PARAMS removal.
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2 Copyright 1986, 1988, 1989, 1991-1994, 1998, 2000
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "obstack.h"
31 #include "language.h"
32 #include "demangle.h"
33 #include "annotate.h"
34 #include "valprint.h"
35
36 #include <errno.h>
37
38 /* Prototypes for local functions */
39
40 static int partial_memory_read (CORE_ADDR memaddr, char *myaddr,
41 int len, int *errnoptr);
42
43 static void print_hex_chars (struct ui_file *, unsigned char *,
44 unsigned int);
45
46 static void show_print (char *, int);
47
48 static void set_print (char *, int);
49
50 static void set_radix (char *, int);
51
52 static void show_radix (char *, int);
53
54 static void set_input_radix (char *, int, struct cmd_list_element *);
55
56 static void set_input_radix_1 (int, unsigned);
57
58 static void set_output_radix (char *, int, struct cmd_list_element *);
59
60 static void set_output_radix_1 (int, unsigned);
61
62 void _initialize_valprint (void);
63
64 /* Maximum number of chars to print for a string pointer value or vector
65 contents, or UINT_MAX for no limit. Note that "set print elements 0"
66 stores UINT_MAX in print_max, which displays in a show command as
67 "unlimited". */
68
69 unsigned int print_max;
70 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
71
72 /* Default input and output radixes, and output format letter. */
73
74 unsigned input_radix = 10;
75 unsigned output_radix = 10;
76 int output_format = 0;
77
78 /* Print repeat counts if there are more than this many repetitions of an
79 element in an array. Referenced by the low level language dependent
80 print routines. */
81
82 unsigned int repeat_count_threshold = 10;
83
84 /* If nonzero, stops printing of char arrays at first null. */
85
86 int stop_print_at_null;
87
88 /* Controls pretty printing of structures. */
89
90 int prettyprint_structs;
91
92 /* Controls pretty printing of arrays. */
93
94 int prettyprint_arrays;
95
96 /* If nonzero, causes unions inside structures or other unions to be
97 printed. */
98
99 int unionprint; /* Controls printing of nested unions. */
100
101 /* If nonzero, causes machine addresses to be printed in certain contexts. */
102
103 int addressprint; /* Controls printing of machine addresses */
104 \f
105
106 /* Print data of type TYPE located at VALADDR (within GDB), which came from
107 the inferior at address ADDRESS, onto stdio stream STREAM according to
108 FORMAT (a letter, or 0 for natural format using TYPE).
109
110 If DEREF_REF is nonzero, then dereference references, otherwise just print
111 them like pointers.
112
113 The PRETTY parameter controls prettyprinting.
114
115 If the data are a string pointer, returns the number of string characters
116 printed.
117
118 FIXME: The data at VALADDR is in target byte order. If gdb is ever
119 enhanced to be able to debug more than the single target it was compiled
120 for (specific CPU type and thus specific target byte ordering), then
121 either the print routines are going to have to take this into account,
122 or the data is going to have to be passed into here already converted
123 to the host byte ordering, whichever is more convenient. */
124
125
126 int
127 val_print (type, valaddr, embedded_offset, address,
128 stream, format, deref_ref, recurse, pretty)
129 struct type *type;
130 char *valaddr;
131 int embedded_offset;
132 CORE_ADDR address;
133 struct ui_file *stream;
134 int format;
135 int deref_ref;
136 int recurse;
137 enum val_prettyprint pretty;
138 {
139 struct type *real_type = check_typedef (type);
140 if (pretty == Val_pretty_default)
141 {
142 pretty = prettyprint_structs ? Val_prettyprint : Val_no_prettyprint;
143 }
144
145 QUIT;
146
147 /* Ensure that the type is complete and not just a stub. If the type is
148 only a stub and we can't find and substitute its complete type, then
149 print appropriate string and return. */
150
151 if (TYPE_FLAGS (real_type) & TYPE_FLAG_STUB)
152 {
153 fprintf_filtered (stream, "<incomplete type>");
154 gdb_flush (stream);
155 return (0);
156 }
157
158 return (LA_VAL_PRINT (type, valaddr, embedded_offset, address,
159 stream, format, deref_ref, recurse, pretty));
160 }
161
162 /* Print the value VAL in C-ish syntax on stream STREAM.
163 FORMAT is a format-letter, or 0 for print in natural format of data type.
164 If the object printed is a string pointer, returns
165 the number of string bytes printed. */
166
167 int
168 value_print (val, stream, format, pretty)
169 value_ptr val;
170 struct ui_file *stream;
171 int format;
172 enum val_prettyprint pretty;
173 {
174 if (val == 0)
175 {
176 printf_filtered ("<address of value unknown>");
177 return 0;
178 }
179 if (VALUE_OPTIMIZED_OUT (val))
180 {
181 printf_filtered ("<value optimized out>");
182 return 0;
183 }
184 return LA_VALUE_PRINT (val, stream, format, pretty);
185 }
186
187 /* Called by various <lang>_val_print routines to print
188 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
189 value. STREAM is where to print the value. */
190
191 void
192 val_print_type_code_int (type, valaddr, stream)
193 struct type *type;
194 char *valaddr;
195 struct ui_file *stream;
196 {
197 if (TYPE_LENGTH (type) > sizeof (LONGEST))
198 {
199 LONGEST val;
200
201 if (TYPE_UNSIGNED (type)
202 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
203 &val))
204 {
205 print_longest (stream, 'u', 0, val);
206 }
207 else
208 {
209 /* Signed, or we couldn't turn an unsigned value into a
210 LONGEST. For signed values, one could assume two's
211 complement (a reasonable assumption, I think) and do
212 better than this. */
213 print_hex_chars (stream, (unsigned char *) valaddr,
214 TYPE_LENGTH (type));
215 }
216 }
217 else
218 {
219 #ifdef PRINT_TYPELESS_INTEGER
220 PRINT_TYPELESS_INTEGER (stream, type, unpack_long (type, valaddr));
221 #else
222 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
223 unpack_long (type, valaddr));
224 #endif
225 }
226 }
227
228 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
229 The raison d'etre of this function is to consolidate printing of
230 LONG_LONG's into this one function. Some platforms have long longs but
231 don't have a printf() that supports "ll" in the format string. We handle
232 these by seeing if the number is representable as either a signed or
233 unsigned long, depending upon what format is desired, and if not we just
234 bail out and print the number in hex.
