66da0e607bac1a49373936b97b63d66ffa422321
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "target-float.h"
31 #include "extension.h"
32 #include "ada-lang.h"
33 #include "gdb_obstack.h"
34 #include "charset.h"
35 #include "typeprint.h"
36 #include <ctype.h>
37 #include <algorithm>
38 #include "gdbsupport/byte-vector.h"
39 #include "cli/cli-option.h"
40 #include "gdbarch.h"
41 #include "cli/cli-style.h"
42 #include "count-one-bits.h"
43
44 /* Maximum number of wchars returned from wchar_iterate. */
45 #define MAX_WCHARS 4
46
47 /* A convenience macro to compute the size of a wchar_t buffer containing X
48 characters. */
49 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
50
51 /* Character buffer size saved while iterating over wchars. */
52 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
53
54 /* A structure to encapsulate state information from iterated
55 character conversions. */
56 struct converted_character
57 {
58 /* The number of characters converted. */
59 int num_chars;
60
61 /* The result of the conversion. See charset.h for more. */
62 enum wchar_iterate_result result;
63
64 /* The (saved) converted character(s). */
65 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
66
67 /* The first converted target byte. */
68 const gdb_byte *buf;
69
70 /* The number of bytes converted. */
71 size_t buflen;
72
73 /* How many times this character(s) is repeated. */
74 int repeat_count;
75 };
76
77 /* Command lists for set/show print raw. */
78 struct cmd_list_element *setprintrawlist;
79 struct cmd_list_element *showprintrawlist;
80
81 /* Prototypes for local functions */
82
83 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
84 int len, int *errptr);
85
86 static void set_input_radix_1 (int, unsigned);
87
88 static void set_output_radix_1 (int, unsigned);
89
90 static void val_print_type_code_flags (struct type *type,
91 const gdb_byte *valaddr,
92 struct ui_file *stream);
93
94 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
95 #define PRINT_MAX_DEPTH_DEFAULT 20 /* Start print_max_depth off at this value. */
96
97 struct value_print_options user_print_options =
98 {
99 Val_prettyformat_default, /* prettyformat */
100 0, /* prettyformat_arrays */
101 0, /* prettyformat_structs */
102 0, /* vtblprint */
103 1, /* unionprint */
104 1, /* addressprint */
105 0, /* objectprint */
106 PRINT_MAX_DEFAULT, /* print_max */
107 10, /* repeat_count_threshold */
108 0, /* output_format */
109 0, /* format */
110 0, /* stop_print_at_null */
111 0, /* print_array_indexes */
112 0, /* deref_ref */
113 1, /* static_field_print */
114 1, /* pascal_static_field_print */
115 0, /* raw */
116 0, /* summary */
117 1, /* symbol_print */
118 PRINT_MAX_DEPTH_DEFAULT, /* max_depth */
119 1 /* finish_print */
120 };
121
122 /* Initialize *OPTS to be a copy of the user print options. */
123 void
124 get_user_print_options (struct value_print_options *opts)
125 {
126 *opts = user_print_options;
127 }
128
129 /* Initialize *OPTS to be a copy of the user print options, but with
130 pretty-formatting disabled. */
131 void
132 get_no_prettyformat_print_options (struct value_print_options *opts)
133 {
134 *opts = user_print_options;
135 opts->prettyformat = Val_no_prettyformat;
136 }
137
138 /* Initialize *OPTS to be a copy of the user print options, but using
139 FORMAT as the formatting option. */
140 void
141 get_formatted_print_options (struct value_print_options *opts,
142 char format)
143 {
144 *opts = user_print_options;
145 opts->format = format;
146 }
147
148 static void
149 show_print_max (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151 {
152 fprintf_filtered (file,
153 _("Limit on string chars or array "
154 "elements to print is %s.\n"),
155 value);
156 }
157
158
159 /* Default input and output radixes, and output format letter. */
160
161 unsigned input_radix = 10;
162 static void
163 show_input_radix (struct ui_file *file, int from_tty,
164 struct cmd_list_element *c, const char *value)
165 {
166 fprintf_filtered (file,
167 _("Default input radix for entering numbers is %s.\n"),
168 value);
169 }
170
171 unsigned output_radix = 10;
172 static void
173 show_output_radix (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175 {
176 fprintf_filtered (file,
177 _("Default output radix for printing of values is %s.\n"),
178 value);
179 }
180
181 /* By default we print arrays without printing the index of each element in
182 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
183
184 static void
185 show_print_array_indexes (struct ui_file *file, int from_tty,
186 struct cmd_list_element *c, const char *value)
187 {
188 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
189 }
190
191 /* Print repeat counts if there are more than this many repetitions of an
192 element in an array. Referenced by the low level language dependent
193 print routines. */
194
195 static void
196 show_repeat_count_threshold (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198 {
199 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
200 value);
201 }
202
203 /* If nonzero, stops printing of char arrays at first null. */
204
205 static void
206 show_stop_print_at_null (struct ui_file *file, int from_tty,
207 struct cmd_list_element *c, const char *value)
208 {
209 fprintf_filtered (file,
210 _("Printing of char arrays to stop "
211 "at first null char is %s.\n"),
212 value);
213 }
214
215 /* Controls pretty printing of structures. */
216
217 static void
218 show_prettyformat_structs (struct ui_file *file, int from_tty,
219 struct cmd_list_element *c, const char *value)
220 {
221 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
222 }
223
224 /* Controls pretty printing of arrays. */
225
226 static void
227 show_prettyformat_arrays (struct ui_file *file, int from_tty,
228 struct cmd_list_element *c, const char *value)
229 {
230 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
231 }
232
233 /* If nonzero, causes unions inside structures or other unions to be
234 printed. */
235
236 static void
237 show_unionprint (struct ui_file *file, int from_tty,
238 struct cmd_list_element *c, const char *value)
239 {
240 fprintf_filtered (file,
241 _("Printing of unions interior to structures is %s.\n"),
242 value);
243 }
244
245 /* If nonzero, causes machine addresses to be printed in certain contexts. */
246
247 static void
248 show_addressprint (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250 {
251 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
252 }
253
254 static void
255 show_symbol_print (struct ui_file *file, int from_tty,
256 struct cmd_list_element *c, const char *value)
257 {
258 fprintf_filtered (file,
259 _("Printing of symbols when printing pointers is %s.\n"),
260 value);
261 }
262
263 \f
264
265 /* A helper function for val_print. When printing in "summary" mode,
266 we want to print scalar arguments, but not aggregate arguments.
267 This function distinguishes between the two. */
268
269 int
270 val_print_scalar_type_p (struct type *type)
271 {
272 type = check_typedef (type);
273 while (TYPE_IS_REFERENCE (type))
274 {
275 type = TYPE_TARGET_TYPE (type);
276 type = check_typedef (type);
277 }
278 switch (TYPE_CODE (type))
279 {
280 case TYPE_CODE_ARRAY:
281 case TYPE_CODE_STRUCT:
282 case TYPE_CODE_UNION:
283 case TYPE_CODE_SET:
284 case TYPE_CODE_STRING:
285 return 0;
286 default:
287 return 1;
288 }
289 }
290
291 /* A helper function for val_print. When printing with limited depth we
292 want to print string and scalar arguments, but not aggregate arguments.
293 This function distinguishes between the two. */
294
295 static bool
296 val_print_scalar_or_string_type_p (struct type *type,
297 const struct language_defn *language)
298 {
299 return (val_print_scalar_type_p (type)
300 || language->la_is_string_type_p (type));
301 }
302
303 /* See its definition in value.h. */
304
305 int
306 valprint_check_validity (struct ui_file *stream,
307 struct type *type,
308 LONGEST embedded_offset,
309 const struct value *val)
310 {
311 type = check_typedef (type);
312
313 if (type_not_associated (type))
314 {
315 val_print_not_associated (stream);
316 return 0;
317 }
318
319 if (type_not_allocated (type))
320 {
321 val_print_not_allocated (stream);
322 return 0;
323 }
324
325 if (TYPE_CODE (type) != TYPE_CODE_UNION
326 && TYPE_CODE (type) != TYPE_CODE_STRUCT
327 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
328 {
329 if (value_bits_any_optimized_out (val,
330 TARGET_CHAR_BIT * embedded_offset,
331 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
332 {
333 val_print_optimized_out (val, stream);
334 return 0;
335 }
336
337 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
338 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
339 {
340 const int is_ref = TYPE_CODE (type) == TYPE_CODE_REF;
341 int ref_is_addressable = 0;
342
343 if (is_ref)
344 {
345 const struct value *deref_val = coerce_ref_if_computed (val);
346
347 if (deref_val != NULL)
348 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
349 }
350
351 if (!is_ref || !ref_is_addressable)
352 fputs_styled (_("<synthetic pointer>"), metadata_style.style (),
353 stream);
354
355 /* C++ references should be valid even if they're synthetic. */
356 return is_ref;
357 }
358
359 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
360 {
361 val_print_unavailable (stream);
362 return 0;
363 }
364 }
365
366 return 1;
367 }
368
369 void
370 val_print_optimized_out (const struct value *val, struct ui_file *stream)
371 {
372 if (val != NULL && value_lval_const (val) == lval_register)
373 val_print_not_saved (stream);
374 else
375 fprintf_styled (stream, metadata_style.style (), _("<optimized out>"));
376 }
377
378 void
379 val_print_not_saved (struct ui_file *stream)
380 {
381 fprintf_styled (stream, metadata_style.style (), _("<not saved>"));
382 }
383
384 void
385 val_print_unavailable (struct ui_file *stream)
386 {
387 fprintf_styled (stream, metadata_style.style (), _("<unavailable>"));
388 }
389
390 void
391 val_print_invalid_address (struct ui_file *stream)
392 {
393 fprintf_styled (stream, metadata_style.style (), _("<invalid address>"));
394 }
395
396 /* Print a pointer based on the type of its target.
397
398 Arguments to this functions are roughly the same as those in
399 generic_val_print. A difference is that ADDRESS is the address to print,
400 with embedded_offset already added. ELTTYPE represents
401 the pointed type after check_typedef. */
402
403 static void
404 print_unpacked_pointer (struct type *type, struct type *elttype,
405 CORE_ADDR address, struct ui_file *stream,
406 const struct value_print_options *options)
407 {
408 struct gdbarch *gdbarch = get_type_arch (type);
409
410 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
411 {
412 /* Try to print what function it points to. */
413 print_function_pointer_address (options, gdbarch, address, stream);
414 return;
415 }
416
417 if (options->symbol_print)
418 print_address_demangle (options, gdbarch, address, stream, demangle);
419 else if (options->addressprint)
420 fputs_filtered (paddress (gdbarch, address), stream);
421 }
422
423 /* generic_val_print helper for TYPE_CODE_ARRAY. */
424
425 static void
426 generic_val_print_array (struct type *type,
427 int embedded_offset, CORE_ADDR address,
428 struct ui_file *stream, int recurse,
429 struct value *original_value,
430 const struct value_print_options *options,
431 const struct
432 generic_val_print_decorations *decorations)
433 {
434 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
435 struct type *elttype = check_typedef (unresolved_elttype);
436
437 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
438 {
439 LONGEST low_bound, high_bound;
440
441 if (!get_array_bounds (type, &low_bound, &high_bound))
442 error (_("Could not determine the array high bound"));
443
444 if (options->prettyformat_arrays)
445 {
446 print_spaces_filtered (2 + 2 * recurse, stream);
447 }
448
449 fputs_filtered (decorations->array_start, stream);
450 val_print_array_elements (type, embedded_offset,
451 address, stream,
452 recurse, original_value, options, 0);
453 fputs_filtered (decorations->array_end, stream);
454 }
455 else
456 {
457 /* Array of unspecified length: treat like pointer to first elt. */
458 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
459 options);
460 }
461
462 }
463
464 /* generic_val_print helper for TYPE_CODE_PTR. */
465
466 static void
467 generic_val_print_ptr (struct type *type,
468 int embedded_offset, struct ui_file *stream,
469 struct value *original_value,
470 const struct value_print_options *options)
471 {
472 struct gdbarch *gdbarch = get_type_arch (type);
473 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
474
475 if (options->format && options->format != 's')
476 {
477 val_print_scalar_formatted (type, embedded_offset,
478 original_value, options, 0, stream);
479 }
480 else
481 {
482 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
483 struct type *elttype = check_typedef (unresolved_elttype);
484 const gdb_byte *valaddr = value_contents_for_printing (original_value);
485 CORE_ADDR addr = unpack_pointer (type,
486 valaddr + embedded_offset * unit_size);
487
488 print_unpacked_pointer (type, elttype, addr, stream, options);
489 }
490 }
491
492
493 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
494
495 static void
496 generic_val_print_memberptr (struct type *type,
497 int embedded_offset, struct ui_file *stream,
498 struct value *original_value,
499 const struct value_print_options *options)
500 {
501 val_print_scalar_formatted (type, embedded_offset,
502 original_value, options, 0, stream);
503 }
504
505 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
506
507 static void
508 print_ref_address (struct type *type, const gdb_byte *address_buffer,
509 int embedded_offset, struct ui_file *stream)
510 {
511 struct gdbarch *gdbarch = get_type_arch (type);
512
513 if (address_buffer != NULL)
514 {
515 CORE_ADDR address
516 = extract_typed_address (address_buffer + embedded_offset, type);
517
518 fprintf_filtered (stream, "@");
519 fputs_filtered (paddress (gdbarch, address), stream);
520 }
521 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
522 }
523
524 /* If VAL is addressable, return the value contents buffer of a value that
525 represents a pointer to VAL. Otherwise return NULL. */
526
527 static const gdb_byte *
528 get_value_addr_contents (struct value *deref_val)
529 {
530 gdb_assert (deref_val != NULL);
531
532 if (value_lval_const (deref_val) == lval_memory)
533 return value_contents_for_printing_const (value_addr (deref_val));
534 else
535 {
536 /* We have a non-addressable value, such as a DW_AT_const_value. */
537 return NULL;
538 }
539 }
540
541 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
542
543 static void
544 generic_val_print_ref (struct type *type,
545 int embedded_offset, struct ui_file *stream, int recurse,
546 struct value *original_value,
547 const struct value_print_options *options)
548 {
549 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
550 struct value *deref_val = NULL;
551 const int value_is_synthetic
552 = value_bits_synthetic_pointer (original_value,
553 TARGET_CHAR_BIT * embedded_offset,
554 TARGET_CHAR_BIT * TYPE_LENGTH (type));
555 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
556 || options->deref_ref);
557 const int type_is_defined = TYPE_CODE (elttype) != TYPE_CODE_UNDEF;
558 const gdb_byte *valaddr = value_contents_for_printing (original_value);
559
560 if (must_coerce_ref && type_is_defined)
561 {
562 deref_val = coerce_ref_if_computed (original_value);
563
564 if (deref_val != NULL)
565 {
566 /* More complicated computed references are not supported. */
567 gdb_assert (embedded_offset == 0);
568 }
569 else
570 deref_val = value_at (TYPE_TARGET_TYPE (type),
571 unpack_pointer (type, valaddr + embedded_offset));
572 }
573 /* Else, original_value isn't a synthetic reference or we don't have to print
574 the reference's contents.
