Style field names in "print"
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "target-float.h"
31 #include "extension.h"
32 #include "ada-lang.h"
33 #include "gdb_obstack.h"
34 #include "charset.h"
35 #include "typeprint.h"
36 #include <ctype.h>
37 #include <algorithm>
38 #include "gdbsupport/byte-vector.h"
39 #include "cli/cli-option.h"
40 #include "gdbarch.h"
41 #include "cli/cli-style.h"
42 #include "count-one-bits.h"
43
44 /* Maximum number of wchars returned from wchar_iterate. */
45 #define MAX_WCHARS 4
46
47 /* A convenience macro to compute the size of a wchar_t buffer containing X
48 characters. */
49 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
50
51 /* Character buffer size saved while iterating over wchars. */
52 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
53
54 /* A structure to encapsulate state information from iterated
55 character conversions. */
56 struct converted_character
57 {
58 /* The number of characters converted. */
59 int num_chars;
60
61 /* The result of the conversion. See charset.h for more. */
62 enum wchar_iterate_result result;
63
64 /* The (saved) converted character(s). */
65 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
66
67 /* The first converted target byte. */
68 const gdb_byte *buf;
69
70 /* The number of bytes converted. */
71 size_t buflen;
72
73 /* How many times this character(s) is repeated. */
74 int repeat_count;
75 };
76
77 /* Command lists for set/show print raw. */
78 struct cmd_list_element *setprintrawlist;
79 struct cmd_list_element *showprintrawlist;
80
81 /* Prototypes for local functions */
82
83 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
84 int len, int *errptr);
85
86 static void set_input_radix_1 (int, unsigned);
87
88 static void set_output_radix_1 (int, unsigned);
89
90 static void val_print_type_code_flags (struct type *type,
91 const gdb_byte *valaddr,
92 struct ui_file *stream);
93
94 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
95 #define PRINT_MAX_DEPTH_DEFAULT 20 /* Start print_max_depth off at this value. */
96
97 struct value_print_options user_print_options =
98 {
99 Val_prettyformat_default, /* prettyformat */
100 0, /* prettyformat_arrays */
101 0, /* prettyformat_structs */
102 0, /* vtblprint */
103 1, /* unionprint */
104 1, /* addressprint */
105 0, /* objectprint */
106 PRINT_MAX_DEFAULT, /* print_max */
107 10, /* repeat_count_threshold */
108 0, /* output_format */
109 0, /* format */
110 0, /* stop_print_at_null */
111 0, /* print_array_indexes */
112 0, /* deref_ref */
113 1, /* static_field_print */
114 1, /* pascal_static_field_print */
115 0, /* raw */
116 0, /* summary */
117 1, /* symbol_print */
118 PRINT_MAX_DEPTH_DEFAULT, /* max_depth */
119 1 /* finish_print */
120 };
121
122 /* Initialize *OPTS to be a copy of the user print options. */
123 void
124 get_user_print_options (struct value_print_options *opts)
125 {
126 *opts = user_print_options;
127 }
128
129 /* Initialize *OPTS to be a copy of the user print options, but with
130 pretty-formatting disabled. */
131 void
132 get_no_prettyformat_print_options (struct value_print_options *opts)
133 {
134 *opts = user_print_options;
135 opts->prettyformat = Val_no_prettyformat;
136 }
137
138 /* Initialize *OPTS to be a copy of the user print options, but using
139 FORMAT as the formatting option. */
140 void
141 get_formatted_print_options (struct value_print_options *opts,
142 char format)
143 {
144 *opts = user_print_options;
145 opts->format = format;
146 }
147
148 static void
149 show_print_max (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151 {
152 fprintf_filtered (file,
153 _("Limit on string chars or array "
154 "elements to print is %s.\n"),
155 value);
156 }
157
158
159 /* Default input and output radixes, and output format letter. */
160
161 unsigned input_radix = 10;
162 static void
163 show_input_radix (struct ui_file *file, int from_tty,
164 struct cmd_list_element *c, const char *value)
165 {
166 fprintf_filtered (file,
167 _("Default input radix for entering numbers is %s.\n"),
168 value);
169 }
170
171 unsigned output_radix = 10;
172 static void
173 show_output_radix (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175 {
176 fprintf_filtered (file,
177 _("Default output radix for printing of values is %s.\n"),
178 value);
179 }
180
181 /* By default we print arrays without printing the index of each element in
182 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
183
184 static void
185 show_print_array_indexes (struct ui_file *file, int from_tty,
186 struct cmd_list_element *c, const char *value)
187 {
188 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
189 }
190
191 /* Print repeat counts if there are more than this many repetitions of an
192 element in an array. Referenced by the low level language dependent
193 print routines. */
194
195 static void
196 show_repeat_count_threshold (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198 {
199 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
200 value);
201 }
202
203 /* If nonzero, stops printing of char arrays at first null. */
204
205 static void
206 show_stop_print_at_null (struct ui_file *file, int from_tty,
207 struct cmd_list_element *c, const char *value)
208 {
209 fprintf_filtered (file,
210 _("Printing of char arrays to stop "
211 "at first null char is %s.\n"),
212 value);
213 }
214
215 /* Controls pretty printing of structures. */
216
217 static void
218 show_prettyformat_structs (struct ui_file *file, int from_tty,
219 struct cmd_list_element *c, const char *value)
220 {
221 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
222 }
223
224 /* Controls pretty printing of arrays. */
225
226 static void
227 show_prettyformat_arrays (struct ui_file *file, int from_tty,
228 struct cmd_list_element *c, const char *value)
229 {
230 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
231 }
232
233 /* If nonzero, causes unions inside structures or other unions to be
234 printed. */
235
236 static void
237 show_unionprint (struct ui_file *file, int from_tty,
238 struct cmd_list_element *c, const char *value)
239 {
240 fprintf_filtered (file,
241 _("Printing of unions interior to structures is %s.\n"),
242 value);
243 }
244
245 /* If nonzero, causes machine addresses to be printed in certain contexts. */
246
247 static void
248 show_addressprint (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250 {
251 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
252 }
253
254 static void
255 show_symbol_print (struct ui_file *file, int from_tty,
256 struct cmd_list_element *c, const char *value)
257 {
258 fprintf_filtered (file,
259 _("Printing of symbols when printing pointers is %s.\n"),
260 value);
261 }
262
263 \f
264
265 /* A helper function for val_print. When printing in "summary" mode,
266 we want to print scalar arguments, but not aggregate arguments.
267 This function distinguishes between the two. */
268
269 int
270 val_print_scalar_type_p (struct type *type)
271 {
272 type = check_typedef (type);
273 while (TYPE_IS_REFERENCE (type))
274 {
275 type = TYPE_TARGET_TYPE (type);
276 type = check_typedef (type);
277 }
278 switch (TYPE_CODE (type))
279 {
280 case TYPE_CODE_ARRAY:
281 case TYPE_CODE_STRUCT:
282 case TYPE_CODE_UNION:
283 case TYPE_CODE_SET:
284 case TYPE_CODE_STRING:
285 return 0;
286 default:
287 return 1;
288 }
289 }
290
291 /* A helper function for val_print. When printing with limited depth we
292 want to print string and scalar arguments, but not aggregate arguments.
293 This function distinguishes between the two. */
294
295 static bool
296 val_print_scalar_or_string_type_p (struct type *type,
297 const struct language_defn *language)
298 {
299 return (val_print_scalar_type_p (type)
300 || language->la_is_string_type_p (type));
301 }
302
303 /* See its definition in value.h. */
304
305 int
306 valprint_check_validity (struct ui_file *stream,
307 struct type *type,
308 LONGEST embedded_offset,
309 const struct value *val)
310 {
311 type = check_typedef (type);
312
313 if (type_not_associated (type))
314 {
315 val_print_not_associated (stream);
316 return 0;
317 }
318
319 if (type_not_allocated (type))
320 {
321 val_print_not_allocated (stream);
322 return 0;
323 }
324
325 if (TYPE_CODE (type) != TYPE_CODE_UNION
326 && TYPE_CODE (type) != TYPE_CODE_STRUCT
327 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
328 {
329 if (value_bits_any_optimized_out (val,
330 TARGET_CHAR_BIT * embedded_offset,
331 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
332 {
333 val_print_optimized_out (val, stream);
334 return 0;
335 }
336
337 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
338 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
339 {
340 const int is_ref = TYPE_CODE (type) == TYPE_CODE_REF;
341 int ref_is_addressable = 0;
342
343 if (is_ref)
344 {
345 const struct value *deref_val = coerce_ref_if_computed (val);
346
347 if (deref_val != NULL)
348 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
349 }
350
351 if (!is_ref || !ref_is_addressable)
352 fputs_styled (_("<synthetic pointer>"), metadata_style.style (),
353 stream);
354
355 /* C++ references should be valid even if they're synthetic. */
356 return is_ref;
357 }
358
359 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
360 {
361 val_print_unavailable (stream);
362 return 0;
363 }
364 }
365
366 return 1;
367 }
368
369 void
370 val_print_optimized_out (const struct value *val, struct ui_file *stream)
371 {
372 if (val != NULL && value_lval_const (val) == lval_register)
373 val_print_not_saved (stream);
374 else
375 fprintf_styled (stream, metadata_style.style (), _("<optimized out>"));
376 }
377
378 void
379 val_print_not_saved (struct ui_file *stream)
380 {
381 fprintf_styled (stream, metadata_style.style (), _("<not saved>"));
382 }
383
384 void
385 val_print_unavailable (struct ui_file *stream)
386 {
387 fprintf_styled (stream, metadata_style.style (), _("<unavailable>"));
388 }
389
390 void
391 val_print_invalid_address (struct ui_file *stream)
392 {
393 fprintf_styled (stream, metadata_style.style (), _("<invalid address>"));
394 }
395
396 /* Print a pointer based on the type of its target.
397
398 Arguments to this functions are roughly the same as those in
399 generic_val_print. A difference is that ADDRESS is the address to print,
400 with embedded_offset already added. ELTTYPE represents
401 the pointed type after check_typedef. */
402
403 static void
404 print_unpacked_pointer (struct type *type, struct type *elttype,
405 CORE_ADDR address, struct ui_file *stream,
406 const struct value_print_options *options)
407 {
408 struct gdbarch *gdbarch = get_type_arch (type);
409
410 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
411 {
412 /* Try to print what function it points to. */
413 print_function_pointer_address (options, gdbarch, address, stream);
414 return;
415 }
416
417 if (options->symbol_print)
418 print_address_demangle (options, gdbarch, address, stream, demangle);
419 else if (options->addressprint)
420 fputs_filtered (paddress (gdbarch, address), stream);
421 }
422
423 /* generic_val_print helper for TYPE_CODE_ARRAY. */
424
425 static void
426 generic_val_print_array (struct type *type,
427 int embedded_offset, CORE_ADDR address,
428 struct ui_file *stream, int recurse,
429 struct value *original_value,
430 const struct value_print_options *options,
431 const struct
432 generic_val_print_decorations *decorations)
433 {
434 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
435 struct type *elttype = check_typedef (unresolved_elttype);
436
437 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
438 {
439 LONGEST low_bound, high_bound;
440
441 if (!get_array_bounds (type, &low_bound, &high_bound))
442 error (_("Could not determine the array high bound"));
443
444 if (options->prettyformat_arrays)
445 {
446 print_spaces_filtered (2 + 2 * recurse, stream);
447 }
448
449 fputs_filtered (decorations->array_start, stream);
450 val_print_array_elements (type, embedded_offset,
451 address, stream,
452 recurse, original_value, options, 0);
453 fputs_filtered (decorations->array_end, stream);
454 }
455 else
456 {
457 /* Array of unspecified length: treat like pointer to first elt. */
458 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
459 options);
460 }
461
462 }
463
464 /* generic_val_print helper for TYPE_CODE_PTR. */
465
466 static void
467 generic_val_print_ptr (struct type *type,
468 int embedded_offset, struct ui_file *stream,
469 struct value *original_value,
470 const struct value_print_options *options)
471 {
472 struct gdbarch *gdbarch = get_type_arch (type);
473 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
474
475 if (options->format && options->format != 's')
476 {
477 val_print_scalar_formatted (type, embedded_offset,
478 original_value, options, 0, stream);
479 }
480 else
481 {
482 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
483 struct type *elttype = check_typedef (unresolved_elttype);
484 const gdb_byte *valaddr = value_contents_for_printing (original_value);
485 CORE_ADDR addr = unpack_pointer (type,
486 valaddr + embedded_offset * unit_size);
487
488 print_unpacked_pointer (type, elttype, addr, stream, options);
489 }
490 }
491
492
493 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
494
495 static void
496 generic_val_print_memberptr (struct type *type,
497 int embedded_offset, struct ui_file *stream,
498 struct value *original_value,
499 const struct value_print_options *options)
500 {
501 val_print_scalar_formatted (type, embedded_offset,
502 original_value, options, 0, stream);
503 }
504
505 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
506
507 static void
508 print_ref_address (struct type *type, const gdb_byte *address_buffer,
509 int embedded_offset, struct ui_file *stream)
510 {
511 struct gdbarch *gdbarch = get_type_arch (type);
512
513 if (address_buffer != NULL)
514 {
515 CORE_ADDR address
516 = extract_typed_address (address_buffer + embedded_offset, type);
517
518 fprintf_filtered (stream, "@");
519 fputs_filtered (paddress (gdbarch, address), stream);
520 }
521 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
522 }
523
524 /* If VAL is addressable, return the value contents buffer of a value that
525 represents a pointer to VAL. Otherwise return NULL. */
526
527 static const gdb_byte *
528 get_value_addr_contents (struct value *deref_val)
529 {
530 gdb_assert (deref_val != NULL);
531
532 if (value_lval_const (deref_val) == lval_memory)
533 return value_contents_for_printing_const (value_addr (deref_val));
534 else
535 {
536 /* We have a non-addressable value, such as a DW_AT_const_value. */
537 return NULL;
538 }
539 }
540
541 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
542
543 static void
544 generic_val_print_ref (struct type *type,
545 int embedded_offset, struct ui_file *stream, int recurse,
546 struct value *original_value,
547 const struct value_print_options *options)
548 {
549 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
550 struct value *deref_val = NULL;
551 const int value_is_synthetic
552 = value_bits_synthetic_pointer (original_value,
553 TARGET_CHAR_BIT * embedded_offset,
554 TARGET_CHAR_BIT * TYPE_LENGTH (type));
555 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
556 || options->deref_ref);
557 const int type_is_defined = TYPE_CODE (elttype) != TYPE_CODE_UNDEF;
558 const gdb_byte *valaddr = value_contents_for_printing (original_value);
559
560 if (must_coerce_ref && type_is_defined)
561 {
562 deref_val = coerce_ref_if_computed (original_value);
563
564 if (deref_val != NULL)
565 {
566 /* More complicated computed references are not supported. */
567 gdb_assert (embedded_offset == 0);
568 }
569 else
570 deref_val = value_at (TYPE_TARGET_TYPE (type),
571 unpack_pointer (type, valaddr + embedded_offset));
572 }
573 /* Else, original_value isn't a synthetic reference or we don't have to print
574 the reference's contents.
