Import alloca explicitly
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "floatformat.h"
31 #include "doublest.h"
32 #include "dfp.h"
33 #include "extension.h"
34 #include "ada-lang.h"
35 #include "gdb_obstack.h"
36 #include "charset.h"
37 #include <ctype.h>
38
39 /* Maximum number of wchars returned from wchar_iterate. */
40 #define MAX_WCHARS 4
41
42 /* A convenience macro to compute the size of a wchar_t buffer containing X
43 characters. */
44 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
45
46 /* Character buffer size saved while iterating over wchars. */
47 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
48
49 /* A structure to encapsulate state information from iterated
50 character conversions. */
51 struct converted_character
52 {
53 /* The number of characters converted. */
54 int num_chars;
55
56 /* The result of the conversion. See charset.h for more. */
57 enum wchar_iterate_result result;
58
59 /* The (saved) converted character(s). */
60 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
61
62 /* The first converted target byte. */
63 const gdb_byte *buf;
64
65 /* The number of bytes converted. */
66 size_t buflen;
67
68 /* How many times this character(s) is repeated. */
69 int repeat_count;
70 };
71
72 typedef struct converted_character converted_character_d;
73 DEF_VEC_O (converted_character_d);
74
75 /* Command lists for set/show print raw. */
76 struct cmd_list_element *setprintrawlist;
77 struct cmd_list_element *showprintrawlist;
78
79 /* Prototypes for local functions */
80
81 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
82 int len, int *errptr);
83
84 static void show_print (char *, int);
85
86 static void set_print (char *, int);
87
88 static void set_radix (char *, int);
89
90 static void show_radix (char *, int);
91
92 static void set_input_radix (char *, int, struct cmd_list_element *);
93
94 static void set_input_radix_1 (int, unsigned);
95
96 static void set_output_radix (char *, int, struct cmd_list_element *);
97
98 static void set_output_radix_1 (int, unsigned);
99
100 void _initialize_valprint (void);
101
102 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
103
104 struct value_print_options user_print_options =
105 {
106 Val_prettyformat_default, /* prettyformat */
107 0, /* prettyformat_arrays */
108 0, /* prettyformat_structs */
109 0, /* vtblprint */
110 1, /* unionprint */
111 1, /* addressprint */
112 0, /* objectprint */
113 PRINT_MAX_DEFAULT, /* print_max */
114 10, /* repeat_count_threshold */
115 0, /* output_format */
116 0, /* format */
117 0, /* stop_print_at_null */
118 0, /* print_array_indexes */
119 0, /* deref_ref */
120 1, /* static_field_print */
121 1, /* pascal_static_field_print */
122 0, /* raw */
123 0, /* summary */
124 1 /* symbol_print */
125 };
126
127 /* Initialize *OPTS to be a copy of the user print options. */
128 void
129 get_user_print_options (struct value_print_options *opts)
130 {
131 *opts = user_print_options;
132 }
133
134 /* Initialize *OPTS to be a copy of the user print options, but with
135 pretty-formatting disabled. */
136 void
137 get_no_prettyformat_print_options (struct value_print_options *opts)
138 {
139 *opts = user_print_options;
140 opts->prettyformat = Val_no_prettyformat;
141 }
142
143 /* Initialize *OPTS to be a copy of the user print options, but using
144 FORMAT as the formatting option. */
145 void
146 get_formatted_print_options (struct value_print_options *opts,
147 char format)
148 {
149 *opts = user_print_options;
150 opts->format = format;
151 }
152
153 static void
154 show_print_max (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156 {
157 fprintf_filtered (file,
158 _("Limit on string chars or array "
159 "elements to print is %s.\n"),
160 value);
161 }
162
163
164 /* Default input and output radixes, and output format letter. */
165
166 unsigned input_radix = 10;
167 static void
168 show_input_radix (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170 {
171 fprintf_filtered (file,
172 _("Default input radix for entering numbers is %s.\n"),
173 value);
174 }
175
176 unsigned output_radix = 10;
177 static void
178 show_output_radix (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file,
182 _("Default output radix for printing of values is %s.\n"),
183 value);
184 }
185
186 /* By default we print arrays without printing the index of each element in
187 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
188
189 static void
190 show_print_array_indexes (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192 {
193 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
194 }
195
196 /* Print repeat counts if there are more than this many repetitions of an
197 element in an array. Referenced by the low level language dependent
198 print routines. */
199
200 static void
201 show_repeat_count_threshold (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203 {
204 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
205 value);
206 }
207
208 /* If nonzero, stops printing of char arrays at first null. */
209
210 static void
211 show_stop_print_at_null (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
213 {
214 fprintf_filtered (file,
215 _("Printing of char arrays to stop "
216 "at first null char is %s.\n"),
217 value);
218 }
219
220 /* Controls pretty printing of structures. */
221
222 static void
223 show_prettyformat_structs (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
225 {
226 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
227 }
228
229 /* Controls pretty printing of arrays. */
230
231 static void
232 show_prettyformat_arrays (struct ui_file *file, int from_tty,
233 struct cmd_list_element *c, const char *value)
234 {
235 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
236 }
237
238 /* If nonzero, causes unions inside structures or other unions to be
239 printed. */
240
241 static void
242 show_unionprint (struct ui_file *file, int from_tty,
243 struct cmd_list_element *c, const char *value)
244 {
245 fprintf_filtered (file,
246 _("Printing of unions interior to structures is %s.\n"),
247 value);
248 }
249
250 /* If nonzero, causes machine addresses to be printed in certain contexts. */
251
252 static void
253 show_addressprint (struct ui_file *file, int from_tty,
254 struct cmd_list_element *c, const char *value)
255 {
256 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
257 }
258
259 static void
260 show_symbol_print (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262 {
263 fprintf_filtered (file,
264 _("Printing of symbols when printing pointers is %s.\n"),
265 value);
266 }
267
268 \f
269
270 /* A helper function for val_print. When printing in "summary" mode,
271 we want to print scalar arguments, but not aggregate arguments.
272 This function distinguishes between the two. */
273
274 int
275 val_print_scalar_type_p (struct type *type)
276 {
277 CHECK_TYPEDEF (type);
278 while (TYPE_CODE (type) == TYPE_CODE_REF)
279 {
280 type = TYPE_TARGET_TYPE (type);
281 CHECK_TYPEDEF (type);
282 }
283 switch (TYPE_CODE (type))
284 {
285 case TYPE_CODE_ARRAY:
286 case TYPE_CODE_STRUCT:
287 case TYPE_CODE_UNION:
288 case TYPE_CODE_SET:
289 case TYPE_CODE_STRING:
290 return 0;
291 default:
292 return 1;
293 }
294 }
295
296 /* See its definition in value.h. */
297
298 int
299 valprint_check_validity (struct ui_file *stream,
300 struct type *type,
301 int embedded_offset,
302 const struct value *val)
303 {
304 CHECK_TYPEDEF (type);
305
306 if (TYPE_CODE (type) != TYPE_CODE_UNION
307 && TYPE_CODE (type) != TYPE_CODE_STRUCT
308 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
309 {
310 if (value_bits_any_optimized_out (val,
311 TARGET_CHAR_BIT * embedded_offset,
312 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
313 {
314 val_print_optimized_out (val, stream);
315 return 0;
316 }
317
318 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
319 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
320 {
321 fputs_filtered (_("<synthetic pointer>"), stream);
322 return 0;
323 }
324
325 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
326 {
327 val_print_unavailable (stream);
328 return 0;
329 }
330 }
331
332 return 1;
333 }
334
335 void
336 val_print_optimized_out (const struct value *val, struct ui_file *stream)
337 {
338 if (val != NULL && value_lval_const (val) == lval_register)
339 val_print_not_saved (stream);
340 else
341 fprintf_filtered (stream, _("<optimized out>"));
342 }
343
344 void
345 val_print_not_saved (struct ui_file *stream)
346 {
347 fprintf_filtered (stream, _("<not saved>"));
348 }
349
350 void
351 val_print_unavailable (struct ui_file *stream)
352 {
353 fprintf_filtered (stream, _("<unavailable>"));
354 }
355
356 void
357 val_print_invalid_address (struct ui_file *stream)
358 {
359 fprintf_filtered (stream, _("<invalid address>"));
360 }
361
362 /* A generic val_print that is suitable for use by language
363 implementations of the la_val_print method. This function can
364 handle most type codes, though not all, notably exception
365 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
366 the caller.
