Approved by Jim Blandy:
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2 Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
3 1997, 1998, 1999, 2000, 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "obstack.h"
32 #include "language.h"
33 #include "annotate.h"
34 #include "valprint.h"
35 #include "floatformat.h"
36 #include "doublest.h"
37
38 #include <errno.h>
39
40 /* Prototypes for local functions */
41
42 static int partial_memory_read (CORE_ADDR memaddr, char *myaddr,
43 int len, int *errnoptr);
44
45 static void print_hex_chars (struct ui_file *, unsigned char *,
46 unsigned int);
47
48 static void show_print (char *, int);
49
50 static void set_print (char *, int);
51
52 static void set_radix (char *, int);
53
54 static void show_radix (char *, int);
55
56 static void set_input_radix (char *, int, struct cmd_list_element *);
57
58 static void set_input_radix_1 (int, unsigned);
59
60 static void set_output_radix (char *, int, struct cmd_list_element *);
61
62 static void set_output_radix_1 (int, unsigned);
63
64 void _initialize_valprint (void);
65
66 /* Maximum number of chars to print for a string pointer value or vector
67 contents, or UINT_MAX for no limit. Note that "set print elements 0"
68 stores UINT_MAX in print_max, which displays in a show command as
69 "unlimited". */
70
71 unsigned int print_max;
72 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
73
74 /* Default input and output radixes, and output format letter. */
75
76 unsigned input_radix = 10;
77 unsigned output_radix = 10;
78 int output_format = 0;
79
80 /* Print repeat counts if there are more than this many repetitions of an
81 element in an array. Referenced by the low level language dependent
82 print routines. */
83
84 unsigned int repeat_count_threshold = 10;
85
86 /* If nonzero, stops printing of char arrays at first null. */
87
88 int stop_print_at_null;
89
90 /* Controls pretty printing of structures. */
91
92 int prettyprint_structs;
93
94 /* Controls pretty printing of arrays. */
95
96 int prettyprint_arrays;
97
98 /* If nonzero, causes unions inside structures or other unions to be
99 printed. */
100
101 int unionprint; /* Controls printing of nested unions. */
102
103 /* If nonzero, causes machine addresses to be printed in certain contexts. */
104
105 int addressprint; /* Controls printing of machine addresses */
106 \f
107
108 /* Print data of type TYPE located at VALADDR (within GDB), which came from
109 the inferior at address ADDRESS, onto stdio stream STREAM according to
110 FORMAT (a letter, or 0 for natural format using TYPE).
111
112 If DEREF_REF is nonzero, then dereference references, otherwise just print
113 them like pointers.
114
115 The PRETTY parameter controls prettyprinting.
116
117 If the data are a string pointer, returns the number of string characters
118 printed.
119
120 FIXME: The data at VALADDR is in target byte order. If gdb is ever
121 enhanced to be able to debug more than the single target it was compiled
122 for (specific CPU type and thus specific target byte ordering), then
123 either the print routines are going to have to take this into account,
124 or the data is going to have to be passed into here already converted
125 to the host byte ordering, whichever is more convenient. */
126
127
128 int
129 val_print (struct type *type, char *valaddr, int embedded_offset,
130 CORE_ADDR address, struct ui_file *stream, int format, int deref_ref,
131 int recurse, enum val_prettyprint pretty)
132 {
133 struct type *real_type = check_typedef (type);
134 if (pretty == Val_pretty_default)
135 {
136 pretty = prettyprint_structs ? Val_prettyprint : Val_no_prettyprint;
137 }
138
139 QUIT;
140
141 /* Ensure that the type is complete and not just a stub. If the type is
142 only a stub and we can't find and substitute its complete type, then
143 print appropriate string and return. */
144
145 if (TYPE_STUB (real_type))
146 {
147 fprintf_filtered (stream, "<incomplete type>");
148 gdb_flush (stream);
149 return (0);
150 }
151
152 return (LA_VAL_PRINT (type, valaddr, embedded_offset, address,
153 stream, format, deref_ref, recurse, pretty));
154 }
155
156 /* Print the value VAL in C-ish syntax on stream STREAM.
157 FORMAT is a format-letter, or 0 for print in natural format of data type.
158 If the object printed is a string pointer, returns
159 the number of string bytes printed. */
160
161 int
162 value_print (struct value *val, struct ui_file *stream, int format,
163 enum val_prettyprint pretty)
164 {
165 if (val == 0)
166 {
167 printf_filtered ("<address of value unknown>");
168 return 0;
169 }
170 if (VALUE_OPTIMIZED_OUT (val))
171 {
172 printf_filtered ("<value optimized out>");
173 return 0;
174 }
175 return LA_VALUE_PRINT (val, stream, format, pretty);
176 }
177
178 /* Called by various <lang>_val_print routines to print
179 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
180 value. STREAM is where to print the value. */
181
182 void
183 val_print_type_code_int (struct type *type, char *valaddr,
184 struct ui_file *stream)
185 {
186 if (TYPE_LENGTH (type) > sizeof (LONGEST))
187 {
188 LONGEST val;
189
190 if (TYPE_UNSIGNED (type)
191 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
192 &val))
193 {
194 print_longest (stream, 'u', 0, val);
195 }
196 else
197 {
198 /* Signed, or we couldn't turn an unsigned value into a
199 LONGEST. For signed values, one could assume two's
200 complement (a reasonable assumption, I think) and do
201 better than this. */
202 print_hex_chars (stream, (unsigned char *) valaddr,
203 TYPE_LENGTH (type));
204 }
205 }
206 else
207 {
208 #ifdef PRINT_TYPELESS_INTEGER
209 PRINT_TYPELESS_INTEGER (stream, type, unpack_long (type, valaddr));
210 #else
211 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
212 unpack_long (type, valaddr));
213 #endif
214 }
215 }
216
217 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
218 The raison d'etre of this function is to consolidate printing of
219 LONG_LONG's into this one function. Some platforms have long longs but
220 don't have a printf() that supports "ll" in the format string. We handle
221 these by seeing if the number is representable as either a signed or
222 unsigned long, depending upon what format is desired, and if not we just
223 bail out and print the number in hex.
