429 struct value *original_value,
430 const struct value_print_options *options,
431 const struct
432 generic_val_print_decorations *decorations)
433 {
434 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
435 struct type *elttype = check_typedef (unresolved_elttype);
436
437 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
438 {
439 LONGEST low_bound, high_bound;
440
441 if (!get_array_bounds (type, &low_bound, &high_bound))
442 error (_("Could not determine the array high bound"));
443
444 if (options->prettyformat_arrays)
445 {
446 print_spaces_filtered (2 + 2 * recurse, stream);
447 }
448
449 fputs_filtered (decorations->array_start, stream);
450 val_print_array_elements (type, embedded_offset,
451 address, stream,
452 recurse, original_value, options, 0);
453 fputs_filtered (decorations->array_end, stream);
454 }
455 else
456 {
457 /* Array of unspecified length: treat like pointer to first elt. */
458 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
459 options);
460 }
461
462 }
463
464 /* generic_val_print helper for TYPE_CODE_PTR. */
465
466 static void
467 generic_val_print_ptr (struct type *type,
468 int embedded_offset, struct ui_file *stream,
469 struct value *original_value,
470 const struct value_print_options *options)
471 {
472 struct gdbarch *gdbarch = get_type_arch (type);
473 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
474
475 if (options->format && options->format != 's')
476 {
477 val_print_scalar_formatted (type, embedded_offset,
478 original_value, options, 0, stream);
479 }
480 else
481 {
482 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
483 struct type *elttype = check_typedef (unresolved_elttype);
484 const gdb_byte *valaddr = value_contents_for_printing (original_value);
485 CORE_ADDR addr = unpack_pointer (type,
486 valaddr + embedded_offset * unit_size);
487
488 print_unpacked_pointer (type, elttype, addr, stream, options);
489 }
490 }
491
492
493 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
494
495 static void
496 generic_val_print_memberptr (struct type *type,
497 int embedded_offset, struct ui_file *stream,
498 struct value *original_value,
499 const struct value_print_options *options)
500 {
501 val_print_scalar_formatted (type, embedded_offset,
502 original_value, options, 0, stream);
503 }
504
505 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
506
507 static void
508 print_ref_address (struct type *type, const gdb_byte *address_buffer,
509 int embedded_offset, struct ui_file *stream)
510 {
511 struct gdbarch *gdbarch = get_type_arch (type);
512
513 if (address_buffer != NULL)
514 {
515 CORE_ADDR address
516 = extract_typed_address (address_buffer + embedded_offset, type);
517
518 fprintf_filtered (stream, "@");
519 fputs_filtered (paddress (gdbarch, address), stream);
520 }
521 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
522 }
523
524 /* If VAL is addressable, return the value contents buffer of a value that
525 represents a pointer to VAL. Otherwise return NULL. */
526
527 static const gdb_byte *
528 get_value_addr_contents (struct value *deref_val)
529 {
530 gdb_assert (deref_val != NULL);
531
532 if (value_lval_const (deref_val) == lval_memory)
533 return value_contents_for_printing_const (value_addr (deref_val));
534 else
535 {
536 /* We have a non-addressable value, such as a DW_AT_const_value. */
537 return NULL;
538 }
539 }
540
541 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
542
543 static void
544 generic_val_print_ref (struct type *type,
545 int embedded_offset, struct ui_file *stream, int recurse,
546 struct value *original_value,
547 const struct value_print_options *options)
548 {
549 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
550 struct value *deref_val = NULL;
551 const int value_is_synthetic
552 = value_bits_synthetic_pointer (original_value,
553 TARGET_CHAR_BIT * embedded_offset,
554 TARGET_CHAR_BIT * TYPE_LENGTH (type));
555 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
556 || options->deref_ref);
557 const int type_is_defined = TYPE_CODE (elttype) != TYPE_CODE_UNDEF;
558 const gdb_byte *valaddr = value_contents_for_printing (original_value);
559
560 if (must_coerce_ref && type_is_defined)
561 {
562 deref_val = coerce_ref_if_computed (original_value);
563
564 if (deref_val != NULL)
565 {
566 /* More complicated computed references are not supported. */
567 gdb_assert (embedded_offset == 0);
568 }
569 else
570 deref_val = value_at (TYPE_TARGET_TYPE (type),
571 unpack_pointer (type, valaddr + embedded_offset));
572 }
573 /* Else, original_value isn't a synthetic reference or we don't have to print
574 the reference's contents.
575
576 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
577 cause original_value to be a not_lval instead of an lval_computed,
578 which will make value_bits_synthetic_pointer return false.
579 This happens because if options->objectprint is true, c_value_print will
580 overwrite original_value's contents with the result of coercing
581 the reference through value_addr, and then set its type back to
582 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
583 we can simply treat it as non-synthetic and move on. */
584
585 if (options->addressprint)
586 {
587 const gdb_byte *address = (value_is_synthetic && type_is_defined
588 ? get_value_addr_contents (deref_val)
589 : valaddr);
590
591 print_ref_address (type, address, embedded_offset, stream);
592
593 if (options->deref_ref)
594 fputs_filtered (": ", stream);
595 }
596
597 if (options->deref_ref)
598 {
599 if (type_is_defined)
600 common_val_print (deref_val, stream, recurse, options,
601 current_language);
602 else
603 fputs_filtered ("???", stream);
604 }
605 }
606
607 /* Helper function for generic_val_print_enum.
608 This is also used to print enums in TYPE_CODE_FLAGS values. */
609
610 static void
611 generic_val_print_enum_1 (struct type *type, LONGEST val,
612 struct ui_file *stream)
613 {
614 unsigned int i;
615 unsigned int len;
616
617 len = TYPE_NFIELDS (type);
618 for (i = 0; i < len; i++)
619 {
620 QUIT;
621 if (val == TYPE_FIELD_ENUMVAL (type, i))
622 {
623 break;
624 }
625 }
626 if (i < len)
627 {
628 fputs_styled (TYPE_FIELD_NAME (type, i), variable_name_style.style (),
629 stream);
630 }
631 else if (TYPE_FLAG_ENUM (type))
632 {
633 int first = 1;
634
635 /* We have a "flag" enum, so we try to decompose it into pieces as
636 appropriate. The enum may have multiple enumerators representing
637 the same bit, in which case we choose to only print the first one
638 we find. */
639 for (i = 0; i < len; ++i)
640 {
641 QUIT;
642
643 ULONGEST enumval = TYPE_FIELD_ENUMVAL (type, i);
644 int nbits = count_one_bits_ll (enumval);
645
646 gdb_assert (nbits == 0 || nbits == 1);
647
648 if ((val & enumval) != 0)
649 {
650 if (first)
651 {
652 fputs_filtered ("(", stream);
653 first = 0;
654 }
655 else
656 fputs_filtered (" | ", stream);
657
658 val &= ~TYPE_FIELD_ENUMVAL (type, i);
659 fputs_styled (TYPE_FIELD_NAME (type, i),
660 variable_name_style.style (), stream);
661 }
662 }
663
664 if (val != 0)
665 {
666 /* There are leftover bits, print them. */
667 if (first)
668 fputs_filtered ("(", stream);
669 else
670 fputs_filtered (" | ", stream);
671
672 fputs_filtered ("unknown: 0x", stream);
673 print_longest (stream, 'x', 0, val);
674 fputs_filtered (")", stream);
675 }
676 else if (first)
677 {
678 /* Nothing has been printed and the value is 0, the enum value must
679 have been 0. */
680 fputs_filtered ("0", stream);
681 }
682 else
683 {
684 /* Something has been printed, close the parenthesis. */
685 fputs_filtered (")", stream);
686 }
687 }
688 else
689 print_longest (stream, 'd', 0, val);
690 }
691
692 /* generic_val_print helper for TYPE_CODE_ENUM. */
693
694 static void
695 generic_val_print_enum (struct type *type,
696 int embedded_offset, struct ui_file *stream,
697 struct value *original_value,
698 const struct value_print_options *options)
699 {
700 LONGEST val;
701 struct gdbarch *gdbarch = get_type_arch (type);
702 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
703
704 if (options->format)
705 {
706 val_print_scalar_formatted (type, embedded_offset,
707 original_value, options, 0, stream);
708 }
709 else
710 {
711 const gdb_byte *valaddr = value_contents_for_printing (original_value);
712
713 val = unpack_long (type, valaddr + embedded_offset * unit_size);
714
715 generic_val_print_enum_1 (type, val, stream);
716 }
717 }
718
719 /* generic_val_print helper for TYPE_CODE_FLAGS. */
720
721 static void
722 generic_val_print_flags (struct type *type,
723 int embedded_offset, struct ui_file *stream,
724 struct value *original_value,
725 const struct value_print_options *options)
726
727 {
728 if (options->format)
729 val_print_scalar_formatted (type, embedded_offset, original_value,
730 options, 0, stream);
731 else
732 {
733 const gdb_byte *valaddr = value_contents_for_printing (original_value);
734
735 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
736 }
737 }
738
739 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
740
741 static void
742 generic_val_print_func (struct type *type,
743 int embedded_offset, CORE_ADDR address,
744 struct ui_file *stream,
745 struct value *original_value,
746 const struct value_print_options *options)
747 {
748 struct gdbarch *gdbarch = get_type_arch (type);
749
750 if (options->format)
751 {
752 val_print_scalar_formatted (type, embedded_offset,
753 original_value, options, 0, stream);
754 }
755 else
756 {
757 /* FIXME, we should consider, at least for ANSI C language,
758 eliminating the distinction made between FUNCs and POINTERs
759 to FUNCs. */
760 fprintf_filtered (stream, "{");
761 type_print (type, "", stream, -1);
762 fprintf_filtered (stream, "} ");
763 /* Try to print what function it points to, and its address. */
764 print_address_demangle (options, gdbarch, address, stream, demangle);
765 }
766 }
767
768 /* generic_val_print helper for TYPE_CODE_BOOL. */
769
770 static void
771 generic_val_print_bool (struct type *type,
772 int embedded_offset, struct ui_file *stream,
773 struct value *original_value,
774 const struct value_print_options *options,
775 const struct generic_val_print_decorations *decorations)
776 {
777 LONGEST val;
778 struct gdbarch *gdbarch = get_type_arch (type);
779 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
780
781 if (options->format || options->output_format)
782 {
783 struct value_print_options opts = *options;
784 opts.format = (options->format ? options->format
785 : options->output_format);
786 val_print_scalar_formatted (type, embedded_offset,
787 original_value, &opts, 0, stream);
788 }
789 else
790 {
791 const gdb_byte *valaddr = value_contents_for_printing (original_value);
792
793 val = unpack_long (type, valaddr + embedded_offset * unit_size);
794 if (val == 0)
795 fputs_filtered (decorations->false_name, stream);
796 else if (val == 1)
797 fputs_filtered (decorations->true_name, stream);
798 else
799 print_longest (stream, 'd', 0, val);
800 }
801 }
802
803 /* generic_val_print helper for TYPE_CODE_INT. */
804
805 static void
806 generic_val_print_int (struct type *type,
807 int embedded_offset, struct ui_file *stream,
808 struct value *original_value,
809 const struct value_print_options *options)
810 {
811 struct value_print_options opts = *options;
812
813 opts.format = (options->format ? options->format
814 : options->output_format);
815 val_print_scalar_formatted (type, embedded_offset,
816 original_value, &opts, 0, stream);
817 }
818
819 /* generic_val_print helper for TYPE_CODE_CHAR. */
820
821 static void
822 generic_val_print_char (struct type *type, struct type *unresolved_type,
823 int embedded_offset,
824 struct ui_file *stream,
825 struct value *original_value,
826 const struct value_print_options *options)
827 {
828 LONGEST val;
829 struct gdbarch *gdbarch = get_type_arch (type);
830 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
831
832 if (options->format || options->output_format)
833 {
834 struct value_print_options opts = *options;
835
836 opts.format = (options->format ? options->format
837 : options->output_format);
838 val_print_scalar_formatted (type, embedded_offset,
839 original_value, &opts, 0, stream);
840 }
841 else
842 {
843 const gdb_byte *valaddr = value_contents_for_printing (original_value);
844
845 val = unpack_long (type, valaddr + embedded_offset * unit_size);
846 if (TYPE_UNSIGNED (type))
847 fprintf_filtered (stream, "%u", (unsigned int) val);
848 else
849 fprintf_filtered (stream, "%d", (int) val);
850 fputs_filtered (" ", stream);
851 LA_PRINT_CHAR (val, unresolved_type, stream);
852 }
853 }
854
855 /* generic_val_print helper for TYPE_CODE_FLT and TYPE_CODE_DECFLOAT. */
856
857 static void
858 generic_val_print_float (struct type *type,
859 int embedded_offset, struct ui_file *stream,
860 struct value *original_value,
861 const struct value_print_options *options)
862 {
863 struct gdbarch *gdbarch = get_type_arch (type);
864 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
865
866 if (options->format)
867 {
868 val_print_scalar_formatted (type, embedded_offset,
869 original_value, options, 0, stream);
870 }
871 else
872 {
873 const gdb_byte *valaddr = value_contents_for_printing (original_value);
874
875 print_floating (valaddr + embedded_offset * unit_size, type, stream);
876 }
877 }
878
879 /* generic_val_print helper for TYPE_CODE_COMPLEX. */
880
881 static void
882 generic_val_print_complex (struct type *type,
883 int embedded_offset, struct ui_file *stream,
884 struct value *original_value,
885 const struct value_print_options *options,
886 const struct generic_val_print_decorations
887 *decorations)
888 {
889 struct gdbarch *gdbarch = get_type_arch (type);
890 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
891 const gdb_byte *valaddr = value_contents_for_printing (original_value);
892
893 fprintf_filtered (stream, "%s", decorations->complex_prefix);
894 if (options->format)
895 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
896 embedded_offset, original_value, options, 0,
897 stream);
898 else
899 print_floating (valaddr + embedded_offset * unit_size,
900 TYPE_TARGET_TYPE (type), stream);
901 fprintf_filtered (stream, "%s", decorations->complex_infix);
902 if (options->format)
903 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
904 embedded_offset
905 + type_length_units (TYPE_TARGET_TYPE (type)),
906 original_value, options, 0, stream);
907 else
908 print_floating (valaddr + embedded_offset * unit_size
909 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
910 TYPE_TARGET_TYPE (type), stream);
911 fprintf_filtered (stream, "%s", decorations->complex_suffix);
912 }
913
914 /* A generic val_print that is suitable for use by language
915 implementations of the la_val_print method. This function can
916 handle most type codes, though not all, notably exception
917 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
918 the caller.
