b65f8e553b81031104866733d194fa748a7871ce
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2005 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "value.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "language.h"
33 #include "annotate.h"
34 #include "valprint.h"
35 #include "floatformat.h"
36 #include "doublest.h"
37
38 #include <errno.h>
39
40 /* Prototypes for local functions */
41
42 static int partial_memory_read (CORE_ADDR memaddr, char *myaddr,
43 int len, int *errnoptr);
44
45 static void show_print (char *, int);
46
47 static void set_print (char *, int);
48
49 static void set_radix (char *, int);
50
51 static void show_radix (char *, int);
52
53 static void set_input_radix (char *, int, struct cmd_list_element *);
54
55 static void set_input_radix_1 (int, unsigned);
56
57 static void set_output_radix (char *, int, struct cmd_list_element *);
58
59 static void set_output_radix_1 (int, unsigned);
60
61 void _initialize_valprint (void);
62
63 /* Maximum number of chars to print for a string pointer value or vector
64 contents, or UINT_MAX for no limit. Note that "set print elements 0"
65 stores UINT_MAX in print_max, which displays in a show command as
66 "unlimited". */
67
68 unsigned int print_max;
69 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
70 static void
71 show_print_max (struct ui_file *file, int from_tty,
72 struct cmd_list_element *c, const char *value)
73 {
74 fprintf_filtered (file, _("\
75 Limit on string chars or array elements to print is %s.\n"),
76 value);
77 }
78
79
80 /* Default input and output radixes, and output format letter. */
81
82 unsigned input_radix = 10;
83 static void
84 show_input_radix (struct ui_file *file, int from_tty,
85 struct cmd_list_element *c, const char *value)
86 {
87 fprintf_filtered (file, _("\
88 Default input radix for entering numbers is %s.\n"),
89 value);
90 }
91
92 unsigned output_radix = 10;
93 static void
94 show_output_radix (struct ui_file *file, int from_tty,
95 struct cmd_list_element *c, const char *value)
96 {
97 fprintf_filtered (file, _("\
98 Default output radix for printing of values is %s.\n"),
99 value);
100 }
101 int output_format = 0;
102
103 /* Print repeat counts if there are more than this many repetitions of an
104 element in an array. Referenced by the low level language dependent
105 print routines. */
106
107 unsigned int repeat_count_threshold = 10;
108 static void
109 show_repeat_count_threshold (struct ui_file *file, int from_tty,
110 struct cmd_list_element *c, const char *value)
111 {
112 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
113 value);
114 }
115
116 /* If nonzero, stops printing of char arrays at first null. */
117
118 int stop_print_at_null;
119 static void
120 show_stop_print_at_null (struct ui_file *file, int from_tty,
121 struct cmd_list_element *c, const char *value)
122 {
123 fprintf_filtered (file, _("\
124 Printing of char arrays to stop at first null char is %s.\n"),
125 value);
126 }
127
128 /* Controls pretty printing of structures. */
129
130 int prettyprint_structs;
131 static void
132 show_prettyprint_structs (struct ui_file *file, int from_tty,
133 struct cmd_list_element *c, const char *value)
134 {
135 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
136 }
137
138 /* Controls pretty printing of arrays. */
139
140 int prettyprint_arrays;
141 static void
142 show_prettyprint_arrays (struct ui_file *file, int from_tty,
143 struct cmd_list_element *c, const char *value)
144 {
145 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
146 }
147
148 /* If nonzero, causes unions inside structures or other unions to be
149 printed. */
150
151 int unionprint; /* Controls printing of nested unions. */
152 static void
153 show_unionprint (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("\
157 Printing of unions interior to structures is %s.\n"),
158 value);
159 }
160
161 /* If nonzero, causes machine addresses to be printed in certain contexts. */
162
163 int addressprint; /* Controls printing of machine addresses */
164 static void
165 show_addressprint (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167 {
168 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
169 }
170 \f
171
172 /* Print data of type TYPE located at VALADDR (within GDB), which came from
173 the inferior at address ADDRESS, onto stdio stream STREAM according to
174 FORMAT (a letter, or 0 for natural format using TYPE).
175
176 If DEREF_REF is nonzero, then dereference references, otherwise just print
177 them like pointers.
178
179 The PRETTY parameter controls prettyprinting.
180
181 If the data are a string pointer, returns the number of string characters
182 printed.
183
184 FIXME: The data at VALADDR is in target byte order. If gdb is ever
185 enhanced to be able to debug more than the single target it was compiled
186 for (specific CPU type and thus specific target byte ordering), then
187 either the print routines are going to have to take this into account,
188 or the data is going to have to be passed into here already converted
189 to the host byte ordering, whichever is more convenient. */
190
191
192 int
193 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
194 CORE_ADDR address, struct ui_file *stream, int format,
195 int deref_ref, int recurse, enum val_prettyprint pretty)
196 {
197 struct type *real_type = check_typedef (type);
198 if (pretty == Val_pretty_default)
199 {
200 pretty = prettyprint_structs ? Val_prettyprint : Val_no_prettyprint;
201 }
202
203 QUIT;
204
205 /* Ensure that the type is complete and not just a stub. If the type is
206 only a stub and we can't find and substitute its complete type, then
207 print appropriate string and return. */
208
209 if (TYPE_STUB (real_type))
210 {
211 fprintf_filtered (stream, "<incomplete type>");
212 gdb_flush (stream);
213 return (0);
214 }
215
216 return (LA_VAL_PRINT (type, valaddr, embedded_offset, address,
217 stream, format, deref_ref, recurse, pretty));
218 }
219
220 /* Check whether the value VAL is printable. Return 1 if it is;
221 return 0 and print an appropriate error message to STREAM if it
222 is not. */
223
224 static int
225 value_check_printable (struct value *val, struct ui_file *stream)
226 {
227 if (val == 0)
228 {
229 fprintf_filtered (stream, _("<address of value unknown>"));
230 return 0;
231 }
232
233 if (value_optimized_out (val))
234 {
235 fprintf_filtered (stream, _("<value optimized out>"));
236 return 0;
237 }
238
239 return 1;
240 }
241
242 /* Print the value VAL onto stream STREAM according to FORMAT (a
243 letter, or 0 for natural format using TYPE).