224
225 The format chars b,h,w,g are from print_scalar_formatted(). If USE_LOCAL,
226 format it according to the current language (this should be used for most
227 integers which GDB prints, the exception is things like protocols where
228 the format of the integer is a protocol thing, not a user-visible thing).
229 */
230
231 #if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
232 static void print_decimal (struct ui_file * stream, char *sign,
233 int use_local, ULONGEST val_ulong);
234 static void
235 print_decimal (struct ui_file *stream, char *sign, int use_local,
236 ULONGEST val_ulong)
237 {
238 unsigned long temp[3];
239 int i = 0;
240 do
241 {
242 temp[i] = val_ulong % (1000 * 1000 * 1000);
243 val_ulong /= (1000 * 1000 * 1000);
244 i++;
245 }
246 while (val_ulong != 0 && i < (sizeof (temp) / sizeof (temp[0])));
247 switch (i)
248 {
249 case 1:
250 fprintf_filtered (stream, "%s%lu",
251 sign, temp[0]);
252 break;
253 case 2:
254 fprintf_filtered (stream, "%s%lu%09lu",
255 sign, temp[1], temp[0]);
256 break;
257 case 3:
258 fprintf_filtered (stream, "%s%lu%09lu%09lu",
259 sign, temp[2], temp[1], temp[0]);
260 break;
261 default:
262 internal_error (__FILE__, __LINE__, "failed internal consistency check");
263 }
264 return;
265 }
266 #endif
267
268 void
269 print_longest (struct ui_file *stream, int format, int use_local,
270 LONGEST val_long)
271 {
272 #if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
273 if (sizeof (long) < sizeof (LONGEST))
274 {
275 switch (format)
276 {
277 case 'd':
278 {
279 /* Print a signed value, that doesn't fit in a long */
280 if ((long) val_long != val_long)
281 {
282 if (val_long < 0)
283 print_decimal (stream, "-", use_local, -val_long);
284 else
285 print_decimal (stream, "", use_local, val_long);
286 return;
287 }
288 break;
289 }
290 case 'u':
291 {
292 /* Print an unsigned value, that doesn't fit in a long */
293 if ((unsigned long) val_long != (ULONGEST) val_long)
294 {
295 print_decimal (stream, "", use_local, val_long);
296 return;
297 }
298 break;
299 }
300 case 'x':
301 case 'o':
302 case 'b':
303 case 'h':
304 case 'w':
305 case 'g':
306 /* Print as unsigned value, must fit completely in unsigned long */
307 {
308 unsigned long temp = val_long;
309 if (temp != val_long)
310 {
311 /* Urk, can't represent value in long so print in hex.
312 Do shift in two operations so that if sizeof (long)
313 == sizeof (LONGEST) we can avoid warnings from
314 picky compilers about shifts >= the size of the
315 shiftee in bits */
316 unsigned long vbot = (unsigned long) val_long;
317 LONGEST temp = (val_long >> (sizeof (long) * HOST_CHAR_BIT - 1));
318 unsigned long vtop = temp >> 1;
319 fprintf_filtered (stream, "0x%lx%08lx", vtop, vbot);
320 return;
321 }
322 break;
323 }
324 }
325 }
326 #endif
327
328 #if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
329 switch (format)
330 {
331 case 'd':
332 fprintf_filtered (stream,
333 use_local ? local_decimal_format_custom ("ll")
334 : "%lld",
335 val_long);
336 break;
337 case 'u':
338 fprintf_filtered (stream, "%llu", val_long);
339 break;
340 case 'x':
341 fprintf_filtered (stream,
342 use_local ? local_hex_format_custom ("ll")
343 : "%llx",
344 val_long);
345 break;
346 case 'o':
347 fprintf_filtered (stream,
348 use_local ? local_octal_format_custom ("ll")
349 : "%llo",
350 val_long);
351 break;
352 case 'b':
353 fprintf_filtered (stream, local_hex_format_custom ("02ll"), val_long);
354 break;
355 case 'h':
356 fprintf_filtered (stream, local_hex_format_custom ("04ll"), val_long);
357 break;
358 case 'w':
359 fprintf_filtered (stream, local_hex_format_custom ("08ll"), val_long);
360 break;
361 case 'g':
362 fprintf_filtered (stream, local_hex_format_custom ("016ll"), val_long);
363 break;
364 default:
365 internal_error (__FILE__, __LINE__, "failed internal consistency check");
366 }
367 #else /* !CC_HAS_LONG_LONG || !PRINTF_HAS_LONG_LONG */
368 /* In the following it is important to coerce (val_long) to a long. It does
369 nothing if !LONG_LONG, but it will chop off the top half (which we know
370 we can ignore) if the host supports long longs. */
371
372 switch (format)
373 {
374 case 'd':
375 fprintf_filtered (stream,
376 use_local ? local_decimal_format_custom ("l")
377 : "%ld",
378 (long) val_long);
379 break;
380 case 'u':
381 fprintf_filtered (stream, "%lu", (unsigned long) val_long);
382 break;
383 case 'x':
384 fprintf_filtered (stream,
385 use_local ? local_hex_format_custom ("l")
386 : "%lx",
387 (unsigned long) val_long);
388 break;
389 case 'o':
390 fprintf_filtered (stream,
391 use_local ? local_octal_format_custom ("l")
392 : "%lo",
393 (unsigned long) val_long);
394 break;
395 case 'b':
396 fprintf_filtered (stream, local_hex_format_custom ("02l"),
397 (unsigned long) val_long);
398 break;
399 case 'h':
400 fprintf_filtered (stream, local_hex_format_custom ("04l"),
401 (unsigned long) val_long);
402 break;
403 case 'w':
404 fprintf_filtered (stream, local_hex_format_custom ("08l"),
405 (unsigned long) val_long);
406 break;
407 case 'g':
408 fprintf_filtered (stream, local_hex_format_custom ("016l"),
409 (unsigned long) val_long);
410 break;
411 default:
412 internal_error (__FILE__, __LINE__, "failed internal consistency check");
413 }
414 #endif /* CC_HAS_LONG_LONG || PRINTF_HAS_LONG_LONG */
415 }
416
417 #if 0
418 void
419 strcat_longest (int format, int use_local, LONGEST val_long, char *buf,
420 int buflen)
421 {
422 /* FIXME: Use buflen to avoid buffer overflow. */
423 #if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