919
920 Most arguments are as to val_print.
921
922 The additional DECORATIONS argument can be used to customize the
923 output in some small, language-specific ways. */
924
925 void
926 generic_val_print (struct type *type,
927 int embedded_offset, CORE_ADDR address,
928 struct ui_file *stream, int recurse,
929 struct value *original_value,
930 const struct value_print_options *options,
931 const struct generic_val_print_decorations *decorations)
932 {
933 struct type *unresolved_type = type;
934
935 type = check_typedef (type);
936 switch (TYPE_CODE (type))
937 {
938 case TYPE_CODE_ARRAY:
939 generic_val_print_array (type, embedded_offset, address, stream,
940 recurse, original_value, options, decorations);
941 break;
942
943 case TYPE_CODE_MEMBERPTR:
944 generic_val_print_memberptr (type, embedded_offset, stream,
945 original_value, options);
946 break;
947
948 case TYPE_CODE_PTR:
949 generic_val_print_ptr (type, embedded_offset, stream,
950 original_value, options);
951 break;
952
953 case TYPE_CODE_REF:
954 case TYPE_CODE_RVALUE_REF:
955 generic_val_print_ref (type, embedded_offset, stream, recurse,
956 original_value, options);
957 break;
958
959 case TYPE_CODE_ENUM:
960 generic_val_print_enum (type, embedded_offset, stream,
961 original_value, options);
962 break;
963
964 case TYPE_CODE_FLAGS:
965 generic_val_print_flags (type, embedded_offset, stream,
966 original_value, options);
967 break;
968
969 case TYPE_CODE_FUNC:
970 case TYPE_CODE_METHOD:
971 generic_val_print_func (type, embedded_offset, address, stream,
972 original_value, options);
973 break;
974
975 case TYPE_CODE_BOOL:
976 generic_val_print_bool (type, embedded_offset, stream,
977 original_value, options, decorations);
978 break;
979
980 case TYPE_CODE_RANGE:
981 /* FIXME: create_static_range_type does not set the unsigned bit in a
982 range type (I think it probably should copy it from the
983 target type), so we won't print values which are too large to
984 fit in a signed integer correctly. */
985 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
986 print with the target type, though, because the size of our
987 type and the target type might differ). */
988
989 /* FALLTHROUGH */
990
991 case TYPE_CODE_INT:
992 generic_val_print_int (type, embedded_offset, stream,
993 original_value, options);
994 break;
995
996 case TYPE_CODE_CHAR:
997 generic_val_print_char (type, unresolved_type, embedded_offset,
998 stream, original_value, options);
999 break;
1000
1001 case TYPE_CODE_FLT:
1002 case TYPE_CODE_DECFLOAT:
1003 generic_val_print_float (type, embedded_offset, stream,
1004 original_value, options);
1005 break;
1006
1007 case TYPE_CODE_VOID:
1008 fputs_filtered (decorations->void_name, stream);
1009 break;
1010
1011 case TYPE_CODE_ERROR:
1012 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
1013 break;
1014
1015 case TYPE_CODE_UNDEF:
1016 /* This happens (without TYPE_STUB set) on systems which don't use
1017 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
1018 and no complete type for struct foo in that file. */
1019 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
1020 break;
1021
1022 case TYPE_CODE_COMPLEX:
1023 generic_val_print_complex (type, embedded_offset, stream,
1024 original_value, options, decorations);
1025 break;
1026
1027 case TYPE_CODE_UNION:
1028 case TYPE_CODE_STRUCT:
1029 case TYPE_CODE_METHODPTR:
1030 default:
1031 error (_("Unhandled type code %d in symbol table."),
1032 TYPE_CODE (type));
1033 }
1034 }
1035
1036 /* See valprint.h. */
1037
1038 void
1039 generic_value_print (struct value *val, struct ui_file *stream, int recurse,
1040 const struct value_print_options *options,
1041 const struct generic_val_print_decorations *decorations)
1042 {
1043 struct type *type = value_type (val);
1044 struct type *unresolved_type = type;
1045
1046 type = check_typedef (type);
1047 switch (TYPE_CODE (type))
1048 {
1049 case TYPE_CODE_ARRAY:
1050 generic_val_print_array (type, 0, value_address (val), stream,
1051 recurse, val, options, decorations);
1052 break;
1053
1054 case TYPE_CODE_MEMBERPTR:
1055 generic_val_print_memberptr (type, 0, stream,
1056 val, options);
1057 break;
1058
1059 case TYPE_CODE_PTR:
1060 generic_val_print_ptr (type, 0, stream,
1061 val, options);
1062 break;
1063
1064 case TYPE_CODE_REF:
1065 case TYPE_CODE_RVALUE_REF:
1066 generic_val_print_ref (type, 0, stream, recurse,
1067 val, options);
1068 break;
1069
1070 case TYPE_CODE_ENUM:
1071 generic_val_print_enum (type, 0, stream,
1072 val, options);
1073 break;
1074
1075 case TYPE_CODE_FLAGS:
1076 generic_val_print_flags (type, 0, stream,
1077 val, options);
1078 break;
1079
1080 case TYPE_CODE_FUNC:
1081 case TYPE_CODE_METHOD:
1082 generic_val_print_func (type, 0, value_address (val), stream,
1083 val, options);
1084 break;
1085
1086 case TYPE_CODE_BOOL:
1087 generic_val_print_bool (type, 0, stream,
1088 val, options, decorations);
1089 break;
1090
1091 case TYPE_CODE_RANGE:
1092 /* FIXME: create_static_range_type does not set the unsigned bit in a
1093 range type (I think it probably should copy it from the
1094 target type), so we won't print values which are too large to
1095 fit in a signed integer correctly. */
1096 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
1097 print with the target type, though, because the size of our
1098 type and the target type might differ). */
1099
1100 /* FALLTHROUGH */
1101
1102 case TYPE_CODE_INT:
1103 generic_val_print_int (type, 0, stream,
1104 val, options);
1105 break;
1106
1107 case TYPE_CODE_CHAR:
1108 generic_val_print_char (type, unresolved_type, 0,
1109 stream, val, options);
1110 break;
1111
1112 case TYPE_CODE_FLT:
1113 case TYPE_CODE_DECFLOAT:
1114 generic_val_print_float (type, 0, stream,
1115 val, options);
1116 break;
1117
1118 case TYPE_CODE_VOID:
1119 fputs_filtered (decorations->void_name, stream);
1120 break;
1121
1122 case TYPE_CODE_ERROR:
1123 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
1124 break;
1125
1126 case TYPE_CODE_UNDEF:
1127 /* This happens (without TYPE_STUB set) on systems which don't use
1128 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
1129 and no complete type for struct foo in that file. */
1130 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
1131 break;
1132
1133 case TYPE_CODE_COMPLEX:
1134 generic_val_print_complex (type, 0, stream,
1135 val, options, decorations);
1136 break;
1137
1138 case TYPE_CODE_UNION:
1139 case TYPE_CODE_STRUCT:
1140 case TYPE_CODE_METHODPTR:
1141 default:
1142 error (_("Unhandled type code %d in symbol table."),
1143 TYPE_CODE (type));
1144 }
1145 }
1146
1147 /* Helper function for val_print and common_val_print that does the
1148 work. Arguments are as to val_print, but FULL_VALUE, if given, is
1149 the value to be printed. */
1150
1151 static void
1152 do_val_print (struct value *full_value,
1153 struct type *type, LONGEST embedded_offset,
1154 CORE_ADDR address, struct ui_file *stream, int recurse,
1155 struct value *val,
1156 const struct value_print_options *options,
1157 const struct language_defn *language)
1158 {
1159 int ret = 0;
1160 struct value_print_options local_opts = *options;
1161 struct type *real_type = check_typedef (type);
1162
1163 if (local_opts.prettyformat == Val_prettyformat_default)
1164 local_opts.prettyformat = (local_opts.prettyformat_structs
1165 ? Val_prettyformat : Val_no_prettyformat);
1166
1167 QUIT;
1168
1169 /* Ensure that the type is complete and not just a stub. If the type is
1170 only a stub and we can't find and substitute its complete type, then
1171 print appropriate string and return. */
1172
1173 if (TYPE_STUB (real_type))
1174 {
1175 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
1176 return;
1177 }
1178
1179 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
1180 return;
1181
1182 if (!options->raw)
1183 {
1184 ret = apply_ext_lang_val_pretty_printer (type, embedded_offset,
1185 address, stream, recurse,
1186 val, options, language);
1187 if (ret)
1188 return;
1189 }
1190
1191 /* Handle summary mode. If the value is a scalar, print it;
1192 otherwise, print an ellipsis. */
1193 if (options->summary && !val_print_scalar_type_p (type))
1194 {
1195 fprintf_filtered (stream, "...");
1196 return;
1197 }
1198
1199 /* If this value is too deep then don't print it. */
1200 if (!val_print_scalar_or_string_type_p (type, language)
1201 && val_print_check_max_depth (stream, recurse, options, language))
1202 return;
1203
1204 try
1205 {
1206 if (full_value != nullptr && language->la_value_print_inner != nullptr)
1207 language->la_value_print_inner (full_value, stream, recurse,
1208 &local_opts);
1209 else
1210 language->la_val_print (type, embedded_offset, address,
1211 stream, recurse, val,
1212 &local_opts);
1213 }
1214 catch (const gdb_exception_error &except)
1215 {
1216 fprintf_styled (stream, metadata_style.style (),
1217 _("<error reading variable>"));
1218 }
1219 }
1220
1221 /* Print using the given LANGUAGE the data of type TYPE located at
1222 VAL's contents buffer + EMBEDDED_OFFSET (within GDB), which came
1223 from the inferior at address ADDRESS + EMBEDDED_OFFSET, onto
1224 stdio stream STREAM according to OPTIONS. VAL is the whole object
1225 that came from ADDRESS.
1226
1227 The language printers will pass down an adjusted EMBEDDED_OFFSET to
1228 further helper subroutines as subfields of TYPE are printed. In
1229 such cases, VAL is passed down unadjusted, so
1230 that VAL can be queried for metadata about the contents data being
1231 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
1232 buffer. For example: "has this field been optimized out", or "I'm
1233 printing an object while inspecting a traceframe; has this
1234 particular piece of data been collected?".