235
236 The format chars b,h,w,g are from print_scalar_formatted(). If USE_LOCAL,
237 format it according to the current language (this should be used for most
238 integers which GDB prints, the exception is things like protocols where
239 the format of the integer is a protocol thing, not a user-visible thing).
240 */
241
242 #if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
243 static void print_decimal (struct ui_file * stream, char *sign,
244 int use_local, ULONGEST val_ulong);
245 static void
246 print_decimal (stream, sign, use_local, val_ulong)
247 struct ui_file *stream;
248 char *sign;
249 int use_local;
250 ULONGEST val_ulong;
251 {
252 unsigned long temp[3];
253 int i = 0;
254 do
255 {
256 temp[i] = val_ulong % (1000 * 1000 * 1000);
257 val_ulong /= (1000 * 1000 * 1000);
258 i++;
259 }
260 while (val_ulong != 0 && i < (sizeof (temp) / sizeof (temp[0])));
261 switch (i)
262 {
263 case 1:
264 fprintf_filtered (stream, "%s%lu",
265 sign, temp[0]);
266 break;
267 case 2:
268 fprintf_filtered (stream, "%s%lu%09lu",
269 sign, temp[1], temp[0]);
270 break;
271 case 3:
272 fprintf_filtered (stream, "%s%lu%09lu%09lu",
273 sign, temp[2], temp[1], temp[0]);
274 break;
275 default:
276 abort ();
277 }
278 return;
279 }
280 #endif
281
282 void
283 print_longest (stream, format, use_local, val_long)
284 struct ui_file *stream;
285 int format;
286 int use_local;
287 LONGEST val_long;
288 {
289 #if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
290 if (sizeof (long) < sizeof (LONGEST))
291 {
292 switch (format)
293 {
294 case 'd':
295 {
296 /* Print a signed value, that doesn't fit in a long */
297 if ((long) val_long != val_long)
298 {
299 if (val_long < 0)
300 print_decimal (stream, "-", use_local, -val_long);
301 else
302 print_decimal (stream, "", use_local, val_long);
303 return;
304 }
305 break;
306 }
307 case 'u':
308 {
309 /* Print an unsigned value, that doesn't fit in a long */
310 if ((unsigned long) val_long != (ULONGEST) val_long)
311 {
312 print_decimal (stream, "", use_local, val_long);
313 return;
314 }
315 break;
316 }
317 case 'x':
318 case 'o':
319 case 'b':
320 case 'h':
321 case 'w':
322 case 'g':
323 /* Print as unsigned value, must fit completely in unsigned long */
324 {
325 unsigned long temp = val_long;
326 if (temp != val_long)
327 {
328 /* Urk, can't represent value in long so print in hex.
329 Do shift in two operations so that if sizeof (long)
330 == sizeof (LONGEST) we can avoid warnings from
331 picky compilers about shifts >= the size of the
332 shiftee in bits */
333 unsigned long vbot = (unsigned long) val_long;
334 LONGEST temp = (val_long >> (sizeof (long) * HOST_CHAR_BIT - 1));
335 unsigned long vtop = temp >> 1;
336 fprintf_filtered (stream, "0x%lx%08lx", vtop, vbot);
337 return;
338 }
339 break;
340 }
341 }
342 }
343 #endif
344
345 #if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
346 switch (format)
347 {
348 case 'd':
349 fprintf_filtered (stream,
350 use_local ? local_decimal_format_custom ("ll")
351 : "%lld",
352 val_long);
353 break;
354 case 'u':
355 fprintf_filtered (stream, "%llu", val_long);
356 break;
357 case 'x':
358 fprintf_filtered (stream,
359 use_local ? local_hex_format_custom ("ll")
360 : "%llx",
361 val_long);
362 break;
363 case 'o':
364 fprintf_filtered (stream,
365 use_local ? local_octal_format_custom ("ll")
366 : "%llo",
367 val_long);
368 break;
369 case 'b':
370 fprintf_filtered (stream, local_hex_format_custom ("02ll"), val_long);
371 break;
372 case 'h':
373 fprintf_filtered (stream, local_hex_format_custom ("04ll"), val_long);
374 break;
375 case 'w':
376 fprintf_filtered (stream, local_hex_format_custom ("08ll"), val_long);
377 break;
378 case 'g':
379 fprintf_filtered (stream, local_hex_format_custom ("016ll"), val_long);
380 break;
381 default:
382 abort ();
383 }
384 #else /* !CC_HAS_LONG_LONG || !PRINTF_HAS_LONG_LONG */
385 /* In the following it is important to coerce (val_long) to a long. It does
386 nothing if !LONG_LONG, but it will chop off the top half (which we know
387 we can ignore) if the host supports long longs. */
388
389 switch (format)
390 {
391 case 'd':
392 fprintf_filtered (stream,
393 use_local ? local_decimal_format_custom ("l")
394 : "%ld",
395 (long) val_long);
396 break;
397 case 'u':
398 fprintf_filtered (stream, "%lu", (unsigned long) val_long);
399 break;
400 case 'x':
401 fprintf_filtered (stream,
402 use_local ? local_hex_format_custom ("l")
403 : "%lx",
404 (unsigned long) val_long);
405 break;
406 case 'o':
407 fprintf_filtered (stream,
408 use_local ? local_octal_format_custom ("l")
409 : "%lo",
410 (unsigned long) val_long);
411 break;
412 case 'b':
413 fprintf_filtered (stream, local_hex_format_custom ("02l"),
414 (unsigned long) val_long);
415 break;
416 case 'h':
417 fprintf_filtered (stream, local_hex_format_custom ("04l"),
418 (unsigned long) val_long);
419 break;
420 case 'w':
421 fprintf_filtered (stream, local_hex_format_custom ("08l"),
422 (unsigned long) val_long);
423 break;
424 case 'g':
425 fprintf_filtered (stream, local_hex_format_custom ("016l"),
426 (unsigned long) val_long);
427 break;
428 default:
429 abort ();
430 }
431 #endif /* CC_HAS_LONG_LONG || PRINTF_HAS_LONG_LONG */
432 }
433
434 #if 0
435 void
436 strcat_longest (format, use_local, val_long, buf, buflen)
437 int format;
438 int use_local;
439 LONGEST val_long;
440 char *buf;
441 int buflen; /* ignored, for now */
442 {
443 #if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