424 long vtop, vbot;
425
426 vtop = val_long >> (sizeof (long) * HOST_CHAR_BIT);
427 vbot = (long) val_long;
428
429 if ((format == 'd' && (val_long < INT_MIN || val_long > INT_MAX))
430 || ((format == 'u' || format == 'x') && (unsigned long long) val_long > UINT_MAX))
431 {
432 sprintf (buf, "0x%lx%08lx", vtop, vbot);
433 return;
434 }
435 #endif
436
437 #ifdef PRINTF_HAS_LONG_LONG
438 switch (format)
439 {
440 case 'd':
441 sprintf (buf,
442 (use_local ? local_decimal_format_custom ("ll") : "%lld"),
443 val_long);
444 break;
445 case 'u':
446 sprintf (buf, "%llu", val_long);
447 break;
448 case 'x':
449 sprintf (buf,
450 (use_local ? local_hex_format_custom ("ll") : "%llx"),
451
452 val_long);
453 break;
454 case 'o':
455 sprintf (buf,
456 (use_local ? local_octal_format_custom ("ll") : "%llo"),
457 val_long);
458 break;
459 case 'b':
460 sprintf (buf, local_hex_format_custom ("02ll"), val_long);
461 break;
462 case 'h':
463 sprintf (buf, local_hex_format_custom ("04ll"), val_long);
464 break;
465 case 'w':
466 sprintf (buf, local_hex_format_custom ("08ll"), val_long);
467 break;
468 case 'g':
469 sprintf (buf, local_hex_format_custom ("016ll"), val_long);
470 break;
471 default:
472 internal_error (__FILE__, __LINE__, "failed internal consistency check");
473 }
474 #else /* !PRINTF_HAS_LONG_LONG */
475 /* In the following it is important to coerce (val_long) to a long. It does
476 nothing if !LONG_LONG, but it will chop off the top half (which we know
477 we can ignore) if the host supports long longs. */
478
479 switch (format)
480 {
481 case 'd':
482 sprintf (buf, (use_local ? local_decimal_format_custom ("l") : "%ld"),
483 ((long) val_long));
484 break;
485 case 'u':
486 sprintf (buf, "%lu", ((unsigned long) val_long));
487 break;
488 case 'x':
489 sprintf (buf, (use_local ? local_hex_format_custom ("l") : "%lx"),
490 ((long) val_long));
491 break;
492 case 'o':
493 sprintf (buf, (use_local ? local_octal_format_custom ("l") : "%lo"),
494 ((long) val_long));
495 break;
496 case 'b':
497 sprintf (buf, local_hex_format_custom ("02l"),
498 ((long) val_long));
499 break;
500 case 'h':
501 sprintf (buf, local_hex_format_custom ("04l"),
502 ((long) val_long));
503 break;
504 case 'w':
505 sprintf (buf, local_hex_format_custom ("08l"),
506 ((long) val_long));
507 break;
508 case 'g':
509 sprintf (buf, local_hex_format_custom ("016l"),
510 ((long) val_long));
511 break;
512 default:
513 internal_error (__FILE__, __LINE__, "failed internal consistency check");
514 }
515
516 #endif /* !PRINTF_HAS_LONG_LONG */
517 }
518 #endif
519
520 /* This used to be a macro, but I don't think it is called often enough
521 to merit such treatment. */
522 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
523 arguments to a function, number in a value history, register number, etc.)
524 where the value must not be larger than can fit in an int. */
525
526 int
527 longest_to_int (LONGEST arg)
528 {
529 /* Let the compiler do the work */
530 int rtnval = (int) arg;
531
532 /* Check for overflows or underflows */
533 if (sizeof (LONGEST) > sizeof (int))
534 {
535 if (rtnval != arg)
536 {
537 error ("Value out of range.");
538 }
539 }
540 return (rtnval);
541 }
542
543 /* Print a floating point value of type TYPE, pointed to in GDB by
544 VALADDR, on STREAM. */
545
546 void
547 print_floating (char *valaddr, struct type *type, struct ui_file *stream)
548 {
549 DOUBLEST doub;
550 int inv;
551 const struct floatformat *fmt = &floatformat_unknown;
552 unsigned len = TYPE_LENGTH (type);
553
554 /* FIXME: kettenis/2001-01-20: The check for IEEE_FLOAT is probably
555 still necessary since GDB by default assumes that the target uses
556 the IEEE 754 representation for its floats and doubles. Of
557 course this is all crock and should be cleaned up. */
558
559 if (len == TARGET_FLOAT_BIT / TARGET_CHAR_BIT && IEEE_FLOAT)
560 fmt = TARGET_FLOAT_FORMAT;
561 else if (len == TARGET_DOUBLE_BIT / TARGET_CHAR_BIT && IEEE_FLOAT)
562 fmt = TARGET_DOUBLE_FORMAT;
563 else if (len == TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT)
564 fmt = TARGET_LONG_DOUBLE_FORMAT;
565
566 if (floatformat_is_nan (fmt, valaddr))
567 {
568 if (floatformat_is_negative (fmt, valaddr))
569 fprintf_filtered (stream, "-");
570 fprintf_filtered (stream, "nan(");
571 fprintf_filtered (stream, local_hex_format_prefix ());
572 fprintf_filtered (stream, floatformat_mantissa (fmt, valaddr));
573 fprintf_filtered (stream, local_hex_format_suffix ());
574 fprintf_filtered (stream, ")");
575 return;
576 }
577
578 doub = unpack_double (type, valaddr, &inv);
579 if (inv)
580 {
581 fprintf_filtered (stream, "<invalid float value>");
582 return;
583 }
584
585 /* FIXME: kettenis/2001-01-20: The following code makes too much
586 assumptions about the host and target floating point format. */
587
588 if (len < sizeof (double))
589 fprintf_filtered (stream, "%.9g", (double) doub);
590 else if (len == sizeof (double))
591 fprintf_filtered (stream, "%.17g", (double) doub);
592 else
593 #ifdef PRINTF_HAS_LONG_DOUBLE
594 fprintf_filtered (stream, "%.35Lg", doub);
595 #else
596 /* This at least wins with values that are representable as
597 doubles. */
598 fprintf_filtered (stream, "%.17g", (double) doub);
599 #endif
600 }
601
602 void
603 print_binary_chars (struct ui_file *stream, unsigned char *valaddr,
604 unsigned len)
605 {
606
607 #define BITS_IN_BYTES 8
608
609 unsigned char *p;
610 unsigned int i;
611 int b;
612
613 /* Declared "int" so it will be signed.