1235
1236 RECURSE indicates the amount of indentation to supply before
1237 continuation lines; this amount is roughly twice the value of
1238 RECURSE. */
1239
1240 void
1241 val_print (struct type *type, LONGEST embedded_offset,
1242 CORE_ADDR address, struct ui_file *stream, int recurse,
1243 struct value *val,
1244 const struct value_print_options *options,
1245 const struct language_defn *language)
1246 {
1247 do_val_print (nullptr, type, embedded_offset, address, stream,
1248 recurse, val, options, language);
1249 }
1250
1251 /* See valprint.h. */
1252
1253 bool
1254 val_print_check_max_depth (struct ui_file *stream, int recurse,
1255 const struct value_print_options *options,
1256 const struct language_defn *language)
1257 {
1258 if (options->max_depth > -1 && recurse >= options->max_depth)
1259 {
1260 gdb_assert (language->la_struct_too_deep_ellipsis != NULL);
1261 fputs_filtered (language->la_struct_too_deep_ellipsis, stream);
1262 return true;
1263 }
1264
1265 return false;
1266 }
1267
1268 /* Check whether the value VAL is printable. Return 1 if it is;
1269 return 0 and print an appropriate error message to STREAM according to
1270 OPTIONS if it is not. */
1271
1272 static int
1273 value_check_printable (struct value *val, struct ui_file *stream,
1274 const struct value_print_options *options)
1275 {
1276 if (val == 0)
1277 {
1278 fprintf_styled (stream, metadata_style.style (),
1279 _("<address of value unknown>"));
1280 return 0;
1281 }
1282
1283 if (value_entirely_optimized_out (val))
1284 {
1285 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1286 fprintf_filtered (stream, "...");
1287 else
1288 val_print_optimized_out (val, stream);
1289 return 0;
1290 }
1291
1292 if (value_entirely_unavailable (val))
1293 {
1294 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1295 fprintf_filtered (stream, "...");
1296 else
1297 val_print_unavailable (stream);
1298 return 0;
1299 }
1300
1301 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1302 {
1303 fprintf_styled (stream, metadata_style.style (),
1304 _("<internal function %s>"),
1305 value_internal_function_name (val));
1306 return 0;
1307 }
1308
1309 if (type_not_associated (value_type (val)))
1310 {
1311 val_print_not_associated (stream);
1312 return 0;
1313 }
1314
1315 if (type_not_allocated (value_type (val)))
1316 {
1317 val_print_not_allocated (stream);
1318 return 0;
1319 }
1320
1321 return 1;
1322 }
1323
1324 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1325 to OPTIONS.
1326
1327 This is a preferable interface to val_print, above, because it uses
1328 GDB's value mechanism. */
1329
1330 void
1331 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1332 const struct value_print_options *options,
1333 const struct language_defn *language)
1334 {
1335 if (!value_check_printable (val, stream, options))
1336 return;
1337
1338 if (language->la_language == language_ada)
1339 /* The value might have a dynamic type, which would cause trouble
1340 below when trying to extract the value contents (since the value
1341 size is determined from the type size which is unknown). So
1342 get a fixed representation of our value. */
1343 val = ada_to_fixed_value (val);
1344
1345 if (value_lazy (val))
1346 value_fetch_lazy (val);
1347
1348 do_val_print (val, value_type (val),
1349 value_embedded_offset (val), value_address (val),
1350 stream, recurse,
1351 val, options, language);
1352 }
1353
1354 /* See valprint.h. */
1355
1356 void
1357 common_val_print_checked (struct value *val, struct ui_file *stream,
1358 int recurse,
1359 const struct value_print_options *options,
1360 const struct language_defn *language)
1361 {
1362 if (!value_check_printable (val, stream, options))
1363 return;
1364 common_val_print (val, stream, recurse, options, language);
1365 }
1366
1367 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1368 is printed using the current_language syntax. */
1369
1370 void
1371 value_print (struct value *val, struct ui_file *stream,
1372 const struct value_print_options *options)
1373 {
1374 scoped_value_mark free_values;
1375
1376 if (!value_check_printable (val, stream, options))
1377 return;
1378
1379 if (!options->raw)
1380 {
1381 int r
1382 = apply_ext_lang_val_pretty_printer (value_type (val),
1383 value_embedded_offset (val),
1384 value_address (val),
1385 stream, 0,
1386 val, options, current_language);
1387
1388 if (r)
1389 return;
1390 }
1391
1392 LA_VALUE_PRINT (val, stream, options);
1393 }
1394
1395 static void
1396 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1397 struct ui_file *stream)
1398 {
1399 ULONGEST val = unpack_long (type, valaddr);
1400 int field, nfields = TYPE_NFIELDS (type);
1401 struct gdbarch *gdbarch = get_type_arch (type);
1402 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1403
1404 fputs_filtered ("[", stream);
1405 for (field = 0; field < nfields; field++)
1406 {
1407 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1408 {
1409 struct type *field_type = TYPE_FIELD_TYPE (type, field);
1410
1411 if (field_type == bool_type
1412 /* We require boolean types here to be one bit wide. This is a
1413 problematic place to notify the user of an internal error
1414 though. Instead just fall through and print the field as an
1415 int. */
1416 && TYPE_FIELD_BITSIZE (type, field) == 1)
1417 {
1418 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1419 fprintf_filtered
1420 (stream, " %ps",
1421 styled_string (variable_name_style.style (),
1422 TYPE_FIELD_NAME (type, field)));
1423 }
1424 else
1425 {
1426 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1427 ULONGEST field_val
1428 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1429
1430 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1431 field_val &= ((ULONGEST) 1 << field_len) - 1;
1432 fprintf_filtered (stream, " %ps=",
1433 styled_string (variable_name_style.style (),
1434 TYPE_FIELD_NAME (type, field)));
1435 if (TYPE_CODE (field_type) == TYPE_CODE_ENUM)
1436 generic_val_print_enum_1 (field_type, field_val, stream);
1437 else
1438 print_longest (stream, 'd', 0, field_val);
1439 }
1440 }
1441 }
1442 fputs_filtered (" ]", stream);
1443 }
1444
1445 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1446 according to OPTIONS and SIZE on STREAM. Format i is not supported
1447 at this level.
1448
1449 This is how the elements of an array or structure are printed
1450 with a format. */
1451
1452 void
1453 val_print_scalar_formatted (struct type *type,
1454 LONGEST embedded_offset,
1455 struct value *val,
1456 const struct value_print_options *options,
1457 int size,
1458 struct ui_file *stream)
1459 {
1460 struct gdbarch *arch = get_type_arch (type);
1461 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1462
1463 gdb_assert (val != NULL);
1464
1465 /* If we get here with a string format, try again without it. Go
1466 all the way back to the language printers, which may call us
1467 again. */
1468 if (options->format == 's')
1469 {
1470 struct value_print_options opts = *options;
1471 opts.format = 0;
1472 opts.deref_ref = 0;
1473 val_print (type, embedded_offset, 0, stream, 0, val, &opts,
1474 current_language);
1475 return;
1476 }
1477
1478 /* value_contents_for_printing fetches all VAL's contents. They are
1479 needed to check whether VAL is optimized-out or unavailable
1480 below. */
1481 const gdb_byte *valaddr = value_contents_for_printing (val);
1482
1483 /* A scalar object that does not have all bits available can't be
1484 printed, because all bits contribute to its representation. */
1485 if (value_bits_any_optimized_out (val,
1486 TARGET_CHAR_BIT * embedded_offset,
1487 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1488 val_print_optimized_out (val, stream);
1489 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1490 val_print_unavailable (stream);
1491 else
1492 print_scalar_formatted (valaddr + embedded_offset * unit_size, type,
1493 options, size, stream);
1494 }
1495
1496 /* See valprint.h. */
1497
1498 void
1499 value_print_scalar_formatted (struct value *val,
1500 const struct value_print_options *options,
1501 int size,
1502 struct ui_file *stream)
1503 {
1504 struct type *type = check_typedef (value_type (val));
1505
1506 gdb_assert (val != NULL);
1507
1508 /* If we get here with a string format, try again without it. Go
1509 all the way back to the language printers, which may call us
1510 again. */
1511 if (options->format == 's')
1512 {
1513 struct value_print_options opts = *options;
1514 opts.format = 0;
1515 opts.deref_ref = 0;
1516 common_val_print (val, stream, 0, &opts, current_language);
1517 return;
1518 }
1519
1520 /* value_contents_for_printing fetches all VAL's contents. They are
1521 needed to check whether VAL is optimized-out or unavailable
1522 below. */
1523 const gdb_byte *valaddr = value_contents_for_printing (val);
1524
1525 /* A scalar object that does not have all bits available can't be
1526 printed, because all bits contribute to its representation. */
1527 if (value_bits_any_optimized_out (val, 0,
1528 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1529 val_print_optimized_out (val, stream);
1530 else if (!value_bytes_available (val, 0, TYPE_LENGTH (type)))
1531 val_print_unavailable (stream);
1532 else
1533 print_scalar_formatted (valaddr, type, options, size, stream);
1534 }
1535
1536 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1537 The raison d'etre of this function is to consolidate printing of
1538 LONG_LONG's into this one function. The format chars b,h,w,g are
1539 from print_scalar_formatted(). Numbers are printed using C
1540 format.
1541
1542 USE_C_FORMAT means to use C format in all cases. Without it,
1543 'o' and 'x' format do not include the standard C radix prefix
1544 (leading 0 or 0x).
1545
1546 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1547 and was intended to request formatting according to the current
1548 language and would be used for most integers that GDB prints. The
1549 exceptional cases were things like protocols where the format of
1550 the integer is a protocol thing, not a user-visible thing). The
1551 parameter remains to preserve the information of what things might
1552 be printed with language-specific format, should we ever resurrect
1553 that capability. */
1554
1555 void
1556 print_longest (struct ui_file *stream, int format, int use_c_format,
1557 LONGEST val_long)
1558 {
1559 const char *val;
1560
1561 switch (format)
1562 {
1563 case 'd':
1564 val = int_string (val_long, 10, 1, 0, 1); break;
1565 case 'u':
1566 val = int_string (val_long, 10, 0, 0, 1); break;
1567 case 'x':
1568 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1569 case 'b':
1570 val = int_string (val_long, 16, 0, 2, 1); break;
1571 case 'h':
1572 val = int_string (val_long, 16, 0, 4, 1); break;
1573 case 'w':
1574 val = int_string (val_long, 16, 0, 8, 1); break;
1575 case 'g':
1576 val = int_string (val_long, 16, 0, 16, 1); break;
1577 break;
1578 case 'o':
1579 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1580 default:
1581 internal_error (__FILE__, __LINE__,
1582 _("failed internal consistency check"));
1583 }
1584 fputs_filtered (val, stream);
1585 }
1586
1587 /* This used to be a macro, but I don't think it is called often enough
1588 to merit such treatment. */
1589 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1590 arguments to a function, number in a value history, register number, etc.)
1591 where the value must not be larger than can fit in an int. */
1592
1593 int
1594 longest_to_int (LONGEST arg)
1595 {
1596 /* Let the compiler do the work. */
1597 int rtnval = (int) arg;
1598
1599 /* Check for overflows or underflows. */
1600 if (sizeof (LONGEST) > sizeof (int))
1601 {
1602 if (rtnval != arg)
1603 {
1604 error (_("Value out of range."));
1605 }
1606 }
1607 return (rtnval);
1608 }
1609
1610 /* Print a floating point value of floating-point type TYPE,
1611 pointed to in GDB by VALADDR, on STREAM. */
1612
1613 void
1614 print_floating (const gdb_byte *valaddr, struct type *type,
1615 struct ui_file *stream)
1616 {
1617 std::string str = target_float_to_string (valaddr, type);
1618 fputs_filtered (str.c_str (), stream);
1619 }
1620
1621 void
1622 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1623 unsigned len, enum bfd_endian byte_order, bool zero_pad)
1624 {
1625 const gdb_byte *p;
1626 unsigned int i;
1627 int b;
1628 bool seen_a_one = false;
1629
1630 /* Declared "int" so it will be signed.
1631 This ensures that right shift will shift in zeros. */
1632
1633 const int mask = 0x080;
1634
1635 if (byte_order == BFD_ENDIAN_BIG)
1636 {
1637 for (p = valaddr;
1638 p < valaddr + len;
1639 p++)
1640 {
1641 /* Every byte has 8 binary characters; peel off
1642 and print from the MSB end. */
1643
1644 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1645 {
1646 if (*p & (mask >> i))
1647 b = '1';
1648 else
1649 b = '0';
1650
1651 if (zero_pad || seen_a_one || b == '1')
1652 fputc_filtered (b, stream);
1653 if (b == '1')
1654 seen_a_one = true;
1655 }
1656 }
1657 }
1658 else
1659 {
1660 for (p = valaddr + len - 1;
1661 p >= valaddr;
1662 p--)
1663 {
1664 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1665 {
1666 if (*p & (mask >> i))
1667 b = '1';
1668 else
1669 b = '0';
1670
1671 if (zero_pad || seen_a_one || b == '1')
1672 fputc_filtered (b, stream);
1673 if (b == '1')
1674 seen_a_one = true;
1675 }
1676 }
1677 }
1678
1679 /* When not zero-padding, ensure that something is printed when the
1680 input is 0. */
1681 if (!zero_pad && !seen_a_one)
1682 fputc_filtered ('0', stream);
1683 }
1684
1685 /* A helper for print_octal_chars that emits a single octal digit,
1686 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1687
1688 static void
1689 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1690 {
1691 if (*seen_a_one || digit != 0)
1692 fprintf_filtered (stream, "%o", digit);
1693 if (digit != 0)
1694 *seen_a_one = true;
1695 }
1696
1697 /* VALADDR points to an integer of LEN bytes.