444 long vtop, vbot;
445
446 vtop = val_long >> (sizeof (long) * HOST_CHAR_BIT);
447 vbot = (long) val_long;
448
449 if ((format == 'd' && (val_long < INT_MIN || val_long > INT_MAX))
450 || ((format == 'u' || format == 'x') && (unsigned long long) val_long > UINT_MAX))
451 {
452 sprintf (buf, "0x%lx%08lx", vtop, vbot);
453 return;
454 }
455 #endif
456
457 #ifdef PRINTF_HAS_LONG_LONG
458 switch (format)
459 {
460 case 'd':
461 sprintf (buf,
462 (use_local ? local_decimal_format_custom ("ll") : "%lld"),
463 val_long);
464 break;
465 case 'u':
466 sprintf (buf, "%llu", val_long);
467 break;
468 case 'x':
469 sprintf (buf,
470 (use_local ? local_hex_format_custom ("ll") : "%llx"),
471
472 val_long);
473 break;
474 case 'o':
475 sprintf (buf,
476 (use_local ? local_octal_format_custom ("ll") : "%llo"),
477 val_long);
478 break;
479 case 'b':
480 sprintf (buf, local_hex_format_custom ("02ll"), val_long);
481 break;
482 case 'h':
483 sprintf (buf, local_hex_format_custom ("04ll"), val_long);
484 break;
485 case 'w':
486 sprintf (buf, local_hex_format_custom ("08ll"), val_long);
487 break;
488 case 'g':
489 sprintf (buf, local_hex_format_custom ("016ll"), val_long);
490 break;
491 default:
492 abort ();
493 }
494 #else /* !PRINTF_HAS_LONG_LONG */
495 /* In the following it is important to coerce (val_long) to a long. It does
496 nothing if !LONG_LONG, but it will chop off the top half (which we know
497 we can ignore) if the host supports long longs. */
498
499 switch (format)
500 {
501 case 'd':
502 sprintf (buf, (use_local ? local_decimal_format_custom ("l") : "%ld"),
503 ((long) val_long));
504 break;
505 case 'u':
506 sprintf (buf, "%lu", ((unsigned long) val_long));
507 break;
508 case 'x':
509 sprintf (buf, (use_local ? local_hex_format_custom ("l") : "%lx"),
510 ((long) val_long));
511 break;
512 case 'o':
513 sprintf (buf, (use_local ? local_octal_format_custom ("l") : "%lo"),
514 ((long) val_long));
515 break;
516 case 'b':
517 sprintf (buf, local_hex_format_custom ("02l"),
518 ((long) val_long));
519 break;
520 case 'h':
521 sprintf (buf, local_hex_format_custom ("04l"),
522 ((long) val_long));
523 break;
524 case 'w':
525 sprintf (buf, local_hex_format_custom ("08l"),
526 ((long) val_long));
527 break;
528 case 'g':
529 sprintf (buf, local_hex_format_custom ("016l"),
530 ((long) val_long));
531 break;
532 default:
533 abort ();
534 }
535
536 #endif /* !PRINTF_HAS_LONG_LONG */
537 }
538 #endif
539
540 /* This used to be a macro, but I don't think it is called often enough
541 to merit such treatment. */
542 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
543 arguments to a function, number in a value history, register number, etc.)
544 where the value must not be larger than can fit in an int. */
545
546 int
547 longest_to_int (arg)
548 LONGEST arg;
549 {
550 /* Let the compiler do the work */
551 int rtnval = (int) arg;
552
553 /* Check for overflows or underflows */
554 if (sizeof (LONGEST) > sizeof (int))
555 {
556 if (rtnval != arg)
557 {
558 error ("Value out of range.");
559 }
560 }
561 return (rtnval);
562 }
563
564
565 /* Print a floating point value of type TYPE, pointed to in GDB by VALADDR,
566 on STREAM. */
567
568 void
569 print_floating (valaddr, type, stream)
570 char *valaddr;
571 struct type *type;
572 struct ui_file *stream;
573 {
574 DOUBLEST doub;
575 int inv;
576 unsigned len = TYPE_LENGTH (type);
577
578 /* Check for NaN's. Note that this code does not depend on us being
579 on an IEEE conforming system. It only depends on the target
580 machine using IEEE representation. This means (a)
581 cross-debugging works right, and (2) IEEE_FLOAT can (and should)
582 be non-zero for systems like the 68881, which uses IEEE
583 representation, but is not IEEE conforming. */
584 if (IEEE_FLOAT)
585 {
586 unsigned long low, high;
587 /* Is the sign bit 0? */
588 int nonnegative;
589 /* Is it is a NaN (i.e. the exponent is all ones and
590 the fraction is nonzero)? */
591 int is_nan;
592
593 /* For lint, initialize these two variables to suppress warning: */
594 low = high = nonnegative = 0;
595 if (len == 4)
596 {
597 /* It's single precision. */
598 /* Assume that floating point byte order is the same as
599 integer byte order. */
600 low = extract_unsigned_integer (valaddr, 4);
601 nonnegative = ((low & 0x80000000) == 0);
602 is_nan = ((((low >> 23) & 0xFF) == 0xFF)
603 && 0 != (low & 0x7FFFFF));
604 low &= 0x7fffff;
605 high = 0;
606 }
607 else if (len == 8)
608 {
609 /* It's double precision. Get the high and low words. */
610
611 /* Assume that floating point byte order is the same as
612 integer byte order. */
613 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
614 {
615 low = extract_unsigned_integer (valaddr + 4, 4);
616 high = extract_unsigned_integer (valaddr, 4);
617 }
618 else
619 {
620 low = extract_unsigned_integer (valaddr, 4);
621 high = extract_unsigned_integer (valaddr + 4, 4);
622 }
623 nonnegative = ((high & 0x80000000) == 0);
624 is_nan = (((high >> 20) & 0x7ff) == 0x7ff
625 && !((((high & 0xfffff) == 0)) && (low == 0)));
626 high &= 0xfffff;
627 }
628 else
629 {
630 #ifdef TARGET_ANALYZE_FLOATING
631 TARGET_ANALYZE_FLOATING;
632 #else
633 /* Extended. We can't detect extended NaNs for this target.
634 Also note that currently extendeds get nuked to double in
635 REGISTER_CONVERTIBLE. */
636 is_nan = 0;
637 #endif
638 }
639
640 if (is_nan)
641 {
642 /* The meaning of the sign and fraction is not defined by IEEE.