575
576 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
577 cause original_value to be a not_lval instead of an lval_computed,
578 which will make value_bits_synthetic_pointer return false.
579 This happens because if options->objectprint is true, c_value_print will
580 overwrite original_value's contents with the result of coercing
581 the reference through value_addr, and then set its type back to
582 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
583 we can simply treat it as non-synthetic and move on. */
584
585 if (options->addressprint)
586 {
587 const gdb_byte *address = (value_is_synthetic && type_is_defined
588 ? get_value_addr_contents (deref_val)
589 : valaddr);
590
591 print_ref_address (type, address, embedded_offset, stream);
592
593 if (options->deref_ref)
594 fputs_filtered (": ", stream);
595 }
596
597 if (options->deref_ref)
598 {
599 if (type_is_defined)
600 common_val_print (deref_val, stream, recurse, options,
601 current_language);
602 else
603 fputs_filtered ("???", stream);
604 }
605 }
606
607 /* Helper function for generic_val_print_enum.
608 This is also used to print enums in TYPE_CODE_FLAGS values. */
609
610 static void
611 generic_val_print_enum_1 (struct type *type, LONGEST val,
612 struct ui_file *stream)
613 {
614 unsigned int i;
615 unsigned int len;
616
617 len = TYPE_NFIELDS (type);
618 for (i = 0; i < len; i++)
619 {
620 QUIT;
621 if (val == TYPE_FIELD_ENUMVAL (type, i))
622 {
623 break;
624 }
625 }
626 if (i < len)
627 {
628 fputs_styled (TYPE_FIELD_NAME (type, i), variable_name_style.style (),
629 stream);
630 }
631 else if (TYPE_FLAG_ENUM (type))
632 {
633 int first = 1;
634
635 /* We have a "flag" enum, so we try to decompose it into pieces as
636 appropriate. The enum may have multiple enumerators representing
637 the same bit, in which case we choose to only print the first one
638 we find. */
639 for (i = 0; i < len; ++i)
640 {
641 QUIT;
642
643 ULONGEST enumval = TYPE_FIELD_ENUMVAL (type, i);
644 int nbits = count_one_bits_ll (enumval);
645
646 gdb_assert (nbits == 0 || nbits == 1);
647
648 if ((val & enumval) != 0)
649 {
650 if (first)
651 {
652 fputs_filtered ("(", stream);
653 first = 0;
654 }
655 else
656 fputs_filtered (" | ", stream);
657
658 val &= ~TYPE_FIELD_ENUMVAL (type, i);
659 fputs_styled (TYPE_FIELD_NAME (type, i),
660 variable_name_style.style (), stream);
661 }
662 }
663
664 if (val != 0)
665 {
666 /* There are leftover bits, print them. */
667 if (first)
668 fputs_filtered ("(", stream);
669 else
670 fputs_filtered (" | ", stream);
671
672 fputs_filtered ("unknown: 0x", stream);
673 print_longest (stream, 'x', 0, val);
674 fputs_filtered (")", stream);
675 }
676 else if (first)
677 {
678 /* Nothing has been printed and the value is 0, the enum value must
679 have been 0. */
680 fputs_filtered ("0", stream);
681 }
682 else
683 {
684 /* Something has been printed, close the parenthesis. */
685 fputs_filtered (")", stream);
686 }
687 }
688 else
689 print_longest (stream, 'd', 0, val);
690 }
691
692 /* generic_val_print helper for TYPE_CODE_ENUM. */
693
694 static void
695 generic_val_print_enum (struct type *type,
696 int embedded_offset, struct ui_file *stream,
697 struct value *original_value,
698 const struct value_print_options *options)
699 {
700 LONGEST val;
701 struct gdbarch *gdbarch = get_type_arch (type);
702 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
703
704 if (options->format)
705 {
706 val_print_scalar_formatted (type, embedded_offset,
707 original_value, options, 0, stream);
708 }
709 else
710 {
711 const gdb_byte *valaddr = value_contents_for_printing (original_value);
712
713 val = unpack_long (type, valaddr + embedded_offset * unit_size);
714
715 generic_val_print_enum_1 (type, val, stream);
716 }
717 }
718
719 /* generic_val_print helper for TYPE_CODE_FLAGS. */
720
721 static void
722 generic_val_print_flags (struct type *type,
723 int embedded_offset, struct ui_file *stream,
724 struct value *original_value,
725 const struct value_print_options *options)
726
727 {
728 if (options->format)
729 val_print_scalar_formatted (type, embedded_offset, original_value,
730 options, 0, stream);
731 else
732 {
733 const gdb_byte *valaddr = value_contents_for_printing (original_value);
734
735 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
736 }
737 }
738
739 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
740
741 static void
742 generic_val_print_func (struct type *type,
743 int embedded_offset, CORE_ADDR address,
744 struct ui_file *stream,
745 struct value *original_value,
746 const struct value_print_options *options)
747 {
748 struct gdbarch *gdbarch = get_type_arch (type);
749
750 if (options->format)
751 {
752 val_print_scalar_formatted (type, embedded_offset,
753 original_value, options, 0, stream);
754 }
755 else
756 {
757 /* FIXME, we should consider, at least for ANSI C language,
758 eliminating the distinction made between FUNCs and POINTERs
759 to FUNCs. */
760 fprintf_filtered (stream, "{");
761 type_print (type, "", stream, -1);
762 fprintf_filtered (stream, "} ");
763 /* Try to print what function it points to, and its address. */
764 print_address_demangle (options, gdbarch, address, stream, demangle);
765 }
766 }
767
768 /* generic_val_print helper for TYPE_CODE_BOOL. */
769
770 static void
771 generic_val_print_bool (struct type *type,
772 int embedded_offset, struct ui_file *stream,
773 struct value *original_value,
774 const struct value_print_options *options,
775 const struct generic_val_print_decorations *decorations)
776 {
777 LONGEST val;
778 struct gdbarch *gdbarch = get_type_arch (type);
779 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
780
781 if (options->format || options->output_format)
782 {
783 struct value_print_options opts = *options;
784 opts.format = (options->format ? options->format
785 : options->output_format);
786 val_print_scalar_formatted (type, embedded_offset,
787 original_value, &opts, 0, stream);
788 }
789 else
790 {
791 const gdb_byte *valaddr = value_contents_for_printing (original_value);
792
793 val = unpack_long (type, valaddr + embedded_offset * unit_size);
794 if (val == 0)
795 fputs_filtered (decorations->false_name, stream);
796 else if (val == 1)
797 fputs_filtered (decorations->true_name, stream);
798 else
799 print_longest (stream, 'd', 0, val);
800 }
801 }
802
803 /* generic_val_print helper for TYPE_CODE_INT. */
804
805 static void
806 generic_val_print_int (struct type *type,
807 int embedded_offset, struct ui_file *stream,
808 struct value *original_value,
809 const struct value_print_options *options)
810 {
811 struct value_print_options opts = *options;
812
813 opts.format = (options->format ? options->format
814 : options->output_format);
815 val_print_scalar_formatted (type, embedded_offset,
816 original_value, &opts, 0, stream);
817 }
818
819 /* generic_val_print helper for TYPE_CODE_CHAR. */
820
821 static void
822 generic_val_print_char (struct type *type, struct type *unresolved_type,
823 int embedded_offset,
824 struct ui_file *stream,
825 struct value *original_value,
826 const struct value_print_options *options)
827 {
828 LONGEST val;
829 struct gdbarch *gdbarch = get_type_arch (type);
830 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
831
832 if (options->format || options->output_format)
833 {
834 struct value_print_options opts = *options;
835
836 opts.format = (options->format ? options->format
837 : options->output_format);
838 val_print_scalar_formatted (type, embedded_offset,
839 original_value, &opts, 0, stream);
840 }
841 else
842 {
843 const gdb_byte *valaddr = value_contents_for_printing (original_value);
844
845 val = unpack_long (type, valaddr + embedded_offset * unit_size);
846 if (TYPE_UNSIGNED (type))
847 fprintf_filtered (stream, "%u", (unsigned int) val);
848 else
849 fprintf_filtered (stream, "%d", (int) val);
850 fputs_filtered (" ", stream);
851 LA_PRINT_CHAR (val, unresolved_type, stream);
852 }
853 }
854
855 /* generic_val_print helper for TYPE_CODE_FLT and TYPE_CODE_DECFLOAT. */
856
857 static void
858 generic_val_print_float (struct type *type,
859 int embedded_offset, struct ui_file *stream,
860 struct value *original_value,
861 const struct value_print_options *options)
862 {
863 struct gdbarch *gdbarch = get_type_arch (type);
864 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
865
866 if (options->format)
867 {
868 val_print_scalar_formatted (type, embedded_offset,
869 original_value, options, 0, stream);
870 }
871 else
872 {
873 const gdb_byte *valaddr = value_contents_for_printing (original_value);
874
875 print_floating (valaddr + embedded_offset * unit_size, type, stream);
876 }
877 }
878
879 /* generic_val_print helper for TYPE_CODE_COMPLEX. */
880
881 static void
882 generic_val_print_complex (struct type *type,
883 int embedded_offset, struct ui_file *stream,
884 struct value *original_value,
885 const struct value_print_options *options,
886 const struct generic_val_print_decorations
887 *decorations)
888 {
889 struct gdbarch *gdbarch = get_type_arch (type);
890 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
891 const gdb_byte *valaddr = value_contents_for_printing (original_value);
892
893 fprintf_filtered (stream, "%s", decorations->complex_prefix);
894 if (options->format)
895 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
896 embedded_offset, original_value, options, 0,
897 stream);
898 else
899 print_floating (valaddr + embedded_offset * unit_size,
900 TYPE_TARGET_TYPE (type), stream);
901 fprintf_filtered (stream, "%s", decorations->complex_infix);
902 if (options->format)
903 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
904 embedded_offset
905 + type_length_units (TYPE_TARGET_TYPE (type)),
906 original_value, options, 0, stream);
907 else
908 print_floating (valaddr + embedded_offset * unit_size
909 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
910 TYPE_TARGET_TYPE (type), stream);
911 fprintf_filtered (stream, "%s", decorations->complex_suffix);
912 }
913
914 /* A generic val_print that is suitable for use by language
915 implementations of the la_val_print method. This function can
916 handle most type codes, though not all, notably exception
917 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
918 the caller.