1698 Print it in octal on stream or format it in buf. */
1699
1700 void
1701 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1702 unsigned len, enum bfd_endian byte_order)
1703 {
1704 const gdb_byte *p;
1705 unsigned char octa1, octa2, octa3, carry;
1706 int cycle;
1707
1708 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1709 * the extra bits, which cycle every three bytes:
1710 *
1711 * Byte side: 0 1 2 3
1712 * | | | |
1713 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1714 *
1715 * Octal side: 0 1 carry 3 4 carry ...
1716 *
1717 * Cycle number: 0 1 2
1718 *
1719 * But of course we are printing from the high side, so we have to
1720 * figure out where in the cycle we are so that we end up with no
1721 * left over bits at the end.
1722 */
1723 #define BITS_IN_OCTAL 3
1724 #define HIGH_ZERO 0340
1725 #define LOW_ZERO 0034
1726 #define CARRY_ZERO 0003
1727 static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
1728 "cycle zero constants are wrong");
1729 #define HIGH_ONE 0200
1730 #define MID_ONE 0160
1731 #define LOW_ONE 0016
1732 #define CARRY_ONE 0001
1733 static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
1734 "cycle one constants are wrong");
1735 #define HIGH_TWO 0300
1736 #define MID_TWO 0070
1737 #define LOW_TWO 0007
1738 static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
1739 "cycle two constants are wrong");
1740
1741 /* For 32 we start in cycle 2, with two bits and one bit carry;
1742 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1743
1744 cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
1745 carry = 0;
1746
1747 fputs_filtered ("0", stream);
1748 bool seen_a_one = false;
1749 if (byte_order == BFD_ENDIAN_BIG)
1750 {
1751 for (p = valaddr;
1752 p < valaddr + len;
1753 p++)
1754 {
1755 switch (cycle)
1756 {
1757 case 0:
1758 /* No carry in, carry out two bits. */
1759
1760 octa1 = (HIGH_ZERO & *p) >> 5;
1761 octa2 = (LOW_ZERO & *p) >> 2;
1762 carry = (CARRY_ZERO & *p);
1763 emit_octal_digit (stream, &seen_a_one, octa1);
1764 emit_octal_digit (stream, &seen_a_one, octa2);
1765 break;
1766
1767 case 1:
1768 /* Carry in two bits, carry out one bit. */
1769
1770 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1771 octa2 = (MID_ONE & *p) >> 4;
1772 octa3 = (LOW_ONE & *p) >> 1;
1773 carry = (CARRY_ONE & *p);
1774 emit_octal_digit (stream, &seen_a_one, octa1);
1775 emit_octal_digit (stream, &seen_a_one, octa2);
1776 emit_octal_digit (stream, &seen_a_one, octa3);
1777 break;
1778
1779 case 2:
1780 /* Carry in one bit, no carry out. */
1781
1782 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1783 octa2 = (MID_TWO & *p) >> 3;
1784 octa3 = (LOW_TWO & *p);
1785 carry = 0;
1786 emit_octal_digit (stream, &seen_a_one, octa1);
1787 emit_octal_digit (stream, &seen_a_one, octa2);
1788 emit_octal_digit (stream, &seen_a_one, octa3);
1789 break;
1790
1791 default:
1792 error (_("Internal error in octal conversion;"));
1793 }
1794
1795 cycle++;
1796 cycle = cycle % BITS_IN_OCTAL;
1797 }
1798 }
1799 else
1800 {
1801 for (p = valaddr + len - 1;
1802 p >= valaddr;
1803 p--)
1804 {
1805 switch (cycle)
1806 {
1807 case 0:
1808 /* Carry out, no carry in */
1809
1810 octa1 = (HIGH_ZERO & *p) >> 5;
1811 octa2 = (LOW_ZERO & *p) >> 2;
1812 carry = (CARRY_ZERO & *p);
1813 emit_octal_digit (stream, &seen_a_one, octa1);
1814 emit_octal_digit (stream, &seen_a_one, octa2);
1815 break;
1816
1817 case 1:
1818 /* Carry in, carry out */
1819
1820 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1821 octa2 = (MID_ONE & *p) >> 4;
1822 octa3 = (LOW_ONE & *p) >> 1;
1823 carry = (CARRY_ONE & *p);
1824 emit_octal_digit (stream, &seen_a_one, octa1);
1825 emit_octal_digit (stream, &seen_a_one, octa2);
1826 emit_octal_digit (stream, &seen_a_one, octa3);
1827 break;
1828
1829 case 2:
1830 /* Carry in, no carry out */
1831
1832 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1833 octa2 = (MID_TWO & *p) >> 3;
1834 octa3 = (LOW_TWO & *p);
1835 carry = 0;
1836 emit_octal_digit (stream, &seen_a_one, octa1);
1837 emit_octal_digit (stream, &seen_a_one, octa2);
1838 emit_octal_digit (stream, &seen_a_one, octa3);
1839 break;
1840
1841 default:
1842 error (_("Internal error in octal conversion;"));
1843 }
1844
1845 cycle++;
1846 cycle = cycle % BITS_IN_OCTAL;
1847 }
1848 }
1849
1850 }
1851
1852 /* Possibly negate the integer represented by BYTES. It contains LEN
1853 bytes in the specified byte order. If the integer is negative,
1854 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1855 nothing and return false. */
1856
1857 static bool
1858 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1859 enum bfd_endian byte_order,
1860 gdb::byte_vector *out_vec)
1861 {
1862 gdb_byte sign_byte;
1863 gdb_assert (len > 0);
1864 if (byte_order == BFD_ENDIAN_BIG)
1865 sign_byte = bytes[0];
1866 else
1867 sign_byte = bytes[len - 1];
1868 if ((sign_byte & 0x80) == 0)
1869 return false;
1870
1871 out_vec->resize (len);
1872
1873 /* Compute -x == 1 + ~x. */
1874 if (byte_order == BFD_ENDIAN_LITTLE)
1875 {
1876 unsigned carry = 1;
1877 for (unsigned i = 0; i < len; ++i)
1878 {
1879 unsigned tem = (0xff & ~bytes[i]) + carry;
1880 (*out_vec)[i] = tem & 0xff;
1881 carry = tem / 256;
1882 }
1883 }
1884 else
1885 {
1886 unsigned carry = 1;
1887 for (unsigned i = len; i > 0; --i)
1888 {
1889 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1890 (*out_vec)[i - 1] = tem & 0xff;
1891 carry = tem / 256;
1892 }
1893 }
1894
1895 return true;
1896 }
1897
1898 /* VALADDR points to an integer of LEN bytes.
1899 Print it in decimal on stream or format it in buf. */
1900
1901 void
1902 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1903 unsigned len, bool is_signed,
1904 enum bfd_endian byte_order)
1905 {
1906 #define TEN 10
1907 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1908 #define CARRY_LEFT( x ) ((x) % TEN)
1909 #define SHIFT( x ) ((x) << 4)
1910 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1911 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1912
1913 const gdb_byte *p;
1914 int carry;
1915 int decimal_len;
1916 int i, j, decimal_digits;
1917 int dummy;
1918 int flip;
1919
1920 gdb::byte_vector negated_bytes;
1921 if (is_signed
1922 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1923 {
1924 fputs_filtered ("-", stream);
1925 valaddr = negated_bytes.data ();
1926 }
1927
1928 /* Base-ten number is less than twice as many digits
1929 as the base 16 number, which is 2 digits per byte. */
1930
1931 decimal_len = len * 2 * 2;
1932 std::vector<unsigned char> digits (decimal_len, 0);
1933
1934 /* Ok, we have an unknown number of bytes of data to be printed in
1935 * decimal.
1936 *
1937 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1938 * decimalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1939 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1940 *
1941 * The trick is that "digits" holds a base-10 number, but sometimes
1942 * the individual digits are > 10.
1943 *
1944 * Outer loop is per nibble (hex digit) of input, from MSD end to
1945 * LSD end.
1946 */
1947 decimal_digits = 0; /* Number of decimal digits so far */
1948 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1949 flip = 0;
1950 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1951 {
1952 /*
1953 * Multiply current base-ten number by 16 in place.
1954 * Each digit was between 0 and 9, now is between
1955 * 0 and 144.
1956 */
1957 for (j = 0; j < decimal_digits; j++)
1958 {
1959 digits[j] = SHIFT (digits[j]);
1960 }
1961
1962 /* Take the next nibble off the input and add it to what
1963 * we've got in the LSB position. Bottom 'digit' is now
1964 * between 0 and 159.
1965 *
1966 * "flip" is used to run this loop twice for each byte.
1967 */
1968 if (flip == 0)
1969 {
1970 /* Take top nibble. */
1971
1972 digits[0] += HIGH_NIBBLE (*p);
1973 flip = 1;
1974 }
1975 else
1976 {
1977 /* Take low nibble and bump our pointer "p". */
1978
1979 digits[0] += LOW_NIBBLE (*p);
1980 if (byte_order == BFD_ENDIAN_BIG)
1981 p++;
1982 else
1983 p--;
1984 flip = 0;
1985 }
1986
1987 /* Re-decimalize. We have to do this often enough
1988 * that we don't overflow, but once per nibble is
1989 * overkill. Easier this way, though. Note that the
1990 * carry is often larger than 10 (e.g. max initial
1991 * carry out of lowest nibble is 15, could bubble all
1992 * the way up greater than 10). So we have to do
1993 * the carrying beyond the last current digit.
1994 */
1995 carry = 0;
1996 for (j = 0; j < decimal_len - 1; j++)
1997 {
1998 digits[j] += carry;
1999
2000 /* "/" won't handle an unsigned char with
2001 * a value that if signed would be negative.
2002 * So extend to longword int via "dummy".
2003 */
2004 dummy = digits[j];
2005 carry = CARRY_OUT (dummy);
2006 digits[j] = CARRY_LEFT (dummy);
2007
2008 if (j >= decimal_digits && carry == 0)
2009 {
2010 /*
2011 * All higher digits are 0 and we
2012 * no longer have a carry.
2013 *
2014 * Note: "j" is 0-based, "decimal_digits" is
2015 * 1-based.
2016 */
2017 decimal_digits = j + 1;
2018 break;
2019 }
2020 }
2021 }
2022
2023 /* Ok, now "digits" is the decimal representation, with
2024 the "decimal_digits" actual digits. Print! */
2025
2026 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
2027 ;
2028
2029 for (; i >= 0; i--)
2030 {
2031 fprintf_filtered (stream, "%1d", digits[i]);
2032 }
2033 }
2034
2035 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
2036
2037 void
2038 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
2039 unsigned len, enum bfd_endian byte_order,
2040 bool zero_pad)
2041 {
2042 const gdb_byte *p;
2043
2044 fputs_filtered ("0x", stream);
2045 if (byte_order == BFD_ENDIAN_BIG)
2046 {
2047 p = valaddr;
2048
2049 if (!zero_pad)
2050 {
2051 /* Strip leading 0 bytes, but be sure to leave at least a
2052 single byte at the end. */
2053 for (; p < valaddr + len - 1 && !*p; ++p)
2054 ;
2055 }
2056
2057 const gdb_byte *first = p;
2058 for (;
2059 p < valaddr + len;
2060 p++)
2061 {
2062 /* When not zero-padding, use a different format for the
2063 very first byte printed. */
2064 if (!zero_pad && p == first)
2065 fprintf_filtered (stream, "%x", *p);
2066 else
2067 fprintf_filtered (stream, "%02x", *p);
2068 }
2069 }
2070 else
2071 {
2072 p = valaddr + len - 1;
2073
2074 if (!zero_pad)
2075 {
2076 /* Strip leading 0 bytes, but be sure to leave at least a
2077 single byte at the end. */
2078 for (; p >= valaddr + 1 && !*p; --p)
2079 ;
2080 }
2081
2082 const gdb_byte *first = p;
2083 for (;
2084 p >= valaddr;
2085 p--)
2086 {
2087 /* When not zero-padding, use a different format for the
2088 very first byte printed. */
2089 if (!zero_pad && p == first)
2090 fprintf_filtered (stream, "%x", *p);
2091 else
2092 fprintf_filtered (stream, "%02x", *p);
2093 }
2094 }
2095 }
2096
2097 /* VALADDR points to a char integer of LEN bytes.
