b99530414b71e502e572c726bef2eb9174b633db
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "floatformat.h"
31 #include "doublest.h"
32 #include "dfp.h"
33 #include "extension.h"
34 #include "ada-lang.h"
35 #include "gdb_obstack.h"
36 #include "charset.h"
37 #include <ctype.h>
38
39 /* Maximum number of wchars returned from wchar_iterate. */
40 #define MAX_WCHARS 4
41
42 /* A convenience macro to compute the size of a wchar_t buffer containing X
43 characters. */
44 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
45
46 /* Character buffer size saved while iterating over wchars. */
47 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
48
49 /* A structure to encapsulate state information from iterated
50 character conversions. */
51 struct converted_character
52 {
53 /* The number of characters converted. */
54 int num_chars;
55
56 /* The result of the conversion. See charset.h for more. */
57 enum wchar_iterate_result result;
58
59 /* The (saved) converted character(s). */
60 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
61
62 /* The first converted target byte. */
63 const gdb_byte *buf;
64
65 /* The number of bytes converted. */
66 size_t buflen;
67
68 /* How many times this character(s) is repeated. */
69 int repeat_count;
70 };
71
72 typedef struct converted_character converted_character_d;
73 DEF_VEC_O (converted_character_d);
74
75 /* Command lists for set/show print raw. */
76 struct cmd_list_element *setprintrawlist;
77 struct cmd_list_element *showprintrawlist;
78
79 /* Prototypes for local functions */
80
81 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
82 int len, int *errptr);
83
84 static void show_print (char *, int);
85
86 static void set_print (char *, int);
87
88 static void set_radix (char *, int);
89
90 static void show_radix (char *, int);
91
92 static void set_input_radix (char *, int, struct cmd_list_element *);
93
94 static void set_input_radix_1 (int, unsigned);
95
96 static void set_output_radix (char *, int, struct cmd_list_element *);
97
98 static void set_output_radix_1 (int, unsigned);
99
100 void _initialize_valprint (void);
101
102 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
103
104 struct value_print_options user_print_options =
105 {
106 Val_prettyformat_default, /* prettyformat */
107 0, /* prettyformat_arrays */
108 0, /* prettyformat_structs */
109 0, /* vtblprint */
110 1, /* unionprint */
111 1, /* addressprint */
112 0, /* objectprint */
113 PRINT_MAX_DEFAULT, /* print_max */
114 10, /* repeat_count_threshold */
115 0, /* output_format */
116 0, /* format */
117 0, /* stop_print_at_null */
118 0, /* print_array_indexes */
119 0, /* deref_ref */
120 1, /* static_field_print */
121 1, /* pascal_static_field_print */
122 0, /* raw */
123 0, /* summary */
124 1 /* symbol_print */
125 };
126
127 /* Initialize *OPTS to be a copy of the user print options. */
128 void
129 get_user_print_options (struct value_print_options *opts)
130 {
131 *opts = user_print_options;
132 }
133
134 /* Initialize *OPTS to be a copy of the user print options, but with
135 pretty-formatting disabled. */
136 void
137 get_no_prettyformat_print_options (struct value_print_options *opts)
138 {
139 *opts = user_print_options;
140 opts->prettyformat = Val_no_prettyformat;
141 }
142
143 /* Initialize *OPTS to be a copy of the user print options, but using
144 FORMAT as the formatting option. */
145 void
146 get_formatted_print_options (struct value_print_options *opts,
147 char format)
148 {
149 *opts = user_print_options;
150 opts->format = format;
151 }
152
153 static void
154 show_print_max (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156 {
157 fprintf_filtered (file,
158 _("Limit on string chars or array "
159 "elements to print is %s.\n"),
160 value);
161 }
162
163
164 /* Default input and output radixes, and output format letter. */
165
166 unsigned input_radix = 10;
167 static void
168 show_input_radix (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170 {
171 fprintf_filtered (file,
172 _("Default input radix for entering numbers is %s.\n"),
173 value);
174 }
175
176 unsigned output_radix = 10;
177 static void
178 show_output_radix (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file,
182 _("Default output radix for printing of values is %s.\n"),
183 value);
184 }
185
186 /* By default we print arrays without printing the index of each element in
187 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
188
189 static void
190 show_print_array_indexes (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192 {
193 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
194 }
195
196 /* Print repeat counts if there are more than this many repetitions of an
197 element in an array. Referenced by the low level language dependent
198 print routines. */
199
200 static void
201 show_repeat_count_threshold (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203 {
204 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
205 value);
206 }
207
208 /* If nonzero, stops printing of char arrays at first null. */
209
210 static void
211 show_stop_print_at_null (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
213 {
214 fprintf_filtered (file,
215 _("Printing of char arrays to stop "
216 "at first null char is %s.\n"),
217 value);
218 }
219
220 /* Controls pretty printing of structures. */
221
222 static void
223 show_prettyformat_structs (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
225 {
226 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
227 }
228
229 /* Controls pretty printing of arrays. */
230
231 static void
232 show_prettyformat_arrays (struct ui_file *file, int from_tty,
233 struct cmd_list_element *c, const char *value)
234 {
235 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
236 }
237
238 /* If nonzero, causes unions inside structures or other unions to be
239 printed. */
240
241 static void
242 show_unionprint (struct ui_file *file, int from_tty,
243 struct cmd_list_element *c, const char *value)
244 {
245 fprintf_filtered (file,
246 _("Printing of unions interior to structures is %s.\n"),
247 value);
248 }
249
250 /* If nonzero, causes machine addresses to be printed in certain contexts. */
251
252 static void
253 show_addressprint (struct ui_file *file, int from_tty,
254 struct cmd_list_element *c, const char *value)
255 {
256 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
257 }
258
259 static void
260 show_symbol_print (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262 {
263 fprintf_filtered (file,
264 _("Printing of symbols when printing pointers is %s.\n"),
265 value);
266 }
267
268 \f
269
270 /* A helper function for val_print. When printing in "summary" mode,
271 we want to print scalar arguments, but not aggregate arguments.
272 This function distinguishes between the two. */
273
274 int
275 val_print_scalar_type_p (struct type *type)
276 {
277 CHECK_TYPEDEF (type);
278 while (TYPE_CODE (type) == TYPE_CODE_REF)
279 {
280 type = TYPE_TARGET_TYPE (type);
281 CHECK_TYPEDEF (type);
282 }
283 switch (TYPE_CODE (type))
284 {
285 case TYPE_CODE_ARRAY:
286 case TYPE_CODE_STRUCT:
287 case TYPE_CODE_UNION:
288 case TYPE_CODE_SET:
289 case TYPE_CODE_STRING:
290 return 0;
291 default:
292 return 1;
293 }
294 }
295
296 /* See its definition in value.h. */
297
298 int
299 valprint_check_validity (struct ui_file *stream,
300 struct type *type,
301 int embedded_offset,
302 const struct value *val)
303 {
304 CHECK_TYPEDEF (type);
305
306 if (TYPE_CODE (type) != TYPE_CODE_UNION
307 && TYPE_CODE (type) != TYPE_CODE_STRUCT
308 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
309 {
310 if (value_bits_any_optimized_out (val,
311 TARGET_CHAR_BIT * embedded_offset,
312 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
313 {
314 val_print_optimized_out (val, stream);
315 return 0;
316 }
317
318 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
319 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
320 {
321 fputs_filtered (_("<synthetic pointer>"), stream);
322 return 0;
323 }
324
325 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
326 {
327 val_print_unavailable (stream);
328 return 0;
329 }
330 }
331
332 return 1;
333 }
334
335 void
336 val_print_optimized_out (const struct value *val, struct ui_file *stream)
337 {
338 if (val != NULL && value_lval_const (val) == lval_register)
339 val_print_not_saved (stream);
340 else
341 fprintf_filtered (stream, _("<optimized out>"));
342 }
343
344 void
345 val_print_not_saved (struct ui_file *stream)
346 {
347 fprintf_filtered (stream, _("<not saved>"));
348 }
349
350 void
351 val_print_unavailable (struct ui_file *stream)
352 {
353 fprintf_filtered (stream, _("<unavailable>"));
354 }
355
356 void
357 val_print_invalid_address (struct ui_file *stream)
358 {
359 fprintf_filtered (stream, _("<invalid address>"));
360 }
361
362 /* A generic val_print that is suitable for use by language
363 implementations of the la_val_print method. This function can
364 handle most type codes, though not all, notably exception
365 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
366 the caller.