244
245 If DEREF_REF is nonzero, then dereference references, otherwise just print
246 them like pointers.
247
248 The PRETTY parameter controls prettyprinting.
249
250 If the data are a string pointer, returns the number of string characters
251 printed.
252
253 This is a preferable interface to val_print, above, because it uses
254 GDB's value mechanism. */
255
256 int
257 common_val_print (struct value *val, struct ui_file *stream, int format,
258 int deref_ref, int recurse, enum val_prettyprint pretty)
259 {
260 if (!value_check_printable (val, stream))
261 return 0;
262
263 return val_print (value_type (val), value_contents_all (val),
264 value_embedded_offset (val), VALUE_ADDRESS (val),
265 stream, format, deref_ref, recurse, pretty);
266 }
267
268 /* Print the value VAL in C-ish syntax on stream STREAM.
269 FORMAT is a format-letter, or 0 for print in natural format of data type.
270 If the object printed is a string pointer, returns
271 the number of string bytes printed. */
272
273 int
274 value_print (struct value *val, struct ui_file *stream, int format,
275 enum val_prettyprint pretty)
276 {
277 if (!value_check_printable (val, stream))
278 return 0;
279
280 return LA_VALUE_PRINT (val, stream, format, pretty);
281 }
282
283 /* Called by various <lang>_val_print routines to print
284 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
285 value. STREAM is where to print the value. */
286
287 void
288 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
289 struct ui_file *stream)
290 {
291 if (TYPE_LENGTH (type) > sizeof (LONGEST))
292 {
293 LONGEST val;
294
295 if (TYPE_UNSIGNED (type)
296 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
297 &val))
298 {
299 print_longest (stream, 'u', 0, val);
300 }
301 else
302 {
303 /* Signed, or we couldn't turn an unsigned value into a
304 LONGEST. For signed values, one could assume two's
305 complement (a reasonable assumption, I think) and do
306 better than this. */
307 print_hex_chars (stream, (unsigned char *) valaddr,
308 TYPE_LENGTH (type));
309 }
310 }
311 else
312 {
313 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
314 unpack_long (type, valaddr));
315 }
316 }
317
318 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
319 The raison d'etre of this function is to consolidate printing of
320 LONG_LONG's into this one function. The format chars b,h,w,g are
321 from print_scalar_formatted(). Numbers are printed using C
322 format.
323
324 USE_C_FORMAT means to use C format in all cases. Without it,
325 'o' and 'x' format do not include the standard C radix prefix
326 (leading 0 or 0x).
327
328 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
329 and was intended to request formating according to the current
330 language and would be used for most integers that GDB prints. The
331 exceptional cases were things like protocols where the format of
332 the integer is a protocol thing, not a user-visible thing). The
333 parameter remains to preserve the information of what things might
334 be printed with language-specific format, should we ever resurrect
335 that capability. */
336
337 void
338 print_longest (struct ui_file *stream, int format, int use_c_format,
339 LONGEST val_long)
340 {
341 const char *val;
342
343 switch (format)
344 {
345 case 'd':
346 val = int_string (val_long, 10, 1, 0, 1); break;
347 case 'u':
348 val = int_string (val_long, 10, 0, 0, 1); break;
349 case 'x':
350 val = int_string (val_long, 16, 0, 0, use_c_format); break;
351 case 'b':
352 val = int_string (val_long, 16, 0, 2, 1); break;
353 case 'h':
354 val = int_string (val_long, 16, 0, 4, 1); break;
355 case 'w':
356 val = int_string (val_long, 16, 0, 8, 1); break;
357 case 'g':
358 val = int_string (val_long, 16, 0, 16, 1); break;
359 break;
360 case 'o':
361 val = int_string (val_long, 8, 0, 0, use_c_format); break;
362 default:
363 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
364 }
365 fputs_filtered (val, stream);
366 }
367
368 /* This used to be a macro, but I don't think it is called often enough
369 to merit such treatment. */
370 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
371 arguments to a function, number in a value history, register number, etc.)