2098 Print it out in appropriate language form on stream.
2099 Omit any leading zero chars. */
2100
2101 void
2102 print_char_chars (struct ui_file *stream, struct type *type,
2103 const gdb_byte *valaddr,
2104 unsigned len, enum bfd_endian byte_order)
2105 {
2106 const gdb_byte *p;
2107
2108 if (byte_order == BFD_ENDIAN_BIG)
2109 {
2110 p = valaddr;
2111 while (p < valaddr + len - 1 && *p == 0)
2112 ++p;
2113
2114 while (p < valaddr + len)
2115 {
2116 LA_EMIT_CHAR (*p, type, stream, '\'');
2117 ++p;
2118 }
2119 }
2120 else
2121 {
2122 p = valaddr + len - 1;
2123 while (p > valaddr && *p == 0)
2124 --p;
2125
2126 while (p >= valaddr)
2127 {
2128 LA_EMIT_CHAR (*p, type, stream, '\'');
2129 --p;
2130 }
2131 }
2132 }
2133
2134 /* Print function pointer with inferior address ADDRESS onto stdio
2135 stream STREAM. */
2136
2137 void
2138 print_function_pointer_address (const struct value_print_options *options,
2139 struct gdbarch *gdbarch,
2140 CORE_ADDR address,
2141 struct ui_file *stream)
2142 {
2143 CORE_ADDR func_addr
2144 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
2145 current_top_target ());
2146
2147 /* If the function pointer is represented by a description, print
2148 the address of the description. */
2149 if (options->addressprint && func_addr != address)
2150 {
2151 fputs_filtered ("@", stream);
2152 fputs_filtered (paddress (gdbarch, address), stream);
2153 fputs_filtered (": ", stream);
2154 }
2155 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
2156 }
2157
2158
2159 /* Print on STREAM using the given OPTIONS the index for the element
2160 at INDEX of an array whose index type is INDEX_TYPE. */
2161
2162 void
2163 maybe_print_array_index (struct type *index_type, LONGEST index,
2164 struct ui_file *stream,
2165 const struct value_print_options *options)
2166 {
2167 struct value *index_value;
2168
2169 if (!options->print_array_indexes)
2170 return;
2171
2172 index_value = value_from_longest (index_type, index);
2173
2174 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
2175 }
2176
2177 /* Called by various <lang>_val_print routines to print elements of an
2178 array in the form "<elem1>, <elem2>, <elem3>, ...".
2179
2180 (FIXME?) Assumes array element separator is a comma, which is correct
2181 for all languages currently handled.
2182 (FIXME?) Some languages have a notation for repeated array elements,
2183 perhaps we should try to use that notation when appropriate. */
2184
2185 void
2186 val_print_array_elements (struct type *type,
2187 LONGEST embedded_offset,
2188 CORE_ADDR address, struct ui_file *stream,
2189 int recurse,
2190 struct value *val,
2191 const struct value_print_options *options,
2192 unsigned int i)
2193 {
2194 unsigned int things_printed = 0;
2195 unsigned len;
2196 struct type *elttype, *index_type, *base_index_type;
2197 unsigned eltlen;
2198 /* Position of the array element we are examining to see
2199 whether it is repeated. */
2200 unsigned int rep1;
2201 /* Number of repetitions we have detected so far. */
2202 unsigned int reps;
2203 LONGEST low_bound, high_bound;
2204 LONGEST low_pos, high_pos;
2205
2206 elttype = TYPE_TARGET_TYPE (type);
2207 eltlen = type_length_units (check_typedef (elttype));
2208 index_type = TYPE_INDEX_TYPE (type);
2209
2210 if (get_array_bounds (type, &low_bound, &high_bound))
2211 {
2212 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
2213 base_index_type = TYPE_TARGET_TYPE (index_type);
2214 else
2215 base_index_type = index_type;
2216
2217 /* Non-contiguous enumerations types can by used as index types
2218 in some languages (e.g. Ada). In this case, the array length
2219 shall be computed from the positions of the first and last
2220 literal in the enumeration type, and not from the values
2221 of these literals. */
2222 if (!discrete_position (base_index_type, low_bound, &low_pos)
2223 || !discrete_position (base_index_type, high_bound, &high_pos))
2224 {
2225 warning (_("unable to get positions in array, use bounds instead"));
2226 low_pos = low_bound;
2227 high_pos = high_bound;
2228 }
2229
2230 /* The array length should normally be HIGH_POS - LOW_POS + 1.
2231 But we have to be a little extra careful, because some languages
2232 such as Ada allow LOW_POS to be greater than HIGH_POS for
2233 empty arrays. In that situation, the array length is just zero,
2234 not negative! */
2235 if (low_pos > high_pos)
2236 len = 0;
2237 else
2238 len = high_pos - low_pos + 1;
2239 }
2240 else
2241 {
2242 warning (_("unable to get bounds of array, assuming null array"));
2243 low_bound = 0;
2244 len = 0;
2245 }
2246
2247 annotate_array_section_begin (i, elttype);
2248
2249 for (; i < len && things_printed < options->print_max; i++)
2250 {
2251 if (i != 0)
2252 {
2253 if (options->prettyformat_arrays)
2254 {
2255 fprintf_filtered (stream, ",\n");
2256 print_spaces_filtered (2 + 2 * recurse, stream);
2257 }
2258 else
2259 {
2260 fprintf_filtered (stream, ", ");
2261 }
2262 }
2263 wrap_here (n_spaces (2 + 2 * recurse));
2264 maybe_print_array_index (index_type, i + low_bound,
2265 stream, options);
2266
2267 rep1 = i + 1;
2268 reps = 1;
2269 /* Only check for reps if repeat_count_threshold is not set to
2270 UINT_MAX (unlimited). */
2271 if (options->repeat_count_threshold < UINT_MAX)
2272 {
2273 while (rep1 < len
2274 && value_contents_eq (val,
2275 embedded_offset + i * eltlen,
2276 val,
2277 (embedded_offset
2278 + rep1 * eltlen),
2279 eltlen))
2280 {
2281 ++reps;
2282 ++rep1;
2283 }
2284 }
2285
2286 if (reps > options->repeat_count_threshold)
2287 {
2288 val_print (elttype, embedded_offset + i * eltlen,
2289 address, stream, recurse + 1, val, options,
2290 current_language);
2291 annotate_elt_rep (reps);
2292 fprintf_filtered (stream, " %p[<repeats %u times>%p]",
2293 metadata_style.style ().ptr (), reps, nullptr);
2294 annotate_elt_rep_end ();
2295
2296 i = rep1 - 1;
2297 things_printed += options->repeat_count_threshold;
2298 }
2299 else
2300 {
2301 val_print (elttype, embedded_offset + i * eltlen,
2302 address,
2303 stream, recurse + 1, val, options, current_language);
2304 annotate_elt ();
2305 things_printed++;
2306 }
2307 }
2308 annotate_array_section_end ();
2309 if (i < len)
2310 {
2311 fprintf_filtered (stream, "...");
2312 }
2313 }
2314
2315 /* See valprint.h. */
2316
2317 void
2318 value_print_array_elements (struct value *val, struct ui_file *stream,
2319 int recurse,
2320 const struct value_print_options *options,
2321 unsigned int i)
2322 {
2323 unsigned int things_printed = 0;
2324 unsigned len;
2325 struct type *elttype, *index_type, *base_index_type;
2326 unsigned eltlen;
2327 /* Position of the array element we are examining to see
2328 whether it is repeated. */
2329 unsigned int rep1;
2330 /* Number of repetitions we have detected so far. */
2331 unsigned int reps;
2332 LONGEST low_bound, high_bound;
2333 LONGEST low_pos, high_pos;
2334
2335 struct type *type = check_typedef (value_type (val));
2336
2337 elttype = TYPE_TARGET_TYPE (type);
2338 eltlen = type_length_units (check_typedef (elttype));
2339 index_type = TYPE_INDEX_TYPE (type);
2340
2341 if (get_array_bounds (type, &low_bound, &high_bound))
2342 {
2343 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
2344 base_index_type = TYPE_TARGET_TYPE (index_type);
2345 else
2346 base_index_type = index_type;
2347
2348 /* Non-contiguous enumerations types can by used as index types
2349 in some languages (e.g. Ada). In this case, the array length
2350 shall be computed from the positions of the first and last
2351 literal in the enumeration type, and not from the values
2352 of these literals. */
2353 if (!discrete_position (base_index_type, low_bound, &low_pos)
2354 || !discrete_position (base_index_type, high_bound, &high_pos))
2355 {
2356 warning (_("unable to get positions in array, use bounds instead"));
2357 low_pos = low_bound;
2358 high_pos = high_bound;
2359 }
2360
2361 /* The array length should normally be HIGH_POS - LOW_POS + 1.
2362 But we have to be a little extra careful, because some languages
2363 such as Ada allow LOW_POS to be greater than HIGH_POS for
2364 empty arrays. In that situation, the array length is just zero,
2365 not negative! */
2366 if (low_pos > high_pos)
2367 len = 0;
2368 else
2369 len = high_pos - low_pos + 1;
2370 }
2371 else
2372 {
2373 warning (_("unable to get bounds of array, assuming null array"));
2374 low_bound = 0;
2375 len = 0;
2376 }
2377
2378 annotate_array_section_begin (i, elttype);
2379
2380 for (; i < len && things_printed < options->print_max; i++)
2381 {
2382 scoped_value_mark free_values;
2383
2384 if (i != 0)
2385 {
2386 if (options->prettyformat_arrays)
2387 {
2388 fprintf_filtered (stream, ",\n");
2389 print_spaces_filtered (2 + 2 * recurse, stream);
2390 }
2391 else
2392 fprintf_filtered (stream, ", ");
2393 }
2394 wrap_here (n_spaces (2 + 2 * recurse));
2395 maybe_print_array_index (index_type, i + low_bound,
2396 stream, options);
2397
2398 rep1 = i + 1;
2399 reps = 1;
2400 /* Only check for reps if repeat_count_threshold is not set to
2401 UINT_MAX (unlimited). */
2402 if (options->repeat_count_threshold < UINT_MAX)
2403 {
2404 while (rep1 < len
2405 && value_contents_eq (val, i * eltlen,
2406 val, rep1 * eltlen,
2407 eltlen))
2408 {
2409 ++reps;
2410 ++rep1;
2411 }
2412 }
2413
2414 struct value *element = value_from_component (val, elttype, eltlen * i);
2415 common_val_print (element, stream, recurse + 1, options,
2416 current_language);
2417
2418 if (reps > options->repeat_count_threshold)
2419 {
2420 annotate_elt_rep (reps);
2421 fprintf_filtered (stream, " %p[<repeats %u times>%p]",
2422 metadata_style.style ().ptr (), reps, nullptr);
2423 annotate_elt_rep_end ();
2424
2425 i = rep1 - 1;
2426 things_printed += options->repeat_count_threshold;
2427 }
2428 else
2429 {
2430 annotate_elt ();
2431 things_printed++;
2432 }
2433 }
2434 annotate_array_section_end ();
2435 if (i < len)
2436 fprintf_filtered (stream, "...");
2437 }
2438
2439 /* Read LEN bytes of target memory at address MEMADDR, placing the
2440 results in GDB's memory at MYADDR. Returns a count of the bytes
2441 actually read, and optionally a target_xfer_status value in the
2442 location pointed to by ERRPTR if ERRPTR is non-null. */
2443
2444 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2445 function be eliminated. */
2446
2447 static int
2448 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2449 int len, int *errptr)
2450 {
2451 int nread; /* Number of bytes actually read. */
2452 int errcode; /* Error from last read. */
2453
2454 /* First try a complete read. */
2455 errcode = target_read_memory (memaddr, myaddr, len);
2456 if (errcode == 0)
2457 {
2458 /* Got it all. */
2459 nread = len;
2460 }
2461 else
2462 {
2463 /* Loop, reading one byte at a time until we get as much as we can. */
2464 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2465 {
2466 errcode = target_read_memory (memaddr++, myaddr++, 1);
2467 }
2468 /* If an error, the last read was unsuccessful, so adjust count. */
2469 if (errcode != 0)
2470 {
2471 nread--;
2472 }
2473 }
2474 if (errptr != NULL)
2475 {
2476 *errptr = errcode;
2477 }
2478 return (nread);
2479 }
2480
2481 /* Read a string from the inferior, at ADDR, with LEN characters of
2482 WIDTH bytes each. Fetch at most FETCHLIMIT characters. BUFFER
2483 will be set to a newly allocated buffer containing the string, and
2484 BYTES_READ will be set to the number of bytes read. Returns 0 on
2485 success, or a target_xfer_status on failure.
2486
2487 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2488 (including eventual NULs in the middle or end of the string).
2489
2490 If LEN is -1, stops at the first null character (not necessarily
2491 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2492 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2493 the string.
2494
2495 Unless an exception is thrown, BUFFER will always be allocated, even on
2496 failure. In this case, some characters might have been read before the
2497 failure happened. Check BYTES_READ to recognize this situation.
