[ARC] Add SYNTAX_NOP and SYNTAX_1OP for extension instructions
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "floatformat.h"
31 #include "doublest.h"
32 #include "dfp.h"
33 #include "extension.h"
34 #include "ada-lang.h"
35 #include "gdb_obstack.h"
36 #include "charset.h"
37 #include "typeprint.h"
38 #include <ctype.h>
39
40 /* Maximum number of wchars returned from wchar_iterate. */
41 #define MAX_WCHARS 4
42
43 /* A convenience macro to compute the size of a wchar_t buffer containing X
44 characters. */
45 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
46
47 /* Character buffer size saved while iterating over wchars. */
48 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
49
50 /* A structure to encapsulate state information from iterated
51 character conversions. */
52 struct converted_character
53 {
54 /* The number of characters converted. */
55 int num_chars;
56
57 /* The result of the conversion. See charset.h for more. */
58 enum wchar_iterate_result result;
59
60 /* The (saved) converted character(s). */
61 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
62
63 /* The first converted target byte. */
64 const gdb_byte *buf;
65
66 /* The number of bytes converted. */
67 size_t buflen;
68
69 /* How many times this character(s) is repeated. */
70 int repeat_count;
71 };
72
73 typedef struct converted_character converted_character_d;
74 DEF_VEC_O (converted_character_d);
75
76 /* Command lists for set/show print raw. */
77 struct cmd_list_element *setprintrawlist;
78 struct cmd_list_element *showprintrawlist;
79
80 /* Prototypes for local functions */
81
82 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
83 int len, int *errptr);
84
85 static void show_print (char *, int);
86
87 static void set_print (char *, int);
88
89 static void set_radix (char *, int);
90
91 static void show_radix (char *, int);
92
93 static void set_input_radix (char *, int, struct cmd_list_element *);
94
95 static void set_input_radix_1 (int, unsigned);
96
97 static void set_output_radix (char *, int, struct cmd_list_element *);
98
99 static void set_output_radix_1 (int, unsigned);
100
101 static void val_print_type_code_flags (struct type *type,
102 const gdb_byte *valaddr,
103 struct ui_file *stream);
104
105 void _initialize_valprint (void);
106
107 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
108
109 struct value_print_options user_print_options =
110 {
111 Val_prettyformat_default, /* prettyformat */
112 0, /* prettyformat_arrays */
113 0, /* prettyformat_structs */
114 0, /* vtblprint */
115 1, /* unionprint */
116 1, /* addressprint */
117 0, /* objectprint */
118 PRINT_MAX_DEFAULT, /* print_max */
119 10, /* repeat_count_threshold */
120 0, /* output_format */
121 0, /* format */
122 0, /* stop_print_at_null */
123 0, /* print_array_indexes */
124 0, /* deref_ref */
125 1, /* static_field_print */
126 1, /* pascal_static_field_print */
127 0, /* raw */
128 0, /* summary */
129 1 /* symbol_print */
130 };
131
132 /* Initialize *OPTS to be a copy of the user print options. */
133 void
134 get_user_print_options (struct value_print_options *opts)
135 {
136 *opts = user_print_options;
137 }
138
139 /* Initialize *OPTS to be a copy of the user print options, but with
140 pretty-formatting disabled. */
141 void
142 get_no_prettyformat_print_options (struct value_print_options *opts)
143 {
144 *opts = user_print_options;
145 opts->prettyformat = Val_no_prettyformat;
146 }
147
148 /* Initialize *OPTS to be a copy of the user print options, but using
149 FORMAT as the formatting option. */
150 void
151 get_formatted_print_options (struct value_print_options *opts,
152 char format)
153 {
154 *opts = user_print_options;
155 opts->format = format;
156 }
157
158 static void
159 show_print_max (struct ui_file *file, int from_tty,
160 struct cmd_list_element *c, const char *value)
161 {
162 fprintf_filtered (file,
163 _("Limit on string chars or array "
164 "elements to print is %s.\n"),
165 value);
166 }
167
168
169 /* Default input and output radixes, and output format letter. */
170
171 unsigned input_radix = 10;
172 static void
173 show_input_radix (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175 {
176 fprintf_filtered (file,
177 _("Default input radix for entering numbers is %s.\n"),
178 value);
179 }
180
181 unsigned output_radix = 10;
182 static void
183 show_output_radix (struct ui_file *file, int from_tty,
184 struct cmd_list_element *c, const char *value)
185 {
186 fprintf_filtered (file,
187 _("Default output radix for printing of values is %s.\n"),
188 value);
189 }
190
191 /* By default we print arrays without printing the index of each element in
192 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
193
194 static void
195 show_print_array_indexes (struct ui_file *file, int from_tty,
196 struct cmd_list_element *c, const char *value)
197 {
198 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
199 }
200
201 /* Print repeat counts if there are more than this many repetitions of an
202 element in an array. Referenced by the low level language dependent
203 print routines. */
204
205 static void
206 show_repeat_count_threshold (struct ui_file *file, int from_tty,
207 struct cmd_list_element *c, const char *value)
208 {
209 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
210 value);
211 }
212
213 /* If nonzero, stops printing of char arrays at first null. */
214
215 static void
216 show_stop_print_at_null (struct ui_file *file, int from_tty,
217 struct cmd_list_element *c, const char *value)
218 {
219 fprintf_filtered (file,
220 _("Printing of char arrays to stop "
221 "at first null char is %s.\n"),
222 value);
223 }
224
225 /* Controls pretty printing of structures. */
226
227 static void
228 show_prettyformat_structs (struct ui_file *file, int from_tty,
229 struct cmd_list_element *c, const char *value)
230 {
231 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
232 }
233
234 /* Controls pretty printing of arrays. */
235
236 static void
237 show_prettyformat_arrays (struct ui_file *file, int from_tty,
238 struct cmd_list_element *c, const char *value)
239 {
240 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
241 }
242
243 /* If nonzero, causes unions inside structures or other unions to be
244 printed. */
245
246 static void
247 show_unionprint (struct ui_file *file, int from_tty,
248 struct cmd_list_element *c, const char *value)
249 {
250 fprintf_filtered (file,
251 _("Printing of unions interior to structures is %s.\n"),
252 value);
253 }
254
255 /* If nonzero, causes machine addresses to be printed in certain contexts. */
256
257 static void
258 show_addressprint (struct ui_file *file, int from_tty,
259 struct cmd_list_element *c, const char *value)
260 {
261 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
262 }
263
264 static void
265 show_symbol_print (struct ui_file *file, int from_tty,
266 struct cmd_list_element *c, const char *value)
267 {
268 fprintf_filtered (file,
269 _("Printing of symbols when printing pointers is %s.\n"),
270 value);
271 }
272
273 \f
274
275 /* A helper function for val_print. When printing in "summary" mode,
276 we want to print scalar arguments, but not aggregate arguments.
277 This function distinguishes between the two. */
278
279 int
280 val_print_scalar_type_p (struct type *type)
281 {
282 type = check_typedef (type);
283 while (TYPE_CODE (type) == TYPE_CODE_REF)
284 {
285 type = TYPE_TARGET_TYPE (type);
286 type = check_typedef (type);
287 }
288 switch (TYPE_CODE (type))
289 {
290 case TYPE_CODE_ARRAY:
291 case TYPE_CODE_STRUCT:
292 case TYPE_CODE_UNION:
293 case TYPE_CODE_SET:
294 case TYPE_CODE_STRING:
295 return 0;
296 default:
297 return 1;
298 }
299 }
300
301 /* See its definition in value.h. */
302
303 int
304 valprint_check_validity (struct ui_file *stream,
305 struct type *type,
306 int embedded_offset,
307 const struct value *val)
308 {
309 type = check_typedef (type);
310
311 if (type_not_associated (type))
312 {
313 val_print_not_associated (stream);
314 return 0;
315 }
316
317 if (type_not_allocated (type))
318 {
319 val_print_not_allocated (stream);
320 return 0;
321 }
322
323 if (TYPE_CODE (type) != TYPE_CODE_UNION
324 && TYPE_CODE (type) != TYPE_CODE_STRUCT
325 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
326 {
327 if (value_bits_any_optimized_out (val,
328 TARGET_CHAR_BIT * embedded_offset,
329 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
330 {
331 val_print_optimized_out (val, stream);
332 return 0;
333 }
334
335 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
336 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
337 {
338 fputs_filtered (_("<synthetic pointer>"), stream);
339 return 0;
340 }
341
342 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
343 {
344 val_print_unavailable (stream);
345 return 0;
346 }
347 }
348
349 return 1;
350 }
351
352 void
353 val_print_optimized_out (const struct value *val, struct ui_file *stream)
354 {
355 if (val != NULL && value_lval_const (val) == lval_register)
356 val_print_not_saved (stream);
357 else
358 fprintf_filtered (stream, _("<optimized out>"));
359 }
360
361 void
362 val_print_not_saved (struct ui_file *stream)
363 {
364 fprintf_filtered (stream, _("<not saved>"));
365 }
366
367 void
368 val_print_unavailable (struct ui_file *stream)
369 {
370 fprintf_filtered (stream, _("<unavailable>"));
371 }
372
373 void
374 val_print_invalid_address (struct ui_file *stream)
375 {
376 fprintf_filtered (stream, _("<invalid address>"));
377 }
378
379 /* Print a pointer based on the type of its target.
380
381 Arguments to this functions are roughly the same as those in
382 generic_val_print. A difference is that ADDRESS is the address to print,
383 with embedded_offset already added. ELTTYPE represents
384 the pointed type after check_typedef. */
385
386 static void
387 print_unpacked_pointer (struct type *type, struct type *elttype,
388 CORE_ADDR address, struct ui_file *stream,
389 const struct value_print_options *options)
390 {
391 struct gdbarch *gdbarch = get_type_arch (type);
392
393 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
394 {
395 /* Try to print what function it points to. */
396 print_function_pointer_address (options, gdbarch, address, stream);
397 return;
398 }
399
400 if (options->symbol_print)
401 print_address_demangle (options, gdbarch, address, stream, demangle);
402 else if (options->addressprint)
403 fputs_filtered (paddress (gdbarch, address), stream);
404 }
405
406 /* generic_val_print helper for TYPE_CODE_ARRAY. */
407
408 static void
409 generic_val_print_array (struct type *type, const gdb_byte *valaddr,
410 int embedded_offset, CORE_ADDR address,
411 struct ui_file *stream, int recurse,
412 const struct value *original_value,
413 const struct value_print_options *options)
414 {
415 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
416 struct type *elttype = check_typedef (unresolved_elttype);
417
418 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
419 {
420 LONGEST low_bound, high_bound;
421
422 if (!get_array_bounds (type, &low_bound, &high_bound))
423 error (_("Could not determine the array high bound"));
424
425 if (options->prettyformat_arrays)
426 {
427 print_spaces_filtered (2 + 2 * recurse, stream);
428 }
429
430 fprintf_filtered (stream, "{");
431 val_print_array_elements (type, valaddr, embedded_offset,
432 address, stream,
433 recurse, original_value, options, 0);
434 fprintf_filtered (stream, "}");
435 }
436 else
437 {
438 /* Array of unspecified length: treat like pointer to first elt. */
439 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
440 options);
441 }
442
443 }
444
445 /* generic_val_print helper for TYPE_CODE_PTR. */
446
447 static void
448 generic_val_print_ptr (struct type *type, const gdb_byte *valaddr,
449 int embedded_offset, struct ui_file *stream,
450 const struct value *original_value,
451 const struct value_print_options *options)
452 {
453 struct gdbarch *gdbarch = get_type_arch (type);
454 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
455
456 if (options->format && options->format != 's')
457 {
458 val_print_scalar_formatted (type, valaddr, embedded_offset,
459 original_value, options, 0, stream);
460 }
461 else
462 {
463 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
464 struct type *elttype = check_typedef (unresolved_elttype);
465 CORE_ADDR addr = unpack_pointer (type,
466 valaddr + embedded_offset * unit_size);
467
468 print_unpacked_pointer (type, elttype, addr, stream, options);
469 }
470 }
471
472
473 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
474
475 static void
476 generic_val_print_memberptr (struct type *type, const gdb_byte *valaddr,
477 int embedded_offset, struct ui_file *stream,
478 const struct value *original_value,
479 const struct value_print_options *options)
480 {
481 val_print_scalar_formatted (type, valaddr, embedded_offset,
482 original_value, options, 0, stream);
483 }
484
485 /* generic_val_print helper for TYPE_CODE_REF. */
486
487 static void
488 generic_val_print_ref (struct type *type, const gdb_byte *valaddr,
489 int embedded_offset, struct ui_file *stream, int recurse,
490 const struct value *original_value,
491 const struct value_print_options *options)
492 {
493 struct gdbarch *gdbarch = get_type_arch (type);
494 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
495
496 if (options->addressprint)
497 {
498 CORE_ADDR addr
499 = extract_typed_address (valaddr + embedded_offset, type);
500
501 fprintf_filtered (stream, "@");
502 fputs_filtered (paddress (gdbarch, addr), stream);
503 if (options->deref_ref)
504 fputs_filtered (": ", stream);
505 }
506 /* De-reference the reference. */
507 if (options->deref_ref)
508 {
509 if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
510 {
511 struct value *deref_val;
512
513 deref_val = coerce_ref_if_computed (original_value);
514 if (deref_val != NULL)
515 {
516 /* More complicated computed references are not supported. */
517 gdb_assert (embedded_offset == 0);
518 }
519 else
520 deref_val = value_at (TYPE_TARGET_TYPE (type),
521 unpack_pointer (type,
522 (valaddr
523 + embedded_offset)));
524
525 common_val_print (deref_val, stream, recurse, options,
526 current_language);
527 }
528 else
529 fputs_filtered ("???", stream);
530 }
531 }
532
533 /* Helper function for generic_val_print_enum.