575
576 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
577 cause original_value to be a not_lval instead of an lval_computed,
578 which will make value_bits_synthetic_pointer return false.
579 This happens because if options->objectprint is true, c_value_print will
580 overwrite original_value's contents with the result of coercing
581 the reference through value_addr, and then set its type back to
582 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
583 we can simply treat it as non-synthetic and move on. */
584
585 if (options->addressprint)
586 {
587 const gdb_byte *address = (value_is_synthetic && type_is_defined
588 ? get_value_addr_contents (deref_val)
589 : valaddr);
590
591 print_ref_address (type, address, embedded_offset, stream);
592
593 if (options->deref_ref)
594 fputs_filtered (": ", stream);
595 }
596
597 if (options->deref_ref)
598 {
599 if (type_is_defined)
600 common_val_print (deref_val, stream, recurse, options,
601 current_language);
602 else
603 fputs_filtered ("???", stream);
604 }
605 }
606
607 /* Helper function for generic_val_print_enum.
608 This is also used to print enums in TYPE_CODE_FLAGS values. */
609
610 static void
611 generic_val_print_enum_1 (struct type *type, LONGEST val,
612 struct ui_file *stream)
613 {
614 unsigned int i;
615 unsigned int len;
616
617 len = TYPE_NFIELDS (type);
618 for (i = 0; i < len; i++)
619 {
620 QUIT;
621 if (val == TYPE_FIELD_ENUMVAL (type, i))
622 {
623 break;
624 }
625 }
626 if (i < len)
627 {
628 fputs_styled (TYPE_FIELD_NAME (type, i), variable_name_style.style (),
629 stream);
630 }
631 else if (TYPE_FLAG_ENUM (type))
632 {
633 int first = 1;
634
635 /* We have a "flag" enum, so we try to decompose it into pieces as
636 appropriate. The enum may have multiple enumerators representing
637 the same bit, in which case we choose to only print the first one
638 we find. */
639 for (i = 0; i < len; ++i)
640 {
641 QUIT;
642
643 ULONGEST enumval = TYPE_FIELD_ENUMVAL (type, i);
644 int nbits = count_one_bits_ll (enumval);
645
646 gdb_assert (nbits == 0 || nbits == 1);
647
648 if ((val & enumval) != 0)
649 {
650 if (first)
651 {
652 fputs_filtered ("(", stream);
653 first = 0;
654 }
655 else
656 fputs_filtered (" | ", stream);
657
658 val &= ~TYPE_FIELD_ENUMVAL (type, i);
659 fputs_styled (TYPE_FIELD_NAME (type, i),
660 variable_name_style.style (), stream);
661 }
662 }
663
664 if (val != 0)
665 {
666 /* There are leftover bits, print them. */
667 if (first)
668 fputs_filtered ("(", stream);
669 else
670 fputs_filtered (" | ", stream);
671
672 fputs_filtered ("unknown: 0x", stream);
673 print_longest (stream, 'x', 0, val);
674 fputs_filtered (")", stream);
675 }
676 else if (first)
677 {
678 /* Nothing has been printed and the value is 0, the enum value must
679 have been 0. */
680 fputs_filtered ("0", stream);
681 }
682 else
683 {
684 /* Something has been printed, close the parenthesis. */
685 fputs_filtered (")", stream);
686 }
687 }
688 else
689 print_longest (stream, 'd', 0, val);
690 }
691
692 /* generic_val_print helper for TYPE_CODE_ENUM. */
693
694 static void
695 generic_val_print_enum (struct type *type,
696 int embedded_offset, struct ui_file *stream,
697 struct value *original_value,
698 const struct value_print_options *options)
699 {
700 LONGEST val;
701 struct gdbarch *gdbarch = get_type_arch (type);
702 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
703
704 if (options->format)
705 {
706 val_print_scalar_formatted (type, embedded_offset,
707 original_value, options, 0, stream);
708 }
709 else
710 {
711 const gdb_byte *valaddr = value_contents_for_printing (original_value);
712
713 val = unpack_long (type, valaddr + embedded_offset * unit_size);
714
715 generic_val_print_enum_1 (type, val, stream);
716 }
717 }
718
719 /* generic_val_print helper for TYPE_CODE_FLAGS. */
720
721 static void
722 generic_val_print_flags (struct type *type,
723 int embedded_offset, struct ui_file *stream,
724 struct value *original_value,
725 const struct value_print_options *options)
726
727 {
728 if (options->format)
729 val_print_scalar_formatted (type, embedded_offset, original_value,
730 options, 0, stream);
731 else
732 {
733 const gdb_byte *valaddr = value_contents_for_printing (original_value);
734
735 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
736 }
737 }
738
739 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
740
741 static void
742 generic_val_print_func (struct type *type,
743 int embedded_offset, CORE_ADDR address,
744 struct ui_file *stream,
745 struct value *original_value,
746 const struct value_print_options *options)
747 {
748 struct gdbarch *gdbarch = get_type_arch (type);
749
750 if (options->format)
751 {
752 val_print_scalar_formatted (type, embedded_offset,
753 original_value, options, 0, stream);
754 }
755 else
756 {
757 /* FIXME, we should consider, at least for ANSI C language,
758 eliminating the distinction made between FUNCs and POINTERs
759 to FUNCs. */
760 fprintf_filtered (stream, "{");
761 type_print (type, "", stream, -1);
762 fprintf_filtered (stream, "} ");
763 /* Try to print what function it points to, and its address. */
764 print_address_demangle (options, gdbarch, address, stream, demangle);
765 }
766 }
767
768 /* generic_val_print helper for TYPE_CODE_BOOL. */
769
770 static void
771 generic_val_print_bool (struct type *type,
772 int embedded_offset, struct ui_file *stream,
773 struct value *original_value,
774 const struct value_print_options *options,
775 const struct generic_val_print_decorations *decorations)
776 {
777 LONGEST val;
778 struct gdbarch *gdbarch = get_type_arch (type);
779 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
780
781 if (options->format || options->output_format)
782 {
783 struct value_print_options opts = *options;
784 opts.format = (options->format ? options->format
785 : options->output_format);
786 val_print_scalar_formatted (type, embedded_offset,
787 original_value, &opts, 0, stream);
788 }
789 else
790 {
791 const gdb_byte *valaddr = value_contents_for_printing (original_value);
792
793 val = unpack_long (type, valaddr + embedded_offset * unit_size);
794 if (val == 0)
795 fputs_filtered (decorations->false_name, stream);
796 else if (val == 1)
797 fputs_filtered (decorations->true_name, stream);
798 else
799 print_longest (stream, 'd', 0, val);
800 }
801 }
802
803 /* generic_val_print helper for TYPE_CODE_INT. */
804
805 static void
806 generic_val_print_int (struct type *type,
807 int embedded_offset, struct ui_file *stream,
808 struct value *original_value,
809 const struct value_print_options *options)
810 {
811 struct value_print_options opts = *options;
812
813 opts.format = (options->format ? options->format
814 : options->output_format);
815 val_print_scalar_formatted (type, embedded_offset,
816 original_value, &opts, 0, stream);
817 }
818
819 /* generic_val_print helper for TYPE_CODE_CHAR. */
820
821 static void
822 generic_val_print_char (struct type *type, struct type *unresolved_type,
823 int embedded_offset,
824 struct ui_file *stream,
825 struct value *original_value,
826 const struct value_print_options *options)
827 {
828 LONGEST val;
829 struct gdbarch *gdbarch = get_type_arch (type);
830 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
831
832 if (options->format || options->output_format)
833 {
834 struct value_print_options opts = *options;
835
836 opts.format = (options->format ? options->format
837 : options->output_format);
838 val_print_scalar_formatted (type, embedded_offset,
839 original_value, &opts, 0, stream);
840 }
841 else
842 {
843 const gdb_byte *valaddr = value_contents_for_printing (original_value);
844
845 val = unpack_long (type, valaddr + embedded_offset * unit_size);
846 if (TYPE_UNSIGNED (type))
847 fprintf_filtered (stream, "%u", (unsigned int) val);
848 else
849 fprintf_filtered (stream, "%d", (int) val);
850 fputs_filtered (" ", stream);
851 LA_PRINT_CHAR (val, unresolved_type, stream);
852 }
853 }
854
855 /* generic_val_print helper for TYPE_CODE_FLT and TYPE_CODE_DECFLOAT. */
856
857 static void
858 generic_val_print_float (struct type *type,
859 int embedded_offset, struct ui_file *stream,
860 struct value *original_value,
861 const struct value_print_options *options)
862 {
863 struct gdbarch *gdbarch = get_type_arch (type);
864 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
865
866 if (options->format)
867 {
868 val_print_scalar_formatted (type, embedded_offset,
869 original_value, options, 0, stream);
870 }
871 else
872 {
873 const gdb_byte *valaddr = value_contents_for_printing (original_value);
874
875 print_floating (valaddr + embedded_offset * unit_size, type, stream);
876 }
877 }
878
879 /* generic_val_print helper for TYPE_CODE_COMPLEX. */
880
881 static void
882 generic_val_print_complex (struct type *type,
883 int embedded_offset, struct ui_file *stream,
884 struct value *original_value,
885 const struct value_print_options *options,
886 const struct generic_val_print_decorations
887 *decorations)
888 {
889 struct gdbarch *gdbarch = get_type_arch (type);
890 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
891 const gdb_byte *valaddr = value_contents_for_printing (original_value);
892
893 fprintf_filtered (stream, "%s", decorations->complex_prefix);
894 if (options->format)
895 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
896 embedded_offset, original_value, options, 0,
897 stream);
898 else
899 print_floating (valaddr + embedded_offset * unit_size,
900 TYPE_TARGET_TYPE (type), stream);
901 fprintf_filtered (stream, "%s", decorations->complex_infix);
902 if (options->format)
903 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
904 embedded_offset
905 + type_length_units (TYPE_TARGET_TYPE (type)),
906 original_value, options, 0, stream);
907 else
908 print_floating (valaddr + embedded_offset * unit_size
909 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
910 TYPE_TARGET_TYPE (type), stream);
911 fprintf_filtered (stream, "%s", decorations->complex_suffix);
912 }
913
914 /* A generic val_print that is suitable for use by language
915 implementations of the la_val_print method. This function can
916 handle most type codes, though not all, notably exception
917 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
918 the caller.