919
920 Most arguments are as to val_print.
921
922 The additional DECORATIONS argument can be used to customize the
923 output in some small, language-specific ways. */
924
925 void
926 generic_val_print (struct type *type,
927 int embedded_offset, CORE_ADDR address,
928 struct ui_file *stream, int recurse,
929 struct value *original_value,
930 const struct value_print_options *options,
931 const struct generic_val_print_decorations *decorations)
932 {
933 struct type *unresolved_type = type;
934
935 type = check_typedef (type);
936 switch (TYPE_CODE (type))
937 {
938 case TYPE_CODE_ARRAY:
939 generic_val_print_array (type, embedded_offset, address, stream,
940 recurse, original_value, options, decorations);
941 break;
942
943 case TYPE_CODE_MEMBERPTR:
944 generic_val_print_memberptr (type, embedded_offset, stream,
945 original_value, options);
946 break;
947
948 case TYPE_CODE_PTR:
949 generic_val_print_ptr (type, embedded_offset, stream,
950 original_value, options);
951 break;
952
953 case TYPE_CODE_REF:
954 case TYPE_CODE_RVALUE_REF:
955 generic_val_print_ref (type, embedded_offset, stream, recurse,
956 original_value, options);
957 break;
958
959 case TYPE_CODE_ENUM:
960 generic_val_print_enum (type, embedded_offset, stream,
961 original_value, options);
962 break;
963
964 case TYPE_CODE_FLAGS:
965 generic_val_print_flags (type, embedded_offset, stream,
966 original_value, options);
967 break;
968
969 case TYPE_CODE_FUNC:
970 case TYPE_CODE_METHOD:
971 generic_val_print_func (type, embedded_offset, address, stream,
972 original_value, options);
973 break;
974
975 case TYPE_CODE_BOOL:
976 generic_val_print_bool (type, embedded_offset, stream,
977 original_value, options, decorations);
978 break;
979
980 case TYPE_CODE_RANGE:
981 /* FIXME: create_static_range_type does not set the unsigned bit in a
982 range type (I think it probably should copy it from the
983 target type), so we won't print values which are too large to
984 fit in a signed integer correctly. */
985 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
986 print with the target type, though, because the size of our
987 type and the target type might differ). */
988
989 /* FALLTHROUGH */
990
991 case TYPE_CODE_INT:
992 generic_val_print_int (type, embedded_offset, stream,
993 original_value, options);
994 break;
995
996 case TYPE_CODE_CHAR:
997 generic_val_print_char (type, unresolved_type, embedded_offset,
998 stream, original_value, options);
999 break;
1000
1001 case TYPE_CODE_FLT:
1002 case TYPE_CODE_DECFLOAT:
1003 generic_val_print_float (type, embedded_offset, stream,
1004 original_value, options);
1005 break;
1006
1007 case TYPE_CODE_VOID:
1008 fputs_filtered (decorations->void_name, stream);
1009 break;
1010
1011 case TYPE_CODE_ERROR:
1012 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
1013 break;
1014
1015 case TYPE_CODE_UNDEF:
1016 /* This happens (without TYPE_STUB set) on systems which don't use
1017 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
1018 and no complete type for struct foo in that file. */
1019 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
1020 break;
1021
1022 case TYPE_CODE_COMPLEX:
1023 generic_val_print_complex (type, embedded_offset, stream,
1024 original_value, options, decorations);
1025 break;
1026
1027 case TYPE_CODE_UNION:
1028 case TYPE_CODE_STRUCT:
1029 case TYPE_CODE_METHODPTR:
1030 default:
1031 error (_("Unhandled type code %d in symbol table."),
1032 TYPE_CODE (type));
1033 }
1034 }
1035
1036 /* Print using the given LANGUAGE the data of type TYPE located at
1037 VAL's contents buffer + EMBEDDED_OFFSET (within GDB), which came
1038 from the inferior at address ADDRESS + EMBEDDED_OFFSET, onto
1039 stdio stream STREAM according to OPTIONS. VAL is the whole object
1040 that came from ADDRESS.
1041
1042 The language printers will pass down an adjusted EMBEDDED_OFFSET to
1043 further helper subroutines as subfields of TYPE are printed. In
1044 such cases, VAL is passed down unadjusted, so
1045 that VAL can be queried for metadata about the contents data being
1046 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
1047 buffer. For example: "has this field been optimized out", or "I'm
1048 printing an object while inspecting a traceframe; has this
1049 particular piece of data been collected?".
1050
1051 RECURSE indicates the amount of indentation to supply before
1052 continuation lines; this amount is roughly twice the value of
1053 RECURSE. */
1054
1055 void
1056 val_print (struct type *type, LONGEST embedded_offset,
1057 CORE_ADDR address, struct ui_file *stream, int recurse,
1058 struct value *val,
1059 const struct value_print_options *options,
1060 const struct language_defn *language)
1061 {
1062 int ret = 0;
1063 struct value_print_options local_opts = *options;
1064 struct type *real_type = check_typedef (type);
1065
1066 if (local_opts.prettyformat == Val_prettyformat_default)
1067 local_opts.prettyformat = (local_opts.prettyformat_structs
1068 ? Val_prettyformat : Val_no_prettyformat);
1069
1070 QUIT;
1071
1072 /* Ensure that the type is complete and not just a stub. If the type is
1073 only a stub and we can't find and substitute its complete type, then
1074 print appropriate string and return. */
1075
1076 if (TYPE_STUB (real_type))
1077 {
1078 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
1079 return;
1080 }
1081
1082 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
1083 return;
1084
1085 if (!options->raw)
1086 {
1087 ret = apply_ext_lang_val_pretty_printer (type, embedded_offset,
1088 address, stream, recurse,
1089 val, options, language);
1090 if (ret)
1091 return;
1092 }
1093
1094 /* Handle summary mode. If the value is a scalar, print it;
1095 otherwise, print an ellipsis. */
1096 if (options->summary && !val_print_scalar_type_p (type))
1097 {
1098 fprintf_filtered (stream, "...");
1099 return;
1100 }
1101
1102 /* If this value is too deep then don't print it. */
1103 if (!val_print_scalar_or_string_type_p (type, language)
1104 && val_print_check_max_depth (stream, recurse, options, language))
1105 return;
1106
1107 try
1108 {
1109 language->la_val_print (type, embedded_offset, address,
1110 stream, recurse, val,
1111 &local_opts);
1112 }
1113 catch (const gdb_exception_error &except)
1114 {
1115 fprintf_styled (stream, metadata_style.style (),
1116 _("<error reading variable>"));
1117 }
1118 }
1119
1120 /* See valprint.h. */
1121
1122 bool
1123 val_print_check_max_depth (struct ui_file *stream, int recurse,
1124 const struct value_print_options *options,
1125 const struct language_defn *language)
1126 {
1127 if (options->max_depth > -1 && recurse >= options->max_depth)
1128 {
1129 gdb_assert (language->la_struct_too_deep_ellipsis != NULL);
1130 fputs_filtered (language->la_struct_too_deep_ellipsis, stream);
1131 return true;
1132 }
1133
1134 return false;
1135 }
1136
1137 /* Check whether the value VAL is printable. Return 1 if it is;
1138 return 0 and print an appropriate error message to STREAM according to
1139 OPTIONS if it is not. */
1140
1141 static int
1142 value_check_printable (struct value *val, struct ui_file *stream,
1143 const struct value_print_options *options)
1144 {
1145 if (val == 0)
1146 {
1147 fprintf_styled (stream, metadata_style.style (),
1148 _("<address of value unknown>"));
1149 return 0;
1150 }
1151
1152 if (value_entirely_optimized_out (val))
1153 {
1154 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1155 fprintf_filtered (stream, "...");
1156 else
1157 val_print_optimized_out (val, stream);
1158 return 0;
1159 }
1160
1161 if (value_entirely_unavailable (val))
1162 {
1163 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1164 fprintf_filtered (stream, "...");
1165 else
1166 val_print_unavailable (stream);
1167 return 0;
1168 }
1169
1170 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1171 {
1172 fprintf_styled (stream, metadata_style.style (),
1173 _("<internal function %s>"),
1174 value_internal_function_name (val));
1175 return 0;
1176 }
1177
1178 if (type_not_associated (value_type (val)))
1179 {
1180 val_print_not_associated (stream);
1181 return 0;
1182 }
1183
1184 if (type_not_allocated (value_type (val)))
1185 {
1186 val_print_not_allocated (stream);
1187 return 0;
1188 }
1189
1190 return 1;
1191 }
1192
1193 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1194 to OPTIONS.
1195
1196 This is a preferable interface to val_print, above, because it uses
1197 GDB's value mechanism. */
1198
1199 void
1200 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1201 const struct value_print_options *options,
1202 const struct language_defn *language)
1203 {
1204 if (!value_check_printable (val, stream, options))
1205 return;
1206
1207 if (language->la_language == language_ada)
1208 /* The value might have a dynamic type, which would cause trouble
1209 below when trying to extract the value contents (since the value
1210 size is determined from the type size which is unknown). So
1211 get a fixed representation of our value. */
1212 val = ada_to_fixed_value (val);
1213
1214 if (value_lazy (val))
1215 value_fetch_lazy (val);
1216
1217 val_print (value_type (val),
1218 value_embedded_offset (val), value_address (val),
1219 stream, recurse,
1220 val, options, language);
1221 }
1222
1223 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1224 is printed using the current_language syntax. */
1225
1226 void
1227 value_print (struct value *val, struct ui_file *stream,
1228 const struct value_print_options *options)
1229 {
1230 if (!value_check_printable (val, stream, options))
1231 return;
1232
1233 if (!options->raw)
1234 {
1235 int r
1236 = apply_ext_lang_val_pretty_printer (value_type (val),
1237 value_embedded_offset (val),
1238 value_address (val),
1239 stream, 0,
1240 val, options, current_language);
1241
1242 if (r)
1243 return;
1244 }
1245
1246 LA_VALUE_PRINT (val, stream, options);
1247 }
1248
1249 static void
1250 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1251 struct ui_file *stream)
1252 {
1253 ULONGEST val = unpack_long (type, valaddr);
1254 int field, nfields = TYPE_NFIELDS (type);
1255 struct gdbarch *gdbarch = get_type_arch (type);
1256 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1257
1258 fputs_filtered ("[", stream);
1259 for (field = 0; field < nfields; field++)
1260 {
1261 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1262 {
1263 struct type *field_type = TYPE_FIELD_TYPE (type, field);
1264
1265 if (field_type == bool_type
1266 /* We require boolean types here to be one bit wide. This is a
1267 problematic place to notify the user of an internal error
1268 though. Instead just fall through and print the field as an
1269 int. */
1270 && TYPE_FIELD_BITSIZE (type, field) == 1)
1271 {
1272 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1273 fprintf_filtered
1274 (stream, " %ps",
1275 styled_string (variable_name_style.style (),
1276 TYPE_FIELD_NAME (type, field)));
1277 }
1278 else
1279 {
1280 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1281 ULONGEST field_val
1282 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1283
1284 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1285 field_val &= ((ULONGEST) 1 << field_len) - 1;
1286 fprintf_filtered (stream, " %ps=",
1287 styled_string (variable_name_style.style (),
1288 TYPE_FIELD_NAME (type, field)));
1289 if (TYPE_CODE (field_type) == TYPE_CODE_ENUM)
1290 generic_val_print_enum_1 (field_type, field_val, stream);
1291 else
1292 print_longest (stream, 'd', 0, field_val);
1293 }
1294 }
1295 }
1296 fputs_filtered (" ]", stream);
1297 }
1298
1299 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1300 according to OPTIONS and SIZE on STREAM. Format i is not supported
1301 at this level.
1302
1303 This is how the elements of an array or structure are printed
1304 with a format. */
1305
1306 void
1307 val_print_scalar_formatted (struct type *type,
1308 LONGEST embedded_offset,
1309 struct value *val,
1310 const struct value_print_options *options,
1311 int size,
1312 struct ui_file *stream)
1313 {
1314 struct gdbarch *arch = get_type_arch (type);
1315 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1316
1317 gdb_assert (val != NULL);
1318
1319 /* If we get here with a string format, try again without it. Go
1320 all the way back to the language printers, which may call us
1321 again. */
1322 if (options->format == 's')
1323 {
1324 struct value_print_options opts = *options;
1325 opts.format = 0;
1326 opts.deref_ref = 0;
1327 val_print (type, embedded_offset, 0, stream, 0, val, &opts,
1328 current_language);
1329 return;
1330 }
1331
1332 /* value_contents_for_printing fetches all VAL's contents. They are
1333 needed to check whether VAL is optimized-out or unavailable
1334 below. */
1335 const gdb_byte *valaddr = value_contents_for_printing (val);
1336
1337 /* A scalar object that does not have all bits available can't be
1338 printed, because all bits contribute to its representation. */
1339 if (value_bits_any_optimized_out (val,
1340 TARGET_CHAR_BIT * embedded_offset,
1341 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1342 val_print_optimized_out (val, stream);
1343 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1344 val_print_unavailable (stream);
1345 else
1346 print_scalar_formatted (valaddr + embedded_offset * unit_size, type,
1347 options, size, stream);
1348 }
1349
1350 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1351 The raison d'etre of this function is to consolidate printing of
1352 LONG_LONG's into this one function. The format chars b,h,w,g are
1353 from print_scalar_formatted(). Numbers are printed using C
1354 format.