367
368 Most arguments are as to val_print.
369
370 The additional DECORATIONS argument can be used to customize the
371 output in some small, language-specific ways. */
372
373 void
374 generic_val_print (struct type *type, const gdb_byte *valaddr,
375 int embedded_offset, CORE_ADDR address,
376 struct ui_file *stream, int recurse,
377 const struct value *original_value,
378 const struct value_print_options *options,
379 const struct generic_val_print_decorations *decorations)
380 {
381 struct gdbarch *gdbarch = get_type_arch (type);
382 unsigned int i = 0; /* Number of characters printed. */
383 unsigned len;
384 struct type *elttype, *unresolved_elttype;
385 struct type *unresolved_type = type;
386 LONGEST val;
387 CORE_ADDR addr;
388
389 CHECK_TYPEDEF (type);
390 switch (TYPE_CODE (type))
391 {
392 case TYPE_CODE_ARRAY:
393 unresolved_elttype = TYPE_TARGET_TYPE (type);
394 elttype = check_typedef (unresolved_elttype);
395 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
396 {
397 LONGEST low_bound, high_bound;
398
399 if (!get_array_bounds (type, &low_bound, &high_bound))
400 error (_("Could not determine the array high bound"));
401
402 if (options->prettyformat_arrays)
403 {
404 print_spaces_filtered (2 + 2 * recurse, stream);
405 }
406
407 fprintf_filtered (stream, "{");
408 val_print_array_elements (type, valaddr, embedded_offset,
409 address, stream,
410 recurse, original_value, options, 0);
411 fprintf_filtered (stream, "}");
412 break;
413 }
414 /* Array of unspecified length: treat like pointer to first
415 elt. */
416 addr = address + embedded_offset;
417 goto print_unpacked_pointer;
418
419 case TYPE_CODE_MEMBERPTR:
420 val_print_scalar_formatted (type, valaddr, embedded_offset,
421 original_value, options, 0, stream);
422 break;
423
424 case TYPE_CODE_PTR:
425 if (options->format && options->format != 's')
426 {
427 val_print_scalar_formatted (type, valaddr, embedded_offset,
428 original_value, options, 0, stream);
429 break;
430 }
431 unresolved_elttype = TYPE_TARGET_TYPE (type);
432 elttype = check_typedef (unresolved_elttype);
433 {
434 addr = unpack_pointer (type, valaddr + embedded_offset);
435 print_unpacked_pointer:
436
437 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
438 {
439 /* Try to print what function it points to. */
440 print_function_pointer_address (options, gdbarch, addr, stream);
441 return;
442 }
443
444 if (options->symbol_print)
445 print_address_demangle (options, gdbarch, addr, stream, demangle);
446 else if (options->addressprint)
447 fputs_filtered (paddress (gdbarch, addr), stream);
448 }
449 break;
450
451 case TYPE_CODE_REF:
452 elttype = check_typedef (TYPE_TARGET_TYPE (type));
453 if (options->addressprint)
454 {
455 CORE_ADDR addr
456 = extract_typed_address (valaddr + embedded_offset, type);
457
458 fprintf_filtered (stream, "@");
459 fputs_filtered (paddress (gdbarch, addr), stream);
460 if (options->deref_ref)
461 fputs_filtered (": ", stream);
462 }
463 /* De-reference the reference. */
464 if (options->deref_ref)
465 {
466 if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
467 {
468 struct value *deref_val;
469
470 deref_val = coerce_ref_if_computed (original_value);
471 if (deref_val != NULL)
472 {
473 /* More complicated computed references are not supported. */
474 gdb_assert (embedded_offset == 0);
475 }
476 else
477 deref_val = value_at (TYPE_TARGET_TYPE (type),
478 unpack_pointer (type,
479 (valaddr
480 + embedded_offset)));
481
482 common_val_print (deref_val, stream, recurse, options,
483 current_language);
484 }
485 else
486 fputs_filtered ("???", stream);
487 }
488 break;
489
490 case TYPE_CODE_ENUM:
491 if (options->format)
492 {
493 val_print_scalar_formatted (type, valaddr, embedded_offset,
494 original_value, options, 0, stream);
495 break;
496 }
497 len = TYPE_NFIELDS (type);
498 val = unpack_long (type, valaddr + embedded_offset);
499 for (i = 0; i < len; i++)
500 {
501 QUIT;
502 if (val == TYPE_FIELD_ENUMVAL (type, i))
503 {
504 break;
505 }
506 }
507 if (i < len)
508 {
509 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
510 }
511 else if (TYPE_FLAG_ENUM (type))
512 {
513 int first = 1;
514
515 /* We have a "flag" enum, so we try to decompose it into
516 pieces as appropriate. A flag enum has disjoint
517 constants by definition. */
518 fputs_filtered ("(", stream);
519 for (i = 0; i < len; ++i)
520 {
521 QUIT;
522
523 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
524 {
525 if (!first)
526 fputs_filtered (" | ", stream);
527 first = 0;
528
529 val &= ~TYPE_FIELD_ENUMVAL (type, i);
530 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
531 }
532 }
533
534 if (first || val != 0)
535 {
536 if (!first)
537 fputs_filtered (" | ", stream);
538 fputs_filtered ("unknown: ", stream);
539 print_longest (stream, 'd', 0, val);
540 }
541
542 fputs_filtered (")", stream);
543 }
544 else
545 print_longest (stream, 'd', 0, val);
546 break;
547
548 case TYPE_CODE_FLAGS:
549 if (options->format)
550 val_print_scalar_formatted (type, valaddr, embedded_offset,
551 original_value, options, 0, stream);
552 else
553 val_print_type_code_flags (type, valaddr + embedded_offset,
554 stream);
555 break;
556
557 case TYPE_CODE_FUNC:
558 case TYPE_CODE_METHOD:
559 if (options->format)
560 {
561 val_print_scalar_formatted (type, valaddr, embedded_offset,
562 original_value, options, 0, stream);
563 break;
564 }
565 /* FIXME, we should consider, at least for ANSI C language,
566 eliminating the distinction made between FUNCs and POINTERs
567 to FUNCs. */
568 fprintf_filtered (stream, "{");
569 type_print (type, "", stream, -1);
570 fprintf_filtered (stream, "} ");
571 /* Try to print what function it points to, and its address. */
572 print_address_demangle (options, gdbarch, address, stream, demangle);
573 break;
574
575 case TYPE_CODE_BOOL:
576 if (options->format || options->output_format)
577 {
578 struct value_print_options opts = *options;
579 opts.format = (options->format ? options->format
580 : options->output_format);
581 val_print_scalar_formatted (type, valaddr, embedded_offset,
582 original_value, &opts, 0, stream);
583 }
584 else
585 {
586 val = unpack_long (type, valaddr + embedded_offset);
587 if (val == 0)
588 fputs_filtered (decorations->false_name, stream);
589 else if (val == 1)
590 fputs_filtered (decorations->true_name, stream);
591 else
592 print_longest (stream, 'd', 0, val);
593 }
594 break;
595
596 case TYPE_CODE_RANGE:
597 /* FIXME: create_static_range_type does not set the unsigned bit in a
598 range type (I think it probably should copy it from the
599 target type), so we won't print values which are too large to
600 fit in a signed integer correctly. */
601 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
602 print with the target type, though, because the size of our
603 type and the target type might differ). */
604
605 /* FALLTHROUGH */
606
607 case TYPE_CODE_INT:
608 if (options->format || options->output_format)
609 {
610 struct value_print_options opts = *options;
611
612 opts.format = (options->format ? options->format
613 : options->output_format);
614 val_print_scalar_formatted (type, valaddr, embedded_offset,
615 original_value, &opts, 0, stream);
616 }
617 else
618 val_print_type_code_int (type, valaddr + embedded_offset, stream);
619 break;
620
621 case TYPE_CODE_CHAR:
622 if (options->format || options->output_format)
623 {
624 struct value_print_options opts = *options;
625
626 opts.format = (options->format ? options->format
627 : options->output_format);
628 val_print_scalar_formatted (type, valaddr, embedded_offset,
629 original_value, &opts, 0, stream);
630 }
631 else
632 {
633 val = unpack_long (type, valaddr + embedded_offset);
634 if (TYPE_UNSIGNED (type))
635 fprintf_filtered (stream, "%u", (unsigned int) val);
636 else
637 fprintf_filtered (stream, "%d", (int) val);
638 fputs_filtered (" ", stream);
639 LA_PRINT_CHAR (val, unresolved_type, stream);
640 }
641 break;
642
643 case TYPE_CODE_FLT:
644 if (options->format)
645 {
646 val_print_scalar_formatted (type, valaddr, embedded_offset,
647 original_value, options, 0, stream);
648 }
649 else
650 {
651 print_floating (valaddr + embedded_offset, type, stream);
652 }
653 break;
654
655 case TYPE_CODE_DECFLOAT:
656 if (options->format)
657 val_print_scalar_formatted (type, valaddr, embedded_offset,
658 original_value, options, 0, stream);
659 else
660 print_decimal_floating (valaddr + embedded_offset,
661 type, stream);
662 break;
663
664 case TYPE_CODE_VOID:
665 fputs_filtered (decorations->void_name, stream);
666 break;
667
668 case TYPE_CODE_ERROR:
669 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
670 break;
671
672 case TYPE_CODE_UNDEF:
673 /* This happens (without TYPE_FLAG_STUB set) on systems which
674 don't use dbx xrefs (NO_DBX_XREFS in gcc) if a file has a
675 "struct foo *bar" and no complete type for struct foo in that
676 file. */
677 fprintf_filtered (stream, _("<incomplete type>"));
678 break;
679
680 case TYPE_CODE_COMPLEX:
681 fprintf_filtered (stream, "%s", decorations->complex_prefix);
682 if (options->format)
683 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
684 valaddr, embedded_offset,
685 original_value, options, 0, stream);
686 else
687 print_floating (valaddr + embedded_offset,
688 TYPE_TARGET_TYPE (type),
689 stream);
690 fprintf_filtered (stream, "%s", decorations->complex_infix);
691 if (options->format)
692 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
693 valaddr,
694 embedded_offset
695 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
696 original_value,
697 options, 0, stream);
698 else
699 print_floating (valaddr + embedded_offset
700 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
701 TYPE_TARGET_TYPE (type),
702 stream);
703 fprintf_filtered (stream, "%s", decorations->complex_suffix);
704 break;
705
706 case TYPE_CODE_UNION:
707 case TYPE_CODE_STRUCT:
708 case TYPE_CODE_METHODPTR:
709 default:
710 error (_("Unhandled type code %d in symbol table."),
711 TYPE_CODE (type));
712 }
713 gdb_flush (stream);
714 }
715
716 /* Print using the given LANGUAGE the data of type TYPE located at
717 VALADDR + EMBEDDED_OFFSET (within GDB), which came from the
718 inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream
719 STREAM according to OPTIONS. VAL is the whole object that came
720 from ADDRESS. VALADDR must point to the head of VAL's contents
721 buffer.