643 But the user might know what they mean. For example, they
644 (in an implementation-defined manner) distinguish between
645 signaling and quiet NaN's. */
646 if (high)
647 fprintf_filtered (stream, "-NaN(0x%lx%.8lx)" + !!nonnegative,
648 high, low);
649 else
650 fprintf_filtered (stream, "-NaN(0x%lx)" + nonnegative, low);
651 return;
652 }
653 }
654
655 doub = unpack_double (type, valaddr, &inv);
656 if (inv)
657 {
658 fprintf_filtered (stream, "<invalid float value>");
659 return;
660 }
661
662 if (len < sizeof (double))
663 fprintf_filtered (stream, "%.9g", (double) doub);
664 else if (len == sizeof (double))
665 fprintf_filtered (stream, "%.17g", (double) doub);
666 else
667 #ifdef PRINTF_HAS_LONG_DOUBLE
668 fprintf_filtered (stream, "%.35Lg", doub);
669 #else
670 /* This at least wins with values that are representable as doubles */
671 fprintf_filtered (stream, "%.17g", (double) doub);
672 #endif
673 }
674
675 void
676 print_binary_chars (stream, valaddr, len)
677 struct ui_file *stream;
678 unsigned char *valaddr;
679 unsigned len;
680 {
681
682 #define BITS_IN_BYTES 8
683
684 unsigned char *p;
685 unsigned int i;
686 int b;
687
688 /* Declared "int" so it will be signed.
689 * This ensures that right shift will shift in zeros.
690 */
691 const int mask = 0x080;
692
693 /* FIXME: We should be not printing leading zeroes in most cases. */
694
695 fprintf_filtered (stream, local_binary_format_prefix ());
696 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
697 {
698 for (p = valaddr;
699 p < valaddr + len;
700 p++)
701 {
702 /* Every byte has 8 binary characters; peel off
703 * and print from the MSB end.
704 */
705 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
706 {
707 if (*p & (mask >> i))
708 b = 1;
709 else
710 b = 0;
711
712 fprintf_filtered (stream, "%1d", b);
713 }
714 }
715 }
716 else
717 {
718 for (p = valaddr + len - 1;
719 p >= valaddr;
720 p--)
721 {
722 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
723 {
724 if (*p & (mask >> i))
725 b = 1;
726 else
727 b = 0;
728
729 fprintf_filtered (stream, "%1d", b);
730 }
731 }
732 }
733 fprintf_filtered (stream, local_binary_format_suffix ());
734 }
735
736 /* VALADDR points to an integer of LEN bytes.
737 * Print it in octal on stream or format it in buf.
738 */
739 void
740 print_octal_chars (stream, valaddr, len)
741 struct ui_file *stream;
742 unsigned char *valaddr;
743 unsigned len;
744 {
745 unsigned char *p;
746 unsigned char octa1, octa2, octa3, carry;
747 int cycle;
748
749 /* FIXME: We should be not printing leading zeroes in most cases. */
750
751
752 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
753 * the extra bits, which cycle every three bytes:
754 *
755 * Byte side: 0 1 2 3
756 * | | | |
757 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
758 *
759 * Octal side: 0 1 carry 3 4 carry ...
760 *
761 * Cycle number: 0 1 2
762 *
763 * But of course we are printing from the high side, so we have to
764 * figure out where in the cycle we are so that we end up with no
765 * left over bits at the end.
766 */
767 #define BITS_IN_OCTAL 3
768 #define HIGH_ZERO 0340
769 #define LOW_ZERO 0016
770 #define CARRY_ZERO 0003
771 #define HIGH_ONE 0200
772 #define MID_ONE 0160
773 #define LOW_ONE 0016
774 #define CARRY_ONE 0001
775 #define HIGH_TWO 0300
776 #define MID_TWO 0070
777 #define LOW_TWO 0007
778
779 /* For 32 we start in cycle 2, with two bits and one bit carry;
780 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
781 */
782 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
783 carry = 0;
784
785 fprintf_filtered (stream, local_octal_format_prefix ());
786 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
787 {
788 for (p = valaddr;
789 p < valaddr + len;
790 p++)
791 {
792 switch (cycle)
793 {
794 case 0:
795 /* No carry in, carry out two bits.
796 */
797 octa1 = (HIGH_ZERO & *p) >> 5;
798 octa2 = (LOW_ZERO & *p) >> 2;
799 carry = (CARRY_ZERO & *p);
800 fprintf_filtered (stream, "%o", octa1);
801 fprintf_filtered (stream, "%o", octa2);
802 break;
803
804 case 1:
805 /* Carry in two bits, carry out one bit.
806 */
807 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
808 octa2 = (MID_ONE & *p) >> 4;
809 octa3 = (LOW_ONE & *p) >> 1;
810 carry = (CARRY_ONE & *p);
811 fprintf_filtered (stream, "%o", octa1);
812 fprintf_filtered (stream, "%o", octa2);
813 fprintf_filtered (stream, "%o", octa3);
814 break;
815
816 case 2:
817 /* Carry in one bit, no carry out.
818 */
819 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
820 octa2 = (MID_TWO & *p) >> 3;
821 octa3 = (LOW_TWO & *p);
822 carry = 0;
823 fprintf_filtered (stream, "%o", octa1);
824 fprintf_filtered (stream, "%o", octa2);
825 fprintf_filtered (stream, "%o", octa3);
826 break;
827
828 default:
829 error ("Internal error in octal conversion;");
830 }
831
832 cycle++;
833 cycle = cycle % BITS_IN_OCTAL;
834 }
835 }
836 else
837 {
838 for (p = valaddr + len - 1;
839 p >= valaddr;
840 p--)
841 {
842 switch (cycle)
843 {
844 case 0:
845 /* Carry out, no carry in */
846 octa1 = (HIGH_ZERO & *p) >> 5;
847 octa2 = (LOW_ZERO & *p) >> 2;
848 carry = (CARRY_ZERO & *p);
849 fprintf_filtered (stream, "%o", octa1);
850 fprintf_filtered (stream, "%o", octa2);
851 break;
852
853 case 1:
854 /* Carry in, carry out */
855 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
856 octa2 = (MID_ONE & *p) >> 4;
857 octa3 = (LOW_ONE & *p) >> 1;
858 carry = (CARRY_ONE & *p);
859 fprintf_filtered (stream, "%o", octa1);
860 fprintf_filtered (stream, "%o", octa2);
861 fprintf_filtered (stream, "%o", octa3);
862 break;
863
864 case 2:
865 /* Carry in, no carry out */
866 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
867 octa2 = (MID_TWO & *p) >> 3;
868 octa3 = (LOW_TWO & *p);
869 carry = 0;
870 fprintf_filtered (stream, "%o", octa1);
871 fprintf_filtered (stream, "%o", octa2);
872 fprintf_filtered (stream, "%o", octa3);
873 break;
874
875 default:
876 error ("Internal error in octal conversion;");
877 }
878
879 cycle++;
880 cycle = cycle % BITS_IN_OCTAL;
881 }
882 }
883
884 fprintf_filtered (stream, local_octal_format_suffix ());
885 }
886
887 /* VALADDR points to an integer of LEN bytes.