2498
2499 Note: There was a FIXME asking to make this code use target_read_string,
2500 but this function is more general (can read past null characters, up to
2501 given LEN). Besides, it is used much more often than target_read_string
2502 so it is more tested. Perhaps callers of target_read_string should use
2503 this function instead? */
2504
2505 int
2506 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2507 enum bfd_endian byte_order, gdb::unique_xmalloc_ptr<gdb_byte> *buffer,
2508 int *bytes_read)
2509 {
2510 int errcode; /* Errno returned from bad reads. */
2511 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2512 gdb_byte *bufptr; /* Pointer to next available byte in
2513 buffer. */
2514
2515 /* Loop until we either have all the characters, or we encounter
2516 some error, such as bumping into the end of the address space. */
2517
2518 buffer->reset (nullptr);
2519
2520 if (len > 0)
2521 {
2522 /* We want fetchlimit chars, so we might as well read them all in
2523 one operation. */
2524 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2525
2526 buffer->reset ((gdb_byte *) xmalloc (fetchlen * width));
2527 bufptr = buffer->get ();
2528
2529 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2530 / width;
2531 addr += nfetch * width;
2532 bufptr += nfetch * width;
2533 }
2534 else if (len == -1)
2535 {
2536 unsigned long bufsize = 0;
2537 unsigned int chunksize; /* Size of each fetch, in chars. */
2538 int found_nul; /* Non-zero if we found the nul char. */
2539 gdb_byte *limit; /* First location past end of fetch buffer. */
2540
2541 found_nul = 0;
2542 /* We are looking for a NUL terminator to end the fetching, so we
2543 might as well read in blocks that are large enough to be efficient,
2544 but not so large as to be slow if fetchlimit happens to be large.
2545 So we choose the minimum of 8 and fetchlimit. We used to use 200
2546 instead of 8 but 200 is way too big for remote debugging over a
2547 serial line. */
2548 chunksize = std::min (8u, fetchlimit);
2549
2550 do
2551 {
2552 QUIT;
2553 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2554
2555 if (*buffer == NULL)
2556 buffer->reset ((gdb_byte *) xmalloc (nfetch * width));
2557 else
2558 buffer->reset ((gdb_byte *) xrealloc (buffer->release (),
2559 (nfetch + bufsize) * width));
2560
2561 bufptr = buffer->get () + bufsize * width;
2562 bufsize += nfetch;
2563
2564 /* Read as much as we can. */
2565 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2566 / width;
2567
2568 /* Scan this chunk for the null character that terminates the string
2569 to print. If found, we don't need to fetch any more. Note
2570 that bufptr is explicitly left pointing at the next character
2571 after the null character, or at the next character after the end
2572 of the buffer. */
2573
2574 limit = bufptr + nfetch * width;
2575 while (bufptr < limit)
2576 {
2577 unsigned long c;
2578
2579 c = extract_unsigned_integer (bufptr, width, byte_order);
2580 addr += width;
2581 bufptr += width;
2582 if (c == 0)
2583 {
2584 /* We don't care about any error which happened after
2585 the NUL terminator. */
2586 errcode = 0;
2587 found_nul = 1;
2588 break;
2589 }
2590 }
2591 }
2592 while (errcode == 0 /* no error */
2593 && bufptr - buffer->get () < fetchlimit * width /* no overrun */
2594 && !found_nul); /* haven't found NUL yet */
2595 }
2596 else
2597 { /* Length of string is really 0! */
2598 /* We always allocate *buffer. */
2599 buffer->reset ((gdb_byte *) xmalloc (1));
2600 bufptr = buffer->get ();
2601 errcode = 0;
2602 }
2603
2604 /* bufptr and addr now point immediately beyond the last byte which we
2605 consider part of the string (including a '\0' which ends the string). */
2606 *bytes_read = bufptr - buffer->get ();
2607
2608 QUIT;
2609
2610 return errcode;
2611 }
2612
2613 /* Return true if print_wchar can display W without resorting to a
2614 numeric escape, false otherwise. */
2615
2616 static int
2617 wchar_printable (gdb_wchar_t w)
2618 {
2619 return (gdb_iswprint (w)
2620 || w == LCST ('\a') || w == LCST ('\b')
2621 || w == LCST ('\f') || w == LCST ('\n')
2622 || w == LCST ('\r') || w == LCST ('\t')
2623 || w == LCST ('\v'));
2624 }
2625
2626 /* A helper function that converts the contents of STRING to wide
2627 characters and then appends them to OUTPUT. */
2628
2629 static void
2630 append_string_as_wide (const char *string,
2631 struct obstack *output)
2632 {
2633 for (; *string; ++string)
2634 {
2635 gdb_wchar_t w = gdb_btowc (*string);
2636 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2637 }
2638 }
2639
2640 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2641 original (target) bytes representing the character, ORIG_LEN is the
2642 number of valid bytes. WIDTH is the number of bytes in a base
2643 characters of the type. OUTPUT is an obstack to which wide
2644 characters are emitted. QUOTER is a (narrow) character indicating
2645 the style of quotes surrounding the character to be printed.
2646 NEED_ESCAPE is an in/out flag which is used to track numeric
2647 escapes across calls. */
2648
2649 static void
2650 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2651 int orig_len, int width,
2652 enum bfd_endian byte_order,
2653 struct obstack *output,
2654 int quoter, int *need_escapep)
2655 {
2656 int need_escape = *need_escapep;
2657
2658 *need_escapep = 0;
2659
2660 /* iswprint implementation on Windows returns 1 for tab character.
2661 In order to avoid different printout on this host, we explicitly
2662 use wchar_printable function. */
2663 switch (w)
2664 {
2665 case LCST ('\a'):
2666 obstack_grow_wstr (output, LCST ("\\a"));
2667 break;
2668 case LCST ('\b'):
2669 obstack_grow_wstr (output, LCST ("\\b"));
2670 break;
2671 case LCST ('\f'):
2672 obstack_grow_wstr (output, LCST ("\\f"));
2673 break;
2674 case LCST ('\n'):
2675 obstack_grow_wstr (output, LCST ("\\n"));
2676 break;
2677 case LCST ('\r'):
2678 obstack_grow_wstr (output, LCST ("\\r"));
2679 break;
2680 case LCST ('\t'):
2681 obstack_grow_wstr (output, LCST ("\\t"));
2682 break;
2683 case LCST ('\v'):
2684 obstack_grow_wstr (output, LCST ("\\v"));
2685 break;
2686 default:
2687 {
2688 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2689 && w != LCST ('8')
2690 && w != LCST ('9'))))
2691 {
2692 gdb_wchar_t wchar = w;
2693
2694 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2695 obstack_grow_wstr (output, LCST ("\\"));
2696 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2697 }
2698 else
2699 {
2700 int i;
2701
2702 for (i = 0; i + width <= orig_len; i += width)
2703 {
2704 char octal[30];
2705 ULONGEST value;
2706
2707 value = extract_unsigned_integer (&orig[i], width,
2708 byte_order);
2709 /* If the value fits in 3 octal digits, print it that
2710 way. Otherwise, print it as a hex escape. */
2711 if (value <= 0777)
2712 xsnprintf (octal, sizeof (octal), "\\%.3o",
2713 (int) (value & 0777));
2714 else
2715 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2716 append_string_as_wide (octal, output);
2717 }
2718 /* If we somehow have extra bytes, print them now. */
2719 while (i < orig_len)
2720 {
2721 char octal[5];
2722
2723 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2724 append_string_as_wide (octal, output);
2725 ++i;
2726 }
2727
2728 *need_escapep = 1;
2729 }
2730 break;
2731 }
2732 }
2733 }
2734
2735 /* Print the character C on STREAM as part of the contents of a
2736 literal string whose delimiter is QUOTER. ENCODING names the
2737 encoding of C. */
2738
2739 void
2740 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2741 int quoter, const char *encoding)
2742 {
2743 enum bfd_endian byte_order
2744 = type_byte_order (type);
2745 gdb_byte *c_buf;
2746 int need_escape = 0;
2747
2748 c_buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2749 pack_long (c_buf, type, c);
2750
2751 wchar_iterator iter (c_buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2752
2753 /* This holds the printable form of the wchar_t data. */
2754 auto_obstack wchar_buf;
2755
2756 while (1)
2757 {
2758 int num_chars;
2759 gdb_wchar_t *chars;
2760 const gdb_byte *buf;
2761 size_t buflen;
2762 int print_escape = 1;
2763 enum wchar_iterate_result result;
2764
2765 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2766 if (num_chars < 0)
2767 break;
2768 if (num_chars > 0)
2769 {
2770 /* If all characters are printable, print them. Otherwise,
2771 we're going to have to print an escape sequence. We
2772 check all characters because we want to print the target
2773 bytes in the escape sequence, and we don't know character
2774 boundaries there. */
2775 int i;
2776
2777 print_escape = 0;
2778 for (i = 0; i < num_chars; ++i)
2779 if (!wchar_printable (chars[i]))
2780 {
2781 print_escape = 1;
2782 break;
2783 }
2784
2785 if (!print_escape)
2786 {
2787 for (i = 0; i < num_chars; ++i)
2788 print_wchar (chars[i], buf, buflen,
2789 TYPE_LENGTH (type), byte_order,
2790 &wchar_buf, quoter, &need_escape);
2791 }
2792 }
2793
2794 /* This handles the NUM_CHARS == 0 case as well. */
2795 if (print_escape)
2796 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2797 byte_order, &wchar_buf, quoter, &need_escape);
2798 }
2799
2800 /* The output in the host encoding. */
2801 auto_obstack output;
2802
2803 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2804 (gdb_byte *) obstack_base (&wchar_buf),
2805 obstack_object_size (&wchar_buf),
2806 sizeof (gdb_wchar_t), &output, translit_char);
2807 obstack_1grow (&output, '\0');
2808
2809 fputs_filtered ((const char *) obstack_base (&output), stream);
2810 }
2811
2812 /* Return the repeat count of the next character/byte in ITER,
2813 storing the result in VEC. */
2814
2815 static int
2816 count_next_character (wchar_iterator *iter,
2817 std::vector<converted_character> *vec)
2818 {
2819 struct converted_character *current;
2820
2821 if (vec->empty ())
2822 {
2823 struct converted_character tmp;
2824 gdb_wchar_t *chars;
2825
2826 tmp.num_chars
2827 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2828 if (tmp.num_chars > 0)
2829 {
2830 gdb_assert (tmp.num_chars < MAX_WCHARS);
2831 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2832 }
2833 vec->push_back (tmp);
2834 }
2835
2836 current = &vec->back ();
2837
2838 /* Count repeated characters or bytes. */
2839 current->repeat_count = 1;
2840 if (current->num_chars == -1)
2841 {
2842 /* EOF */
2843 return -1;
2844 }
2845 else
2846 {
2847 gdb_wchar_t *chars;
2848 struct converted_character d;
2849 int repeat;
2850
2851 d.repeat_count = 0;
2852
2853 while (1)
2854 {
2855 /* Get the next character. */
2856 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2857
2858 /* If a character was successfully converted, save the character
2859 into the converted character. */
2860 if (d.num_chars > 0)
2861 {
2862 gdb_assert (d.num_chars < MAX_WCHARS);
2863 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2864 }
2865
2866 /* Determine if the current character is the same as this
2867 new character. */
2868 if (d.num_chars == current->num_chars && d.result == current->result)
2869 {
2870 /* There are two cases to consider:
2871
2872 1) Equality of converted character (num_chars > 0)
2873 2) Equality of non-converted character (num_chars == 0) */
2874 if ((current->num_chars > 0
2875 && memcmp (current->chars, d.chars,
2876 WCHAR_BUFLEN (current->num_chars)) == 0)
2877 || (current->num_chars == 0
2878 && current->buflen == d.buflen
2879 && memcmp (current->buf, d.buf, current->buflen) == 0))
2880 ++current->repeat_count;
2881 else
2882 break;
2883 }
2884 else
2885 break;
2886 }
2887
2888 /* Push this next converted character onto the result vector. */
2889 repeat = current->repeat_count;
2890 vec->push_back (d);
2891 return repeat;
2892 }
2893 }
2894
2895 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2896 character to use with string output. WIDTH is the size of the output
2897 character type. BYTE_ORDER is the target byte order. OPTIONS
2898 is the user's print options. */
2899
2900 static void
2901 print_converted_chars_to_obstack (struct obstack *obstack,
2902 const std::vector<converted_character> &chars,
2903 int quote_char, int width,
2904 enum bfd_endian byte_order,
2905 const struct value_print_options *options)
2906 {
2907 unsigned int idx;
2908 const converted_character *elem;
2909 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2910 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2911 int need_escape = 0;
2912
2913 /* Set the start state. */