722
723 The language printers will pass down an adjusted EMBEDDED_OFFSET to
724 further helper subroutines as subfields of TYPE are printed. In
725 such cases, VALADDR is passed down unadjusted, as well as VAL, so
726 that VAL can be queried for metadata about the contents data being
727 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
728 buffer. For example: "has this field been optimized out", or "I'm
729 printing an object while inspecting a traceframe; has this
730 particular piece of data been collected?".
731
732 RECURSE indicates the amount of indentation to supply before
733 continuation lines; this amount is roughly twice the value of
734 RECURSE. */
735
736 void
737 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
738 CORE_ADDR address, struct ui_file *stream, int recurse,
739 const struct value *val,
740 const struct value_print_options *options,
741 const struct language_defn *language)
742 {
743 volatile struct gdb_exception except;
744 int ret = 0;
745 struct value_print_options local_opts = *options;
746 struct type *real_type = check_typedef (type);
747
748 if (local_opts.prettyformat == Val_prettyformat_default)
749 local_opts.prettyformat = (local_opts.prettyformat_structs
750 ? Val_prettyformat : Val_no_prettyformat);
751
752 QUIT;
753
754 /* Ensure that the type is complete and not just a stub. If the type is
755 only a stub and we can't find and substitute its complete type, then
756 print appropriate string and return. */
757
758 if (TYPE_STUB (real_type))
759 {
760 fprintf_filtered (stream, _("<incomplete type>"));
761 gdb_flush (stream);
762 return;
763 }
764
765 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
766 return;
767
768 if (!options->raw)
769 {
770 ret = apply_ext_lang_val_pretty_printer (type, valaddr, embedded_offset,
771 address, stream, recurse,
772 val, options, language);
773 if (ret)
774 return;
775 }
776
777 /* Handle summary mode. If the value is a scalar, print it;
778 otherwise, print an ellipsis. */
779 if (options->summary && !val_print_scalar_type_p (type))
780 {
781 fprintf_filtered (stream, "...");
782 return;
783 }
784
785 TRY_CATCH (except, RETURN_MASK_ERROR)
786 {
787 language->la_val_print (type, valaddr, embedded_offset, address,
788 stream, recurse, val,
789 &local_opts);
790 }
791 if (except.reason < 0)
792 fprintf_filtered (stream, _("<error reading variable>"));
793 }
794
795 /* Check whether the value VAL is printable. Return 1 if it is;
796 return 0 and print an appropriate error message to STREAM according to
797 OPTIONS if it is not. */
798
799 static int
800 value_check_printable (struct value *val, struct ui_file *stream,
801 const struct value_print_options *options)
802 {
803 if (val == 0)
804 {
805 fprintf_filtered (stream, _("<address of value unknown>"));
806 return 0;
807 }
808
809 if (value_entirely_optimized_out (val))
810 {
811 if (options->summary && !val_print_scalar_type_p (value_type (val)))
812 fprintf_filtered (stream, "...");
813 else
814 val_print_optimized_out (val, stream);
815 return 0;
816 }
817
818 if (value_entirely_unavailable (val))
819 {
820 if (options->summary && !val_print_scalar_type_p (value_type (val)))
821 fprintf_filtered (stream, "...");
822 else
823 val_print_unavailable (stream);
824 return 0;
825 }
826
827 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
828 {
829 fprintf_filtered (stream, _("<internal function %s>"),
830 value_internal_function_name (val));
831 return 0;
832 }
833
834 return 1;
835 }
836
837 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
838 to OPTIONS.
839
840 This is a preferable interface to val_print, above, because it uses
841 GDB's value mechanism. */
842
843 void
844 common_val_print (struct value *val, struct ui_file *stream, int recurse,
845 const struct value_print_options *options,
846 const struct language_defn *language)
847 {
848 if (!value_check_printable (val, stream, options))
849 return;
850
851 if (language->la_language == language_ada)
852 /* The value might have a dynamic type, which would cause trouble
853 below when trying to extract the value contents (since the value
854 size is determined from the type size which is unknown). So
855 get a fixed representation of our value. */
856 val = ada_to_fixed_value (val);
857
858 val_print (value_type (val), value_contents_for_printing (val),
859 value_embedded_offset (val), value_address (val),
860 stream, recurse,
861 val, options, language);
862 }
863
864 /* Print on stream STREAM the value VAL according to OPTIONS. The value
865 is printed using the current_language syntax. */
866
867 void
868 value_print (struct value *val, struct ui_file *stream,
869 const struct value_print_options *options)
870 {
871 if (!value_check_printable (val, stream, options))
872 return;
873
874 if (!options->raw)
875 {
876 int r
877 = apply_ext_lang_val_pretty_printer (value_type (val),
878 value_contents_for_printing (val),
879 value_embedded_offset (val),
880 value_address (val),
881 stream, 0,
882 val, options, current_language);
883
884 if (r)
885 return;
886 }
887
888 LA_VALUE_PRINT (val, stream, options);
889 }
890
891 /* Called by various <lang>_val_print routines to print
892 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
893 value. STREAM is where to print the value. */
894
895 void
896 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
897 struct ui_file *stream)
898 {
899 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
900
901 if (TYPE_LENGTH (type) > sizeof (LONGEST))
902 {
903 LONGEST val;
904
905 if (TYPE_UNSIGNED (type)
906 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
907 byte_order, &val))
908 {
909 print_longest (stream, 'u', 0, val);
910 }
911 else
912 {
913 /* Signed, or we couldn't turn an unsigned value into a
914 LONGEST. For signed values, one could assume two's
915 complement (a reasonable assumption, I think) and do
916 better than this. */
917 print_hex_chars (stream, (unsigned char *) valaddr,
918 TYPE_LENGTH (type), byte_order);
919 }
920 }
921 else
922 {
923 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
924 unpack_long (type, valaddr));
925 }
926 }
927
928 void
929 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
930 struct ui_file *stream)
931 {
932 ULONGEST val = unpack_long (type, valaddr);
933 int bitpos, nfields = TYPE_NFIELDS (type);
934
935 fputs_filtered ("[ ", stream);
936 for (bitpos = 0; bitpos < nfields; bitpos++)
937 {
938 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
939 && (val & ((ULONGEST)1 << bitpos)))
940 {
941 if (TYPE_FIELD_NAME (type, bitpos))
942 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
943 else
944 fprintf_filtered (stream, "#%d ", bitpos);
945 }
946 }
947 fputs_filtered ("]", stream);
948 }
949
950 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
951 according to OPTIONS and SIZE on STREAM. Format i is not supported
952 at this level.
953
954 This is how the elements of an array or structure are printed
955 with a format. */
956
957 void
958 val_print_scalar_formatted (struct type *type,
959 const gdb_byte *valaddr, int embedded_offset,
960 const struct value *val,
961 const struct value_print_options *options,
962 int size,
963 struct ui_file *stream)
964 {
965 gdb_assert (val != NULL);
966 gdb_assert (valaddr == value_contents_for_printing_const (val));
967
968 /* If we get here with a string format, try again without it. Go
969 all the way back to the language printers, which may call us
970 again. */
971 if (options->format == 's')
972 {
973 struct value_print_options opts = *options;
974 opts.format = 0;
975 opts.deref_ref = 0;
976 val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts,
977 current_language);
978 return;
979 }
980
981 /* A scalar object that does not have all bits available can't be
982 printed, because all bits contribute to its representation. */
983 if (value_bits_any_optimized_out (val,
984 TARGET_CHAR_BIT * embedded_offset,
985 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
986 val_print_optimized_out (val, stream);
987 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
988 val_print_unavailable (stream);
989 else
990 print_scalar_formatted (valaddr + embedded_offset, type,
991 options, size, stream);
992 }
993
994 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
995 The raison d'etre of this function is to consolidate printing of
996 LONG_LONG's into this one function. The format chars b,h,w,g are
997 from print_scalar_formatted(). Numbers are printed using C
998 format.
999
1000 USE_C_FORMAT means to use C format in all cases. Without it,
1001 'o' and 'x' format do not include the standard C radix prefix
1002 (leading 0 or 0x).