1355
1356 USE_C_FORMAT means to use C format in all cases. Without it,
1357 'o' and 'x' format do not include the standard C radix prefix
1358 (leading 0 or 0x).
1359
1360 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1361 and was intended to request formatting according to the current
1362 language and would be used for most integers that GDB prints. The
1363 exceptional cases were things like protocols where the format of
1364 the integer is a protocol thing, not a user-visible thing). The
1365 parameter remains to preserve the information of what things might
1366 be printed with language-specific format, should we ever resurrect
1367 that capability. */
1368
1369 void
1370 print_longest (struct ui_file *stream, int format, int use_c_format,
1371 LONGEST val_long)
1372 {
1373 const char *val;
1374
1375 switch (format)
1376 {
1377 case 'd':
1378 val = int_string (val_long, 10, 1, 0, 1); break;
1379 case 'u':
1380 val = int_string (val_long, 10, 0, 0, 1); break;
1381 case 'x':
1382 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1383 case 'b':
1384 val = int_string (val_long, 16, 0, 2, 1); break;
1385 case 'h':
1386 val = int_string (val_long, 16, 0, 4, 1); break;
1387 case 'w':
1388 val = int_string (val_long, 16, 0, 8, 1); break;
1389 case 'g':
1390 val = int_string (val_long, 16, 0, 16, 1); break;
1391 break;
1392 case 'o':
1393 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1394 default:
1395 internal_error (__FILE__, __LINE__,
1396 _("failed internal consistency check"));
1397 }
1398 fputs_filtered (val, stream);
1399 }
1400
1401 /* This used to be a macro, but I don't think it is called often enough
1402 to merit such treatment. */
1403 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1404 arguments to a function, number in a value history, register number, etc.)
1405 where the value must not be larger than can fit in an int. */
1406
1407 int
1408 longest_to_int (LONGEST arg)
1409 {
1410 /* Let the compiler do the work. */
1411 int rtnval = (int) arg;
1412
1413 /* Check for overflows or underflows. */
1414 if (sizeof (LONGEST) > sizeof (int))
1415 {
1416 if (rtnval != arg)
1417 {
1418 error (_("Value out of range."));
1419 }
1420 }
1421 return (rtnval);
1422 }
1423
1424 /* Print a floating point value of floating-point type TYPE,
1425 pointed to in GDB by VALADDR, on STREAM. */
1426
1427 void
1428 print_floating (const gdb_byte *valaddr, struct type *type,
1429 struct ui_file *stream)
1430 {
1431 std::string str = target_float_to_string (valaddr, type);
1432 fputs_filtered (str.c_str (), stream);
1433 }
1434
1435 void
1436 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1437 unsigned len, enum bfd_endian byte_order, bool zero_pad)
1438 {
1439 const gdb_byte *p;
1440 unsigned int i;
1441 int b;
1442 bool seen_a_one = false;
1443
1444 /* Declared "int" so it will be signed.
1445 This ensures that right shift will shift in zeros. */
1446
1447 const int mask = 0x080;
1448
1449 if (byte_order == BFD_ENDIAN_BIG)
1450 {
1451 for (p = valaddr;
1452 p < valaddr + len;
1453 p++)
1454 {
1455 /* Every byte has 8 binary characters; peel off
1456 and print from the MSB end. */
1457
1458 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1459 {
1460 if (*p & (mask >> i))
1461 b = '1';
1462 else
1463 b = '0';
1464
1465 if (zero_pad || seen_a_one || b == '1')
1466 fputc_filtered (b, stream);
1467 if (b == '1')
1468 seen_a_one = true;
1469 }
1470 }
1471 }
1472 else
1473 {
1474 for (p = valaddr + len - 1;
1475 p >= valaddr;
1476 p--)
1477 {
1478 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1479 {
1480 if (*p & (mask >> i))
1481 b = '1';
1482 else
1483 b = '0';
1484
1485 if (zero_pad || seen_a_one || b == '1')
1486 fputc_filtered (b, stream);
1487 if (b == '1')
1488 seen_a_one = true;
1489 }
1490 }
1491 }
1492
1493 /* When not zero-padding, ensure that something is printed when the
1494 input is 0. */
1495 if (!zero_pad && !seen_a_one)
1496 fputc_filtered ('0', stream);
1497 }
1498
1499 /* A helper for print_octal_chars that emits a single octal digit,
1500 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1501
1502 static void
1503 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1504 {
1505 if (*seen_a_one || digit != 0)
1506 fprintf_filtered (stream, "%o", digit);
1507 if (digit != 0)
1508 *seen_a_one = true;
1509 }
1510
1511 /* VALADDR points to an integer of LEN bytes.
1512 Print it in octal on stream or format it in buf. */
1513
1514 void
1515 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1516 unsigned len, enum bfd_endian byte_order)
1517 {
1518 const gdb_byte *p;
1519 unsigned char octa1, octa2, octa3, carry;
1520 int cycle;
1521
1522 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1523 * the extra bits, which cycle every three bytes:
1524 *
1525 * Byte side: 0 1 2 3
1526 * | | | |
1527 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1528 *
1529 * Octal side: 0 1 carry 3 4 carry ...
1530 *
1531 * Cycle number: 0 1 2
1532 *
1533 * But of course we are printing from the high side, so we have to
1534 * figure out where in the cycle we are so that we end up with no
1535 * left over bits at the end.
1536 */
1537 #define BITS_IN_OCTAL 3
1538 #define HIGH_ZERO 0340
1539 #define LOW_ZERO 0034
1540 #define CARRY_ZERO 0003
1541 static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
1542 "cycle zero constants are wrong");
1543 #define HIGH_ONE 0200
1544 #define MID_ONE 0160
1545 #define LOW_ONE 0016
1546 #define CARRY_ONE 0001
1547 static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
1548 "cycle one constants are wrong");
1549 #define HIGH_TWO 0300
1550 #define MID_TWO 0070
1551 #define LOW_TWO 0007
1552 static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
1553 "cycle two constants are wrong");
1554
1555 /* For 32 we start in cycle 2, with two bits and one bit carry;
1556 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1557
1558 cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
1559 carry = 0;
1560
1561 fputs_filtered ("0", stream);
1562 bool seen_a_one = false;
1563 if (byte_order == BFD_ENDIAN_BIG)
1564 {
1565 for (p = valaddr;
1566 p < valaddr + len;
1567 p++)
1568 {
1569 switch (cycle)
1570 {
1571 case 0:
1572 /* No carry in, carry out two bits. */
1573
1574 octa1 = (HIGH_ZERO & *p) >> 5;
1575 octa2 = (LOW_ZERO & *p) >> 2;
1576 carry = (CARRY_ZERO & *p);
1577 emit_octal_digit (stream, &seen_a_one, octa1);
1578 emit_octal_digit (stream, &seen_a_one, octa2);
1579 break;
1580
1581 case 1:
1582 /* Carry in two bits, carry out one bit. */
1583
1584 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1585 octa2 = (MID_ONE & *p) >> 4;
1586 octa3 = (LOW_ONE & *p) >> 1;
1587 carry = (CARRY_ONE & *p);
1588 emit_octal_digit (stream, &seen_a_one, octa1);
1589 emit_octal_digit (stream, &seen_a_one, octa2);
1590 emit_octal_digit (stream, &seen_a_one, octa3);
1591 break;
1592
1593 case 2:
1594 /* Carry in one bit, no carry out. */
1595
1596 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1597 octa2 = (MID_TWO & *p) >> 3;
1598 octa3 = (LOW_TWO & *p);
1599 carry = 0;
1600 emit_octal_digit (stream, &seen_a_one, octa1);
1601 emit_octal_digit (stream, &seen_a_one, octa2);
1602 emit_octal_digit (stream, &seen_a_one, octa3);
1603 break;
1604
1605 default:
1606 error (_("Internal error in octal conversion;"));
1607 }
1608
1609 cycle++;
1610 cycle = cycle % BITS_IN_OCTAL;
1611 }
1612 }
1613 else
1614 {
1615 for (p = valaddr + len - 1;
1616 p >= valaddr;
1617 p--)
1618 {
1619 switch (cycle)
1620 {
1621 case 0:
1622 /* Carry out, no carry in */
1623
1624 octa1 = (HIGH_ZERO & *p) >> 5;
1625 octa2 = (LOW_ZERO & *p) >> 2;
1626 carry = (CARRY_ZERO & *p);
1627 emit_octal_digit (stream, &seen_a_one, octa1);
1628 emit_octal_digit (stream, &seen_a_one, octa2);
1629 break;
1630
1631 case 1:
1632 /* Carry in, carry out */
1633
1634 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1635 octa2 = (MID_ONE & *p) >> 4;
1636 octa3 = (LOW_ONE & *p) >> 1;
1637 carry = (CARRY_ONE & *p);
1638 emit_octal_digit (stream, &seen_a_one, octa1);
1639 emit_octal_digit (stream, &seen_a_one, octa2);
1640 emit_octal_digit (stream, &seen_a_one, octa3);
1641 break;
1642
1643 case 2:
1644 /* Carry in, no carry out */
1645
1646 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1647 octa2 = (MID_TWO & *p) >> 3;
1648 octa3 = (LOW_TWO & *p);
1649 carry = 0;
1650 emit_octal_digit (stream, &seen_a_one, octa1);
1651 emit_octal_digit (stream, &seen_a_one, octa2);
1652 emit_octal_digit (stream, &seen_a_one, octa3);
1653 break;
1654
1655 default:
1656 error (_("Internal error in octal conversion;"));
1657 }
1658
1659 cycle++;
1660 cycle = cycle % BITS_IN_OCTAL;
1661 }
1662 }
1663
1664 }
1665
1666 /* Possibly negate the integer represented by BYTES. It contains LEN
1667 bytes in the specified byte order. If the integer is negative,
1668 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1669 nothing and return false. */
1670
1671 static bool
1672 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1673 enum bfd_endian byte_order,
1674 gdb::byte_vector *out_vec)
1675 {
1676 gdb_byte sign_byte;
1677 gdb_assert (len > 0);
1678 if (byte_order == BFD_ENDIAN_BIG)
1679 sign_byte = bytes[0];
1680 else
1681 sign_byte = bytes[len - 1];
1682 if ((sign_byte & 0x80) == 0)
1683 return false;
1684
1685 out_vec->resize (len);
1686
1687 /* Compute -x == 1 + ~x. */
1688 if (byte_order == BFD_ENDIAN_LITTLE)
1689 {
1690 unsigned carry = 1;
1691 for (unsigned i = 0; i < len; ++i)
1692 {
1693 unsigned tem = (0xff & ~bytes[i]) + carry;
1694 (*out_vec)[i] = tem & 0xff;
1695 carry = tem / 256;
1696 }
1697 }
1698 else
1699 {
1700 unsigned carry = 1;
1701 for (unsigned i = len; i > 0; --i)
1702 {
1703 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1704 (*out_vec)[i - 1] = tem & 0xff;
1705 carry = tem / 256;
1706 }
1707 }
1708
1709 return true;
1710 }
1711
1712 /* VALADDR points to an integer of LEN bytes.
1713 Print it in decimal on stream or format it in buf. */
1714
1715 void
1716 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1717 unsigned len, bool is_signed,
1718 enum bfd_endian byte_order)
1719 {
1720 #define TEN 10
1721 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1722 #define CARRY_LEFT( x ) ((x) % TEN)
1723 #define SHIFT( x ) ((x) << 4)
1724 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1725 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1726
1727 const gdb_byte *p;
1728 int carry;
1729 int decimal_len;
1730 int i, j, decimal_digits;
1731 int dummy;
1732 int flip;
1733
1734 gdb::byte_vector negated_bytes;
1735 if (is_signed
1736 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1737 {
1738 fputs_filtered ("-", stream);
1739 valaddr = negated_bytes.data ();
1740 }
1741
1742 /* Base-ten number is less than twice as many digits
1743 as the base 16 number, which is 2 digits per byte. */
1744
1745 decimal_len = len * 2 * 2;
1746 std::vector<unsigned char> digits (decimal_len, 0);
1747
1748 /* Ok, we have an unknown number of bytes of data to be printed in
1749 * decimal.
1750 *
1751 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1752 * decimalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1753 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1754 *
1755 * The trick is that "digits" holds a base-10 number, but sometimes
1756 * the individual digits are > 10.
