Fix two regressions in scalar printing
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "floatformat.h"
31 #include "doublest.h"
32 #include "dfp.h"
33 #include "extension.h"
34 #include "ada-lang.h"
35 #include "gdb_obstack.h"
36 #include "charset.h"
37 #include "typeprint.h"
38 #include <ctype.h>
39 #include <algorithm>
40 #include "common/byte-vector.h"
41
42 /* Maximum number of wchars returned from wchar_iterate. */
43 #define MAX_WCHARS 4
44
45 /* A convenience macro to compute the size of a wchar_t buffer containing X
46 characters. */
47 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
48
49 /* Character buffer size saved while iterating over wchars. */
50 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
51
52 /* A structure to encapsulate state information from iterated
53 character conversions. */
54 struct converted_character
55 {
56 /* The number of characters converted. */
57 int num_chars;
58
59 /* The result of the conversion. See charset.h for more. */
60 enum wchar_iterate_result result;
61
62 /* The (saved) converted character(s). */
63 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
64
65 /* The first converted target byte. */
66 const gdb_byte *buf;
67
68 /* The number of bytes converted. */
69 size_t buflen;
70
71 /* How many times this character(s) is repeated. */
72 int repeat_count;
73 };
74
75 typedef struct converted_character converted_character_d;
76 DEF_VEC_O (converted_character_d);
77
78 /* Command lists for set/show print raw. */
79 struct cmd_list_element *setprintrawlist;
80 struct cmd_list_element *showprintrawlist;
81
82 /* Prototypes for local functions */
83
84 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
85 int len, int *errptr);
86
87 static void show_print (char *, int);
88
89 static void set_print (char *, int);
90
91 static void set_radix (char *, int);
92
93 static void show_radix (char *, int);
94
95 static void set_input_radix (char *, int, struct cmd_list_element *);
96
97 static void set_input_radix_1 (int, unsigned);
98
99 static void set_output_radix (char *, int, struct cmd_list_element *);
100
101 static void set_output_radix_1 (int, unsigned);
102
103 static void val_print_type_code_flags (struct type *type,
104 const gdb_byte *valaddr,
105 struct ui_file *stream);
106
107 void _initialize_valprint (void);
108
109 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
110
111 struct value_print_options user_print_options =
112 {
113 Val_prettyformat_default, /* prettyformat */
114 0, /* prettyformat_arrays */
115 0, /* prettyformat_structs */
116 0, /* vtblprint */
117 1, /* unionprint */
118 1, /* addressprint */
119 0, /* objectprint */
120 PRINT_MAX_DEFAULT, /* print_max */
121 10, /* repeat_count_threshold */
122 0, /* output_format */
123 0, /* format */
124 0, /* stop_print_at_null */
125 0, /* print_array_indexes */
126 0, /* deref_ref */
127 1, /* static_field_print */
128 1, /* pascal_static_field_print */
129 0, /* raw */
130 0, /* summary */
131 1 /* symbol_print */
132 };
133
134 /* Initialize *OPTS to be a copy of the user print options. */
135 void
136 get_user_print_options (struct value_print_options *opts)
137 {
138 *opts = user_print_options;
139 }
140
141 /* Initialize *OPTS to be a copy of the user print options, but with
142 pretty-formatting disabled. */
143 void
144 get_no_prettyformat_print_options (struct value_print_options *opts)
145 {
146 *opts = user_print_options;
147 opts->prettyformat = Val_no_prettyformat;
148 }
149
150 /* Initialize *OPTS to be a copy of the user print options, but using
151 FORMAT as the formatting option. */
152 void
153 get_formatted_print_options (struct value_print_options *opts,
154 char format)
155 {
156 *opts = user_print_options;
157 opts->format = format;
158 }
159
160 static void
161 show_print_max (struct ui_file *file, int from_tty,
162 struct cmd_list_element *c, const char *value)
163 {
164 fprintf_filtered (file,
165 _("Limit on string chars or array "
166 "elements to print is %s.\n"),
167 value);
168 }
169
170
171 /* Default input and output radixes, and output format letter. */
172
173 unsigned input_radix = 10;
174 static void
175 show_input_radix (struct ui_file *file, int from_tty,
176 struct cmd_list_element *c, const char *value)
177 {
178 fprintf_filtered (file,
179 _("Default input radix for entering numbers is %s.\n"),
180 value);
181 }
182
183 unsigned output_radix = 10;
184 static void
185 show_output_radix (struct ui_file *file, int from_tty,
186 struct cmd_list_element *c, const char *value)
187 {
188 fprintf_filtered (file,
189 _("Default output radix for printing of values is %s.\n"),
190 value);
191 }
192
193 /* By default we print arrays without printing the index of each element in
194 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
195
196 static void
197 show_print_array_indexes (struct ui_file *file, int from_tty,
198 struct cmd_list_element *c, const char *value)
199 {
200 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
201 }
202
203 /* Print repeat counts if there are more than this many repetitions of an
204 element in an array. Referenced by the low level language dependent
205 print routines. */
206
207 static void
208 show_repeat_count_threshold (struct ui_file *file, int from_tty,
209 struct cmd_list_element *c, const char *value)
210 {
211 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
212 value);
213 }
214
215 /* If nonzero, stops printing of char arrays at first null. */
216
217 static void
218 show_stop_print_at_null (struct ui_file *file, int from_tty,
219 struct cmd_list_element *c, const char *value)
220 {
221 fprintf_filtered (file,
222 _("Printing of char arrays to stop "
223 "at first null char is %s.\n"),
224 value);
225 }
226
227 /* Controls pretty printing of structures. */
228
229 static void
230 show_prettyformat_structs (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232 {
233 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
234 }
235
236 /* Controls pretty printing of arrays. */
237
238 static void
239 show_prettyformat_arrays (struct ui_file *file, int from_tty,
240 struct cmd_list_element *c, const char *value)
241 {
242 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
243 }
244
245 /* If nonzero, causes unions inside structures or other unions to be
246 printed. */
247
248 static void
249 show_unionprint (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251 {
252 fprintf_filtered (file,
253 _("Printing of unions interior to structures is %s.\n"),
254 value);
255 }
256
257 /* If nonzero, causes machine addresses to be printed in certain contexts. */
258
259 static void
260 show_addressprint (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262 {
263 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
264 }
265
266 static void
267 show_symbol_print (struct ui_file *file, int from_tty,
268 struct cmd_list_element *c, const char *value)
269 {
270 fprintf_filtered (file,
271 _("Printing of symbols when printing pointers is %s.\n"),
272 value);
273 }
274
275 \f
276
277 /* A helper function for val_print. When printing in "summary" mode,
278 we want to print scalar arguments, but not aggregate arguments.
279 This function distinguishes between the two. */
280
281 int
282 val_print_scalar_type_p (struct type *type)
283 {
284 type = check_typedef (type);
285 while (TYPE_IS_REFERENCE (type))
286 {
287 type = TYPE_TARGET_TYPE (type);
288 type = check_typedef (type);
289 }
290 switch (TYPE_CODE (type))
291 {
292 case TYPE_CODE_ARRAY:
293 case TYPE_CODE_STRUCT:
294 case TYPE_CODE_UNION:
295 case TYPE_CODE_SET:
296 case TYPE_CODE_STRING:
297 return 0;
298 default:
299 return 1;
300 }
301 }
302
303 /* See its definition in value.h. */
304
305 int
306 valprint_check_validity (struct ui_file *stream,
307 struct type *type,
308 LONGEST embedded_offset,
309 const struct value *val)
310 {
311 type = check_typedef (type);
312
313 if (type_not_associated (type))
314 {
315 val_print_not_associated (stream);
316 return 0;
317 }
318
319 if (type_not_allocated (type))
320 {
321 val_print_not_allocated (stream);
322 return 0;
323 }
324
325 if (TYPE_CODE (type) != TYPE_CODE_UNION
326 && TYPE_CODE (type) != TYPE_CODE_STRUCT
327 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
328 {
329 if (value_bits_any_optimized_out (val,
330 TARGET_CHAR_BIT * embedded_offset,
331 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
332 {
333 val_print_optimized_out (val, stream);
334 return 0;
335 }
336
337 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
338 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
339 {
340 const int is_ref = TYPE_CODE (type) == TYPE_CODE_REF;
341 int ref_is_addressable = 0;
342
343 if (is_ref)
344 {
345 const struct value *deref_val = coerce_ref_if_computed (val);
346
347 if (deref_val != NULL)
348 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
349 }
350
351 if (!is_ref || !ref_is_addressable)
352 fputs_filtered (_("<synthetic pointer>"), stream);
353
354 /* C++ references should be valid even if they're synthetic. */
355 return is_ref;
356 }
357
358 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
359 {
360 val_print_unavailable (stream);
361 return 0;
362 }
363 }
364
365 return 1;
366 }
367
368 void
369 val_print_optimized_out (const struct value *val, struct ui_file *stream)
370 {
371 if (val != NULL && value_lval_const (val) == lval_register)
372 val_print_not_saved (stream);
373 else
374 fprintf_filtered (stream, _("<optimized out>"));
375 }
376
377 void
378 val_print_not_saved (struct ui_file *stream)
379 {
380 fprintf_filtered (stream, _("<not saved>"));
381 }
382
383 void
384 val_print_unavailable (struct ui_file *stream)
385 {
386 fprintf_filtered (stream, _("<unavailable>"));
387 }
388
389 void
390 val_print_invalid_address (struct ui_file *stream)
391 {
392 fprintf_filtered (stream, _("<invalid address>"));
393 }
394
395 /* Print a pointer based on the type of its target.
396
397 Arguments to this functions are roughly the same as those in
398 generic_val_print. A difference is that ADDRESS is the address to print,
399 with embedded_offset already added. ELTTYPE represents
400 the pointed type after check_typedef. */
401
402 static void
403 print_unpacked_pointer (struct type *type, struct type *elttype,
404 CORE_ADDR address, struct ui_file *stream,
405 const struct value_print_options *options)
406 {
407 struct gdbarch *gdbarch = get_type_arch (type);
408
409 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
410 {
411 /* Try to print what function it points to. */
412 print_function_pointer_address (options, gdbarch, address, stream);
413 return;
414 }
415
416 if (options->symbol_print)
417 print_address_demangle (options, gdbarch, address, stream, demangle);
418 else if (options->addressprint)
419 fputs_filtered (paddress (gdbarch, address), stream);
420 }
421
422 /* generic_val_print helper for TYPE_CODE_ARRAY. */
423
424 static void
425 generic_val_print_array (struct type *type,
426 int embedded_offset, CORE_ADDR address,
427 struct ui_file *stream, int recurse,
428 struct value *original_value,
429 const struct value_print_options *options,
430 const struct
431 generic_val_print_decorations *decorations)
432 {
433 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
434 struct type *elttype = check_typedef (unresolved_elttype);
435
436 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
437 {
438 LONGEST low_bound, high_bound;
439
440 if (!get_array_bounds (type, &low_bound, &high_bound))
441 error (_("Could not determine the array high bound"));
442
443 if (options->prettyformat_arrays)
444 {
445 print_spaces_filtered (2 + 2 * recurse, stream);
446 }
447
448 fputs_filtered (decorations->array_start, stream);
449 val_print_array_elements (type, embedded_offset,
450 address, stream,
451 recurse, original_value, options, 0);
452 fputs_filtered (decorations->array_end, stream);
453 }
454 else
455 {
456 /* Array of unspecified length: treat like pointer to first elt. */
457 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
458 options);
459 }
460
461 }
462
463 /* generic_val_print helper for TYPE_CODE_PTR. */
464
465 static void
466 generic_val_print_ptr (struct type *type,
467 int embedded_offset, struct ui_file *stream,
468 struct value *original_value,
469 const struct value_print_options *options)
470 {
471 struct gdbarch *gdbarch = get_type_arch (type);
472 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
473
474 if (options->format && options->format != 's')
475 {
476 val_print_scalar_formatted (type, embedded_offset,
477 original_value, options, 0, stream);
478 }
479 else
480 {
481 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
482 struct type *elttype = check_typedef (unresolved_elttype);
483 const gdb_byte *valaddr = value_contents_for_printing (original_value);
484 CORE_ADDR addr = unpack_pointer (type,
485 valaddr + embedded_offset * unit_size);
486
487 print_unpacked_pointer (type, elttype, addr, stream, options);
488 }
489 }
490
491
492 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
493
494 static void
495 generic_val_print_memberptr (struct type *type,
496 int embedded_offset, struct ui_file *stream,
497 struct value *original_value,
498 const struct value_print_options *options)
499 {
500 val_print_scalar_formatted (type, embedded_offset,
501 original_value, options, 0, stream);
502 }
503
504 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
505
506 static void
507 print_ref_address (struct type *type, const gdb_byte *address_buffer,
508 int embedded_offset, struct ui_file *stream)
509 {
510 struct gdbarch *gdbarch = get_type_arch (type);
511
512 if (address_buffer != NULL)
513 {
514 CORE_ADDR address
515 = extract_typed_address (address_buffer + embedded_offset, type);
516
517 fprintf_filtered (stream, "@");
518 fputs_filtered (paddress (gdbarch, address), stream);
519 }
520 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
521 }
522
523 /* If VAL is addressable, return the value contents buffer of a value that
524 represents a pointer to VAL. Otherwise return NULL. */
525
526 static const gdb_byte *
527 get_value_addr_contents (struct value *deref_val)
528 {
529 gdb_assert (deref_val != NULL);
530
531 if (value_lval_const (deref_val) == lval_memory)
532 return value_contents_for_printing_const (value_addr (deref_val));
533 else
534 {
535 /* We have a non-addressable value, such as a DW_AT_const_value. */
536 return NULL;
537 }
538 }
539
540 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
541
542 static void
543 generic_val_print_ref (struct type *type,
544 int embedded_offset, struct ui_file *stream, int recurse,
545 struct value *original_value,
546 const struct value_print_options *options)
547 {
548 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
549 struct value *deref_val = NULL;
550 const int value_is_synthetic
551 = value_bits_synthetic_pointer (original_value,
552 TARGET_CHAR_BIT * embedded_offset,
553 TARGET_CHAR_BIT * TYPE_LENGTH (type));
554 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
555 || options->deref_ref);
556 const int type_is_defined = TYPE_CODE (elttype) != TYPE_CODE_UNDEF;
557 const gdb_byte *valaddr = value_contents_for_printing (original_value);
558
559 if (must_coerce_ref && type_is_defined)
560 {
561 deref_val = coerce_ref_if_computed (original_value);
562
563 if (deref_val != NULL)
564 {
565 /* More complicated computed references are not supported. */
566 gdb_assert (embedded_offset == 0);
567 }
568 else
569 deref_val = value_at (TYPE_TARGET_TYPE (type),
570 unpack_pointer (type, valaddr + embedded_offset));
571 }
572 /* Else, original_value isn't a synthetic reference or we don't have to print
573 the reference's contents.