372 where the value must not be larger than can fit in an int. */
373
374 int
375 longest_to_int (LONGEST arg)
376 {
377 /* Let the compiler do the work */
378 int rtnval = (int) arg;
379
380 /* Check for overflows or underflows */
381 if (sizeof (LONGEST) > sizeof (int))
382 {
383 if (rtnval != arg)
384 {
385 error (_("Value out of range."));
386 }
387 }
388 return (rtnval);
389 }
390
391 /* Print a floating point value of type TYPE (not always a
392 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
393
394 void
395 print_floating (const gdb_byte *valaddr, struct type *type,
396 struct ui_file *stream)
397 {
398 DOUBLEST doub;
399 int inv;
400 const struct floatformat *fmt = NULL;
401 unsigned len = TYPE_LENGTH (type);
402
403 /* If it is a floating-point, check for obvious problems. */
404 if (TYPE_CODE (type) == TYPE_CODE_FLT)
405 fmt = floatformat_from_type (type);
406 if (fmt != NULL && floatformat_is_nan (fmt, valaddr))
407 {
408 if (floatformat_is_negative (fmt, valaddr))
409 fprintf_filtered (stream, "-");
410 fprintf_filtered (stream, "nan(");
411 fputs_filtered ("0x", stream);
412 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
413 fprintf_filtered (stream, ")");
414 return;
415 }
416
417 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
418 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
419 needs to be used as that takes care of any necessary type
420 conversions. Such conversions are of course direct to DOUBLEST
421 and disregard any possible target floating point limitations.
422 For instance, a u64 would be converted and displayed exactly on a
423 host with 80 bit DOUBLEST but with loss of information on a host
424 with 64 bit DOUBLEST. */
425
426 doub = unpack_double (type, valaddr, &inv);
427 if (inv)
428 {
429 fprintf_filtered (stream, "<invalid float value>");
430 return;
431 }
432
433 /* FIXME: kettenis/2001-01-20: The following code makes too much
434 assumptions about the host and target floating point format. */
435
436 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
437 not necessarily be a TYPE_CODE_FLT, the below ignores that and
438 instead uses the type's length to determine the precision of the
439 floating-point value being printed. */
440
441 if (len < sizeof (double))
442 fprintf_filtered (stream, "%.9g", (double) doub);
443 else if (len == sizeof (double))
444 fprintf_filtered (stream, "%.17g", (double) doub);
445 else
446 #ifdef PRINTF_HAS_LONG_DOUBLE
447 fprintf_filtered (stream, "%.35Lg", doub);
448 #else
449 /* This at least wins with values that are representable as
450 doubles. */
451 fprintf_filtered (stream, "%.17g", (double) doub);
452 #endif
453 }
454
455 void
456 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
457 unsigned len)
458 {
459
460 #define BITS_IN_BYTES 8
461
462 const gdb_byte *p;
463 unsigned int i;
464 int b;
465
466 /* Declared "int" so it will be signed.
467 * This ensures that right shift will shift in zeros.
468 */
469 const int mask = 0x080;
470
471 /* FIXME: We should be not printing leading zeroes in most cases. */
472
473 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
474 {
475 for (p = valaddr;
476 p < valaddr + len;
477 p++)
478 {
479 /* Every byte has 8 binary characters; peel off
480 * and print from the MSB end.
481 */
482 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
483 {
484 if (*p & (mask >> i))
485 b = 1;
486 else
487 b = 0;
488
489 fprintf_filtered (stream, "%1d", b);
490 }
491 }
492 }
493 else
494 {
495 for (p = valaddr + len - 1;
496 p >= valaddr;
497 p--)
498 {
499 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
500 {
501 if (*p & (mask >> i))
502 b = 1;
503 else
504 b = 0;
505
506 fprintf_filtered (stream, "%1d", b);
507 }
508 }
509 }
510 }
511
512 /* VALADDR points to an integer of LEN bytes.
513 * Print it in octal on stream or format it in buf.
514 */
515 void
516 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
517 unsigned len)
518 {
519 const gdb_byte *p;
520 unsigned char octa1, octa2, octa3, carry;
521 int cycle;
522
523 /* FIXME: We should be not printing leading zeroes in most cases. */
524
525
526 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
527 * the extra bits, which cycle every three bytes:
528 *
529 * Byte side: 0 1 2 3
530 * | | | |
531 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
532 *
533 * Octal side: 0 1 carry 3 4 carry ...
534 *
535 * Cycle number: 0 1 2
536 *
537 * But of course we are printing from the high side, so we have to
538 * figure out where in the cycle we are so that we end up with no
539 * left over bits at the end.
540 */
541 #define BITS_IN_OCTAL 3
542 #define HIGH_ZERO 0340
543 #define LOW_ZERO 0016
544 #define CARRY_ZERO 0003
545 #define HIGH_ONE 0200
546 #define MID_ONE 0160
547 #define LOW_ONE 0016
548 #define CARRY_ONE 0001
549 #define HIGH_TWO 0300
550 #define MID_TWO 0070
551 #define LOW_TWO 0007
552
553 /* For 32 we start in cycle 2, with two bits and one bit carry;
554 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
555 */
556 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
557 carry = 0;
558
559 fputs_filtered ("0", stream);
560 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
561 {
562 for (p = valaddr;
563 p < valaddr + len;
564 p++)
565 {
566 switch (cycle)
567 {
568 case 0:
569 /* No carry in, carry out two bits.
570 */
571 octa1 = (HIGH_ZERO & *p) >> 5;
572 octa2 = (LOW_ZERO & *p) >> 2;
573 carry = (CARRY_ZERO & *p);
574 fprintf_filtered (stream, "%o", octa1);
575 fprintf_filtered (stream, "%o", octa2);
576 break;
577
578 case 1:
579 /* Carry in two bits, carry out one bit.