1757 *
1758 * Outer loop is per nibble (hex digit) of input, from MSD end to
1759 * LSD end.
1760 */
1761 decimal_digits = 0; /* Number of decimal digits so far */
1762 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1763 flip = 0;
1764 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1765 {
1766 /*
1767 * Multiply current base-ten number by 16 in place.
1768 * Each digit was between 0 and 9, now is between
1769 * 0 and 144.
1770 */
1771 for (j = 0; j < decimal_digits; j++)
1772 {
1773 digits[j] = SHIFT (digits[j]);
1774 }
1775
1776 /* Take the next nibble off the input and add it to what
1777 * we've got in the LSB position. Bottom 'digit' is now
1778 * between 0 and 159.
1779 *
1780 * "flip" is used to run this loop twice for each byte.
1781 */
1782 if (flip == 0)
1783 {
1784 /* Take top nibble. */
1785
1786 digits[0] += HIGH_NIBBLE (*p);
1787 flip = 1;
1788 }
1789 else
1790 {
1791 /* Take low nibble and bump our pointer "p". */
1792
1793 digits[0] += LOW_NIBBLE (*p);
1794 if (byte_order == BFD_ENDIAN_BIG)
1795 p++;
1796 else
1797 p--;
1798 flip = 0;
1799 }
1800
1801 /* Re-decimalize. We have to do this often enough
1802 * that we don't overflow, but once per nibble is
1803 * overkill. Easier this way, though. Note that the
1804 * carry is often larger than 10 (e.g. max initial
1805 * carry out of lowest nibble is 15, could bubble all
1806 * the way up greater than 10). So we have to do
1807 * the carrying beyond the last current digit.
1808 */
1809 carry = 0;
1810 for (j = 0; j < decimal_len - 1; j++)
1811 {
1812 digits[j] += carry;
1813
1814 /* "/" won't handle an unsigned char with
1815 * a value that if signed would be negative.
1816 * So extend to longword int via "dummy".
1817 */
1818 dummy = digits[j];
1819 carry = CARRY_OUT (dummy);
1820 digits[j] = CARRY_LEFT (dummy);
1821
1822 if (j >= decimal_digits && carry == 0)
1823 {
1824 /*
1825 * All higher digits are 0 and we
1826 * no longer have a carry.
1827 *
1828 * Note: "j" is 0-based, "decimal_digits" is
1829 * 1-based.
1830 */
1831 decimal_digits = j + 1;
1832 break;
1833 }
1834 }
1835 }
1836
1837 /* Ok, now "digits" is the decimal representation, with
1838 the "decimal_digits" actual digits. Print! */
1839
1840 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
1841 ;
1842
1843 for (; i >= 0; i--)
1844 {
1845 fprintf_filtered (stream, "%1d", digits[i]);
1846 }
1847 }
1848
1849 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1850
1851 void
1852 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1853 unsigned len, enum bfd_endian byte_order,
1854 bool zero_pad)
1855 {
1856 const gdb_byte *p;
1857
1858 fputs_filtered ("0x", stream);
1859 if (byte_order == BFD_ENDIAN_BIG)
1860 {
1861 p = valaddr;
1862
1863 if (!zero_pad)
1864 {
1865 /* Strip leading 0 bytes, but be sure to leave at least a
1866 single byte at the end. */
1867 for (; p < valaddr + len - 1 && !*p; ++p)
1868 ;
1869 }
1870
1871 const gdb_byte *first = p;
1872 for (;
1873 p < valaddr + len;
1874 p++)
1875 {
1876 /* When not zero-padding, use a different format for the
1877 very first byte printed. */
1878 if (!zero_pad && p == first)
1879 fprintf_filtered (stream, "%x", *p);
1880 else
1881 fprintf_filtered (stream, "%02x", *p);
1882 }
1883 }
1884 else
1885 {
1886 p = valaddr + len - 1;
1887
1888 if (!zero_pad)
1889 {
1890 /* Strip leading 0 bytes, but be sure to leave at least a
1891 single byte at the end. */
1892 for (; p >= valaddr + 1 && !*p; --p)
1893 ;
1894 }
1895
1896 const gdb_byte *first = p;
1897 for (;
1898 p >= valaddr;
1899 p--)
1900 {
1901 /* When not zero-padding, use a different format for the
1902 very first byte printed. */
1903 if (!zero_pad && p == first)
1904 fprintf_filtered (stream, "%x", *p);
1905 else
1906 fprintf_filtered (stream, "%02x", *p);
1907 }
1908 }
1909 }
1910
1911 /* VALADDR points to a char integer of LEN bytes.
1912 Print it out in appropriate language form on stream.
1913 Omit any leading zero chars. */
1914
1915 void
1916 print_char_chars (struct ui_file *stream, struct type *type,
1917 const gdb_byte *valaddr,
1918 unsigned len, enum bfd_endian byte_order)
1919 {
1920 const gdb_byte *p;
1921
1922 if (byte_order == BFD_ENDIAN_BIG)
1923 {
1924 p = valaddr;
1925 while (p < valaddr + len - 1 && *p == 0)
1926 ++p;
1927
1928 while (p < valaddr + len)
1929 {
1930 LA_EMIT_CHAR (*p, type, stream, '\'');
1931 ++p;
1932 }
1933 }
1934 else
1935 {
1936 p = valaddr + len - 1;
1937 while (p > valaddr && *p == 0)
1938 --p;
1939
1940 while (p >= valaddr)
1941 {
1942 LA_EMIT_CHAR (*p, type, stream, '\'');
1943 --p;
1944 }
1945 }
1946 }
1947
1948 /* Print function pointer with inferior address ADDRESS onto stdio
1949 stream STREAM. */
1950
1951 void
1952 print_function_pointer_address (const struct value_print_options *options,
1953 struct gdbarch *gdbarch,
1954 CORE_ADDR address,
1955 struct ui_file *stream)
1956 {
1957 CORE_ADDR func_addr
1958 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1959 current_top_target ());
1960
1961 /* If the function pointer is represented by a description, print
1962 the address of the description. */
1963 if (options->addressprint && func_addr != address)
1964 {
1965 fputs_filtered ("@", stream);
1966 fputs_filtered (paddress (gdbarch, address), stream);
1967 fputs_filtered (": ", stream);
1968 }
1969 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1970 }
1971
1972
1973 /* Print on STREAM using the given OPTIONS the index for the element
1974 at INDEX of an array whose index type is INDEX_TYPE. */
1975
1976 void
1977 maybe_print_array_index (struct type *index_type, LONGEST index,
1978 struct ui_file *stream,
1979 const struct value_print_options *options)
1980 {
1981 struct value *index_value;
1982
1983 if (!options->print_array_indexes)
1984 return;
1985
1986 index_value = value_from_longest (index_type, index);
1987
1988 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1989 }
1990
1991 /* Called by various <lang>_val_print routines to print elements of an
1992 array in the form "<elem1>, <elem2>, <elem3>, ...".
1993
1994 (FIXME?) Assumes array element separator is a comma, which is correct
1995 for all languages currently handled.
1996 (FIXME?) Some languages have a notation for repeated array elements,
1997 perhaps we should try to use that notation when appropriate. */
1998
1999 void
2000 val_print_array_elements (struct type *type,
2001 LONGEST embedded_offset,
2002 CORE_ADDR address, struct ui_file *stream,
2003 int recurse,
2004 struct value *val,
2005 const struct value_print_options *options,
2006 unsigned int i)
2007 {
2008 unsigned int things_printed = 0;
2009 unsigned len;
2010 struct type *elttype, *index_type, *base_index_type;
2011 unsigned eltlen;
2012 /* Position of the array element we are examining to see
2013 whether it is repeated. */
2014 unsigned int rep1;
2015 /* Number of repetitions we have detected so far. */
2016 unsigned int reps;
2017 LONGEST low_bound, high_bound;
2018 LONGEST low_pos, high_pos;
2019
2020 elttype = TYPE_TARGET_TYPE (type);
2021 eltlen = type_length_units (check_typedef (elttype));
2022 index_type = TYPE_INDEX_TYPE (type);
2023
2024 if (get_array_bounds (type, &low_bound, &high_bound))
2025 {
2026 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
2027 base_index_type = TYPE_TARGET_TYPE (index_type);
2028 else
2029 base_index_type = index_type;
2030
2031 /* Non-contiguous enumerations types can by used as index types
2032 in some languages (e.g. Ada). In this case, the array length
2033 shall be computed from the positions of the first and last
2034 literal in the enumeration type, and not from the values
2035 of these literals. */
2036 if (!discrete_position (base_index_type, low_bound, &low_pos)
2037 || !discrete_position (base_index_type, high_bound, &high_pos))
2038 {
2039 warning (_("unable to get positions in array, use bounds instead"));
2040 low_pos = low_bound;
2041 high_pos = high_bound;
2042 }
2043
2044 /* The array length should normally be HIGH_POS - LOW_POS + 1.
2045 But we have to be a little extra careful, because some languages
2046 such as Ada allow LOW_POS to be greater than HIGH_POS for
2047 empty arrays. In that situation, the array length is just zero,
2048 not negative! */
2049 if (low_pos > high_pos)
2050 len = 0;
2051 else
2052 len = high_pos - low_pos + 1;
2053 }
2054 else
2055 {
2056 warning (_("unable to get bounds of array, assuming null array"));
2057 low_bound = 0;
2058 len = 0;
2059 }
2060
2061 annotate_array_section_begin (i, elttype);
2062
2063 for (; i < len && things_printed < options->print_max; i++)
2064 {
2065 if (i != 0)
2066 {
2067 if (options->prettyformat_arrays)
2068 {
2069 fprintf_filtered (stream, ",\n");
2070 print_spaces_filtered (2 + 2 * recurse, stream);
2071 }
2072 else
2073 {
2074 fprintf_filtered (stream, ", ");
2075 }
2076 }
2077 wrap_here (n_spaces (2 + 2 * recurse));
2078 maybe_print_array_index (index_type, i + low_bound,
2079 stream, options);
2080
2081 rep1 = i + 1;
2082 reps = 1;
2083 /* Only check for reps if repeat_count_threshold is not set to
2084 UINT_MAX (unlimited). */
2085 if (options->repeat_count_threshold < UINT_MAX)
2086 {
2087 while (rep1 < len
2088 && value_contents_eq (val,
2089 embedded_offset + i * eltlen,
2090 val,
2091 (embedded_offset
2092 + rep1 * eltlen),
2093 eltlen))
2094 {
2095 ++reps;
2096 ++rep1;
2097 }
2098 }
2099
2100 if (reps > options->repeat_count_threshold)
2101 {
2102 val_print (elttype, embedded_offset + i * eltlen,
2103 address, stream, recurse + 1, val, options,
2104 current_language);
2105 annotate_elt_rep (reps);
2106 fprintf_filtered (stream, " %p[<repeats %u times>%p]",
2107 metadata_style.style ().ptr (), reps, nullptr);
2108 annotate_elt_rep_end ();
2109
2110 i = rep1 - 1;
2111 things_printed += options->repeat_count_threshold;
2112 }
2113 else
2114 {
2115 val_print (elttype, embedded_offset + i * eltlen,
2116 address,
2117 stream, recurse + 1, val, options, current_language);
2118 annotate_elt ();
2119 things_printed++;
2120 }
2121 }
2122 annotate_array_section_end ();
2123 if (i < len)
2124 {
2125 fprintf_filtered (stream, "...");
2126 }
2127 }
2128
2129 /* Read LEN bytes of target memory at address MEMADDR, placing the
2130 results in GDB's memory at MYADDR. Returns a count of the bytes
2131 actually read, and optionally a target_xfer_status value in the
2132 location pointed to by ERRPTR if ERRPTR is non-null. */
2133
2134 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2135 function be eliminated. */
2136
2137 static int
2138 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2139 int len, int *errptr)
2140 {
2141 int nread; /* Number of bytes actually read. */
2142 int errcode; /* Error from last read. */
2143
2144 /* First try a complete read. */
2145 errcode = target_read_memory (memaddr, myaddr, len);
2146 if (errcode == 0)
2147 {
2148 /* Got it all. */
2149 nread = len;
2150 }
2151 else
2152 {
2153 /* Loop, reading one byte at a time until we get as much as we can. */
2154 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2155 {
2156 errcode = target_read_memory (memaddr++, myaddr++, 1);
2157 }
2158 /* If an error, the last read was unsuccessful, so adjust count. */
2159 if (errcode != 0)
2160 {
2161 nread--;
2162 }
2163 }
2164 if (errptr != NULL)
2165 {
2166 *errptr = errcode;
2167 }
2168 return (nread);
2169 }
2170
2171 /* Read a string from the inferior, at ADDR, with LEN characters of
2172 WIDTH bytes each. Fetch at most FETCHLIMIT characters. BUFFER
2173 will be set to a newly allocated buffer containing the string, and
2174 BYTES_READ will be set to the number of bytes read. Returns 0 on
2175 success, or a target_xfer_status on failure.