574
575 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
576 cause original_value to be a not_lval instead of an lval_computed,
577 which will make value_bits_synthetic_pointer return false.
578 This happens because if options->objectprint is true, c_value_print will
579 overwrite original_value's contents with the result of coercing
580 the reference through value_addr, and then set its type back to
581 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
582 we can simply treat it as non-synthetic and move on. */
583
584 if (options->addressprint)
585 {
586 const gdb_byte *address = (value_is_synthetic && type_is_defined
587 ? get_value_addr_contents (deref_val)
588 : valaddr);
589
590 print_ref_address (type, address, embedded_offset, stream);
591
592 if (options->deref_ref)
593 fputs_filtered (": ", stream);
594 }
595
596 if (options->deref_ref)
597 {
598 if (type_is_defined)
599 common_val_print (deref_val, stream, recurse, options,
600 current_language);
601 else
602 fputs_filtered ("???", stream);
603 }
604 }
605
606 /* Helper function for generic_val_print_enum.
607 This is also used to print enums in TYPE_CODE_FLAGS values. */
608
609 static void
610 generic_val_print_enum_1 (struct type *type, LONGEST val,
611 struct ui_file *stream)
612 {
613 unsigned int i;
614 unsigned int len;
615
616 len = TYPE_NFIELDS (type);
617 for (i = 0; i < len; i++)
618 {
619 QUIT;
620 if (val == TYPE_FIELD_ENUMVAL (type, i))
621 {
622 break;
623 }
624 }
625 if (i < len)
626 {
627 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
628 }
629 else if (TYPE_FLAG_ENUM (type))
630 {
631 int first = 1;
632
633 /* We have a "flag" enum, so we try to decompose it into
634 pieces as appropriate. A flag enum has disjoint
635 constants by definition. */
636 fputs_filtered ("(", stream);
637 for (i = 0; i < len; ++i)
638 {
639 QUIT;
640
641 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
642 {
643 if (!first)
644 fputs_filtered (" | ", stream);
645 first = 0;
646
647 val &= ~TYPE_FIELD_ENUMVAL (type, i);
648 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
649 }
650 }
651
652 if (first || val != 0)
653 {
654 if (!first)
655 fputs_filtered (" | ", stream);
656 fputs_filtered ("unknown: ", stream);
657 print_longest (stream, 'd', 0, val);
658 }
659
660 fputs_filtered (")", stream);
661 }
662 else
663 print_longest (stream, 'd', 0, val);
664 }
665
666 /* generic_val_print helper for TYPE_CODE_ENUM. */
667
668 static void
669 generic_val_print_enum (struct type *type,
670 int embedded_offset, struct ui_file *stream,
671 struct value *original_value,
672 const struct value_print_options *options)
673 {
674 LONGEST val;
675 struct gdbarch *gdbarch = get_type_arch (type);
676 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
677
678 if (options->format)
679 {
680 val_print_scalar_formatted (type, embedded_offset,
681 original_value, options, 0, stream);
682 }
683 else
684 {
685 const gdb_byte *valaddr = value_contents_for_printing (original_value);
686
687 val = unpack_long (type, valaddr + embedded_offset * unit_size);
688
689 generic_val_print_enum_1 (type, val, stream);
690 }
691 }
692
693 /* generic_val_print helper for TYPE_CODE_FLAGS. */
694
695 static void
696 generic_val_print_flags (struct type *type,
697 int embedded_offset, struct ui_file *stream,
698 struct value *original_value,
699 const struct value_print_options *options)
700
701 {
702 if (options->format)
703 val_print_scalar_formatted (type, embedded_offset, original_value,
704 options, 0, stream);
705 else
706 {
707 const gdb_byte *valaddr = value_contents_for_printing (original_value);
708
709 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
710 }
711 }
712
713 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
714
715 static void
716 generic_val_print_func (struct type *type,
717 int embedded_offset, CORE_ADDR address,
718 struct ui_file *stream,
719 struct value *original_value,
720 const struct value_print_options *options)
721 {
722 struct gdbarch *gdbarch = get_type_arch (type);
723
724 if (options->format)
725 {
726 val_print_scalar_formatted (type, embedded_offset,
727 original_value, options, 0, stream);
728 }
729 else
730 {
731 /* FIXME, we should consider, at least for ANSI C language,
732 eliminating the distinction made between FUNCs and POINTERs
733 to FUNCs. */
734 fprintf_filtered (stream, "{");
735 type_print (type, "", stream, -1);
736 fprintf_filtered (stream, "} ");
737 /* Try to print what function it points to, and its address. */
738 print_address_demangle (options, gdbarch, address, stream, demangle);
739 }
740 }
741
742 /* generic_val_print helper for TYPE_CODE_BOOL. */
743
744 static void
745 generic_val_print_bool (struct type *type,
746 int embedded_offset, struct ui_file *stream,
747 struct value *original_value,
748 const struct value_print_options *options,
749 const struct generic_val_print_decorations *decorations)
750 {
751 LONGEST val;
752 struct gdbarch *gdbarch = get_type_arch (type);
753 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
754
755 if (options->format || options->output_format)
756 {
757 struct value_print_options opts = *options;
758 opts.format = (options->format ? options->format
759 : options->output_format);
760 val_print_scalar_formatted (type, embedded_offset,
761 original_value, &opts, 0, stream);
762 }
763 else
764 {
765 const gdb_byte *valaddr = value_contents_for_printing (original_value);
766
767 val = unpack_long (type, valaddr + embedded_offset * unit_size);
768 if (val == 0)
769 fputs_filtered (decorations->false_name, stream);
770 else if (val == 1)
771 fputs_filtered (decorations->true_name, stream);
772 else
773 print_longest (stream, 'd', 0, val);
774 }
775 }
776
777 /* generic_val_print helper for TYPE_CODE_INT. */
778
779 static void
780 generic_val_print_int (struct type *type,
781 int embedded_offset, struct ui_file *stream,
782 struct value *original_value,
783 const struct value_print_options *options)
784 {
785 struct value_print_options opts = *options;
786
787 opts.format = (options->format ? options->format
788 : options->output_format);
789 val_print_scalar_formatted (type, embedded_offset,
790 original_value, &opts, 0, stream);
791 }
792
793 /* generic_val_print helper for TYPE_CODE_CHAR. */
794
795 static void
796 generic_val_print_char (struct type *type, struct type *unresolved_type,
797 int embedded_offset,
798 struct ui_file *stream,
799 struct value *original_value,
800 const struct value_print_options *options)
801 {
802 LONGEST val;
803 struct gdbarch *gdbarch = get_type_arch (type);
804 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
805
806 if (options->format || options->output_format)
807 {
808 struct value_print_options opts = *options;
809
810 opts.format = (options->format ? options->format
811 : options->output_format);
812 val_print_scalar_formatted (type, embedded_offset,
813 original_value, &opts, 0, stream);
814 }
815 else
816 {
817 const gdb_byte *valaddr = value_contents_for_printing (original_value);
818
819 val = unpack_long (type, valaddr + embedded_offset * unit_size);
820 if (TYPE_UNSIGNED (type))
821 fprintf_filtered (stream, "%u", (unsigned int) val);
822 else
823 fprintf_filtered (stream, "%d", (int) val);
824 fputs_filtered (" ", stream);
825 LA_PRINT_CHAR (val, unresolved_type, stream);
826 }
827 }
828
829 /* generic_val_print helper for TYPE_CODE_FLT. */
830
831 static void
832 generic_val_print_float (struct type *type,
833 int embedded_offset, struct ui_file *stream,
834 struct value *original_value,
835 const struct value_print_options *options)
836 {
837 struct gdbarch *gdbarch = get_type_arch (type);
838 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
839
840 if (options->format)
841 {
842 val_print_scalar_formatted (type, embedded_offset,
843 original_value, options, 0, stream);
844 }
845 else
846 {
847 const gdb_byte *valaddr = value_contents_for_printing (original_value);
848
849 print_floating (valaddr + embedded_offset * unit_size, type, stream);
850 }
851 }
852
853 /* generic_val_print helper for TYPE_CODE_DECFLOAT. */
854
855 static void
856 generic_val_print_decfloat (struct type *type,
857 int embedded_offset, struct ui_file *stream,
858 struct value *original_value,
859 const struct value_print_options *options)
860 {
861 struct gdbarch *gdbarch = get_type_arch (type);
862 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
863
864 if (options->format)
865 val_print_scalar_formatted (type, embedded_offset, original_value,
866 options, 0, stream);
867 else
868 {
869 const gdb_byte *valaddr = value_contents_for_printing (original_value);
870
871 print_decimal_floating (valaddr + embedded_offset * unit_size, type,
872 stream);
873 }
874 }
875
876 /* generic_val_print helper for TYPE_CODE_COMPLEX. */
877
878 static void
879 generic_val_print_complex (struct type *type,
880 int embedded_offset, struct ui_file *stream,
881 struct value *original_value,
882 const struct value_print_options *options,
883 const struct generic_val_print_decorations
884 *decorations)
885 {
886 struct gdbarch *gdbarch = get_type_arch (type);
887 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
888 const gdb_byte *valaddr = value_contents_for_printing (original_value);
889
890 fprintf_filtered (stream, "%s", decorations->complex_prefix);
891 if (options->format)
892 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
893 embedded_offset, original_value, options, 0,
894 stream);
895 else
896 print_floating (valaddr + embedded_offset * unit_size,
897 TYPE_TARGET_TYPE (type), stream);
898 fprintf_filtered (stream, "%s", decorations->complex_infix);
899 if (options->format)
900 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
901 embedded_offset
902 + type_length_units (TYPE_TARGET_TYPE (type)),
903 original_value, options, 0, stream);
904 else
905 print_floating (valaddr + embedded_offset * unit_size
906 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
907 TYPE_TARGET_TYPE (type), stream);
908 fprintf_filtered (stream, "%s", decorations->complex_suffix);
909 }
910
911 /* A generic val_print that is suitable for use by language
912 implementations of the la_val_print method. This function can
913 handle most type codes, though not all, notably exception
914 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
915 the caller.