367
368 Most arguments are as to val_print.
369
370 The additional DECORATIONS argument can be used to customize the
371 output in some small, language-specific ways. */
372
373 void
374 generic_val_print (struct type *type, const gdb_byte *valaddr,
375 int embedded_offset, CORE_ADDR address,
376 struct ui_file *stream, int recurse,
377 const struct value *original_value,
378 const struct value_print_options *options,
379 const struct generic_val_print_decorations *decorations)
380 {
381 struct gdbarch *gdbarch = get_type_arch (type);
382 unsigned int i = 0; /* Number of characters printed. */
383 unsigned len;
384 struct type *elttype, *unresolved_elttype;
385 struct type *unresolved_type = type;
386 LONGEST val;
387 CORE_ADDR addr;
388
389 CHECK_TYPEDEF (type);
390 switch (TYPE_CODE (type))
391 {
392 case TYPE_CODE_ARRAY:
393 unresolved_elttype = TYPE_TARGET_TYPE (type);
394 elttype = check_typedef (unresolved_elttype);
395 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
396 {
397 LONGEST low_bound, high_bound;
398
399 if (!get_array_bounds (type, &low_bound, &high_bound))
400 error (_("Could not determine the array high bound"));
401
402 if (options->prettyformat_arrays)
403 {
404 print_spaces_filtered (2 + 2 * recurse, stream);
405 }
406
407 fprintf_filtered (stream, "{");
408 val_print_array_elements (type, valaddr, embedded_offset,
409 address, stream,
410 recurse, original_value, options, 0);
411 fprintf_filtered (stream, "}");
412 break;
413 }
414 /* Array of unspecified length: treat like pointer to first
415 elt. */
416 addr = address + embedded_offset;
417 goto print_unpacked_pointer;
418
419 case TYPE_CODE_MEMBERPTR:
420 val_print_scalar_formatted (type, valaddr, embedded_offset,
421 original_value, options, 0, stream);
422 break;
423
424 case TYPE_CODE_PTR:
425 if (options->format && options->format != 's')
426 {
427 val_print_scalar_formatted (type, valaddr, embedded_offset,
428 original_value, options, 0, stream);
429 break;
430 }
431 unresolved_elttype = TYPE_TARGET_TYPE (type);
432 elttype = check_typedef (unresolved_elttype);
433 {
434 addr = unpack_pointer (type, valaddr + embedded_offset);
435 print_unpacked_pointer:
436
437 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
438 {
439 /* Try to print what function it points to. */
440 print_function_pointer_address (options, gdbarch, addr, stream);
441 return;
442 }
443
444 if (options->symbol_print)
445 print_address_demangle (options, gdbarch, addr, stream, demangle);
446 else if (options->addressprint)
447 fputs_filtered (paddress (gdbarch, addr), stream);
448 }
449 break;
450
451 case TYPE_CODE_REF:
452 elttype = check_typedef (TYPE_TARGET_TYPE (type));
453 if (options->addressprint)
454 {
455 CORE_ADDR addr
456 = extract_typed_address (valaddr + embedded_offset, type);
457
458 fprintf_filtered (stream, "@");
459 fputs_filtered (paddress (gdbarch, addr), stream);
460 if (options->deref_ref)
461 fputs_filtered (": ", stream);
462 }
463 /* De-reference the reference. */
464 if (options->deref_ref)
465 {
466 if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
467 {
468 struct value *deref_val;
469
470 deref_val = coerce_ref_if_computed (original_value);
471 if (deref_val != NULL)
472 {
473 /* More complicated computed references are not supported. */
474 gdb_assert (embedded_offset == 0);
475 }
476 else
477 deref_val = value_at (TYPE_TARGET_TYPE (type),
478 unpack_pointer (type,
479 (valaddr
480 + embedded_offset)));
481
482 common_val_print (deref_val, stream, recurse, options,
483 current_language);
484 }
485 else
486 fputs_filtered ("???", stream);
487 }
488 break;
489
490 case TYPE_CODE_ENUM:
491 if (options->format)
492 {
493 val_print_scalar_formatted (type, valaddr, embedded_offset,
494 original_value, options, 0, stream);
495 break;
496 }
497 len = TYPE_NFIELDS (type);
498 val = unpack_long (type, valaddr + embedded_offset);
499 for (i = 0; i < len; i++)
500 {
501 QUIT;
502 if (val == TYPE_FIELD_ENUMVAL (type, i))
503 {
504 break;
505 }
506 }
507 if (i < len)
508 {
509 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
510 }
511 else if (TYPE_FLAG_ENUM (type))
512 {
513 int first = 1;
514
515 /* We have a "flag" enum, so we try to decompose it into
516 pieces as appropriate. A flag enum has disjoint
517 constants by definition. */
518 fputs_filtered ("(", stream);
519 for (i = 0; i < len; ++i)
520 {
521 QUIT;
522
523 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
524 {
525 if (!first)
526 fputs_filtered (" | ", stream);
527 first = 0;
528
529 val &= ~TYPE_FIELD_ENUMVAL (type, i);
530 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
531 }
532 }
533
534 if (first || val != 0)
535 {
536 if (!first)
537 fputs_filtered (" | ", stream);
538 fputs_filtered ("unknown: ", stream);
539 print_longest (stream, 'd', 0, val);
540 }
541
542 fputs_filtered (")", stream);
543 }
544 else
545 print_longest (stream, 'd', 0, val);
546 break;
547
548 case TYPE_CODE_FLAGS:
549 if (options->format)
550 val_print_scalar_formatted (type, valaddr, embedded_offset,
551 original_value, options, 0, stream);
552 else
553 val_print_type_code_flags (type, valaddr + embedded_offset,
554 stream);
555 break;
556
557 case TYPE_CODE_FUNC:
558 case TYPE_CODE_METHOD:
559 if (options->format)
560 {
561 val_print_scalar_formatted (type, valaddr, embedded_offset,
562 original_value, options, 0, stream);
563 break;
564 }
565 /* FIXME, we should consider, at least for ANSI C language,
566 eliminating the distinction made between FUNCs and POINTERs
567 to FUNCs. */
568 fprintf_filtered (stream, "{");
569 type_print (type, "", stream, -1);
570 fprintf_filtered (stream, "} ");
571 /* Try to print what function it points to, and its address. */
572 print_address_demangle (options, gdbarch, address, stream, demangle);
573 break;
574
575 case TYPE_CODE_BOOL:
576 if (options->format || options->output_format)
577 {
578 struct value_print_options opts = *options;
579 opts.format = (options->format ? options->format
580 : options->output_format);
581 val_print_scalar_formatted (type, valaddr, embedded_offset,
582 original_value, &opts, 0, stream);
583 }
584 else
585 {
586 val = unpack_long (type, valaddr + embedded_offset);
587 if (val == 0)
588 fputs_filtered (decorations->false_name, stream);
589 else if (val == 1)
590 fputs_filtered (decorations->true_name, stream);
591 else
592 print_longest (stream, 'd', 0, val);
593 }
594 break;
595
596 case TYPE_CODE_RANGE:
597 /* FIXME: create_static_range_type does not set the unsigned bit in a
598 range type (I think it probably should copy it from the
599 target type), so we won't print values which are too large to
600 fit in a signed integer correctly. */
601 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
602 print with the target type, though, because the size of our
603 type and the target type might differ). */
604
605 /* FALLTHROUGH */
606
607 case TYPE_CODE_INT:
608 if (options->format || options->output_format)
609 {
610 struct value_print_options opts = *options;
611
612 opts.format = (options->format ? options->format
613 : options->output_format);
614 val_print_scalar_formatted (type, valaddr, embedded_offset,
615 original_value, &opts, 0, stream);
616 }
617 else
618 val_print_type_code_int (type, valaddr + embedded_offset, stream);
619 break;
620
621 case TYPE_CODE_CHAR:
622 if (options->format || options->output_format)
623 {
624 struct value_print_options opts = *options;
625
626 opts.format = (options->format ? options->format
627 : options->output_format);
628 val_print_scalar_formatted (type, valaddr, embedded_offset,
629 original_value, &opts, 0, stream);
630 }
631 else
632 {
633 val = unpack_long (type, valaddr + embedded_offset);
634 if (TYPE_UNSIGNED (type))
635 fprintf_filtered (stream, "%u", (unsigned int) val);
636 else
637 fprintf_filtered (stream, "%d", (int) val);
638 fputs_filtered (" ", stream);
639 LA_PRINT_CHAR (val, unresolved_type, stream);
640 }
641 break;
642
643 case TYPE_CODE_FLT:
644 if (options->format)
645 {
646 val_print_scalar_formatted (type, valaddr, embedded_offset,
647 original_value, options, 0, stream);
648 }
649 else
650 {
651 print_floating (valaddr + embedded_offset, type, stream);
652 }
653 break;
654
655 case TYPE_CODE_DECFLOAT:
656 if (options->format)
657 val_print_scalar_formatted (type, valaddr, embedded_offset,
658 original_value, options, 0, stream);
659 else
660 print_decimal_floating (valaddr + embedded_offset,
661 type, stream);
662 break;
663
664 case TYPE_CODE_VOID:
665 fputs_filtered (decorations->void_name, stream);
666 break;
667
668 case TYPE_CODE_ERROR:
669 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
670 break;
671
672 case TYPE_CODE_UNDEF:
673 /* This happens (without TYPE_FLAG_STUB set) on systems which
674 don't use dbx xrefs (NO_DBX_XREFS in gcc) if a file has a
675 "struct foo *bar" and no complete type for struct foo in that
676 file. */
677 fprintf_filtered (stream, _("<incomplete type>"));
678 break;
679
680 case TYPE_CODE_COMPLEX:
681 fprintf_filtered (stream, "%s", decorations->complex_prefix);
682 if (options->format)
683 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
684 valaddr, embedded_offset,
685 original_value, options, 0, stream);
686 else
687 print_floating (valaddr + embedded_offset,
688 TYPE_TARGET_TYPE (type),
689 stream);
690 fprintf_filtered (stream, "%s", decorations->complex_infix);
691 if (options->format)
692 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
693 valaddr,
694 embedded_offset
695 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
696 original_value,
697 options, 0, stream);
698 else
699 print_floating (valaddr + embedded_offset
700 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
701 TYPE_TARGET_TYPE (type),
702 stream);
703 fprintf_filtered (stream, "%s", decorations->complex_suffix);
704 break;
705
706 case TYPE_CODE_UNION:
707 case TYPE_CODE_STRUCT:
708 case TYPE_CODE_METHODPTR:
709 default:
710 error (_("Unhandled type code %d in symbol table."),
711 TYPE_CODE (type));
712 }
713 gdb_flush (stream);
714 }
715
716 /* Print using the given LANGUAGE the data of type TYPE located at
717 VALADDR + EMBEDDED_OFFSET (within GDB), which came from the
718 inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream
719 STREAM according to OPTIONS. VAL is the whole object that came
720 from ADDRESS. VALADDR must point to the head of VAL's contents
721 buffer.
722
723 The language printers will pass down an adjusted EMBEDDED_OFFSET to
724 further helper subroutines as subfields of TYPE are printed. In
725 such cases, VALADDR is passed down unadjusted, as well as VAL, so
726 that VAL can be queried for metadata about the contents data being
727 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
728 buffer. For example: "has this field been optimized out", or "I'm
729 printing an object while inspecting a traceframe; has this
730 particular piece of data been collected?".
731
732 RECURSE indicates the amount of indentation to supply before
733 continuation lines; this amount is roughly twice the value of
734 RECURSE. */
735
736 void
737 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
738 CORE_ADDR address, struct ui_file *stream, int recurse,
739 const struct value *val,
740 const struct value_print_options *options,
741 const struct language_defn *language)
742 {
743 volatile struct gdb_exception except;
744 int ret = 0;
745 struct value_print_options local_opts = *options;
746 struct type *real_type = check_typedef (type);
747
748 if (local_opts.prettyformat == Val_prettyformat_default)
749 local_opts.prettyformat = (local_opts.prettyformat_structs
750 ? Val_prettyformat : Val_no_prettyformat);
751
752 QUIT;
753
754 /* Ensure that the type is complete and not just a stub. If the type is
755 only a stub and we can't find and substitute its complete type, then
756 print appropriate string and return. */
757
758 if (TYPE_STUB (real_type))
759 {
760 fprintf_filtered (stream, _("<incomplete type>"));
761 gdb_flush (stream);
762 return;
763 }
764
765 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
766 return;
767
768 if (!options->raw)
769 {
770 ret = apply_ext_lang_val_pretty_printer (type, valaddr, embedded_offset,
771 address, stream, recurse,
772 val, options, language);
773 if (ret)
774 return;
775 }
776
777 /* Handle summary mode. If the value is a scalar, print it;
778 otherwise, print an ellipsis. */
779 if (options->summary && !val_print_scalar_type_p (type))
780 {
781 fprintf_filtered (stream, "...");
782 return;
783 }
784
785 TRY_CATCH (except, RETURN_MASK_ERROR)
786 {
787 language->la_val_print (type, valaddr, embedded_offset, address,
788 stream, recurse, val,
789 &local_opts);
790 }
791 if (except.reason < 0)
792 fprintf_filtered (stream, _("<error reading variable>"));
793 }
794
795 /* Check whether the value VAL is printable. Return 1 if it is;
796 return 0 and print an appropriate error message to STREAM according to
797 OPTIONS if it is not. */
798
799 static int
800 value_check_printable (struct value *val, struct ui_file *stream,
801 const struct value_print_options *options)
802 {
803 if (val == 0)
804 {
805 fprintf_filtered (stream, _("<address of value unknown>"));
806 return 0;
807 }
808
809 if (value_entirely_optimized_out (val))
810 {
811 if (options->summary && !val_print_scalar_type_p (value_type (val)))
812 fprintf_filtered (stream, "...");
813 else
814 val_print_optimized_out (val, stream);
815 return 0;
816 }
817
818 if (value_entirely_unavailable (val))
819 {
820 if (options->summary && !val_print_scalar_type_p (value_type (val)))
821 fprintf_filtered (stream, "...");
822 else
823 val_print_unavailable (stream);
824 return 0;
825 }
826
827 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
828 {
829 fprintf_filtered (stream, _("<internal function %s>"),
830 value_internal_function_name (val));
831 return 0;
832 }
833
834 return 1;
835 }
836
837 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
838 to OPTIONS.