534 This is also used to print enums in TYPE_CODE_FLAGS values. */
535
536 static void
537 generic_val_print_enum_1 (struct type *type, LONGEST val,
538 struct ui_file *stream)
539 {
540 unsigned int i;
541 unsigned int len;
542
543 len = TYPE_NFIELDS (type);
544 for (i = 0; i < len; i++)
545 {
546 QUIT;
547 if (val == TYPE_FIELD_ENUMVAL (type, i))
548 {
549 break;
550 }
551 }
552 if (i < len)
553 {
554 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
555 }
556 else if (TYPE_FLAG_ENUM (type))
557 {
558 int first = 1;
559
560 /* We have a "flag" enum, so we try to decompose it into
561 pieces as appropriate. A flag enum has disjoint
562 constants by definition. */
563 fputs_filtered ("(", stream);
564 for (i = 0; i < len; ++i)
565 {
566 QUIT;
567
568 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
569 {
570 if (!first)
571 fputs_filtered (" | ", stream);
572 first = 0;
573
574 val &= ~TYPE_FIELD_ENUMVAL (type, i);
575 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
576 }
577 }
578
579 if (first || val != 0)
580 {
581 if (!first)
582 fputs_filtered (" | ", stream);
583 fputs_filtered ("unknown: ", stream);
584 print_longest (stream, 'd', 0, val);
585 }
586
587 fputs_filtered (")", stream);
588 }
589 else
590 print_longest (stream, 'd', 0, val);
591 }
592
593 /* generic_val_print helper for TYPE_CODE_ENUM. */
594
595 static void
596 generic_val_print_enum (struct type *type, const gdb_byte *valaddr,
597 int embedded_offset, struct ui_file *stream,
598 const struct value *original_value,
599 const struct value_print_options *options)
600 {
601 LONGEST val;
602 struct gdbarch *gdbarch = get_type_arch (type);
603 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
604
605 if (options->format)
606 {
607 val_print_scalar_formatted (type, valaddr, embedded_offset,
608 original_value, options, 0, stream);
609 return;
610 }
611 val = unpack_long (type, valaddr + embedded_offset * unit_size);
612
613 generic_val_print_enum_1 (type, val, stream);
614 }
615
616 /* generic_val_print helper for TYPE_CODE_FLAGS. */
617
618 static void
619 generic_val_print_flags (struct type *type, const gdb_byte *valaddr,
620 int embedded_offset, struct ui_file *stream,
621 const struct value *original_value,
622 const struct value_print_options *options)
623
624 {
625 if (options->format)
626 val_print_scalar_formatted (type, valaddr, embedded_offset, original_value,
627 options, 0, stream);
628 else
629 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
630 }
631
632 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
633
634 static void
635 generic_val_print_func (struct type *type, const gdb_byte *valaddr,
636 int embedded_offset, CORE_ADDR address,
637 struct ui_file *stream,
638 const struct value *original_value,
639 const struct value_print_options *options)
640 {
641 struct gdbarch *gdbarch = get_type_arch (type);
642
643 if (options->format)
644 {
645 val_print_scalar_formatted (type, valaddr, embedded_offset,
646 original_value, options, 0, stream);
647 }
648 else
649 {
650 /* FIXME, we should consider, at least for ANSI C language,
651 eliminating the distinction made between FUNCs and POINTERs
652 to FUNCs. */
653 fprintf_filtered (stream, "{");
654 type_print (type, "", stream, -1);
655 fprintf_filtered (stream, "} ");
656 /* Try to print what function it points to, and its address. */
657 print_address_demangle (options, gdbarch, address, stream, demangle);
658 }
659 }
660
661 /* generic_val_print helper for TYPE_CODE_BOOL. */
662
663 static void
664 generic_val_print_bool (struct type *type, const gdb_byte *valaddr,
665 int embedded_offset, struct ui_file *stream,
666 const struct value *original_value,
667 const struct value_print_options *options,
668 const struct generic_val_print_decorations *decorations)
669 {
670 LONGEST val;
671 struct gdbarch *gdbarch = get_type_arch (type);
672 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
673
674 if (options->format || options->output_format)
675 {
676 struct value_print_options opts = *options;
677 opts.format = (options->format ? options->format
678 : options->output_format);
679 val_print_scalar_formatted (type, valaddr, embedded_offset,
680 original_value, &opts, 0, stream);
681 }
682 else
683 {
684 val = unpack_long (type, valaddr + embedded_offset * unit_size);
685 if (val == 0)
686 fputs_filtered (decorations->false_name, stream);
687 else if (val == 1)
688 fputs_filtered (decorations->true_name, stream);
689 else
690 print_longest (stream, 'd', 0, val);
691 }
692 }
693
694 /* generic_val_print helper for TYPE_CODE_INT. */
695
696 static void
697 generic_val_print_int (struct type *type, const gdb_byte *valaddr,
698 int embedded_offset, struct ui_file *stream,
699 const struct value *original_value,
700 const struct value_print_options *options)
701 {
702 struct gdbarch *gdbarch = get_type_arch (type);
703 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
704
705 if (options->format || options->output_format)
706 {
707 struct value_print_options opts = *options;
708
709 opts.format = (options->format ? options->format
710 : options->output_format);
711 val_print_scalar_formatted (type, valaddr, embedded_offset,
712 original_value, &opts, 0, stream);
713 }
714 else
715 val_print_type_code_int (type, valaddr + embedded_offset * unit_size,
716 stream);
717 }
718
719 /* generic_val_print helper for TYPE_CODE_CHAR. */
720
721 static void
722 generic_val_print_char (struct type *type, struct type *unresolved_type,
723 const gdb_byte *valaddr, int embedded_offset,
724 struct ui_file *stream,
725 const struct value *original_value,
726 const struct value_print_options *options)
727 {
728 LONGEST val;
729 struct gdbarch *gdbarch = get_type_arch (type);
730 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
731
732 if (options->format || options->output_format)
733 {
734 struct value_print_options opts = *options;
735
736 opts.format = (options->format ? options->format
737 : options->output_format);
738 val_print_scalar_formatted (type, valaddr, embedded_offset,
739 original_value, &opts, 0, stream);
740 }
741 else
742 {
743 val = unpack_long (type, valaddr + embedded_offset * unit_size);
744 if (TYPE_UNSIGNED (type))
745 fprintf_filtered (stream, "%u", (unsigned int) val);
746 else
747 fprintf_filtered (stream, "%d", (int) val);
748 fputs_filtered (" ", stream);
749 LA_PRINT_CHAR (val, unresolved_type, stream);
750 }
751 }
752
753 /* generic_val_print helper for TYPE_CODE_FLT. */
754
755 static void
756 generic_val_print_float (struct type *type, const gdb_byte *valaddr,
757 int embedded_offset, struct ui_file *stream,
758 const struct value *original_value,
759 const struct value_print_options *options)
760 {
761 struct gdbarch *gdbarch = get_type_arch (type);
762 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
763
764 if (options->format)
765 {
766 val_print_scalar_formatted (type, valaddr, embedded_offset,
767 original_value, options, 0, stream);
768 }
769 else
770 {
771 print_floating (valaddr + embedded_offset * unit_size, type, stream);
772 }
773 }
774
775 /* generic_val_print helper for TYPE_CODE_DECFLOAT. */
776
777 static void
778 generic_val_print_decfloat (struct type *type, const gdb_byte *valaddr,
779 int embedded_offset, struct ui_file *stream,
780 const struct value *original_value,
781 const struct value_print_options *options)
782 {
783 struct gdbarch *gdbarch = get_type_arch (type);
784 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
785
786 if (options->format)
787 val_print_scalar_formatted (type, valaddr, embedded_offset, original_value,
788 options, 0, stream);
789 else
790 print_decimal_floating (valaddr + embedded_offset * unit_size, type,
791 stream);
792 }
793
794 /* generic_val_print helper for TYPE_CODE_COMPLEX. */
795
796 static void
797 generic_val_print_complex (struct type *type, const gdb_byte *valaddr,
798 int embedded_offset, struct ui_file *stream,
799 const struct value *original_value,
800 const struct value_print_options *options,
801 const struct generic_val_print_decorations
802 *decorations)
803 {
804 struct gdbarch *gdbarch = get_type_arch (type);
805 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
806
807 fprintf_filtered (stream, "%s", decorations->complex_prefix);
808 if (options->format)
809 val_print_scalar_formatted (TYPE_TARGET_TYPE (type), valaddr,
810 embedded_offset, original_value, options, 0,
811 stream);
812 else
813 print_floating (valaddr + embedded_offset * unit_size,
814 TYPE_TARGET_TYPE (type), stream);
815 fprintf_filtered (stream, "%s", decorations->complex_infix);
816 if (options->format)
817 val_print_scalar_formatted (TYPE_TARGET_TYPE (type), valaddr,
818 embedded_offset
819 + type_length_units (TYPE_TARGET_TYPE (type)),
820 original_value, options, 0, stream);
821 else
822 print_floating (valaddr + embedded_offset * unit_size
823 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
824 TYPE_TARGET_TYPE (type), stream);
825 fprintf_filtered (stream, "%s", decorations->complex_suffix);
826 }
827
828 /* A generic val_print that is suitable for use by language
829 implementations of the la_val_print method. This function can
830 handle most type codes, though not all, notably exception
831 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
832 the caller.