916
917 Most arguments are as to val_print.
918
919 The additional DECORATIONS argument can be used to customize the
920 output in some small, language-specific ways. */
921
922 void
923 generic_val_print (struct type *type,
924 int embedded_offset, CORE_ADDR address,
925 struct ui_file *stream, int recurse,
926 struct value *original_value,
927 const struct value_print_options *options,
928 const struct generic_val_print_decorations *decorations)
929 {
930 struct type *unresolved_type = type;
931
932 type = check_typedef (type);
933 switch (TYPE_CODE (type))
934 {
935 case TYPE_CODE_ARRAY:
936 generic_val_print_array (type, embedded_offset, address, stream,
937 recurse, original_value, options, decorations);
938 break;
939
940 case TYPE_CODE_MEMBERPTR:
941 generic_val_print_memberptr (type, embedded_offset, stream,
942 original_value, options);
943 break;
944
945 case TYPE_CODE_PTR:
946 generic_val_print_ptr (type, embedded_offset, stream,
947 original_value, options);
948 break;
949
950 case TYPE_CODE_REF:
951 case TYPE_CODE_RVALUE_REF:
952 generic_val_print_ref (type, embedded_offset, stream, recurse,
953 original_value, options);
954 break;
955
956 case TYPE_CODE_ENUM:
957 generic_val_print_enum (type, embedded_offset, stream,
958 original_value, options);
959 break;
960
961 case TYPE_CODE_FLAGS:
962 generic_val_print_flags (type, embedded_offset, stream,
963 original_value, options);
964 break;
965
966 case TYPE_CODE_FUNC:
967 case TYPE_CODE_METHOD:
968 generic_val_print_func (type, embedded_offset, address, stream,
969 original_value, options);
970 break;
971
972 case TYPE_CODE_BOOL:
973 generic_val_print_bool (type, embedded_offset, stream,
974 original_value, options, decorations);
975 break;
976
977 case TYPE_CODE_RANGE:
978 /* FIXME: create_static_range_type does not set the unsigned bit in a
979 range type (I think it probably should copy it from the
980 target type), so we won't print values which are too large to
981 fit in a signed integer correctly. */
982 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
983 print with the target type, though, because the size of our
984 type and the target type might differ). */
985
986 /* FALLTHROUGH */
987
988 case TYPE_CODE_INT:
989 generic_val_print_int (type, embedded_offset, stream,
990 original_value, options);
991 break;
992
993 case TYPE_CODE_CHAR:
994 generic_val_print_char (type, unresolved_type, embedded_offset,
995 stream, original_value, options);
996 break;
997
998 case TYPE_CODE_FLT:
999 generic_val_print_float (type, embedded_offset, stream,
1000 original_value, options);
1001 break;
1002
1003 case TYPE_CODE_DECFLOAT:
1004 generic_val_print_decfloat (type, embedded_offset, stream,
1005 original_value, options);
1006 break;
1007
1008 case TYPE_CODE_VOID:
1009 fputs_filtered (decorations->void_name, stream);
1010 break;
1011
1012 case TYPE_CODE_ERROR:
1013 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
1014 break;
1015
1016 case TYPE_CODE_UNDEF:
1017 /* This happens (without TYPE_STUB set) on systems which don't use
1018 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
1019 and no complete type for struct foo in that file. */
1020 fprintf_filtered (stream, _("<incomplete type>"));
1021 break;
1022
1023 case TYPE_CODE_COMPLEX:
1024 generic_val_print_complex (type, embedded_offset, stream,
1025 original_value, options, decorations);
1026 break;
1027
1028 case TYPE_CODE_UNION:
1029 case TYPE_CODE_STRUCT:
1030 case TYPE_CODE_METHODPTR:
1031 default:
1032 error (_("Unhandled type code %d in symbol table."),
1033 TYPE_CODE (type));
1034 }
1035 gdb_flush (stream);
1036 }
1037
1038 /* Print using the given LANGUAGE the data of type TYPE located at
1039 VAL's contents buffer + EMBEDDED_OFFSET (within GDB), which came
1040 from the inferior at address ADDRESS + EMBEDDED_OFFSET, onto
1041 stdio stream STREAM according to OPTIONS. VAL is the whole object
1042 that came from ADDRESS.
1043
1044 The language printers will pass down an adjusted EMBEDDED_OFFSET to
1045 further helper subroutines as subfields of TYPE are printed. In
1046 such cases, VAL is passed down unadjusted, so
1047 that VAL can be queried for metadata about the contents data being
1048 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
1049 buffer. For example: "has this field been optimized out", or "I'm
1050 printing an object while inspecting a traceframe; has this
1051 particular piece of data been collected?".
1052
1053 RECURSE indicates the amount of indentation to supply before
1054 continuation lines; this amount is roughly twice the value of
1055 RECURSE. */
1056
1057 void
1058 val_print (struct type *type, LONGEST embedded_offset,
1059 CORE_ADDR address, struct ui_file *stream, int recurse,
1060 struct value *val,
1061 const struct value_print_options *options,
1062 const struct language_defn *language)
1063 {
1064 int ret = 0;
1065 struct value_print_options local_opts = *options;
1066 struct type *real_type = check_typedef (type);
1067
1068 if (local_opts.prettyformat == Val_prettyformat_default)
1069 local_opts.prettyformat = (local_opts.prettyformat_structs
1070 ? Val_prettyformat : Val_no_prettyformat);
1071
1072 QUIT;
1073
1074 /* Ensure that the type is complete and not just a stub. If the type is
1075 only a stub and we can't find and substitute its complete type, then
1076 print appropriate string and return. */
1077
1078 if (TYPE_STUB (real_type))
1079 {
1080 fprintf_filtered (stream, _("<incomplete type>"));
1081 gdb_flush (stream);
1082 return;
1083 }
1084
1085 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
1086 return;
1087
1088 if (!options->raw)
1089 {
1090 ret = apply_ext_lang_val_pretty_printer (type, embedded_offset,
1091 address, stream, recurse,
1092 val, options, language);
1093 if (ret)
1094 return;
1095 }
1096
1097 /* Handle summary mode. If the value is a scalar, print it;
1098 otherwise, print an ellipsis. */
1099 if (options->summary && !val_print_scalar_type_p (type))
1100 {
1101 fprintf_filtered (stream, "...");
1102 return;
1103 }
1104
1105 TRY
1106 {
1107 language->la_val_print (type, embedded_offset, address,
1108 stream, recurse, val,
1109 &local_opts);
1110 }
1111 CATCH (except, RETURN_MASK_ERROR)
1112 {
1113 fprintf_filtered (stream, _("<error reading variable>"));
1114 }
1115 END_CATCH
1116 }
1117
1118 /* Check whether the value VAL is printable. Return 1 if it is;
1119 return 0 and print an appropriate error message to STREAM according to
1120 OPTIONS if it is not. */
1121
1122 static int
1123 value_check_printable (struct value *val, struct ui_file *stream,
1124 const struct value_print_options *options)
1125 {
1126 if (val == 0)
1127 {
1128 fprintf_filtered (stream, _("<address of value unknown>"));
1129 return 0;
1130 }
1131
1132 if (value_entirely_optimized_out (val))
1133 {
1134 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1135 fprintf_filtered (stream, "...");
1136 else
1137 val_print_optimized_out (val, stream);
1138 return 0;
1139 }
1140
1141 if (value_entirely_unavailable (val))
1142 {
1143 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1144 fprintf_filtered (stream, "...");
1145 else
1146 val_print_unavailable (stream);
1147 return 0;
1148 }
1149
1150 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1151 {
1152 fprintf_filtered (stream, _("<internal function %s>"),
1153 value_internal_function_name (val));
1154 return 0;
1155 }
1156
1157 if (type_not_associated (value_type (val)))
1158 {
1159 val_print_not_associated (stream);
1160 return 0;
1161 }
1162
1163 if (type_not_allocated (value_type (val)))
1164 {
1165 val_print_not_allocated (stream);
1166 return 0;
1167 }
1168
1169 return 1;
1170 }
1171
1172 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1173 to OPTIONS.
1174
1175 This is a preferable interface to val_print, above, because it uses
1176 GDB's value mechanism. */
1177
1178 void
1179 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1180 const struct value_print_options *options,
1181 const struct language_defn *language)
1182 {
1183 if (!value_check_printable (val, stream, options))
1184 return;
1185
1186 if (language->la_language == language_ada)
1187 /* The value might have a dynamic type, which would cause trouble
1188 below when trying to extract the value contents (since the value
1189 size is determined from the type size which is unknown). So
1190 get a fixed representation of our value. */
1191 val = ada_to_fixed_value (val);
1192
1193 if (value_lazy (val))
1194 value_fetch_lazy (val);
1195
1196 val_print (value_type (val),
1197 value_embedded_offset (val), value_address (val),
1198 stream, recurse,
1199 val, options, language);
1200 }
1201
1202 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1203 is printed using the current_language syntax. */
1204
1205 void
1206 value_print (struct value *val, struct ui_file *stream,
1207 const struct value_print_options *options)
1208 {
1209 if (!value_check_printable (val, stream, options))
1210 return;
1211
1212 if (!options->raw)
1213 {
1214 int r
1215 = apply_ext_lang_val_pretty_printer (value_type (val),
1216 value_embedded_offset (val),
1217 value_address (val),
1218 stream, 0,
1219 val, options, current_language);
1220
1221 if (r)
1222 return;
1223 }
1224
1225 LA_VALUE_PRINT (val, stream, options);
1226 }
1227
1228 static void
1229 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1230 struct ui_file *stream)
1231 {
1232 ULONGEST val = unpack_long (type, valaddr);
1233 int field, nfields = TYPE_NFIELDS (type);
1234 struct gdbarch *gdbarch = get_type_arch (type);
1235 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1236
1237 fputs_filtered ("[", stream);
1238 for (field = 0; field < nfields; field++)
1239 {
1240 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1241 {
1242 struct type *field_type = TYPE_FIELD_TYPE (type, field);
1243
1244 if (field_type == bool_type
1245 /* We require boolean types here to be one bit wide. This is a
1246 problematic place to notify the user of an internal error
1247 though. Instead just fall through and print the field as an
1248 int. */
1249 && TYPE_FIELD_BITSIZE (type, field) == 1)
1250 {
1251 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1252 fprintf_filtered (stream, " %s",
1253 TYPE_FIELD_NAME (type, field));
1254 }
1255 else
1256 {
1257 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1258 ULONGEST field_val
1259 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1260
1261 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1262 field_val &= ((ULONGEST) 1 << field_len) - 1;
1263 fprintf_filtered (stream, " %s=",
1264 TYPE_FIELD_NAME (type, field));
1265 if (TYPE_CODE (field_type) == TYPE_CODE_ENUM)
1266 generic_val_print_enum_1 (field_type, field_val, stream);
1267 else
1268 print_longest (stream, 'd', 0, field_val);
1269 }
1270 }
1271 }
1272 fputs_filtered (" ]", stream);
1273 }
1274
1275 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1276 according to OPTIONS and SIZE on STREAM. Format i is not supported
1277 at this level.
1278
1279 This is how the elements of an array or structure are printed
1280 with a format. */
1281
1282 void
1283 val_print_scalar_formatted (struct type *type,
1284 LONGEST embedded_offset,
1285 struct value *val,
1286 const struct value_print_options *options,
1287 int size,
1288 struct ui_file *stream)
1289 {
1290 struct gdbarch *arch = get_type_arch (type);
1291 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1292
1293 gdb_assert (val != NULL);
1294
1295 /* If we get here with a string format, try again without it. Go
1296 all the way back to the language printers, which may call us
1297 again. */
1298 if (options->format == 's')
1299 {
1300 struct value_print_options opts = *options;
1301 opts.format = 0;
1302 opts.deref_ref = 0;
1303 val_print (type, embedded_offset, 0, stream, 0, val, &opts,
1304 current_language);
1305 return;
1306 }
1307
1308 /* value_contents_for_printing fetches all VAL's contents. They are
1309 needed to check whether VAL is optimized-out or unavailable
1310 below. */
1311 const gdb_byte *valaddr = value_contents_for_printing (val);
1312
1313 /* A scalar object that does not have all bits available can't be
1314 printed, because all bits contribute to its representation. */
1315 if (value_bits_any_optimized_out (val,
1316 TARGET_CHAR_BIT * embedded_offset,
1317 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1318 val_print_optimized_out (val, stream);
1319 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1320 val_print_unavailable (stream);
1321 else
1322 print_scalar_formatted (valaddr + embedded_offset * unit_size, type,
1323 options, size, stream);
1324 }
1325
1326 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1327 The raison d'etre of this function is to consolidate printing of
1328 LONG_LONG's into this one function. The format chars b,h,w,g are
1329 from print_scalar_formatted(). Numbers are printed using C
1330 format.