580 */
581 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
582 octa2 = (MID_ONE & *p) >> 4;
583 octa3 = (LOW_ONE & *p) >> 1;
584 carry = (CARRY_ONE & *p);
585 fprintf_filtered (stream, "%o", octa1);
586 fprintf_filtered (stream, "%o", octa2);
587 fprintf_filtered (stream, "%o", octa3);
588 break;
589
590 case 2:
591 /* Carry in one bit, no carry out.
592 */
593 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
594 octa2 = (MID_TWO & *p) >> 3;
595 octa3 = (LOW_TWO & *p);
596 carry = 0;
597 fprintf_filtered (stream, "%o", octa1);
598 fprintf_filtered (stream, "%o", octa2);
599 fprintf_filtered (stream, "%o", octa3);
600 break;
601
602 default:
603 error (_("Internal error in octal conversion;"));
604 }
605
606 cycle++;
607 cycle = cycle % BITS_IN_OCTAL;
608 }
609 }
610 else
611 {
612 for (p = valaddr + len - 1;
613 p >= valaddr;
614 p--)
615 {
616 switch (cycle)
617 {
618 case 0:
619 /* Carry out, no carry in */
620 octa1 = (HIGH_ZERO & *p) >> 5;
621 octa2 = (LOW_ZERO & *p) >> 2;
622 carry = (CARRY_ZERO & *p);
623 fprintf_filtered (stream, "%o", octa1);
624 fprintf_filtered (stream, "%o", octa2);
625 break;
626
627 case 1:
628 /* Carry in, carry out */
629 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
630 octa2 = (MID_ONE & *p) >> 4;
631 octa3 = (LOW_ONE & *p) >> 1;
632 carry = (CARRY_ONE & *p);
633 fprintf_filtered (stream, "%o", octa1);
634 fprintf_filtered (stream, "%o", octa2);
635 fprintf_filtered (stream, "%o", octa3);
636 break;
637
638 case 2:
639 /* Carry in, no carry out */
640 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
641 octa2 = (MID_TWO & *p) >> 3;
642 octa3 = (LOW_TWO & *p);
643 carry = 0;
644 fprintf_filtered (stream, "%o", octa1);
645 fprintf_filtered (stream, "%o", octa2);
646 fprintf_filtered (stream, "%o", octa3);
647 break;
648
649 default:
650 error (_("Internal error in octal conversion;"));
651 }
652
653 cycle++;
654 cycle = cycle % BITS_IN_OCTAL;
655 }
656 }
657
658 }
659
660 /* VALADDR points to an integer of LEN bytes.
661 * Print it in decimal on stream or format it in buf.
662 */
663 void
664 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
665 unsigned len)
666 {
667 #define TEN 10
668 #define TWO_TO_FOURTH 16
669 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
670 #define CARRY_LEFT( x ) ((x) % TEN)
671 #define SHIFT( x ) ((x) << 4)
672 #define START_P \
673 ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1)
674 #define NOT_END_P \
675 ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
676 #define NEXT_P \
677 ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? p++ : p-- )
678 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
679 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
680
681 const gdb_byte *p;
682 unsigned char *digits;
683 int carry;
684 int decimal_len;
685 int i, j, decimal_digits;
686 int dummy;
687 int flip;
688
689 /* Base-ten number is less than twice as many digits
690 * as the base 16 number, which is 2 digits per byte.
691 */
692 decimal_len = len * 2 * 2;
693 digits = xmalloc (decimal_len);
694
695 for (i = 0; i < decimal_len; i++)
696 {
697 digits[i] = 0;
698 }
699
700 /* Ok, we have an unknown number of bytes of data to be printed in
701 * decimal.
702 *
703 * Given a hex number (in nibbles) as XYZ, we start by taking X and
704 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
705 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
706 *
707 * The trick is that "digits" holds a base-10 number, but sometimes
708 * the individual digits are > 10.
709 *
710 * Outer loop is per nibble (hex digit) of input, from MSD end to
711 * LSD end.
712 */
713 decimal_digits = 0; /* Number of decimal digits so far */
714 p = START_P;
715 flip = 0;
716 while (NOT_END_P)
717 {
718 /*
719 * Multiply current base-ten number by 16 in place.
720 * Each digit was between 0 and 9, now is between
721 * 0 and 144.
722 */
723 for (j = 0; j < decimal_digits; j++)
724 {
725 digits[j] = SHIFT (digits[j]);
726 }
727
728 /* Take the next nibble off the input and add it to what
729 * we've got in the LSB position. Bottom 'digit' is now
730 * between 0 and 159.
731 *
732 * "flip" is used to run this loop twice for each byte.
733 */
734 if (flip == 0)
735 {
736 /* Take top nibble.
737 */
738 digits[0] += HIGH_NIBBLE (*p);
739 flip = 1;
740 }
741 else
742 {
743 /* Take low nibble and bump our pointer "p".
744 */
745 digits[0] += LOW_NIBBLE (*p);
746 NEXT_P;
747 flip = 0;
748 }
749
750 /* Re-decimalize. We have to do this often enough
751 * that we don't overflow, but once per nibble is
752 * overkill. Easier this way, though. Note that the
753 * carry is often larger than 10 (e.g. max initial
754 * carry out of lowest nibble is 15, could bubble all
755 * the way up greater than 10). So we have to do
756 * the carrying beyond the last current digit.