1003
1004 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1005 and was intended to request formating according to the current
1006 language and would be used for most integers that GDB prints. The
1007 exceptional cases were things like protocols where the format of
1008 the integer is a protocol thing, not a user-visible thing). The
1009 parameter remains to preserve the information of what things might
1010 be printed with language-specific format, should we ever resurrect
1011 that capability. */
1012
1013 void
1014 print_longest (struct ui_file *stream, int format, int use_c_format,
1015 LONGEST val_long)
1016 {
1017 const char *val;
1018
1019 switch (format)
1020 {
1021 case 'd':
1022 val = int_string (val_long, 10, 1, 0, 1); break;
1023 case 'u':
1024 val = int_string (val_long, 10, 0, 0, 1); break;
1025 case 'x':
1026 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1027 case 'b':
1028 val = int_string (val_long, 16, 0, 2, 1); break;
1029 case 'h':
1030 val = int_string (val_long, 16, 0, 4, 1); break;
1031 case 'w':
1032 val = int_string (val_long, 16, 0, 8, 1); break;
1033 case 'g':
1034 val = int_string (val_long, 16, 0, 16, 1); break;
1035 break;
1036 case 'o':
1037 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1038 default:
1039 internal_error (__FILE__, __LINE__,
1040 _("failed internal consistency check"));
1041 }
1042 fputs_filtered (val, stream);
1043 }
1044
1045 /* This used to be a macro, but I don't think it is called often enough
1046 to merit such treatment. */
1047 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1048 arguments to a function, number in a value history, register number, etc.)
1049 where the value must not be larger than can fit in an int. */
1050
1051 int
1052 longest_to_int (LONGEST arg)
1053 {
1054 /* Let the compiler do the work. */
1055 int rtnval = (int) arg;
1056
1057 /* Check for overflows or underflows. */
1058 if (sizeof (LONGEST) > sizeof (int))
1059 {
1060 if (rtnval != arg)
1061 {
1062 error (_("Value out of range."));
1063 }
1064 }
1065 return (rtnval);
1066 }
1067
1068 /* Print a floating point value of type TYPE (not always a
1069 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
1070
1071 void
1072 print_floating (const gdb_byte *valaddr, struct type *type,
1073 struct ui_file *stream)
1074 {
1075 DOUBLEST doub;
1076 int inv;
1077 const struct floatformat *fmt = NULL;
1078 unsigned len = TYPE_LENGTH (type);
1079 enum float_kind kind;
1080
1081 /* If it is a floating-point, check for obvious problems. */
1082 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1083 fmt = floatformat_from_type (type);
1084 if (fmt != NULL)
1085 {
1086 kind = floatformat_classify (fmt, valaddr);
1087 if (kind == float_nan)
1088 {
1089 if (floatformat_is_negative (fmt, valaddr))
1090 fprintf_filtered (stream, "-");
1091 fprintf_filtered (stream, "nan(");
1092 fputs_filtered ("0x", stream);
1093 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1094 fprintf_filtered (stream, ")");
1095 return;
1096 }
1097 else if (kind == float_infinite)
1098 {
1099 if (floatformat_is_negative (fmt, valaddr))
1100 fputs_filtered ("-", stream);
1101 fputs_filtered ("inf", stream);
1102 return;
1103 }
1104 }
1105
1106 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1107 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1108 needs to be used as that takes care of any necessary type
1109 conversions. Such conversions are of course direct to DOUBLEST
1110 and disregard any possible target floating point limitations.
1111 For instance, a u64 would be converted and displayed exactly on a
1112 host with 80 bit DOUBLEST but with loss of information on a host
1113 with 64 bit DOUBLEST. */
1114
1115 doub = unpack_double (type, valaddr, &inv);
1116 if (inv)
1117 {
1118 fprintf_filtered (stream, "<invalid float value>");
1119 return;
1120 }
1121
1122 /* FIXME: kettenis/2001-01-20: The following code makes too much
1123 assumptions about the host and target floating point format. */
1124
1125 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
1126 not necessarily be a TYPE_CODE_FLT, the below ignores that and
1127 instead uses the type's length to determine the precision of the
1128 floating-point value being printed. */
1129
1130 if (len < sizeof (double))
1131 fprintf_filtered (stream, "%.9g", (double) doub);
1132 else if (len == sizeof (double))
1133 fprintf_filtered (stream, "%.17g", (double) doub);
1134 else
1135 #ifdef PRINTF_HAS_LONG_DOUBLE
1136 fprintf_filtered (stream, "%.35Lg", doub);
1137 #else
1138 /* This at least wins with values that are representable as
1139 doubles. */
1140 fprintf_filtered (stream, "%.17g", (double) doub);
1141 #endif
1142 }
1143
1144 void
1145 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1146 struct ui_file *stream)
1147 {
1148 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1149 char decstr[MAX_DECIMAL_STRING];
1150 unsigned len = TYPE_LENGTH (type);
1151
1152 decimal_to_string (valaddr, len, byte_order, decstr);
1153 fputs_filtered (decstr, stream);
1154 return;
1155 }
1156
1157 void
1158 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1159 unsigned len, enum bfd_endian byte_order)
1160 {
1161
1162 #define BITS_IN_BYTES 8
1163
1164 const gdb_byte *p;
1165 unsigned int i;
1166 int b;
1167
1168 /* Declared "int" so it will be signed.
1169 This ensures that right shift will shift in zeros. */
1170
1171 const int mask = 0x080;
1172
1173 /* FIXME: We should be not printing leading zeroes in most cases. */
1174
1175 if (byte_order == BFD_ENDIAN_BIG)
1176 {
1177 for (p = valaddr;
1178 p < valaddr + len;
1179 p++)
1180 {
1181 /* Every byte has 8 binary characters; peel off
1182 and print from the MSB end. */
1183
1184 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1185 {
1186 if (*p & (mask >> i))
1187 b = 1;
1188 else
1189 b = 0;
1190
1191 fprintf_filtered (stream, "%1d", b);
1192 }
1193 }
1194 }
1195 else
1196 {
1197 for (p = valaddr + len - 1;
1198 p >= valaddr;
1199 p--)
1200 {
1201 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1202 {
1203 if (*p & (mask >> i))
1204 b = 1;
1205 else
1206 b = 0;
1207
1208 fprintf_filtered (stream, "%1d", b);
1209 }
1210 }
1211 }
1212 }
1213
1214 /* VALADDR points to an integer of LEN bytes.
1215 Print it in octal on stream or format it in buf. */
1216
1217 void
1218 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1219 unsigned len, enum bfd_endian byte_order)
1220 {
1221 const gdb_byte *p;
1222 unsigned char octa1, octa2, octa3, carry;
1223 int cycle;
1224
1225 /* FIXME: We should be not printing leading zeroes in most cases. */
1226
1227
1228 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1229 * the extra bits, which cycle every three bytes:
1230 *
1231 * Byte side: 0 1 2 3
1232 * | | | |
1233 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1234 *
1235 * Octal side: 0 1 carry 3 4 carry ...
1236 *
1237 * Cycle number: 0 1 2
1238 *
1239 * But of course we are printing from the high side, so we have to
1240 * figure out where in the cycle we are so that we end up with no
1241 * left over bits at the end.
1242 */
1243 #define BITS_IN_OCTAL 3
1244 #define HIGH_ZERO 0340
1245 #define LOW_ZERO 0016
1246 #define CARRY_ZERO 0003
1247 #define HIGH_ONE 0200
1248 #define MID_ONE 0160
1249 #define LOW_ONE 0016
1250 #define CARRY_ONE 0001
1251 #define HIGH_TWO 0300
1252 #define MID_TWO 0070
1253 #define LOW_TWO 0007
1254
1255 /* For 32 we start in cycle 2, with two bits and one bit carry;
1256 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1257
1258 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1259 carry = 0;
1260
1261 fputs_filtered ("0", stream);
1262 if (byte_order == BFD_ENDIAN_BIG)
1263 {
1264 for (p = valaddr;
1265 p < valaddr + len;
1266 p++)
1267 {
1268 switch (cycle)
1269 {
1270 case 0:
1271 /* No carry in, carry out two bits. */
1272
1273 octa1 = (HIGH_ZERO & *p) >> 5;
1274 octa2 = (LOW_ZERO & *p) >> 2;
1275 carry = (CARRY_ZERO & *p);
1276 fprintf_filtered (stream, "%o", octa1);
1277 fprintf_filtered (stream, "%o", octa2);
1278 break;
1279
1280 case 1:
1281 /* Carry in two bits, carry out one bit. */
1282
1283 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1284 octa2 = (MID_ONE & *p) >> 4;
1285 octa3 = (LOW_ONE & *p) >> 1;
1286 carry = (CARRY_ONE & *p);
1287 fprintf_filtered (stream, "%o", octa1);
1288 fprintf_filtered (stream, "%o", octa2);
1289 fprintf_filtered (stream, "%o", octa3);
1290 break;
1291
1292 case 2:
1293 /* Carry in one bit, no carry out. */
1294
1295 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1296 octa2 = (MID_TWO & *p) >> 3;
1297 octa3 = (LOW_TWO & *p);
1298 carry = 0;
1299 fprintf_filtered (stream, "%o", octa1);
1300 fprintf_filtered (stream, "%o", octa2);
1301 fprintf_filtered (stream, "%o", octa3);
1302 break;
1303
1304 default:
1305 error (_("Internal error in octal conversion;"));
1306 }
1307
1308 cycle++;
1309 cycle = cycle % BITS_IN_OCTAL;
1310 }
1311 }
1312 else
1313 {
1314 for (p = valaddr + len - 1;
1315 p >= valaddr;
1316 p--)
1317 {
1318 switch (cycle)
1319 {
1320 case 0:
1321 /* Carry out, no carry in */
1322
1323 octa1 = (HIGH_ZERO & *p) >> 5;
1324 octa2 = (LOW_ZERO & *p) >> 2;
1325 carry = (CARRY_ZERO & *p);
1326 fprintf_filtered (stream, "%o", octa1);
1327 fprintf_filtered (stream, "%o", octa2);
1328 break;
1329
1330 case 1:
1331 /* Carry in, carry out */
1332
1333 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1334 octa2 = (MID_ONE & *p) >> 4;
1335 octa3 = (LOW_ONE & *p) >> 1;
1336 carry = (CARRY_ONE & *p);
1337 fprintf_filtered (stream, "%o", octa1);
1338 fprintf_filtered (stream, "%o", octa2);
1339 fprintf_filtered (stream, "%o", octa3);
1340 break;
1341
1342 case 2:
1343 /* Carry in, no carry out */
1344
1345 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1346 octa2 = (MID_TWO & *p) >> 3;
1347 octa3 = (LOW_TWO & *p);
1348 carry = 0;
1349 fprintf_filtered (stream, "%o", octa1);
1350 fprintf_filtered (stream, "%o", octa2);
1351 fprintf_filtered (stream, "%o", octa3);
1352 break;
1353
1354 default:
1355 error (_("Internal error in octal conversion;"));
1356 }
1357
1358 cycle++;
1359 cycle = cycle % BITS_IN_OCTAL;
1360 }
1361 }
1362
1363 }
1364
1365 /* VALADDR points to an integer of LEN bytes.