1331
1332 USE_C_FORMAT means to use C format in all cases. Without it,
1333 'o' and 'x' format do not include the standard C radix prefix
1334 (leading 0 or 0x).
1335
1336 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1337 and was intended to request formating according to the current
1338 language and would be used for most integers that GDB prints. The
1339 exceptional cases were things like protocols where the format of
1340 the integer is a protocol thing, not a user-visible thing). The
1341 parameter remains to preserve the information of what things might
1342 be printed with language-specific format, should we ever resurrect
1343 that capability. */
1344
1345 void
1346 print_longest (struct ui_file *stream, int format, int use_c_format,
1347 LONGEST val_long)
1348 {
1349 const char *val;
1350
1351 switch (format)
1352 {
1353 case 'd':
1354 val = int_string (val_long, 10, 1, 0, 1); break;
1355 case 'u':
1356 val = int_string (val_long, 10, 0, 0, 1); break;
1357 case 'x':
1358 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1359 case 'b':
1360 val = int_string (val_long, 16, 0, 2, 1); break;
1361 case 'h':
1362 val = int_string (val_long, 16, 0, 4, 1); break;
1363 case 'w':
1364 val = int_string (val_long, 16, 0, 8, 1); break;
1365 case 'g':
1366 val = int_string (val_long, 16, 0, 16, 1); break;
1367 break;
1368 case 'o':
1369 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1370 default:
1371 internal_error (__FILE__, __LINE__,
1372 _("failed internal consistency check"));
1373 }
1374 fputs_filtered (val, stream);
1375 }
1376
1377 /* This used to be a macro, but I don't think it is called often enough
1378 to merit such treatment. */
1379 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1380 arguments to a function, number in a value history, register number, etc.)
1381 where the value must not be larger than can fit in an int. */
1382
1383 int
1384 longest_to_int (LONGEST arg)
1385 {
1386 /* Let the compiler do the work. */
1387 int rtnval = (int) arg;
1388
1389 /* Check for overflows or underflows. */
1390 if (sizeof (LONGEST) > sizeof (int))
1391 {
1392 if (rtnval != arg)
1393 {
1394 error (_("Value out of range."));
1395 }
1396 }
1397 return (rtnval);
1398 }
1399
1400 /* Print a floating point value of type TYPE (not always a
1401 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
1402
1403 void
1404 print_floating (const gdb_byte *valaddr, struct type *type,
1405 struct ui_file *stream)
1406 {
1407 DOUBLEST doub;
1408 int inv;
1409 const struct floatformat *fmt = NULL;
1410 unsigned len = TYPE_LENGTH (type);
1411 enum float_kind kind;
1412
1413 /* If it is a floating-point, check for obvious problems. */
1414 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1415 fmt = floatformat_from_type (type);
1416 if (fmt != NULL)
1417 {
1418 kind = floatformat_classify (fmt, valaddr);
1419 if (kind == float_nan)
1420 {
1421 if (floatformat_is_negative (fmt, valaddr))
1422 fprintf_filtered (stream, "-");
1423 fprintf_filtered (stream, "nan(");
1424 fputs_filtered ("0x", stream);
1425 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1426 fprintf_filtered (stream, ")");
1427 return;
1428 }
1429 else if (kind == float_infinite)
1430 {
1431 if (floatformat_is_negative (fmt, valaddr))
1432 fputs_filtered ("-", stream);
1433 fputs_filtered ("inf", stream);
1434 return;
1435 }
1436 }
1437
1438 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1439 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1440 needs to be used as that takes care of any necessary type
1441 conversions. Such conversions are of course direct to DOUBLEST
1442 and disregard any possible target floating point limitations.
1443 For instance, a u64 would be converted and displayed exactly on a
1444 host with 80 bit DOUBLEST but with loss of information on a host
1445 with 64 bit DOUBLEST. */
1446
1447 doub = unpack_double (type, valaddr, &inv);
1448 if (inv)
1449 {
1450 fprintf_filtered (stream, "<invalid float value>");
1451 return;
1452 }
1453
1454 /* FIXME: kettenis/2001-01-20: The following code makes too much
1455 assumptions about the host and target floating point format. */
1456
1457 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
1458 not necessarily be a TYPE_CODE_FLT, the below ignores that and
1459 instead uses the type's length to determine the precision of the
1460 floating-point value being printed. */
1461
1462 if (len < sizeof (double))
1463 fprintf_filtered (stream, "%.9g", (double) doub);
1464 else if (len == sizeof (double))
1465 fprintf_filtered (stream, "%.17g", (double) doub);
1466 else
1467 #ifdef PRINTF_HAS_LONG_DOUBLE
1468 fprintf_filtered (stream, "%.35Lg", doub);
1469 #else
1470 /* This at least wins with values that are representable as
1471 doubles. */
1472 fprintf_filtered (stream, "%.17g", (double) doub);
1473 #endif
1474 }
1475
1476 void
1477 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1478 struct ui_file *stream)
1479 {
1480 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1481 char decstr[MAX_DECIMAL_STRING];
1482 unsigned len = TYPE_LENGTH (type);
1483
1484 decimal_to_string (valaddr, len, byte_order, decstr);
1485 fputs_filtered (decstr, stream);
1486 return;
1487 }
1488
1489 void
1490 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1491 unsigned len, enum bfd_endian byte_order, bool zero_pad)
1492 {
1493
1494 #define BITS_IN_BYTES 8
1495
1496 const gdb_byte *p;
1497 unsigned int i;
1498 int b;
1499 bool seen_a_one = false;
1500
1501 /* Declared "int" so it will be signed.
1502 This ensures that right shift will shift in zeros. */
1503
1504 const int mask = 0x080;
1505
1506 if (byte_order == BFD_ENDIAN_BIG)
1507 {
1508 for (p = valaddr;
1509 p < valaddr + len;
1510 p++)
1511 {
1512 /* Every byte has 8 binary characters; peel off
1513 and print from the MSB end. */
1514
1515 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1516 {
1517 if (*p & (mask >> i))
1518 b = '1';
1519 else
1520 b = '0';
1521
1522 if (zero_pad || seen_a_one || b == '1')
1523 fputc_filtered (b, stream);
1524 if (b == '1')
1525 seen_a_one = true;
1526 }
1527 }
1528 }
1529 else
1530 {
1531 for (p = valaddr + len - 1;
1532 p >= valaddr;
1533 p--)
1534 {
1535 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1536 {
1537 if (*p & (mask >> i))
1538 b = '1';
1539 else
1540 b = '0';
1541
1542 if (zero_pad || seen_a_one || b == '1')
1543 fputc_filtered (b, stream);
1544 if (b == '1')
1545 seen_a_one = true;
1546 }
1547 }
1548 }
1549
1550 /* When not zero-padding, ensure that something is printed when the
1551 input is 0. */
1552 if (!zero_pad && !seen_a_one)
1553 fputc_filtered ('0', stream);
1554 }
1555
1556 /* A helper for print_octal_chars that emits a single octal digit,
1557 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1558
1559 static void
1560 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1561 {
1562 if (*seen_a_one || digit != 0)
1563 fprintf_filtered (stream, "%o", digit);
1564 if (digit != 0)
1565 *seen_a_one = true;
1566 }
1567
1568 /* VALADDR points to an integer of LEN bytes.
1569 Print it in octal on stream or format it in buf. */
1570
1571 void
1572 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1573 unsigned len, enum bfd_endian byte_order)
1574 {
1575 const gdb_byte *p;
1576 unsigned char octa1, octa2, octa3, carry;
1577 int cycle;
1578
1579 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1580 * the extra bits, which cycle every three bytes:
1581 *
1582 * Byte side: 0 1 2 3
1583 * | | | |
1584 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1585 *
1586 * Octal side: 0 1 carry 3 4 carry ...
1587 *
1588 * Cycle number: 0 1 2
1589 *
1590 * But of course we are printing from the high side, so we have to
1591 * figure out where in the cycle we are so that we end up with no
1592 * left over bits at the end.
1593 */
1594 #define BITS_IN_OCTAL 3
1595 #define HIGH_ZERO 0340
1596 #define LOW_ZERO 0034
1597 #define CARRY_ZERO 0003
1598 static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
1599 "cycle zero constants are wrong");
1600 #define HIGH_ONE 0200
1601 #define MID_ONE 0160
1602 #define LOW_ONE 0016
1603 #define CARRY_ONE 0001
1604 static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
1605 "cycle one constants are wrong");
1606 #define HIGH_TWO 0300
1607 #define MID_TWO 0070
1608 #define LOW_TWO 0007
1609 static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
1610 "cycle two constants are wrong");
1611
1612 /* For 32 we start in cycle 2, with two bits and one bit carry;
1613 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1614
1615 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1616 carry = 0;
1617
1618 fputs_filtered ("0", stream);
1619 bool seen_a_one = false;
1620 if (byte_order == BFD_ENDIAN_BIG)
1621 {
1622 for (p = valaddr;
1623 p < valaddr + len;
1624 p++)
1625 {
1626 switch (cycle)
1627 {
1628 case 0:
1629 /* No carry in, carry out two bits. */
1630
1631 octa1 = (HIGH_ZERO & *p) >> 5;
1632 octa2 = (LOW_ZERO & *p) >> 2;
1633 carry = (CARRY_ZERO & *p);
1634 emit_octal_digit (stream, &seen_a_one, octa1);
1635 emit_octal_digit (stream, &seen_a_one, octa2);
1636 break;
1637
1638 case 1:
1639 /* Carry in two bits, carry out one bit. */
1640
1641 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1642 octa2 = (MID_ONE & *p) >> 4;
1643 octa3 = (LOW_ONE & *p) >> 1;
1644 carry = (CARRY_ONE & *p);
1645 emit_octal_digit (stream, &seen_a_one, octa1);
1646 emit_octal_digit (stream, &seen_a_one, octa2);
1647 emit_octal_digit (stream, &seen_a_one, octa3);
1648 break;
1649
1650 case 2:
1651 /* Carry in one bit, no carry out. */
1652
1653 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1654 octa2 = (MID_TWO & *p) >> 3;
1655 octa3 = (LOW_TWO & *p);
1656 carry = 0;
1657 emit_octal_digit (stream, &seen_a_one, octa1);
1658 emit_octal_digit (stream, &seen_a_one, octa2);
1659 emit_octal_digit (stream, &seen_a_one, octa3);
1660 break;
1661
1662 default:
1663 error (_("Internal error in octal conversion;"));
1664 }
1665
1666 cycle++;
1667 cycle = cycle % BITS_IN_OCTAL;
1668 }
1669 }
1670 else
1671 {
1672 for (p = valaddr + len - 1;
1673 p >= valaddr;
1674 p--)
1675 {
1676 switch (cycle)
1677 {
1678 case 0:
1679 /* Carry out, no carry in */
1680
1681 octa1 = (HIGH_ZERO & *p) >> 5;
1682 octa2 = (LOW_ZERO & *p) >> 2;
1683 carry = (CARRY_ZERO & *p);
1684 emit_octal_digit (stream, &seen_a_one, octa1);
1685 emit_octal_digit (stream, &seen_a_one, octa2);
1686 break;
1687
1688 case 1:
1689 /* Carry in, carry out */
1690
1691 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1692 octa2 = (MID_ONE & *p) >> 4;
1693 octa3 = (LOW_ONE & *p) >> 1;
1694 carry = (CARRY_ONE & *p);
1695 emit_octal_digit (stream, &seen_a_one, octa1);
1696 emit_octal_digit (stream, &seen_a_one, octa2);
1697 emit_octal_digit (stream, &seen_a_one, octa3);
1698 break;
1699
1700 case 2:
1701 /* Carry in, no carry out */
1702
1703 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1704 octa2 = (MID_TWO & *p) >> 3;
1705 octa3 = (LOW_TWO & *p);
1706 carry = 0;
1707 emit_octal_digit (stream, &seen_a_one, octa1);
1708 emit_octal_digit (stream, &seen_a_one, octa2);
1709 emit_octal_digit (stream, &seen_a_one, octa3);
1710 break;
1711
1712 default:
1713 error (_("Internal error in octal conversion;"));
1714 }
1715
1716 cycle++;
1717 cycle = cycle % BITS_IN_OCTAL;
1718 }
1719 }
1720
1721 }
1722
1723 /* Possibly negate the integer represented by BYTES. It contains LEN
1724 bytes in the specified byte order. If the integer is negative,
1725 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1726 nothing and return false. */
1727
1728 static bool
1729 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1730 enum bfd_endian byte_order,
1731 gdb::byte_vector *out_vec)
1732 {
1733 gdb_byte sign_byte;
1734 if (byte_order == BFD_ENDIAN_BIG)
1735 sign_byte = bytes[0];
1736 else
1737 sign_byte = bytes[len - 1];
1738 if ((sign_byte & 0x80) == 0)
1739 return false;
1740
1741 out_vec->resize (len);
1742
1743 /* Compute -x == 1 + ~x. */
1744 if (byte_order == BFD_ENDIAN_LITTLE)
1745 {
1746 unsigned carry = 1;
1747 for (unsigned i = 0; i < len; ++i)
1748 {
1749 unsigned tem = (0xff & ~bytes[i]) + carry;
1750 (*out_vec)[i] = tem & 0xff;
1751 carry = tem / 256;
1752 }
1753 }
1754 else
1755 {
1756 unsigned carry = 1;
1757 for (unsigned i = len; i > 0; --i)
1758 {
1759 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1760 (*out_vec)[i - 1] = tem & 0xff;
1761 carry = tem / 256;
1762 }
1763 }
1764
1765 return true;
1766 }
1767
1768 /* VALADDR points to an integer of LEN bytes.