614 * This ensures that right shift will shift in zeros.
615 */
616 const int mask = 0x080;
617
618 /* FIXME: We should be not printing leading zeroes in most cases. */
619
620 fprintf_filtered (stream, local_binary_format_prefix ());
621 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
622 {
623 for (p = valaddr;
624 p < valaddr + len;
625 p++)
626 {
627 /* Every byte has 8 binary characters; peel off
628 * and print from the MSB end.
629 */
630 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
631 {
632 if (*p & (mask >> i))
633 b = 1;
634 else
635 b = 0;
636
637 fprintf_filtered (stream, "%1d", b);
638 }
639 }
640 }
641 else
642 {
643 for (p = valaddr + len - 1;
644 p >= valaddr;
645 p--)
646 {
647 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
648 {
649 if (*p & (mask >> i))
650 b = 1;
651 else
652 b = 0;
653
654 fprintf_filtered (stream, "%1d", b);
655 }
656 }
657 }
658 fprintf_filtered (stream, local_binary_format_suffix ());
659 }
660
661 /* VALADDR points to an integer of LEN bytes.
662 * Print it in octal on stream or format it in buf.
663 */
664 void
665 print_octal_chars (struct ui_file *stream, unsigned char *valaddr, unsigned len)
666 {
667 unsigned char *p;
668 unsigned char octa1, octa2, octa3, carry;
669 int cycle;
670
671 /* FIXME: We should be not printing leading zeroes in most cases. */
672
673
674 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
675 * the extra bits, which cycle every three bytes:
676 *
677 * Byte side: 0 1 2 3
678 * | | | |
679 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
680 *
681 * Octal side: 0 1 carry 3 4 carry ...
682 *
683 * Cycle number: 0 1 2
684 *
685 * But of course we are printing from the high side, so we have to
686 * figure out where in the cycle we are so that we end up with no
687 * left over bits at the end.
688 */
689 #define BITS_IN_OCTAL 3
690 #define HIGH_ZERO 0340
691 #define LOW_ZERO 0016
692 #define CARRY_ZERO 0003
693 #define HIGH_ONE 0200
694 #define MID_ONE 0160
695 #define LOW_ONE 0016
696 #define CARRY_ONE 0001
697 #define HIGH_TWO 0300
698 #define MID_TWO 0070
699 #define LOW_TWO 0007
700
701 /* For 32 we start in cycle 2, with two bits and one bit carry;
702 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
703 */
704 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
705 carry = 0;
706
707 fprintf_filtered (stream, local_octal_format_prefix ());
708 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
709 {
710 for (p = valaddr;
711 p < valaddr + len;
712 p++)
713 {
714 switch (cycle)
715 {
716 case 0:
717 /* No carry in, carry out two bits.
718 */
719 octa1 = (HIGH_ZERO & *p) >> 5;
720 octa2 = (LOW_ZERO & *p) >> 2;
721 carry = (CARRY_ZERO & *p);
722 fprintf_filtered (stream, "%o", octa1);
723 fprintf_filtered (stream, "%o", octa2);
724 break;
725
726 case 1:
727 /* Carry in two bits, carry out one bit.
728 */
729 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
730 octa2 = (MID_ONE & *p) >> 4;
731 octa3 = (LOW_ONE & *p) >> 1;
732 carry = (CARRY_ONE & *p);
733 fprintf_filtered (stream, "%o", octa1);
734 fprintf_filtered (stream, "%o", octa2);
735 fprintf_filtered (stream, "%o", octa3);
736 break;
737
738 case 2:
739 /* Carry in one bit, no carry out.
740 */
741 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
742 octa2 = (MID_TWO & *p) >> 3;
743 octa3 = (LOW_TWO & *p);
744 carry = 0;
745 fprintf_filtered (stream, "%o", octa1);
746 fprintf_filtered (stream, "%o", octa2);
747 fprintf_filtered (stream, "%o", octa3);
748 break;
749
750 default:
751 error ("Internal error in octal conversion;");
752 }
753
754 cycle++;
755 cycle = cycle % BITS_IN_OCTAL;
756 }
757 }
758 else
759 {
760 for (p = valaddr + len - 1;
761 p >= valaddr;
762 p--)
763 {
764 switch (cycle)
765 {
766 case 0:
767 /* Carry out, no carry in */
768 octa1 = (HIGH_ZERO & *p) >> 5;
769 octa2 = (LOW_ZERO & *p) >> 2;
770 carry = (CARRY_ZERO & *p);
771 fprintf_filtered (stream, "%o", octa1);
772 fprintf_filtered (stream, "%o", octa2);
773 break;
774
775 case 1:
776 /* Carry in, carry out */
777 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
778 octa2 = (MID_ONE & *p) >> 4;
779 octa3 = (LOW_ONE & *p) >> 1;
780 carry = (CARRY_ONE & *p);
781 fprintf_filtered (stream, "%o", octa1);
782 fprintf_filtered (stream, "%o", octa2);
783 fprintf_filtered (stream, "%o", octa3);
784 break;
785
786 case 2:
787 /* Carry in, no carry out */
788 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
789 octa2 = (MID_TWO & *p) >> 3;
790 octa3 = (LOW_TWO & *p);
791 carry = 0;
792 fprintf_filtered (stream, "%o", octa1);
793 fprintf_filtered (stream, "%o", octa2);
794 fprintf_filtered (stream, "%o", octa3);
795 break;
796
797 default:
798 error ("Internal error in octal conversion;");
799 }
800
801 cycle++;
802 cycle = cycle % BITS_IN_OCTAL;
803 }
804 }
805
806 fprintf_filtered (stream, local_octal_format_suffix ());
807 }
808
809 /* VALADDR points to an integer of LEN bytes.