1366 Print it in decimal on stream or format it in buf. */
1367
1368 void
1369 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1370 unsigned len, enum bfd_endian byte_order)
1371 {
1372 #define TEN 10
1373 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1374 #define CARRY_LEFT( x ) ((x) % TEN)
1375 #define SHIFT( x ) ((x) << 4)
1376 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1377 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1378
1379 const gdb_byte *p;
1380 unsigned char *digits;
1381 int carry;
1382 int decimal_len;
1383 int i, j, decimal_digits;
1384 int dummy;
1385 int flip;
1386
1387 /* Base-ten number is less than twice as many digits
1388 as the base 16 number, which is 2 digits per byte. */
1389
1390 decimal_len = len * 2 * 2;
1391 digits = xmalloc (decimal_len);
1392
1393 for (i = 0; i < decimal_len; i++)
1394 {
1395 digits[i] = 0;
1396 }
1397
1398 /* Ok, we have an unknown number of bytes of data to be printed in
1399 * decimal.
1400 *
1401 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1402 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1403 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1404 *
1405 * The trick is that "digits" holds a base-10 number, but sometimes
1406 * the individual digits are > 10.
1407 *
1408 * Outer loop is per nibble (hex digit) of input, from MSD end to
1409 * LSD end.
1410 */
1411 decimal_digits = 0; /* Number of decimal digits so far */
1412 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1413 flip = 0;
1414 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1415 {
1416 /*
1417 * Multiply current base-ten number by 16 in place.
1418 * Each digit was between 0 and 9, now is between
1419 * 0 and 144.
1420 */
1421 for (j = 0; j < decimal_digits; j++)
1422 {
1423 digits[j] = SHIFT (digits[j]);
1424 }
1425
1426 /* Take the next nibble off the input and add it to what
1427 * we've got in the LSB position. Bottom 'digit' is now
1428 * between 0 and 159.
1429 *
1430 * "flip" is used to run this loop twice for each byte.
1431 */
1432 if (flip == 0)
1433 {
1434 /* Take top nibble. */
1435
1436 digits[0] += HIGH_NIBBLE (*p);
1437 flip = 1;
1438 }
1439 else
1440 {
1441 /* Take low nibble and bump our pointer "p". */
1442
1443 digits[0] += LOW_NIBBLE (*p);
1444 if (byte_order == BFD_ENDIAN_BIG)
1445 p++;
1446 else
1447 p--;
1448 flip = 0;
1449 }
1450
1451 /* Re-decimalize. We have to do this often enough
1452 * that we don't overflow, but once per nibble is
1453 * overkill. Easier this way, though. Note that the
1454 * carry is often larger than 10 (e.g. max initial
1455 * carry out of lowest nibble is 15, could bubble all
1456 * the way up greater than 10). So we have to do
1457 * the carrying beyond the last current digit.
1458 */
1459 carry = 0;
1460 for (j = 0; j < decimal_len - 1; j++)
1461 {
1462 digits[j] += carry;
1463
1464 /* "/" won't handle an unsigned char with
1465 * a value that if signed would be negative.
1466 * So extend to longword int via "dummy".
1467 */
1468 dummy = digits[j];
1469 carry = CARRY_OUT (dummy);
1470 digits[j] = CARRY_LEFT (dummy);
1471
1472 if (j >= decimal_digits && carry == 0)
1473 {
1474 /*
1475 * All higher digits are 0 and we
1476 * no longer have a carry.
1477 *
1478 * Note: "j" is 0-based, "decimal_digits" is
1479 * 1-based.
1480 */
1481 decimal_digits = j + 1;
1482 break;
1483 }
1484 }
1485 }
1486
1487 /* Ok, now "digits" is the decimal representation, with
1488 the "decimal_digits" actual digits. Print! */
1489
1490 for (i = decimal_digits - 1; i >= 0; i--)
1491 {
1492 fprintf_filtered (stream, "%1d", digits[i]);
1493 }
1494 xfree (digits);
1495 }
1496
1497 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1498
1499 void
1500 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1501 unsigned len, enum bfd_endian byte_order)
1502 {
1503 const gdb_byte *p;
1504
1505 /* FIXME: We should be not printing leading zeroes in most cases. */
1506
1507 fputs_filtered ("0x", stream);
1508 if (byte_order == BFD_ENDIAN_BIG)
1509 {
1510 for (p = valaddr;
1511 p < valaddr + len;
1512 p++)
1513 {
1514 fprintf_filtered (stream, "%02x", *p);
1515 }
1516 }
1517 else
1518 {
1519 for (p = valaddr + len - 1;
1520 p >= valaddr;
1521 p--)
1522 {
1523 fprintf_filtered (stream, "%02x", *p);
1524 }
1525 }
1526 }
1527
1528 /* VALADDR points to a char integer of LEN bytes.
1529 Print it out in appropriate language form on stream.
1530 Omit any leading zero chars. */
1531
1532 void
1533 print_char_chars (struct ui_file *stream, struct type *type,
1534 const gdb_byte *valaddr,
1535 unsigned len, enum bfd_endian byte_order)
1536 {
1537 const gdb_byte *p;
1538
1539 if (byte_order == BFD_ENDIAN_BIG)
1540 {
1541 p = valaddr;
1542 while (p < valaddr + len - 1 && *p == 0)
1543 ++p;
1544
1545 while (p < valaddr + len)
1546 {
1547 LA_EMIT_CHAR (*p, type, stream, '\'');
1548 ++p;
1549 }
1550 }
1551 else
1552 {
1553 p = valaddr + len - 1;
1554 while (p > valaddr && *p == 0)
1555 --p;
1556
1557 while (p >= valaddr)
1558 {
1559 LA_EMIT_CHAR (*p, type, stream, '\'');
1560 --p;
1561 }
1562 }
1563 }
1564
1565 /* Print function pointer with inferior address ADDRESS onto stdio
1566 stream STREAM. */
1567
1568 void
1569 print_function_pointer_address (const struct value_print_options *options,
1570 struct gdbarch *gdbarch,
1571 CORE_ADDR address,
1572 struct ui_file *stream)
1573 {
1574 CORE_ADDR func_addr
1575 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1576 &current_target);
1577
1578 /* If the function pointer is represented by a description, print
1579 the address of the description. */
1580 if (options->addressprint && func_addr != address)
1581 {
1582 fputs_filtered ("@", stream);
1583 fputs_filtered (paddress (gdbarch, address), stream);
1584 fputs_filtered (": ", stream);
1585 }
1586 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1587 }
1588
1589
1590 /* Print on STREAM using the given OPTIONS the index for the element
1591 at INDEX of an array whose index type is INDEX_TYPE. */
1592
1593 void
1594 maybe_print_array_index (struct type *index_type, LONGEST index,
1595 struct ui_file *stream,
1596 const struct value_print_options *options)
1597 {
1598 struct value *index_value;
1599
1600 if (!options->print_array_indexes)
1601 return;
1602
1603 index_value = value_from_longest (index_type, index);
1604
1605 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1606 }
1607
1608 /* Called by various <lang>_val_print routines to print elements of an
1609 array in the form "<elem1>, <elem2>, <elem3>, ...".
1610
1611 (FIXME?) Assumes array element separator is a comma, which is correct
1612 for all languages currently handled.
1613 (FIXME?) Some languages have a notation for repeated array elements,
1614 perhaps we should try to use that notation when appropriate. */
1615
1616 void
1617 val_print_array_elements (struct type *type,
1618 const gdb_byte *valaddr, int embedded_offset,
1619 CORE_ADDR address, struct ui_file *stream,
1620 int recurse,
1621 const struct value *val,
1622 const struct value_print_options *options,
1623 unsigned int i)
1624 {
1625 unsigned int things_printed = 0;
1626 unsigned len;
1627 struct type *elttype, *index_type;
1628 unsigned eltlen;
1629 /* Position of the array element we are examining to see
1630 whether it is repeated. */
1631 unsigned int rep1;
1632 /* Number of repetitions we have detected so far. */
1633 unsigned int reps;
1634 LONGEST low_bound, high_bound;
1635
1636 elttype = TYPE_TARGET_TYPE (type);
1637 eltlen = TYPE_LENGTH (check_typedef (elttype));
1638 index_type = TYPE_INDEX_TYPE (type);
1639
1640 if (get_array_bounds (type, &low_bound, &high_bound))
1641 {
1642 /* The array length should normally be HIGH_BOUND - LOW_BOUND + 1.