1769 Print it in decimal on stream or format it in buf. */
1770
1771 void
1772 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1773 unsigned len, bool is_signed,
1774 enum bfd_endian byte_order)
1775 {
1776 #define TEN 10
1777 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1778 #define CARRY_LEFT( x ) ((x) % TEN)
1779 #define SHIFT( x ) ((x) << 4)
1780 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1781 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1782
1783 const gdb_byte *p;
1784 int carry;
1785 int decimal_len;
1786 int i, j, decimal_digits;
1787 int dummy;
1788 int flip;
1789
1790 gdb::byte_vector negated_bytes;
1791 if (is_signed
1792 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1793 {
1794 fputs_filtered ("-", stream);
1795 valaddr = negated_bytes.data ();
1796 }
1797
1798 /* Base-ten number is less than twice as many digits
1799 as the base 16 number, which is 2 digits per byte. */
1800
1801 decimal_len = len * 2 * 2;
1802 std::vector<unsigned char> digits (decimal_len, 0);
1803
1804 /* Ok, we have an unknown number of bytes of data to be printed in
1805 * decimal.
1806 *
1807 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1808 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1809 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1810 *
1811 * The trick is that "digits" holds a base-10 number, but sometimes
1812 * the individual digits are > 10.
1813 *
1814 * Outer loop is per nibble (hex digit) of input, from MSD end to
1815 * LSD end.
1816 */
1817 decimal_digits = 0; /* Number of decimal digits so far */
1818 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1819 flip = 0;
1820 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1821 {
1822 /*
1823 * Multiply current base-ten number by 16 in place.
1824 * Each digit was between 0 and 9, now is between
1825 * 0 and 144.
1826 */
1827 for (j = 0; j < decimal_digits; j++)
1828 {
1829 digits[j] = SHIFT (digits[j]);
1830 }
1831
1832 /* Take the next nibble off the input and add it to what
1833 * we've got in the LSB position. Bottom 'digit' is now
1834 * between 0 and 159.
1835 *
1836 * "flip" is used to run this loop twice for each byte.
1837 */
1838 if (flip == 0)
1839 {
1840 /* Take top nibble. */
1841
1842 digits[0] += HIGH_NIBBLE (*p);
1843 flip = 1;
1844 }
1845 else
1846 {
1847 /* Take low nibble and bump our pointer "p". */
1848
1849 digits[0] += LOW_NIBBLE (*p);
1850 if (byte_order == BFD_ENDIAN_BIG)
1851 p++;
1852 else
1853 p--;
1854 flip = 0;
1855 }
1856
1857 /* Re-decimalize. We have to do this often enough
1858 * that we don't overflow, but once per nibble is
1859 * overkill. Easier this way, though. Note that the
1860 * carry is often larger than 10 (e.g. max initial
1861 * carry out of lowest nibble is 15, could bubble all
1862 * the way up greater than 10). So we have to do
1863 * the carrying beyond the last current digit.
1864 */
1865 carry = 0;
1866 for (j = 0; j < decimal_len - 1; j++)
1867 {
1868 digits[j] += carry;
1869
1870 /* "/" won't handle an unsigned char with
1871 * a value that if signed would be negative.
1872 * So extend to longword int via "dummy".
1873 */
1874 dummy = digits[j];
1875 carry = CARRY_OUT (dummy);
1876 digits[j] = CARRY_LEFT (dummy);
1877
1878 if (j >= decimal_digits && carry == 0)
1879 {
1880 /*
1881 * All higher digits are 0 and we
1882 * no longer have a carry.
1883 *
1884 * Note: "j" is 0-based, "decimal_digits" is
1885 * 1-based.
1886 */
1887 decimal_digits = j + 1;
1888 break;
1889 }
1890 }
1891 }
1892
1893 /* Ok, now "digits" is the decimal representation, with
1894 the "decimal_digits" actual digits. Print! */
1895
1896 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
1897 ;
1898
1899 for (; i >= 0; i--)
1900 {
1901 fprintf_filtered (stream, "%1d", digits[i]);
1902 }
1903 }
1904
1905 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1906
1907 void
1908 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1909 unsigned len, enum bfd_endian byte_order,
1910 bool zero_pad)
1911 {
1912 const gdb_byte *p;
1913
1914 fputs_filtered ("0x", stream);
1915 if (byte_order == BFD_ENDIAN_BIG)
1916 {
1917 p = valaddr;
1918
1919 if (!zero_pad)
1920 {
1921 /* Strip leading 0 bytes, but be sure to leave at least a
1922 single byte at the end. */
1923 for (; p < valaddr + len - 1 && !*p; ++p)
1924 ;
1925 }
1926
1927 const gdb_byte *first = p;
1928 for (;
1929 p < valaddr + len;
1930 p++)
1931 {
1932 /* When not zero-padding, use a different format for the
1933 very first byte printed. */
1934 if (!zero_pad && p == first)
1935 fprintf_filtered (stream, "%x", *p);
1936 else
1937 fprintf_filtered (stream, "%02x", *p);
1938 }
1939 }
1940 else
1941 {
1942 p = valaddr + len - 1;
1943
1944 if (!zero_pad)
1945 {
1946 /* Strip leading 0 bytes, but be sure to leave at least a
1947 single byte at the end. */
1948 for (; p >= valaddr + 1 && !*p; --p)
1949 ;
1950 }
1951
1952 const gdb_byte *first = p;
1953 for (;
1954 p >= valaddr;
1955 p--)
1956 {
1957 /* When not zero-padding, use a different format for the
1958 very first byte printed. */
1959 if (!zero_pad && p == first)
1960 fprintf_filtered (stream, "%x", *p);
1961 else
1962 fprintf_filtered (stream, "%02x", *p);
1963 }
1964 }
1965 }
1966
1967 /* VALADDR points to a char integer of LEN bytes.
1968 Print it out in appropriate language form on stream.
1969 Omit any leading zero chars. */
1970
1971 void
1972 print_char_chars (struct ui_file *stream, struct type *type,
1973 const gdb_byte *valaddr,
1974 unsigned len, enum bfd_endian byte_order)
1975 {
1976 const gdb_byte *p;
1977
1978 if (byte_order == BFD_ENDIAN_BIG)
1979 {
1980 p = valaddr;
1981 while (p < valaddr + len - 1 && *p == 0)
1982 ++p;
1983
1984 while (p < valaddr + len)
1985 {
1986 LA_EMIT_CHAR (*p, type, stream, '\'');
1987 ++p;
1988 }
1989 }
1990 else
1991 {
1992 p = valaddr + len - 1;
1993 while (p > valaddr && *p == 0)
1994 --p;
1995
1996 while (p >= valaddr)
1997 {
1998 LA_EMIT_CHAR (*p, type, stream, '\'');
1999 --p;
2000 }
2001 }
2002 }
2003
2004 /* Print function pointer with inferior address ADDRESS onto stdio
2005 stream STREAM. */
2006
2007 void
2008 print_function_pointer_address (const struct value_print_options *options,
2009 struct gdbarch *gdbarch,
2010 CORE_ADDR address,
2011 struct ui_file *stream)
2012 {
2013 CORE_ADDR func_addr
2014 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
2015 &current_target);
2016
2017 /* If the function pointer is represented by a description, print
2018 the address of the description. */
2019 if (options->addressprint && func_addr != address)
2020 {
2021 fputs_filtered ("@", stream);
2022 fputs_filtered (paddress (gdbarch, address), stream);
2023 fputs_filtered (": ", stream);
2024 }
2025 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
2026 }
2027
2028
2029 /* Print on STREAM using the given OPTIONS the index for the element
2030 at INDEX of an array whose index type is INDEX_TYPE. */
2031
2032 void
2033 maybe_print_array_index (struct type *index_type, LONGEST index,
2034 struct ui_file *stream,
2035 const struct value_print_options *options)
2036 {
2037 struct value *index_value;
2038
2039 if (!options->print_array_indexes)
2040 return;
2041
2042 index_value = value_from_longest (index_type, index);
2043
2044 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
2045 }
2046
2047 /* Called by various <lang>_val_print routines to print elements of an
2048 array in the form "<elem1>, <elem2>, <elem3>, ...".
2049
2050 (FIXME?) Assumes array element separator is a comma, which is correct
2051 for all languages currently handled.
2052 (FIXME?) Some languages have a notation for repeated array elements,
2053 perhaps we should try to use that notation when appropriate. */
2054
2055 void
2056 val_print_array_elements (struct type *type,
2057 LONGEST embedded_offset,
2058 CORE_ADDR address, struct ui_file *stream,
2059 int recurse,
2060 struct value *val,
2061 const struct value_print_options *options,
2062 unsigned int i)
2063 {
2064 unsigned int things_printed = 0;
2065 unsigned len;
2066 struct type *elttype, *index_type, *base_index_type;
2067 unsigned eltlen;
2068 /* Position of the array element we are examining to see
2069 whether it is repeated. */
2070 unsigned int rep1;
2071 /* Number of repetitions we have detected so far. */
2072 unsigned int reps;
2073 LONGEST low_bound, high_bound;
2074 LONGEST low_pos, high_pos;
2075
2076 elttype = TYPE_TARGET_TYPE (type);
2077 eltlen = type_length_units (check_typedef (elttype));
2078 index_type = TYPE_INDEX_TYPE (type);
2079
2080 if (get_array_bounds (type, &low_bound, &high_bound))
2081 {
2082 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
2083 base_index_type = TYPE_TARGET_TYPE (index_type);
2084 else
2085 base_index_type = index_type;
2086
2087 /* Non-contiguous enumerations types can by used as index types
2088 in some languages (e.g. Ada). In this case, the array length
2089 shall be computed from the positions of the first and last
2090 literal in the enumeration type, and not from the values
2091 of these literals. */
2092 if (!discrete_position (base_index_type, low_bound, &low_pos)
2093 || !discrete_position (base_index_type, high_bound, &high_pos))
2094 {
2095 warning (_("unable to get positions in array, use bounds instead"));
2096 low_pos = low_bound;
2097 high_pos = high_bound;
2098 }
2099
2100 /* The array length should normally be HIGH_POS - LOW_POS + 1.