810 * Print it in decimal on stream or format it in buf.
811 */
812 void
813 print_decimal_chars (struct ui_file *stream, unsigned char *valaddr,
814 unsigned len)
815 {
816 #define TEN 10
817 #define TWO_TO_FOURTH 16
818 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
819 #define CARRY_LEFT( x ) ((x) % TEN)
820 #define SHIFT( x ) ((x) << 4)
821 #define START_P \
822 ((TARGET_BYTE_ORDER == BIG_ENDIAN) ? valaddr : valaddr + len - 1)
823 #define NOT_END_P \
824 ((TARGET_BYTE_ORDER == BIG_ENDIAN) ? (p < valaddr + len) : (p >= valaddr))
825 #define NEXT_P \
826 ((TARGET_BYTE_ORDER == BIG_ENDIAN) ? p++ : p-- )
827 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
828 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
829
830 unsigned char *p;
831 unsigned char *digits;
832 int carry;
833 int decimal_len;
834 int i, j, decimal_digits;
835 int dummy;
836 int flip;
837
838 /* Base-ten number is less than twice as many digits
839 * as the base 16 number, which is 2 digits per byte.
840 */
841 decimal_len = len * 2 * 2;
842 digits = xmalloc (decimal_len);
843
844 for (i = 0; i < decimal_len; i++)
845 {
846 digits[i] = 0;
847 }
848
849 fprintf_filtered (stream, local_decimal_format_prefix ());
850
851 /* Ok, we have an unknown number of bytes of data to be printed in
852 * decimal.
853 *
854 * Given a hex number (in nibbles) as XYZ, we start by taking X and
855 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
856 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
857 *
858 * The trick is that "digits" holds a base-10 number, but sometimes
859 * the individual digits are > 10.
860 *
861 * Outer loop is per nibble (hex digit) of input, from MSD end to
862 * LSD end.
863 */
864 decimal_digits = 0; /* Number of decimal digits so far */
865 p = START_P;
866 flip = 0;
867 while (NOT_END_P)
868 {
869 /*
870 * Multiply current base-ten number by 16 in place.
871 * Each digit was between 0 and 9, now is between
872 * 0 and 144.
873 */
874 for (j = 0; j < decimal_digits; j++)
875 {
876 digits[j] = SHIFT (digits[j]);
877 }
878
879 /* Take the next nibble off the input and add it to what
880 * we've got in the LSB position. Bottom 'digit' is now
881 * between 0 and 159.
882 *
883 * "flip" is used to run this loop twice for each byte.
884 */
885 if (flip == 0)
886 {
887 /* Take top nibble.
888 */
889 digits[0] += HIGH_NIBBLE (*p);
890 flip = 1;
891 }
892 else
893 {
894 /* Take low nibble and bump our pointer "p".
895 */
896 digits[0] += LOW_NIBBLE (*p);
897 NEXT_P;
898 flip = 0;
899 }
900
901 /* Re-decimalize. We have to do this often enough
902 * that we don't overflow, but once per nibble is
903 * overkill. Easier this way, though. Note that the
904 * carry is often larger than 10 (e.g. max initial
905 * carry out of lowest nibble is 15, could bubble all
906 * the way up greater than 10). So we have to do
907 * the carrying beyond the last current digit.
908 */
909 carry = 0;
910 for (j = 0; j < decimal_len - 1; j++)
911 {
912 digits[j] += carry;
913
914 /* "/" won't handle an unsigned char with
915 * a value that if signed would be negative.
916 * So extend to longword int via "dummy".
917 */
918 dummy = digits[j];
919 carry = CARRY_OUT (dummy);
920 digits[j] = CARRY_LEFT (dummy);
921
922 if (j >= decimal_digits && carry == 0)
923 {
924 /*
925 * All higher digits are 0 and we
926 * no longer have a carry.
927 *
928 * Note: "j" is 0-based, "decimal_digits" is
929 * 1-based.
930 */
931 decimal_digits = j + 1;
932 break;
933 }
934 }
935 }
936
937 /* Ok, now "digits" is the decimal representation, with
938 * the "decimal_digits" actual digits. Print!
939 */
940 for (i = decimal_digits - 1; i >= 0; i--)
941 {
942 fprintf_filtered (stream, "%1d", digits[i]);
943 }
944 xfree (digits);
945
946 fprintf_filtered (stream, local_decimal_format_suffix ());
947 }
948
949 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
950
951 static void
952 print_hex_chars (struct ui_file *stream, unsigned char *valaddr, unsigned len)
953 {
954 unsigned char *p;
955
956 /* FIXME: We should be not printing leading zeroes in most cases. */
957
958 fprintf_filtered (stream, local_hex_format_prefix ());
959 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
960 {
961 for (p = valaddr;
962 p < valaddr + len;
963 p++)
964 {
965 fprintf_filtered (stream, "%02x", *p);
966 }
967 }
968 else
969 {
970 for (p = valaddr + len - 1;
971 p >= valaddr;
972 p--)
973 {
974 fprintf_filtered (stream, "%02x", *p);
975 }
976 }
977 fprintf_filtered (stream, local_hex_format_suffix ());
978 }
979
980 /* Called by various <lang>_val_print routines to print elements of an
981 array in the form "<elem1>, <elem2>, <elem3>, ...".
982
983 (FIXME?) Assumes array element separator is a comma, which is correct
984 for all languages currently handled.