888 * Print it in decimal on stream or format it in buf.
889 */
890 void
891 print_decimal_chars (stream, valaddr, len)
892 struct ui_file *stream;
893 unsigned char *valaddr;
894 unsigned len;
895 {
896 #define TEN 10
897 #define TWO_TO_FOURTH 16
898 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
899 #define CARRY_LEFT( x ) ((x) % TEN)
900 #define SHIFT( x ) ((x) << 4)
901 #define START_P \
902 ((TARGET_BYTE_ORDER == BIG_ENDIAN) ? valaddr : valaddr + len - 1)
903 #define NOT_END_P \
904 ((TARGET_BYTE_ORDER == BIG_ENDIAN) ? (p < valaddr + len) : (p >= valaddr))
905 #define NEXT_P \
906 ((TARGET_BYTE_ORDER == BIG_ENDIAN) ? p++ : p-- )
907 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
908 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
909
910 unsigned char *p;
911 unsigned char *digits;
912 int carry;
913 int decimal_len;
914 int i, j, decimal_digits;
915 int dummy;
916 int flip;
917
918 /* Base-ten number is less than twice as many digits
919 * as the base 16 number, which is 2 digits per byte.
920 */
921 decimal_len = len * 2 * 2;
922 digits = (unsigned char *) malloc (decimal_len);
923 if (digits == NULL)
924 error ("Can't allocate memory for conversion to decimal.");
925
926 for (i = 0; i < decimal_len; i++)
927 {
928 digits[i] = 0;
929 }
930
931 fprintf_filtered (stream, local_decimal_format_prefix ());
932
933 /* Ok, we have an unknown number of bytes of data to be printed in
934 * decimal.
935 *
936 * Given a hex number (in nibbles) as XYZ, we start by taking X and
937 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
938 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
939 *
940 * The trick is that "digits" holds a base-10 number, but sometimes
941 * the individual digits are > 10.
942 *
943 * Outer loop is per nibble (hex digit) of input, from MSD end to
944 * LSD end.
945 */
946 decimal_digits = 0; /* Number of decimal digits so far */
947 p = START_P;
948 flip = 0;
949 while (NOT_END_P)
950 {
951 /*
952 * Multiply current base-ten number by 16 in place.
953 * Each digit was between 0 and 9, now is between
954 * 0 and 144.
955 */
956 for (j = 0; j < decimal_digits; j++)
957 {
958 digits[j] = SHIFT (digits[j]);
959 }
960
961 /* Take the next nibble off the input and add it to what
962 * we've got in the LSB position. Bottom 'digit' is now
963 * between 0 and 159.
964 *
965 * "flip" is used to run this loop twice for each byte.
966 */
967 if (flip == 0)
968 {
969 /* Take top nibble.
970 */
971 digits[0] += HIGH_NIBBLE (*p);
972 flip = 1;
973 }
974 else
975 {
976 /* Take low nibble and bump our pointer "p".
977 */
978 digits[0] += LOW_NIBBLE (*p);
979 NEXT_P;
980 flip = 0;
981 }
982
983 /* Re-decimalize. We have to do this often enough
984 * that we don't overflow, but once per nibble is
985 * overkill. Easier this way, though. Note that the
986 * carry is often larger than 10 (e.g. max initial
987 * carry out of lowest nibble is 15, could bubble all
988 * the way up greater than 10). So we have to do
989 * the carrying beyond the last current digit.
990 */
991 carry = 0;
992 for (j = 0; j < decimal_len - 1; j++)
993 {
994 digits[j] += carry;
995
996 /* "/" won't handle an unsigned char with
997 * a value that if signed would be negative.
998 * So extend to longword int via "dummy".
999 */
1000 dummy = digits[j];
1001 carry = CARRY_OUT (dummy);
1002 digits[j] = CARRY_LEFT (dummy);
1003
1004 if (j >= decimal_digits && carry == 0)
1005 {
1006 /*
1007 * All higher digits are 0 and we
1008 * no longer have a carry.
1009 *
1010 * Note: "j" is 0-based, "decimal_digits" is
1011 * 1-based.
1012 */
1013 decimal_digits = j + 1;
1014 break;
1015 }
1016 }
1017 }
1018
1019 /* Ok, now "digits" is the decimal representation, with
1020 * the "decimal_digits" actual digits. Print!
1021 */
1022 for (i = decimal_digits - 1; i >= 0; i--)
1023 {
1024 fprintf_filtered (stream, "%1d", digits[i]);
1025 }
1026 free (digits);
1027
1028 fprintf_filtered (stream, local_decimal_format_suffix ());
1029 }
1030
1031 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1032
1033 static void
1034 print_hex_chars (stream, valaddr, len)
1035 struct ui_file *stream;
1036 unsigned char *valaddr;
1037 unsigned len;
1038 {
1039 unsigned char *p;
1040
1041 /* FIXME: We should be not printing leading zeroes in most cases. */
1042
1043 fprintf_filtered (stream, local_hex_format_prefix ());
1044 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1045 {
1046 for (p = valaddr;
1047 p < valaddr + len;
1048 p++)
1049 {
1050 fprintf_filtered (stream, "%02x", *p);
1051 }
1052 }
1053 else
1054 {
1055 for (p = valaddr + len - 1;
1056 p >= valaddr;
1057 p--)
1058 {
1059 fprintf_filtered (stream, "%02x", *p);
1060 }
1061 }
1062 fprintf_filtered (stream, local_hex_format_suffix ());
1063 }
1064
1065 /* Called by various <lang>_val_print routines to print elements of an
1066 array in the form "<elem1>, <elem2>, <elem3>, ...".