2914 idx = 0;
2915 last = state = START;
2916 elem = NULL;
2917
2918 while (1)
2919 {
2920 switch (state)
2921 {
2922 case START:
2923 /* Nothing to do. */
2924 break;
2925
2926 case SINGLE:
2927 {
2928 int j;
2929
2930 /* We are outputting a single character
2931 (< options->repeat_count_threshold). */
2932
2933 if (last != SINGLE)
2934 {
2935 /* We were outputting some other type of content, so we
2936 must output and a comma and a quote. */
2937 if (last != START)
2938 obstack_grow_wstr (obstack, LCST (", "));
2939 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2940 }
2941 /* Output the character. */
2942 for (j = 0; j < elem->repeat_count; ++j)
2943 {
2944 if (elem->result == wchar_iterate_ok)
2945 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2946 byte_order, obstack, quote_char, &need_escape);
2947 else
2948 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2949 byte_order, obstack, quote_char, &need_escape);
2950 }
2951 }
2952 break;
2953
2954 case REPEAT:
2955 {
2956 int j;
2957
2958 /* We are outputting a character with a repeat count
2959 greater than options->repeat_count_threshold. */
2960
2961 if (last == SINGLE)
2962 {
2963 /* We were outputting a single string. Terminate the
2964 string. */
2965 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2966 }
2967 if (last != START)
2968 obstack_grow_wstr (obstack, LCST (", "));
2969
2970 /* Output the character and repeat string. */
2971 obstack_grow_wstr (obstack, LCST ("'"));
2972 if (elem->result == wchar_iterate_ok)
2973 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2974 byte_order, obstack, quote_char, &need_escape);
2975 else
2976 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2977 byte_order, obstack, quote_char, &need_escape);
2978 obstack_grow_wstr (obstack, LCST ("'"));
2979 std::string s = string_printf (_(" <repeats %u times>"),
2980 elem->repeat_count);
2981 for (j = 0; s[j]; ++j)
2982 {
2983 gdb_wchar_t w = gdb_btowc (s[j]);
2984 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2985 }
2986 }
2987 break;
2988
2989 case INCOMPLETE:
2990 /* We are outputting an incomplete sequence. */
2991 if (last == SINGLE)
2992 {
2993 /* If we were outputting a string of SINGLE characters,
2994 terminate the quote. */
2995 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2996 }
2997 if (last != START)
2998 obstack_grow_wstr (obstack, LCST (", "));
2999
3000 /* Output the incomplete sequence string. */
3001 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
3002 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
3003 obstack, 0, &need_escape);
3004 obstack_grow_wstr (obstack, LCST (">"));
3005
3006 /* We do not attempt to output anything after this. */
3007 state = FINISH;
3008 break;
3009
3010 case FINISH:
3011 /* All done. If we were outputting a string of SINGLE
3012 characters, the string must be terminated. Otherwise,
3013 REPEAT and INCOMPLETE are always left properly terminated. */
3014 if (last == SINGLE)
3015 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
3016
3017 return;
3018 }
3019
3020 /* Get the next element and state. */
3021 last = state;
3022 if (state != FINISH)
3023 {
3024 elem = &chars[idx++];
3025 switch (elem->result)
3026 {
3027 case wchar_iterate_ok:
3028 case wchar_iterate_invalid:
3029 if (elem->repeat_count > options->repeat_count_threshold)
3030 state = REPEAT;
3031 else
3032 state = SINGLE;
3033 break;
3034
3035 case wchar_iterate_incomplete:
3036 state = INCOMPLETE;
3037 break;
3038
3039 case wchar_iterate_eof:
3040 state = FINISH;
3041 break;
3042 }
3043 }
3044 }
3045 }
3046
3047 /* Print the character string STRING, printing at most LENGTH
3048 characters. LENGTH is -1 if the string is nul terminated. TYPE is
3049 the type of each character. OPTIONS holds the printing options;
3050 printing stops early if the number hits print_max; repeat counts
3051 are printed as appropriate. Print ellipses at the end if we had to
3052 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
3053 QUOTE_CHAR is the character to print at each end of the string. If
3054 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
3055 omitted. */
3056
3057 void
3058 generic_printstr (struct ui_file *stream, struct type *type,
3059 const gdb_byte *string, unsigned int length,
3060 const char *encoding, int force_ellipses,
3061 int quote_char, int c_style_terminator,
3062 const struct value_print_options *options)
3063 {
3064 enum bfd_endian byte_order = type_byte_order (type);
3065 unsigned int i;
3066 int width = TYPE_LENGTH (type);
3067 int finished = 0;
3068 struct converted_character *last;
3069
3070 if (length == -1)
3071 {
3072 unsigned long current_char = 1;
3073
3074 for (i = 0; current_char; ++i)
3075 {
3076 QUIT;
3077 current_char = extract_unsigned_integer (string + i * width,
3078 width, byte_order);
3079 }
3080 length = i;
3081 }
3082
3083 /* If the string was not truncated due to `set print elements', and
3084 the last byte of it is a null, we don't print that, in
3085 traditional C style. */
3086 if (c_style_terminator
3087 && !force_ellipses
3088 && length > 0
3089 && (extract_unsigned_integer (string + (length - 1) * width,
3090 width, byte_order) == 0))
3091 length--;
3092
3093 if (length == 0)
3094 {
3095 fputs_filtered ("\"\"", stream);
3096 return;
3097 }
3098
3099 /* Arrange to iterate over the characters, in wchar_t form. */
3100 wchar_iterator iter (string, length * width, encoding, width);
3101 std::vector<converted_character> converted_chars;
3102
3103 /* Convert characters until the string is over or the maximum
3104 number of printed characters has been reached. */
3105 i = 0;
3106 while (i < options->print_max)
3107 {
3108 int r;
3109
3110 QUIT;
3111
3112 /* Grab the next character and repeat count. */
3113 r = count_next_character (&iter, &converted_chars);
3114
3115 /* If less than zero, the end of the input string was reached. */
3116 if (r < 0)
3117 break;
3118
3119 /* Otherwise, add the count to the total print count and get
3120 the next character. */
3121 i += r;
3122 }
3123
3124 /* Get the last element and determine if the entire string was
3125 processed. */
3126 last = &converted_chars.back ();
3127 finished = (last->result == wchar_iterate_eof);
3128
3129 /* Ensure that CONVERTED_CHARS is terminated. */
3130 last->result = wchar_iterate_eof;
3131
3132 /* WCHAR_BUF is the obstack we use to represent the string in
3133 wchar_t form. */
3134 auto_obstack wchar_buf;
3135
3136 /* Print the output string to the obstack. */
3137 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
3138 width, byte_order, options);
3139
3140 if (force_ellipses || !finished)
3141 obstack_grow_wstr (&wchar_buf, LCST ("..."));
3142
3143 /* OUTPUT is where we collect `char's for printing. */
3144 auto_obstack output;
3145
3146 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
3147 (gdb_byte *) obstack_base (&wchar_buf),
3148 obstack_object_size (&wchar_buf),
3149 sizeof (gdb_wchar_t), &output, translit_char);
3150 obstack_1grow (&output, '\0');
3151
3152 fputs_filtered ((const char *) obstack_base (&output), stream);
3153 }
3154
3155 /* Print a string from the inferior, starting at ADDR and printing up to LEN
3156 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
3157 stops at the first null byte, otherwise printing proceeds (including null
3158 bytes) until either print_max or LEN characters have been printed,
3159 whichever is smaller. ENCODING is the name of the string's
3160 encoding. It can be NULL, in which case the target encoding is
3161 assumed. */
3162
3163 int
3164 val_print_string (struct type *elttype, const char *encoding,
3165 CORE_ADDR addr, int len,
3166 struct ui_file *stream,
3167 const struct value_print_options *options)
3168 {
3169 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
3170 int err; /* Non-zero if we got a bad read. */
3171 int found_nul; /* Non-zero if we found the nul char. */
3172 unsigned int fetchlimit; /* Maximum number of chars to print. */
3173 int bytes_read;
3174 gdb::unique_xmalloc_ptr<gdb_byte> buffer; /* Dynamically growable fetch buffer. */
3175 struct gdbarch *gdbarch = get_type_arch (elttype);
3176 enum bfd_endian byte_order = type_byte_order (elttype);
3177 int width = TYPE_LENGTH (elttype);
3178
3179 /* First we need to figure out the limit on the number of characters we are
3180 going to attempt to fetch and print. This is actually pretty simple. If
3181 LEN >= zero, then the limit is the minimum of LEN and print_max. If
3182 LEN is -1, then the limit is print_max. This is true regardless of
3183 whether print_max is zero, UINT_MAX (unlimited), or something in between,
3184 because finding the null byte (or available memory) is what actually
3185 limits the fetch. */
3186
3187 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
3188 options->print_max));
3189
3190 err = read_string (addr, len, width, fetchlimit, byte_order,
3191 &buffer, &bytes_read);
3192
3193 addr += bytes_read;
3194
3195 /* We now have either successfully filled the buffer to fetchlimit,
3196 or terminated early due to an error or finding a null char when
3197 LEN is -1. */
3198
3199 /* Determine found_nul by looking at the last character read. */
3200 found_nul = 0;
3201 if (bytes_read >= width)
3202 found_nul = extract_unsigned_integer (buffer.get () + bytes_read - width,
3203 width, byte_order) == 0;
3204 if (len == -1 && !found_nul)
3205 {
3206 gdb_byte *peekbuf;
3207
3208 /* We didn't find a NUL terminator we were looking for. Attempt
3209 to peek at the next character. If not successful, or it is not
3210 a null byte, then force ellipsis to be printed. */
3211
3212 peekbuf = (gdb_byte *) alloca (width);
3213
3214 if (target_read_memory (addr, peekbuf, width) == 0
3215 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
3216 force_ellipsis = 1;
3217 }
3218 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
3219 {
3220 /* Getting an error when we have a requested length, or fetching less
3221 than the number of characters actually requested, always make us
3222 print ellipsis. */
3223 force_ellipsis = 1;
3224 }
3225
3226 /* If we get an error before fetching anything, don't print a string.
3227 But if we fetch something and then get an error, print the string
3228 and then the error message. */
3229 if (err == 0 || bytes_read > 0)
3230 {
3231 LA_PRINT_STRING (stream, elttype, buffer.get (), bytes_read / width,
3232 encoding, force_ellipsis, options);
3233 }
3234
3235 if (err != 0)
3236 {
3237 std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
3238
3239 fprintf_filtered (stream, _("<error: %ps>"),
3240 styled_string (metadata_style.style (),
3241 str.c_str ()));
3242 }
3243
3244 return (bytes_read / width);
3245 }
3246
3247 /* Handle 'show print max-depth'. */
3248
3249 static void
3250 show_print_max_depth (struct ui_file *file, int from_tty,
3251 struct cmd_list_element *c, const char *value)
3252 {
3253 fprintf_filtered (file, _("Maximum print depth is %s.\n"), value);
3254 }
3255 \f
3256
3257 /* The 'set input-radix' command writes to this auxiliary variable.
3258 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
3259 it is left unchanged. */
3260
3261 static unsigned input_radix_1 = 10;
3262
3263 /* Validate an input or output radix setting, and make sure the user
3264 knows what they really did here. Radix setting is confusing, e.g.
3265 setting the input radix to "10" never changes it! */
3266
3267 static void
3268 set_input_radix (const char *args, int from_tty, struct cmd_list_element *c)
3269 {
3270 set_input_radix_1 (from_tty, input_radix_1);
3271 }
3272
3273 static void
3274 set_input_radix_1 (int from_tty, unsigned radix)
3275 {
3276 /* We don't currently disallow any input radix except 0 or 1, which don't
3277 make any mathematical sense. In theory, we can deal with any input
3278 radix greater than 1, even if we don't have unique digits for every
3279 value from 0 to radix-1, but in practice we lose on large radix values.
3280 We should either fix the lossage or restrict the radix range more.
3281 (FIXME). */
3282
3283 if (radix < 2)
3284 {
3285 input_radix_1 = input_radix;
3286 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
3287 radix);
3288 }
3289 input_radix_1 = input_radix = radix;
3290 if (from_tty)
3291 {
3292 printf_filtered (_("Input radix now set to "
3293 "decimal %u, hex %x, octal %o.\n"),
3294 radix, radix, radix);
3295 }
3296 }
3297
3298 /* The 'set output-radix' command writes to this auxiliary variable.