2176
2177 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2178 (including eventual NULs in the middle or end of the string).
2179
2180 If LEN is -1, stops at the first null character (not necessarily
2181 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2182 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2183 the string.
2184
2185 Unless an exception is thrown, BUFFER will always be allocated, even on
2186 failure. In this case, some characters might have been read before the
2187 failure happened. Check BYTES_READ to recognize this situation.
2188
2189 Note: There was a FIXME asking to make this code use target_read_string,
2190 but this function is more general (can read past null characters, up to
2191 given LEN). Besides, it is used much more often than target_read_string
2192 so it is more tested. Perhaps callers of target_read_string should use
2193 this function instead? */
2194
2195 int
2196 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2197 enum bfd_endian byte_order, gdb::unique_xmalloc_ptr<gdb_byte> *buffer,
2198 int *bytes_read)
2199 {
2200 int errcode; /* Errno returned from bad reads. */
2201 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2202 gdb_byte *bufptr; /* Pointer to next available byte in
2203 buffer. */
2204
2205 /* Loop until we either have all the characters, or we encounter
2206 some error, such as bumping into the end of the address space. */
2207
2208 buffer->reset (nullptr);
2209
2210 if (len > 0)
2211 {
2212 /* We want fetchlimit chars, so we might as well read them all in
2213 one operation. */
2214 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2215
2216 buffer->reset ((gdb_byte *) xmalloc (fetchlen * width));
2217 bufptr = buffer->get ();
2218
2219 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2220 / width;
2221 addr += nfetch * width;
2222 bufptr += nfetch * width;
2223 }
2224 else if (len == -1)
2225 {
2226 unsigned long bufsize = 0;
2227 unsigned int chunksize; /* Size of each fetch, in chars. */
2228 int found_nul; /* Non-zero if we found the nul char. */
2229 gdb_byte *limit; /* First location past end of fetch buffer. */
2230
2231 found_nul = 0;
2232 /* We are looking for a NUL terminator to end the fetching, so we
2233 might as well read in blocks that are large enough to be efficient,
2234 but not so large as to be slow if fetchlimit happens to be large.
2235 So we choose the minimum of 8 and fetchlimit. We used to use 200
2236 instead of 8 but 200 is way too big for remote debugging over a
2237 serial line. */
2238 chunksize = std::min (8u, fetchlimit);
2239
2240 do
2241 {
2242 QUIT;
2243 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2244
2245 if (*buffer == NULL)
2246 buffer->reset ((gdb_byte *) xmalloc (nfetch * width));
2247 else
2248 buffer->reset ((gdb_byte *) xrealloc (buffer->release (),
2249 (nfetch + bufsize) * width));
2250
2251 bufptr = buffer->get () + bufsize * width;
2252 bufsize += nfetch;
2253
2254 /* Read as much as we can. */
2255 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2256 / width;
2257
2258 /* Scan this chunk for the null character that terminates the string
2259 to print. If found, we don't need to fetch any more. Note
2260 that bufptr is explicitly left pointing at the next character
2261 after the null character, or at the next character after the end
2262 of the buffer. */
2263
2264 limit = bufptr + nfetch * width;
2265 while (bufptr < limit)
2266 {
2267 unsigned long c;
2268
2269 c = extract_unsigned_integer (bufptr, width, byte_order);
2270 addr += width;
2271 bufptr += width;
2272 if (c == 0)
2273 {
2274 /* We don't care about any error which happened after
2275 the NUL terminator. */
2276 errcode = 0;
2277 found_nul = 1;
2278 break;
2279 }
2280 }
2281 }
2282 while (errcode == 0 /* no error */
2283 && bufptr - buffer->get () < fetchlimit * width /* no overrun */
2284 && !found_nul); /* haven't found NUL yet */
2285 }
2286 else
2287 { /* Length of string is really 0! */
2288 /* We always allocate *buffer. */
2289 buffer->reset ((gdb_byte *) xmalloc (1));
2290 bufptr = buffer->get ();
2291 errcode = 0;
2292 }
2293
2294 /* bufptr and addr now point immediately beyond the last byte which we
2295 consider part of the string (including a '\0' which ends the string). */
2296 *bytes_read = bufptr - buffer->get ();
2297
2298 QUIT;
2299
2300 return errcode;
2301 }
2302
2303 /* Return true if print_wchar can display W without resorting to a
2304 numeric escape, false otherwise. */
2305
2306 static int
2307 wchar_printable (gdb_wchar_t w)
2308 {
2309 return (gdb_iswprint (w)
2310 || w == LCST ('\a') || w == LCST ('\b')
2311 || w == LCST ('\f') || w == LCST ('\n')
2312 || w == LCST ('\r') || w == LCST ('\t')
2313 || w == LCST ('\v'));
2314 }
2315
2316 /* A helper function that converts the contents of STRING to wide
2317 characters and then appends them to OUTPUT. */
2318
2319 static void
2320 append_string_as_wide (const char *string,
2321 struct obstack *output)
2322 {
2323 for (; *string; ++string)
2324 {
2325 gdb_wchar_t w = gdb_btowc (*string);
2326 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2327 }
2328 }
2329
2330 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2331 original (target) bytes representing the character, ORIG_LEN is the
2332 number of valid bytes. WIDTH is the number of bytes in a base
2333 characters of the type. OUTPUT is an obstack to which wide
2334 characters are emitted. QUOTER is a (narrow) character indicating
2335 the style of quotes surrounding the character to be printed.
2336 NEED_ESCAPE is an in/out flag which is used to track numeric
2337 escapes across calls. */
2338
2339 static void
2340 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2341 int orig_len, int width,
2342 enum bfd_endian byte_order,
2343 struct obstack *output,
2344 int quoter, int *need_escapep)
2345 {
2346 int need_escape = *need_escapep;
2347
2348 *need_escapep = 0;
2349
2350 /* iswprint implementation on Windows returns 1 for tab character.
2351 In order to avoid different printout on this host, we explicitly
2352 use wchar_printable function. */
2353 switch (w)
2354 {
2355 case LCST ('\a'):
2356 obstack_grow_wstr (output, LCST ("\\a"));
2357 break;
2358 case LCST ('\b'):
2359 obstack_grow_wstr (output, LCST ("\\b"));
2360 break;
2361 case LCST ('\f'):
2362 obstack_grow_wstr (output, LCST ("\\f"));
2363 break;
2364 case LCST ('\n'):
2365 obstack_grow_wstr (output, LCST ("\\n"));
2366 break;
2367 case LCST ('\r'):
2368 obstack_grow_wstr (output, LCST ("\\r"));
2369 break;
2370 case LCST ('\t'):
2371 obstack_grow_wstr (output, LCST ("\\t"));
2372 break;
2373 case LCST ('\v'):
2374 obstack_grow_wstr (output, LCST ("\\v"));
2375 break;
2376 default:
2377 {
2378 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2379 && w != LCST ('8')
2380 && w != LCST ('9'))))
2381 {
2382 gdb_wchar_t wchar = w;
2383
2384 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2385 obstack_grow_wstr (output, LCST ("\\"));
2386 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2387 }
2388 else
2389 {
2390 int i;
2391
2392 for (i = 0; i + width <= orig_len; i += width)
2393 {
2394 char octal[30];
2395 ULONGEST value;
2396
2397 value = extract_unsigned_integer (&orig[i], width,
2398 byte_order);
2399 /* If the value fits in 3 octal digits, print it that
2400 way. Otherwise, print it as a hex escape. */
2401 if (value <= 0777)
2402 xsnprintf (octal, sizeof (octal), "\\%.3o",
2403 (int) (value & 0777));
2404 else
2405 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2406 append_string_as_wide (octal, output);
2407 }
2408 /* If we somehow have extra bytes, print them now. */
2409 while (i < orig_len)
2410 {
2411 char octal[5];
2412
2413 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2414 append_string_as_wide (octal, output);
2415 ++i;
2416 }
2417
2418 *need_escapep = 1;
2419 }
2420 break;
2421 }
2422 }
2423 }
2424
2425 /* Print the character C on STREAM as part of the contents of a
2426 literal string whose delimiter is QUOTER. ENCODING names the
2427 encoding of C. */
2428
2429 void
2430 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2431 int quoter, const char *encoding)
2432 {
2433 enum bfd_endian byte_order
2434 = type_byte_order (type);
2435 gdb_byte *c_buf;
2436 int need_escape = 0;
2437
2438 c_buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2439 pack_long (c_buf, type, c);
2440
2441 wchar_iterator iter (c_buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2442
2443 /* This holds the printable form of the wchar_t data. */
2444 auto_obstack wchar_buf;
2445
2446 while (1)
2447 {
2448 int num_chars;
2449 gdb_wchar_t *chars;
2450 const gdb_byte *buf;
2451 size_t buflen;
2452 int print_escape = 1;
2453 enum wchar_iterate_result result;
2454
2455 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2456 if (num_chars < 0)
2457 break;
2458 if (num_chars > 0)
2459 {
2460 /* If all characters are printable, print them. Otherwise,
2461 we're going to have to print an escape sequence. We
2462 check all characters because we want to print the target
2463 bytes in the escape sequence, and we don't know character
2464 boundaries there. */
2465 int i;
2466
2467 print_escape = 0;
2468 for (i = 0; i < num_chars; ++i)
2469 if (!wchar_printable (chars[i]))
2470 {
2471 print_escape = 1;
2472 break;
2473 }
2474
2475 if (!print_escape)
2476 {
2477 for (i = 0; i < num_chars; ++i)
2478 print_wchar (chars[i], buf, buflen,
2479 TYPE_LENGTH (type), byte_order,
2480 &wchar_buf, quoter, &need_escape);
2481 }
2482 }
2483
2484 /* This handles the NUM_CHARS == 0 case as well. */
2485 if (print_escape)
2486 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2487 byte_order, &wchar_buf, quoter, &need_escape);
2488 }
2489
2490 /* The output in the host encoding. */
2491 auto_obstack output;
2492
2493 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2494 (gdb_byte *) obstack_base (&wchar_buf),
2495 obstack_object_size (&wchar_buf),
2496 sizeof (gdb_wchar_t), &output, translit_char);
2497 obstack_1grow (&output, '\0');
2498
2499 fputs_filtered ((const char *) obstack_base (&output), stream);
2500 }
2501
2502 /* Return the repeat count of the next character/byte in ITER,
2503 storing the result in VEC. */
2504
2505 static int
2506 count_next_character (wchar_iterator *iter,
2507 std::vector<converted_character> *vec)
2508 {
2509 struct converted_character *current;
2510
2511 if (vec->empty ())
2512 {
2513 struct converted_character tmp;
2514 gdb_wchar_t *chars;
2515
2516 tmp.num_chars
2517 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2518 if (tmp.num_chars > 0)
2519 {
2520 gdb_assert (tmp.num_chars < MAX_WCHARS);
2521 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2522 }
2523 vec->push_back (tmp);
2524 }
2525
2526 current = &vec->back ();
2527
2528 /* Count repeated characters or bytes. */
2529 current->repeat_count = 1;
2530 if (current->num_chars == -1)
2531 {
2532 /* EOF */
2533 return -1;
2534 }
2535 else
2536 {
2537 gdb_wchar_t *chars;
2538 struct converted_character d;
2539 int repeat;
2540
2541 d.repeat_count = 0;
2542
2543 while (1)
2544 {
2545 /* Get the next character. */
2546 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2547
2548 /* If a character was successfully converted, save the character
2549 into the converted character. */
2550 if (d.num_chars > 0)
2551 {
2552 gdb_assert (d.num_chars < MAX_WCHARS);
2553 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2554 }
2555
2556 /* Determine if the current character is the same as this
2557 new character. */
2558 if (d.num_chars == current->num_chars && d.result == current->result)
2559 {
2560 /* There are two cases to consider:
2561
2562 1) Equality of converted character (num_chars > 0)
2563 2) Equality of non-converted character (num_chars == 0) */
2564 if ((current->num_chars > 0
2565 && memcmp (current->chars, d.chars,
2566 WCHAR_BUFLEN (current->num_chars)) == 0)
2567 || (current->num_chars == 0
2568 && current->buflen == d.buflen
2569 && memcmp (current->buf, d.buf, current->buflen) == 0))
2570 ++current->repeat_count;
2571 else
2572 break;
2573 }
2574 else
2575 break;
2576 }
2577
2578 /* Push this next converted character onto the result vector. */
2579 repeat = current->repeat_count;
2580 vec->push_back (d);
2581 return repeat;
2582 }
2583 }
2584
2585 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2586 character to use with string output. WIDTH is the size of the output
2587 character type. BYTE_ORDER is the target byte order. OPTIONS
2588 is the user's print options. */
2589
2590 static void
2591 print_converted_chars_to_obstack (struct obstack *obstack,
2592 const std::vector<converted_character> &chars,
2593 int quote_char, int width,