985 (FIXME?) Some languages have a notation for repeated array elements,
986 perhaps we should try to use that notation when appropriate.
987 */
988
989 void
990 val_print_array_elements (struct type *type, char *valaddr, CORE_ADDR address,
991 struct ui_file *stream, int format, int deref_ref,
992 int recurse, enum val_prettyprint pretty,
993 unsigned int i)
994 {
995 unsigned int things_printed = 0;
996 unsigned len;
997 struct type *elttype;
998 unsigned eltlen;
999 /* Position of the array element we are examining to see
1000 whether it is repeated. */
1001 unsigned int rep1;
1002 /* Number of repetitions we have detected so far. */
1003 unsigned int reps;
1004
1005 elttype = TYPE_TARGET_TYPE (type);
1006 eltlen = TYPE_LENGTH (check_typedef (elttype));
1007 len = TYPE_LENGTH (type) / eltlen;
1008
1009 annotate_array_section_begin (i, elttype);
1010
1011 for (; i < len && things_printed < print_max; i++)
1012 {
1013 if (i != 0)
1014 {
1015 if (prettyprint_arrays)
1016 {
1017 fprintf_filtered (stream, ",\n");
1018 print_spaces_filtered (2 + 2 * recurse, stream);
1019 }
1020 else
1021 {
1022 fprintf_filtered (stream, ", ");
1023 }
1024 }
1025 wrap_here (n_spaces (2 + 2 * recurse));
1026
1027 rep1 = i + 1;
1028 reps = 1;
1029 while ((rep1 < len) &&
1030 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
1031 {
1032 ++reps;
1033 ++rep1;
1034 }
1035
1036 if (reps > repeat_count_threshold)
1037 {
1038 val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
1039 deref_ref, recurse + 1, pretty);
1040 annotate_elt_rep (reps);
1041 fprintf_filtered (stream, " <repeats %u times>", reps);
1042 annotate_elt_rep_end ();
1043
1044 i = rep1 - 1;
1045 things_printed += repeat_count_threshold;
1046 }
1047 else
1048 {
1049 val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
1050 deref_ref, recurse + 1, pretty);
1051 annotate_elt ();
1052 things_printed++;
1053 }
1054 }
1055 annotate_array_section_end ();
1056 if (i < len)
1057 {
1058 fprintf_filtered (stream, "...");
1059 }
1060 }
1061
1062 /* Read LEN bytes of target memory at address MEMADDR, placing the
1063 results in GDB's memory at MYADDR. Returns a count of the bytes
1064 actually read, and optionally an errno value in the location
1065 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1066
1067 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1068 function be eliminated. */
1069
1070 static int
1071 partial_memory_read (CORE_ADDR memaddr, char *myaddr, int len, int *errnoptr)
1072 {
1073 int nread; /* Number of bytes actually read. */
1074 int errcode; /* Error from last read. */
1075
1076 /* First try a complete read. */
1077 errcode = target_read_memory (memaddr, myaddr, len);
1078 if (errcode == 0)
1079 {
1080 /* Got it all. */
1081 nread = len;
1082 }
1083 else
1084 {
1085 /* Loop, reading one byte at a time until we get as much as we can. */
1086 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1087 {
1088 errcode = target_read_memory (memaddr++, myaddr++, 1);
1089 }
1090 /* If an error, the last read was unsuccessful, so adjust count. */
1091 if (errcode != 0)
1092 {
1093 nread--;
1094 }
1095 }
1096 if (errnoptr != NULL)
1097 {
1098 *errnoptr = errcode;
1099 }
1100 return (nread);
1101 }
1102
1103 /* Print a string from the inferior, starting at ADDR and printing up to LEN
1104 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1105 stops at the first null byte, otherwise printing proceeds (including null
1106 bytes) until either print_max or LEN characters have been printed,
1107 whichever is smaller. */
1108
1109 /* FIXME: Use target_read_string. */
1110
1111 int
1112 val_print_string (CORE_ADDR addr, int len, int width, struct ui_file *stream)
1113 {
1114 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1115 int errcode; /* Errno returned from bad reads. */
1116 unsigned int fetchlimit; /* Maximum number of chars to print. */
1117 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1118 unsigned int chunksize; /* Size of each fetch, in chars. */
1119 char *buffer = NULL; /* Dynamically growable fetch buffer. */
1120 char *bufptr; /* Pointer to next available byte in buffer. */
1121 char *limit; /* First location past end of fetch buffer. */
1122 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1123 int found_nul; /* Non-zero if we found the nul char */
1124
1125 /* First we need to figure out the limit on the number of characters we are
1126 going to attempt to fetch and print. This is actually pretty simple. If
1127 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1128 LEN is -1, then the limit is print_max. This is true regardless of
1129 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1130 because finding the null byte (or available memory) is what actually
1131 limits the fetch. */
1132
1133 fetchlimit = (len == -1 ? print_max : min (len, print_max));
1134
1135 /* Now decide how large of chunks to try to read in one operation. This
1136 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1137 so we might as well read them all in one operation. If LEN is -1, we
1138 are looking for a null terminator to end the fetching, so we might as
1139 well read in blocks that are large enough to be efficient, but not so
1140 large as to be slow if fetchlimit happens to be large. So we choose the
1141 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1142 200 is way too big for remote debugging over a serial line. */
1143
1144 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1145
1146 /* Loop until we either have all the characters to print, or we encounter
1147 some error, such as bumping into the end of the address space. */
1148
1149 found_nul = 0;
1150 old_chain = make_cleanup (null_cleanup, 0);
1151
1152 if (len > 0)
1153 {
1154 buffer = (char *) xmalloc (len * width);
1155 bufptr = buffer;
1156 old_chain = make_cleanup (xfree, buffer);
1157
1158 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1159 / width;