919
920 Most arguments are as to val_print.
921
922 The additional DECORATIONS argument can be used to customize the
923 output in some small, language-specific ways. */
924
925 void
926 generic_val_print (struct type *type,
927 int embedded_offset, CORE_ADDR address,
928 struct ui_file *stream, int recurse,
929 struct value *original_value,
930 const struct value_print_options *options,
931 const struct generic_val_print_decorations *decorations)
932 {
933 struct type *unresolved_type = type;
934
935 type = check_typedef (type);
936 switch (TYPE_CODE (type))
937 {
938 case TYPE_CODE_ARRAY:
939 generic_val_print_array (type, embedded_offset, address, stream,
940 recurse, original_value, options, decorations);
941 break;
942
943 case TYPE_CODE_MEMBERPTR:
944 generic_val_print_memberptr (type, embedded_offset, stream,
945 original_value, options);
946 break;
947
948 case TYPE_CODE_PTR:
949 generic_val_print_ptr (type, embedded_offset, stream,
950 original_value, options);
951 break;
952
953 case TYPE_CODE_REF:
954 case TYPE_CODE_RVALUE_REF:
955 generic_val_print_ref (type, embedded_offset, stream, recurse,
956 original_value, options);
957 break;
958
959 case TYPE_CODE_ENUM:
960 generic_val_print_enum (type, embedded_offset, stream,
961 original_value, options);
962 break;
963
964 case TYPE_CODE_FLAGS:
965 generic_val_print_flags (type, embedded_offset, stream,
966 original_value, options);
967 break;
968
969 case TYPE_CODE_FUNC:
970 case TYPE_CODE_METHOD:
971 generic_val_print_func (type, embedded_offset, address, stream,
972 original_value, options);
973 break;
974
975 case TYPE_CODE_BOOL:
976 generic_val_print_bool (type, embedded_offset, stream,
977 original_value, options, decorations);
978 break;
979
980 case TYPE_CODE_RANGE:
981 /* FIXME: create_static_range_type does not set the unsigned bit in a
982 range type (I think it probably should copy it from the
983 target type), so we won't print values which are too large to
984 fit in a signed integer correctly. */
985 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
986 print with the target type, though, because the size of our
987 type and the target type might differ). */
988
989 /* FALLTHROUGH */
990
991 case TYPE_CODE_INT:
992 generic_val_print_int (type, embedded_offset, stream,
993 original_value, options);
994 break;
995
996 case TYPE_CODE_CHAR:
997 generic_val_print_char (type, unresolved_type, embedded_offset,
998 stream, original_value, options);
999 break;
1000
1001 case TYPE_CODE_FLT:
1002 case TYPE_CODE_DECFLOAT:
1003 generic_val_print_float (type, embedded_offset, stream,
1004 original_value, options);
1005 break;
1006
1007 case TYPE_CODE_VOID:
1008 fputs_filtered (decorations->void_name, stream);
1009 break;
1010
1011 case TYPE_CODE_ERROR:
1012 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
1013 break;
1014
1015 case TYPE_CODE_UNDEF:
1016 /* This happens (without TYPE_STUB set) on systems which don't use
1017 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
1018 and no complete type for struct foo in that file. */
1019 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
1020 break;
1021
1022 case TYPE_CODE_COMPLEX:
1023 generic_val_print_complex (type, embedded_offset, stream,
1024 original_value, options, decorations);
1025 break;
1026
1027 case TYPE_CODE_UNION:
1028 case TYPE_CODE_STRUCT:
1029 case TYPE_CODE_METHODPTR:
1030 default:
1031 error (_("Unhandled type code %d in symbol table."),
1032 TYPE_CODE (type));
1033 }
1034 }
1035
1036 /* Helper function for val_print and common_val_print that does the
1037 work. Arguments are as to val_print, but FULL_VALUE, if given, is
1038 the value to be printed. */
1039
1040 static void
1041 do_val_print (struct value *full_value,
1042 struct type *type, LONGEST embedded_offset,
1043 CORE_ADDR address, struct ui_file *stream, int recurse,
1044 struct value *val,
1045 const struct value_print_options *options,
1046 const struct language_defn *language)
1047 {
1048 int ret = 0;
1049 struct value_print_options local_opts = *options;
1050 struct type *real_type = check_typedef (type);
1051
1052 if (local_opts.prettyformat == Val_prettyformat_default)
1053 local_opts.prettyformat = (local_opts.prettyformat_structs
1054 ? Val_prettyformat : Val_no_prettyformat);
1055
1056 QUIT;
1057
1058 /* Ensure that the type is complete and not just a stub. If the type is
1059 only a stub and we can't find and substitute its complete type, then
1060 print appropriate string and return. */
1061
1062 if (TYPE_STUB (real_type))
1063 {
1064 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
1065 return;
1066 }
1067
1068 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
1069 return;
1070
1071 if (!options->raw)
1072 {
1073 ret = apply_ext_lang_val_pretty_printer (type, embedded_offset,
1074 address, stream, recurse,
1075 val, options, language);
1076 if (ret)
1077 return;
1078 }
1079
1080 /* Handle summary mode. If the value is a scalar, print it;
1081 otherwise, print an ellipsis. */
1082 if (options->summary && !val_print_scalar_type_p (type))
1083 {
1084 fprintf_filtered (stream, "...");
1085 return;
1086 }
1087
1088 /* If this value is too deep then don't print it. */
1089 if (!val_print_scalar_or_string_type_p (type, language)
1090 && val_print_check_max_depth (stream, recurse, options, language))
1091 return;
1092
1093 try
1094 {
1095 language->la_val_print (type, embedded_offset, address,
1096 stream, recurse, val,
1097 &local_opts);
1098 }
1099 catch (const gdb_exception_error &except)
1100 {
1101 fprintf_styled (stream, metadata_style.style (),
1102 _("<error reading variable>"));
1103 }
1104 }
1105
1106 /* Print using the given LANGUAGE the data of type TYPE located at
1107 VAL's contents buffer + EMBEDDED_OFFSET (within GDB), which came
1108 from the inferior at address ADDRESS + EMBEDDED_OFFSET, onto
1109 stdio stream STREAM according to OPTIONS. VAL is the whole object
1110 that came from ADDRESS.
1111
1112 The language printers will pass down an adjusted EMBEDDED_OFFSET to
1113 further helper subroutines as subfields of TYPE are printed. In
1114 such cases, VAL is passed down unadjusted, so
1115 that VAL can be queried for metadata about the contents data being
1116 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
1117 buffer. For example: "has this field been optimized out", or "I'm
1118 printing an object while inspecting a traceframe; has this
1119 particular piece of data been collected?".
1120
1121 RECURSE indicates the amount of indentation to supply before
1122 continuation lines; this amount is roughly twice the value of
1123 RECURSE. */
1124
1125 void
1126 val_print (struct type *type, LONGEST embedded_offset,
1127 CORE_ADDR address, struct ui_file *stream, int recurse,
1128 struct value *val,
1129 const struct value_print_options *options,
1130 const struct language_defn *language)
1131 {
1132 do_val_print (nullptr, type, embedded_offset, address, stream,
1133 recurse, val, options, language);
1134 }
1135
1136 /* See valprint.h. */
1137
1138 bool
1139 val_print_check_max_depth (struct ui_file *stream, int recurse,
1140 const struct value_print_options *options,
1141 const struct language_defn *language)
1142 {
1143 if (options->max_depth > -1 && recurse >= options->max_depth)
1144 {
1145 gdb_assert (language->la_struct_too_deep_ellipsis != NULL);
1146 fputs_filtered (language->la_struct_too_deep_ellipsis, stream);
1147 return true;
1148 }
1149
1150 return false;
1151 }
1152
1153 /* Check whether the value VAL is printable. Return 1 if it is;
1154 return 0 and print an appropriate error message to STREAM according to
1155 OPTIONS if it is not. */
1156
1157 static int
1158 value_check_printable (struct value *val, struct ui_file *stream,
1159 const struct value_print_options *options)
1160 {
1161 if (val == 0)
1162 {
1163 fprintf_styled (stream, metadata_style.style (),
1164 _("<address of value unknown>"));
1165 return 0;
1166 }
1167
1168 if (value_entirely_optimized_out (val))
1169 {
1170 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1171 fprintf_filtered (stream, "...");
1172 else
1173 val_print_optimized_out (val, stream);
1174 return 0;
1175 }
1176
1177 if (value_entirely_unavailable (val))
1178 {
1179 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1180 fprintf_filtered (stream, "...");
1181 else
1182 val_print_unavailable (stream);
1183 return 0;
1184 }
1185
1186 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1187 {
1188 fprintf_styled (stream, metadata_style.style (),
1189 _("<internal function %s>"),
1190 value_internal_function_name (val));
1191 return 0;
1192 }
1193
1194 if (type_not_associated (value_type (val)))
1195 {
1196 val_print_not_associated (stream);
1197 return 0;
1198 }
1199
1200 if (type_not_allocated (value_type (val)))
1201 {
1202 val_print_not_allocated (stream);
1203 return 0;
1204 }
1205
1206 return 1;
1207 }
1208
1209 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1210 to OPTIONS.
1211
1212 This is a preferable interface to val_print, above, because it uses
1213 GDB's value mechanism. */
1214
1215 void
1216 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1217 const struct value_print_options *options,
1218 const struct language_defn *language)
1219 {
1220 if (!value_check_printable (val, stream, options))
1221 return;
1222
1223 if (language->la_language == language_ada)
1224 /* The value might have a dynamic type, which would cause trouble
1225 below when trying to extract the value contents (since the value
1226 size is determined from the type size which is unknown). So
1227 get a fixed representation of our value. */
1228 val = ada_to_fixed_value (val);
1229
1230 if (value_lazy (val))
1231 value_fetch_lazy (val);
1232
1233 do_val_print (val, value_type (val),
1234 value_embedded_offset (val), value_address (val),
1235 stream, recurse,
1236 val, options, language);
1237 }
1238
1239 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1240 is printed using the current_language syntax. */
1241
1242 void
1243 value_print (struct value *val, struct ui_file *stream,
1244 const struct value_print_options *options)
1245 {
1246 scoped_value_mark free_values;
1247
1248 if (!value_check_printable (val, stream, options))
1249 return;
1250
1251 if (!options->raw)
1252 {
1253 int r
1254 = apply_ext_lang_val_pretty_printer (value_type (val),
1255 value_embedded_offset (val),
1256 value_address (val),
1257 stream, 0,
1258 val, options, current_language);
1259
1260 if (r)
1261 return;
1262 }
1263
1264 LA_VALUE_PRINT (val, stream, options);
1265 }
1266
1267 static void
1268 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1269 struct ui_file *stream)
1270 {
1271 ULONGEST val = unpack_long (type, valaddr);
1272 int field, nfields = TYPE_NFIELDS (type);
1273 struct gdbarch *gdbarch = get_type_arch (type);
1274 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1275
1276 fputs_filtered ("[", stream);
1277 for (field = 0; field < nfields; field++)
1278 {
1279 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1280 {
1281 struct type *field_type = TYPE_FIELD_TYPE (type, field);
1282
1283 if (field_type == bool_type
1284 /* We require boolean types here to be one bit wide. This is a
1285 problematic place to notify the user of an internal error
1286 though. Instead just fall through and print the field as an
1287 int. */
1288 && TYPE_FIELD_BITSIZE (type, field) == 1)
1289 {
1290 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1291 fprintf_filtered
1292 (stream, " %ps",
1293 styled_string (variable_name_style.style (),
1294 TYPE_FIELD_NAME (type, field)));
1295 }
1296 else
1297 {
1298 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1299 ULONGEST field_val
1300 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1301
1302 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1303 field_val &= ((ULONGEST) 1 << field_len) - 1;
1304 fprintf_filtered (stream, " %ps=",
1305 styled_string (variable_name_style.style (),
1306 TYPE_FIELD_NAME (type, field)));
1307 if (TYPE_CODE (field_type) == TYPE_CODE_ENUM)
1308 generic_val_print_enum_1 (field_type, field_val, stream);
1309 else
1310 print_longest (stream, 'd', 0, field_val);
1311 }
1312 }
1313 }
1314 fputs_filtered (" ]", stream);
1315 }
1316
1317 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1318 according to OPTIONS and SIZE on STREAM. Format i is not supported
1319 at this level.