839
840 This is a preferable interface to val_print, above, because it uses
841 GDB's value mechanism. */
842
843 void
844 common_val_print (struct value *val, struct ui_file *stream, int recurse,
845 const struct value_print_options *options,
846 const struct language_defn *language)
847 {
848 if (!value_check_printable (val, stream, options))
849 return;
850
851 if (language->la_language == language_ada)
852 /* The value might have a dynamic type, which would cause trouble
853 below when trying to extract the value contents (since the value
854 size is determined from the type size which is unknown). So
855 get a fixed representation of our value. */
856 val = ada_to_fixed_value (val);
857
858 val_print (value_type (val), value_contents_for_printing (val),
859 value_embedded_offset (val), value_address (val),
860 stream, recurse,
861 val, options, language);
862 }
863
864 /* Print on stream STREAM the value VAL according to OPTIONS. The value
865 is printed using the current_language syntax. */
866
867 void
868 value_print (struct value *val, struct ui_file *stream,
869 const struct value_print_options *options)
870 {
871 if (!value_check_printable (val, stream, options))
872 return;
873
874 if (!options->raw)
875 {
876 int r
877 = apply_ext_lang_val_pretty_printer (value_type (val),
878 value_contents_for_printing (val),
879 value_embedded_offset (val),
880 value_address (val),
881 stream, 0,
882 val, options, current_language);
883
884 if (r)
885 return;
886 }
887
888 LA_VALUE_PRINT (val, stream, options);
889 }
890
891 /* Called by various <lang>_val_print routines to print
892 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
893 value. STREAM is where to print the value. */
894
895 void
896 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
897 struct ui_file *stream)
898 {
899 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
900
901 if (TYPE_LENGTH (type) > sizeof (LONGEST))
902 {
903 LONGEST val;
904
905 if (TYPE_UNSIGNED (type)
906 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
907 byte_order, &val))
908 {
909 print_longest (stream, 'u', 0, val);
910 }
911 else
912 {
913 /* Signed, or we couldn't turn an unsigned value into a
914 LONGEST. For signed values, one could assume two's
915 complement (a reasonable assumption, I think) and do
916 better than this. */
917 print_hex_chars (stream, (unsigned char *) valaddr,
918 TYPE_LENGTH (type), byte_order);
919 }
920 }
921 else
922 {
923 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
924 unpack_long (type, valaddr));
925 }
926 }
927
928 void
929 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
930 struct ui_file *stream)
931 {
932 ULONGEST val = unpack_long (type, valaddr);
933 int bitpos, nfields = TYPE_NFIELDS (type);
934
935 fputs_filtered ("[ ", stream);
936 for (bitpos = 0; bitpos < nfields; bitpos++)
937 {
938 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
939 && (val & ((ULONGEST)1 << bitpos)))
940 {
941 if (TYPE_FIELD_NAME (type, bitpos))
942 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
943 else
944 fprintf_filtered (stream, "#%d ", bitpos);
945 }
946 }
947 fputs_filtered ("]", stream);
948 }
949
950 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
951 according to OPTIONS and SIZE on STREAM. Format i is not supported
952 at this level.
953
954 This is how the elements of an array or structure are printed
955 with a format. */
956
957 void
958 val_print_scalar_formatted (struct type *type,
959 const gdb_byte *valaddr, int embedded_offset,
960 const struct value *val,
961 const struct value_print_options *options,
962 int size,
963 struct ui_file *stream)
964 {
965 gdb_assert (val != NULL);
966 gdb_assert (valaddr == value_contents_for_printing_const (val));
967
968 /* If we get here with a string format, try again without it. Go
969 all the way back to the language printers, which may call us
970 again. */
971 if (options->format == 's')
972 {
973 struct value_print_options opts = *options;
974 opts.format = 0;
975 opts.deref_ref = 0;
976 val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts,
977 current_language);
978 return;
979 }
980
981 /* A scalar object that does not have all bits available can't be
982 printed, because all bits contribute to its representation. */
983 if (value_bits_any_optimized_out (val,
984 TARGET_CHAR_BIT * embedded_offset,
985 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
986 val_print_optimized_out (val, stream);
987 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
988 val_print_unavailable (stream);
989 else
990 print_scalar_formatted (valaddr + embedded_offset, type,
991 options, size, stream);
992 }
993
994 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
995 The raison d'etre of this function is to consolidate printing of
996 LONG_LONG's into this one function. The format chars b,h,w,g are
997 from print_scalar_formatted(). Numbers are printed using C
998 format.
999
1000 USE_C_FORMAT means to use C format in all cases. Without it,
1001 'o' and 'x' format do not include the standard C radix prefix
1002 (leading 0 or 0x).
1003
1004 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1005 and was intended to request formating according to the current
1006 language and would be used for most integers that GDB prints. The
1007 exceptional cases were things like protocols where the format of
1008 the integer is a protocol thing, not a user-visible thing). The
1009 parameter remains to preserve the information of what things might
1010 be printed with language-specific format, should we ever resurrect
1011 that capability. */
1012
1013 void
1014 print_longest (struct ui_file *stream, int format, int use_c_format,
1015 LONGEST val_long)
1016 {
1017 const char *val;
1018
1019 switch (format)
1020 {
1021 case 'd':
1022 val = int_string (val_long, 10, 1, 0, 1); break;
1023 case 'u':
1024 val = int_string (val_long, 10, 0, 0, 1); break;
1025 case 'x':
1026 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1027 case 'b':
1028 val = int_string (val_long, 16, 0, 2, 1); break;
1029 case 'h':
1030 val = int_string (val_long, 16, 0, 4, 1); break;
1031 case 'w':
1032 val = int_string (val_long, 16, 0, 8, 1); break;
1033 case 'g':
1034 val = int_string (val_long, 16, 0, 16, 1); break;
1035 break;
1036 case 'o':
1037 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1038 default:
1039 internal_error (__FILE__, __LINE__,
1040 _("failed internal consistency check"));
1041 }
1042 fputs_filtered (val, stream);
1043 }
1044
1045 /* This used to be a macro, but I don't think it is called often enough
1046 to merit such treatment. */
1047 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1048 arguments to a function, number in a value history, register number, etc.)
1049 where the value must not be larger than can fit in an int. */
1050
1051 int
1052 longest_to_int (LONGEST arg)
1053 {
1054 /* Let the compiler do the work. */
1055 int rtnval = (int) arg;
1056
1057 /* Check for overflows or underflows. */
1058 if (sizeof (LONGEST) > sizeof (int))
1059 {
1060 if (rtnval != arg)
1061 {
1062 error (_("Value out of range."));
1063 }
1064 }
1065 return (rtnval);
1066 }
1067
1068 /* Print a floating point value of type TYPE (not always a
1069 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
1070
1071 void
1072 print_floating (const gdb_byte *valaddr, struct type *type,
1073 struct ui_file *stream)
1074 {
1075 DOUBLEST doub;
1076 int inv;
1077 const struct floatformat *fmt = NULL;
1078 unsigned len = TYPE_LENGTH (type);
1079 enum float_kind kind;
1080
1081 /* If it is a floating-point, check for obvious problems. */
1082 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1083 fmt = floatformat_from_type (type);
1084 if (fmt != NULL)
1085 {
1086 kind = floatformat_classify (fmt, valaddr);
1087 if (kind == float_nan)
1088 {
1089 if (floatformat_is_negative (fmt, valaddr))
1090 fprintf_filtered (stream, "-");
1091 fprintf_filtered (stream, "nan(");
1092 fputs_filtered ("0x", stream);
1093 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1094 fprintf_filtered (stream, ")");
1095 return;
1096 }
1097 else if (kind == float_infinite)
1098 {
1099 if (floatformat_is_negative (fmt, valaddr))
1100 fputs_filtered ("-", stream);
1101 fputs_filtered ("inf", stream);
1102 return;
1103 }
1104 }
1105
1106 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1107 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1108 needs to be used as that takes care of any necessary type
1109 conversions. Such conversions are of course direct to DOUBLEST
1110 and disregard any possible target floating point limitations.
1111 For instance, a u64 would be converted and displayed exactly on a
1112 host with 80 bit DOUBLEST but with loss of information on a host
1113 with 64 bit DOUBLEST. */
1114
1115 doub = unpack_double (type, valaddr, &inv);
1116 if (inv)
1117 {
1118 fprintf_filtered (stream, "<invalid float value>");
1119 return;
1120 }
1121
1122 /* FIXME: kettenis/2001-01-20: The following code makes too much
1123 assumptions about the host and target floating point format. */
1124
1125 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
1126 not necessarily be a TYPE_CODE_FLT, the below ignores that and
1127 instead uses the type's length to determine the precision of the
1128 floating-point value being printed. */
1129
1130 if (len < sizeof (double))
1131 fprintf_filtered (stream, "%.9g", (double) doub);
1132 else if (len == sizeof (double))
1133 fprintf_filtered (stream, "%.17g", (double) doub);
1134 else
1135 #ifdef PRINTF_HAS_LONG_DOUBLE
1136 fprintf_filtered (stream, "%.35Lg", doub);
1137 #else
1138 /* This at least wins with values that are representable as
1139 doubles. */
1140 fprintf_filtered (stream, "%.17g", (double) doub);
1141 #endif
1142 }
1143
1144 void
1145 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1146 struct ui_file *stream)
1147 {
1148 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1149 char decstr[MAX_DECIMAL_STRING];
1150 unsigned len = TYPE_LENGTH (type);
1151
1152 decimal_to_string (valaddr, len, byte_order, decstr);
1153 fputs_filtered (decstr, stream);
1154 return;
1155 }
1156
1157 void
1158 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1159 unsigned len, enum bfd_endian byte_order)
1160 {
1161
1162 #define BITS_IN_BYTES 8
1163
1164 const gdb_byte *p;
1165 unsigned int i;
1166 int b;
1167
1168 /* Declared "int" so it will be signed.