2101 But we have to be a little extra careful, because some languages
2102 such as Ada allow LOW_POS to be greater than HIGH_POS for
2103 empty arrays. In that situation, the array length is just zero,
2104 not negative! */
2105 if (low_pos > high_pos)
2106 len = 0;
2107 else
2108 len = high_pos - low_pos + 1;
2109 }
2110 else
2111 {
2112 warning (_("unable to get bounds of array, assuming null array"));
2113 low_bound = 0;
2114 len = 0;
2115 }
2116
2117 annotate_array_section_begin (i, elttype);
2118
2119 for (; i < len && things_printed < options->print_max; i++)
2120 {
2121 if (i != 0)
2122 {
2123 if (options->prettyformat_arrays)
2124 {
2125 fprintf_filtered (stream, ",\n");
2126 print_spaces_filtered (2 + 2 * recurse, stream);
2127 }
2128 else
2129 {
2130 fprintf_filtered (stream, ", ");
2131 }
2132 }
2133 wrap_here (n_spaces (2 + 2 * recurse));
2134 maybe_print_array_index (index_type, i + low_bound,
2135 stream, options);
2136
2137 rep1 = i + 1;
2138 reps = 1;
2139 /* Only check for reps if repeat_count_threshold is not set to
2140 UINT_MAX (unlimited). */
2141 if (options->repeat_count_threshold < UINT_MAX)
2142 {
2143 while (rep1 < len
2144 && value_contents_eq (val,
2145 embedded_offset + i * eltlen,
2146 val,
2147 (embedded_offset
2148 + rep1 * eltlen),
2149 eltlen))
2150 {
2151 ++reps;
2152 ++rep1;
2153 }
2154 }
2155
2156 if (reps > options->repeat_count_threshold)
2157 {
2158 val_print (elttype, embedded_offset + i * eltlen,
2159 address, stream, recurse + 1, val, options,
2160 current_language);
2161 annotate_elt_rep (reps);
2162 fprintf_filtered (stream, " <repeats %u times>", reps);
2163 annotate_elt_rep_end ();
2164
2165 i = rep1 - 1;
2166 things_printed += options->repeat_count_threshold;
2167 }
2168 else
2169 {
2170 val_print (elttype, embedded_offset + i * eltlen,
2171 address,
2172 stream, recurse + 1, val, options, current_language);
2173 annotate_elt ();
2174 things_printed++;
2175 }
2176 }
2177 annotate_array_section_end ();
2178 if (i < len)
2179 {
2180 fprintf_filtered (stream, "...");
2181 }
2182 }
2183
2184 /* Read LEN bytes of target memory at address MEMADDR, placing the
2185 results in GDB's memory at MYADDR. Returns a count of the bytes
2186 actually read, and optionally a target_xfer_status value in the
2187 location pointed to by ERRPTR if ERRPTR is non-null. */
2188
2189 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2190 function be eliminated. */
2191
2192 static int
2193 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2194 int len, int *errptr)
2195 {
2196 int nread; /* Number of bytes actually read. */
2197 int errcode; /* Error from last read. */
2198
2199 /* First try a complete read. */
2200 errcode = target_read_memory (memaddr, myaddr, len);
2201 if (errcode == 0)
2202 {
2203 /* Got it all. */
2204 nread = len;
2205 }
2206 else
2207 {
2208 /* Loop, reading one byte at a time until we get as much as we can. */
2209 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2210 {
2211 errcode = target_read_memory (memaddr++, myaddr++, 1);
2212 }
2213 /* If an error, the last read was unsuccessful, so adjust count. */
2214 if (errcode != 0)
2215 {
2216 nread--;
2217 }
2218 }
2219 if (errptr != NULL)
2220 {
2221 *errptr = errcode;
2222 }
2223 return (nread);
2224 }
2225
2226 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
2227 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
2228 allocated buffer containing the string, which the caller is responsible to
2229 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
2230 success, or a target_xfer_status on failure.
2231
2232 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2233 (including eventual NULs in the middle or end of the string).
2234
2235 If LEN is -1, stops at the first null character (not necessarily
2236 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2237 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2238 the string.
2239
2240 Unless an exception is thrown, BUFFER will always be allocated, even on
2241 failure. In this case, some characters might have been read before the
2242 failure happened. Check BYTES_READ to recognize this situation.
2243
2244 Note: There was a FIXME asking to make this code use target_read_string,
2245 but this function is more general (can read past null characters, up to
2246 given LEN). Besides, it is used much more often than target_read_string
2247 so it is more tested. Perhaps callers of target_read_string should use
2248 this function instead? */
2249
2250 int
2251 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2252 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
2253 {
2254 int errcode; /* Errno returned from bad reads. */
2255 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2256 gdb_byte *bufptr; /* Pointer to next available byte in
2257 buffer. */
2258 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2259
2260 /* Loop until we either have all the characters, or we encounter
2261 some error, such as bumping into the end of the address space. */
2262
2263 *buffer = NULL;
2264
2265 old_chain = make_cleanup (free_current_contents, buffer);
2266
2267 if (len > 0)
2268 {
2269 /* We want fetchlimit chars, so we might as well read them all in
2270 one operation. */
2271 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2272
2273 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
2274 bufptr = *buffer;
2275
2276 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2277 / width;
2278 addr += nfetch * width;
2279 bufptr += nfetch * width;
2280 }
2281 else if (len == -1)
2282 {
2283 unsigned long bufsize = 0;
2284 unsigned int chunksize; /* Size of each fetch, in chars. */
2285 int found_nul; /* Non-zero if we found the nul char. */
2286 gdb_byte *limit; /* First location past end of fetch buffer. */
2287
2288 found_nul = 0;
2289 /* We are looking for a NUL terminator to end the fetching, so we
2290 might as well read in blocks that are large enough to be efficient,
2291 but not so large as to be slow if fetchlimit happens to be large.
2292 So we choose the minimum of 8 and fetchlimit. We used to use 200
2293 instead of 8 but 200 is way too big for remote debugging over a
2294 serial line. */
2295 chunksize = std::min (8u, fetchlimit);
2296
2297 do
2298 {
2299 QUIT;
2300 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2301
2302 if (*buffer == NULL)
2303 *buffer = (gdb_byte *) xmalloc (nfetch * width);
2304 else
2305 *buffer = (gdb_byte *) xrealloc (*buffer,
2306 (nfetch + bufsize) * width);
2307
2308 bufptr = *buffer + bufsize * width;
2309 bufsize += nfetch;
2310
2311 /* Read as much as we can. */
2312 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2313 / width;
2314
2315 /* Scan this chunk for the null character that terminates the string
2316 to print. If found, we don't need to fetch any more. Note
2317 that bufptr is explicitly left pointing at the next character
2318 after the null character, or at the next character after the end
2319 of the buffer. */
2320
2321 limit = bufptr + nfetch * width;
2322 while (bufptr < limit)
2323 {
2324 unsigned long c;
2325
2326 c = extract_unsigned_integer (bufptr, width, byte_order);
2327 addr += width;
2328 bufptr += width;
2329 if (c == 0)
2330 {
2331 /* We don't care about any error which happened after
2332 the NUL terminator. */
2333 errcode = 0;
2334 found_nul = 1;
2335 break;
2336 }
2337 }
2338 }
2339 while (errcode == 0 /* no error */
2340 && bufptr - *buffer < fetchlimit * width /* no overrun */
2341 && !found_nul); /* haven't found NUL yet */
2342 }
2343 else
2344 { /* Length of string is really 0! */
2345 /* We always allocate *buffer. */
2346 *buffer = bufptr = (gdb_byte *) xmalloc (1);
2347 errcode = 0;
2348 }
2349
2350 /* bufptr and addr now point immediately beyond the last byte which we
2351 consider part of the string (including a '\0' which ends the string). */
2352 *bytes_read = bufptr - *buffer;
2353
2354 QUIT;
2355
2356 discard_cleanups (old_chain);
2357
2358 return errcode;
2359 }
2360
2361 /* Return true if print_wchar can display W without resorting to a
2362 numeric escape, false otherwise. */
2363
2364 static int
2365 wchar_printable (gdb_wchar_t w)
2366 {
2367 return (gdb_iswprint (w)
2368 || w == LCST ('\a') || w == LCST ('\b')
2369 || w == LCST ('\f') || w == LCST ('\n')
2370 || w == LCST ('\r') || w == LCST ('\t')
2371 || w == LCST ('\v'));
2372 }
2373
2374 /* A helper function that converts the contents of STRING to wide
2375 characters and then appends them to OUTPUT. */
2376
2377 static void
2378 append_string_as_wide (const char *string,
2379 struct obstack *output)
2380 {
2381 for (; *string; ++string)
2382 {
2383 gdb_wchar_t w = gdb_btowc (*string);
2384 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2385 }
2386 }
2387
2388 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2389 original (target) bytes representing the character, ORIG_LEN is the
2390 number of valid bytes. WIDTH is the number of bytes in a base
2391 characters of the type. OUTPUT is an obstack to which wide
2392 characters are emitted. QUOTER is a (narrow) character indicating
2393 the style of quotes surrounding the character to be printed.
2394 NEED_ESCAPE is an in/out flag which is used to track numeric
2395 escapes across calls. */
2396
2397 static void
2398 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2399 int orig_len, int width,
2400 enum bfd_endian byte_order,
2401 struct obstack *output,
2402 int quoter, int *need_escapep)
2403 {
2404 int need_escape = *need_escapep;
2405
2406 *need_escapep = 0;
2407
2408 /* iswprint implementation on Windows returns 1 for tab character.