1320
1321 This is how the elements of an array or structure are printed
1322 with a format. */
1323
1324 void
1325 val_print_scalar_formatted (struct type *type,
1326 LONGEST embedded_offset,
1327 struct value *val,
1328 const struct value_print_options *options,
1329 int size,
1330 struct ui_file *stream)
1331 {
1332 struct gdbarch *arch = get_type_arch (type);
1333 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1334
1335 gdb_assert (val != NULL);
1336
1337 /* If we get here with a string format, try again without it. Go
1338 all the way back to the language printers, which may call us
1339 again. */
1340 if (options->format == 's')
1341 {
1342 struct value_print_options opts = *options;
1343 opts.format = 0;
1344 opts.deref_ref = 0;
1345 val_print (type, embedded_offset, 0, stream, 0, val, &opts,
1346 current_language);
1347 return;
1348 }
1349
1350 /* value_contents_for_printing fetches all VAL's contents. They are
1351 needed to check whether VAL is optimized-out or unavailable
1352 below. */
1353 const gdb_byte *valaddr = value_contents_for_printing (val);
1354
1355 /* A scalar object that does not have all bits available can't be
1356 printed, because all bits contribute to its representation. */
1357 if (value_bits_any_optimized_out (val,
1358 TARGET_CHAR_BIT * embedded_offset,
1359 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1360 val_print_optimized_out (val, stream);
1361 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1362 val_print_unavailable (stream);
1363 else
1364 print_scalar_formatted (valaddr + embedded_offset * unit_size, type,
1365 options, size, stream);
1366 }
1367
1368 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1369 The raison d'etre of this function is to consolidate printing of
1370 LONG_LONG's into this one function. The format chars b,h,w,g are
1371 from print_scalar_formatted(). Numbers are printed using C
1372 format.
1373
1374 USE_C_FORMAT means to use C format in all cases. Without it,
1375 'o' and 'x' format do not include the standard C radix prefix
1376 (leading 0 or 0x).
1377
1378 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1379 and was intended to request formatting according to the current
1380 language and would be used for most integers that GDB prints. The
1381 exceptional cases were things like protocols where the format of
1382 the integer is a protocol thing, not a user-visible thing). The
1383 parameter remains to preserve the information of what things might
1384 be printed with language-specific format, should we ever resurrect
1385 that capability. */
1386
1387 void
1388 print_longest (struct ui_file *stream, int format, int use_c_format,
1389 LONGEST val_long)
1390 {
1391 const char *val;
1392
1393 switch (format)
1394 {
1395 case 'd':
1396 val = int_string (val_long, 10, 1, 0, 1); break;
1397 case 'u':
1398 val = int_string (val_long, 10, 0, 0, 1); break;
1399 case 'x':
1400 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1401 case 'b':
1402 val = int_string (val_long, 16, 0, 2, 1); break;
1403 case 'h':
1404 val = int_string (val_long, 16, 0, 4, 1); break;
1405 case 'w':
1406 val = int_string (val_long, 16, 0, 8, 1); break;
1407 case 'g':
1408 val = int_string (val_long, 16, 0, 16, 1); break;
1409 break;
1410 case 'o':
1411 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1412 default:
1413 internal_error (__FILE__, __LINE__,
1414 _("failed internal consistency check"));
1415 }
1416 fputs_filtered (val, stream);
1417 }
1418
1419 /* This used to be a macro, but I don't think it is called often enough
1420 to merit such treatment. */
1421 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1422 arguments to a function, number in a value history, register number, etc.)
1423 where the value must not be larger than can fit in an int. */
1424
1425 int
1426 longest_to_int (LONGEST arg)
1427 {
1428 /* Let the compiler do the work. */
1429 int rtnval = (int) arg;
1430
1431 /* Check for overflows or underflows. */
1432 if (sizeof (LONGEST) > sizeof (int))
1433 {
1434 if (rtnval != arg)
1435 {
1436 error (_("Value out of range."));
1437 }
1438 }
1439 return (rtnval);
1440 }
1441
1442 /* Print a floating point value of floating-point type TYPE,
1443 pointed to in GDB by VALADDR, on STREAM. */
1444
1445 void
1446 print_floating (const gdb_byte *valaddr, struct type *type,
1447 struct ui_file *stream)
1448 {
1449 std::string str = target_float_to_string (valaddr, type);
1450 fputs_filtered (str.c_str (), stream);
1451 }
1452
1453 void
1454 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1455 unsigned len, enum bfd_endian byte_order, bool zero_pad)
1456 {
1457 const gdb_byte *p;
1458 unsigned int i;
1459 int b;
1460 bool seen_a_one = false;
1461
1462 /* Declared "int" so it will be signed.
1463 This ensures that right shift will shift in zeros. */
1464
1465 const int mask = 0x080;
1466
1467 if (byte_order == BFD_ENDIAN_BIG)
1468 {
1469 for (p = valaddr;
1470 p < valaddr + len;
1471 p++)
1472 {
1473 /* Every byte has 8 binary characters; peel off
1474 and print from the MSB end. */
1475
1476 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1477 {
1478 if (*p & (mask >> i))
1479 b = '1';
1480 else
1481 b = '0';
1482
1483 if (zero_pad || seen_a_one || b == '1')
1484 fputc_filtered (b, stream);
1485 if (b == '1')
1486 seen_a_one = true;
1487 }
1488 }
1489 }
1490 else
1491 {
1492 for (p = valaddr + len - 1;
1493 p >= valaddr;
1494 p--)
1495 {
1496 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1497 {
1498 if (*p & (mask >> i))
1499 b = '1';
1500 else
1501 b = '0';
1502
1503 if (zero_pad || seen_a_one || b == '1')
1504 fputc_filtered (b, stream);
1505 if (b == '1')
1506 seen_a_one = true;
1507 }
1508 }
1509 }
1510
1511 /* When not zero-padding, ensure that something is printed when the
1512 input is 0. */
1513 if (!zero_pad && !seen_a_one)
1514 fputc_filtered ('0', stream);
1515 }
1516
1517 /* A helper for print_octal_chars that emits a single octal digit,
1518 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1519
1520 static void
1521 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1522 {
1523 if (*seen_a_one || digit != 0)
1524 fprintf_filtered (stream, "%o", digit);
1525 if (digit != 0)
1526 *seen_a_one = true;
1527 }
1528
1529 /* VALADDR points to an integer of LEN bytes.
1530 Print it in octal on stream or format it in buf. */
1531
1532 void
1533 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1534 unsigned len, enum bfd_endian byte_order)
1535 {
1536 const gdb_byte *p;
1537 unsigned char octa1, octa2, octa3, carry;
1538 int cycle;
1539
1540 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1541 * the extra bits, which cycle every three bytes:
1542 *
1543 * Byte side: 0 1 2 3
1544 * | | | |
1545 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1546 *
1547 * Octal side: 0 1 carry 3 4 carry ...
1548 *
1549 * Cycle number: 0 1 2
1550 *
1551 * But of course we are printing from the high side, so we have to
1552 * figure out where in the cycle we are so that we end up with no
1553 * left over bits at the end.
1554 */
1555 #define BITS_IN_OCTAL 3
1556 #define HIGH_ZERO 0340
1557 #define LOW_ZERO 0034
1558 #define CARRY_ZERO 0003
1559 static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
1560 "cycle zero constants are wrong");
1561 #define HIGH_ONE 0200
1562 #define MID_ONE 0160
1563 #define LOW_ONE 0016
1564 #define CARRY_ONE 0001
1565 static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
1566 "cycle one constants are wrong");
1567 #define HIGH_TWO 0300
1568 #define MID_TWO 0070
1569 #define LOW_TWO 0007
1570 static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
1571 "cycle two constants are wrong");
1572
1573 /* For 32 we start in cycle 2, with two bits and one bit carry;
1574 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1575
1576 cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
1577 carry = 0;
1578
1579 fputs_filtered ("0", stream);
1580 bool seen_a_one = false;
1581 if (byte_order == BFD_ENDIAN_BIG)
1582 {
1583 for (p = valaddr;
1584 p < valaddr + len;
1585 p++)
1586 {
1587 switch (cycle)
1588 {
1589 case 0:
1590 /* No carry in, carry out two bits. */
1591
1592 octa1 = (HIGH_ZERO & *p) >> 5;
1593 octa2 = (LOW_ZERO & *p) >> 2;
1594 carry = (CARRY_ZERO & *p);
1595 emit_octal_digit (stream, &seen_a_one, octa1);
1596 emit_octal_digit (stream, &seen_a_one, octa2);
1597 break;
1598
1599 case 1:
1600 /* Carry in two bits, carry out one bit. */
1601
1602 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1603 octa2 = (MID_ONE & *p) >> 4;
1604 octa3 = (LOW_ONE & *p) >> 1;
1605 carry = (CARRY_ONE & *p);
1606 emit_octal_digit (stream, &seen_a_one, octa1);
1607 emit_octal_digit (stream, &seen_a_one, octa2);
1608 emit_octal_digit (stream, &seen_a_one, octa3);
1609 break;
1610
1611 case 2:
1612 /* Carry in one bit, no carry out. */
1613
1614 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1615 octa2 = (MID_TWO & *p) >> 3;
1616 octa3 = (LOW_TWO & *p);
1617 carry = 0;
1618 emit_octal_digit (stream, &seen_a_one, octa1);
1619 emit_octal_digit (stream, &seen_a_one, octa2);
1620 emit_octal_digit (stream, &seen_a_one, octa3);
1621 break;
1622
1623 default:
1624 error (_("Internal error in octal conversion;"));
1625 }
1626
1627 cycle++;
1628 cycle = cycle % BITS_IN_OCTAL;
1629 }
1630 }
1631 else
1632 {
1633 for (p = valaddr + len - 1;
1634 p >= valaddr;
1635 p--)
1636 {
1637 switch (cycle)
1638 {
1639 case 0:
1640 /* Carry out, no carry in */
1641
1642 octa1 = (HIGH_ZERO & *p) >> 5;
1643 octa2 = (LOW_ZERO & *p) >> 2;
1644 carry = (CARRY_ZERO & *p);
1645 emit_octal_digit (stream, &seen_a_one, octa1);
1646 emit_octal_digit (stream, &seen_a_one, octa2);
1647 break;
1648
1649 case 1:
1650 /* Carry in, carry out */
1651
1652 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1653 octa2 = (MID_ONE & *p) >> 4;
1654 octa3 = (LOW_ONE & *p) >> 1;
1655 carry = (CARRY_ONE & *p);
1656 emit_octal_digit (stream, &seen_a_one, octa1);
1657 emit_octal_digit (stream, &seen_a_one, octa2);
1658 emit_octal_digit (stream, &seen_a_one, octa3);
1659 break;
1660
1661 case 2:
1662 /* Carry in, no carry out */
1663
1664 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1665 octa2 = (MID_TWO & *p) >> 3;
1666 octa3 = (LOW_TWO & *p);
1667 carry = 0;
1668 emit_octal_digit (stream, &seen_a_one, octa1);
1669 emit_octal_digit (stream, &seen_a_one, octa2);
1670 emit_octal_digit (stream, &seen_a_one, octa3);
1671 break;
1672
1673 default:
1674 error (_("Internal error in octal conversion;"));
1675 }
1676
1677 cycle++;
1678 cycle = cycle % BITS_IN_OCTAL;
1679 }
1680 }
1681
1682 }
1683
1684 /* Possibly negate the integer represented by BYTES. It contains LEN
1685 bytes in the specified byte order. If the integer is negative,
1686 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1687 nothing and return false. */
1688
1689 static bool
1690 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1691 enum bfd_endian byte_order,
1692 gdb::byte_vector *out_vec)
1693 {
1694 gdb_byte sign_byte;
1695 gdb_assert (len > 0);
1696 if (byte_order == BFD_ENDIAN_BIG)
1697 sign_byte = bytes[0];
1698 else
1699 sign_byte = bytes[len - 1];
1700 if ((sign_byte & 0x80) == 0)
1701 return false;
1702
1703 out_vec->resize (len);
1704
1705 /* Compute -x == 1 + ~x. */
1706 if (byte_order == BFD_ENDIAN_LITTLE)
1707 {
1708 unsigned carry = 1;
1709 for (unsigned i = 0; i < len; ++i)
1710 {
1711 unsigned tem = (0xff & ~bytes[i]) + carry;
1712 (*out_vec)[i] = tem & 0xff;
1713 carry = tem / 256;
1714 }
1715 }
1716 else
1717 {
1718 unsigned carry = 1;
1719 for (unsigned i = len; i > 0; --i)
1720 {
1721 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1722 (*out_vec)[i - 1] = tem & 0xff;
1723 carry = tem / 256;
1724 }
1725 }
1726
1727 return true;
1728 }
1729
1730 /* VALADDR points to an integer of LEN bytes.
1731 Print it in decimal on stream or format it in buf. */
1732
1733 void
1734 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1735 unsigned len, bool is_signed,
1736 enum bfd_endian byte_order)
1737 {
1738 #define TEN 10
1739 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1740 #define CARRY_LEFT( x ) ((x) % TEN)
1741 #define SHIFT( x ) ((x) << 4)
1742 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1743 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1744
1745 const gdb_byte *p;
1746 int carry;
1747 int decimal_len;
1748 int i, j, decimal_digits;
1749 int dummy;
1750 int flip;
1751
1752 gdb::byte_vector negated_bytes;
1753 if (is_signed
1754 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1755 {
1756 fputs_filtered ("-", stream);
1757 valaddr = negated_bytes.data ();
1758 }
1759
1760 /* Base-ten number is less than twice as many digits
1761 as the base 16 number, which is 2 digits per byte. */
1762
1763 decimal_len = len * 2 * 2;
1764 std::vector<unsigned char> digits (decimal_len, 0);
1765
1766 /* Ok, we have an unknown number of bytes of data to be printed in
1767 * decimal.