1169 This ensures that right shift will shift in zeros. */
1170
1171 const int mask = 0x080;
1172
1173 /* FIXME: We should be not printing leading zeroes in most cases. */
1174
1175 if (byte_order == BFD_ENDIAN_BIG)
1176 {
1177 for (p = valaddr;
1178 p < valaddr + len;
1179 p++)
1180 {
1181 /* Every byte has 8 binary characters; peel off
1182 and print from the MSB end. */
1183
1184 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1185 {
1186 if (*p & (mask >> i))
1187 b = 1;
1188 else
1189 b = 0;
1190
1191 fprintf_filtered (stream, "%1d", b);
1192 }
1193 }
1194 }
1195 else
1196 {
1197 for (p = valaddr + len - 1;
1198 p >= valaddr;
1199 p--)
1200 {
1201 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1202 {
1203 if (*p & (mask >> i))
1204 b = 1;
1205 else
1206 b = 0;
1207
1208 fprintf_filtered (stream, "%1d", b);
1209 }
1210 }
1211 }
1212 }
1213
1214 /* VALADDR points to an integer of LEN bytes.
1215 Print it in octal on stream or format it in buf. */
1216
1217 void
1218 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1219 unsigned len, enum bfd_endian byte_order)
1220 {
1221 const gdb_byte *p;
1222 unsigned char octa1, octa2, octa3, carry;
1223 int cycle;
1224
1225 /* FIXME: We should be not printing leading zeroes in most cases. */
1226
1227
1228 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1229 * the extra bits, which cycle every three bytes:
1230 *
1231 * Byte side: 0 1 2 3
1232 * | | | |
1233 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1234 *
1235 * Octal side: 0 1 carry 3 4 carry ...
1236 *
1237 * Cycle number: 0 1 2
1238 *
1239 * But of course we are printing from the high side, so we have to
1240 * figure out where in the cycle we are so that we end up with no
1241 * left over bits at the end.
1242 */
1243 #define BITS_IN_OCTAL 3
1244 #define HIGH_ZERO 0340
1245 #define LOW_ZERO 0016
1246 #define CARRY_ZERO 0003
1247 #define HIGH_ONE 0200
1248 #define MID_ONE 0160
1249 #define LOW_ONE 0016
1250 #define CARRY_ONE 0001
1251 #define HIGH_TWO 0300
1252 #define MID_TWO 0070
1253 #define LOW_TWO 0007
1254
1255 /* For 32 we start in cycle 2, with two bits and one bit carry;
1256 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1257
1258 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1259 carry = 0;
1260
1261 fputs_filtered ("0", stream);
1262 if (byte_order == BFD_ENDIAN_BIG)
1263 {
1264 for (p = valaddr;
1265 p < valaddr + len;
1266 p++)
1267 {
1268 switch (cycle)
1269 {
1270 case 0:
1271 /* No carry in, carry out two bits. */
1272
1273 octa1 = (HIGH_ZERO & *p) >> 5;
1274 octa2 = (LOW_ZERO & *p) >> 2;
1275 carry = (CARRY_ZERO & *p);
1276 fprintf_filtered (stream, "%o", octa1);
1277 fprintf_filtered (stream, "%o", octa2);
1278 break;
1279
1280 case 1:
1281 /* Carry in two bits, carry out one bit. */
1282
1283 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1284 octa2 = (MID_ONE & *p) >> 4;
1285 octa3 = (LOW_ONE & *p) >> 1;
1286 carry = (CARRY_ONE & *p);
1287 fprintf_filtered (stream, "%o", octa1);
1288 fprintf_filtered (stream, "%o", octa2);
1289 fprintf_filtered (stream, "%o", octa3);
1290 break;
1291
1292 case 2:
1293 /* Carry in one bit, no carry out. */
1294
1295 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1296 octa2 = (MID_TWO & *p) >> 3;
1297 octa3 = (LOW_TWO & *p);
1298 carry = 0;
1299 fprintf_filtered (stream, "%o", octa1);
1300 fprintf_filtered (stream, "%o", octa2);
1301 fprintf_filtered (stream, "%o", octa3);
1302 break;
1303
1304 default:
1305 error (_("Internal error in octal conversion;"));
1306 }
1307
1308 cycle++;
1309 cycle = cycle % BITS_IN_OCTAL;
1310 }
1311 }
1312 else
1313 {
1314 for (p = valaddr + len - 1;
1315 p >= valaddr;
1316 p--)
1317 {
1318 switch (cycle)
1319 {
1320 case 0:
1321 /* Carry out, no carry in */
1322
1323 octa1 = (HIGH_ZERO & *p) >> 5;
1324 octa2 = (LOW_ZERO & *p) >> 2;
1325 carry = (CARRY_ZERO & *p);
1326 fprintf_filtered (stream, "%o", octa1);
1327 fprintf_filtered (stream, "%o", octa2);
1328 break;
1329
1330 case 1:
1331 /* Carry in, carry out */
1332
1333 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1334 octa2 = (MID_ONE & *p) >> 4;
1335 octa3 = (LOW_ONE & *p) >> 1;
1336 carry = (CARRY_ONE & *p);
1337 fprintf_filtered (stream, "%o", octa1);
1338 fprintf_filtered (stream, "%o", octa2);
1339 fprintf_filtered (stream, "%o", octa3);
1340 break;
1341
1342 case 2:
1343 /* Carry in, no carry out */
1344
1345 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1346 octa2 = (MID_TWO & *p) >> 3;
1347 octa3 = (LOW_TWO & *p);
1348 carry = 0;
1349 fprintf_filtered (stream, "%o", octa1);
1350 fprintf_filtered (stream, "%o", octa2);
1351 fprintf_filtered (stream, "%o", octa3);
1352 break;
1353
1354 default:
1355 error (_("Internal error in octal conversion;"));
1356 }
1357
1358 cycle++;
1359 cycle = cycle % BITS_IN_OCTAL;
1360 }
1361 }
1362
1363 }
1364
1365 /* VALADDR points to an integer of LEN bytes.
1366 Print it in decimal on stream or format it in buf. */
1367
1368 void
1369 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1370 unsigned len, enum bfd_endian byte_order)
1371 {
1372 #define TEN 10
1373 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1374 #define CARRY_LEFT( x ) ((x) % TEN)
1375 #define SHIFT( x ) ((x) << 4)
1376 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1377 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1378
1379 const gdb_byte *p;
1380 unsigned char *digits;
1381 int carry;
1382 int decimal_len;
1383 int i, j, decimal_digits;
1384 int dummy;
1385 int flip;
1386
1387 /* Base-ten number is less than twice as many digits
1388 as the base 16 number, which is 2 digits per byte. */
1389
1390 decimal_len = len * 2 * 2;
1391 digits = xmalloc (decimal_len);
1392
1393 for (i = 0; i < decimal_len; i++)
1394 {
1395 digits[i] = 0;
1396 }
1397
1398 /* Ok, we have an unknown number of bytes of data to be printed in
1399 * decimal.
1400 *
1401 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1402 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1403 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1404 *
1405 * The trick is that "digits" holds a base-10 number, but sometimes
1406 * the individual digits are > 10.
1407 *
1408 * Outer loop is per nibble (hex digit) of input, from MSD end to
1409 * LSD end.
1410 */
1411 decimal_digits = 0; /* Number of decimal digits so far */
1412 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1413 flip = 0;
1414 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1415 {
1416 /*
1417 * Multiply current base-ten number by 16 in place.
1418 * Each digit was between 0 and 9, now is between
1419 * 0 and 144.
1420 */
1421 for (j = 0; j < decimal_digits; j++)
1422 {
1423 digits[j] = SHIFT (digits[j]);
1424 }
1425
1426 /* Take the next nibble off the input and add it to what
1427 * we've got in the LSB position. Bottom 'digit' is now
1428 * between 0 and 159.
1429 *
1430 * "flip" is used to run this loop twice for each byte.
1431 */
1432 if (flip == 0)
1433 {
1434 /* Take top nibble. */
1435
1436 digits[0] += HIGH_NIBBLE (*p);
1437 flip = 1;
1438 }
1439 else
1440 {
1441 /* Take low nibble and bump our pointer "p". */
1442
1443 digits[0] += LOW_NIBBLE (*p);
1444 if (byte_order == BFD_ENDIAN_BIG)
1445 p++;
1446 else
1447 p--;
1448 flip = 0;
1449 }
1450
1451 /* Re-decimalize. We have to do this often enough
1452 * that we don't overflow, but once per nibble is
1453 * overkill. Easier this way, though. Note that the
1454 * carry is often larger than 10 (e.g. max initial
1455 * carry out of lowest nibble is 15, could bubble all
1456 * the way up greater than 10). So we have to do
1457 * the carrying beyond the last current digit.
1458 */
1459 carry = 0;
1460 for (j = 0; j < decimal_len - 1; j++)
1461 {
1462 digits[j] += carry;
1463
1464 /* "/" won't handle an unsigned char with
1465 * a value that if signed would be negative.
1466 * So extend to longword int via "dummy".
1467 */
1468 dummy = digits[j];
1469 carry = CARRY_OUT (dummy);
1470 digits[j] = CARRY_LEFT (dummy);
1471
1472 if (j >= decimal_digits && carry == 0)
1473 {
1474 /*
1475 * All higher digits are 0 and we
1476 * no longer have a carry.
1477 *
1478 * Note: "j" is 0-based, "decimal_digits" is
1479 * 1-based.
1480 */
1481 decimal_digits = j + 1;
1482 break;
1483 }
1484 }
1485 }
1486
1487 /* Ok, now "digits" is the decimal representation, with
1488 the "decimal_digits" actual digits. Print! */
1489
1490 for (i = decimal_digits - 1; i >= 0; i--)
1491 {
1492 fprintf_filtered (stream, "%1d", digits[i]);
1493 }
1494 xfree (digits);
1495 }
1496
1497 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1498
1499 void
1500 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1501 unsigned len, enum bfd_endian byte_order)
1502 {
1503 const gdb_byte *p;
1504
1505 /* FIXME: We should be not printing leading zeroes in most cases. */
1506
1507 fputs_filtered ("0x", stream);
1508 if (byte_order == BFD_ENDIAN_BIG)
1509 {
1510 for (p = valaddr;
1511 p < valaddr + len;
1512 p++)
1513 {
1514 fprintf_filtered (stream, "%02x", *p);
1515 }
1516 }
1517 else
1518 {
1519 for (p = valaddr + len - 1;
1520 p >= valaddr;
1521 p--)
1522 {
1523 fprintf_filtered (stream, "%02x", *p);
1524 }
1525 }
1526 }
1527
1528 /* VALADDR points to a char integer of LEN bytes.