757 */
758 carry = 0;
759 for (j = 0; j < decimal_len - 1; j++)
760 {
761 digits[j] += carry;
762
763 /* "/" won't handle an unsigned char with
764 * a value that if signed would be negative.
765 * So extend to longword int via "dummy".
766 */
767 dummy = digits[j];
768 carry = CARRY_OUT (dummy);
769 digits[j] = CARRY_LEFT (dummy);
770
771 if (j >= decimal_digits && carry == 0)
772 {
773 /*
774 * All higher digits are 0 and we
775 * no longer have a carry.
776 *
777 * Note: "j" is 0-based, "decimal_digits" is
778 * 1-based.
779 */
780 decimal_digits = j + 1;
781 break;
782 }
783 }
784 }
785
786 /* Ok, now "digits" is the decimal representation, with
787 * the "decimal_digits" actual digits. Print!
788 */
789 for (i = decimal_digits - 1; i >= 0; i--)
790 {
791 fprintf_filtered (stream, "%1d", digits[i]);
792 }
793 xfree (digits);
794 }
795
796 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
797
798 void
799 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
800 unsigned len)
801 {
802 const gdb_byte *p;
803
804 /* FIXME: We should be not printing leading zeroes in most cases. */
805
806 fputs_filtered ("0x", stream);
807 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
808 {
809 for (p = valaddr;
810 p < valaddr + len;
811 p++)
812 {
813 fprintf_filtered (stream, "%02x", *p);
814 }
815 }
816 else
817 {
818 for (p = valaddr + len - 1;
819 p >= valaddr;
820 p--)
821 {
822 fprintf_filtered (stream, "%02x", *p);
823 }
824 }
825 }
826
827 /* VALADDR points to a char integer of LEN bytes. Print it out in appropriate language form on stream.
828 Omit any leading zero chars. */
829
830 void
831 print_char_chars (struct ui_file *stream, const gdb_byte *valaddr,
832 unsigned len)
833 {
834 const gdb_byte *p;
835
836 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
837 {
838 p = valaddr;
839 while (p < valaddr + len - 1 && *p == 0)
840 ++p;
841
842 while (p < valaddr + len)
843 {
844 LA_EMIT_CHAR (*p, stream, '\'');
845 ++p;
846 }
847 }
848 else
849 {
850 p = valaddr + len - 1;
851 while (p > valaddr && *p == 0)
852 --p;
853
854 while (p >= valaddr)
855 {
856 LA_EMIT_CHAR (*p, stream, '\'');
857 --p;
858 }
859 }
860 }
861
862 /* Called by various <lang>_val_print routines to print elements of an
863 array in the form "<elem1>, <elem2>, <elem3>, ...".
864
865 (FIXME?) Assumes array element separator is a comma, which is correct
866 for all languages currently handled.
867 (FIXME?) Some languages have a notation for repeated array elements,
868 perhaps we should try to use that notation when appropriate.
869 */
870
871 void
872 val_print_array_elements (struct type *type, const gdb_byte *valaddr,
873 CORE_ADDR address, struct ui_file *stream,
874 int format, int deref_ref,
875 int recurse, enum val_prettyprint pretty,
876 unsigned int i)
877 {
878 unsigned int things_printed = 0;
879 unsigned len;
880 struct type *elttype;
881 unsigned eltlen;
882 /* Position of the array element we are examining to see
883 whether it is repeated. */
884 unsigned int rep1;
885 /* Number of repetitions we have detected so far. */
886 unsigned int reps;
887
888 elttype = TYPE_TARGET_TYPE (type);
889 eltlen = TYPE_LENGTH (check_typedef (elttype));
890 len = TYPE_LENGTH (type) / eltlen;
891
892 annotate_array_section_begin (i, elttype);
893
894 for (; i < len && things_printed < print_max; i++)
895 {
896 if (i != 0)
897 {
898 if (prettyprint_arrays)
899 {
900 fprintf_filtered (stream, ",\n");
901 print_spaces_filtered (2 + 2 * recurse, stream);
902 }
903 else
904 {
905 fprintf_filtered (stream, ", ");
906 }
907 }
908 wrap_here (n_spaces (2 + 2 * recurse));
909
910 rep1 = i + 1;
911 reps = 1;
912 while ((rep1 < len) &&
913 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
914 {
915 ++reps;
916 ++rep1;
917 }
918
919 if (reps > repeat_count_threshold)
920 {
921 val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
922 deref_ref, recurse + 1, pretty);
923 annotate_elt_rep (reps);
924 fprintf_filtered (stream, " <repeats %u times>", reps);
925 annotate_elt_rep_end ();
926
927 i = rep1 - 1;
928 things_printed += repeat_count_threshold;
929 }
930 else
931 {
932 val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
933 deref_ref, recurse + 1, pretty);
934 annotate_elt ();
935 things_printed++;
936 }
937 }
938 annotate_array_section_end ();
939 if (i < len)
940 {
941 fprintf_filtered (stream, "...");
942 }
943 }
944
945 /* Read LEN bytes of target memory at address MEMADDR, placing the
946 results in GDB's memory at MYADDR. Returns a count of the bytes
947 actually read, and optionally an errno value in the location
948 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
949
950 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
951 function be eliminated. */
952
953 static int
954 partial_memory_read (CORE_ADDR memaddr, char *myaddr, int len, int *errnoptr)
955 {
956 int nread; /* Number of bytes actually read. */
957 int errcode; /* Error from last read. */
958
959 /* First try a complete read. */
960 errcode = target_read_memory (memaddr, myaddr, len);
961 if (errcode == 0)
962 {
963 /* Got it all. */
964 nread = len;
965 }
966 else
967 {
968 /* Loop, reading one byte at a time until we get as much as we can. */
969 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
970 {
971 errcode = target_read_memory (memaddr++, myaddr++, 1);
972 }
973 /* If an error, the last read was unsuccessful, so adjust count. */
974 if (errcode != 0)
975 {
976 nread--;
977 }
978 }
979 if (errnoptr != NULL)
980 {