1643 But we have to be a little extra careful, because some languages
1644 such as Ada allow LOW_BOUND to be greater than HIGH_BOUND for
1645 empty arrays. In that situation, the array length is just zero,
1646 not negative! */
1647 if (low_bound > high_bound)
1648 len = 0;
1649 else
1650 len = high_bound - low_bound + 1;
1651 }
1652 else
1653 {
1654 warning (_("unable to get bounds of array, assuming null array"));
1655 low_bound = 0;
1656 len = 0;
1657 }
1658
1659 annotate_array_section_begin (i, elttype);
1660
1661 for (; i < len && things_printed < options->print_max; i++)
1662 {
1663 if (i != 0)
1664 {
1665 if (options->prettyformat_arrays)
1666 {
1667 fprintf_filtered (stream, ",\n");
1668 print_spaces_filtered (2 + 2 * recurse, stream);
1669 }
1670 else
1671 {
1672 fprintf_filtered (stream, ", ");
1673 }
1674 }
1675 wrap_here (n_spaces (2 + 2 * recurse));
1676 maybe_print_array_index (index_type, i + low_bound,
1677 stream, options);
1678
1679 rep1 = i + 1;
1680 reps = 1;
1681 /* Only check for reps if repeat_count_threshold is not set to
1682 UINT_MAX (unlimited). */
1683 if (options->repeat_count_threshold < UINT_MAX)
1684 {
1685 while (rep1 < len
1686 && value_contents_eq (val,
1687 embedded_offset + i * eltlen,
1688 val,
1689 (embedded_offset
1690 + rep1 * eltlen),
1691 eltlen))
1692 {
1693 ++reps;
1694 ++rep1;
1695 }
1696 }
1697
1698 if (reps > options->repeat_count_threshold)
1699 {
1700 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1701 address, stream, recurse + 1, val, options,
1702 current_language);
1703 annotate_elt_rep (reps);
1704 fprintf_filtered (stream, " <repeats %u times>", reps);
1705 annotate_elt_rep_end ();
1706
1707 i = rep1 - 1;
1708 things_printed += options->repeat_count_threshold;
1709 }
1710 else
1711 {
1712 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1713 address,
1714 stream, recurse + 1, val, options, current_language);
1715 annotate_elt ();
1716 things_printed++;
1717 }
1718 }
1719 annotate_array_section_end ();
1720 if (i < len)
1721 {
1722 fprintf_filtered (stream, "...");
1723 }
1724 }
1725
1726 /* Read LEN bytes of target memory at address MEMADDR, placing the
1727 results in GDB's memory at MYADDR. Returns a count of the bytes
1728 actually read, and optionally a target_xfer_status value in the
1729 location pointed to by ERRPTR if ERRPTR is non-null. */
1730
1731 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1732 function be eliminated. */
1733
1734 static int
1735 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
1736 int len, int *errptr)
1737 {
1738 int nread; /* Number of bytes actually read. */
1739 int errcode; /* Error from last read. */
1740
1741 /* First try a complete read. */
1742 errcode = target_read_memory (memaddr, myaddr, len);
1743 if (errcode == 0)
1744 {
1745 /* Got it all. */
1746 nread = len;
1747 }
1748 else
1749 {
1750 /* Loop, reading one byte at a time until we get as much as we can. */
1751 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1752 {
1753 errcode = target_read_memory (memaddr++, myaddr++, 1);
1754 }
1755 /* If an error, the last read was unsuccessful, so adjust count. */
1756 if (errcode != 0)
1757 {
1758 nread--;
1759 }
1760 }
1761 if (errptr != NULL)
1762 {
1763 *errptr = errcode;
1764 }
1765 return (nread);
1766 }
1767
1768 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1769 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1770 allocated buffer containing the string, which the caller is responsible to
1771 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1772 success, or a target_xfer_status on failure.
1773
1774 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
1775 (including eventual NULs in the middle or end of the string).
1776
1777 If LEN is -1, stops at the first null character (not necessarily
1778 the first null byte) up to a maximum of FETCHLIMIT characters. Set
1779 FETCHLIMIT to UINT_MAX to read as many characters as possible from
1780 the string.
1781
1782 Unless an exception is thrown, BUFFER will always be allocated, even on
1783 failure. In this case, some characters might have been read before the
1784 failure happened. Check BYTES_READ to recognize this situation.
1785
1786 Note: There was a FIXME asking to make this code use target_read_string,
1787 but this function is more general (can read past null characters, up to
1788 given LEN). Besides, it is used much more often than target_read_string
1789 so it is more tested. Perhaps callers of target_read_string should use
1790 this function instead? */
1791
1792 int
1793 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1794 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
1795 {
1796 int errcode; /* Errno returned from bad reads. */
1797 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1798 gdb_byte *bufptr; /* Pointer to next available byte in
1799 buffer. */
1800 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1801
1802 /* Loop until we either have all the characters, or we encounter
1803 some error, such as bumping into the end of the address space. */
1804
1805 *buffer = NULL;
1806
1807 old_chain = make_cleanup (free_current_contents, buffer);
1808
1809 if (len > 0)
1810 {
1811 /* We want fetchlimit chars, so we might as well read them all in
1812 one operation. */
1813 unsigned int fetchlen = min (len, fetchlimit);
1814
1815 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
1816 bufptr = *buffer;
1817
1818 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
1819 / width;
1820 addr += nfetch * width;
1821 bufptr += nfetch * width;
1822 }
1823 else if (len == -1)
1824 {
1825 unsigned long bufsize = 0;
1826 unsigned int chunksize; /* Size of each fetch, in chars. */
1827 int found_nul; /* Non-zero if we found the nul char. */
1828 gdb_byte *limit; /* First location past end of fetch buffer. */
1829
1830 found_nul = 0;
1831 /* We are looking for a NUL terminator to end the fetching, so we
1832 might as well read in blocks that are large enough to be efficient,
1833 but not so large as to be slow if fetchlimit happens to be large.
1834 So we choose the minimum of 8 and fetchlimit. We used to use 200
1835 instead of 8 but 200 is way too big for remote debugging over a
1836 serial line. */
1837 chunksize = min (8, fetchlimit);
1838
1839 do
1840 {
1841 QUIT;
1842 nfetch = min (chunksize, fetchlimit - bufsize);
1843
1844 if (*buffer == NULL)
1845 *buffer = (gdb_byte *) xmalloc (nfetch * width);
1846 else
1847 *buffer = (gdb_byte *) xrealloc (*buffer,
1848 (nfetch + bufsize) * width);
1849
1850 bufptr = *buffer + bufsize * width;
1851 bufsize += nfetch;
1852
1853 /* Read as much as we can. */
1854 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1855 / width;
1856
1857 /* Scan this chunk for the null character that terminates the string
1858 to print. If found, we don't need to fetch any more. Note
1859 that bufptr is explicitly left pointing at the next character
1860 after the null character, or at the next character after the end
1861 of the buffer. */
1862
1863 limit = bufptr + nfetch * width;
1864 while (bufptr < limit)
1865 {
1866 unsigned long c;
1867
1868 c = extract_unsigned_integer (bufptr, width, byte_order);
1869 addr += width;
1870 bufptr += width;
1871 if (c == 0)
1872 {
1873 /* We don't care about any error which happened after
1874 the NUL terminator. */
1875 errcode = 0;
1876 found_nul = 1;
1877 break;
1878 }
1879 }
1880 }
1881 while (errcode == 0 /* no error */
1882 && bufptr - *buffer < fetchlimit * width /* no overrun */
1883 && !found_nul); /* haven't found NUL yet */
1884 }
1885 else
1886 { /* Length of string is really 0! */
1887 /* We always allocate *buffer. */
1888 *buffer = bufptr = xmalloc (1);
1889 errcode = 0;
1890 }
1891
1892 /* bufptr and addr now point immediately beyond the last byte which we
1893 consider part of the string (including a '\0' which ends the string). */
1894 *bytes_read = bufptr - *buffer;
1895
1896 QUIT;
1897
1898 discard_cleanups (old_chain);
1899
1900 return errcode;
1901 }
1902
1903 /* Return true if print_wchar can display W without resorting to a
1904 numeric escape, false otherwise. */
1905
1906 static int
1907 wchar_printable (gdb_wchar_t w)
1908 {
1909 return (gdb_iswprint (w)
1910 || w == LCST ('\a') || w == LCST ('\b')
1911 || w == LCST ('\f') || w == LCST ('\n')
1912 || w == LCST ('\r') || w == LCST ('\t')
1913 || w == LCST ('\v'));
1914 }
1915
1916 /* A helper function that converts the contents of STRING to wide
1917 characters and then appends them to OUTPUT. */
1918
1919 static void
1920 append_string_as_wide (const char *string,
1921 struct obstack *output)
1922 {
1923 for (; *string; ++string)
1924 {
1925 gdb_wchar_t w = gdb_btowc (*string);
1926 obstack_grow (output, &w, sizeof (gdb_wchar_t));
1927 }
1928 }
1929
1930 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
1931 original (target) bytes representing the character, ORIG_LEN is the
1932 number of valid bytes. WIDTH is the number of bytes in a base
1933 characters of the type. OUTPUT is an obstack to which wide
1934 characters are emitted. QUOTER is a (narrow) character indicating
1935 the style of quotes surrounding the character to be printed.