1067
1068 (FIXME?) Assumes array element separator is a comma, which is correct
1069 for all languages currently handled.
1070 (FIXME?) Some languages have a notation for repeated array elements,
1071 perhaps we should try to use that notation when appropriate.
1072 */
1073
1074 void
1075 val_print_array_elements (type, valaddr, address, stream, format, deref_ref,
1076 recurse, pretty, i)
1077 struct type *type;
1078 char *valaddr;
1079 CORE_ADDR address;
1080 struct ui_file *stream;
1081 int format;
1082 int deref_ref;
1083 int recurse;
1084 enum val_prettyprint pretty;
1085 unsigned int i;
1086 {
1087 unsigned int things_printed = 0;
1088 unsigned len;
1089 struct type *elttype;
1090 unsigned eltlen;
1091 /* Position of the array element we are examining to see
1092 whether it is repeated. */
1093 unsigned int rep1;
1094 /* Number of repetitions we have detected so far. */
1095 unsigned int reps;
1096
1097 elttype = TYPE_TARGET_TYPE (type);
1098 eltlen = TYPE_LENGTH (check_typedef (elttype));
1099 len = TYPE_LENGTH (type) / eltlen;
1100
1101 annotate_array_section_begin (i, elttype);
1102
1103 for (; i < len && things_printed < print_max; i++)
1104 {
1105 if (i != 0)
1106 {
1107 if (prettyprint_arrays)
1108 {
1109 fprintf_filtered (stream, ",\n");
1110 print_spaces_filtered (2 + 2 * recurse, stream);
1111 }
1112 else
1113 {
1114 fprintf_filtered (stream, ", ");
1115 }
1116 }
1117 wrap_here (n_spaces (2 + 2 * recurse));
1118
1119 rep1 = i + 1;
1120 reps = 1;
1121 while ((rep1 < len) &&
1122 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
1123 {
1124 ++reps;
1125 ++rep1;
1126 }
1127
1128 if (reps > repeat_count_threshold)
1129 {
1130 val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
1131 deref_ref, recurse + 1, pretty);
1132 annotate_elt_rep (reps);
1133 fprintf_filtered (stream, " <repeats %u times>", reps);
1134 annotate_elt_rep_end ();
1135
1136 i = rep1 - 1;
1137 things_printed += repeat_count_threshold;
1138 }
1139 else
1140 {
1141 val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
1142 deref_ref, recurse + 1, pretty);
1143 annotate_elt ();
1144 things_printed++;
1145 }
1146 }
1147 annotate_array_section_end ();
1148 if (i < len)
1149 {
1150 fprintf_filtered (stream, "...");
1151 }
1152 }
1153
1154 /* Read LEN bytes of target memory at address MEMADDR, placing the
1155 results in GDB's memory at MYADDR. Returns a count of the bytes
1156 actually read, and optionally an errno value in the location
1157 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1158
1159 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1160 function be eliminated. */
1161
1162 static int
1163 partial_memory_read (CORE_ADDR memaddr, char *myaddr, int len, int *errnoptr)
1164 {
1165 int nread; /* Number of bytes actually read. */
1166 int errcode; /* Error from last read. */
1167
1168 /* First try a complete read. */
1169 errcode = target_read_memory (memaddr, myaddr, len);
1170 if (errcode == 0)
1171 {
1172 /* Got it all. */
1173 nread = len;
1174 }
1175 else
1176 {
1177 /* Loop, reading one byte at a time until we get as much as we can. */
1178 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1179 {
1180 errcode = target_read_memory (memaddr++, myaddr++, 1);
1181 }
1182 /* If an error, the last read was unsuccessful, so adjust count. */
1183 if (errcode != 0)
1184 {
1185 nread--;
1186 }
1187 }
1188 if (errnoptr != NULL)
1189 {
1190 *errnoptr = errcode;
1191 }
1192 return (nread);
1193 }
1194
1195 /* Print a string from the inferior, starting at ADDR and printing up to LEN
1196 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1197 stops at the first null byte, otherwise printing proceeds (including null
1198 bytes) until either print_max or LEN characters have been printed,
1199 whichever is smaller. */
1200
1201 /* FIXME: Use target_read_string. */
1202
1203 int
1204 val_print_string (addr, len, width, stream)
1205 CORE_ADDR addr;
1206 int len;
1207 int width;
1208 struct ui_file *stream;
1209 {
1210 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1211 int errcode; /* Errno returned from bad reads. */
1212 unsigned int fetchlimit; /* Maximum number of chars to print. */
1213 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1214 unsigned int chunksize; /* Size of each fetch, in chars. */
1215 char *buffer = NULL; /* Dynamically growable fetch buffer. */
1216 char *bufptr; /* Pointer to next available byte in buffer. */
1217 char *limit; /* First location past end of fetch buffer. */
1218 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1219 int found_nul; /* Non-zero if we found the nul char */
1220
1221 /* First we need to figure out the limit on the number of characters we are
1222 going to attempt to fetch and print. This is actually pretty simple. If
1223 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1224 LEN is -1, then the limit is print_max. This is true regardless of
1225 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1226 because finding the null byte (or available memory) is what actually
1227 limits the fetch. */
1228
1229 fetchlimit = (len == -1 ? print_max : min (len, print_max));
1230
1231 /* Now decide how large of chunks to try to read in one operation. This
1232 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1233 so we might as well read them all in one operation. If LEN is -1, we
1234 are looking for a null terminator to end the fetching, so we might as
1235 well read in blocks that are large enough to be efficient, but not so
1236 large as to be slow if fetchlimit happens to be large. So we choose the
1237 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1238 200 is way too big for remote debugging over a serial line. */
1239
1240 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1241
1242 /* Loop until we either have all the characters to print, or we encounter
1243 some error, such as bumping into the end of the address space. */
1244
1245 found_nul = 0;
1246 old_chain = make_cleanup (null_cleanup, 0);
1247
1248 if (len > 0)
1249 {
1250 buffer = (char *) xmalloc (len * width);
1251 bufptr = buffer;
1252 old_chain = make_cleanup (free, buffer);