1529 Print it out in appropriate language form on stream.
1530 Omit any leading zero chars. */
1531
1532 void
1533 print_char_chars (struct ui_file *stream, struct type *type,
1534 const gdb_byte *valaddr,
1535 unsigned len, enum bfd_endian byte_order)
1536 {
1537 const gdb_byte *p;
1538
1539 if (byte_order == BFD_ENDIAN_BIG)
1540 {
1541 p = valaddr;
1542 while (p < valaddr + len - 1 && *p == 0)
1543 ++p;
1544
1545 while (p < valaddr + len)
1546 {
1547 LA_EMIT_CHAR (*p, type, stream, '\'');
1548 ++p;
1549 }
1550 }
1551 else
1552 {
1553 p = valaddr + len - 1;
1554 while (p > valaddr && *p == 0)
1555 --p;
1556
1557 while (p >= valaddr)
1558 {
1559 LA_EMIT_CHAR (*p, type, stream, '\'');
1560 --p;
1561 }
1562 }
1563 }
1564
1565 /* Print function pointer with inferior address ADDRESS onto stdio
1566 stream STREAM. */
1567
1568 void
1569 print_function_pointer_address (const struct value_print_options *options,
1570 struct gdbarch *gdbarch,
1571 CORE_ADDR address,
1572 struct ui_file *stream)
1573 {
1574 CORE_ADDR func_addr
1575 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1576 &current_target);
1577
1578 /* If the function pointer is represented by a description, print
1579 the address of the description. */
1580 if (options->addressprint && func_addr != address)
1581 {
1582 fputs_filtered ("@", stream);
1583 fputs_filtered (paddress (gdbarch, address), stream);
1584 fputs_filtered (": ", stream);
1585 }
1586 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1587 }
1588
1589
1590 /* Print on STREAM using the given OPTIONS the index for the element
1591 at INDEX of an array whose index type is INDEX_TYPE. */
1592
1593 void
1594 maybe_print_array_index (struct type *index_type, LONGEST index,
1595 struct ui_file *stream,
1596 const struct value_print_options *options)
1597 {
1598 struct value *index_value;
1599
1600 if (!options->print_array_indexes)
1601 return;
1602
1603 index_value = value_from_longest (index_type, index);
1604
1605 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1606 }
1607
1608 /* Called by various <lang>_val_print routines to print elements of an
1609 array in the form "<elem1>, <elem2>, <elem3>, ...".
1610
1611 (FIXME?) Assumes array element separator is a comma, which is correct
1612 for all languages currently handled.
1613 (FIXME?) Some languages have a notation for repeated array elements,
1614 perhaps we should try to use that notation when appropriate. */
1615
1616 void
1617 val_print_array_elements (struct type *type,
1618 const gdb_byte *valaddr, int embedded_offset,
1619 CORE_ADDR address, struct ui_file *stream,
1620 int recurse,
1621 const struct value *val,
1622 const struct value_print_options *options,
1623 unsigned int i)
1624 {
1625 unsigned int things_printed = 0;
1626 unsigned len;
1627 struct type *elttype, *index_type;
1628 unsigned eltlen;
1629 /* Position of the array element we are examining to see
1630 whether it is repeated. */
1631 unsigned int rep1;
1632 /* Number of repetitions we have detected so far. */
1633 unsigned int reps;
1634 LONGEST low_bound, high_bound;
1635
1636 elttype = TYPE_TARGET_TYPE (type);
1637 eltlen = TYPE_LENGTH (check_typedef (elttype));
1638 index_type = TYPE_INDEX_TYPE (type);
1639
1640 if (get_array_bounds (type, &low_bound, &high_bound))
1641 {
1642 /* The array length should normally be HIGH_BOUND - LOW_BOUND + 1.
1643 But we have to be a little extra careful, because some languages
1644 such as Ada allow LOW_BOUND to be greater than HIGH_BOUND for
1645 empty arrays. In that situation, the array length is just zero,
1646 not negative! */
1647 if (low_bound > high_bound)
1648 len = 0;
1649 else
1650 len = high_bound - low_bound + 1;
1651 }
1652 else
1653 {
1654 warning (_("unable to get bounds of array, assuming null array"));
1655 low_bound = 0;
1656 len = 0;
1657 }
1658
1659 annotate_array_section_begin (i, elttype);
1660
1661 for (; i < len && things_printed < options->print_max; i++)
1662 {
1663 if (i != 0)
1664 {
1665 if (options->prettyformat_arrays)
1666 {
1667 fprintf_filtered (stream, ",\n");
1668 print_spaces_filtered (2 + 2 * recurse, stream);
1669 }
1670 else
1671 {
1672 fprintf_filtered (stream, ", ");
1673 }
1674 }
1675 wrap_here (n_spaces (2 + 2 * recurse));
1676 maybe_print_array_index (index_type, i + low_bound,
1677 stream, options);
1678
1679 rep1 = i + 1;
1680 reps = 1;
1681 /* Only check for reps if repeat_count_threshold is not set to
1682 UINT_MAX (unlimited). */
1683 if (options->repeat_count_threshold < UINT_MAX)
1684 {
1685 while (rep1 < len
1686 && value_contents_eq (val,
1687 embedded_offset + i * eltlen,
1688 val,
1689 (embedded_offset
1690 + rep1 * eltlen),
1691 eltlen))
1692 {
1693 ++reps;
1694 ++rep1;
1695 }
1696 }
1697
1698 if (reps > options->repeat_count_threshold)
1699 {
1700 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1701 address, stream, recurse + 1, val, options,
1702 current_language);
1703 annotate_elt_rep (reps);
1704 fprintf_filtered (stream, " <repeats %u times>", reps);
1705 annotate_elt_rep_end ();
1706
1707 i = rep1 - 1;
1708 things_printed += options->repeat_count_threshold;
1709 }
1710 else
1711 {
1712 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1713 address,
1714 stream, recurse + 1, val, options, current_language);
1715 annotate_elt ();
1716 things_printed++;
1717 }
1718 }
1719 annotate_array_section_end ();
1720 if (i < len)
1721 {
1722 fprintf_filtered (stream, "...");
1723 }
1724 }
1725
1726 /* Read LEN bytes of target memory at address MEMADDR, placing the
1727 results in GDB's memory at MYADDR. Returns a count of the bytes
1728 actually read, and optionally a target_xfer_status value in the
1729 location pointed to by ERRPTR if ERRPTR is non-null. */
1730
1731 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1732 function be eliminated. */
1733
1734 static int
1735 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
1736 int len, int *errptr)
1737 {
1738 int nread; /* Number of bytes actually read. */
1739 int errcode; /* Error from last read. */
1740
1741 /* First try a complete read. */
1742 errcode = target_read_memory (memaddr, myaddr, len);
1743 if (errcode == 0)
1744 {
1745 /* Got it all. */
1746 nread = len;
1747 }
1748 else
1749 {
1750 /* Loop, reading one byte at a time until we get as much as we can. */
1751 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1752 {
1753 errcode = target_read_memory (memaddr++, myaddr++, 1);
1754 }
1755 /* If an error, the last read was unsuccessful, so adjust count. */
1756 if (errcode != 0)
1757 {
1758 nread--;
1759 }
1760 }
1761 if (errptr != NULL)
1762 {
1763 *errptr = errcode;
1764 }
1765 return (nread);
1766 }
1767
1768 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1769 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1770 allocated buffer containing the string, which the caller is responsible to
1771 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1772 success, or a target_xfer_status on failure.
1773
1774 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
1775 (including eventual NULs in the middle or end of the string).
1776
1777 If LEN is -1, stops at the first null character (not necessarily
1778 the first null byte) up to a maximum of FETCHLIMIT characters. Set
1779 FETCHLIMIT to UINT_MAX to read as many characters as possible from
1780 the string.
1781
1782 Unless an exception is thrown, BUFFER will always be allocated, even on
1783 failure. In this case, some characters might have been read before the
1784 failure happened. Check BYTES_READ to recognize this situation.