1936 NEED_ESCAPE is an in/out flag which is used to track numeric
1937 escapes across calls. */
1938
1939 static void
1940 print_wchar (gdb_wint_t w, const gdb_byte *orig,
1941 int orig_len, int width,
1942 enum bfd_endian byte_order,
1943 struct obstack *output,
1944 int quoter, int *need_escapep)
1945 {
1946 int need_escape = *need_escapep;
1947
1948 *need_escapep = 0;
1949
1950 /* iswprint implementation on Windows returns 1 for tab character.
1951 In order to avoid different printout on this host, we explicitly
1952 use wchar_printable function. */
1953 switch (w)
1954 {
1955 case LCST ('\a'):
1956 obstack_grow_wstr (output, LCST ("\\a"));
1957 break;
1958 case LCST ('\b'):
1959 obstack_grow_wstr (output, LCST ("\\b"));
1960 break;
1961 case LCST ('\f'):
1962 obstack_grow_wstr (output, LCST ("\\f"));
1963 break;
1964 case LCST ('\n'):
1965 obstack_grow_wstr (output, LCST ("\\n"));
1966 break;
1967 case LCST ('\r'):
1968 obstack_grow_wstr (output, LCST ("\\r"));
1969 break;
1970 case LCST ('\t'):
1971 obstack_grow_wstr (output, LCST ("\\t"));
1972 break;
1973 case LCST ('\v'):
1974 obstack_grow_wstr (output, LCST ("\\v"));
1975 break;
1976 default:
1977 {
1978 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
1979 && w != LCST ('8')
1980 && w != LCST ('9'))))
1981 {
1982 gdb_wchar_t wchar = w;
1983
1984 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
1985 obstack_grow_wstr (output, LCST ("\\"));
1986 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
1987 }
1988 else
1989 {
1990 int i;
1991
1992 for (i = 0; i + width <= orig_len; i += width)
1993 {
1994 char octal[30];
1995 ULONGEST value;
1996
1997 value = extract_unsigned_integer (&orig[i], width,
1998 byte_order);
1999 /* If the value fits in 3 octal digits, print it that
2000 way. Otherwise, print it as a hex escape. */
2001 if (value <= 0777)
2002 xsnprintf (octal, sizeof (octal), "\\%.3o",
2003 (int) (value & 0777));
2004 else
2005 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2006 append_string_as_wide (octal, output);
2007 }
2008 /* If we somehow have extra bytes, print them now. */
2009 while (i < orig_len)
2010 {
2011 char octal[5];
2012
2013 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2014 append_string_as_wide (octal, output);
2015 ++i;
2016 }
2017
2018 *need_escapep = 1;
2019 }
2020 break;
2021 }
2022 }
2023 }
2024
2025 /* Print the character C on STREAM as part of the contents of a
2026 literal string whose delimiter is QUOTER. ENCODING names the
2027 encoding of C. */
2028
2029 void
2030 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2031 int quoter, const char *encoding)
2032 {
2033 enum bfd_endian byte_order
2034 = gdbarch_byte_order (get_type_arch (type));
2035 struct obstack wchar_buf, output;
2036 struct cleanup *cleanups;
2037 gdb_byte *buf;
2038 struct wchar_iterator *iter;
2039 int need_escape = 0;
2040
2041 buf = alloca (TYPE_LENGTH (type));
2042 pack_long (buf, type, c);
2043
2044 iter = make_wchar_iterator (buf, TYPE_LENGTH (type),
2045 encoding, TYPE_LENGTH (type));
2046 cleanups = make_cleanup_wchar_iterator (iter);
2047
2048 /* This holds the printable form of the wchar_t data. */
2049 obstack_init (&wchar_buf);
2050 make_cleanup_obstack_free (&wchar_buf);
2051
2052 while (1)
2053 {
2054 int num_chars;
2055 gdb_wchar_t *chars;
2056 const gdb_byte *buf;
2057 size_t buflen;
2058 int print_escape = 1;
2059 enum wchar_iterate_result result;
2060
2061 num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen);
2062 if (num_chars < 0)
2063 break;
2064 if (num_chars > 0)
2065 {
2066 /* If all characters are printable, print them. Otherwise,
2067 we're going to have to print an escape sequence. We
2068 check all characters because we want to print the target
2069 bytes in the escape sequence, and we don't know character
2070 boundaries there. */
2071 int i;
2072
2073 print_escape = 0;
2074 for (i = 0; i < num_chars; ++i)
2075 if (!wchar_printable (chars[i]))
2076 {
2077 print_escape = 1;
2078 break;
2079 }
2080
2081 if (!print_escape)
2082 {
2083 for (i = 0; i < num_chars; ++i)
2084 print_wchar (chars[i], buf, buflen,
2085 TYPE_LENGTH (type), byte_order,
2086 &wchar_buf, quoter, &need_escape);
2087 }
2088 }
2089
2090 /* This handles the NUM_CHARS == 0 case as well. */
2091 if (print_escape)
2092 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2093 byte_order, &wchar_buf, quoter, &need_escape);
2094 }
2095
2096 /* The output in the host encoding. */
2097 obstack_init (&output);
2098 make_cleanup_obstack_free (&output);
2099
2100 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2101 (gdb_byte *) obstack_base (&wchar_buf),
2102 obstack_object_size (&wchar_buf),
2103 sizeof (gdb_wchar_t), &output, translit_char);
2104 obstack_1grow (&output, '\0');
2105
2106 fputs_filtered (obstack_base (&output), stream);
2107
2108 do_cleanups (cleanups);
2109 }
2110
2111 /* Return the repeat count of the next character/byte in ITER,
2112 storing the result in VEC. */
2113
2114 static int
2115 count_next_character (struct wchar_iterator *iter,
2116 VEC (converted_character_d) **vec)
2117 {
2118 struct converted_character *current;
2119
2120 if (VEC_empty (converted_character_d, *vec))
2121 {
2122 struct converted_character tmp;
2123 gdb_wchar_t *chars;
2124
2125 tmp.num_chars
2126 = wchar_iterate (iter, &tmp.result, &chars, &tmp.buf, &tmp.buflen);
2127 if (tmp.num_chars > 0)
2128 {
2129 gdb_assert (tmp.num_chars < MAX_WCHARS);
2130 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2131 }
2132 VEC_safe_push (converted_character_d, *vec, &tmp);
2133 }
2134
2135 current = VEC_last (converted_character_d, *vec);
2136
2137 /* Count repeated characters or bytes. */
2138 current->repeat_count = 1;
2139 if (current->num_chars == -1)
2140 {
2141 /* EOF */
2142 return -1;
2143 }
2144 else
2145 {
2146 gdb_wchar_t *chars;
2147 struct converted_character d;
2148 int repeat;
2149
2150 d.repeat_count = 0;
2151
2152 while (1)
2153 {
2154 /* Get the next character. */
2155 d.num_chars
2156 = wchar_iterate (iter, &d.result, &chars, &d.buf, &d.buflen);
2157
2158 /* If a character was successfully converted, save the character
2159 into the converted character. */
2160 if (d.num_chars > 0)
2161 {
2162 gdb_assert (d.num_chars < MAX_WCHARS);
2163 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2164 }
2165
2166 /* Determine if the current character is the same as this
2167 new character. */
2168 if (d.num_chars == current->num_chars && d.result == current->result)
2169 {
2170 /* There are two cases to consider:
2171
2172 1) Equality of converted character (num_chars > 0)
2173 2) Equality of non-converted character (num_chars == 0) */
2174 if ((current->num_chars > 0
2175 && memcmp (current->chars, d.chars,
2176 WCHAR_BUFLEN (current->num_chars)) == 0)
2177 || (current->num_chars == 0
2178 && current->buflen == d.buflen
2179 && memcmp (current->buf, d.buf, current->buflen) == 0))
2180 ++current->repeat_count;
2181 else
2182 break;
2183 }
2184 else
2185 break;
2186 }
2187
2188 /* Push this next converted character onto the result vector. */
2189 repeat = current->repeat_count;
2190 VEC_safe_push (converted_character_d, *vec, &d);
2191 return repeat;
2192 }
2193 }
2194
2195 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2196 character to use with string output. WIDTH is the size of the output
2197 character type. BYTE_ORDER is the the target byte order. OPTIONS
2198 is the user's print options. */
2199
2200 static void
2201 print_converted_chars_to_obstack (struct obstack *obstack,
2202 VEC (converted_character_d) *chars,
2203 int quote_char, int width,
2204 enum bfd_endian byte_order,
2205 const struct value_print_options *options)
2206 {
2207 unsigned int idx;
2208 struct converted_character *elem;
2209 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2210 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2211 int need_escape = 0;
2212
2213 /* Set the start state. */
2214 idx = 0;
2215 last = state = START;
2216 elem = NULL;
2217
2218 while (1)
2219 {
2220 switch (state)
2221 {
2222 case START:
2223 /* Nothing to do. */
2224 break;
2225
2226 case SINGLE:
2227 {
2228 int j;
2229
2230 /* We are outputting a single character
2231 (< options->repeat_count_threshold). */
2232
2233 if (last != SINGLE)
2234 {
2235 /* We were outputting some other type of content, so we
2236 must output and a comma and a quote. */
2237 if (last != START)
2238 obstack_grow_wstr (obstack, LCST (", "));
2239 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2240 }
2241 /* Output the character. */
2242 for (j = 0; j < elem->repeat_count; ++j)
2243 {
2244 if (elem->result == wchar_iterate_ok)
2245 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2246 byte_order, obstack, quote_char, &need_escape);
2247 else
2248 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2249 byte_order, obstack, quote_char, &need_escape);