1253
1254 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1255 / width;
1256 addr += nfetch * width;
1257 bufptr += nfetch * width;
1258 }
1259 else if (len == -1)
1260 {
1261 unsigned long bufsize = 0;
1262 do
1263 {
1264 QUIT;
1265 nfetch = min (chunksize, fetchlimit - bufsize);
1266
1267 if (buffer == NULL)
1268 buffer = (char *) xmalloc (nfetch * width);
1269 else
1270 {
1271 discard_cleanups (old_chain);
1272 buffer = (char *) xrealloc (buffer, (nfetch + bufsize) * width);
1273 }
1274
1275 old_chain = make_cleanup (free, buffer);
1276 bufptr = buffer + bufsize * width;
1277 bufsize += nfetch;
1278
1279 /* Read as much as we can. */
1280 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1281 / width;
1282
1283 /* Scan this chunk for the null byte that terminates the string
1284 to print. If found, we don't need to fetch any more. Note
1285 that bufptr is explicitly left pointing at the next character
1286 after the null byte, or at the next character after the end of
1287 the buffer. */
1288
1289 limit = bufptr + nfetch * width;
1290 while (bufptr < limit)
1291 {
1292 unsigned long c;
1293
1294 c = extract_unsigned_integer (bufptr, width);
1295 addr += width;
1296 bufptr += width;
1297 if (c == 0)
1298 {
1299 /* We don't care about any error which happened after
1300 the NULL terminator. */
1301 errcode = 0;
1302 found_nul = 1;
1303 break;
1304 }
1305 }
1306 }
1307 while (errcode == 0 /* no error */
1308 && bufptr - buffer < fetchlimit * width /* no overrun */
1309 && !found_nul); /* haven't found nul yet */
1310 }
1311 else
1312 { /* length of string is really 0! */
1313 buffer = bufptr = NULL;
1314 errcode = 0;
1315 }
1316
1317 /* bufptr and addr now point immediately beyond the last byte which we
1318 consider part of the string (including a '\0' which ends the string). */
1319
1320 /* We now have either successfully filled the buffer to fetchlimit, or
1321 terminated early due to an error or finding a null char when LEN is -1. */
1322
1323 if (len == -1 && !found_nul)
1324 {
1325 char *peekbuf;
1326
1327 /* We didn't find a null terminator we were looking for. Attempt
1328 to peek at the next character. If not successful, or it is not
1329 a null byte, then force ellipsis to be printed. */
1330
1331 peekbuf = (char *) alloca (width);
1332
1333 if (target_read_memory (addr, peekbuf, width) == 0
1334 && extract_unsigned_integer (peekbuf, width) != 0)
1335 force_ellipsis = 1;
1336 }
1337 else if ((len >= 0 && errcode != 0) || (len > (bufptr - buffer) / width))
1338 {
1339 /* Getting an error when we have a requested length, or fetching less
1340 than the number of characters actually requested, always make us
1341 print ellipsis. */
1342 force_ellipsis = 1;
1343 }
1344
1345 QUIT;
1346
1347 /* If we get an error before fetching anything, don't print a string.
1348 But if we fetch something and then get an error, print the string
1349 and then the error message. */
1350 if (errcode == 0 || bufptr > buffer)
1351 {
1352 if (addressprint)
1353 {
1354 fputs_filtered (" ", stream);
1355 }
1356 LA_PRINT_STRING (stream, buffer, (bufptr - buffer) / width, width, force_ellipsis);
1357 }
1358
1359 if (errcode != 0)
1360 {
1361 if (errcode == EIO)
1362 {
1363 fprintf_filtered (stream, " <Address ");
1364 print_address_numeric (addr, 1, stream);
1365 fprintf_filtered (stream, " out of bounds>");
1366 }
1367 else
1368 {
1369 fprintf_filtered (stream, " <Error reading address ");
1370 print_address_numeric (addr, 1, stream);
1371 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1372 }
1373 }
1374 gdb_flush (stream);
1375 do_cleanups (old_chain);
1376 return ((bufptr - buffer) / width);
1377 }
1378 \f
1379
1380 /* Validate an input or output radix setting, and make sure the user
1381 knows what they really did here. Radix setting is confusing, e.g.
1382 setting the input radix to "10" never changes it! */
1383
1384 /* ARGSUSED */
1385 static void
1386 set_input_radix (args, from_tty, c)
1387 char *args;
1388 int from_tty;
1389 struct cmd_list_element *c;
1390 {
1391 set_input_radix_1 (from_tty, *(unsigned *) c->var);
1392 }
1393
1394 /* ARGSUSED */
1395 static void
1396 set_input_radix_1 (from_tty, radix)
1397 int from_tty;
1398 unsigned radix;
1399 {
1400 /* We don't currently disallow any input radix except 0 or 1, which don't
1401 make any mathematical sense. In theory, we can deal with any input
1402 radix greater than 1, even if we don't have unique digits for every
1403 value from 0 to radix-1, but in practice we lose on large radix values.
1404 We should either fix the lossage or restrict the radix range more.
1405 (FIXME). */
1406
1407 if (radix < 2)
1408 {
1409 error ("Nonsense input radix ``decimal %u''; input radix unchanged.",
1410 radix);
1411 }
1412 input_radix = radix;
1413 if (from_tty)
1414 {
1415 printf_filtered ("Input radix now set to decimal %u, hex %x, octal %o.\n",
1416 radix, radix, radix);
1417 }
1418 }
1419
1420 /* ARGSUSED */
1421 static void
1422 set_output_radix (args, from_tty, c)
1423 char *args;
1424 int from_tty;
1425 struct cmd_list_element *c;
1426 {
1427 set_output_radix_1 (from_tty, *(unsigned *) c->var);
1428 }
1429
1430 static void
1431 set_output_radix_1 (from_tty, radix)
1432 int from_tty;
1433 unsigned radix;
1434 {
1435 /* Validate the radix and disallow ones that we aren't prepared to
1436 handle correctly, leaving the radix unchanged. */
1437 switch (radix)
1438 {
1439 case 16:
1440 output_format = 'x'; /* hex */
1441 break;
1442 case 10:
1443 output_format = 0; /* decimal */
1444 break;
1445 case 8:
1446 output_format = 'o'; /* octal */
1447 break;
1448 default:
1449 error ("Unsupported output radix ``decimal %u''; output radix unchanged.",
1450 radix);
1451 }
1452 output_radix = radix;
1453 if (from_tty)
1454 {
1455 printf_filtered ("Output radix now set to decimal %u, hex %x, octal %o.\n",
1456 radix, radix, radix);
1457 }
1458 }
1459
1460 /* Set both the input and output radix at once. Try to set the output radix
1461 first, since it has the most restrictive range. An radix that is valid as
1462 an output radix is also valid as an input radix.