1768 *
1769 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1770 * decimalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1771 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1772 *
1773 * The trick is that "digits" holds a base-10 number, but sometimes
1774 * the individual digits are > 10.
1775 *
1776 * Outer loop is per nibble (hex digit) of input, from MSD end to
1777 * LSD end.
1778 */
1779 decimal_digits = 0; /* Number of decimal digits so far */
1780 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1781 flip = 0;
1782 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1783 {
1784 /*
1785 * Multiply current base-ten number by 16 in place.
1786 * Each digit was between 0 and 9, now is between
1787 * 0 and 144.
1788 */
1789 for (j = 0; j < decimal_digits; j++)
1790 {
1791 digits[j] = SHIFT (digits[j]);
1792 }
1793
1794 /* Take the next nibble off the input and add it to what
1795 * we've got in the LSB position. Bottom 'digit' is now
1796 * between 0 and 159.
1797 *
1798 * "flip" is used to run this loop twice for each byte.
1799 */
1800 if (flip == 0)
1801 {
1802 /* Take top nibble. */
1803
1804 digits[0] += HIGH_NIBBLE (*p);
1805 flip = 1;
1806 }
1807 else
1808 {
1809 /* Take low nibble and bump our pointer "p". */
1810
1811 digits[0] += LOW_NIBBLE (*p);
1812 if (byte_order == BFD_ENDIAN_BIG)
1813 p++;
1814 else
1815 p--;
1816 flip = 0;
1817 }
1818
1819 /* Re-decimalize. We have to do this often enough
1820 * that we don't overflow, but once per nibble is
1821 * overkill. Easier this way, though. Note that the
1822 * carry is often larger than 10 (e.g. max initial
1823 * carry out of lowest nibble is 15, could bubble all
1824 * the way up greater than 10). So we have to do
1825 * the carrying beyond the last current digit.
1826 */
1827 carry = 0;
1828 for (j = 0; j < decimal_len - 1; j++)
1829 {
1830 digits[j] += carry;
1831
1832 /* "/" won't handle an unsigned char with
1833 * a value that if signed would be negative.
1834 * So extend to longword int via "dummy".
1835 */
1836 dummy = digits[j];
1837 carry = CARRY_OUT (dummy);
1838 digits[j] = CARRY_LEFT (dummy);
1839
1840 if (j >= decimal_digits && carry == 0)
1841 {
1842 /*
1843 * All higher digits are 0 and we
1844 * no longer have a carry.
1845 *
1846 * Note: "j" is 0-based, "decimal_digits" is
1847 * 1-based.
1848 */
1849 decimal_digits = j + 1;
1850 break;
1851 }
1852 }
1853 }
1854
1855 /* Ok, now "digits" is the decimal representation, with
1856 the "decimal_digits" actual digits. Print! */
1857
1858 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
1859 ;
1860
1861 for (; i >= 0; i--)
1862 {
1863 fprintf_filtered (stream, "%1d", digits[i]);
1864 }
1865 }
1866
1867 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1868
1869 void
1870 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1871 unsigned len, enum bfd_endian byte_order,
1872 bool zero_pad)
1873 {
1874 const gdb_byte *p;
1875
1876 fputs_filtered ("0x", stream);
1877 if (byte_order == BFD_ENDIAN_BIG)
1878 {
1879 p = valaddr;
1880
1881 if (!zero_pad)
1882 {
1883 /* Strip leading 0 bytes, but be sure to leave at least a
1884 single byte at the end. */
1885 for (; p < valaddr + len - 1 && !*p; ++p)
1886 ;
1887 }
1888
1889 const gdb_byte *first = p;
1890 for (;
1891 p < valaddr + len;
1892 p++)
1893 {
1894 /* When not zero-padding, use a different format for the
1895 very first byte printed. */
1896 if (!zero_pad && p == first)
1897 fprintf_filtered (stream, "%x", *p);
1898 else
1899 fprintf_filtered (stream, "%02x", *p);
1900 }
1901 }
1902 else
1903 {
1904 p = valaddr + len - 1;
1905
1906 if (!zero_pad)
1907 {
1908 /* Strip leading 0 bytes, but be sure to leave at least a
1909 single byte at the end. */
1910 for (; p >= valaddr + 1 && !*p; --p)
1911 ;
1912 }
1913
1914 const gdb_byte *first = p;
1915 for (;
1916 p >= valaddr;
1917 p--)
1918 {
1919 /* When not zero-padding, use a different format for the
1920 very first byte printed. */
1921 if (!zero_pad && p == first)
1922 fprintf_filtered (stream, "%x", *p);
1923 else
1924 fprintf_filtered (stream, "%02x", *p);
1925 }
1926 }
1927 }
1928
1929 /* VALADDR points to a char integer of LEN bytes.
1930 Print it out in appropriate language form on stream.
1931 Omit any leading zero chars. */
1932
1933 void
1934 print_char_chars (struct ui_file *stream, struct type *type,
1935 const gdb_byte *valaddr,
1936 unsigned len, enum bfd_endian byte_order)
1937 {
1938 const gdb_byte *p;
1939
1940 if (byte_order == BFD_ENDIAN_BIG)
1941 {
1942 p = valaddr;
1943 while (p < valaddr + len - 1 && *p == 0)
1944 ++p;
1945
1946 while (p < valaddr + len)
1947 {
1948 LA_EMIT_CHAR (*p, type, stream, '\'');
1949 ++p;
1950 }
1951 }
1952 else
1953 {
1954 p = valaddr + len - 1;
1955 while (p > valaddr && *p == 0)
1956 --p;
1957
1958 while (p >= valaddr)
1959 {
1960 LA_EMIT_CHAR (*p, type, stream, '\'');
1961 --p;
1962 }
1963 }
1964 }
1965
1966 /* Print function pointer with inferior address ADDRESS onto stdio
1967 stream STREAM. */
1968
1969 void
1970 print_function_pointer_address (const struct value_print_options *options,
1971 struct gdbarch *gdbarch,
1972 CORE_ADDR address,
1973 struct ui_file *stream)
1974 {
1975 CORE_ADDR func_addr
1976 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1977 current_top_target ());
1978
1979 /* If the function pointer is represented by a description, print
1980 the address of the description. */
1981 if (options->addressprint && func_addr != address)
1982 {
1983 fputs_filtered ("@", stream);
1984 fputs_filtered (paddress (gdbarch, address), stream);
1985 fputs_filtered (": ", stream);
1986 }
1987 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1988 }
1989
1990
1991 /* Print on STREAM using the given OPTIONS the index for the element
1992 at INDEX of an array whose index type is INDEX_TYPE. */
1993
1994 void
1995 maybe_print_array_index (struct type *index_type, LONGEST index,
1996 struct ui_file *stream,
1997 const struct value_print_options *options)
1998 {
1999 struct value *index_value;
2000
2001 if (!options->print_array_indexes)
2002 return;
2003
2004 index_value = value_from_longest (index_type, index);
2005
2006 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
2007 }
2008
2009 /* Called by various <lang>_val_print routines to print elements of an
2010 array in the form "<elem1>, <elem2>, <elem3>, ...".
2011
2012 (FIXME?) Assumes array element separator is a comma, which is correct
2013 for all languages currently handled.
2014 (FIXME?) Some languages have a notation for repeated array elements,
2015 perhaps we should try to use that notation when appropriate. */
2016
2017 void
2018 val_print_array_elements (struct type *type,
2019 LONGEST embedded_offset,
2020 CORE_ADDR address, struct ui_file *stream,
2021 int recurse,
2022 struct value *val,
2023 const struct value_print_options *options,
2024 unsigned int i)
2025 {
2026 unsigned int things_printed = 0;
2027 unsigned len;
2028 struct type *elttype, *index_type, *base_index_type;
2029 unsigned eltlen;
2030 /* Position of the array element we are examining to see
2031 whether it is repeated. */
2032 unsigned int rep1;
2033 /* Number of repetitions we have detected so far. */
2034 unsigned int reps;
2035 LONGEST low_bound, high_bound;
2036 LONGEST low_pos, high_pos;
2037
2038 elttype = TYPE_TARGET_TYPE (type);
2039 eltlen = type_length_units (check_typedef (elttype));
2040 index_type = TYPE_INDEX_TYPE (type);
2041
2042 if (get_array_bounds (type, &low_bound, &high_bound))
2043 {
2044 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
2045 base_index_type = TYPE_TARGET_TYPE (index_type);
2046 else
2047 base_index_type = index_type;
2048
2049 /* Non-contiguous enumerations types can by used as index types
2050 in some languages (e.g. Ada). In this case, the array length
2051 shall be computed from the positions of the first and last
2052 literal in the enumeration type, and not from the values
2053 of these literals. */
2054 if (!discrete_position (base_index_type, low_bound, &low_pos)
2055 || !discrete_position (base_index_type, high_bound, &high_pos))
2056 {
2057 warning (_("unable to get positions in array, use bounds instead"));
2058 low_pos = low_bound;
2059 high_pos = high_bound;
2060 }
2061
2062 /* The array length should normally be HIGH_POS - LOW_POS + 1.
2063 But we have to be a little extra careful, because some languages
2064 such as Ada allow LOW_POS to be greater than HIGH_POS for
2065 empty arrays. In that situation, the array length is just zero,
2066 not negative! */
2067 if (low_pos > high_pos)
2068 len = 0;
2069 else
2070 len = high_pos - low_pos + 1;
2071 }
2072 else
2073 {
2074 warning (_("unable to get bounds of array, assuming null array"));
2075 low_bound = 0;
2076 len = 0;
2077 }
2078
2079 annotate_array_section_begin (i, elttype);
2080
2081 for (; i < len && things_printed < options->print_max; i++)
2082 {
2083 if (i != 0)
2084 {
2085 if (options->prettyformat_arrays)
2086 {
2087 fprintf_filtered (stream, ",\n");
2088 print_spaces_filtered (2 + 2 * recurse, stream);
2089 }
2090 else
2091 {
2092 fprintf_filtered (stream, ", ");
2093 }
2094 }
2095 wrap_here (n_spaces (2 + 2 * recurse));
2096 maybe_print_array_index (index_type, i + low_bound,
2097 stream, options);
2098
2099 rep1 = i + 1;
2100 reps = 1;
2101 /* Only check for reps if repeat_count_threshold is not set to
2102 UINT_MAX (unlimited). */
2103 if (options->repeat_count_threshold < UINT_MAX)
2104 {
2105 while (rep1 < len
2106 && value_contents_eq (val,
2107 embedded_offset + i * eltlen,
2108 val,
2109 (embedded_offset
2110 + rep1 * eltlen),
2111 eltlen))
2112 {
2113 ++reps;
2114 ++rep1;
2115 }
2116 }
2117
2118 if (reps > options->repeat_count_threshold)
2119 {
2120 val_print (elttype, embedded_offset + i * eltlen,
2121 address, stream, recurse + 1, val, options,
2122 current_language);
2123 annotate_elt_rep (reps);
2124 fprintf_filtered (stream, " %p[<repeats %u times>%p]",
2125 metadata_style.style ().ptr (), reps, nullptr);
2126 annotate_elt_rep_end ();
2127
2128 i = rep1 - 1;
2129 things_printed += options->repeat_count_threshold;
2130 }
2131 else
2132 {
2133 val_print (elttype, embedded_offset + i * eltlen,
2134 address,
2135 stream, recurse + 1, val, options, current_language);
2136 annotate_elt ();
2137 things_printed++;
2138 }
2139 }
2140 annotate_array_section_end ();
2141 if (i < len)
2142 {
2143 fprintf_filtered (stream, "...");
2144 }
2145 }
2146
2147 /* Read LEN bytes of target memory at address MEMADDR, placing the
2148 results in GDB's memory at MYADDR. Returns a count of the bytes
2149 actually read, and optionally a target_xfer_status value in the
2150 location pointed to by ERRPTR if ERRPTR is non-null. */
2151
2152 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2153 function be eliminated. */
2154
2155 static int
2156 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2157 int len, int *errptr)
2158 {
2159 int nread; /* Number of bytes actually read. */
2160 int errcode; /* Error from last read. */
2161
2162 /* First try a complete read. */
2163 errcode = target_read_memory (memaddr, myaddr, len);
2164 if (errcode == 0)
2165 {
2166 /* Got it all. */
2167 nread = len;
2168 }
2169 else
2170 {
2171 /* Loop, reading one byte at a time until we get as much as we can. */
2172 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2173 {
2174 errcode = target_read_memory (memaddr++, myaddr++, 1);
2175 }
2176 /* If an error, the last read was unsuccessful, so adjust count. */
2177 if (errcode != 0)
2178 {
2179 nread--;
2180 }
2181 }
2182 if (errptr != NULL)
2183 {
2184 *errptr = errcode;
2185 }
2186 return (nread);
2187 }
2188
2189 /* Read a string from the inferior, at ADDR, with LEN characters of
2190 WIDTH bytes each. Fetch at most FETCHLIMIT characters. BUFFER
2191 will be set to a newly allocated buffer containing the string, and
2192 BYTES_READ will be set to the number of bytes read. Returns 0 on
2193 success, or a target_xfer_status on failure.