981 *errnoptr = errcode;
982 }
983 return (nread);
984 }
985
986 /* Print a string from the inferior, starting at ADDR and printing up to LEN
987 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
988 stops at the first null byte, otherwise printing proceeds (including null
989 bytes) until either print_max or LEN characters have been printed,
990 whichever is smaller. */
991
992 /* FIXME: Use target_read_string. */
993
994 int
995 val_print_string (CORE_ADDR addr, int len, int width, struct ui_file *stream)
996 {
997 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
998 int errcode; /* Errno returned from bad reads. */
999 unsigned int fetchlimit; /* Maximum number of chars to print. */
1000 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1001 unsigned int chunksize; /* Size of each fetch, in chars. */
1002 char *buffer = NULL; /* Dynamically growable fetch buffer. */
1003 char *bufptr; /* Pointer to next available byte in buffer. */
1004 char *limit; /* First location past end of fetch buffer. */
1005 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1006 int found_nul; /* Non-zero if we found the nul char */
1007
1008 /* First we need to figure out the limit on the number of characters we are
1009 going to attempt to fetch and print. This is actually pretty simple. If
1010 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1011 LEN is -1, then the limit is print_max. This is true regardless of
1012 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1013 because finding the null byte (or available memory) is what actually
1014 limits the fetch. */
1015
1016 fetchlimit = (len == -1 ? print_max : min (len, print_max));
1017
1018 /* Now decide how large of chunks to try to read in one operation. This
1019 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1020 so we might as well read them all in one operation. If LEN is -1, we
1021 are looking for a null terminator to end the fetching, so we might as
1022 well read in blocks that are large enough to be efficient, but not so
1023 large as to be slow if fetchlimit happens to be large. So we choose the
1024 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1025 200 is way too big for remote debugging over a serial line. */
1026
1027 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1028
1029 /* Loop until we either have all the characters to print, or we encounter
1030 some error, such as bumping into the end of the address space. */
1031
1032 found_nul = 0;
1033 old_chain = make_cleanup (null_cleanup, 0);
1034
1035 if (len > 0)
1036 {
1037 buffer = (char *) xmalloc (len * width);
1038 bufptr = buffer;
1039 old_chain = make_cleanup (xfree, buffer);
1040
1041 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1042 / width;
1043 addr += nfetch * width;
1044 bufptr += nfetch * width;
1045 }
1046 else if (len == -1)
1047 {
1048 unsigned long bufsize = 0;
1049 do
1050 {
1051 QUIT;
1052 nfetch = min (chunksize, fetchlimit - bufsize);
1053
1054 if (buffer == NULL)
1055 buffer = (char *) xmalloc (nfetch * width);
1056 else
1057 {
1058 discard_cleanups (old_chain);
1059 buffer = (char *) xrealloc (buffer, (nfetch + bufsize) * width);
1060 }
1061
1062 old_chain = make_cleanup (xfree, buffer);
1063 bufptr = buffer + bufsize * width;
1064 bufsize += nfetch;
1065
1066 /* Read as much as we can. */
1067 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1068 / width;
1069
1070 /* Scan this chunk for the null byte that terminates the string
1071 to print. If found, we don't need to fetch any more. Note
1072 that bufptr is explicitly left pointing at the next character
1073 after the null byte, or at the next character after the end of
1074 the buffer. */
1075
1076 limit = bufptr + nfetch * width;
1077 while (bufptr < limit)
1078 {
1079 unsigned long c;
1080
1081 c = extract_unsigned_integer (bufptr, width);
1082 addr += width;
1083 bufptr += width;
1084 if (c == 0)
1085 {
1086 /* We don't care about any error which happened after
1087 the NULL terminator. */
1088 errcode = 0;
1089 found_nul = 1;
1090 break;
1091 }
1092 }
1093 }
1094 while (errcode == 0 /* no error */
1095 && bufptr - buffer < fetchlimit * width /* no overrun */
1096 && !found_nul); /* haven't found nul yet */
1097 }
1098 else
1099 { /* length of string is really 0! */
1100 buffer = bufptr = NULL;
1101 errcode = 0;
1102 }
1103
1104 /* bufptr and addr now point immediately beyond the last byte which we
1105 consider part of the string (including a '\0' which ends the string). */
1106
1107 /* We now have either successfully filled the buffer to fetchlimit, or
1108 terminated early due to an error or finding a null char when LEN is -1. */
1109
1110 if (len == -1 && !found_nul)
1111 {
1112 char *peekbuf;
1113
1114 /* We didn't find a null terminator we were looking for. Attempt
1115 to peek at the next character. If not successful, or it is not
1116 a null byte, then force ellipsis to be printed. */
1117
1118 peekbuf = (char *) alloca (width);
1119
1120 if (target_read_memory (addr, peekbuf, width) == 0
1121 && extract_unsigned_integer (peekbuf, width) != 0)
1122 force_ellipsis = 1;
1123 }
1124 else if ((len >= 0 && errcode != 0) || (len > (bufptr - buffer) / width))
1125 {
1126 /* Getting an error when we have a requested length, or fetching less
1127 than the number of characters actually requested, always make us
1128 print ellipsis. */
1129 force_ellipsis = 1;
1130 }
1131
1132 QUIT;
1133
1134 /* If we get an error before fetching anything, don't print a string.