1785
1786 Note: There was a FIXME asking to make this code use target_read_string,
1787 but this function is more general (can read past null characters, up to
1788 given LEN). Besides, it is used much more often than target_read_string
1789 so it is more tested. Perhaps callers of target_read_string should use
1790 this function instead? */
1791
1792 int
1793 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1794 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
1795 {
1796 int found_nul; /* Non-zero if we found the nul char. */
1797 int errcode; /* Errno returned from bad reads. */
1798 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1799 unsigned int chunksize; /* Size of each fetch, in chars. */
1800 gdb_byte *bufptr; /* Pointer to next available byte in
1801 buffer. */
1802 gdb_byte *limit; /* First location past end of fetch buffer. */
1803 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1804
1805 /* Decide how large of chunks to try to read in one operation. This
1806 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1807 so we might as well read them all in one operation. If LEN is -1, we
1808 are looking for a NUL terminator to end the fetching, so we might as
1809 well read in blocks that are large enough to be efficient, but not so
1810 large as to be slow if fetchlimit happens to be large. So we choose the
1811 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1812 200 is way too big for remote debugging over a serial line. */
1813
1814 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1815
1816 /* Loop until we either have all the characters, or we encounter
1817 some error, such as bumping into the end of the address space. */
1818
1819 found_nul = 0;
1820 *buffer = NULL;
1821
1822 old_chain = make_cleanup (free_current_contents, buffer);
1823
1824 if (len > 0)
1825 {
1826 unsigned int fetchlen = min (len, fetchlimit);
1827
1828 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
1829 bufptr = *buffer;
1830
1831 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
1832 / width;
1833 addr += nfetch * width;
1834 bufptr += nfetch * width;
1835 }
1836 else if (len == -1)
1837 {
1838 unsigned long bufsize = 0;
1839
1840 do
1841 {
1842 QUIT;
1843 nfetch = min (chunksize, fetchlimit - bufsize);
1844
1845 if (*buffer == NULL)
1846 *buffer = (gdb_byte *) xmalloc (nfetch * width);
1847 else
1848 *buffer = (gdb_byte *) xrealloc (*buffer,
1849 (nfetch + bufsize) * width);
1850
1851 bufptr = *buffer + bufsize * width;
1852 bufsize += nfetch;
1853
1854 /* Read as much as we can. */
1855 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1856 / width;
1857
1858 /* Scan this chunk for the null character that terminates the string
1859 to print. If found, we don't need to fetch any more. Note
1860 that bufptr is explicitly left pointing at the next character
1861 after the null character, or at the next character after the end
1862 of the buffer. */
1863
1864 limit = bufptr + nfetch * width;
1865 while (bufptr < limit)
1866 {
1867 unsigned long c;
1868
1869 c = extract_unsigned_integer (bufptr, width, byte_order);
1870 addr += width;
1871 bufptr += width;
1872 if (c == 0)
1873 {
1874 /* We don't care about any error which happened after
1875 the NUL terminator. */
1876 errcode = 0;
1877 found_nul = 1;
1878 break;
1879 }
1880 }
1881 }
1882 while (errcode == 0 /* no error */
1883 && bufptr - *buffer < fetchlimit * width /* no overrun */
1884 && !found_nul); /* haven't found NUL yet */
1885 }
1886 else
1887 { /* Length of string is really 0! */
1888 /* We always allocate *buffer. */
1889 *buffer = bufptr = xmalloc (1);
1890 errcode = 0;
1891 }
1892
1893 /* bufptr and addr now point immediately beyond the last byte which we
1894 consider part of the string (including a '\0' which ends the string). */
1895 *bytes_read = bufptr - *buffer;
1896
1897 QUIT;
1898
1899 discard_cleanups (old_chain);
1900
1901 return errcode;
1902 }
1903
1904 /* Return true if print_wchar can display W without resorting to a
1905 numeric escape, false otherwise. */
1906
1907 static int
1908 wchar_printable (gdb_wchar_t w)
1909 {
1910 return (gdb_iswprint (w)
1911 || w == LCST ('\a') || w == LCST ('\b')
1912 || w == LCST ('\f') || w == LCST ('\n')
1913 || w == LCST ('\r') || w == LCST ('\t')
1914 || w == LCST ('\v'));
1915 }
1916
1917 /* A helper function that converts the contents of STRING to wide
1918 characters and then appends them to OUTPUT. */
1919
1920 static void
1921 append_string_as_wide (const char *string,
1922 struct obstack *output)
1923 {
1924 for (; *string; ++string)
1925 {
1926 gdb_wchar_t w = gdb_btowc (*string);
1927 obstack_grow (output, &w, sizeof (gdb_wchar_t));
1928 }
1929 }
1930
1931 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
1932 original (target) bytes representing the character, ORIG_LEN is the
1933 number of valid bytes. WIDTH is the number of bytes in a base
1934 characters of the type. OUTPUT is an obstack to which wide
1935 characters are emitted. QUOTER is a (narrow) character indicating
1936 the style of quotes surrounding the character to be printed.
1937 NEED_ESCAPE is an in/out flag which is used to track numeric
1938 escapes across calls. */
1939
1940 static void
1941 print_wchar (gdb_wint_t w, const gdb_byte *orig,
1942 int orig_len, int width,
1943 enum bfd_endian byte_order,
1944 struct obstack *output,
1945 int quoter, int *need_escapep)
1946 {
1947 int need_escape = *need_escapep;
1948
1949 *need_escapep = 0;
1950
1951 /* iswprint implementation on Windows returns 1 for tab character.
1952 In order to avoid different printout on this host, we explicitly
1953 use wchar_printable function. */
1954 switch (w)
1955 {
1956 case LCST ('\a'):
1957 obstack_grow_wstr (output, LCST ("\\a"));
1958 break;
1959 case LCST ('\b'):
1960 obstack_grow_wstr (output, LCST ("\\b"));
1961 break;
1962 case LCST ('\f'):
1963 obstack_grow_wstr (output, LCST ("\\f"));
1964 break;
1965 case LCST ('\n'):
1966 obstack_grow_wstr (output, LCST ("\\n"));
1967 break;
1968 case LCST ('\r'):
1969 obstack_grow_wstr (output, LCST ("\\r"));
1970 break;
1971 case LCST ('\t'):
1972 obstack_grow_wstr (output, LCST ("\\t"));
1973 break;
1974 case LCST ('\v'):
1975 obstack_grow_wstr (output, LCST ("\\v"));
1976 break;
1977 default:
1978 {
1979 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
1980 && w != LCST ('8')
1981 && w != LCST ('9'))))
1982 {
1983 gdb_wchar_t wchar = w;
1984
1985 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
1986 obstack_grow_wstr (output, LCST ("\\"));
1987 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
1988 }
1989 else
1990 {
1991 int i;
1992
1993 for (i = 0; i + width <= orig_len; i += width)
1994 {
1995 char octal[30];
1996 ULONGEST value;
1997
1998 value = extract_unsigned_integer (&orig[i], width,
1999 byte_order);
2000 /* If the value fits in 3 octal digits, print it that
2001 way. Otherwise, print it as a hex escape. */
2002 if (value <= 0777)
2003 xsnprintf (octal, sizeof (octal), "\\%.3o",
2004 (int) (value & 0777));
2005 else
2006 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2007 append_string_as_wide (octal, output);
2008 }
2009 /* If we somehow have extra bytes, print them now. */
2010 while (i < orig_len)
2011 {
2012 char octal[5];
2013
2014 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2015 append_string_as_wide (octal, output);
2016 ++i;
2017 }
2018
2019 *need_escapep = 1;
2020 }
2021 break;
2022 }
2023 }
2024 }
2025
2026 /* Print the character C on STREAM as part of the contents of a
2027 literal string whose delimiter is QUOTER. ENCODING names the
2028 encoding of C. */
2029
2030 void
2031 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2032 int quoter, const char *encoding)
2033 {
2034 enum bfd_endian byte_order
2035 = gdbarch_byte_order (get_type_arch (type));
2036 struct obstack wchar_buf, output;
2037 struct cleanup *cleanups;
2038 gdb_byte *buf;
2039 struct wchar_iterator *iter;
2040 int need_escape = 0;
2041
2042 buf = alloca (TYPE_LENGTH (type));
2043 pack_long (buf, type, c);
2044
2045 iter = make_wchar_iterator (buf, TYPE_LENGTH (type),
2046 encoding, TYPE_LENGTH (type));
2047 cleanups = make_cleanup_wchar_iterator (iter);
2048
2049 /* This holds the printable form of the wchar_t data. */
2050 obstack_init (&wchar_buf);
2051 make_cleanup_obstack_free (&wchar_buf);
2052
2053 while (1)
2054 {
2055 int num_chars;
2056 gdb_wchar_t *chars;
2057 const gdb_byte *buf;
2058 size_t buflen;
2059 int print_escape = 1;
2060 enum wchar_iterate_result result;
2061
2062 num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen);
2063 if (num_chars < 0)
2064 break;
2065 if (num_chars > 0)
2066 {
2067 /* If all characters are printable, print them. Otherwise,
2068 we're going to have to print an escape sequence. We
2069 check all characters because we want to print the target
2070 bytes in the escape sequence, and we don't know character
2071 boundaries there. */
2072 int i;
2073
2074 print_escape = 0;
2075 for (i = 0; i < num_chars; ++i)
2076 if (!wchar_printable (chars[i]))
2077 {
2078 print_escape = 1;
2079 break;
2080 }
2081
2082 if (!print_escape)
2083 {
2084 for (i = 0; i < num_chars; ++i)
2085 print_wchar (chars[i], buf, buflen,
2086 TYPE_LENGTH (type), byte_order,
2087 &wchar_buf, quoter, &need_escape);
2088 }
2089 }
2090
2091 /* This handles the NUM_CHARS == 0 case as well. */
2092 if (print_escape)
2093 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2094 byte_order, &wchar_buf, quoter, &need_escape);
2095 }
2096
2097 /* The output in the host encoding. */
2098 obstack_init (&output);
2099 make_cleanup_obstack_free (&output);
2100
2101 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2102 (gdb_byte *) obstack_base (&wchar_buf),
2103 obstack_object_size (&wchar_buf),
2104 sizeof (gdb_wchar_t), &output, translit_char);
2105 obstack_1grow (&output, '\0');
2106
2107 fputs_filtered (obstack_base (&output), stream);
2108
2109 do_cleanups (cleanups);
2110 }
2111
2112 /* Return the repeat count of the next character/byte in ITER,
2113 storing the result in VEC. */
2114
2115 static int
2116 count_next_character (struct wchar_iterator *iter,
2117 VEC (converted_character_d) **vec)
2118 {
2119 struct converted_character *current;
2120
2121 if (VEC_empty (converted_character_d, *vec))
2122 {
2123 struct converted_character tmp;
2124 gdb_wchar_t *chars;
2125
2126 tmp.num_chars
2127 = wchar_iterate (iter, &tmp.result, &chars, &tmp.buf, &tmp.buflen);
2128 if (tmp.num_chars > 0)
2129 {
2130 gdb_assert (tmp.num_chars < MAX_WCHARS);
2131 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2132 }
2133 VEC_safe_push (converted_character_d, *vec, &tmp);
2134 }
2135
2136 current = VEC_last (converted_character_d, *vec);
2137
2138 /* Count repeated characters or bytes. */
2139 current->repeat_count = 1;
2140 if (current->num_chars == -1)
2141 {
2142 /* EOF */
2143 return -1;
2144 }
2145 else
2146 {
2147 gdb_wchar_t *chars;
2148 struct converted_character d;
2149 int repeat;
2150
2151 d.repeat_count = 0;
2152
2153 while (1)
2154 {
2155 /* Get the next character. */
2156 d.num_chars
2157 = wchar_iterate (iter, &d.result, &chars, &d.buf, &d.buflen);
2158
2159 /* If a character was successfully converted, save the character
2160 into the converted character. */
2161 if (d.num_chars > 0)
2162 {
2163 gdb_assert (d.num_chars < MAX_WCHARS);
2164 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2165 }
2166
2167 /* Determine if the current character is the same as this
2168 new character. */
2169 if (d.num_chars == current->num_chars && d.result == current->result)
2170 {
2171 /* There are two cases to consider:
2172
2173 1) Equality of converted character (num_chars > 0)
2174 2) Equality of non-converted character (num_chars == 0) */
2175 if ((current->num_chars > 0