1160 addr += nfetch * width;
1161 bufptr += nfetch * width;
1162 }
1163 else if (len == -1)
1164 {
1165 unsigned long bufsize = 0;
1166 do
1167 {
1168 QUIT;
1169 nfetch = min (chunksize, fetchlimit - bufsize);
1170
1171 if (buffer == NULL)
1172 buffer = (char *) xmalloc (nfetch * width);
1173 else
1174 {
1175 discard_cleanups (old_chain);
1176 buffer = (char *) xrealloc (buffer, (nfetch + bufsize) * width);
1177 }
1178
1179 old_chain = make_cleanup (xfree, buffer);
1180 bufptr = buffer + bufsize * width;
1181 bufsize += nfetch;
1182
1183 /* Read as much as we can. */
1184 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1185 / width;
1186
1187 /* Scan this chunk for the null byte that terminates the string
1188 to print. If found, we don't need to fetch any more. Note
1189 that bufptr is explicitly left pointing at the next character
1190 after the null byte, or at the next character after the end of
1191 the buffer. */
1192
1193 limit = bufptr + nfetch * width;
1194 while (bufptr < limit)
1195 {
1196 unsigned long c;
1197
1198 c = extract_unsigned_integer (bufptr, width);
1199 addr += width;
1200 bufptr += width;
1201 if (c == 0)
1202 {
1203 /* We don't care about any error which happened after
1204 the NULL terminator. */
1205 errcode = 0;
1206 found_nul = 1;
1207 break;
1208 }
1209 }
1210 }
1211 while (errcode == 0 /* no error */
1212 && bufptr - buffer < fetchlimit * width /* no overrun */
1213 && !found_nul); /* haven't found nul yet */
1214 }
1215 else
1216 { /* length of string is really 0! */
1217 buffer = bufptr = NULL;
1218 errcode = 0;
1219 }
1220
1221 /* bufptr and addr now point immediately beyond the last byte which we
1222 consider part of the string (including a '\0' which ends the string). */
1223
1224 /* We now have either successfully filled the buffer to fetchlimit, or
1225 terminated early due to an error or finding a null char when LEN is -1. */
1226
1227 if (len == -1 && !found_nul)
1228 {
1229 char *peekbuf;
1230
1231 /* We didn't find a null terminator we were looking for. Attempt
1232 to peek at the next character. If not successful, or it is not
1233 a null byte, then force ellipsis to be printed. */
1234
1235 peekbuf = (char *) alloca (width);
1236
1237 if (target_read_memory (addr, peekbuf, width) == 0
1238 && extract_unsigned_integer (peekbuf, width) != 0)
1239 force_ellipsis = 1;
1240 }
1241 else if ((len >= 0 && errcode != 0) || (len > (bufptr - buffer) / width))
1242 {
1243 /* Getting an error when we have a requested length, or fetching less
1244 than the number of characters actually requested, always make us
1245 print ellipsis. */
1246 force_ellipsis = 1;
1247 }
1248
1249 QUIT;
1250
1251 /* If we get an error before fetching anything, don't print a string.
1252 But if we fetch something and then get an error, print the string
1253 and then the error message. */
1254 if (errcode == 0 || bufptr > buffer)
1255 {
1256 if (addressprint)
1257 {
1258 fputs_filtered (" ", stream);
1259 }
1260 LA_PRINT_STRING (stream, buffer, (bufptr - buffer) / width, width, force_ellipsis);
1261 }
1262
1263 if (errcode != 0)
1264 {
1265 if (errcode == EIO)
1266 {
1267 fprintf_filtered (stream, " <Address ");
1268 print_address_numeric (addr, 1, stream);
1269 fprintf_filtered (stream, " out of bounds>");
1270 }
1271 else
1272 {
1273 fprintf_filtered (stream, " <Error reading address ");
1274 print_address_numeric (addr, 1, stream);
1275 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1276 }
1277 }
1278 gdb_flush (stream);
1279 do_cleanups (old_chain);
1280 return ((bufptr - buffer) / width);
1281 }
1282 \f
1283
1284 /* Validate an input or output radix setting, and make sure the user
1285 knows what they really did here. Radix setting is confusing, e.g.
1286 setting the input radix to "10" never changes it! */
1287
1288 /* ARGSUSED */
1289 static void
1290 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
1291 {
1292 set_input_radix_1 (from_tty, *(unsigned *) c->var);
1293 }
1294
1295 /* ARGSUSED */
1296 static void
1297 set_input_radix_1 (int from_tty, unsigned radix)
1298 {
1299 /* We don't currently disallow any input radix except 0 or 1, which don't
1300 make any mathematical sense. In theory, we can deal with any input
1301 radix greater than 1, even if we don't have unique digits for every
1302 value from 0 to radix-1, but in practice we lose on large radix values.
1303 We should either fix the lossage or restrict the radix range more.
1304 (FIXME). */
1305
1306 if (radix < 2)
1307 {
1308 error ("Nonsense input radix ``decimal %u''; input radix unchanged.",
1309 radix);
1310 }
1311 input_radix = radix;
1312 if (from_tty)
1313 {
1314 printf_filtered ("Input radix now set to decimal %u, hex %x, octal %o.\n",
1315 radix, radix, radix);
1316 }
1317 }
1318
1319 /* ARGSUSED */
1320 static void
1321 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
1322 {
1323 set_output_radix_1 (from_tty, *(unsigned *) c->var);
1324 }
1325
1326 static void
1327 set_output_radix_1 (int from_tty, unsigned radix)
1328 {
1329 /* Validate the radix and disallow ones that we aren't prepared to
1330 handle correctly, leaving the radix unchanged. */
1331 switch (radix)
1332 {
1333 case 16:
1334 output_format = 'x'; /* hex */
1335 break;
1336 case 10:
1337 output_format = 0; /* decimal */
1338 break;
1339 case 8:
1340 output_format = 'o'; /* octal */
1341 break;
1342 default:
1343 error ("Unsupported output radix ``decimal %u''; output radix unchanged.",
1344 radix);
1345 }
1346 output_radix = radix;
1347 if (from_tty)
1348 {
1349 printf_filtered ("Output radix now set to decimal %u, hex %x, octal %o.\n",
1350 radix, radix, radix);
1351 }
1352 }
1353
1354 /* Set both the input and output radix at once. Try to set the output radix
1355 first, since it has the most restrictive range. An radix that is valid as
1356 an output radix is also valid as an input radix.