3299 If the requested radix is valid, OUTPUT_RADIX is updated,
3300 otherwise, it is left unchanged. */
3301
3302 static unsigned output_radix_1 = 10;
3303
3304 static void
3305 set_output_radix (const char *args, int from_tty, struct cmd_list_element *c)
3306 {
3307 set_output_radix_1 (from_tty, output_radix_1);
3308 }
3309
3310 static void
3311 set_output_radix_1 (int from_tty, unsigned radix)
3312 {
3313 /* Validate the radix and disallow ones that we aren't prepared to
3314 handle correctly, leaving the radix unchanged. */
3315 switch (radix)
3316 {
3317 case 16:
3318 user_print_options.output_format = 'x'; /* hex */
3319 break;
3320 case 10:
3321 user_print_options.output_format = 0; /* decimal */
3322 break;
3323 case 8:
3324 user_print_options.output_format = 'o'; /* octal */
3325 break;
3326 default:
3327 output_radix_1 = output_radix;
3328 error (_("Unsupported output radix ``decimal %u''; "
3329 "output radix unchanged."),
3330 radix);
3331 }
3332 output_radix_1 = output_radix = radix;
3333 if (from_tty)
3334 {
3335 printf_filtered (_("Output radix now set to "
3336 "decimal %u, hex %x, octal %o.\n"),
3337 radix, radix, radix);
3338 }
3339 }
3340
3341 /* Set both the input and output radix at once. Try to set the output radix
3342 first, since it has the most restrictive range. An radix that is valid as
3343 an output radix is also valid as an input radix.
3344
3345 It may be useful to have an unusual input radix. If the user wishes to
3346 set an input radix that is not valid as an output radix, he needs to use
3347 the 'set input-radix' command. */
3348
3349 static void
3350 set_radix (const char *arg, int from_tty)
3351 {
3352 unsigned radix;
3353
3354 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
3355 set_output_radix_1 (0, radix);
3356 set_input_radix_1 (0, radix);
3357 if (from_tty)
3358 {
3359 printf_filtered (_("Input and output radices now set to "
3360 "decimal %u, hex %x, octal %o.\n"),
3361 radix, radix, radix);
3362 }
3363 }
3364
3365 /* Show both the input and output radices. */
3366
3367 static void
3368 show_radix (const char *arg, int from_tty)
3369 {
3370 if (from_tty)
3371 {
3372 if (input_radix == output_radix)
3373 {
3374 printf_filtered (_("Input and output radices set to "
3375 "decimal %u, hex %x, octal %o.\n"),
3376 input_radix, input_radix, input_radix);
3377 }
3378 else
3379 {
3380 printf_filtered (_("Input radix set to decimal "
3381 "%u, hex %x, octal %o.\n"),
3382 input_radix, input_radix, input_radix);
3383 printf_filtered (_("Output radix set to decimal "
3384 "%u, hex %x, octal %o.\n"),
3385 output_radix, output_radix, output_radix);
3386 }
3387 }
3388 }
3389 \f
3390
3391 static void
3392 set_print (const char *arg, int from_tty)
3393 {
3394 printf_unfiltered (
3395 "\"set print\" must be followed by the name of a print subcommand.\n");
3396 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
3397 }
3398
3399 static void
3400 show_print (const char *args, int from_tty)
3401 {
3402 cmd_show_list (showprintlist, from_tty, "");
3403 }
3404
3405 static void
3406 set_print_raw (const char *arg, int from_tty)
3407 {
3408 printf_unfiltered (
3409 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
3410 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
3411 }
3412
3413 static void
3414 show_print_raw (const char *args, int from_tty)
3415 {
3416 cmd_show_list (showprintrawlist, from_tty, "");
3417 }
3418
3419 /* Controls printing of vtbl's. */
3420 static void
3421 show_vtblprint (struct ui_file *file, int from_tty,
3422 struct cmd_list_element *c, const char *value)
3423 {
3424 fprintf_filtered (file, _("\
3425 Printing of C++ virtual function tables is %s.\n"),
3426 value);
3427 }
3428
3429 /* Controls looking up an object's derived type using what we find in
3430 its vtables. */
3431 static void
3432 show_objectprint (struct ui_file *file, int from_tty,
3433 struct cmd_list_element *c,
3434 const char *value)
3435 {
3436 fprintf_filtered (file, _("\
3437 Printing of object's derived type based on vtable info is %s.\n"),
3438 value);
3439 }
3440
3441 static void
3442 show_static_field_print (struct ui_file *file, int from_tty,
3443 struct cmd_list_element *c,
3444 const char *value)
3445 {
3446 fprintf_filtered (file,
3447 _("Printing of C++ static members is %s.\n"),
3448 value);
3449 }
3450
3451 \f
3452
3453 /* A couple typedefs to make writing the options a bit more
3454 convenient. */
3455 using boolean_option_def
3456 = gdb::option::boolean_option_def<value_print_options>;
3457 using uinteger_option_def
3458 = gdb::option::uinteger_option_def<value_print_options>;
3459 using zuinteger_unlimited_option_def
3460 = gdb::option::zuinteger_unlimited_option_def<value_print_options>;
3461
3462 /* Definitions of options for the "print" and "compile print"
3463 commands. */
3464 static const gdb::option::option_def value_print_option_defs[] = {
3465
3466 boolean_option_def {
3467 "address",
3468 [] (value_print_options *opt) { return &opt->addressprint; },
3469 show_addressprint, /* show_cmd_cb */
3470 N_("Set printing of addresses."),
3471 N_("Show printing of addresses."),
3472 NULL, /* help_doc */
3473 },
3474
3475 boolean_option_def {
3476 "array",
3477 [] (value_print_options *opt) { return &opt->prettyformat_arrays; },
3478 show_prettyformat_arrays, /* show_cmd_cb */
3479 N_("Set pretty formatting of arrays."),
3480 N_("Show pretty formatting of arrays."),
3481 NULL, /* help_doc */
3482 },
3483
3484 boolean_option_def {
3485 "array-indexes",
3486 [] (value_print_options *opt) { return &opt->print_array_indexes; },
3487 show_print_array_indexes, /* show_cmd_cb */
3488 N_("Set printing of array indexes."),
3489 N_("Show printing of array indexes."),
3490 NULL, /* help_doc */
3491 },
3492
3493 uinteger_option_def {
3494 "elements",
3495 [] (value_print_options *opt) { return &opt->print_max; },
3496 show_print_max, /* show_cmd_cb */
3497 N_("Set limit on string chars or array elements to print."),
3498 N_("Show limit on string chars or array elements to print."),
3499 N_("\"unlimited\" causes there to be no limit."),
3500 },
3501
3502 zuinteger_unlimited_option_def {
3503 "max-depth",
3504 [] (value_print_options *opt) { return &opt->max_depth; },
3505 show_print_max_depth, /* show_cmd_cb */
3506 N_("Set maximum print depth for nested structures, unions and arrays."),
3507 N_("Show maximum print depth for nested structures, unions, and arrays."),
3508 N_("When structures, unions, or arrays are nested beyond this depth then they\n\
3509 will be replaced with either '{...}' or '(...)' depending on the language.\n\
3510 Use \"unlimited\" to print the complete structure.")
3511 },
3512
3513 boolean_option_def {
3514 "null-stop",
3515 [] (value_print_options *opt) { return &opt->stop_print_at_null; },
3516 show_stop_print_at_null, /* show_cmd_cb */
3517 N_("Set printing of char arrays to stop at first null char."),
3518 N_("Show printing of char arrays to stop at first null char."),
3519 NULL, /* help_doc */
3520 },
3521
3522 boolean_option_def {
3523 "object",
3524 [] (value_print_options *opt) { return &opt->objectprint; },
3525 show_objectprint, /* show_cmd_cb */
3526 _("Set printing of C++ virtual function tables."),
3527 _("Show printing of C++ virtual function tables."),
3528 NULL, /* help_doc */
3529 },
3530
3531 boolean_option_def {
3532 "pretty",
3533 [] (value_print_options *opt) { return &opt->prettyformat_structs; },
3534 show_prettyformat_structs, /* show_cmd_cb */
3535 N_("Set pretty formatting of structures."),
3536 N_("Show pretty formatting of structures."),
3537 NULL, /* help_doc */
3538 },
3539
3540 boolean_option_def {
3541 "raw-values",
3542 [] (value_print_options *opt) { return &opt->raw; },
3543 NULL, /* show_cmd_cb */
3544 N_("Set whether to print values in raw form."),
3545 N_("Show whether to print values in raw form."),
3546 N_("If set, values are printed in raw form, bypassing any\n\
3547 pretty-printers for that value.")
3548 },
3549
3550 uinteger_option_def {
3551 "repeats",
3552 [] (value_print_options *opt) { return &opt->repeat_count_threshold; },
3553 show_repeat_count_threshold, /* show_cmd_cb */
3554 N_("Set threshold for repeated print elements."),
3555 N_("Show threshold for repeated print elements."),
3556 N_("\"unlimited\" causes all elements to be individually printed."),
3557 },
3558
3559 boolean_option_def {
3560 "static-members",
3561 [] (value_print_options *opt) { return &opt->static_field_print; },
3562 show_static_field_print, /* show_cmd_cb */
3563 N_("Set printing of C++ static members."),
3564 N_("Show printing of C++ static members."),
3565 NULL, /* help_doc */
3566 },
3567
3568 boolean_option_def {
3569 "symbol",
3570 [] (value_print_options *opt) { return &opt->symbol_print; },
3571 show_symbol_print, /* show_cmd_cb */
3572 N_("Set printing of symbol names when printing pointers."),
3573 N_("Show printing of symbol names when printing pointers."),
3574 NULL, /* help_doc */
3575 },
3576
3577 boolean_option_def {
3578 "union",
3579 [] (value_print_options *opt) { return &opt->unionprint; },
3580 show_unionprint, /* show_cmd_cb */
3581 N_("Set printing of unions interior to structures."),
3582 N_("Show printing of unions interior to structures."),
3583 NULL, /* help_doc */
3584 },
3585
3586 boolean_option_def {
3587 "vtbl",
3588 [] (value_print_options *opt) { return &opt->vtblprint; },
3589 show_vtblprint, /* show_cmd_cb */
3590 N_("Set printing of C++ virtual function tables."),
3591 N_("Show printing of C++ virtual function tables."),
3592 NULL, /* help_doc */
3593 },
3594 };
3595
3596 /* See valprint.h. */
3597
3598 gdb::option::option_def_group
3599 make_value_print_options_def_group (value_print_options *opts)
3600 {
3601 return {{value_print_option_defs}, opts};
3602 }
3603
3604 void _initialize_valprint ();
3605 void
3606 _initialize_valprint ()
3607 {
3608 cmd_list_element *cmd;
3609
3610 add_prefix_cmd ("print", no_class, set_print,
3611 _("Generic command for setting how things print."),
3612 &setprintlist, "set print ", 0, &setlist);
3613 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3614 /* Prefer set print to set prompt. */
3615 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3616
3617 add_prefix_cmd ("print", no_class, show_print,
3618 _("Generic command for showing print settings."),
3619 &showprintlist, "show print ", 0, &showlist);
3620 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3621 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3622
3623 cmd = add_prefix_cmd ("raw", no_class, set_print_raw,
3624 _("\
3625 Generic command for setting what things to print in \"raw\" mode."),
3626 &setprintrawlist, "set print raw ", 0,
3627 &setprintlist);
3628 deprecate_cmd (cmd, nullptr);
3629
3630 cmd = add_prefix_cmd ("raw", no_class, show_print_raw,
3631 _("Generic command for showing \"print raw\" settings."),
3632 &showprintrawlist, "show print raw ", 0,
3633 &showprintlist);
3634 deprecate_cmd (cmd, nullptr);
3635
3636 gdb::option::add_setshow_cmds_for_options
3637 (class_support, &user_print_options, value_print_option_defs,
3638 &setprintlist, &showprintlist);
3639
3640 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3641 _("\
3642 Set default input radix for entering numbers."), _("\
3643 Show default input radix for entering numbers."), NULL,
3644 set_input_radix,
3645 show_input_radix,
3646 &setlist, &showlist);
3647
3648 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3649 _("\
3650 Set default output radix for printing of values."), _("\
3651 Show default output radix for printing of values."), NULL,
3652 set_output_radix,
3653 show_output_radix,
3654 &setlist, &showlist);
3655
3656 /* The "set radix" and "show radix" commands are special in that
3657 they are like normal set and show commands but allow two normally
3658 independent variables to be either set or shown with a single
3659 command. So the usual deprecated_add_set_cmd() and [deleted]
3660 add_show_from_set() commands aren't really appropriate. */
3661 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3662 longer true - show can display anything. */
3663 add_cmd ("radix", class_support, set_radix, _("\
3664 Set default input and output number radices.\n\
3665 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3666 Without an argument, sets both radices back to the default value of 10."),
3667 &setlist);
3668 add_cmd ("radix", class_support, show_radix, _("\
3669 Show the default input and output number radices.\n\
3670 Use 'show input-radix' or 'show output-radix' to independently show each."),
3671 &showlist);
3672 }
This page took 0.107286 seconds and 4 git commands to generate.