833
834 Most arguments are as to val_print.
835
836 The additional DECORATIONS argument can be used to customize the
837 output in some small, language-specific ways. */
838
839 void
840 generic_val_print (struct type *type, const gdb_byte *valaddr,
841 int embedded_offset, CORE_ADDR address,
842 struct ui_file *stream, int recurse,
843 const struct value *original_value,
844 const struct value_print_options *options,
845 const struct generic_val_print_decorations *decorations)
846 {
847 struct type *unresolved_type = type;
848
849 type = check_typedef (type);
850 switch (TYPE_CODE (type))
851 {
852 case TYPE_CODE_ARRAY:
853 generic_val_print_array (type, valaddr, embedded_offset, address, stream,
854 recurse, original_value, options);
855 break;
856
857 case TYPE_CODE_MEMBERPTR:
858 generic_val_print_memberptr (type, valaddr, embedded_offset, stream,
859 original_value, options);
860 break;
861
862 case TYPE_CODE_PTR:
863 generic_val_print_ptr (type, valaddr, embedded_offset, stream,
864 original_value, options);
865 break;
866
867 case TYPE_CODE_REF:
868 generic_val_print_ref (type, valaddr, embedded_offset, stream, recurse,
869 original_value, options);
870 break;
871
872 case TYPE_CODE_ENUM:
873 generic_val_print_enum (type, valaddr, embedded_offset, stream,
874 original_value, options);
875 break;
876
877 case TYPE_CODE_FLAGS:
878 generic_val_print_flags (type, valaddr, embedded_offset, stream,
879 original_value, options);
880 break;
881
882 case TYPE_CODE_FUNC:
883 case TYPE_CODE_METHOD:
884 generic_val_print_func (type, valaddr, embedded_offset, address, stream,
885 original_value, options);
886 break;
887
888 case TYPE_CODE_BOOL:
889 generic_val_print_bool (type, valaddr, embedded_offset, stream,
890 original_value, options, decorations);
891 break;
892
893 case TYPE_CODE_RANGE:
894 /* FIXME: create_static_range_type does not set the unsigned bit in a
895 range type (I think it probably should copy it from the
896 target type), so we won't print values which are too large to
897 fit in a signed integer correctly. */
898 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
899 print with the target type, though, because the size of our
900 type and the target type might differ). */
901
902 /* FALLTHROUGH */
903
904 case TYPE_CODE_INT:
905 generic_val_print_int (type, valaddr, embedded_offset, stream,
906 original_value, options);
907 break;
908
909 case TYPE_CODE_CHAR:
910 generic_val_print_char (type, unresolved_type, valaddr, embedded_offset,
911 stream, original_value, options);
912 break;
913
914 case TYPE_CODE_FLT:
915 generic_val_print_float (type, valaddr, embedded_offset, stream,
916 original_value, options);
917 break;
918
919 case TYPE_CODE_DECFLOAT:
920 generic_val_print_decfloat (type, valaddr, embedded_offset, stream,
921 original_value, options);
922 break;
923
924 case TYPE_CODE_VOID:
925 fputs_filtered (decorations->void_name, stream);
926 break;
927
928 case TYPE_CODE_ERROR:
929 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
930 break;
931
932 case TYPE_CODE_UNDEF:
933 /* This happens (without TYPE_FLAG_STUB set) on systems which
934 don't use dbx xrefs (NO_DBX_XREFS in gcc) if a file has a
935 "struct foo *bar" and no complete type for struct foo in that
936 file. */
937 fprintf_filtered (stream, _("<incomplete type>"));
938 break;
939
940 case TYPE_CODE_COMPLEX:
941 generic_val_print_complex (type, valaddr, embedded_offset, stream,
942 original_value, options, decorations);
943 break;
944
945 case TYPE_CODE_UNION:
946 case TYPE_CODE_STRUCT:
947 case TYPE_CODE_METHODPTR:
948 default:
949 error (_("Unhandled type code %d in symbol table."),
950 TYPE_CODE (type));
951 }
952 gdb_flush (stream);
953 }
954
955 /* Print using the given LANGUAGE the data of type TYPE located at
956 VALADDR + EMBEDDED_OFFSET (within GDB), which came from the
957 inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream
958 STREAM according to OPTIONS. VAL is the whole object that came
959 from ADDRESS. VALADDR must point to the head of VAL's contents
960 buffer.
961
962 The language printers will pass down an adjusted EMBEDDED_OFFSET to
963 further helper subroutines as subfields of TYPE are printed. In
964 such cases, VALADDR is passed down unadjusted, as well as VAL, so
965 that VAL can be queried for metadata about the contents data being
966 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
967 buffer. For example: "has this field been optimized out", or "I'm
968 printing an object while inspecting a traceframe; has this
969 particular piece of data been collected?".
970
971 RECURSE indicates the amount of indentation to supply before
972 continuation lines; this amount is roughly twice the value of
973 RECURSE. */
974
975 void
976 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
977 CORE_ADDR address, struct ui_file *stream, int recurse,
978 const struct value *val,
979 const struct value_print_options *options,
980 const struct language_defn *language)
981 {
982 int ret = 0;
983 struct value_print_options local_opts = *options;
984 struct type *real_type = check_typedef (type);
985
986 if (local_opts.prettyformat == Val_prettyformat_default)
987 local_opts.prettyformat = (local_opts.prettyformat_structs
988 ? Val_prettyformat : Val_no_prettyformat);
989
990 QUIT;
991
992 /* Ensure that the type is complete and not just a stub. If the type is
993 only a stub and we can't find and substitute its complete type, then
994 print appropriate string and return. */
995
996 if (TYPE_STUB (real_type))
997 {
998 fprintf_filtered (stream, _("<incomplete type>"));
999 gdb_flush (stream);
1000 return;
1001 }
1002
1003 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
1004 return;
1005
1006 if (!options->raw)
1007 {
1008 ret = apply_ext_lang_val_pretty_printer (type, valaddr, embedded_offset,
1009 address, stream, recurse,
1010 val, options, language);
1011 if (ret)
1012 return;
1013 }
1014
1015 /* Handle summary mode. If the value is a scalar, print it;
1016 otherwise, print an ellipsis. */
1017 if (options->summary && !val_print_scalar_type_p (type))
1018 {
1019 fprintf_filtered (stream, "...");
1020 return;
1021 }
1022
1023 TRY
1024 {
1025 language->la_val_print (type, valaddr, embedded_offset, address,
1026 stream, recurse, val,
1027 &local_opts);
1028 }
1029 CATCH (except, RETURN_MASK_ERROR)
1030 {
1031 fprintf_filtered (stream, _("<error reading variable>"));
1032 }
1033 END_CATCH
1034 }
1035
1036 /* Check whether the value VAL is printable. Return 1 if it is;
1037 return 0 and print an appropriate error message to STREAM according to
1038 OPTIONS if it is not. */
1039
1040 static int
1041 value_check_printable (struct value *val, struct ui_file *stream,
1042 const struct value_print_options *options)
1043 {
1044 if (val == 0)
1045 {
1046 fprintf_filtered (stream, _("<address of value unknown>"));
1047 return 0;
1048 }
1049
1050 if (value_entirely_optimized_out (val))
1051 {
1052 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1053 fprintf_filtered (stream, "...");
1054 else
1055 val_print_optimized_out (val, stream);
1056 return 0;
1057 }
1058
1059 if (value_entirely_unavailable (val))
1060 {
1061 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1062 fprintf_filtered (stream, "...");
1063 else
1064 val_print_unavailable (stream);
1065 return 0;
1066 }
1067
1068 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1069 {
1070 fprintf_filtered (stream, _("<internal function %s>"),
1071 value_internal_function_name (val));
1072 return 0;
1073 }
1074
1075 if (type_not_associated (value_type (val)))
1076 {
1077 val_print_not_associated (stream);
1078 return 0;
1079 }
1080
1081 if (type_not_allocated (value_type (val)))
1082 {
1083 val_print_not_allocated (stream);
1084 return 0;
1085 }
1086
1087 return 1;
1088 }
1089
1090 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1091 to OPTIONS.
1092
1093 This is a preferable interface to val_print, above, because it uses
1094 GDB's value mechanism. */
1095
1096 void
1097 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1098 const struct value_print_options *options,
1099 const struct language_defn *language)
1100 {
1101 if (!value_check_printable (val, stream, options))
1102 return;
1103
1104 if (language->la_language == language_ada)
1105 /* The value might have a dynamic type, which would cause trouble
1106 below when trying to extract the value contents (since the value
1107 size is determined from the type size which is unknown). So
1108 get a fixed representation of our value. */
1109 val = ada_to_fixed_value (val);
1110
1111 val_print (value_type (val), value_contents_for_printing (val),
1112 value_embedded_offset (val), value_address (val),
1113 stream, recurse,
1114 val, options, language);
1115 }
1116
1117 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1118 is printed using the current_language syntax. */
1119
1120 void
1121 value_print (struct value *val, struct ui_file *stream,
1122 const struct value_print_options *options)
1123 {
1124 if (!value_check_printable (val, stream, options))
1125 return;
1126
1127 if (!options->raw)
1128 {
1129 int r
1130 = apply_ext_lang_val_pretty_printer (value_type (val),
1131 value_contents_for_printing (val),
1132 value_embedded_offset (val),
1133 value_address (val),
1134 stream, 0,
1135 val, options, current_language);
1136
1137 if (r)
1138 return;
1139 }
1140
1141 LA_VALUE_PRINT (val, stream, options);
1142 }
1143
1144 /* Called by various <lang>_val_print routines to print
1145 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
1146 value. STREAM is where to print the value. */
1147
1148 void
1149 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
1150 struct ui_file *stream)
1151 {
1152 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1153
1154 if (TYPE_LENGTH (type) > sizeof (LONGEST))
1155 {
1156 LONGEST val;
1157
1158 if (TYPE_UNSIGNED (type)
1159 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
1160 byte_order, &val))
1161 {
1162 print_longest (stream, 'u', 0, val);
1163 }
1164 else
1165 {
1166 /* Signed, or we couldn't turn an unsigned value into a
1167 LONGEST. For signed values, one could assume two's
1168 complement (a reasonable assumption, I think) and do
1169 better than this. */
1170 print_hex_chars (stream, (unsigned char *) valaddr,
1171 TYPE_LENGTH (type), byte_order);
1172 }
1173 }
1174 else
1175 {
1176 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
1177 unpack_long (type, valaddr));
1178 }
1179 }
1180
1181 static void
1182 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1183 struct ui_file *stream)
1184 {
1185 ULONGEST val = unpack_long (type, valaddr);
1186 int field, nfields = TYPE_NFIELDS (type);
1187 struct gdbarch *gdbarch = get_type_arch (type);
1188 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1189
1190 fputs_filtered ("[", stream);
1191 for (field = 0; field < nfields; field++)
1192 {
1193 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1194 {
1195 struct type *field_type = TYPE_FIELD_TYPE (type, field);
1196
1197 if (field_type == bool_type
1198 /* We require boolean types here to be one bit wide. This is a
1199 problematic place to notify the user of an internal error
1200 though. Instead just fall through and print the field as an
1201 int. */
1202 && TYPE_FIELD_BITSIZE (type, field) == 1)
1203 {
1204 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1205 fprintf_filtered (stream, " %s",
1206 TYPE_FIELD_NAME (type, field));
1207 }
1208 else
1209 {
1210 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1211 ULONGEST field_val
1212 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1213
1214 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1215 field_val &= ((ULONGEST) 1 << field_len) - 1;
1216 fprintf_filtered (stream, " %s=",
1217 TYPE_FIELD_NAME (type, field));
1218 if (TYPE_CODE (field_type) == TYPE_CODE_ENUM)
1219 generic_val_print_enum_1 (field_type, field_val, stream);
1220 else
1221 print_longest (stream, 'd', 0, field_val);
1222 }
1223 }
1224 }
1225 fputs_filtered (" ]", stream);
1226 }
1227
1228 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1229 according to OPTIONS and SIZE on STREAM. Format i is not supported
1230 at this level.