1463
1464 It may be useful to have an unusual input radix. If the user wishes to
1465 set an input radix that is not valid as an output radix, he needs to use
1466 the 'set input-radix' command. */
1467
1468 static void
1469 set_radix (arg, from_tty)
1470 char *arg;
1471 int from_tty;
1472 {
1473 unsigned radix;
1474
1475 radix = (arg == NULL) ? 10 : parse_and_eval_address (arg);
1476 set_output_radix_1 (0, radix);
1477 set_input_radix_1 (0, radix);
1478 if (from_tty)
1479 {
1480 printf_filtered ("Input and output radices now set to decimal %u, hex %x, octal %o.\n",
1481 radix, radix, radix);
1482 }
1483 }
1484
1485 /* Show both the input and output radices. */
1486
1487 /*ARGSUSED */
1488 static void
1489 show_radix (arg, from_tty)
1490 char *arg;
1491 int from_tty;
1492 {
1493 if (from_tty)
1494 {
1495 if (input_radix == output_radix)
1496 {
1497 printf_filtered ("Input and output radices set to decimal %u, hex %x, octal %o.\n",
1498 input_radix, input_radix, input_radix);
1499 }
1500 else
1501 {
1502 printf_filtered ("Input radix set to decimal %u, hex %x, octal %o.\n",
1503 input_radix, input_radix, input_radix);
1504 printf_filtered ("Output radix set to decimal %u, hex %x, octal %o.\n",
1505 output_radix, output_radix, output_radix);
1506 }
1507 }
1508 }
1509 \f
1510
1511 /*ARGSUSED */
1512 static void
1513 set_print (arg, from_tty)
1514 char *arg;
1515 int from_tty;
1516 {
1517 printf_unfiltered (
1518 "\"set print\" must be followed by the name of a print subcommand.\n");
1519 help_list (setprintlist, "set print ", -1, gdb_stdout);
1520 }
1521
1522 /*ARGSUSED */
1523 static void
1524 show_print (args, from_tty)
1525 char *args;
1526 int from_tty;
1527 {
1528 cmd_show_list (showprintlist, from_tty, "");
1529 }
1530 \f
1531 void
1532 _initialize_valprint ()
1533 {
1534 struct cmd_list_element *c;
1535
1536 add_prefix_cmd ("print", no_class, set_print,
1537 "Generic command for setting how things print.",
1538 &setprintlist, "set print ", 0, &setlist);
1539 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1540 /* prefer set print to set prompt */
1541 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1542
1543 add_prefix_cmd ("print", no_class, show_print,
1544 "Generic command for showing print settings.",
1545 &showprintlist, "show print ", 0, &showlist);
1546 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1547 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1548
1549 add_show_from_set
1550 (add_set_cmd ("elements", no_class, var_uinteger, (char *) &print_max,
1551 "Set limit on string chars or array elements to print.\n\
1552 \"set print elements 0\" causes there to be no limit.",
1553 &setprintlist),
1554 &showprintlist);
1555
1556 add_show_from_set
1557 (add_set_cmd ("null-stop", no_class, var_boolean,
1558 (char *) &stop_print_at_null,
1559 "Set printing of char arrays to stop at first null char.",
1560 &setprintlist),
1561 &showprintlist);
1562
1563 add_show_from_set
1564 (add_set_cmd ("repeats", no_class, var_uinteger,
1565 (char *) &repeat_count_threshold,
1566 "Set threshold for repeated print elements.\n\
1567 \"set print repeats 0\" causes all elements to be individually printed.",
1568 &setprintlist),
1569 &showprintlist);
1570
1571 add_show_from_set
1572 (add_set_cmd ("pretty", class_support, var_boolean,
1573 (char *) &prettyprint_structs,
1574 "Set prettyprinting of structures.",
1575 &setprintlist),
1576 &showprintlist);
1577
1578 add_show_from_set
1579 (add_set_cmd ("union", class_support, var_boolean, (char *) &unionprint,
1580 "Set printing of unions interior to structures.",
1581 &setprintlist),
1582 &showprintlist);
1583
1584 add_show_from_set
1585 (add_set_cmd ("array", class_support, var_boolean,
1586 (char *) &prettyprint_arrays,
1587 "Set prettyprinting of arrays.",
1588 &setprintlist),
1589 &showprintlist);
1590
1591 add_show_from_set
1592 (add_set_cmd ("address", class_support, var_boolean, (char *) &addressprint,
1593 "Set printing of addresses.",
1594 &setprintlist),
1595 &showprintlist);
1596
1597 c = add_set_cmd ("input-radix", class_support, var_uinteger,
1598 (char *) &input_radix,
1599 "Set default input radix for entering numbers.",
1600 &setlist);
1601 add_show_from_set (c, &showlist);
1602 c->function.sfunc = set_input_radix;
1603
1604 c = add_set_cmd ("output-radix", class_support, var_uinteger,
1605 (char *) &output_radix,
1606 "Set default output radix for printing of values.",
1607 &setlist);
1608 add_show_from_set (c, &showlist);
1609 c->function.sfunc = set_output_radix;
1610
1611 /* The "set radix" and "show radix" commands are special in that they are
1612 like normal set and show commands but allow two normally independent
1613 variables to be either set or shown with a single command. So the
1614 usual add_set_cmd() and add_show_from_set() commands aren't really
1615 appropriate. */
1616 add_cmd ("radix", class_support, set_radix,
1617 "Set default input and output number radices.\n\
1618 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1619 Without an argument, sets both radices back to the default value of 10.",
1620 &setlist);
1621 add_cmd ("radix", class_support, show_radix,
1622 "Show the default input and output number radices.\n\
1623 Use 'show input-radix' or 'show output-radix' to independently show each.",
1624 &showlist);
1625
1626 /* Give people the defaults which they are used to. */
1627 prettyprint_structs = 0;
1628 prettyprint_arrays = 0;
1629 unionprint = 1;
1630 addressprint = 1;
1631 print_max = PRINT_MAX_DEFAULT;
1632 }
This page took 0.093354 seconds and 4 git commands to generate.