2176 && memcmp (current->chars, d.chars,
2177 WCHAR_BUFLEN (current->num_chars)) == 0)
2178 || (current->num_chars == 0
2179 && current->buflen == d.buflen
2180 && memcmp (current->buf, d.buf, current->buflen) == 0))
2181 ++current->repeat_count;
2182 else
2183 break;
2184 }
2185 else
2186 break;
2187 }
2188
2189 /* Push this next converted character onto the result vector. */
2190 repeat = current->repeat_count;
2191 VEC_safe_push (converted_character_d, *vec, &d);
2192 return repeat;
2193 }
2194 }
2195
2196 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2197 character to use with string output. WIDTH is the size of the output
2198 character type. BYTE_ORDER is the the target byte order. OPTIONS
2199 is the user's print options. */
2200
2201 static void
2202 print_converted_chars_to_obstack (struct obstack *obstack,
2203 VEC (converted_character_d) *chars,
2204 int quote_char, int width,
2205 enum bfd_endian byte_order,
2206 const struct value_print_options *options)
2207 {
2208 unsigned int idx;
2209 struct converted_character *elem;
2210 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2211 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2212 int need_escape = 0;
2213
2214 /* Set the start state. */
2215 idx = 0;
2216 last = state = START;
2217 elem = NULL;
2218
2219 while (1)
2220 {
2221 switch (state)
2222 {
2223 case START:
2224 /* Nothing to do. */
2225 break;
2226
2227 case SINGLE:
2228 {
2229 int j;
2230
2231 /* We are outputting a single character
2232 (< options->repeat_count_threshold). */
2233
2234 if (last != SINGLE)
2235 {
2236 /* We were outputting some other type of content, so we
2237 must output and a comma and a quote. */
2238 if (last != START)
2239 obstack_grow_wstr (obstack, LCST (", "));
2240 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2241 }
2242 /* Output the character. */
2243 for (j = 0; j < elem->repeat_count; ++j)
2244 {
2245 if (elem->result == wchar_iterate_ok)
2246 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2247 byte_order, obstack, quote_char, &need_escape);
2248 else
2249 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2250 byte_order, obstack, quote_char, &need_escape);
2251 }
2252 }
2253 break;
2254
2255 case REPEAT:
2256 {
2257 int j;
2258 char *s;
2259
2260 /* We are outputting a character with a repeat count
2261 greater than options->repeat_count_threshold. */
2262
2263 if (last == SINGLE)
2264 {
2265 /* We were outputting a single string. Terminate the
2266 string. */
2267 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2268 }
2269 if (last != START)
2270 obstack_grow_wstr (obstack, LCST (", "));
2271
2272 /* Output the character and repeat string. */
2273 obstack_grow_wstr (obstack, LCST ("'"));
2274 if (elem->result == wchar_iterate_ok)
2275 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2276 byte_order, obstack, quote_char, &need_escape);
2277 else
2278 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2279 byte_order, obstack, quote_char, &need_escape);
2280 obstack_grow_wstr (obstack, LCST ("'"));
2281 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2282 for (j = 0; s[j]; ++j)
2283 {
2284 gdb_wchar_t w = gdb_btowc (s[j]);
2285 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2286 }
2287 xfree (s);
2288 }
2289 break;
2290
2291 case INCOMPLETE:
2292 /* We are outputting an incomplete sequence. */
2293 if (last == SINGLE)
2294 {
2295 /* If we were outputting a string of SINGLE characters,
2296 terminate the quote. */
2297 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2298 }
2299 if (last != START)
2300 obstack_grow_wstr (obstack, LCST (", "));
2301
2302 /* Output the incomplete sequence string. */
2303 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2304 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2305 obstack, 0, &need_escape);
2306 obstack_grow_wstr (obstack, LCST (">"));
2307
2308 /* We do not attempt to outupt anything after this. */
2309 state = FINISH;
2310 break;
2311
2312 case FINISH:
2313 /* All done. If we were outputting a string of SINGLE
2314 characters, the string must be terminated. Otherwise,
2315 REPEAT and INCOMPLETE are always left properly terminated. */
2316 if (last == SINGLE)
2317 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2318
2319 return;
2320 }
2321
2322 /* Get the next element and state. */
2323 last = state;
2324 if (state != FINISH)
2325 {
2326 elem = VEC_index (converted_character_d, chars, idx++);
2327 switch (elem->result)
2328 {
2329 case wchar_iterate_ok:
2330 case wchar_iterate_invalid:
2331 if (elem->repeat_count > options->repeat_count_threshold)
2332 state = REPEAT;
2333 else
2334 state = SINGLE;
2335 break;
2336
2337 case wchar_iterate_incomplete:
2338 state = INCOMPLETE;
2339 break;
2340
2341 case wchar_iterate_eof:
2342 state = FINISH;
2343 break;
2344 }
2345 }
2346 }
2347 }
2348
2349 /* Print the character string STRING, printing at most LENGTH
2350 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2351 the type of each character. OPTIONS holds the printing options;
2352 printing stops early if the number hits print_max; repeat counts
2353 are printed as appropriate. Print ellipses at the end if we had to
2354 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2355 QUOTE_CHAR is the character to print at each end of the string. If
2356 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2357 omitted. */
2358
2359 void
2360 generic_printstr (struct ui_file *stream, struct type *type,
2361 const gdb_byte *string, unsigned int length,
2362 const char *encoding, int force_ellipses,
2363 int quote_char, int c_style_terminator,
2364 const struct value_print_options *options)
2365 {
2366 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2367 unsigned int i;
2368 int width = TYPE_LENGTH (type);
2369 struct obstack wchar_buf, output;
2370 struct cleanup *cleanup;
2371 struct wchar_iterator *iter;
2372 int finished = 0;
2373 struct converted_character *last;
2374 VEC (converted_character_d) *converted_chars;
2375
2376 if (length == -1)
2377 {
2378 unsigned long current_char = 1;
2379
2380 for (i = 0; current_char; ++i)
2381 {
2382 QUIT;
2383 current_char = extract_unsigned_integer (string + i * width,
2384 width, byte_order);
2385 }
2386 length = i;
2387 }
2388
2389 /* If the string was not truncated due to `set print elements', and
2390 the last byte of it is a null, we don't print that, in
2391 traditional C style. */
2392 if (c_style_terminator
2393 && !force_ellipses
2394 && length > 0
2395 && (extract_unsigned_integer (string + (length - 1) * width,
2396 width, byte_order) == 0))
2397 length--;
2398
2399 if (length == 0)
2400 {
2401 fputs_filtered ("\"\"", stream);
2402 return;
2403 }
2404
2405 /* Arrange to iterate over the characters, in wchar_t form. */
2406 iter = make_wchar_iterator (string, length * width, encoding, width);
2407 cleanup = make_cleanup_wchar_iterator (iter);
2408 converted_chars = NULL;
2409 make_cleanup (VEC_cleanup (converted_character_d), &converted_chars);
2410
2411 /* Convert characters until the string is over or the maximum
2412 number of printed characters has been reached. */
2413 i = 0;
2414 while (i < options->print_max)
2415 {
2416 int r;
2417
2418 QUIT;
2419
2420 /* Grab the next character and repeat count. */
2421 r = count_next_character (iter, &converted_chars);
2422
2423 /* If less than zero, the end of the input string was reached. */
2424 if (r < 0)
2425 break;
2426
2427 /* Otherwise, add the count to the total print count and get
2428 the next character. */
2429 i += r;
2430 }
2431
2432 /* Get the last element and determine if the entire string was
2433 processed. */
2434 last = VEC_last (converted_character_d, converted_chars);
2435 finished = (last->result == wchar_iterate_eof);
2436
2437 /* Ensure that CONVERTED_CHARS is terminated. */
2438 last->result = wchar_iterate_eof;
2439
2440 /* WCHAR_BUF is the obstack we use to represent the string in
2441 wchar_t form. */
2442 obstack_init (&wchar_buf);
2443 make_cleanup_obstack_free (&wchar_buf);
2444
2445 /* Print the output string to the obstack. */
2446 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2447 width, byte_order, options);
2448
2449 if (force_ellipses || !finished)
2450 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2451
2452 /* OUTPUT is where we collect `char's for printing. */
2453 obstack_init (&output);
2454 make_cleanup_obstack_free (&output);
2455
2456 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2457 (gdb_byte *) obstack_base (&wchar_buf),
2458 obstack_object_size (&wchar_buf),
2459 sizeof (gdb_wchar_t), &output, translit_char);
2460 obstack_1grow (&output, '\0');
2461
2462 fputs_filtered (obstack_base (&output), stream);
2463
2464 do_cleanups (cleanup);
2465 }
2466
2467 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2468 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2469 stops at the first null byte, otherwise printing proceeds (including null
2470 bytes) until either print_max or LEN characters have been printed,
2471 whichever is smaller. ENCODING is the name of the string's
2472 encoding. It can be NULL, in which case the target encoding is
2473 assumed. */
2474
2475 int
2476 val_print_string (struct type *elttype, const char *encoding,
2477 CORE_ADDR addr, int len,
2478 struct ui_file *stream,
2479 const struct value_print_options *options)
2480 {
2481 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2482 int errcode; /* Errno returned from bad reads. */
2483 int found_nul; /* Non-zero if we found the nul char. */
2484 unsigned int fetchlimit; /* Maximum number of chars to print. */
2485 int bytes_read;
2486 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2487 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2488 struct gdbarch *gdbarch = get_type_arch (elttype);
2489 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2490 int width = TYPE_LENGTH (elttype);
2491
2492 /* First we need to figure out the limit on the number of characters we are
2493 going to attempt to fetch and print. This is actually pretty simple. If
2494 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2495 LEN is -1, then the limit is print_max. This is true regardless of
2496 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2497 because finding the null byte (or available memory) is what actually
2498 limits the fetch. */
2499
2500 fetchlimit = (len == -1 ? options->print_max : min (len,
2501 options->print_max));
2502
2503 errcode = read_string (addr, len, width, fetchlimit, byte_order,
2504 &buffer, &bytes_read);
2505 old_chain = make_cleanup (xfree, buffer);
2506
2507 addr += bytes_read;
2508
2509 /* We now have either successfully filled the buffer to fetchlimit,
2510 or terminated early due to an error or finding a null char when
2511 LEN is -1. */
2512
2513 /* Determine found_nul by looking at the last character read. */
2514 found_nul = 0;
2515 if (bytes_read >= width)
2516 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2517 byte_order) == 0;
2518 if (len == -1 && !found_nul)
2519 {
2520 gdb_byte *peekbuf;
2521
2522 /* We didn't find a NUL terminator we were looking for. Attempt
2523 to peek at the next character. If not successful, or it is not
2524 a null byte, then force ellipsis to be printed. */
2525
2526 peekbuf = (gdb_byte *) alloca (width);
2527
2528 if (target_read_memory (addr, peekbuf, width) == 0
2529 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2530 force_ellipsis = 1;
2531 }
2532 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
2533 {
2534 /* Getting an error when we have a requested length, or fetching less
2535 than the number of characters actually requested, always make us
2536 print ellipsis. */
2537 force_ellipsis = 1;
2538 }
2539
2540 /* If we get an error before fetching anything, don't print a string.