1231
1232 This is how the elements of an array or structure are printed
1233 with a format. */
1234
1235 void
1236 val_print_scalar_formatted (struct type *type,
1237 const gdb_byte *valaddr, int embedded_offset,
1238 const struct value *val,
1239 const struct value_print_options *options,
1240 int size,
1241 struct ui_file *stream)
1242 {
1243 struct gdbarch *arch = get_type_arch (type);
1244 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1245
1246 gdb_assert (val != NULL);
1247 gdb_assert (valaddr == value_contents_for_printing_const (val));
1248
1249 /* If we get here with a string format, try again without it. Go
1250 all the way back to the language printers, which may call us
1251 again. */
1252 if (options->format == 's')
1253 {
1254 struct value_print_options opts = *options;
1255 opts.format = 0;
1256 opts.deref_ref = 0;
1257 val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts,
1258 current_language);
1259 return;
1260 }
1261
1262 /* A scalar object that does not have all bits available can't be
1263 printed, because all bits contribute to its representation. */
1264 if (value_bits_any_optimized_out (val,
1265 TARGET_CHAR_BIT * embedded_offset,
1266 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1267 val_print_optimized_out (val, stream);
1268 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1269 val_print_unavailable (stream);
1270 else
1271 print_scalar_formatted (valaddr + embedded_offset * unit_size, type,
1272 options, size, stream);
1273 }
1274
1275 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1276 The raison d'etre of this function is to consolidate printing of
1277 LONG_LONG's into this one function. The format chars b,h,w,g are
1278 from print_scalar_formatted(). Numbers are printed using C
1279 format.
1280
1281 USE_C_FORMAT means to use C format in all cases. Without it,
1282 'o' and 'x' format do not include the standard C radix prefix
1283 (leading 0 or 0x).
1284
1285 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1286 and was intended to request formating according to the current
1287 language and would be used for most integers that GDB prints. The
1288 exceptional cases were things like protocols where the format of
1289 the integer is a protocol thing, not a user-visible thing). The
1290 parameter remains to preserve the information of what things might
1291 be printed with language-specific format, should we ever resurrect
1292 that capability. */
1293
1294 void
1295 print_longest (struct ui_file *stream, int format, int use_c_format,
1296 LONGEST val_long)
1297 {
1298 const char *val;
1299
1300 switch (format)
1301 {
1302 case 'd':
1303 val = int_string (val_long, 10, 1, 0, 1); break;
1304 case 'u':
1305 val = int_string (val_long, 10, 0, 0, 1); break;
1306 case 'x':
1307 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1308 case 'b':
1309 val = int_string (val_long, 16, 0, 2, 1); break;
1310 case 'h':
1311 val = int_string (val_long, 16, 0, 4, 1); break;
1312 case 'w':
1313 val = int_string (val_long, 16, 0, 8, 1); break;
1314 case 'g':
1315 val = int_string (val_long, 16, 0, 16, 1); break;
1316 break;
1317 case 'o':
1318 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1319 default:
1320 internal_error (__FILE__, __LINE__,
1321 _("failed internal consistency check"));
1322 }
1323 fputs_filtered (val, stream);
1324 }
1325
1326 /* This used to be a macro, but I don't think it is called often enough
1327 to merit such treatment. */
1328 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1329 arguments to a function, number in a value history, register number, etc.)
1330 where the value must not be larger than can fit in an int. */
1331
1332 int
1333 longest_to_int (LONGEST arg)
1334 {
1335 /* Let the compiler do the work. */
1336 int rtnval = (int) arg;
1337
1338 /* Check for overflows or underflows. */
1339 if (sizeof (LONGEST) > sizeof (int))
1340 {
1341 if (rtnval != arg)
1342 {
1343 error (_("Value out of range."));
1344 }
1345 }
1346 return (rtnval);
1347 }
1348
1349 /* Print a floating point value of type TYPE (not always a
1350 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
1351
1352 void
1353 print_floating (const gdb_byte *valaddr, struct type *type,
1354 struct ui_file *stream)
1355 {
1356 DOUBLEST doub;
1357 int inv;
1358 const struct floatformat *fmt = NULL;
1359 unsigned len = TYPE_LENGTH (type);
1360 enum float_kind kind;
1361
1362 /* If it is a floating-point, check for obvious problems. */
1363 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1364 fmt = floatformat_from_type (type);
1365 if (fmt != NULL)
1366 {
1367 kind = floatformat_classify (fmt, valaddr);
1368 if (kind == float_nan)
1369 {
1370 if (floatformat_is_negative (fmt, valaddr))
1371 fprintf_filtered (stream, "-");
1372 fprintf_filtered (stream, "nan(");
1373 fputs_filtered ("0x", stream);
1374 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1375 fprintf_filtered (stream, ")");
1376 return;
1377 }
1378 else if (kind == float_infinite)
1379 {
1380 if (floatformat_is_negative (fmt, valaddr))
1381 fputs_filtered ("-", stream);
1382 fputs_filtered ("inf", stream);
1383 return;
1384 }
1385 }
1386
1387 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1388 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1389 needs to be used as that takes care of any necessary type
1390 conversions. Such conversions are of course direct to DOUBLEST
1391 and disregard any possible target floating point limitations.
1392 For instance, a u64 would be converted and displayed exactly on a
1393 host with 80 bit DOUBLEST but with loss of information on a host
1394 with 64 bit DOUBLEST. */
1395
1396 doub = unpack_double (type, valaddr, &inv);
1397 if (inv)
1398 {
1399 fprintf_filtered (stream, "<invalid float value>");
1400 return;
1401 }
1402
1403 /* FIXME: kettenis/2001-01-20: The following code makes too much
1404 assumptions about the host and target floating point format. */
1405
1406 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
1407 not necessarily be a TYPE_CODE_FLT, the below ignores that and
1408 instead uses the type's length to determine the precision of the
1409 floating-point value being printed. */
1410
1411 if (len < sizeof (double))
1412 fprintf_filtered (stream, "%.9g", (double) doub);
1413 else if (len == sizeof (double))
1414 fprintf_filtered (stream, "%.17g", (double) doub);
1415 else
1416 #ifdef PRINTF_HAS_LONG_DOUBLE
1417 fprintf_filtered (stream, "%.35Lg", doub);
1418 #else
1419 /* This at least wins with values that are representable as
1420 doubles. */
1421 fprintf_filtered (stream, "%.17g", (double) doub);
1422 #endif
1423 }
1424
1425 void
1426 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1427 struct ui_file *stream)
1428 {
1429 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1430 char decstr[MAX_DECIMAL_STRING];
1431 unsigned len = TYPE_LENGTH (type);
1432
1433 decimal_to_string (valaddr, len, byte_order, decstr);
1434 fputs_filtered (decstr, stream);
1435 return;
1436 }
1437
1438 void
1439 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1440 unsigned len, enum bfd_endian byte_order)
1441 {
1442
1443 #define BITS_IN_BYTES 8
1444
1445 const gdb_byte *p;
1446 unsigned int i;
1447 int b;
1448
1449 /* Declared "int" so it will be signed.
1450 This ensures that right shift will shift in zeros. */
1451
1452 const int mask = 0x080;
1453
1454 /* FIXME: We should be not printing leading zeroes in most cases. */
1455
1456 if (byte_order == BFD_ENDIAN_BIG)
1457 {
1458 for (p = valaddr;
1459 p < valaddr + len;
1460 p++)
1461 {
1462 /* Every byte has 8 binary characters; peel off
1463 and print from the MSB end. */
1464
1465 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1466 {
1467 if (*p & (mask >> i))
1468 b = 1;
1469 else
1470 b = 0;
1471
1472 fprintf_filtered (stream, "%1d", b);
1473 }
1474 }
1475 }
1476 else
1477 {
1478 for (p = valaddr + len - 1;
1479 p >= valaddr;
1480 p--)
1481 {
1482 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1483 {
1484 if (*p & (mask >> i))
1485 b = 1;
1486 else
1487 b = 0;
1488
1489 fprintf_filtered (stream, "%1d", b);
1490 }
1491 }
1492 }
1493 }
1494
1495 /* VALADDR points to an integer of LEN bytes.
1496 Print it in octal on stream or format it in buf. */
1497
1498 void
1499 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1500 unsigned len, enum bfd_endian byte_order)
1501 {
1502 const gdb_byte *p;
1503 unsigned char octa1, octa2, octa3, carry;
1504 int cycle;
1505
1506 /* FIXME: We should be not printing leading zeroes in most cases. */
1507
1508
1509 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1510 * the extra bits, which cycle every three bytes:
1511 *
1512 * Byte side: 0 1 2 3
1513 * | | | |
1514 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1515 *
1516 * Octal side: 0 1 carry 3 4 carry ...
1517 *
1518 * Cycle number: 0 1 2
1519 *
1520 * But of course we are printing from the high side, so we have to
1521 * figure out where in the cycle we are so that we end up with no
1522 * left over bits at the end.
1523 */
1524 #define BITS_IN_OCTAL 3
1525 #define HIGH_ZERO 0340
1526 #define LOW_ZERO 0016
1527 #define CARRY_ZERO 0003
1528 #define HIGH_ONE 0200
1529 #define MID_ONE 0160
1530 #define LOW_ONE 0016
1531 #define CARRY_ONE 0001
1532 #define HIGH_TWO 0300
1533 #define MID_TWO 0070
1534 #define LOW_TWO 0007
1535
1536 /* For 32 we start in cycle 2, with two bits and one bit carry;
1537 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1538
1539 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1540 carry = 0;
1541
1542 fputs_filtered ("0", stream);
1543 if (byte_order == BFD_ENDIAN_BIG)
1544 {
1545 for (p = valaddr;
1546 p < valaddr + len;
1547 p++)
1548 {
1549 switch (cycle)
1550 {
1551 case 0:
1552 /* No carry in, carry out two bits. */
1553
1554 octa1 = (HIGH_ZERO & *p) >> 5;
1555 octa2 = (LOW_ZERO & *p) >> 2;
1556 carry = (CARRY_ZERO & *p);
1557 fprintf_filtered (stream, "%o", octa1);
1558 fprintf_filtered (stream, "%o", octa2);
1559 break;
1560
1561 case 1:
1562 /* Carry in two bits, carry out one bit. */
1563
1564 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1565 octa2 = (MID_ONE & *p) >> 4;
1566 octa3 = (LOW_ONE & *p) >> 1;
1567 carry = (CARRY_ONE & *p);
1568 fprintf_filtered (stream, "%o", octa1);
1569 fprintf_filtered (stream, "%o", octa2);
1570 fprintf_filtered (stream, "%o", octa3);
1571 break;
1572
1573 case 2:
1574 /* Carry in one bit, no carry out. */
1575
1576 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1577 octa2 = (MID_TWO & *p) >> 3;
1578 octa3 = (LOW_TWO & *p);
1579 carry = 0;
1580 fprintf_filtered (stream, "%o", octa1);
1581 fprintf_filtered (stream, "%o", octa2);
1582 fprintf_filtered (stream, "%o", octa3);
1583 break;
1584
1585 default:
1586 error (_("Internal error in octal conversion;"));
1587 }
1588
1589 cycle++;
1590 cycle = cycle % BITS_IN_OCTAL;
1591 }
1592 }
1593 else
1594 {
1595 for (p = valaddr + len - 1;
1596 p >= valaddr;
1597 p--)
1598 {
1599 switch (cycle)
1600 {
1601 case 0:
1602 /* Carry out, no carry in */
1603
1604 octa1 = (HIGH_ZERO & *p) >> 5;
1605 octa2 = (LOW_ZERO & *p) >> 2;
1606 carry = (CARRY_ZERO & *p);
1607 fprintf_filtered (stream, "%o", octa1);
1608 fprintf_filtered (stream, "%o", octa2);
1609 break;
1610
1611 case 1:
1612 /* Carry in, carry out */
1613
1614 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1615 octa2 = (MID_ONE & *p) >> 4;
1616 octa3 = (LOW_ONE & *p) >> 1;
1617 carry = (CARRY_ONE & *p);
1618 fprintf_filtered (stream, "%o", octa1);
1619 fprintf_filtered (stream, "%o", octa2);
1620 fprintf_filtered (stream, "%o", octa3);
1621 break;
1622
1623 case 2:
1624 /* Carry in, no carry out */
1625
1626 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1627 octa2 = (MID_TWO & *p) >> 3;
1628 octa3 = (LOW_TWO & *p);
1629 carry = 0;
1630 fprintf_filtered (stream, "%o", octa1);
1631 fprintf_filtered (stream, "%o", octa2);
1632 fprintf_filtered (stream, "%o", octa3);
1633 break;
1634
1635 default:
1636 error (_("Internal error in octal conversion;"));
1637 }
1638
1639 cycle++;
1640 cycle = cycle % BITS_IN_OCTAL;
1641 }
1642 }
1643
1644 }
1645
1646 /* VALADDR points to an integer of LEN bytes.