1135 But if we fetch something and then get an error, print the string
1136 and then the error message. */
1137 if (errcode == 0 || bufptr > buffer)
1138 {
1139 if (addressprint)
1140 {
1141 fputs_filtered (" ", stream);
1142 }
1143 LA_PRINT_STRING (stream, buffer, (bufptr - buffer) / width, width, force_ellipsis);
1144 }
1145
1146 if (errcode != 0)
1147 {
1148 if (errcode == EIO)
1149 {
1150 fprintf_filtered (stream, " <Address ");
1151 deprecated_print_address_numeric (addr, 1, stream);
1152 fprintf_filtered (stream, " out of bounds>");
1153 }
1154 else
1155 {
1156 fprintf_filtered (stream, " <Error reading address ");
1157 deprecated_print_address_numeric (addr, 1, stream);
1158 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1159 }
1160 }
1161 gdb_flush (stream);
1162 do_cleanups (old_chain);
1163 return ((bufptr - buffer) / width);
1164 }
1165 \f
1166
1167 /* Validate an input or output radix setting, and make sure the user
1168 knows what they really did here. Radix setting is confusing, e.g.
1169 setting the input radix to "10" never changes it! */
1170
1171 static void
1172 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
1173 {
1174 set_input_radix_1 (from_tty, input_radix);
1175 }
1176
1177 static void
1178 set_input_radix_1 (int from_tty, unsigned radix)
1179 {
1180 /* We don't currently disallow any input radix except 0 or 1, which don't
1181 make any mathematical sense. In theory, we can deal with any input
1182 radix greater than 1, even if we don't have unique digits for every
1183 value from 0 to radix-1, but in practice we lose on large radix values.
1184 We should either fix the lossage or restrict the radix range more.
1185 (FIXME). */
1186
1187 if (radix < 2)
1188 {
1189 /* FIXME: cagney/2002-03-17: This needs to revert the bad radix
1190 value. */
1191 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
1192 radix);
1193 }
1194 input_radix = radix;
1195 if (from_tty)
1196 {
1197 printf_filtered (_("Input radix now set to decimal %u, hex %x, octal %o.\n"),
1198 radix, radix, radix);
1199 }
1200 }
1201
1202 static void
1203 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
1204 {
1205 set_output_radix_1 (from_tty, output_radix);
1206 }
1207
1208 static void
1209 set_output_radix_1 (int from_tty, unsigned radix)
1210 {
1211 /* Validate the radix and disallow ones that we aren't prepared to
1212 handle correctly, leaving the radix unchanged. */
1213 switch (radix)
1214 {
1215 case 16:
1216 output_format = 'x'; /* hex */
1217 break;
1218 case 10:
1219 output_format = 0; /* decimal */
1220 break;
1221 case 8:
1222 output_format = 'o'; /* octal */
1223 break;
1224 default:
1225 /* FIXME: cagney/2002-03-17: This needs to revert the bad radix
1226 value. */
1227 error (_("Unsupported output radix ``decimal %u''; output radix unchanged."),
1228 radix);
1229 }
1230 output_radix = radix;
1231 if (from_tty)
1232 {
1233 printf_filtered (_("Output radix now set to decimal %u, hex %x, octal %o.\n"),
1234 radix, radix, radix);
1235 }
1236 }
1237
1238 /* Set both the input and output radix at once. Try to set the output radix
1239 first, since it has the most restrictive range. An radix that is valid as
1240 an output radix is also valid as an input radix.