1357
1358 It may be useful to have an unusual input radix. If the user wishes to
1359 set an input radix that is not valid as an output radix, he needs to use
1360 the 'set input-radix' command. */
1361
1362 static void
1363 set_radix (char *arg, int from_tty)
1364 {
1365 unsigned radix;
1366
1367 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
1368 set_output_radix_1 (0, radix);
1369 set_input_radix_1 (0, radix);
1370 if (from_tty)
1371 {
1372 printf_filtered ("Input and output radices now set to decimal %u, hex %x, octal %o.\n",
1373 radix, radix, radix);
1374 }
1375 }
1376
1377 /* Show both the input and output radices. */
1378
1379 /*ARGSUSED */
1380 static void
1381 show_radix (char *arg, int from_tty)
1382 {
1383 if (from_tty)
1384 {
1385 if (input_radix == output_radix)
1386 {
1387 printf_filtered ("Input and output radices set to decimal %u, hex %x, octal %o.\n",
1388 input_radix, input_radix, input_radix);
1389 }
1390 else
1391 {
1392 printf_filtered ("Input radix set to decimal %u, hex %x, octal %o.\n",
1393 input_radix, input_radix, input_radix);
1394 printf_filtered ("Output radix set to decimal %u, hex %x, octal %o.\n",
1395 output_radix, output_radix, output_radix);
1396 }
1397 }
1398 }
1399 \f
1400
1401 /*ARGSUSED */
1402 static void
1403 set_print (char *arg, int from_tty)
1404 {
1405 printf_unfiltered (
1406 "\"set print\" must be followed by the name of a print subcommand.\n");
1407 help_list (setprintlist, "set print ", -1, gdb_stdout);
1408 }
1409
1410 /*ARGSUSED */
1411 static void
1412 show_print (char *args, int from_tty)
1413 {
1414 cmd_show_list (showprintlist, from_tty, "");
1415 }
1416 \f
1417 void
1418 _initialize_valprint (void)
1419 {
1420 struct cmd_list_element *c;
1421
1422 add_prefix_cmd ("print", no_class, set_print,
1423 "Generic command for setting how things print.",
1424 &setprintlist, "set print ", 0, &setlist);
1425 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1426 /* prefer set print to set prompt */
1427 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1428
1429 add_prefix_cmd ("print", no_class, show_print,
1430 "Generic command for showing print settings.",
1431 &showprintlist, "show print ", 0, &showlist);
1432 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1433 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1434
1435 add_show_from_set
1436 (add_set_cmd ("elements", no_class, var_uinteger, (char *) &print_max,
1437 "Set limit on string chars or array elements to print.\n\
1438 \"set print elements 0\" causes there to be no limit.",
1439 &setprintlist),
1440 &showprintlist);
1441
1442 add_show_from_set
1443 (add_set_cmd ("null-stop", no_class, var_boolean,
1444 (char *) &stop_print_at_null,
1445 "Set printing of char arrays to stop at first null char.",
1446 &setprintlist),
1447 &showprintlist);
1448
1449 add_show_from_set
1450 (add_set_cmd ("repeats", no_class, var_uinteger,
1451 (char *) &repeat_count_threshold,
1452 "Set threshold for repeated print elements.\n\
1453 \"set print repeats 0\" causes all elements to be individually printed.",
1454 &setprintlist),
1455 &showprintlist);
1456
1457 add_show_from_set
1458 (add_set_cmd ("pretty", class_support, var_boolean,
1459 (char *) &prettyprint_structs,
1460 "Set prettyprinting of structures.",
1461 &setprintlist),
1462 &showprintlist);
1463
1464 add_show_from_set
1465 (add_set_cmd ("union", class_support, var_boolean, (char *) &unionprint,
1466 "Set printing of unions interior to structures.",
1467 &setprintlist),
1468 &showprintlist);
1469
1470 add_show_from_set
1471 (add_set_cmd ("array", class_support, var_boolean,
1472 (char *) &prettyprint_arrays,
1473 "Set prettyprinting of arrays.",
1474 &setprintlist),
1475 &showprintlist);
1476
1477 add_show_from_set
1478 (add_set_cmd ("address", class_support, var_boolean, (char *) &addressprint,
1479 "Set printing of addresses.",
1480 &setprintlist),
1481 &showprintlist);
1482
1483 c = add_set_cmd ("input-radix", class_support, var_uinteger,
1484 (char *) &input_radix,
1485 "Set default input radix for entering numbers.",
1486 &setlist);
1487 add_show_from_set (c, &showlist);
1488 c->function.sfunc = set_input_radix;
1489
1490 c = add_set_cmd ("output-radix", class_support, var_uinteger,
1491 (char *) &output_radix,
1492 "Set default output radix for printing of values.",
1493 &setlist);
1494 add_show_from_set (c, &showlist);
1495 c->function.sfunc = set_output_radix;
1496
1497 /* The "set radix" and "show radix" commands are special in that they are
1498 like normal set and show commands but allow two normally independent
1499 variables to be either set or shown with a single command. So the
1500 usual add_set_cmd() and add_show_from_set() commands aren't really
1501 appropriate. */
1502 add_cmd ("radix", class_support, set_radix,
1503 "Set default input and output number radices.\n\
1504 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1505 Without an argument, sets both radices back to the default value of 10.",
1506 &setlist);
1507 add_cmd ("radix", class_support, show_radix,
1508 "Show the default input and output number radices.\n\
1509 Use 'show input-radix' or 'show output-radix' to independently show each.",
1510 &showlist);
1511
1512 /* Give people the defaults which they are used to. */
1513 prettyprint_structs = 0;
1514 prettyprint_arrays = 0;
1515 unionprint = 1;
1516 addressprint = 1;
1517 print_max = PRINT_MAX_DEFAULT;
1518 }
This page took 0.06037 seconds and 4 git commands to generate.