1647 Print it in decimal on stream or format it in buf. */
1648
1649 void
1650 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1651 unsigned len, enum bfd_endian byte_order)
1652 {
1653 #define TEN 10
1654 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1655 #define CARRY_LEFT( x ) ((x) % TEN)
1656 #define SHIFT( x ) ((x) << 4)
1657 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1658 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1659
1660 const gdb_byte *p;
1661 unsigned char *digits;
1662 int carry;
1663 int decimal_len;
1664 int i, j, decimal_digits;
1665 int dummy;
1666 int flip;
1667
1668 /* Base-ten number is less than twice as many digits
1669 as the base 16 number, which is 2 digits per byte. */
1670
1671 decimal_len = len * 2 * 2;
1672 digits = (unsigned char *) xmalloc (decimal_len);
1673
1674 for (i = 0; i < decimal_len; i++)
1675 {
1676 digits[i] = 0;
1677 }
1678
1679 /* Ok, we have an unknown number of bytes of data to be printed in
1680 * decimal.
1681 *
1682 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1683 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1684 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1685 *
1686 * The trick is that "digits" holds a base-10 number, but sometimes
1687 * the individual digits are > 10.
1688 *
1689 * Outer loop is per nibble (hex digit) of input, from MSD end to
1690 * LSD end.
1691 */
1692 decimal_digits = 0; /* Number of decimal digits so far */
1693 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1694 flip = 0;
1695 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1696 {
1697 /*
1698 * Multiply current base-ten number by 16 in place.
1699 * Each digit was between 0 and 9, now is between
1700 * 0 and 144.
1701 */
1702 for (j = 0; j < decimal_digits; j++)
1703 {
1704 digits[j] = SHIFT (digits[j]);
1705 }
1706
1707 /* Take the next nibble off the input and add it to what
1708 * we've got in the LSB position. Bottom 'digit' is now
1709 * between 0 and 159.
1710 *
1711 * "flip" is used to run this loop twice for each byte.
1712 */
1713 if (flip == 0)
1714 {
1715 /* Take top nibble. */
1716
1717 digits[0] += HIGH_NIBBLE (*p);
1718 flip = 1;
1719 }
1720 else
1721 {
1722 /* Take low nibble and bump our pointer "p". */
1723
1724 digits[0] += LOW_NIBBLE (*p);
1725 if (byte_order == BFD_ENDIAN_BIG)
1726 p++;
1727 else
1728 p--;
1729 flip = 0;
1730 }
1731
1732 /* Re-decimalize. We have to do this often enough
1733 * that we don't overflow, but once per nibble is
1734 * overkill. Easier this way, though. Note that the
1735 * carry is often larger than 10 (e.g. max initial
1736 * carry out of lowest nibble is 15, could bubble all
1737 * the way up greater than 10). So we have to do
1738 * the carrying beyond the last current digit.
1739 */
1740 carry = 0;
1741 for (j = 0; j < decimal_len - 1; j++)
1742 {
1743 digits[j] += carry;
1744
1745 /* "/" won't handle an unsigned char with
1746 * a value that if signed would be negative.
1747 * So extend to longword int via "dummy".
1748 */
1749 dummy = digits[j];
1750 carry = CARRY_OUT (dummy);
1751 digits[j] = CARRY_LEFT (dummy);
1752
1753 if (j >= decimal_digits && carry == 0)
1754 {
1755 /*
1756 * All higher digits are 0 and we
1757 * no longer have a carry.
1758 *
1759 * Note: "j" is 0-based, "decimal_digits" is
1760 * 1-based.
1761 */
1762 decimal_digits = j + 1;
1763 break;
1764 }
1765 }
1766 }
1767
1768 /* Ok, now "digits" is the decimal representation, with
1769 the "decimal_digits" actual digits. Print! */
1770
1771 for (i = decimal_digits - 1; i >= 0; i--)
1772 {
1773 fprintf_filtered (stream, "%1d", digits[i]);
1774 }
1775 xfree (digits);
1776 }
1777
1778 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1779
1780 void
1781 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1782 unsigned len, enum bfd_endian byte_order)
1783 {
1784 const gdb_byte *p;
1785
1786 /* FIXME: We should be not printing leading zeroes in most cases. */
1787
1788 fputs_filtered ("0x", stream);
1789 if (byte_order == BFD_ENDIAN_BIG)
1790 {
1791 for (p = valaddr;
1792 p < valaddr + len;
1793 p++)
1794 {
1795 fprintf_filtered (stream, "%02x", *p);
1796 }
1797 }
1798 else
1799 {
1800 for (p = valaddr + len - 1;
1801 p >= valaddr;
1802 p--)
1803 {
1804 fprintf_filtered (stream, "%02x", *p);
1805 }
1806 }
1807 }
1808
1809 /* VALADDR points to a char integer of LEN bytes.
1810 Print it out in appropriate language form on stream.
1811 Omit any leading zero chars. */
1812
1813 void
1814 print_char_chars (struct ui_file *stream, struct type *type,
1815 const gdb_byte *valaddr,
1816 unsigned len, enum bfd_endian byte_order)
1817 {
1818 const gdb_byte *p;
1819
1820 if (byte_order == BFD_ENDIAN_BIG)
1821 {
1822 p = valaddr;
1823 while (p < valaddr + len - 1 && *p == 0)
1824 ++p;
1825
1826 while (p < valaddr + len)
1827 {
1828 LA_EMIT_CHAR (*p, type, stream, '\'');
1829 ++p;
1830 }
1831 }
1832 else
1833 {
1834 p = valaddr + len - 1;
1835 while (p > valaddr && *p == 0)
1836 --p;
1837
1838 while (p >= valaddr)
1839 {
1840 LA_EMIT_CHAR (*p, type, stream, '\'');
1841 --p;
1842 }
1843 }
1844 }
1845
1846 /* Print function pointer with inferior address ADDRESS onto stdio
1847 stream STREAM. */
1848
1849 void
1850 print_function_pointer_address (const struct value_print_options *options,
1851 struct gdbarch *gdbarch,
1852 CORE_ADDR address,
1853 struct ui_file *stream)
1854 {
1855 CORE_ADDR func_addr
1856 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1857 &current_target);
1858
1859 /* If the function pointer is represented by a description, print
1860 the address of the description. */
1861 if (options->addressprint && func_addr != address)
1862 {
1863 fputs_filtered ("@", stream);
1864 fputs_filtered (paddress (gdbarch, address), stream);
1865 fputs_filtered (": ", stream);
1866 }
1867 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1868 }
1869
1870
1871 /* Print on STREAM using the given OPTIONS the index for the element
1872 at INDEX of an array whose index type is INDEX_TYPE. */
1873
1874 void
1875 maybe_print_array_index (struct type *index_type, LONGEST index,
1876 struct ui_file *stream,
1877 const struct value_print_options *options)
1878 {
1879 struct value *index_value;
1880
1881 if (!options->print_array_indexes)
1882 return;
1883
1884 index_value = value_from_longest (index_type, index);
1885
1886 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1887 }
1888
1889 /* Called by various <lang>_val_print routines to print elements of an
1890 array in the form "<elem1>, <elem2>, <elem3>, ...".
1891
1892 (FIXME?) Assumes array element separator is a comma, which is correct
1893 for all languages currently handled.
1894 (FIXME?) Some languages have a notation for repeated array elements,
1895 perhaps we should try to use that notation when appropriate. */
1896
1897 void
1898 val_print_array_elements (struct type *type,
1899 const gdb_byte *valaddr, int embedded_offset,
1900 CORE_ADDR address, struct ui_file *stream,
1901 int recurse,
1902 const struct value *val,
1903 const struct value_print_options *options,
1904 unsigned int i)
1905 {
1906 unsigned int things_printed = 0;
1907 unsigned len;
1908 struct type *elttype, *index_type, *base_index_type;
1909 unsigned eltlen;
1910 /* Position of the array element we are examining to see
1911 whether it is repeated. */
1912 unsigned int rep1;
1913 /* Number of repetitions we have detected so far. */
1914 unsigned int reps;
1915 LONGEST low_bound, high_bound;
1916 LONGEST low_pos, high_pos;
1917
1918 elttype = TYPE_TARGET_TYPE (type);
1919 eltlen = type_length_units (check_typedef (elttype));
1920 index_type = TYPE_INDEX_TYPE (type);
1921
1922 if (get_array_bounds (type, &low_bound, &high_bound))
1923 {
1924 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
1925 base_index_type = TYPE_TARGET_TYPE (index_type);
1926 else
1927 base_index_type = index_type;
1928
1929 /* Non-contiguous enumerations types can by used as index types
1930 in some languages (e.g. Ada). In this case, the array length
1931 shall be computed from the positions of the first and last
1932 literal in the enumeration type, and not from the values
1933 of these literals. */
1934 if (!discrete_position (base_index_type, low_bound, &low_pos)
1935 || !discrete_position (base_index_type, high_bound, &high_pos))
1936 {
1937 warning (_("unable to get positions in array, use bounds instead"));
1938 low_pos = low_bound;
1939 high_pos = high_bound;
1940 }
1941
1942 /* The array length should normally be HIGH_POS - LOW_POS + 1.
1943 But we have to be a little extra careful, because some languages
1944 such as Ada allow LOW_POS to be greater than HIGH_POS for
1945 empty arrays. In that situation, the array length is just zero,
1946 not negative! */
1947 if (low_pos > high_pos)
1948 len = 0;
1949 else
1950 len = high_pos - low_pos + 1;
1951 }
1952 else
1953 {
1954 warning (_("unable to get bounds of array, assuming null array"));
1955 low_bound = 0;
1956 len = 0;
1957 }
1958
1959 annotate_array_section_begin (i, elttype);
1960
1961 for (; i < len && things_printed < options->print_max; i++)
1962 {
1963 if (i != 0)
1964 {
1965 if (options->prettyformat_arrays)
1966 {
1967 fprintf_filtered (stream, ",\n");
1968 print_spaces_filtered (2 + 2 * recurse, stream);
1969 }
1970 else
1971 {
1972 fprintf_filtered (stream, ", ");
1973 }
1974 }
1975 wrap_here (n_spaces (2 + 2 * recurse));
1976 maybe_print_array_index (index_type, i + low_bound,
1977 stream, options);
1978
1979 rep1 = i + 1;
1980 reps = 1;
1981 /* Only check for reps if repeat_count_threshold is not set to
1982 UINT_MAX (unlimited). */
1983 if (options->repeat_count_threshold < UINT_MAX)
1984 {
1985 while (rep1 < len
1986 && value_contents_eq (val,
1987 embedded_offset + i * eltlen,
1988 val,
1989 (embedded_offset
1990 + rep1 * eltlen),
1991 eltlen))
1992 {
1993 ++reps;
1994 ++rep1;
1995 }
1996 }
1997
1998 if (reps > options->repeat_count_threshold)
1999 {
2000 val_print (elttype, valaddr, embedded_offset + i * eltlen,
2001 address, stream, recurse + 1, val, options,
2002 current_language);
2003 annotate_elt_rep (reps);
2004 fprintf_filtered (stream, " <repeats %u times>", reps);
2005 annotate_elt_rep_end ();
2006
2007 i = rep1 - 1;
2008 things_printed += options->repeat_count_threshold;
2009 }
2010 else
2011 {
2012 val_print (elttype, valaddr, embedded_offset + i * eltlen,
2013 address,
2014 stream, recurse + 1, val, options, current_language);
2015 annotate_elt ();
2016 things_printed++;
2017 }
2018 }
2019 annotate_array_section_end ();
2020 if (i < len)
2021 {
2022 fprintf_filtered (stream, "...");
2023 }
2024 }
2025
2026 /* Read LEN bytes of target memory at address MEMADDR, placing the
2027 results in GDB's memory at MYADDR. Returns a count of the bytes
2028 actually read, and optionally a target_xfer_status value in the
2029 location pointed to by ERRPTR if ERRPTR is non-null. */
2030
2031 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2032 function be eliminated. */
2033
2034 static int
2035 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2036 int len, int *errptr)
2037 {
2038 int nread; /* Number of bytes actually read. */
2039 int errcode; /* Error from last read. */
2040
2041 /* First try a complete read. */
2042 errcode = target_read_memory (memaddr, myaddr, len);
2043 if (errcode == 0)
2044 {
2045 /* Got it all. */
2046 nread = len;
2047 }
2048 else
2049 {
2050 /* Loop, reading one byte at a time until we get as much as we can. */
2051 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2052 {
2053 errcode = target_read_memory (memaddr++, myaddr++, 1);
2054 }
2055 /* If an error, the last read was unsuccessful, so adjust count. */
2056 if (errcode != 0)
2057 {
2058 nread--;
2059 }
2060 }
2061 if (errptr != NULL)
2062 {
2063 *errptr = errcode;
2064 }
2065 return (nread);
2066 }
2067
2068 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
2069 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
2070 allocated buffer containing the string, which the caller is responsible to
2071 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
2072 success, or a target_xfer_status on failure.