2194
2195 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2196 (including eventual NULs in the middle or end of the string).
2197
2198 If LEN is -1, stops at the first null character (not necessarily
2199 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2200 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2201 the string.
2202
2203 Unless an exception is thrown, BUFFER will always be allocated, even on
2204 failure. In this case, some characters might have been read before the
2205 failure happened. Check BYTES_READ to recognize this situation.
2206
2207 Note: There was a FIXME asking to make this code use target_read_string,
2208 but this function is more general (can read past null characters, up to
2209 given LEN). Besides, it is used much more often than target_read_string
2210 so it is more tested. Perhaps callers of target_read_string should use
2211 this function instead? */
2212
2213 int
2214 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2215 enum bfd_endian byte_order, gdb::unique_xmalloc_ptr<gdb_byte> *buffer,
2216 int *bytes_read)
2217 {
2218 int errcode; /* Errno returned from bad reads. */
2219 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2220 gdb_byte *bufptr; /* Pointer to next available byte in
2221 buffer. */
2222
2223 /* Loop until we either have all the characters, or we encounter
2224 some error, such as bumping into the end of the address space. */
2225
2226 buffer->reset (nullptr);
2227
2228 if (len > 0)
2229 {
2230 /* We want fetchlimit chars, so we might as well read them all in
2231 one operation. */
2232 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2233
2234 buffer->reset ((gdb_byte *) xmalloc (fetchlen * width));
2235 bufptr = buffer->get ();
2236
2237 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2238 / width;
2239 addr += nfetch * width;
2240 bufptr += nfetch * width;
2241 }
2242 else if (len == -1)
2243 {
2244 unsigned long bufsize = 0;
2245 unsigned int chunksize; /* Size of each fetch, in chars. */
2246 int found_nul; /* Non-zero if we found the nul char. */
2247 gdb_byte *limit; /* First location past end of fetch buffer. */
2248
2249 found_nul = 0;
2250 /* We are looking for a NUL terminator to end the fetching, so we
2251 might as well read in blocks that are large enough to be efficient,
2252 but not so large as to be slow if fetchlimit happens to be large.
2253 So we choose the minimum of 8 and fetchlimit. We used to use 200
2254 instead of 8 but 200 is way too big for remote debugging over a
2255 serial line. */
2256 chunksize = std::min (8u, fetchlimit);
2257
2258 do
2259 {
2260 QUIT;
2261 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2262
2263 if (*buffer == NULL)
2264 buffer->reset ((gdb_byte *) xmalloc (nfetch * width));
2265 else
2266 buffer->reset ((gdb_byte *) xrealloc (buffer->release (),
2267 (nfetch + bufsize) * width));
2268
2269 bufptr = buffer->get () + bufsize * width;
2270 bufsize += nfetch;
2271
2272 /* Read as much as we can. */
2273 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2274 / width;
2275
2276 /* Scan this chunk for the null character that terminates the string
2277 to print. If found, we don't need to fetch any more. Note
2278 that bufptr is explicitly left pointing at the next character
2279 after the null character, or at the next character after the end
2280 of the buffer. */
2281
2282 limit = bufptr + nfetch * width;
2283 while (bufptr < limit)
2284 {
2285 unsigned long c;
2286
2287 c = extract_unsigned_integer (bufptr, width, byte_order);
2288 addr += width;
2289 bufptr += width;
2290 if (c == 0)
2291 {
2292 /* We don't care about any error which happened after
2293 the NUL terminator. */
2294 errcode = 0;
2295 found_nul = 1;
2296 break;
2297 }
2298 }
2299 }
2300 while (errcode == 0 /* no error */
2301 && bufptr - buffer->get () < fetchlimit * width /* no overrun */
2302 && !found_nul); /* haven't found NUL yet */
2303 }
2304 else
2305 { /* Length of string is really 0! */
2306 /* We always allocate *buffer. */
2307 buffer->reset ((gdb_byte *) xmalloc (1));
2308 bufptr = buffer->get ();
2309 errcode = 0;
2310 }
2311
2312 /* bufptr and addr now point immediately beyond the last byte which we
2313 consider part of the string (including a '\0' which ends the string). */
2314 *bytes_read = bufptr - buffer->get ();
2315
2316 QUIT;
2317
2318 return errcode;
2319 }
2320
2321 /* Return true if print_wchar can display W without resorting to a
2322 numeric escape, false otherwise. */
2323
2324 static int
2325 wchar_printable (gdb_wchar_t w)
2326 {
2327 return (gdb_iswprint (w)
2328 || w == LCST ('\a') || w == LCST ('\b')
2329 || w == LCST ('\f') || w == LCST ('\n')
2330 || w == LCST ('\r') || w == LCST ('\t')
2331 || w == LCST ('\v'));
2332 }
2333
2334 /* A helper function that converts the contents of STRING to wide
2335 characters and then appends them to OUTPUT. */
2336
2337 static void
2338 append_string_as_wide (const char *string,
2339 struct obstack *output)
2340 {
2341 for (; *string; ++string)
2342 {
2343 gdb_wchar_t w = gdb_btowc (*string);
2344 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2345 }
2346 }
2347
2348 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2349 original (target) bytes representing the character, ORIG_LEN is the
2350 number of valid bytes. WIDTH is the number of bytes in a base
2351 characters of the type. OUTPUT is an obstack to which wide
2352 characters are emitted. QUOTER is a (narrow) character indicating
2353 the style of quotes surrounding the character to be printed.
2354 NEED_ESCAPE is an in/out flag which is used to track numeric
2355 escapes across calls. */
2356
2357 static void
2358 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2359 int orig_len, int width,
2360 enum bfd_endian byte_order,
2361 struct obstack *output,
2362 int quoter, int *need_escapep)
2363 {
2364 int need_escape = *need_escapep;
2365
2366 *need_escapep = 0;
2367
2368 /* iswprint implementation on Windows returns 1 for tab character.
2369 In order to avoid different printout on this host, we explicitly
2370 use wchar_printable function. */
2371 switch (w)
2372 {
2373 case LCST ('\a'):
2374 obstack_grow_wstr (output, LCST ("\\a"));
2375 break;
2376 case LCST ('\b'):
2377 obstack_grow_wstr (output, LCST ("\\b"));
2378 break;
2379 case LCST ('\f'):
2380 obstack_grow_wstr (output, LCST ("\\f"));
2381 break;
2382 case LCST ('\n'):
2383 obstack_grow_wstr (output, LCST ("\\n"));
2384 break;
2385 case LCST ('\r'):
2386 obstack_grow_wstr (output, LCST ("\\r"));
2387 break;
2388 case LCST ('\t'):
2389 obstack_grow_wstr (output, LCST ("\\t"));
2390 break;
2391 case LCST ('\v'):
2392 obstack_grow_wstr (output, LCST ("\\v"));
2393 break;
2394 default:
2395 {
2396 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2397 && w != LCST ('8')
2398 && w != LCST ('9'))))
2399 {
2400 gdb_wchar_t wchar = w;
2401
2402 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2403 obstack_grow_wstr (output, LCST ("\\"));
2404 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2405 }
2406 else
2407 {
2408 int i;
2409
2410 for (i = 0; i + width <= orig_len; i += width)
2411 {
2412 char octal[30];
2413 ULONGEST value;
2414
2415 value = extract_unsigned_integer (&orig[i], width,
2416 byte_order);
2417 /* If the value fits in 3 octal digits, print it that
2418 way. Otherwise, print it as a hex escape. */
2419 if (value <= 0777)
2420 xsnprintf (octal, sizeof (octal), "\\%.3o",
2421 (int) (value & 0777));
2422 else
2423 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2424 append_string_as_wide (octal, output);
2425 }
2426 /* If we somehow have extra bytes, print them now. */
2427 while (i < orig_len)
2428 {
2429 char octal[5];
2430
2431 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2432 append_string_as_wide (octal, output);
2433 ++i;
2434 }
2435
2436 *need_escapep = 1;
2437 }
2438 break;
2439 }
2440 }
2441 }
2442
2443 /* Print the character C on STREAM as part of the contents of a
2444 literal string whose delimiter is QUOTER. ENCODING names the
2445 encoding of C. */
2446
2447 void
2448 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2449 int quoter, const char *encoding)
2450 {
2451 enum bfd_endian byte_order
2452 = type_byte_order (type);
2453 gdb_byte *c_buf;
2454 int need_escape = 0;
2455
2456 c_buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2457 pack_long (c_buf, type, c);
2458
2459 wchar_iterator iter (c_buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2460
2461 /* This holds the printable form of the wchar_t data. */
2462 auto_obstack wchar_buf;
2463
2464 while (1)
2465 {
2466 int num_chars;
2467 gdb_wchar_t *chars;
2468 const gdb_byte *buf;
2469 size_t buflen;
2470 int print_escape = 1;
2471 enum wchar_iterate_result result;
2472
2473 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2474 if (num_chars < 0)
2475 break;
2476 if (num_chars > 0)
2477 {
2478 /* If all characters are printable, print them. Otherwise,
2479 we're going to have to print an escape sequence. We
2480 check all characters because we want to print the target
2481 bytes in the escape sequence, and we don't know character
2482 boundaries there. */
2483 int i;
2484
2485 print_escape = 0;
2486 for (i = 0; i < num_chars; ++i)
2487 if (!wchar_printable (chars[i]))
2488 {
2489 print_escape = 1;
2490 break;
2491 }
2492
2493 if (!print_escape)
2494 {
2495 for (i = 0; i < num_chars; ++i)
2496 print_wchar (chars[i], buf, buflen,
2497 TYPE_LENGTH (type), byte_order,
2498 &wchar_buf, quoter, &need_escape);
2499 }
2500 }
2501
2502 /* This handles the NUM_CHARS == 0 case as well. */
2503 if (print_escape)
2504 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2505 byte_order, &wchar_buf, quoter, &need_escape);
2506 }
2507
2508 /* The output in the host encoding. */
2509 auto_obstack output;
2510
2511 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2512 (gdb_byte *) obstack_base (&wchar_buf),
2513 obstack_object_size (&wchar_buf),
2514 sizeof (gdb_wchar_t), &output, translit_char);
2515 obstack_1grow (&output, '\0');
2516
2517 fputs_filtered ((const char *) obstack_base (&output), stream);
2518 }
2519
2520 /* Return the repeat count of the next character/byte in ITER,
2521 storing the result in VEC. */
2522
2523 static int
2524 count_next_character (wchar_iterator *iter,
2525 std::vector<converted_character> *vec)
2526 {
2527 struct converted_character *current;
2528
2529 if (vec->empty ())
2530 {
2531 struct converted_character tmp;
2532 gdb_wchar_t *chars;
2533
2534 tmp.num_chars
2535 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2536 if (tmp.num_chars > 0)
2537 {
2538 gdb_assert (tmp.num_chars < MAX_WCHARS);
2539 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2540 }
2541 vec->push_back (tmp);
2542 }
2543
2544 current = &vec->back ();
2545
2546 /* Count repeated characters or bytes. */
2547 current->repeat_count = 1;
2548 if (current->num_chars == -1)
2549 {
2550 /* EOF */
2551 return -1;
2552 }
2553 else
2554 {
2555 gdb_wchar_t *chars;
2556 struct converted_character d;
2557 int repeat;
2558
2559 d.repeat_count = 0;
2560
2561 while (1)
2562 {
2563 /* Get the next character. */
2564 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2565
2566 /* If a character was successfully converted, save the character
2567 into the converted character. */
2568 if (d.num_chars > 0)
2569 {
2570 gdb_assert (d.num_chars < MAX_WCHARS);
2571 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2572 }
2573
2574 /* Determine if the current character is the same as this
2575 new character. */
2576 if (d.num_chars == current->num_chars && d.result == current->result)
2577 {
2578 /* There are two cases to consider:
2579
2580 1) Equality of converted character (num_chars > 0)
2581 2) Equality of non-converted character (num_chars == 0) */
2582 if ((current->num_chars > 0
2583 && memcmp (current->chars, d.chars,
2584 WCHAR_BUFLEN (current->num_chars)) == 0)
2585 || (current->num_chars == 0
2586 && current->buflen == d.buflen
2587 && memcmp (current->buf, d.buf, current->buflen) == 0))
2588 ++current->repeat_count;
2589 else
2590 break;
2591 }
2592 else
2593 break;
2594 }
2595
2596 /* Push this next converted character onto the result vector. */
2597 repeat = current->repeat_count;
2598 vec->push_back (d);
2599 return repeat;
2600 }
2601 }
2602
2603 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2604 character to use with string output. WIDTH is the size of the output
2605 character type. BYTE_ORDER is the target byte order. OPTIONS
2606 is the user's print options. */
2607
2608 static void
2609 print_converted_chars_to_obstack (struct obstack *obstack,
2610 const std::vector<converted_character> &chars,
2611 int quote_char, int width,