2409 In order to avoid different printout on this host, we explicitly
2410 use wchar_printable function. */
2411 switch (w)
2412 {
2413 case LCST ('\a'):
2414 obstack_grow_wstr (output, LCST ("\\a"));
2415 break;
2416 case LCST ('\b'):
2417 obstack_grow_wstr (output, LCST ("\\b"));
2418 break;
2419 case LCST ('\f'):
2420 obstack_grow_wstr (output, LCST ("\\f"));
2421 break;
2422 case LCST ('\n'):
2423 obstack_grow_wstr (output, LCST ("\\n"));
2424 break;
2425 case LCST ('\r'):
2426 obstack_grow_wstr (output, LCST ("\\r"));
2427 break;
2428 case LCST ('\t'):
2429 obstack_grow_wstr (output, LCST ("\\t"));
2430 break;
2431 case LCST ('\v'):
2432 obstack_grow_wstr (output, LCST ("\\v"));
2433 break;
2434 default:
2435 {
2436 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2437 && w != LCST ('8')
2438 && w != LCST ('9'))))
2439 {
2440 gdb_wchar_t wchar = w;
2441
2442 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2443 obstack_grow_wstr (output, LCST ("\\"));
2444 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2445 }
2446 else
2447 {
2448 int i;
2449
2450 for (i = 0; i + width <= orig_len; i += width)
2451 {
2452 char octal[30];
2453 ULONGEST value;
2454
2455 value = extract_unsigned_integer (&orig[i], width,
2456 byte_order);
2457 /* If the value fits in 3 octal digits, print it that
2458 way. Otherwise, print it as a hex escape. */
2459 if (value <= 0777)
2460 xsnprintf (octal, sizeof (octal), "\\%.3o",
2461 (int) (value & 0777));
2462 else
2463 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2464 append_string_as_wide (octal, output);
2465 }
2466 /* If we somehow have extra bytes, print them now. */
2467 while (i < orig_len)
2468 {
2469 char octal[5];
2470
2471 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2472 append_string_as_wide (octal, output);
2473 ++i;
2474 }
2475
2476 *need_escapep = 1;
2477 }
2478 break;
2479 }
2480 }
2481 }
2482
2483 /* Print the character C on STREAM as part of the contents of a
2484 literal string whose delimiter is QUOTER. ENCODING names the
2485 encoding of C. */
2486
2487 void
2488 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2489 int quoter, const char *encoding)
2490 {
2491 enum bfd_endian byte_order
2492 = gdbarch_byte_order (get_type_arch (type));
2493 gdb_byte *buf;
2494 int need_escape = 0;
2495
2496 buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2497 pack_long (buf, type, c);
2498
2499 wchar_iterator iter (buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2500
2501 /* This holds the printable form of the wchar_t data. */
2502 auto_obstack wchar_buf;
2503
2504 while (1)
2505 {
2506 int num_chars;
2507 gdb_wchar_t *chars;
2508 const gdb_byte *buf;
2509 size_t buflen;
2510 int print_escape = 1;
2511 enum wchar_iterate_result result;
2512
2513 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2514 if (num_chars < 0)
2515 break;
2516 if (num_chars > 0)
2517 {
2518 /* If all characters are printable, print them. Otherwise,
2519 we're going to have to print an escape sequence. We
2520 check all characters because we want to print the target
2521 bytes in the escape sequence, and we don't know character
2522 boundaries there. */
2523 int i;
2524
2525 print_escape = 0;
2526 for (i = 0; i < num_chars; ++i)
2527 if (!wchar_printable (chars[i]))
2528 {
2529 print_escape = 1;
2530 break;
2531 }
2532
2533 if (!print_escape)
2534 {
2535 for (i = 0; i < num_chars; ++i)
2536 print_wchar (chars[i], buf, buflen,
2537 TYPE_LENGTH (type), byte_order,
2538 &wchar_buf, quoter, &need_escape);
2539 }
2540 }
2541
2542 /* This handles the NUM_CHARS == 0 case as well. */
2543 if (print_escape)
2544 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2545 byte_order, &wchar_buf, quoter, &need_escape);
2546 }
2547
2548 /* The output in the host encoding. */
2549 auto_obstack output;
2550
2551 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2552 (gdb_byte *) obstack_base (&wchar_buf),
2553 obstack_object_size (&wchar_buf),
2554 sizeof (gdb_wchar_t), &output, translit_char);
2555 obstack_1grow (&output, '\0');
2556
2557 fputs_filtered ((const char *) obstack_base (&output), stream);
2558 }
2559
2560 /* Return the repeat count of the next character/byte in ITER,
2561 storing the result in VEC. */
2562
2563 static int
2564 count_next_character (wchar_iterator *iter,
2565 VEC (converted_character_d) **vec)
2566 {
2567 struct converted_character *current;
2568
2569 if (VEC_empty (converted_character_d, *vec))
2570 {
2571 struct converted_character tmp;
2572 gdb_wchar_t *chars;
2573
2574 tmp.num_chars
2575 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2576 if (tmp.num_chars > 0)
2577 {
2578 gdb_assert (tmp.num_chars < MAX_WCHARS);
2579 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2580 }
2581 VEC_safe_push (converted_character_d, *vec, &tmp);
2582 }
2583
2584 current = VEC_last (converted_character_d, *vec);
2585
2586 /* Count repeated characters or bytes. */
2587 current->repeat_count = 1;
2588 if (current->num_chars == -1)
2589 {
2590 /* EOF */
2591 return -1;
2592 }
2593 else
2594 {
2595 gdb_wchar_t *chars;
2596 struct converted_character d;
2597 int repeat;
2598
2599 d.repeat_count = 0;
2600
2601 while (1)
2602 {
2603 /* Get the next character. */
2604 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2605
2606 /* If a character was successfully converted, save the character
2607 into the converted character. */
2608 if (d.num_chars > 0)
2609 {
2610 gdb_assert (d.num_chars < MAX_WCHARS);
2611 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2612 }
2613
2614 /* Determine if the current character is the same as this
2615 new character. */
2616 if (d.num_chars == current->num_chars && d.result == current->result)
2617 {
2618 /* There are two cases to consider:
2619
2620 1) Equality of converted character (num_chars > 0)
2621 2) Equality of non-converted character (num_chars == 0) */
2622 if ((current->num_chars > 0
2623 && memcmp (current->chars, d.chars,
2624 WCHAR_BUFLEN (current->num_chars)) == 0)
2625 || (current->num_chars == 0
2626 && current->buflen == d.buflen
2627 && memcmp (current->buf, d.buf, current->buflen) == 0))
2628 ++current->repeat_count;
2629 else
2630 break;
2631 }
2632 else
2633 break;
2634 }
2635
2636 /* Push this next converted character onto the result vector. */
2637 repeat = current->repeat_count;
2638 VEC_safe_push (converted_character_d, *vec, &d);
2639 return repeat;
2640 }
2641 }
2642
2643 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2644 character to use with string output. WIDTH is the size of the output
2645 character type. BYTE_ORDER is the the target byte order. OPTIONS
2646 is the user's print options. */
2647
2648 static void
2649 print_converted_chars_to_obstack (struct obstack *obstack,
2650 VEC (converted_character_d) *chars,
2651 int quote_char, int width,
2652 enum bfd_endian byte_order,
2653 const struct value_print_options *options)
2654 {
2655 unsigned int idx;
2656 struct converted_character *elem;
2657 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2658 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2659 int need_escape = 0;
2660
2661 /* Set the start state. */
2662 idx = 0;
2663 last = state = START;
2664 elem = NULL;
2665
2666 while (1)
2667 {
2668 switch (state)
2669 {
2670 case START:
2671 /* Nothing to do. */
2672 break;
2673
2674 case SINGLE:
2675 {
2676 int j;
2677
2678 /* We are outputting a single character
2679 (< options->repeat_count_threshold). */
2680
2681 if (last != SINGLE)
2682 {
2683 /* We were outputting some other type of content, so we
2684 must output and a comma and a quote. */
2685 if (last != START)
2686 obstack_grow_wstr (obstack, LCST (", "));
2687 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2688 }
2689 /* Output the character. */
2690 for (j = 0; j < elem->repeat_count; ++j)
2691 {
2692 if (elem->result == wchar_iterate_ok)
2693 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2694 byte_order, obstack, quote_char, &need_escape);
2695 else
2696 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2697 byte_order, obstack, quote_char, &need_escape);
2698 }
2699 }
2700 break;
2701
2702 case REPEAT:
2703 {
2704 int j;
2705 char *s;
2706
2707 /* We are outputting a character with a repeat count
2708 greater than options->repeat_count_threshold. */
2709
2710 if (last == SINGLE)
2711 {
2712 /* We were outputting a single string. Terminate the
2713 string. */
2714 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2715 }
2716 if (last != START)
2717 obstack_grow_wstr (obstack, LCST (", "));
2718
2719 /* Output the character and repeat string. */
2720 obstack_grow_wstr (obstack, LCST ("'"));
2721 if (elem->result == wchar_iterate_ok)
2722 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2723 byte_order, obstack, quote_char, &need_escape);
2724 else
2725 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2726 byte_order, obstack, quote_char, &need_escape);
2727 obstack_grow_wstr (obstack, LCST ("'"));
2728 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2729 for (j = 0; s[j]; ++j)
2730 {
2731 gdb_wchar_t w = gdb_btowc (s[j]);
2732 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2733 }
2734 xfree (s);
2735 }
2736 break;
2737
2738 case INCOMPLETE:
2739 /* We are outputting an incomplete sequence. */
2740 if (last == SINGLE)
2741 {
2742 /* If we were outputting a string of SINGLE characters,
2743 terminate the quote. */
2744 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2745 }
2746 if (last != START)
2747 obstack_grow_wstr (obstack, LCST (", "));
2748
2749 /* Output the incomplete sequence string. */
2750 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2751 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2752 obstack, 0, &need_escape);
2753 obstack_grow_wstr (obstack, LCST (">"));
2754
2755 /* We do not attempt to outupt anything after this. */
2756 state = FINISH;
2757 break;
2758
2759 case FINISH:
2760 /* All done. If we were outputting a string of SINGLE
2761 characters, the string must be terminated. Otherwise,
2762 REPEAT and INCOMPLETE are always left properly terminated. */
2763 if (last == SINGLE)
2764 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2765
2766 return;
2767 }
2768
2769 /* Get the next element and state. */
2770 last = state;
2771 if (state != FINISH)
2772 {
2773 elem = VEC_index (converted_character_d, chars, idx++);
2774 switch (elem->result)
2775 {
2776 case wchar_iterate_ok:
2777 case wchar_iterate_invalid:
2778 if (elem->repeat_count > options->repeat_count_threshold)
2779 state = REPEAT;
2780 else
2781 state = SINGLE;
2782 break;
2783
2784 case wchar_iterate_incomplete:
2785 state = INCOMPLETE;
2786 break;
2787
2788 case wchar_iterate_eof:
2789 state = FINISH;
2790 break;
2791 }
2792 }
2793 }
2794 }
2795
2796 /* Print the character string STRING, printing at most LENGTH
2797 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2798 the type of each character. OPTIONS holds the printing options;
2799 printing stops early if the number hits print_max; repeat counts
2800 are printed as appropriate. Print ellipses at the end if we had to
2801 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2802 QUOTE_CHAR is the character to print at each end of the string. If
2803 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2804 omitted. */
2805
2806 void
2807 generic_printstr (struct ui_file *stream, struct type *type,
2808 const gdb_byte *string, unsigned int length,
2809 const char *encoding, int force_ellipses,
2810 int quote_char, int c_style_terminator,
2811 const struct value_print_options *options)
2812 {
2813 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2814 unsigned int i;
2815 int width = TYPE_LENGTH (type);
2816 struct cleanup *cleanup;
2817 int finished = 0;
2818 struct converted_character *last;
2819 VEC (converted_character_d) *converted_chars;
2820
2821 if (length == -1)
2822 {
2823 unsigned long current_char = 1;
2824
2825 for (i = 0; current_char; ++i)
2826 {
2827 QUIT;
2828 current_char = extract_unsigned_integer (string + i * width,
2829 width, byte_order);
2830 }
2831 length = i;
2832 }
2833
2834 /* If the string was not truncated due to `set print elements', and
2835 the last byte of it is a null, we don't print that, in
2836 traditional C style. */
2837 if (c_style_terminator
2838 && !force_ellipses
2839 && length > 0
2840 && (extract_unsigned_integer (string + (length - 1) * width,
2841 width, byte_order) == 0))
2842 length--;
2843
2844 if (length == 0)
2845 {
2846 fputs_filtered ("\"\"", stream);
2847 return;
2848 }
2849
2850 /* Arrange to iterate over the characters, in wchar_t form. */
2851 wchar_iterator iter (string, length * width, encoding, width);
2852 converted_chars = NULL;
2853 cleanup = make_cleanup (VEC_cleanup (converted_character_d),
2854 &converted_chars);
2855
2856 /* Convert characters until the string is over or the maximum
2857 number of printed characters has been reached. */
2858 i = 0;
2859 while (i < options->print_max)
2860 {
2861 int r;
2862
2863 QUIT;
2864
2865 /* Grab the next character and repeat count. */
2866 r = count_next_character (&iter, &converted_chars);
2867
2868 /* If less than zero, the end of the input string was reached. */
2869 if (r < 0)
2870 break;
2871
2872 /* Otherwise, add the count to the total print count and get
2873 the next character. */
2874 i += r;
2875 }
2876
2877 /* Get the last element and determine if the entire string was
2878 processed. */
2879 last = VEC_last (converted_character_d, converted_chars);
2880 finished = (last->result == wchar_iterate_eof);
2881
2882 /* Ensure that CONVERTED_CHARS is terminated. */
2883 last->result = wchar_iterate_eof;
2884
2885 /* WCHAR_BUF is the obstack we use to represent the string in
2886 wchar_t form. */
2887 auto_obstack wchar_buf;
2888
2889 /* Print the output string to the obstack. */
2890 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2891 width, byte_order, options);
2892
2893 if (force_ellipses || !finished)
2894 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2895
2896 /* OUTPUT is where we collect `char's for printing. */
2897 auto_obstack output;
2898
2899 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2900 (gdb_byte *) obstack_base (&wchar_buf),
2901 obstack_object_size (&wchar_buf),
2902 sizeof (gdb_wchar_t), &output, translit_char);
2903 obstack_1grow (&output, '\0');
2904
2905 fputs_filtered ((const char *) obstack_base (&output), stream);
2906
2907 do_cleanups (cleanup);
2908 }
2909
2910 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2911 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2912 stops at the first null byte, otherwise printing proceeds (including null
2913 bytes) until either print_max or LEN characters have been printed,
2914 whichever is smaller. ENCODING is the name of the string's
2915 encoding. It can be NULL, in which case the target encoding is
2916 assumed. */
2917
2918 int
2919 val_print_string (struct type *elttype, const char *encoding,
2920 CORE_ADDR addr, int len,
2921 struct ui_file *stream,
2922 const struct value_print_options *options)
2923 {
2924 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2925 int err; /* Non-zero if we got a bad read. */
2926 int found_nul; /* Non-zero if we found the nul char. */
2927 unsigned int fetchlimit; /* Maximum number of chars to print. */
2928 int bytes_read;
2929 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2930 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2931 struct gdbarch *gdbarch = get_type_arch (elttype);
2932 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2933 int width = TYPE_LENGTH (elttype);
2934
2935 /* First we need to figure out the limit on the number of characters we are
2936 going to attempt to fetch and print. This is actually pretty simple. If
2937 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2938 LEN is -1, then the limit is print_max. This is true regardless of
2939 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2940 because finding the null byte (or available memory) is what actually
2941 limits the fetch. */
2942
2943 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2944 options->print_max));
2945
2946 err = read_string (addr, len, width, fetchlimit, byte_order,
2947 &buffer, &bytes_read);
2948 old_chain = make_cleanup (xfree, buffer);
2949
2950 addr += bytes_read;
2951
2952 /* We now have either successfully filled the buffer to fetchlimit,
2953 or terminated early due to an error or finding a null char when
2954 LEN is -1. */
2955
2956 /* Determine found_nul by looking at the last character read. */
2957 found_nul = 0;
2958 if (bytes_read >= width)
2959 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2960 byte_order) == 0;
2961 if (len == -1 && !found_nul)
2962 {
2963 gdb_byte *peekbuf;
2964
2965 /* We didn't find a NUL terminator we were looking for. Attempt
2966 to peek at the next character. If not successful, or it is not
2967 a null byte, then force ellipsis to be printed. */
2968
2969 peekbuf = (gdb_byte *) alloca (width);
2970
2971 if (target_read_memory (addr, peekbuf, width) == 0
2972 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2973 force_ellipsis = 1;
2974 }
2975 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2976 {
2977 /* Getting an error when we have a requested length, or fetching less
2978 than the number of characters actually requested, always make us
2979 print ellipsis. */
2980 force_ellipsis = 1;
2981 }
2982
2983 /* If we get an error before fetching anything, don't print a string.