2073
2074 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2075 (including eventual NULs in the middle or end of the string).
2076
2077 If LEN is -1, stops at the first null character (not necessarily
2078 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2079 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2080 the string.
2081
2082 Unless an exception is thrown, BUFFER will always be allocated, even on
2083 failure. In this case, some characters might have been read before the
2084 failure happened. Check BYTES_READ to recognize this situation.
2085
2086 Note: There was a FIXME asking to make this code use target_read_string,
2087 but this function is more general (can read past null characters, up to
2088 given LEN). Besides, it is used much more often than target_read_string
2089 so it is more tested. Perhaps callers of target_read_string should use
2090 this function instead? */
2091
2092 int
2093 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2094 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
2095 {
2096 int errcode; /* Errno returned from bad reads. */
2097 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2098 gdb_byte *bufptr; /* Pointer to next available byte in
2099 buffer. */
2100 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2101
2102 /* Loop until we either have all the characters, or we encounter
2103 some error, such as bumping into the end of the address space. */
2104
2105 *buffer = NULL;
2106
2107 old_chain = make_cleanup (free_current_contents, buffer);
2108
2109 if (len > 0)
2110 {
2111 /* We want fetchlimit chars, so we might as well read them all in
2112 one operation. */
2113 unsigned int fetchlen = min (len, fetchlimit);
2114
2115 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
2116 bufptr = *buffer;
2117
2118 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2119 / width;
2120 addr += nfetch * width;
2121 bufptr += nfetch * width;
2122 }
2123 else if (len == -1)
2124 {
2125 unsigned long bufsize = 0;
2126 unsigned int chunksize; /* Size of each fetch, in chars. */
2127 int found_nul; /* Non-zero if we found the nul char. */
2128 gdb_byte *limit; /* First location past end of fetch buffer. */
2129
2130 found_nul = 0;
2131 /* We are looking for a NUL terminator to end the fetching, so we
2132 might as well read in blocks that are large enough to be efficient,
2133 but not so large as to be slow if fetchlimit happens to be large.
2134 So we choose the minimum of 8 and fetchlimit. We used to use 200
2135 instead of 8 but 200 is way too big for remote debugging over a
2136 serial line. */
2137 chunksize = min (8, fetchlimit);
2138
2139 do
2140 {
2141 QUIT;
2142 nfetch = min (chunksize, fetchlimit - bufsize);
2143
2144 if (*buffer == NULL)
2145 *buffer = (gdb_byte *) xmalloc (nfetch * width);
2146 else
2147 *buffer = (gdb_byte *) xrealloc (*buffer,
2148 (nfetch + bufsize) * width);
2149
2150 bufptr = *buffer + bufsize * width;
2151 bufsize += nfetch;
2152
2153 /* Read as much as we can. */
2154 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2155 / width;
2156
2157 /* Scan this chunk for the null character that terminates the string
2158 to print. If found, we don't need to fetch any more. Note
2159 that bufptr is explicitly left pointing at the next character
2160 after the null character, or at the next character after the end
2161 of the buffer. */
2162
2163 limit = bufptr + nfetch * width;
2164 while (bufptr < limit)
2165 {
2166 unsigned long c;
2167
2168 c = extract_unsigned_integer (bufptr, width, byte_order);
2169 addr += width;
2170 bufptr += width;
2171 if (c == 0)
2172 {
2173 /* We don't care about any error which happened after
2174 the NUL terminator. */
2175 errcode = 0;
2176 found_nul = 1;
2177 break;
2178 }
2179 }
2180 }
2181 while (errcode == 0 /* no error */
2182 && bufptr - *buffer < fetchlimit * width /* no overrun */
2183 && !found_nul); /* haven't found NUL yet */
2184 }
2185 else
2186 { /* Length of string is really 0! */
2187 /* We always allocate *buffer. */
2188 *buffer = bufptr = (gdb_byte *) xmalloc (1);
2189 errcode = 0;
2190 }
2191
2192 /* bufptr and addr now point immediately beyond the last byte which we
2193 consider part of the string (including a '\0' which ends the string). */
2194 *bytes_read = bufptr - *buffer;
2195
2196 QUIT;
2197
2198 discard_cleanups (old_chain);
2199
2200 return errcode;
2201 }
2202
2203 /* Return true if print_wchar can display W without resorting to a
2204 numeric escape, false otherwise. */
2205
2206 static int
2207 wchar_printable (gdb_wchar_t w)
2208 {
2209 return (gdb_iswprint (w)
2210 || w == LCST ('\a') || w == LCST ('\b')
2211 || w == LCST ('\f') || w == LCST ('\n')
2212 || w == LCST ('\r') || w == LCST ('\t')
2213 || w == LCST ('\v'));
2214 }
2215
2216 /* A helper function that converts the contents of STRING to wide
2217 characters and then appends them to OUTPUT. */
2218
2219 static void
2220 append_string_as_wide (const char *string,
2221 struct obstack *output)
2222 {
2223 for (; *string; ++string)
2224 {
2225 gdb_wchar_t w = gdb_btowc (*string);
2226 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2227 }
2228 }
2229
2230 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2231 original (target) bytes representing the character, ORIG_LEN is the
2232 number of valid bytes. WIDTH is the number of bytes in a base
2233 characters of the type. OUTPUT is an obstack to which wide
2234 characters are emitted. QUOTER is a (narrow) character indicating
2235 the style of quotes surrounding the character to be printed.
2236 NEED_ESCAPE is an in/out flag which is used to track numeric
2237 escapes across calls. */
2238
2239 static void
2240 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2241 int orig_len, int width,
2242 enum bfd_endian byte_order,
2243 struct obstack *output,
2244 int quoter, int *need_escapep)
2245 {
2246 int need_escape = *need_escapep;
2247
2248 *need_escapep = 0;
2249
2250 /* iswprint implementation on Windows returns 1 for tab character.
2251 In order to avoid different printout on this host, we explicitly
2252 use wchar_printable function. */
2253 switch (w)
2254 {
2255 case LCST ('\a'):
2256 obstack_grow_wstr (output, LCST ("\\a"));
2257 break;
2258 case LCST ('\b'):
2259 obstack_grow_wstr (output, LCST ("\\b"));
2260 break;
2261 case LCST ('\f'):
2262 obstack_grow_wstr (output, LCST ("\\f"));
2263 break;
2264 case LCST ('\n'):
2265 obstack_grow_wstr (output, LCST ("\\n"));
2266 break;
2267 case LCST ('\r'):
2268 obstack_grow_wstr (output, LCST ("\\r"));
2269 break;
2270 case LCST ('\t'):
2271 obstack_grow_wstr (output, LCST ("\\t"));
2272 break;
2273 case LCST ('\v'):
2274 obstack_grow_wstr (output, LCST ("\\v"));
2275 break;
2276 default:
2277 {
2278 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2279 && w != LCST ('8')
2280 && w != LCST ('9'))))
2281 {
2282 gdb_wchar_t wchar = w;
2283
2284 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2285 obstack_grow_wstr (output, LCST ("\\"));
2286 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2287 }
2288 else
2289 {
2290 int i;
2291
2292 for (i = 0; i + width <= orig_len; i += width)
2293 {
2294 char octal[30];
2295 ULONGEST value;
2296
2297 value = extract_unsigned_integer (&orig[i], width,
2298 byte_order);
2299 /* If the value fits in 3 octal digits, print it that
2300 way. Otherwise, print it as a hex escape. */
2301 if (value <= 0777)
2302 xsnprintf (octal, sizeof (octal), "\\%.3o",
2303 (int) (value & 0777));
2304 else
2305 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2306 append_string_as_wide (octal, output);
2307 }
2308 /* If we somehow have extra bytes, print them now. */
2309 while (i < orig_len)
2310 {
2311 char octal[5];
2312
2313 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2314 append_string_as_wide (octal, output);
2315 ++i;
2316 }
2317
2318 *need_escapep = 1;
2319 }
2320 break;
2321 }
2322 }
2323 }
2324
2325 /* Print the character C on STREAM as part of the contents of a
2326 literal string whose delimiter is QUOTER. ENCODING names the
2327 encoding of C. */
2328
2329 void
2330 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2331 int quoter, const char *encoding)
2332 {
2333 enum bfd_endian byte_order
2334 = gdbarch_byte_order (get_type_arch (type));
2335 struct obstack wchar_buf, output;
2336 struct cleanup *cleanups;
2337 gdb_byte *buf;
2338 struct wchar_iterator *iter;
2339 int need_escape = 0;
2340
2341 buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2342 pack_long (buf, type, c);
2343
2344 iter = make_wchar_iterator (buf, TYPE_LENGTH (type),
2345 encoding, TYPE_LENGTH (type));
2346 cleanups = make_cleanup_wchar_iterator (iter);
2347
2348 /* This holds the printable form of the wchar_t data. */
2349 obstack_init (&wchar_buf);
2350 make_cleanup_obstack_free (&wchar_buf);
2351
2352 while (1)
2353 {
2354 int num_chars;
2355 gdb_wchar_t *chars;
2356 const gdb_byte *buf;
2357 size_t buflen;
2358 int print_escape = 1;
2359 enum wchar_iterate_result result;
2360
2361 num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen);
2362 if (num_chars < 0)
2363 break;
2364 if (num_chars > 0)
2365 {
2366 /* If all characters are printable, print them. Otherwise,
2367 we're going to have to print an escape sequence. We
2368 check all characters because we want to print the target
2369 bytes in the escape sequence, and we don't know character
2370 boundaries there. */
2371 int i;
2372
2373 print_escape = 0;
2374 for (i = 0; i < num_chars; ++i)
2375 if (!wchar_printable (chars[i]))
2376 {
2377 print_escape = 1;
2378 break;
2379 }
2380
2381 if (!print_escape)
2382 {
2383 for (i = 0; i < num_chars; ++i)
2384 print_wchar (chars[i], buf, buflen,
2385 TYPE_LENGTH (type), byte_order,
2386 &wchar_buf, quoter, &need_escape);
2387 }
2388 }
2389
2390 /* This handles the NUM_CHARS == 0 case as well. */
2391 if (print_escape)
2392 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2393 byte_order, &wchar_buf, quoter, &need_escape);
2394 }
2395
2396 /* The output in the host encoding. */
2397 obstack_init (&output);
2398 make_cleanup_obstack_free (&output);
2399
2400 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2401 (gdb_byte *) obstack_base (&wchar_buf),
2402 obstack_object_size (&wchar_buf),
2403 sizeof (gdb_wchar_t), &output, translit_char);
2404 obstack_1grow (&output, '\0');
2405
2406 fputs_filtered ((const char *) obstack_base (&output), stream);
2407
2408 do_cleanups (cleanups);
2409 }
2410
2411 /* Return the repeat count of the next character/byte in ITER,
2412 storing the result in VEC. */
2413
2414 static int
2415 count_next_character (struct wchar_iterator *iter,
2416 VEC (converted_character_d) **vec)
2417 {
2418 struct converted_character *current;
2419
2420 if (VEC_empty (converted_character_d, *vec))
2421 {
2422 struct converted_character tmp;
2423 gdb_wchar_t *chars;
2424
2425 tmp.num_chars
2426 = wchar_iterate (iter, &tmp.result, &chars, &tmp.buf, &tmp.buflen);
2427 if (tmp.num_chars > 0)
2428 {
2429 gdb_assert (tmp.num_chars < MAX_WCHARS);
2430 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2431 }
2432 VEC_safe_push (converted_character_d, *vec, &tmp);
2433 }
2434
2435 current = VEC_last (converted_character_d, *vec);
2436
2437 /* Count repeated characters or bytes. */
2438 current->repeat_count = 1;
2439 if (current->num_chars == -1)
2440 {
2441 /* EOF */
2442 return -1;
2443 }
2444 else
2445 {
2446 gdb_wchar_t *chars;
2447 struct converted_character d;
2448 int repeat;
2449
2450 d.repeat_count = 0;
2451
2452 while (1)
2453 {
2454 /* Get the next character. */
2455 d.num_chars
2456 = wchar_iterate (iter, &d.result, &chars, &d.buf, &d.buflen);
2457
2458 /* If a character was successfully converted, save the character
2459 into the converted character. */
2460 if (d.num_chars > 0)
2461 {
2462 gdb_assert (d.num_chars < MAX_WCHARS);
2463 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2464 }
2465
2466 /* Determine if the current character is the same as this
2467 new character. */
2468 if (d.num_chars == current->num_chars && d.result == current->result)