2612 enum bfd_endian byte_order,
2613 const struct value_print_options *options)
2614 {
2615 unsigned int idx;
2616 const converted_character *elem;
2617 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2618 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2619 int need_escape = 0;
2620
2621 /* Set the start state. */
2622 idx = 0;
2623 last = state = START;
2624 elem = NULL;
2625
2626 while (1)
2627 {
2628 switch (state)
2629 {
2630 case START:
2631 /* Nothing to do. */
2632 break;
2633
2634 case SINGLE:
2635 {
2636 int j;
2637
2638 /* We are outputting a single character
2639 (< options->repeat_count_threshold). */
2640
2641 if (last != SINGLE)
2642 {
2643 /* We were outputting some other type of content, so we
2644 must output and a comma and a quote. */
2645 if (last != START)
2646 obstack_grow_wstr (obstack, LCST (", "));
2647 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2648 }
2649 /* Output the character. */
2650 for (j = 0; j < elem->repeat_count; ++j)
2651 {
2652 if (elem->result == wchar_iterate_ok)
2653 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2654 byte_order, obstack, quote_char, &need_escape);
2655 else
2656 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2657 byte_order, obstack, quote_char, &need_escape);
2658 }
2659 }
2660 break;
2661
2662 case REPEAT:
2663 {
2664 int j;
2665
2666 /* We are outputting a character with a repeat count
2667 greater than options->repeat_count_threshold. */
2668
2669 if (last == SINGLE)
2670 {
2671 /* We were outputting a single string. Terminate the
2672 string. */
2673 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2674 }
2675 if (last != START)
2676 obstack_grow_wstr (obstack, LCST (", "));
2677
2678 /* Output the character and repeat string. */
2679 obstack_grow_wstr (obstack, LCST ("'"));
2680 if (elem->result == wchar_iterate_ok)
2681 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2682 byte_order, obstack, quote_char, &need_escape);
2683 else
2684 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2685 byte_order, obstack, quote_char, &need_escape);
2686 obstack_grow_wstr (obstack, LCST ("'"));
2687 std::string s = string_printf (_(" <repeats %u times>"),
2688 elem->repeat_count);
2689 for (j = 0; s[j]; ++j)
2690 {
2691 gdb_wchar_t w = gdb_btowc (s[j]);
2692 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2693 }
2694 }
2695 break;
2696
2697 case INCOMPLETE:
2698 /* We are outputting an incomplete sequence. */
2699 if (last == SINGLE)
2700 {
2701 /* If we were outputting a string of SINGLE characters,
2702 terminate the quote. */
2703 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2704 }
2705 if (last != START)
2706 obstack_grow_wstr (obstack, LCST (", "));
2707
2708 /* Output the incomplete sequence string. */
2709 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2710 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2711 obstack, 0, &need_escape);
2712 obstack_grow_wstr (obstack, LCST (">"));
2713
2714 /* We do not attempt to output anything after this. */
2715 state = FINISH;
2716 break;
2717
2718 case FINISH:
2719 /* All done. If we were outputting a string of SINGLE
2720 characters, the string must be terminated. Otherwise,
2721 REPEAT and INCOMPLETE are always left properly terminated. */
2722 if (last == SINGLE)
2723 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2724
2725 return;
2726 }
2727
2728 /* Get the next element and state. */
2729 last = state;
2730 if (state != FINISH)
2731 {
2732 elem = &chars[idx++];
2733 switch (elem->result)
2734 {
2735 case wchar_iterate_ok:
2736 case wchar_iterate_invalid:
2737 if (elem->repeat_count > options->repeat_count_threshold)
2738 state = REPEAT;
2739 else
2740 state = SINGLE;
2741 break;
2742
2743 case wchar_iterate_incomplete:
2744 state = INCOMPLETE;
2745 break;
2746
2747 case wchar_iterate_eof:
2748 state = FINISH;
2749 break;
2750 }
2751 }
2752 }
2753 }
2754
2755 /* Print the character string STRING, printing at most LENGTH
2756 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2757 the type of each character. OPTIONS holds the printing options;
2758 printing stops early if the number hits print_max; repeat counts
2759 are printed as appropriate. Print ellipses at the end if we had to
2760 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2761 QUOTE_CHAR is the character to print at each end of the string. If
2762 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2763 omitted. */
2764
2765 void
2766 generic_printstr (struct ui_file *stream, struct type *type,
2767 const gdb_byte *string, unsigned int length,
2768 const char *encoding, int force_ellipses,
2769 int quote_char, int c_style_terminator,
2770 const struct value_print_options *options)
2771 {
2772 enum bfd_endian byte_order = type_byte_order (type);
2773 unsigned int i;
2774 int width = TYPE_LENGTH (type);
2775 int finished = 0;
2776 struct converted_character *last;
2777
2778 if (length == -1)
2779 {
2780 unsigned long current_char = 1;
2781
2782 for (i = 0; current_char; ++i)
2783 {
2784 QUIT;
2785 current_char = extract_unsigned_integer (string + i * width,
2786 width, byte_order);
2787 }
2788 length = i;
2789 }
2790
2791 /* If the string was not truncated due to `set print elements', and
2792 the last byte of it is a null, we don't print that, in
2793 traditional C style. */
2794 if (c_style_terminator
2795 && !force_ellipses
2796 && length > 0
2797 && (extract_unsigned_integer (string + (length - 1) * width,
2798 width, byte_order) == 0))
2799 length--;
2800
2801 if (length == 0)
2802 {
2803 fputs_filtered ("\"\"", stream);
2804 return;
2805 }
2806
2807 /* Arrange to iterate over the characters, in wchar_t form. */
2808 wchar_iterator iter (string, length * width, encoding, width);
2809 std::vector<converted_character> converted_chars;
2810
2811 /* Convert characters until the string is over or the maximum
2812 number of printed characters has been reached. */
2813 i = 0;
2814 while (i < options->print_max)
2815 {
2816 int r;
2817
2818 QUIT;
2819
2820 /* Grab the next character and repeat count. */
2821 r = count_next_character (&iter, &converted_chars);
2822
2823 /* If less than zero, the end of the input string was reached. */
2824 if (r < 0)
2825 break;
2826
2827 /* Otherwise, add the count to the total print count and get
2828 the next character. */
2829 i += r;
2830 }
2831
2832 /* Get the last element and determine if the entire string was
2833 processed. */
2834 last = &converted_chars.back ();
2835 finished = (last->result == wchar_iterate_eof);
2836
2837 /* Ensure that CONVERTED_CHARS is terminated. */
2838 last->result = wchar_iterate_eof;
2839
2840 /* WCHAR_BUF is the obstack we use to represent the string in
2841 wchar_t form. */
2842 auto_obstack wchar_buf;
2843
2844 /* Print the output string to the obstack. */
2845 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2846 width, byte_order, options);
2847
2848 if (force_ellipses || !finished)
2849 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2850
2851 /* OUTPUT is where we collect `char's for printing. */
2852 auto_obstack output;
2853
2854 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2855 (gdb_byte *) obstack_base (&wchar_buf),
2856 obstack_object_size (&wchar_buf),
2857 sizeof (gdb_wchar_t), &output, translit_char);
2858 obstack_1grow (&output, '\0');
2859
2860 fputs_filtered ((const char *) obstack_base (&output), stream);
2861 }
2862
2863 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2864 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2865 stops at the first null byte, otherwise printing proceeds (including null
2866 bytes) until either print_max or LEN characters have been printed,
2867 whichever is smaller. ENCODING is the name of the string's
2868 encoding. It can be NULL, in which case the target encoding is
2869 assumed. */
2870
2871 int
2872 val_print_string (struct type *elttype, const char *encoding,
2873 CORE_ADDR addr, int len,
2874 struct ui_file *stream,
2875 const struct value_print_options *options)
2876 {
2877 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2878 int err; /* Non-zero if we got a bad read. */
2879 int found_nul; /* Non-zero if we found the nul char. */
2880 unsigned int fetchlimit; /* Maximum number of chars to print. */
2881 int bytes_read;
2882 gdb::unique_xmalloc_ptr<gdb_byte> buffer; /* Dynamically growable fetch buffer. */
2883 struct gdbarch *gdbarch = get_type_arch (elttype);
2884 enum bfd_endian byte_order = type_byte_order (elttype);
2885 int width = TYPE_LENGTH (elttype);
2886
2887 /* First we need to figure out the limit on the number of characters we are
2888 going to attempt to fetch and print. This is actually pretty simple. If
2889 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2890 LEN is -1, then the limit is print_max. This is true regardless of
2891 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2892 because finding the null byte (or available memory) is what actually
2893 limits the fetch. */
2894
2895 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2896 options->print_max));
2897
2898 err = read_string (addr, len, width, fetchlimit, byte_order,
2899 &buffer, &bytes_read);
2900
2901 addr += bytes_read;
2902
2903 /* We now have either successfully filled the buffer to fetchlimit,
2904 or terminated early due to an error or finding a null char when
2905 LEN is -1. */
2906
2907 /* Determine found_nul by looking at the last character read. */
2908 found_nul = 0;
2909 if (bytes_read >= width)
2910 found_nul = extract_unsigned_integer (buffer.get () + bytes_read - width,
2911 width, byte_order) == 0;
2912 if (len == -1 && !found_nul)
2913 {
2914 gdb_byte *peekbuf;
2915
2916 /* We didn't find a NUL terminator we were looking for. Attempt
2917 to peek at the next character. If not successful, or it is not
2918 a null byte, then force ellipsis to be printed. */
2919
2920 peekbuf = (gdb_byte *) alloca (width);
2921
2922 if (target_read_memory (addr, peekbuf, width) == 0
2923 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2924 force_ellipsis = 1;
2925 }
2926 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2927 {
2928 /* Getting an error when we have a requested length, or fetching less
2929 than the number of characters actually requested, always make us
2930 print ellipsis. */
2931 force_ellipsis = 1;
2932 }
2933
2934 /* If we get an error before fetching anything, don't print a string.
2935 But if we fetch something and then get an error, print the string
2936 and then the error message. */
2937 if (err == 0 || bytes_read > 0)
2938 {
2939 LA_PRINT_STRING (stream, elttype, buffer.get (), bytes_read / width,
2940 encoding, force_ellipsis, options);
2941 }
2942
2943 if (err != 0)
2944 {
2945 std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2946
2947 fprintf_filtered (stream, _("<error: %ps>"),
2948 styled_string (metadata_style.style (),
2949 str.c_str ()));
2950 }
2951
2952 return (bytes_read / width);
2953 }
2954
2955 /* Handle 'show print max-depth'. */
2956
2957 static void
2958 show_print_max_depth (struct ui_file *file, int from_tty,
2959 struct cmd_list_element *c, const char *value)
2960 {
2961 fprintf_filtered (file, _("Maximum print depth is %s.\n"), value);
2962 }
2963 \f
2964
2965 /* The 'set input-radix' command writes to this auxiliary variable.
2966 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2967 it is left unchanged. */
2968
2969 static unsigned input_radix_1 = 10;
2970
2971 /* Validate an input or output radix setting, and make sure the user
2972 knows what they really did here. Radix setting is confusing, e.g.
2973 setting the input radix to "10" never changes it! */
2974
2975 static void
2976 set_input_radix (const char *args, int from_tty, struct cmd_list_element *c)
2977 {
2978 set_input_radix_1 (from_tty, input_radix_1);
2979 }
2980
2981 static void
2982 set_input_radix_1 (int from_tty, unsigned radix)
2983 {
2984 /* We don't currently disallow any input radix except 0 or 1, which don't
2985 make any mathematical sense. In theory, we can deal with any input
2986 radix greater than 1, even if we don't have unique digits for every
2987 value from 0 to radix-1, but in practice we lose on large radix values.
2988 We should either fix the lossage or restrict the radix range more.
2989 (FIXME). */
2990
2991 if (radix < 2)
2992 {
2993 input_radix_1 = input_radix;
2994 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2995 radix);
2996 }
2997 input_radix_1 = input_radix = radix;
2998 if (from_tty)
2999 {
3000 printf_filtered (_("Input radix now set to "
3001 "decimal %u, hex %x, octal %o.\n"),
3002 radix, radix, radix);
3003 }
3004 }
3005
3006 /* The 'set output-radix' command writes to this auxiliary variable.