1241
1242 It may be useful to have an unusual input radix. If the user wishes to
1243 set an input radix that is not valid as an output radix, he needs to use
1244 the 'set input-radix' command. */
1245
1246 static void
1247 set_radix (char *arg, int from_tty)
1248 {
1249 unsigned radix;
1250
1251 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
1252 set_output_radix_1 (0, radix);
1253 set_input_radix_1 (0, radix);
1254 if (from_tty)
1255 {
1256 printf_filtered (_("Input and output radices now set to decimal %u, hex %x, octal %o.\n"),
1257 radix, radix, radix);
1258 }
1259 }
1260
1261 /* Show both the input and output radices. */
1262
1263 static void
1264 show_radix (char *arg, int from_tty)
1265 {
1266 if (from_tty)
1267 {
1268 if (input_radix == output_radix)
1269 {
1270 printf_filtered (_("Input and output radices set to decimal %u, hex %x, octal %o.\n"),
1271 input_radix, input_radix, input_radix);
1272 }
1273 else
1274 {
1275 printf_filtered (_("Input radix set to decimal %u, hex %x, octal %o.\n"),
1276 input_radix, input_radix, input_radix);
1277 printf_filtered (_("Output radix set to decimal %u, hex %x, octal %o.\n"),
1278 output_radix, output_radix, output_radix);
1279 }
1280 }
1281 }
1282 \f
1283
1284 static void
1285 set_print (char *arg, int from_tty)
1286 {
1287 printf_unfiltered (
1288 "\"set print\" must be followed by the name of a print subcommand.\n");
1289 help_list (setprintlist, "set print ", -1, gdb_stdout);
1290 }
1291
1292 static void
1293 show_print (char *args, int from_tty)
1294 {
1295 cmd_show_list (showprintlist, from_tty, "");
1296 }
1297 \f
1298 void
1299 _initialize_valprint (void)
1300 {
1301 struct cmd_list_element *c;
1302
1303 add_prefix_cmd ("print", no_class, set_print,
1304 _("Generic command for setting how things print."),
1305 &setprintlist, "set print ", 0, &setlist);
1306 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1307 /* prefer set print to set prompt */
1308 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1309
1310 add_prefix_cmd ("print", no_class, show_print,
1311 _("Generic command for showing print settings."),
1312 &showprintlist, "show print ", 0, &showlist);
1313 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1314 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1315
1316 add_setshow_uinteger_cmd ("elements", no_class, &print_max, _("\
1317 Set limit on string chars or array elements to print."), _("\
1318 Show limit on string chars or array elements to print."), _("\
1319 \"set print elements 0\" causes there to be no limit."),
1320 NULL,
1321 show_print_max,
1322 &setprintlist, &showprintlist);
1323
1324 add_setshow_boolean_cmd ("null-stop", no_class, &stop_print_at_null, _("\
1325 Set printing of char arrays to stop at first null char."), _("\
1326 Show printing of char arrays to stop at first null char."), NULL,
1327 NULL,
1328 show_stop_print_at_null,
1329 &setprintlist, &showprintlist);
1330
1331 add_setshow_uinteger_cmd ("repeats", no_class,
1332 &repeat_count_threshold, _("\
1333 Set threshold for repeated print elements."), _("\
1334 Show threshold for repeated print elements."), _("\
1335 \"set print repeats 0\" causes all elements to be individually printed."),
1336 NULL,
1337 show_repeat_count_threshold,
1338 &setprintlist, &showprintlist);
1339
1340 add_setshow_boolean_cmd ("pretty", class_support, &prettyprint_structs, _("\
1341 Set prettyprinting of structures."), _("\
1342 Show prettyprinting of structures."), NULL,
1343 NULL,
1344 show_prettyprint_structs,
1345 &setprintlist, &showprintlist);
1346
1347 add_setshow_boolean_cmd ("union", class_support, &unionprint, _("\
1348 Set printing of unions interior to structures."), _("\
1349 Show printing of unions interior to structures."), NULL,
1350 NULL,
1351 show_unionprint,
1352 &setprintlist, &showprintlist);
1353
1354 add_setshow_boolean_cmd ("array", class_support, &prettyprint_arrays, _("\
1355 Set prettyprinting of arrays."), _("\
1356 Show prettyprinting of arrays."), NULL,
1357 NULL,
1358 show_prettyprint_arrays,
1359 &setprintlist, &showprintlist);
1360
1361 add_setshow_boolean_cmd ("address", class_support, &addressprint, _("\
1362 Set printing of addresses."), _("\
1363 Show printing of addresses."), NULL,
1364 NULL,
1365 show_addressprint,
1366 &setprintlist, &showprintlist);
1367
1368 add_setshow_uinteger_cmd ("input-radix", class_support, &input_radix, _("\
1369 Set default input radix for entering numbers."), _("\
1370 Show default input radix for entering numbers."), NULL,
1371 set_input_radix,
1372 show_input_radix,
1373 &setlist, &showlist);
1374
1375 add_setshow_uinteger_cmd ("output-radix", class_support, &output_radix, _("\
1376 Set default output radix for printing of values."), _("\
1377 Show default output radix for printing of values."), NULL,
1378 set_output_radix,
1379 show_output_radix,
1380 &setlist, &showlist);
1381
1382 /* The "set radix" and "show radix" commands are special in that
1383 they are like normal set and show commands but allow two normally
1384 independent variables to be either set or shown with a single
1385 command. So the usual deprecated_add_set_cmd() and [deleted]
1386 add_show_from_set() commands aren't really appropriate. */
1387 /* FIXME: i18n: With the new add_setshow_integer command, that is no
1388 longer true - show can display anything. */
1389 add_cmd ("radix", class_support, set_radix, _("\
1390 Set default input and output number radices.\n\
1391 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1392 Without an argument, sets both radices back to the default value of 10."),
1393 &setlist);
1394 add_cmd ("radix", class_support, show_radix, _("\
1395 Show the default input and output number radices.\n\
1396 Use 'show input-radix' or 'show output-radix' to independently show each."),
1397 &showlist);
1398
1399 /* Give people the defaults which they are used to. */
1400 prettyprint_structs = 0;
1401 prettyprint_arrays = 0;
1402 unionprint = 1;
1403 addressprint = 1;
1404 print_max = PRINT_MAX_DEFAULT;
1405 }
This page took 0.070976 seconds and 3 git commands to generate.