2469 {
2470 /* There are two cases to consider:
2471
2472 1) Equality of converted character (num_chars > 0)
2473 2) Equality of non-converted character (num_chars == 0) */
2474 if ((current->num_chars > 0
2475 && memcmp (current->chars, d.chars,
2476 WCHAR_BUFLEN (current->num_chars)) == 0)
2477 || (current->num_chars == 0
2478 && current->buflen == d.buflen
2479 && memcmp (current->buf, d.buf, current->buflen) == 0))
2480 ++current->repeat_count;
2481 else
2482 break;
2483 }
2484 else
2485 break;
2486 }
2487
2488 /* Push this next converted character onto the result vector. */
2489 repeat = current->repeat_count;
2490 VEC_safe_push (converted_character_d, *vec, &d);
2491 return repeat;
2492 }
2493 }
2494
2495 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2496 character to use with string output. WIDTH is the size of the output
2497 character type. BYTE_ORDER is the the target byte order. OPTIONS
2498 is the user's print options. */
2499
2500 static void
2501 print_converted_chars_to_obstack (struct obstack *obstack,
2502 VEC (converted_character_d) *chars,
2503 int quote_char, int width,
2504 enum bfd_endian byte_order,
2505 const struct value_print_options *options)
2506 {
2507 unsigned int idx;
2508 struct converted_character *elem;
2509 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2510 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2511 int need_escape = 0;
2512
2513 /* Set the start state. */
2514 idx = 0;
2515 last = state = START;
2516 elem = NULL;
2517
2518 while (1)
2519 {
2520 switch (state)
2521 {
2522 case START:
2523 /* Nothing to do. */
2524 break;
2525
2526 case SINGLE:
2527 {
2528 int j;
2529
2530 /* We are outputting a single character
2531 (< options->repeat_count_threshold). */
2532
2533 if (last != SINGLE)
2534 {
2535 /* We were outputting some other type of content, so we
2536 must output and a comma and a quote. */
2537 if (last != START)
2538 obstack_grow_wstr (obstack, LCST (", "));
2539 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2540 }
2541 /* Output the character. */
2542 for (j = 0; j < elem->repeat_count; ++j)
2543 {
2544 if (elem->result == wchar_iterate_ok)
2545 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2546 byte_order, obstack, quote_char, &need_escape);
2547 else
2548 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2549 byte_order, obstack, quote_char, &need_escape);
2550 }
2551 }
2552 break;
2553
2554 case REPEAT:
2555 {
2556 int j;
2557 char *s;
2558
2559 /* We are outputting a character with a repeat count
2560 greater than options->repeat_count_threshold. */
2561
2562 if (last == SINGLE)
2563 {
2564 /* We were outputting a single string. Terminate the
2565 string. */
2566 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2567 }
2568 if (last != START)
2569 obstack_grow_wstr (obstack, LCST (", "));
2570
2571 /* Output the character and repeat string. */
2572 obstack_grow_wstr (obstack, LCST ("'"));
2573 if (elem->result == wchar_iterate_ok)
2574 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2575 byte_order, obstack, quote_char, &need_escape);
2576 else
2577 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2578 byte_order, obstack, quote_char, &need_escape);
2579 obstack_grow_wstr (obstack, LCST ("'"));
2580 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2581 for (j = 0; s[j]; ++j)
2582 {
2583 gdb_wchar_t w = gdb_btowc (s[j]);
2584 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2585 }
2586 xfree (s);
2587 }
2588 break;
2589
2590 case INCOMPLETE:
2591 /* We are outputting an incomplete sequence. */
2592 if (last == SINGLE)
2593 {
2594 /* If we were outputting a string of SINGLE characters,
2595 terminate the quote. */
2596 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2597 }
2598 if (last != START)
2599 obstack_grow_wstr (obstack, LCST (", "));
2600
2601 /* Output the incomplete sequence string. */
2602 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2603 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2604 obstack, 0, &need_escape);
2605 obstack_grow_wstr (obstack, LCST (">"));
2606
2607 /* We do not attempt to outupt anything after this. */
2608 state = FINISH;
2609 break;
2610
2611 case FINISH:
2612 /* All done. If we were outputting a string of SINGLE
2613 characters, the string must be terminated. Otherwise,
2614 REPEAT and INCOMPLETE are always left properly terminated. */
2615 if (last == SINGLE)
2616 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2617
2618 return;
2619 }
2620
2621 /* Get the next element and state. */
2622 last = state;
2623 if (state != FINISH)
2624 {
2625 elem = VEC_index (converted_character_d, chars, idx++);
2626 switch (elem->result)
2627 {
2628 case wchar_iterate_ok:
2629 case wchar_iterate_invalid:
2630 if (elem->repeat_count > options->repeat_count_threshold)
2631 state = REPEAT;
2632 else
2633 state = SINGLE;
2634 break;
2635
2636 case wchar_iterate_incomplete:
2637 state = INCOMPLETE;
2638 break;
2639
2640 case wchar_iterate_eof:
2641 state = FINISH;
2642 break;
2643 }
2644 }
2645 }
2646 }
2647
2648 /* Print the character string STRING, printing at most LENGTH
2649 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2650 the type of each character. OPTIONS holds the printing options;
2651 printing stops early if the number hits print_max; repeat counts
2652 are printed as appropriate. Print ellipses at the end if we had to
2653 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2654 QUOTE_CHAR is the character to print at each end of the string. If
2655 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2656 omitted. */
2657
2658 void
2659 generic_printstr (struct ui_file *stream, struct type *type,
2660 const gdb_byte *string, unsigned int length,
2661 const char *encoding, int force_ellipses,
2662 int quote_char, int c_style_terminator,
2663 const struct value_print_options *options)
2664 {
2665 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2666 unsigned int i;
2667 int width = TYPE_LENGTH (type);
2668 struct obstack wchar_buf, output;
2669 struct cleanup *cleanup;
2670 struct wchar_iterator *iter;
2671 int finished = 0;
2672 struct converted_character *last;
2673 VEC (converted_character_d) *converted_chars;
2674
2675 if (length == -1)
2676 {
2677 unsigned long current_char = 1;
2678
2679 for (i = 0; current_char; ++i)
2680 {
2681 QUIT;
2682 current_char = extract_unsigned_integer (string + i * width,
2683 width, byte_order);
2684 }
2685 length = i;
2686 }
2687
2688 /* If the string was not truncated due to `set print elements', and
2689 the last byte of it is a null, we don't print that, in
2690 traditional C style. */
2691 if (c_style_terminator
2692 && !force_ellipses
2693 && length > 0
2694 && (extract_unsigned_integer (string + (length - 1) * width,
2695 width, byte_order) == 0))
2696 length--;
2697
2698 if (length == 0)
2699 {
2700 fputs_filtered ("\"\"", stream);
2701 return;
2702 }
2703
2704 /* Arrange to iterate over the characters, in wchar_t form. */
2705 iter = make_wchar_iterator (string, length * width, encoding, width);
2706 cleanup = make_cleanup_wchar_iterator (iter);
2707 converted_chars = NULL;
2708 make_cleanup (VEC_cleanup (converted_character_d), &converted_chars);
2709
2710 /* Convert characters until the string is over or the maximum
2711 number of printed characters has been reached. */
2712 i = 0;
2713 while (i < options->print_max)
2714 {
2715 int r;
2716
2717 QUIT;
2718
2719 /* Grab the next character and repeat count. */
2720 r = count_next_character (iter, &converted_chars);
2721
2722 /* If less than zero, the end of the input string was reached. */
2723 if (r < 0)
2724 break;
2725
2726 /* Otherwise, add the count to the total print count and get
2727 the next character. */
2728 i += r;
2729 }
2730
2731 /* Get the last element and determine if the entire string was
2732 processed. */
2733 last = VEC_last (converted_character_d, converted_chars);
2734 finished = (last->result == wchar_iterate_eof);
2735
2736 /* Ensure that CONVERTED_CHARS is terminated. */
2737 last->result = wchar_iterate_eof;
2738
2739 /* WCHAR_BUF is the obstack we use to represent the string in
2740 wchar_t form. */
2741 obstack_init (&wchar_buf);
2742 make_cleanup_obstack_free (&wchar_buf);
2743
2744 /* Print the output string to the obstack. */
2745 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2746 width, byte_order, options);
2747
2748 if (force_ellipses || !finished)
2749 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2750
2751 /* OUTPUT is where we collect `char's for printing. */
2752 obstack_init (&output);
2753 make_cleanup_obstack_free (&output);
2754
2755 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2756 (gdb_byte *) obstack_base (&wchar_buf),
2757 obstack_object_size (&wchar_buf),
2758 sizeof (gdb_wchar_t), &output, translit_char);
2759 obstack_1grow (&output, '\0');
2760
2761 fputs_filtered ((const char *) obstack_base (&output), stream);
2762
2763 do_cleanups (cleanup);
2764 }
2765
2766 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2767 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2768 stops at the first null byte, otherwise printing proceeds (including null
2769 bytes) until either print_max or LEN characters have been printed,
2770 whichever is smaller. ENCODING is the name of the string's
2771 encoding. It can be NULL, in which case the target encoding is
2772 assumed. */
2773
2774 int
2775 val_print_string (struct type *elttype, const char *encoding,
2776 CORE_ADDR addr, int len,
2777 struct ui_file *stream,
2778 const struct value_print_options *options)
2779 {
2780 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2781 int err; /* Non-zero if we got a bad read. */
2782 int found_nul; /* Non-zero if we found the nul char. */
2783 unsigned int fetchlimit; /* Maximum number of chars to print. */
2784 int bytes_read;
2785 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2786 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2787 struct gdbarch *gdbarch = get_type_arch (elttype);
2788 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2789 int width = TYPE_LENGTH (elttype);
2790
2791 /* First we need to figure out the limit on the number of characters we are
2792 going to attempt to fetch and print. This is actually pretty simple. If
2793 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2794 LEN is -1, then the limit is print_max. This is true regardless of
2795 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2796 because finding the null byte (or available memory) is what actually
2797 limits the fetch. */
2798
2799 fetchlimit = (len == -1 ? options->print_max : min (len,
2800 options->print_max));
2801
2802 err = read_string (addr, len, width, fetchlimit, byte_order,
2803 &buffer, &bytes_read);
2804 old_chain = make_cleanup (xfree, buffer);
2805
2806 addr += bytes_read;
2807
2808 /* We now have either successfully filled the buffer to fetchlimit,
2809 or terminated early due to an error or finding a null char when
2810 LEN is -1. */
2811
2812 /* Determine found_nul by looking at the last character read. */
2813 found_nul = 0;
2814 if (bytes_read >= width)
2815 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2816 byte_order) == 0;
2817 if (len == -1 && !found_nul)
2818 {
2819 gdb_byte *peekbuf;
2820
2821 /* We didn't find a NUL terminator we were looking for. Attempt
2822 to peek at the next character. If not successful, or it is not
2823 a null byte, then force ellipsis to be printed. */
2824
2825 peekbuf = (gdb_byte *) alloca (width);
2826
2827 if (target_read_memory (addr, peekbuf, width) == 0
2828 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2829 force_ellipsis = 1;
2830 }
2831 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2832 {
2833 /* Getting an error when we have a requested length, or fetching less
2834 than the number of characters actually requested, always make us
2835 print ellipsis. */
2836 force_ellipsis = 1;
2837 }
2838
2839 /* If we get an error before fetching anything, don't print a string.