2984 But if we fetch something and then get an error, print the string
2985 and then the error message. */
2986 if (err == 0 || bytes_read > 0)
2987 {
2988 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
2989 encoding, force_ellipsis, options);
2990 }
2991
2992 if (err != 0)
2993 {
2994 char *str;
2995
2996 str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2997 make_cleanup (xfree, str);
2998
2999 fprintf_filtered (stream, "<error: ");
3000 fputs_filtered (str, stream);
3001 fprintf_filtered (stream, ">");
3002 }
3003
3004 gdb_flush (stream);
3005 do_cleanups (old_chain);
3006
3007 return (bytes_read / width);
3008 }
3009 \f
3010
3011 /* The 'set input-radix' command writes to this auxiliary variable.
3012 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
3013 it is left unchanged. */
3014
3015 static unsigned input_radix_1 = 10;
3016
3017 /* Validate an input or output radix setting, and make sure the user
3018 knows what they really did here. Radix setting is confusing, e.g.
3019 setting the input radix to "10" never changes it! */
3020
3021 static void
3022 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
3023 {
3024 set_input_radix_1 (from_tty, input_radix_1);
3025 }
3026
3027 static void
3028 set_input_radix_1 (int from_tty, unsigned radix)
3029 {
3030 /* We don't currently disallow any input radix except 0 or 1, which don't
3031 make any mathematical sense. In theory, we can deal with any input
3032 radix greater than 1, even if we don't have unique digits for every
3033 value from 0 to radix-1, but in practice we lose on large radix values.
3034 We should either fix the lossage or restrict the radix range more.
3035 (FIXME). */
3036
3037 if (radix < 2)
3038 {
3039 input_radix_1 = input_radix;
3040 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
3041 radix);
3042 }
3043 input_radix_1 = input_radix = radix;
3044 if (from_tty)
3045 {
3046 printf_filtered (_("Input radix now set to "
3047 "decimal %u, hex %x, octal %o.\n"),
3048 radix, radix, radix);
3049 }
3050 }
3051
3052 /* The 'set output-radix' command writes to this auxiliary variable.
3053 If the requested radix is valid, OUTPUT_RADIX is updated,
3054 otherwise, it is left unchanged. */
3055
3056 static unsigned output_radix_1 = 10;
3057
3058 static void
3059 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
3060 {
3061 set_output_radix_1 (from_tty, output_radix_1);
3062 }
3063
3064 static void
3065 set_output_radix_1 (int from_tty, unsigned radix)
3066 {
3067 /* Validate the radix and disallow ones that we aren't prepared to
3068 handle correctly, leaving the radix unchanged. */
3069 switch (radix)
3070 {
3071 case 16:
3072 user_print_options.output_format = 'x'; /* hex */
3073 break;
3074 case 10:
3075 user_print_options.output_format = 0; /* decimal */
3076 break;
3077 case 8:
3078 user_print_options.output_format = 'o'; /* octal */
3079 break;
3080 default:
3081 output_radix_1 = output_radix;
3082 error (_("Unsupported output radix ``decimal %u''; "
3083 "output radix unchanged."),
3084 radix);
3085 }
3086 output_radix_1 = output_radix = radix;
3087 if (from_tty)
3088 {
3089 printf_filtered (_("Output radix now set to "
3090 "decimal %u, hex %x, octal %o.\n"),
3091 radix, radix, radix);
3092 }
3093 }
3094
3095 /* Set both the input and output radix at once. Try to set the output radix
3096 first, since it has the most restrictive range. An radix that is valid as
3097 an output radix is also valid as an input radix.
3098
3099 It may be useful to have an unusual input radix. If the user wishes to
3100 set an input radix that is not valid as an output radix, he needs to use
3101 the 'set input-radix' command. */
3102
3103 static void
3104 set_radix (char *arg, int from_tty)
3105 {
3106 unsigned radix;
3107
3108 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
3109 set_output_radix_1 (0, radix);
3110 set_input_radix_1 (0, radix);
3111 if (from_tty)
3112 {
3113 printf_filtered (_("Input and output radices now set to "
3114 "decimal %u, hex %x, octal %o.\n"),
3115 radix, radix, radix);
3116 }
3117 }
3118
3119 /* Show both the input and output radices. */
3120
3121 static void
3122 show_radix (char *arg, int from_tty)
3123 {
3124 if (from_tty)
3125 {
3126 if (input_radix == output_radix)
3127 {
3128 printf_filtered (_("Input and output radices set to "
3129 "decimal %u, hex %x, octal %o.\n"),
3130 input_radix, input_radix, input_radix);
3131 }
3132 else
3133 {
3134 printf_filtered (_("Input radix set to decimal "
3135 "%u, hex %x, octal %o.\n"),
3136 input_radix, input_radix, input_radix);
3137 printf_filtered (_("Output radix set to decimal "
3138 "%u, hex %x, octal %o.\n"),
3139 output_radix, output_radix, output_radix);
3140 }
3141 }
3142 }
3143 \f
3144
3145 static void
3146 set_print (char *arg, int from_tty)
3147 {
3148 printf_unfiltered (
3149 "\"set print\" must be followed by the name of a print subcommand.\n");
3150 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
3151 }
3152
3153 static void
3154 show_print (char *args, int from_tty)
3155 {
3156 cmd_show_list (showprintlist, from_tty, "");
3157 }
3158
3159 static void
3160 set_print_raw (char *arg, int from_tty)
3161 {
3162 printf_unfiltered (
3163 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
3164 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
3165 }
3166
3167 static void
3168 show_print_raw (char *args, int from_tty)
3169 {
3170 cmd_show_list (showprintrawlist, from_tty, "");
3171 }
3172
3173 \f
3174 void
3175 _initialize_valprint (void)
3176 {
3177 add_prefix_cmd ("print", no_class, set_print,
3178 _("Generic command for setting how things print."),
3179 &setprintlist, "set print ", 0, &setlist);
3180 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3181 /* Prefer set print to set prompt. */
3182 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3183
3184 add_prefix_cmd ("print", no_class, show_print,
3185 _("Generic command for showing print settings."),
3186 &showprintlist, "show print ", 0, &showlist);
3187 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3188 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3189
3190 add_prefix_cmd ("raw", no_class, set_print_raw,
3191 _("\
3192 Generic command for setting what things to print in \"raw\" mode."),
3193 &setprintrawlist, "set print raw ", 0, &setprintlist);
3194 add_prefix_cmd ("raw", no_class, show_print_raw,
3195 _("Generic command for showing \"print raw\" settings."),
3196 &showprintrawlist, "show print raw ", 0, &showprintlist);
3197
3198 add_setshow_uinteger_cmd ("elements", no_class,
3199 &user_print_options.print_max, _("\
3200 Set limit on string chars or array elements to print."), _("\
3201 Show limit on string chars or array elements to print."), _("\
3202 \"set print elements unlimited\" causes there to be no limit."),
3203 NULL,
3204 show_print_max,
3205 &setprintlist, &showprintlist);
3206
3207 add_setshow_boolean_cmd ("null-stop", no_class,
3208 &user_print_options.stop_print_at_null, _("\
3209 Set printing of char arrays to stop at first null char."), _("\
3210 Show printing of char arrays to stop at first null char."), NULL,
3211 NULL,
3212 show_stop_print_at_null,
3213 &setprintlist, &showprintlist);
3214
3215 add_setshow_uinteger_cmd ("repeats", no_class,
3216 &user_print_options.repeat_count_threshold, _("\
3217 Set threshold for repeated print elements."), _("\
3218 Show threshold for repeated print elements."), _("\
3219 \"set print repeats unlimited\" causes all elements to be individually printed."),
3220 NULL,
3221 show_repeat_count_threshold,
3222 &setprintlist, &showprintlist);
3223
3224 add_setshow_boolean_cmd ("pretty", class_support,
3225 &user_print_options.prettyformat_structs, _("\
3226 Set pretty formatting of structures."), _("\
3227 Show pretty formatting of structures."), NULL,
3228 NULL,
3229 show_prettyformat_structs,
3230 &setprintlist, &showprintlist);
3231
3232 add_setshow_boolean_cmd ("union", class_support,
3233 &user_print_options.unionprint, _("\
3234 Set printing of unions interior to structures."), _("\
3235 Show printing of unions interior to structures."), NULL,
3236 NULL,
3237 show_unionprint,
3238 &setprintlist, &showprintlist);
3239
3240 add_setshow_boolean_cmd ("array", class_support,
3241 &user_print_options.prettyformat_arrays, _("\
3242 Set pretty formatting of arrays."), _("\
3243 Show pretty formatting of arrays."), NULL,
3244 NULL,
3245 show_prettyformat_arrays,
3246 &setprintlist, &showprintlist);
3247
3248 add_setshow_boolean_cmd ("address", class_support,
3249 &user_print_options.addressprint, _("\
3250 Set printing of addresses."), _("\
3251 Show printing of addresses."), NULL,
3252 NULL,
3253 show_addressprint,
3254 &setprintlist, &showprintlist);
3255
3256 add_setshow_boolean_cmd ("symbol", class_support,
3257 &user_print_options.symbol_print, _("\
3258 Set printing of symbol names when printing pointers."), _("\
3259 Show printing of symbol names when printing pointers."),
3260 NULL, NULL,
3261 show_symbol_print,
3262 &setprintlist, &showprintlist);
3263
3264 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3265 _("\
3266 Set default input radix for entering numbers."), _("\
3267 Show default input radix for entering numbers."), NULL,
3268 set_input_radix,
3269 show_input_radix,
3270 &setlist, &showlist);
3271
3272 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3273 _("\
3274 Set default output radix for printing of values."), _("\
3275 Show default output radix for printing of values."), NULL,
3276 set_output_radix,
3277 show_output_radix,
3278 &setlist, &showlist);
3279
3280 /* The "set radix" and "show radix" commands are special in that
3281 they are like normal set and show commands but allow two normally
3282 independent variables to be either set or shown with a single
3283 command. So the usual deprecated_add_set_cmd() and [deleted]
3284 add_show_from_set() commands aren't really appropriate. */
3285 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3286 longer true - show can display anything. */
3287 add_cmd ("radix", class_support, set_radix, _("\
3288 Set default input and output number radices.\n\
3289 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3290 Without an argument, sets both radices back to the default value of 10."),
3291 &setlist);
3292 add_cmd ("radix", class_support, show_radix, _("\
3293 Show the default input and output number radices.\n\
3294 Use 'show input-radix' or 'show output-radix' to independently show each."),
3295 &showlist);
3296
3297 add_setshow_boolean_cmd ("array-indexes", class_support,
3298 &user_print_options.print_array_indexes, _("\
3299 Set printing of array indexes."), _("\
3300 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
3301 &setprintlist, &showprintlist);
3302 }
This page took 0.160439 seconds and 4 git commands to generate.