2541 But if we fetch something and then get an error, print the string
2542 and then the error message. */
2543 if (errcode == 0 || bytes_read > 0)
2544 {
2545 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
2546 encoding, force_ellipsis, options);
2547 }
2548
2549 if (errcode != 0)
2550 {
2551 char *str;
2552
2553 str = memory_error_message (errcode, gdbarch, addr);
2554 make_cleanup (xfree, str);
2555
2556 fprintf_filtered (stream, "<error: ");
2557 fputs_filtered (str, stream);
2558 fprintf_filtered (stream, ">");
2559 }
2560
2561 gdb_flush (stream);
2562 do_cleanups (old_chain);
2563
2564 return (bytes_read / width);
2565 }
2566 \f
2567
2568 /* The 'set input-radix' command writes to this auxiliary variable.
2569 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2570 it is left unchanged. */
2571
2572 static unsigned input_radix_1 = 10;
2573
2574 /* Validate an input or output radix setting, and make sure the user
2575 knows what they really did here. Radix setting is confusing, e.g.
2576 setting the input radix to "10" never changes it! */
2577
2578 static void
2579 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
2580 {
2581 set_input_radix_1 (from_tty, input_radix_1);
2582 }
2583
2584 static void
2585 set_input_radix_1 (int from_tty, unsigned radix)
2586 {
2587 /* We don't currently disallow any input radix except 0 or 1, which don't
2588 make any mathematical sense. In theory, we can deal with any input
2589 radix greater than 1, even if we don't have unique digits for every
2590 value from 0 to radix-1, but in practice we lose on large radix values.
2591 We should either fix the lossage or restrict the radix range more.
2592 (FIXME). */
2593
2594 if (radix < 2)
2595 {
2596 input_radix_1 = input_radix;
2597 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2598 radix);
2599 }
2600 input_radix_1 = input_radix = radix;
2601 if (from_tty)
2602 {
2603 printf_filtered (_("Input radix now set to "
2604 "decimal %u, hex %x, octal %o.\n"),
2605 radix, radix, radix);
2606 }
2607 }
2608
2609 /* The 'set output-radix' command writes to this auxiliary variable.
2610 If the requested radix is valid, OUTPUT_RADIX is updated,
2611 otherwise, it is left unchanged. */
2612
2613 static unsigned output_radix_1 = 10;
2614
2615 static void
2616 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
2617 {
2618 set_output_radix_1 (from_tty, output_radix_1);
2619 }
2620
2621 static void
2622 set_output_radix_1 (int from_tty, unsigned radix)
2623 {
2624 /* Validate the radix and disallow ones that we aren't prepared to
2625 handle correctly, leaving the radix unchanged. */
2626 switch (radix)
2627 {
2628 case 16:
2629 user_print_options.output_format = 'x'; /* hex */
2630 break;
2631 case 10:
2632 user_print_options.output_format = 0; /* decimal */
2633 break;
2634 case 8:
2635 user_print_options.output_format = 'o'; /* octal */
2636 break;
2637 default:
2638 output_radix_1 = output_radix;
2639 error (_("Unsupported output radix ``decimal %u''; "
2640 "output radix unchanged."),
2641 radix);
2642 }
2643 output_radix_1 = output_radix = radix;
2644 if (from_tty)
2645 {
2646 printf_filtered (_("Output radix now set to "
2647 "decimal %u, hex %x, octal %o.\n"),
2648 radix, radix, radix);
2649 }
2650 }
2651
2652 /* Set both the input and output radix at once. Try to set the output radix
2653 first, since it has the most restrictive range. An radix that is valid as
2654 an output radix is also valid as an input radix.
2655
2656 It may be useful to have an unusual input radix. If the user wishes to
2657 set an input radix that is not valid as an output radix, he needs to use
2658 the 'set input-radix' command. */
2659
2660 static void
2661 set_radix (char *arg, int from_tty)
2662 {
2663 unsigned radix;
2664
2665 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2666 set_output_radix_1 (0, radix);
2667 set_input_radix_1 (0, radix);
2668 if (from_tty)
2669 {
2670 printf_filtered (_("Input and output radices now set to "
2671 "decimal %u, hex %x, octal %o.\n"),
2672 radix, radix, radix);
2673 }
2674 }
2675
2676 /* Show both the input and output radices. */
2677
2678 static void
2679 show_radix (char *arg, int from_tty)
2680 {
2681 if (from_tty)
2682 {
2683 if (input_radix == output_radix)
2684 {
2685 printf_filtered (_("Input and output radices set to "
2686 "decimal %u, hex %x, octal %o.\n"),
2687 input_radix, input_radix, input_radix);
2688 }
2689 else
2690 {
2691 printf_filtered (_("Input radix set to decimal "
2692 "%u, hex %x, octal %o.\n"),
2693 input_radix, input_radix, input_radix);
2694 printf_filtered (_("Output radix set to decimal "
2695 "%u, hex %x, octal %o.\n"),
2696 output_radix, output_radix, output_radix);
2697 }
2698 }
2699 }
2700 \f
2701
2702 static void
2703 set_print (char *arg, int from_tty)
2704 {
2705 printf_unfiltered (
2706 "\"set print\" must be followed by the name of a print subcommand.\n");
2707 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
2708 }
2709
2710 static void
2711 show_print (char *args, int from_tty)
2712 {
2713 cmd_show_list (showprintlist, from_tty, "");
2714 }
2715
2716 static void
2717 set_print_raw (char *arg, int from_tty)
2718 {
2719 printf_unfiltered (
2720 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
2721 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
2722 }
2723
2724 static void
2725 show_print_raw (char *args, int from_tty)
2726 {
2727 cmd_show_list (showprintrawlist, from_tty, "");
2728 }
2729
2730 \f
2731 void
2732 _initialize_valprint (void)
2733 {
2734 add_prefix_cmd ("print", no_class, set_print,
2735 _("Generic command for setting how things print."),
2736 &setprintlist, "set print ", 0, &setlist);
2737 add_alias_cmd ("p", "print", no_class, 1, &setlist);
2738 /* Prefer set print to set prompt. */
2739 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
2740
2741 add_prefix_cmd ("print", no_class, show_print,
2742 _("Generic command for showing print settings."),
2743 &showprintlist, "show print ", 0, &showlist);
2744 add_alias_cmd ("p", "print", no_class, 1, &showlist);
2745 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
2746
2747 add_prefix_cmd ("raw", no_class, set_print_raw,
2748 _("\
2749 Generic command for setting what things to print in \"raw\" mode."),
2750 &setprintrawlist, "set print raw ", 0, &setprintlist);
2751 add_prefix_cmd ("raw", no_class, show_print_raw,
2752 _("Generic command for showing \"print raw\" settings."),
2753 &showprintrawlist, "show print raw ", 0, &showprintlist);
2754
2755 add_setshow_uinteger_cmd ("elements", no_class,
2756 &user_print_options.print_max, _("\
2757 Set limit on string chars or array elements to print."), _("\
2758 Show limit on string chars or array elements to print."), _("\
2759 \"set print elements unlimited\" causes there to be no limit."),
2760 NULL,
2761 show_print_max,
2762 &setprintlist, &showprintlist);
2763
2764 add_setshow_boolean_cmd ("null-stop", no_class,
2765 &user_print_options.stop_print_at_null, _("\
2766 Set printing of char arrays to stop at first null char."), _("\
2767 Show printing of char arrays to stop at first null char."), NULL,
2768 NULL,
2769 show_stop_print_at_null,
2770 &setprintlist, &showprintlist);
2771
2772 add_setshow_uinteger_cmd ("repeats", no_class,
2773 &user_print_options.repeat_count_threshold, _("\
2774 Set threshold for repeated print elements."), _("\
2775 Show threshold for repeated print elements."), _("\
2776 \"set print repeats unlimited\" causes all elements to be individually printed."),
2777 NULL,
2778 show_repeat_count_threshold,
2779 &setprintlist, &showprintlist);
2780
2781 add_setshow_boolean_cmd ("pretty", class_support,
2782 &user_print_options.prettyformat_structs, _("\
2783 Set pretty formatting of structures."), _("\
2784 Show pretty formatting of structures."), NULL,
2785 NULL,
2786 show_prettyformat_structs,
2787 &setprintlist, &showprintlist);
2788
2789 add_setshow_boolean_cmd ("union", class_support,
2790 &user_print_options.unionprint, _("\
2791 Set printing of unions interior to structures."), _("\
2792 Show printing of unions interior to structures."), NULL,
2793 NULL,
2794 show_unionprint,
2795 &setprintlist, &showprintlist);
2796
2797 add_setshow_boolean_cmd ("array", class_support,
2798 &user_print_options.prettyformat_arrays, _("\
2799 Set pretty formatting of arrays."), _("\
2800 Show pretty formatting of arrays."), NULL,
2801 NULL,
2802 show_prettyformat_arrays,
2803 &setprintlist, &showprintlist);
2804
2805 add_setshow_boolean_cmd ("address", class_support,
2806 &user_print_options.addressprint, _("\
2807 Set printing of addresses."), _("\
2808 Show printing of addresses."), NULL,
2809 NULL,
2810 show_addressprint,
2811 &setprintlist, &showprintlist);
2812
2813 add_setshow_boolean_cmd ("symbol", class_support,
2814 &user_print_options.symbol_print, _("\
2815 Set printing of symbol names when printing pointers."), _("\
2816 Show printing of symbol names when printing pointers."),
2817 NULL, NULL,
2818 show_symbol_print,
2819 &setprintlist, &showprintlist);
2820
2821 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
2822 _("\
2823 Set default input radix for entering numbers."), _("\
2824 Show default input radix for entering numbers."), NULL,
2825 set_input_radix,
2826 show_input_radix,
2827 &setlist, &showlist);
2828
2829 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
2830 _("\
2831 Set default output radix for printing of values."), _("\
2832 Show default output radix for printing of values."), NULL,
2833 set_output_radix,
2834 show_output_radix,
2835 &setlist, &showlist);
2836
2837 /* The "set radix" and "show radix" commands are special in that
2838 they are like normal set and show commands but allow two normally
2839 independent variables to be either set or shown with a single
2840 command. So the usual deprecated_add_set_cmd() and [deleted]
2841 add_show_from_set() commands aren't really appropriate. */
2842 /* FIXME: i18n: With the new add_setshow_integer command, that is no
2843 longer true - show can display anything. */
2844 add_cmd ("radix", class_support, set_radix, _("\
2845 Set default input and output number radices.\n\
2846 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
2847 Without an argument, sets both radices back to the default value of 10."),
2848 &setlist);
2849 add_cmd ("radix", class_support, show_radix, _("\
2850 Show the default input and output number radices.\n\
2851 Use 'show input-radix' or 'show output-radix' to independently show each."),
2852 &showlist);
2853
2854 add_setshow_boolean_cmd ("array-indexes", class_support,
2855 &user_print_options.print_array_indexes, _("\
2856 Set printing of array indexes."), _("\
2857 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
2858 &setprintlist, &showprintlist);
2859 }
This page took 0.096674 seconds and 4 git commands to generate.