2840 But if we fetch something and then get an error, print the string
2841 and then the error message. */
2842 if (err == 0 || bytes_read > 0)
2843 {
2844 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
2845 encoding, force_ellipsis, options);
2846 }
2847
2848 if (err != 0)
2849 {
2850 char *str;
2851
2852 str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2853 make_cleanup (xfree, str);
2854
2855 fprintf_filtered (stream, "<error: ");
2856 fputs_filtered (str, stream);
2857 fprintf_filtered (stream, ">");
2858 }
2859
2860 gdb_flush (stream);
2861 do_cleanups (old_chain);
2862
2863 return (bytes_read / width);
2864 }
2865 \f
2866
2867 /* The 'set input-radix' command writes to this auxiliary variable.
2868 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2869 it is left unchanged. */
2870
2871 static unsigned input_radix_1 = 10;
2872
2873 /* Validate an input or output radix setting, and make sure the user
2874 knows what they really did here. Radix setting is confusing, e.g.
2875 setting the input radix to "10" never changes it! */
2876
2877 static void
2878 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
2879 {
2880 set_input_radix_1 (from_tty, input_radix_1);
2881 }
2882
2883 static void
2884 set_input_radix_1 (int from_tty, unsigned radix)
2885 {
2886 /* We don't currently disallow any input radix except 0 or 1, which don't
2887 make any mathematical sense. In theory, we can deal with any input
2888 radix greater than 1, even if we don't have unique digits for every
2889 value from 0 to radix-1, but in practice we lose on large radix values.
2890 We should either fix the lossage or restrict the radix range more.
2891 (FIXME). */
2892
2893 if (radix < 2)
2894 {
2895 input_radix_1 = input_radix;
2896 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2897 radix);
2898 }
2899 input_radix_1 = input_radix = radix;
2900 if (from_tty)
2901 {
2902 printf_filtered (_("Input radix now set to "
2903 "decimal %u, hex %x, octal %o.\n"),
2904 radix, radix, radix);
2905 }
2906 }
2907
2908 /* The 'set output-radix' command writes to this auxiliary variable.
2909 If the requested radix is valid, OUTPUT_RADIX is updated,
2910 otherwise, it is left unchanged. */
2911
2912 static unsigned output_radix_1 = 10;
2913
2914 static void
2915 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
2916 {
2917 set_output_radix_1 (from_tty, output_radix_1);
2918 }
2919
2920 static void
2921 set_output_radix_1 (int from_tty, unsigned radix)
2922 {
2923 /* Validate the radix and disallow ones that we aren't prepared to
2924 handle correctly, leaving the radix unchanged. */
2925 switch (radix)
2926 {
2927 case 16:
2928 user_print_options.output_format = 'x'; /* hex */
2929 break;
2930 case 10:
2931 user_print_options.output_format = 0; /* decimal */
2932 break;
2933 case 8:
2934 user_print_options.output_format = 'o'; /* octal */
2935 break;
2936 default:
2937 output_radix_1 = output_radix;
2938 error (_("Unsupported output radix ``decimal %u''; "
2939 "output radix unchanged."),
2940 radix);
2941 }
2942 output_radix_1 = output_radix = radix;
2943 if (from_tty)
2944 {
2945 printf_filtered (_("Output radix now set to "
2946 "decimal %u, hex %x, octal %o.\n"),
2947 radix, radix, radix);
2948 }
2949 }
2950
2951 /* Set both the input and output radix at once. Try to set the output radix
2952 first, since it has the most restrictive range. An radix that is valid as
2953 an output radix is also valid as an input radix.
2954
2955 It may be useful to have an unusual input radix. If the user wishes to
2956 set an input radix that is not valid as an output radix, he needs to use
2957 the 'set input-radix' command. */
2958
2959 static void
2960 set_radix (char *arg, int from_tty)
2961 {
2962 unsigned radix;
2963
2964 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2965 set_output_radix_1 (0, radix);
2966 set_input_radix_1 (0, radix);
2967 if (from_tty)
2968 {
2969 printf_filtered (_("Input and output radices now set to "
2970 "decimal %u, hex %x, octal %o.\n"),
2971 radix, radix, radix);
2972 }
2973 }
2974
2975 /* Show both the input and output radices. */
2976
2977 static void
2978 show_radix (char *arg, int from_tty)
2979 {
2980 if (from_tty)
2981 {
2982 if (input_radix == output_radix)
2983 {
2984 printf_filtered (_("Input and output radices set to "
2985 "decimal %u, hex %x, octal %o.\n"),
2986 input_radix, input_radix, input_radix);
2987 }
2988 else
2989 {
2990 printf_filtered (_("Input radix set to decimal "
2991 "%u, hex %x, octal %o.\n"),
2992 input_radix, input_radix, input_radix);
2993 printf_filtered (_("Output radix set to decimal "
2994 "%u, hex %x, octal %o.\n"),
2995 output_radix, output_radix, output_radix);
2996 }
2997 }
2998 }
2999 \f
3000
3001 static void
3002 set_print (char *arg, int from_tty)
3003 {
3004 printf_unfiltered (
3005 "\"set print\" must be followed by the name of a print subcommand.\n");
3006 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
3007 }
3008
3009 static void
3010 show_print (char *args, int from_tty)
3011 {
3012 cmd_show_list (showprintlist, from_tty, "");
3013 }
3014
3015 static void
3016 set_print_raw (char *arg, int from_tty)
3017 {
3018 printf_unfiltered (
3019 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
3020 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
3021 }
3022
3023 static void
3024 show_print_raw (char *args, int from_tty)
3025 {
3026 cmd_show_list (showprintrawlist, from_tty, "");
3027 }
3028
3029 \f
3030 void
3031 _initialize_valprint (void)
3032 {
3033 add_prefix_cmd ("print", no_class, set_print,
3034 _("Generic command for setting how things print."),
3035 &setprintlist, "set print ", 0, &setlist);
3036 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3037 /* Prefer set print to set prompt. */
3038 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3039
3040 add_prefix_cmd ("print", no_class, show_print,
3041 _("Generic command for showing print settings."),
3042 &showprintlist, "show print ", 0, &showlist);
3043 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3044 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3045
3046 add_prefix_cmd ("raw", no_class, set_print_raw,
3047 _("\
3048 Generic command for setting what things to print in \"raw\" mode."),
3049 &setprintrawlist, "set print raw ", 0, &setprintlist);
3050 add_prefix_cmd ("raw", no_class, show_print_raw,
3051 _("Generic command for showing \"print raw\" settings."),
3052 &showprintrawlist, "show print raw ", 0, &showprintlist);
3053
3054 add_setshow_uinteger_cmd ("elements", no_class,
3055 &user_print_options.print_max, _("\
3056 Set limit on string chars or array elements to print."), _("\
3057 Show limit on string chars or array elements to print."), _("\
3058 \"set print elements unlimited\" causes there to be no limit."),
3059 NULL,
3060 show_print_max,
3061 &setprintlist, &showprintlist);
3062
3063 add_setshow_boolean_cmd ("null-stop", no_class,
3064 &user_print_options.stop_print_at_null, _("\
3065 Set printing of char arrays to stop at first null char."), _("\
3066 Show printing of char arrays to stop at first null char."), NULL,
3067 NULL,
3068 show_stop_print_at_null,
3069 &setprintlist, &showprintlist);
3070
3071 add_setshow_uinteger_cmd ("repeats", no_class,
3072 &user_print_options.repeat_count_threshold, _("\
3073 Set threshold for repeated print elements."), _("\
3074 Show threshold for repeated print elements."), _("\
3075 \"set print repeats unlimited\" causes all elements to be individually printed."),
3076 NULL,
3077 show_repeat_count_threshold,
3078 &setprintlist, &showprintlist);
3079
3080 add_setshow_boolean_cmd ("pretty", class_support,
3081 &user_print_options.prettyformat_structs, _("\
3082 Set pretty formatting of structures."), _("\
3083 Show pretty formatting of structures."), NULL,
3084 NULL,
3085 show_prettyformat_structs,
3086 &setprintlist, &showprintlist);
3087
3088 add_setshow_boolean_cmd ("union", class_support,
3089 &user_print_options.unionprint, _("\
3090 Set printing of unions interior to structures."), _("\
3091 Show printing of unions interior to structures."), NULL,
3092 NULL,
3093 show_unionprint,
3094 &setprintlist, &showprintlist);
3095
3096 add_setshow_boolean_cmd ("array", class_support,
3097 &user_print_options.prettyformat_arrays, _("\
3098 Set pretty formatting of arrays."), _("\
3099 Show pretty formatting of arrays."), NULL,
3100 NULL,
3101 show_prettyformat_arrays,
3102 &setprintlist, &showprintlist);
3103
3104 add_setshow_boolean_cmd ("address", class_support,
3105 &user_print_options.addressprint, _("\
3106 Set printing of addresses."), _("\
3107 Show printing of addresses."), NULL,
3108 NULL,
3109 show_addressprint,
3110 &setprintlist, &showprintlist);
3111
3112 add_setshow_boolean_cmd ("symbol", class_support,
3113 &user_print_options.symbol_print, _("\
3114 Set printing of symbol names when printing pointers."), _("\
3115 Show printing of symbol names when printing pointers."),
3116 NULL, NULL,
3117 show_symbol_print,
3118 &setprintlist, &showprintlist);
3119
3120 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3121 _("\
3122 Set default input radix for entering numbers."), _("\
3123 Show default input radix for entering numbers."), NULL,
3124 set_input_radix,
3125 show_input_radix,
3126 &setlist, &showlist);
3127
3128 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3129 _("\
3130 Set default output radix for printing of values."), _("\
3131 Show default output radix for printing of values."), NULL,
3132 set_output_radix,
3133 show_output_radix,
3134 &setlist, &showlist);
3135
3136 /* The "set radix" and "show radix" commands are special in that
3137 they are like normal set and show commands but allow two normally
3138 independent variables to be either set or shown with a single
3139 command. So the usual deprecated_add_set_cmd() and [deleted]
3140 add_show_from_set() commands aren't really appropriate. */
3141 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3142 longer true - show can display anything. */
3143 add_cmd ("radix", class_support, set_radix, _("\
3144 Set default input and output number radices.\n\
3145 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3146 Without an argument, sets both radices back to the default value of 10."),
3147 &setlist);
3148 add_cmd ("radix", class_support, show_radix, _("\
3149 Show the default input and output number radices.\n\
3150 Use 'show input-radix' or 'show output-radix' to independently show each."),
3151 &showlist);
3152
3153 add_setshow_boolean_cmd ("array-indexes", class_support,
3154 &user_print_options.print_array_indexes, _("\
3155 Set printing of array indexes."), _("\
3156 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
3157 &setprintlist, &showprintlist);
3158 }
This page took 0.144193 seconds and 4 git commands to generate.