2594 enum bfd_endian byte_order,
2595 const struct value_print_options *options)
2596 {
2597 unsigned int idx;
2598 const converted_character *elem;
2599 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2600 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2601 int need_escape = 0;
2602
2603 /* Set the start state. */
2604 idx = 0;
2605 last = state = START;
2606 elem = NULL;
2607
2608 while (1)
2609 {
2610 switch (state)
2611 {
2612 case START:
2613 /* Nothing to do. */
2614 break;
2615
2616 case SINGLE:
2617 {
2618 int j;
2619
2620 /* We are outputting a single character
2621 (< options->repeat_count_threshold). */
2622
2623 if (last != SINGLE)
2624 {
2625 /* We were outputting some other type of content, so we
2626 must output and a comma and a quote. */
2627 if (last != START)
2628 obstack_grow_wstr (obstack, LCST (", "));
2629 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2630 }
2631 /* Output the character. */
2632 for (j = 0; j < elem->repeat_count; ++j)
2633 {
2634 if (elem->result == wchar_iterate_ok)
2635 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2636 byte_order, obstack, quote_char, &need_escape);
2637 else
2638 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2639 byte_order, obstack, quote_char, &need_escape);
2640 }
2641 }
2642 break;
2643
2644 case REPEAT:
2645 {
2646 int j;
2647
2648 /* We are outputting a character with a repeat count
2649 greater than options->repeat_count_threshold. */
2650
2651 if (last == SINGLE)
2652 {
2653 /* We were outputting a single string. Terminate the
2654 string. */
2655 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2656 }
2657 if (last != START)
2658 obstack_grow_wstr (obstack, LCST (", "));
2659
2660 /* Output the character and repeat string. */
2661 obstack_grow_wstr (obstack, LCST ("'"));
2662 if (elem->result == wchar_iterate_ok)
2663 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2664 byte_order, obstack, quote_char, &need_escape);
2665 else
2666 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2667 byte_order, obstack, quote_char, &need_escape);
2668 obstack_grow_wstr (obstack, LCST ("'"));
2669 std::string s = string_printf (_(" <repeats %u times>"),
2670 elem->repeat_count);
2671 for (j = 0; s[j]; ++j)
2672 {
2673 gdb_wchar_t w = gdb_btowc (s[j]);
2674 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2675 }
2676 }
2677 break;
2678
2679 case INCOMPLETE:
2680 /* We are outputting an incomplete sequence. */
2681 if (last == SINGLE)
2682 {
2683 /* If we were outputting a string of SINGLE characters,
2684 terminate the quote. */
2685 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2686 }
2687 if (last != START)
2688 obstack_grow_wstr (obstack, LCST (", "));
2689
2690 /* Output the incomplete sequence string. */
2691 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2692 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2693 obstack, 0, &need_escape);
2694 obstack_grow_wstr (obstack, LCST (">"));
2695
2696 /* We do not attempt to output anything after this. */
2697 state = FINISH;
2698 break;
2699
2700 case FINISH:
2701 /* All done. If we were outputting a string of SINGLE
2702 characters, the string must be terminated. Otherwise,
2703 REPEAT and INCOMPLETE are always left properly terminated. */
2704 if (last == SINGLE)
2705 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2706
2707 return;
2708 }
2709
2710 /* Get the next element and state. */
2711 last = state;
2712 if (state != FINISH)
2713 {
2714 elem = &chars[idx++];
2715 switch (elem->result)
2716 {
2717 case wchar_iterate_ok:
2718 case wchar_iterate_invalid:
2719 if (elem->repeat_count > options->repeat_count_threshold)
2720 state = REPEAT;
2721 else
2722 state = SINGLE;
2723 break;
2724
2725 case wchar_iterate_incomplete:
2726 state = INCOMPLETE;
2727 break;
2728
2729 case wchar_iterate_eof:
2730 state = FINISH;
2731 break;
2732 }
2733 }
2734 }
2735 }
2736
2737 /* Print the character string STRING, printing at most LENGTH
2738 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2739 the type of each character. OPTIONS holds the printing options;
2740 printing stops early if the number hits print_max; repeat counts
2741 are printed as appropriate. Print ellipses at the end if we had to
2742 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2743 QUOTE_CHAR is the character to print at each end of the string. If
2744 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2745 omitted. */
2746
2747 void
2748 generic_printstr (struct ui_file *stream, struct type *type,
2749 const gdb_byte *string, unsigned int length,
2750 const char *encoding, int force_ellipses,
2751 int quote_char, int c_style_terminator,
2752 const struct value_print_options *options)
2753 {
2754 enum bfd_endian byte_order = type_byte_order (type);
2755 unsigned int i;
2756 int width = TYPE_LENGTH (type);
2757 int finished = 0;
2758 struct converted_character *last;
2759
2760 if (length == -1)
2761 {
2762 unsigned long current_char = 1;
2763
2764 for (i = 0; current_char; ++i)
2765 {
2766 QUIT;
2767 current_char = extract_unsigned_integer (string + i * width,
2768 width, byte_order);
2769 }
2770 length = i;
2771 }
2772
2773 /* If the string was not truncated due to `set print elements', and
2774 the last byte of it is a null, we don't print that, in
2775 traditional C style. */
2776 if (c_style_terminator
2777 && !force_ellipses
2778 && length > 0
2779 && (extract_unsigned_integer (string + (length - 1) * width,
2780 width, byte_order) == 0))
2781 length--;
2782
2783 if (length == 0)
2784 {
2785 fputs_filtered ("\"\"", stream);
2786 return;
2787 }
2788
2789 /* Arrange to iterate over the characters, in wchar_t form. */
2790 wchar_iterator iter (string, length * width, encoding, width);
2791 std::vector<converted_character> converted_chars;
2792
2793 /* Convert characters until the string is over or the maximum
2794 number of printed characters has been reached. */
2795 i = 0;
2796 while (i < options->print_max)
2797 {
2798 int r;
2799
2800 QUIT;
2801
2802 /* Grab the next character and repeat count. */
2803 r = count_next_character (&iter, &converted_chars);
2804
2805 /* If less than zero, the end of the input string was reached. */
2806 if (r < 0)
2807 break;
2808
2809 /* Otherwise, add the count to the total print count and get
2810 the next character. */
2811 i += r;
2812 }
2813
2814 /* Get the last element and determine if the entire string was
2815 processed. */
2816 last = &converted_chars.back ();
2817 finished = (last->result == wchar_iterate_eof);
2818
2819 /* Ensure that CONVERTED_CHARS is terminated. */
2820 last->result = wchar_iterate_eof;
2821
2822 /* WCHAR_BUF is the obstack we use to represent the string in
2823 wchar_t form. */
2824 auto_obstack wchar_buf;
2825
2826 /* Print the output string to the obstack. */
2827 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2828 width, byte_order, options);
2829
2830 if (force_ellipses || !finished)
2831 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2832
2833 /* OUTPUT is where we collect `char's for printing. */
2834 auto_obstack output;
2835
2836 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2837 (gdb_byte *) obstack_base (&wchar_buf),
2838 obstack_object_size (&wchar_buf),
2839 sizeof (gdb_wchar_t), &output, translit_char);
2840 obstack_1grow (&output, '\0');
2841
2842 fputs_filtered ((const char *) obstack_base (&output), stream);
2843 }
2844
2845 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2846 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2847 stops at the first null byte, otherwise printing proceeds (including null
2848 bytes) until either print_max or LEN characters have been printed,
2849 whichever is smaller. ENCODING is the name of the string's
2850 encoding. It can be NULL, in which case the target encoding is
2851 assumed. */
2852
2853 int
2854 val_print_string (struct type *elttype, const char *encoding,
2855 CORE_ADDR addr, int len,
2856 struct ui_file *stream,
2857 const struct value_print_options *options)
2858 {
2859 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2860 int err; /* Non-zero if we got a bad read. */
2861 int found_nul; /* Non-zero if we found the nul char. */
2862 unsigned int fetchlimit; /* Maximum number of chars to print. */
2863 int bytes_read;
2864 gdb::unique_xmalloc_ptr<gdb_byte> buffer; /* Dynamically growable fetch buffer. */
2865 struct gdbarch *gdbarch = get_type_arch (elttype);
2866 enum bfd_endian byte_order = type_byte_order (elttype);
2867 int width = TYPE_LENGTH (elttype);
2868
2869 /* First we need to figure out the limit on the number of characters we are
2870 going to attempt to fetch and print. This is actually pretty simple. If
2871 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2872 LEN is -1, then the limit is print_max. This is true regardless of
2873 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2874 because finding the null byte (or available memory) is what actually
2875 limits the fetch. */
2876
2877 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2878 options->print_max));
2879
2880 err = read_string (addr, len, width, fetchlimit, byte_order,
2881 &buffer, &bytes_read);
2882
2883 addr += bytes_read;
2884
2885 /* We now have either successfully filled the buffer to fetchlimit,
2886 or terminated early due to an error or finding a null char when
2887 LEN is -1. */
2888
2889 /* Determine found_nul by looking at the last character read. */
2890 found_nul = 0;
2891 if (bytes_read >= width)
2892 found_nul = extract_unsigned_integer (buffer.get () + bytes_read - width,
2893 width, byte_order) == 0;
2894 if (len == -1 && !found_nul)
2895 {
2896 gdb_byte *peekbuf;
2897
2898 /* We didn't find a NUL terminator we were looking for. Attempt
2899 to peek at the next character. If not successful, or it is not
2900 a null byte, then force ellipsis to be printed. */
2901
2902 peekbuf = (gdb_byte *) alloca (width);
2903
2904 if (target_read_memory (addr, peekbuf, width) == 0
2905 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2906 force_ellipsis = 1;
2907 }
2908 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2909 {
2910 /* Getting an error when we have a requested length, or fetching less
2911 than the number of characters actually requested, always make us
2912 print ellipsis. */
2913 force_ellipsis = 1;
2914 }
2915
2916 /* If we get an error before fetching anything, don't print a string.
2917 But if we fetch something and then get an error, print the string
2918 and then the error message. */
2919 if (err == 0 || bytes_read > 0)
2920 {
2921 LA_PRINT_STRING (stream, elttype, buffer.get (), bytes_read / width,
2922 encoding, force_ellipsis, options);
2923 }
2924
2925 if (err != 0)
2926 {
2927 std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2928
2929 fprintf_filtered (stream, _("<error: %ps>"),
2930 styled_string (metadata_style.style (),
2931 str.c_str ()));
2932 }
2933
2934 return (bytes_read / width);
2935 }
2936
2937 /* Handle 'show print max-depth'. */
2938
2939 static void
2940 show_print_max_depth (struct ui_file *file, int from_tty,
2941 struct cmd_list_element *c, const char *value)
2942 {
2943 fprintf_filtered (file, _("Maximum print depth is %s.\n"), value);
2944 }
2945 \f
2946
2947 /* The 'set input-radix' command writes to this auxiliary variable.
2948 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2949 it is left unchanged. */
2950
2951 static unsigned input_radix_1 = 10;
2952
2953 /* Validate an input or output radix setting, and make sure the user
2954 knows what they really did here. Radix setting is confusing, e.g.
2955 setting the input radix to "10" never changes it! */
2956
2957 static void
2958 set_input_radix (const char *args, int from_tty, struct cmd_list_element *c)
2959 {
2960 set_input_radix_1 (from_tty, input_radix_1);
2961 }
2962
2963 static void
2964 set_input_radix_1 (int from_tty, unsigned radix)
2965 {
2966 /* We don't currently disallow any input radix except 0 or 1, which don't
2967 make any mathematical sense. In theory, we can deal with any input
2968 radix greater than 1, even if we don't have unique digits for every
2969 value from 0 to radix-1, but in practice we lose on large radix values.
2970 We should either fix the lossage or restrict the radix range more.
2971 (FIXME). */
2972
2973 if (radix < 2)
2974 {
2975 input_radix_1 = input_radix;
2976 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2977 radix);
2978 }
2979 input_radix_1 = input_radix = radix;
2980 if (from_tty)
2981 {
2982 printf_filtered (_("Input radix now set to "
2983 "decimal %u, hex %x, octal %o.\n"),
2984 radix, radix, radix);
2985 }
2986 }
2987
2988 /* The 'set output-radix' command writes to this auxiliary variable.