3007 If the requested radix is valid, OUTPUT_RADIX is updated,
3008 otherwise, it is left unchanged. */
3009
3010 static unsigned output_radix_1 = 10;
3011
3012 static void
3013 set_output_radix (const char *args, int from_tty, struct cmd_list_element *c)
3014 {
3015 set_output_radix_1 (from_tty, output_radix_1);
3016 }
3017
3018 static void
3019 set_output_radix_1 (int from_tty, unsigned radix)
3020 {
3021 /* Validate the radix and disallow ones that we aren't prepared to
3022 handle correctly, leaving the radix unchanged. */
3023 switch (radix)
3024 {
3025 case 16:
3026 user_print_options.output_format = 'x'; /* hex */
3027 break;
3028 case 10:
3029 user_print_options.output_format = 0; /* decimal */
3030 break;
3031 case 8:
3032 user_print_options.output_format = 'o'; /* octal */
3033 break;
3034 default:
3035 output_radix_1 = output_radix;
3036 error (_("Unsupported output radix ``decimal %u''; "
3037 "output radix unchanged."),
3038 radix);
3039 }
3040 output_radix_1 = output_radix = radix;
3041 if (from_tty)
3042 {
3043 printf_filtered (_("Output radix now set to "
3044 "decimal %u, hex %x, octal %o.\n"),
3045 radix, radix, radix);
3046 }
3047 }
3048
3049 /* Set both the input and output radix at once. Try to set the output radix
3050 first, since it has the most restrictive range. An radix that is valid as
3051 an output radix is also valid as an input radix.
3052
3053 It may be useful to have an unusual input radix. If the user wishes to
3054 set an input radix that is not valid as an output radix, he needs to use
3055 the 'set input-radix' command. */
3056
3057 static void
3058 set_radix (const char *arg, int from_tty)
3059 {
3060 unsigned radix;
3061
3062 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
3063 set_output_radix_1 (0, radix);
3064 set_input_radix_1 (0, radix);
3065 if (from_tty)
3066 {
3067 printf_filtered (_("Input and output radices now set to "
3068 "decimal %u, hex %x, octal %o.\n"),
3069 radix, radix, radix);
3070 }
3071 }
3072
3073 /* Show both the input and output radices. */
3074
3075 static void
3076 show_radix (const char *arg, int from_tty)
3077 {
3078 if (from_tty)
3079 {
3080 if (input_radix == output_radix)
3081 {
3082 printf_filtered (_("Input and output radices set to "
3083 "decimal %u, hex %x, octal %o.\n"),
3084 input_radix, input_radix, input_radix);
3085 }
3086 else
3087 {
3088 printf_filtered (_("Input radix set to decimal "
3089 "%u, hex %x, octal %o.\n"),
3090 input_radix, input_radix, input_radix);
3091 printf_filtered (_("Output radix set to decimal "
3092 "%u, hex %x, octal %o.\n"),
3093 output_radix, output_radix, output_radix);
3094 }
3095 }
3096 }
3097 \f
3098
3099 static void
3100 set_print (const char *arg, int from_tty)
3101 {
3102 printf_unfiltered (
3103 "\"set print\" must be followed by the name of a print subcommand.\n");
3104 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
3105 }
3106
3107 static void
3108 show_print (const char *args, int from_tty)
3109 {
3110 cmd_show_list (showprintlist, from_tty, "");
3111 }
3112
3113 static void
3114 set_print_raw (const char *arg, int from_tty)
3115 {
3116 printf_unfiltered (
3117 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
3118 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
3119 }
3120
3121 static void
3122 show_print_raw (const char *args, int from_tty)
3123 {
3124 cmd_show_list (showprintrawlist, from_tty, "");
3125 }
3126
3127 /* Controls printing of vtbl's. */
3128 static void
3129 show_vtblprint (struct ui_file *file, int from_tty,
3130 struct cmd_list_element *c, const char *value)
3131 {
3132 fprintf_filtered (file, _("\
3133 Printing of C++ virtual function tables is %s.\n"),
3134 value);
3135 }
3136
3137 /* Controls looking up an object's derived type using what we find in
3138 its vtables. */
3139 static void
3140 show_objectprint (struct ui_file *file, int from_tty,
3141 struct cmd_list_element *c,
3142 const char *value)
3143 {
3144 fprintf_filtered (file, _("\
3145 Printing of object's derived type based on vtable info is %s.\n"),
3146 value);
3147 }
3148
3149 static void
3150 show_static_field_print (struct ui_file *file, int from_tty,
3151 struct cmd_list_element *c,
3152 const char *value)
3153 {
3154 fprintf_filtered (file,
3155 _("Printing of C++ static members is %s.\n"),
3156 value);
3157 }
3158
3159 \f
3160
3161 /* A couple typedefs to make writing the options a bit more
3162 convenient. */
3163 using boolean_option_def
3164 = gdb::option::boolean_option_def<value_print_options>;
3165 using uinteger_option_def
3166 = gdb::option::uinteger_option_def<value_print_options>;
3167 using zuinteger_unlimited_option_def
3168 = gdb::option::zuinteger_unlimited_option_def<value_print_options>;
3169
3170 /* Definitions of options for the "print" and "compile print"
3171 commands. */
3172 static const gdb::option::option_def value_print_option_defs[] = {
3173
3174 boolean_option_def {
3175 "address",
3176 [] (value_print_options *opt) { return &opt->addressprint; },
3177 show_addressprint, /* show_cmd_cb */
3178 N_("Set printing of addresses."),
3179 N_("Show printing of addresses."),
3180 NULL, /* help_doc */
3181 },
3182
3183 boolean_option_def {
3184 "array",
3185 [] (value_print_options *opt) { return &opt->prettyformat_arrays; },
3186 show_prettyformat_arrays, /* show_cmd_cb */
3187 N_("Set pretty formatting of arrays."),
3188 N_("Show pretty formatting of arrays."),
3189 NULL, /* help_doc */
3190 },
3191
3192 boolean_option_def {
3193 "array-indexes",
3194 [] (value_print_options *opt) { return &opt->print_array_indexes; },
3195 show_print_array_indexes, /* show_cmd_cb */
3196 N_("Set printing of array indexes."),
3197 N_("Show printing of array indexes."),
3198 NULL, /* help_doc */
3199 },
3200
3201 uinteger_option_def {
3202 "elements",
3203 [] (value_print_options *opt) { return &opt->print_max; },
3204 show_print_max, /* show_cmd_cb */
3205 N_("Set limit on string chars or array elements to print."),
3206 N_("Show limit on string chars or array elements to print."),
3207 N_("\"unlimited\" causes there to be no limit."),
3208 },
3209
3210 zuinteger_unlimited_option_def {
3211 "max-depth",
3212 [] (value_print_options *opt) { return &opt->max_depth; },
3213 show_print_max_depth, /* show_cmd_cb */
3214 N_("Set maximum print depth for nested structures, unions and arrays."),
3215 N_("Show maximum print depth for nested structures, unions, and arrays."),
3216 N_("When structures, unions, or arrays are nested beyond this depth then they\n\
3217 will be replaced with either '{...}' or '(...)' depending on the language.\n\
3218 Use \"unlimited\" to print the complete structure.")
3219 },
3220
3221 boolean_option_def {
3222 "null-stop",
3223 [] (value_print_options *opt) { return &opt->stop_print_at_null; },
3224 show_stop_print_at_null, /* show_cmd_cb */
3225 N_("Set printing of char arrays to stop at first null char."),
3226 N_("Show printing of char arrays to stop at first null char."),
3227 NULL, /* help_doc */
3228 },
3229
3230 boolean_option_def {
3231 "object",
3232 [] (value_print_options *opt) { return &opt->objectprint; },
3233 show_objectprint, /* show_cmd_cb */
3234 _("Set printing of C++ virtual function tables."),
3235 _("Show printing of C++ virtual function tables."),
3236 NULL, /* help_doc */
3237 },
3238
3239 boolean_option_def {
3240 "pretty",
3241 [] (value_print_options *opt) { return &opt->prettyformat_structs; },
3242 show_prettyformat_structs, /* show_cmd_cb */
3243 N_("Set pretty formatting of structures."),
3244 N_("Show pretty formatting of structures."),
3245 NULL, /* help_doc */
3246 },
3247
3248 boolean_option_def {
3249 "raw-values",
3250 [] (value_print_options *opt) { return &opt->raw; },
3251 NULL, /* show_cmd_cb */
3252 N_("Set whether to print values in raw form."),
3253 N_("Show whether to print values in raw form."),
3254 N_("If set, values are printed in raw form, bypassing any\n\
3255 pretty-printers for that value.")
3256 },
3257
3258 uinteger_option_def {
3259 "repeats",
3260 [] (value_print_options *opt) { return &opt->repeat_count_threshold; },
3261 show_repeat_count_threshold, /* show_cmd_cb */
3262 N_("Set threshold for repeated print elements."),
3263 N_("Show threshold for repeated print elements."),
3264 N_("\"unlimited\" causes all elements to be individually printed."),
3265 },
3266
3267 boolean_option_def {
3268 "static-members",
3269 [] (value_print_options *opt) { return &opt->static_field_print; },
3270 show_static_field_print, /* show_cmd_cb */
3271 N_("Set printing of C++ static members."),
3272 N_("Show printing of C++ static members."),
3273 NULL, /* help_doc */
3274 },
3275
3276 boolean_option_def {
3277 "symbol",
3278 [] (value_print_options *opt) { return &opt->symbol_print; },
3279 show_symbol_print, /* show_cmd_cb */
3280 N_("Set printing of symbol names when printing pointers."),
3281 N_("Show printing of symbol names when printing pointers."),
3282 NULL, /* help_doc */
3283 },
3284
3285 boolean_option_def {
3286 "union",
3287 [] (value_print_options *opt) { return &opt->unionprint; },
3288 show_unionprint, /* show_cmd_cb */
3289 N_("Set printing of unions interior to structures."),
3290 N_("Show printing of unions interior to structures."),
3291 NULL, /* help_doc */
3292 },
3293
3294 boolean_option_def {
3295 "vtbl",
3296 [] (value_print_options *opt) { return &opt->vtblprint; },
3297 show_vtblprint, /* show_cmd_cb */
3298 N_("Set printing of C++ virtual function tables."),
3299 N_("Show printing of C++ virtual function tables."),
3300 NULL, /* help_doc */
3301 },
3302 };
3303
3304 /* See valprint.h. */
3305
3306 gdb::option::option_def_group
3307 make_value_print_options_def_group (value_print_options *opts)
3308 {
3309 return {{value_print_option_defs}, opts};
3310 }
3311
3312 void _initialize_valprint ();
3313 void
3314 _initialize_valprint ()
3315 {
3316 cmd_list_element *cmd;
3317
3318 add_prefix_cmd ("print", no_class, set_print,
3319 _("Generic command for setting how things print."),
3320 &setprintlist, "set print ", 0, &setlist);
3321 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3322 /* Prefer set print to set prompt. */
3323 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3324
3325 add_prefix_cmd ("print", no_class, show_print,
3326 _("Generic command for showing print settings."),
3327 &showprintlist, "show print ", 0, &showlist);
3328 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3329 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3330
3331 cmd = add_prefix_cmd ("raw", no_class, set_print_raw,
3332 _("\
3333 Generic command for setting what things to print in \"raw\" mode."),
3334 &setprintrawlist, "set print raw ", 0,
3335 &setprintlist);
3336 deprecate_cmd (cmd, nullptr);
3337
3338 cmd = add_prefix_cmd ("raw", no_class, show_print_raw,
3339 _("Generic command for showing \"print raw\" settings."),
3340 &showprintrawlist, "show print raw ", 0,
3341 &showprintlist);
3342 deprecate_cmd (cmd, nullptr);
3343
3344 gdb::option::add_setshow_cmds_for_options
3345 (class_support, &user_print_options, value_print_option_defs,
3346 &setprintlist, &showprintlist);
3347
3348 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3349 _("\
3350 Set default input radix for entering numbers."), _("\
3351 Show default input radix for entering numbers."), NULL,
3352 set_input_radix,
3353 show_input_radix,
3354 &setlist, &showlist);
3355
3356 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3357 _("\
3358 Set default output radix for printing of values."), _("\
3359 Show default output radix for printing of values."), NULL,
3360 set_output_radix,
3361 show_output_radix,
3362 &setlist, &showlist);
3363
3364 /* The "set radix" and "show radix" commands are special in that
3365 they are like normal set and show commands but allow two normally
3366 independent variables to be either set or shown with a single
3367 command. So the usual deprecated_add_set_cmd() and [deleted]
3368 add_show_from_set() commands aren't really appropriate. */
3369 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3370 longer true - show can display anything. */
3371 add_cmd ("radix", class_support, set_radix, _("\
3372 Set default input and output number radices.\n\
3373 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3374 Without an argument, sets both radices back to the default value of 10."),
3375 &setlist);
3376 add_cmd ("radix", class_support, show_radix, _("\
3377 Show the default input and output number radices.\n\
3378 Use 'show input-radix' or 'show output-radix' to independently show each."),
3379 &showlist);
3380 }
This page took 0.136622 seconds and 3 git commands to generate.