2989 If the requested radix is valid, OUTPUT_RADIX is updated,
2990 otherwise, it is left unchanged. */
2991
2992 static unsigned output_radix_1 = 10;
2993
2994 static void
2995 set_output_radix (const char *args, int from_tty, struct cmd_list_element *c)
2996 {
2997 set_output_radix_1 (from_tty, output_radix_1);
2998 }
2999
3000 static void
3001 set_output_radix_1 (int from_tty, unsigned radix)
3002 {
3003 /* Validate the radix and disallow ones that we aren't prepared to
3004 handle correctly, leaving the radix unchanged. */
3005 switch (radix)
3006 {
3007 case 16:
3008 user_print_options.output_format = 'x'; /* hex */
3009 break;
3010 case 10:
3011 user_print_options.output_format = 0; /* decimal */
3012 break;
3013 case 8:
3014 user_print_options.output_format = 'o'; /* octal */
3015 break;
3016 default:
3017 output_radix_1 = output_radix;
3018 error (_("Unsupported output radix ``decimal %u''; "
3019 "output radix unchanged."),
3020 radix);
3021 }
3022 output_radix_1 = output_radix = radix;
3023 if (from_tty)
3024 {
3025 printf_filtered (_("Output radix now set to "
3026 "decimal %u, hex %x, octal %o.\n"),
3027 radix, radix, radix);
3028 }
3029 }
3030
3031 /* Set both the input and output radix at once. Try to set the output radix
3032 first, since it has the most restrictive range. An radix that is valid as
3033 an output radix is also valid as an input radix.
3034
3035 It may be useful to have an unusual input radix. If the user wishes to
3036 set an input radix that is not valid as an output radix, he needs to use
3037 the 'set input-radix' command. */
3038
3039 static void
3040 set_radix (const char *arg, int from_tty)
3041 {
3042 unsigned radix;
3043
3044 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
3045 set_output_radix_1 (0, radix);
3046 set_input_radix_1 (0, radix);
3047 if (from_tty)
3048 {
3049 printf_filtered (_("Input and output radices now set to "
3050 "decimal %u, hex %x, octal %o.\n"),
3051 radix, radix, radix);
3052 }
3053 }
3054
3055 /* Show both the input and output radices. */
3056
3057 static void
3058 show_radix (const char *arg, int from_tty)
3059 {
3060 if (from_tty)
3061 {
3062 if (input_radix == output_radix)
3063 {
3064 printf_filtered (_("Input and output radices set to "
3065 "decimal %u, hex %x, octal %o.\n"),
3066 input_radix, input_radix, input_radix);
3067 }
3068 else
3069 {
3070 printf_filtered (_("Input radix set to decimal "
3071 "%u, hex %x, octal %o.\n"),
3072 input_radix, input_radix, input_radix);
3073 printf_filtered (_("Output radix set to decimal "
3074 "%u, hex %x, octal %o.\n"),
3075 output_radix, output_radix, output_radix);
3076 }
3077 }
3078 }
3079 \f
3080
3081 static void
3082 set_print (const char *arg, int from_tty)
3083 {
3084 printf_unfiltered (
3085 "\"set print\" must be followed by the name of a print subcommand.\n");
3086 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
3087 }
3088
3089 static void
3090 show_print (const char *args, int from_tty)
3091 {
3092 cmd_show_list (showprintlist, from_tty, "");
3093 }
3094
3095 static void
3096 set_print_raw (const char *arg, int from_tty)
3097 {
3098 printf_unfiltered (
3099 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
3100 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
3101 }
3102
3103 static void
3104 show_print_raw (const char *args, int from_tty)
3105 {
3106 cmd_show_list (showprintrawlist, from_tty, "");
3107 }
3108
3109 /* Controls printing of vtbl's. */
3110 static void
3111 show_vtblprint (struct ui_file *file, int from_tty,
3112 struct cmd_list_element *c, const char *value)
3113 {
3114 fprintf_filtered (file, _("\
3115 Printing of C++ virtual function tables is %s.\n"),
3116 value);
3117 }
3118
3119 /* Controls looking up an object's derived type using what we find in
3120 its vtables. */
3121 static void
3122 show_objectprint (struct ui_file *file, int from_tty,
3123 struct cmd_list_element *c,
3124 const char *value)
3125 {
3126 fprintf_filtered (file, _("\
3127 Printing of object's derived type based on vtable info is %s.\n"),
3128 value);
3129 }
3130
3131 static void
3132 show_static_field_print (struct ui_file *file, int from_tty,
3133 struct cmd_list_element *c,
3134 const char *value)
3135 {
3136 fprintf_filtered (file,
3137 _("Printing of C++ static members is %s.\n"),
3138 value);
3139 }
3140
3141 \f
3142
3143 /* A couple typedefs to make writing the options a bit more
3144 convenient. */
3145 using boolean_option_def
3146 = gdb::option::boolean_option_def<value_print_options>;
3147 using uinteger_option_def
3148 = gdb::option::uinteger_option_def<value_print_options>;
3149 using zuinteger_unlimited_option_def
3150 = gdb::option::zuinteger_unlimited_option_def<value_print_options>;
3151
3152 /* Definitions of options for the "print" and "compile print"
3153 commands. */
3154 static const gdb::option::option_def value_print_option_defs[] = {
3155
3156 boolean_option_def {
3157 "address",
3158 [] (value_print_options *opt) { return &opt->addressprint; },
3159 show_addressprint, /* show_cmd_cb */
3160 N_("Set printing of addresses."),
3161 N_("Show printing of addresses."),
3162 NULL, /* help_doc */
3163 },
3164
3165 boolean_option_def {
3166 "array",
3167 [] (value_print_options *opt) { return &opt->prettyformat_arrays; },
3168 show_prettyformat_arrays, /* show_cmd_cb */
3169 N_("Set pretty formatting of arrays."),
3170 N_("Show pretty formatting of arrays."),
3171 NULL, /* help_doc */
3172 },
3173
3174 boolean_option_def {
3175 "array-indexes",
3176 [] (value_print_options *opt) { return &opt->print_array_indexes; },
3177 show_print_array_indexes, /* show_cmd_cb */
3178 N_("Set printing of array indexes."),
3179 N_("Show printing of array indexes."),
3180 NULL, /* help_doc */
3181 },
3182
3183 uinteger_option_def {
3184 "elements",
3185 [] (value_print_options *opt) { return &opt->print_max; },
3186 show_print_max, /* show_cmd_cb */
3187 N_("Set limit on string chars or array elements to print."),
3188 N_("Show limit on string chars or array elements to print."),
3189 N_("\"unlimited\" causes there to be no limit."),
3190 },
3191
3192 zuinteger_unlimited_option_def {
3193 "max-depth",
3194 [] (value_print_options *opt) { return &opt->max_depth; },
3195 show_print_max_depth, /* show_cmd_cb */
3196 N_("Set maximum print depth for nested structures, unions and arrays."),
3197 N_("Show maximum print depth for nested structures, unions, and arrays."),
3198 N_("When structures, unions, or arrays are nested beyond this depth then they\n\
3199 will be replaced with either '{...}' or '(...)' depending on the language.\n\
3200 Use \"unlimited\" to print the complete structure.")
3201 },
3202
3203 boolean_option_def {
3204 "null-stop",
3205 [] (value_print_options *opt) { return &opt->stop_print_at_null; },
3206 show_stop_print_at_null, /* show_cmd_cb */
3207 N_("Set printing of char arrays to stop at first null char."),
3208 N_("Show printing of char arrays to stop at first null char."),
3209 NULL, /* help_doc */
3210 },
3211
3212 boolean_option_def {
3213 "object",
3214 [] (value_print_options *opt) { return &opt->objectprint; },
3215 show_objectprint, /* show_cmd_cb */
3216 _("Set printing of C++ virtual function tables."),
3217 _("Show printing of C++ virtual function tables."),
3218 NULL, /* help_doc */
3219 },
3220
3221 boolean_option_def {
3222 "pretty",
3223 [] (value_print_options *opt) { return &opt->prettyformat_structs; },
3224 show_prettyformat_structs, /* show_cmd_cb */
3225 N_("Set pretty formatting of structures."),
3226 N_("Show pretty formatting of structures."),
3227 NULL, /* help_doc */
3228 },
3229
3230 boolean_option_def {
3231 "raw-values",
3232 [] (value_print_options *opt) { return &opt->raw; },
3233 NULL, /* show_cmd_cb */
3234 N_("Set whether to print values in raw form."),
3235 N_("Show whether to print values in raw form."),
3236 N_("If set, values are printed in raw form, bypassing any\n\
3237 pretty-printers for that value.")
3238 },
3239
3240 uinteger_option_def {
3241 "repeats",
3242 [] (value_print_options *opt) { return &opt->repeat_count_threshold; },
3243 show_repeat_count_threshold, /* show_cmd_cb */
3244 N_("Set threshold for repeated print elements."),
3245 N_("Show threshold for repeated print elements."),
3246 N_("\"unlimited\" causes all elements to be individually printed."),
3247 },
3248
3249 boolean_option_def {
3250 "static-members",
3251 [] (value_print_options *opt) { return &opt->static_field_print; },
3252 show_static_field_print, /* show_cmd_cb */
3253 N_("Set printing of C++ static members."),
3254 N_("Show printing of C++ static members."),
3255 NULL, /* help_doc */
3256 },
3257
3258 boolean_option_def {
3259 "symbol",
3260 [] (value_print_options *opt) { return &opt->symbol_print; },
3261 show_symbol_print, /* show_cmd_cb */
3262 N_("Set printing of symbol names when printing pointers."),
3263 N_("Show printing of symbol names when printing pointers."),
3264 NULL, /* help_doc */
3265 },
3266
3267 boolean_option_def {
3268 "union",
3269 [] (value_print_options *opt) { return &opt->unionprint; },
3270 show_unionprint, /* show_cmd_cb */
3271 N_("Set printing of unions interior to structures."),
3272 N_("Show printing of unions interior to structures."),
3273 NULL, /* help_doc */
3274 },
3275
3276 boolean_option_def {
3277 "vtbl",
3278 [] (value_print_options *opt) { return &opt->vtblprint; },
3279 show_vtblprint, /* show_cmd_cb */
3280 N_("Set printing of C++ virtual function tables."),
3281 N_("Show printing of C++ virtual function tables."),
3282 NULL, /* help_doc */
3283 },
3284 };
3285
3286 /* See valprint.h. */
3287
3288 gdb::option::option_def_group
3289 make_value_print_options_def_group (value_print_options *opts)
3290 {
3291 return {{value_print_option_defs}, opts};
3292 }
3293
3294 void _initialize_valprint ();
3295 void
3296 _initialize_valprint ()
3297 {
3298 cmd_list_element *cmd;
3299
3300 add_prefix_cmd ("print", no_class, set_print,
3301 _("Generic command for setting how things print."),
3302 &setprintlist, "set print ", 0, &setlist);
3303 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3304 /* Prefer set print to set prompt. */
3305 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3306
3307 add_prefix_cmd ("print", no_class, show_print,
3308 _("Generic command for showing print settings."),
3309 &showprintlist, "show print ", 0, &showlist);
3310 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3311 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3312
3313 cmd = add_prefix_cmd ("raw", no_class, set_print_raw,
3314 _("\
3315 Generic command for setting what things to print in \"raw\" mode."),
3316 &setprintrawlist, "set print raw ", 0,
3317 &setprintlist);
3318 deprecate_cmd (cmd, nullptr);
3319
3320 cmd = add_prefix_cmd ("raw", no_class, show_print_raw,
3321 _("Generic command for showing \"print raw\" settings."),
3322 &showprintrawlist, "show print raw ", 0,
3323 &showprintlist);
3324 deprecate_cmd (cmd, nullptr);
3325
3326 gdb::option::add_setshow_cmds_for_options
3327 (class_support, &user_print_options, value_print_option_defs,
3328 &setprintlist, &showprintlist);
3329
3330 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3331 _("\
3332 Set default input radix for entering numbers."), _("\
3333 Show default input radix for entering numbers."), NULL,
3334 set_input_radix,
3335 show_input_radix,
3336 &setlist, &showlist);
3337
3338 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3339 _("\
3340 Set default output radix for printing of values."), _("\
3341 Show default output radix for printing of values."), NULL,
3342 set_output_radix,
3343 show_output_radix,
3344 &setlist, &showlist);
3345
3346 /* The "set radix" and "show radix" commands are special in that
3347 they are like normal set and show commands but allow two normally
3348 independent variables to be either set or shown with a single
3349 command. So the usual deprecated_add_set_cmd() and [deleted]
3350 add_show_from_set() commands aren't really appropriate. */
3351 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3352 longer true - show can display anything. */
3353 add_cmd ("radix", class_support, set_radix, _("\
3354 Set default input and output number radices.\n\
3355 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3356 Without an argument, sets both radices back to the default value of 10."),
3357 &setlist);
3358 add_cmd ("radix", class_support, show_radix, _("\
3359 Show the default input and output number radices.\n\
3360 Use 'show input-radix' or 'show output-radix' to independently show each."),
3361 &showlist);
3362 }
This page took 0.116646 seconds and 4 git commands to generate.