2250 }
2251 }
2252 break;
2253
2254 case REPEAT:
2255 {
2256 int j;
2257 char *s;
2258
2259 /* We are outputting a character with a repeat count
2260 greater than options->repeat_count_threshold. */
2261
2262 if (last == SINGLE)
2263 {
2264 /* We were outputting a single string. Terminate the
2265 string. */
2266 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2267 }
2268 if (last != START)
2269 obstack_grow_wstr (obstack, LCST (", "));
2270
2271 /* Output the character and repeat string. */
2272 obstack_grow_wstr (obstack, LCST ("'"));
2273 if (elem->result == wchar_iterate_ok)
2274 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2275 byte_order, obstack, quote_char, &need_escape);
2276 else
2277 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2278 byte_order, obstack, quote_char, &need_escape);
2279 obstack_grow_wstr (obstack, LCST ("'"));
2280 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2281 for (j = 0; s[j]; ++j)
2282 {
2283 gdb_wchar_t w = gdb_btowc (s[j]);
2284 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2285 }
2286 xfree (s);
2287 }
2288 break;
2289
2290 case INCOMPLETE:
2291 /* We are outputting an incomplete sequence. */
2292 if (last == SINGLE)
2293 {
2294 /* If we were outputting a string of SINGLE characters,
2295 terminate the quote. */
2296 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2297 }
2298 if (last != START)
2299 obstack_grow_wstr (obstack, LCST (", "));
2300
2301 /* Output the incomplete sequence string. */
2302 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2303 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2304 obstack, 0, &need_escape);
2305 obstack_grow_wstr (obstack, LCST (">"));
2306
2307 /* We do not attempt to outupt anything after this. */
2308 state = FINISH;
2309 break;
2310
2311 case FINISH:
2312 /* All done. If we were outputting a string of SINGLE
2313 characters, the string must be terminated. Otherwise,
2314 REPEAT and INCOMPLETE are always left properly terminated. */
2315 if (last == SINGLE)
2316 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2317
2318 return;
2319 }
2320
2321 /* Get the next element and state. */
2322 last = state;
2323 if (state != FINISH)
2324 {
2325 elem = VEC_index (converted_character_d, chars, idx++);
2326 switch (elem->result)
2327 {
2328 case wchar_iterate_ok:
2329 case wchar_iterate_invalid:
2330 if (elem->repeat_count > options->repeat_count_threshold)
2331 state = REPEAT;
2332 else
2333 state = SINGLE;
2334 break;
2335
2336 case wchar_iterate_incomplete:
2337 state = INCOMPLETE;
2338 break;
2339
2340 case wchar_iterate_eof:
2341 state = FINISH;
2342 break;
2343 }
2344 }
2345 }
2346 }
2347
2348 /* Print the character string STRING, printing at most LENGTH
2349 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2350 the type of each character. OPTIONS holds the printing options;
2351 printing stops early if the number hits print_max; repeat counts
2352 are printed as appropriate. Print ellipses at the end if we had to
2353 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2354 QUOTE_CHAR is the character to print at each end of the string. If
2355 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2356 omitted. */
2357
2358 void
2359 generic_printstr (struct ui_file *stream, struct type *type,
2360 const gdb_byte *string, unsigned int length,
2361 const char *encoding, int force_ellipses,
2362 int quote_char, int c_style_terminator,
2363 const struct value_print_options *options)
2364 {
2365 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2366 unsigned int i;
2367 int width = TYPE_LENGTH (type);
2368 struct obstack wchar_buf, output;
2369 struct cleanup *cleanup;
2370 struct wchar_iterator *iter;
2371 int finished = 0;
2372 struct converted_character *last;
2373 VEC (converted_character_d) *converted_chars;
2374
2375 if (length == -1)
2376 {
2377 unsigned long current_char = 1;
2378
2379 for (i = 0; current_char; ++i)
2380 {
2381 QUIT;
2382 current_char = extract_unsigned_integer (string + i * width,
2383 width, byte_order);
2384 }
2385 length = i;
2386 }
2387
2388 /* If the string was not truncated due to `set print elements', and
2389 the last byte of it is a null, we don't print that, in
2390 traditional C style. */
2391 if (c_style_terminator
2392 && !force_ellipses
2393 && length > 0
2394 && (extract_unsigned_integer (string + (length - 1) * width,
2395 width, byte_order) == 0))
2396 length--;
2397
2398 if (length == 0)
2399 {
2400 fputs_filtered ("\"\"", stream);
2401 return;
2402 }
2403
2404 /* Arrange to iterate over the characters, in wchar_t form. */
2405 iter = make_wchar_iterator (string, length * width, encoding, width);
2406 cleanup = make_cleanup_wchar_iterator (iter);
2407 converted_chars = NULL;
2408 make_cleanup (VEC_cleanup (converted_character_d), &converted_chars);
2409
2410 /* Convert characters until the string is over or the maximum
2411 number of printed characters has been reached. */
2412 i = 0;
2413 while (i < options->print_max)
2414 {
2415 int r;
2416
2417 QUIT;
2418
2419 /* Grab the next character and repeat count. */
2420 r = count_next_character (iter, &converted_chars);
2421
2422 /* If less than zero, the end of the input string was reached. */
2423 if (r < 0)
2424 break;
2425
2426 /* Otherwise, add the count to the total print count and get
2427 the next character. */
2428 i += r;
2429 }
2430
2431 /* Get the last element and determine if the entire string was
2432 processed. */
2433 last = VEC_last (converted_character_d, converted_chars);
2434 finished = (last->result == wchar_iterate_eof);
2435
2436 /* Ensure that CONVERTED_CHARS is terminated. */
2437 last->result = wchar_iterate_eof;
2438
2439 /* WCHAR_BUF is the obstack we use to represent the string in
2440 wchar_t form. */
2441 obstack_init (&wchar_buf);
2442 make_cleanup_obstack_free (&wchar_buf);
2443
2444 /* Print the output string to the obstack. */
2445 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2446 width, byte_order, options);
2447
2448 if (force_ellipses || !finished)
2449 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2450
2451 /* OUTPUT is where we collect `char's for printing. */
2452 obstack_init (&output);
2453 make_cleanup_obstack_free (&output);
2454
2455 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2456 (gdb_byte *) obstack_base (&wchar_buf),
2457 obstack_object_size (&wchar_buf),
2458 sizeof (gdb_wchar_t), &output, translit_char);
2459 obstack_1grow (&output, '\0');
2460
2461 fputs_filtered (obstack_base (&output), stream);
2462
2463 do_cleanups (cleanup);
2464 }
2465
2466 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2467 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2468 stops at the first null byte, otherwise printing proceeds (including null
2469 bytes) until either print_max or LEN characters have been printed,
2470 whichever is smaller. ENCODING is the name of the string's
2471 encoding. It can be NULL, in which case the target encoding is
2472 assumed. */
2473
2474 int
2475 val_print_string (struct type *elttype, const char *encoding,
2476 CORE_ADDR addr, int len,
2477 struct ui_file *stream,
2478 const struct value_print_options *options)
2479 {
2480 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2481 int errcode; /* Errno returned from bad reads. */
2482 int found_nul; /* Non-zero if we found the nul char. */
2483 unsigned int fetchlimit; /* Maximum number of chars to print. */
2484 int bytes_read;
2485 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2486 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2487 struct gdbarch *gdbarch = get_type_arch (elttype);
2488 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2489 int width = TYPE_LENGTH (elttype);
2490
2491 /* First we need to figure out the limit on the number of characters we are
2492 going to attempt to fetch and print. This is actually pretty simple. If
2493 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2494 LEN is -1, then the limit is print_max. This is true regardless of
2495 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2496 because finding the null byte (or available memory) is what actually
2497 limits the fetch. */
2498
2499 fetchlimit = (len == -1 ? options->print_max : min (len,
2500 options->print_max));
2501
2502 errcode = read_string (addr, len, width, fetchlimit, byte_order,
2503 &buffer, &bytes_read);
2504 old_chain = make_cleanup (xfree, buffer);
2505
2506 addr += bytes_read;
2507
2508 /* We now have either successfully filled the buffer to fetchlimit,
2509 or terminated early due to an error or finding a null char when
2510 LEN is -1. */
2511
2512 /* Determine found_nul by looking at the last character read. */
2513 found_nul = 0;
2514 if (bytes_read >= width)
2515 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2516 byte_order) == 0;
2517 if (len == -1 && !found_nul)
2518 {
2519 gdb_byte *peekbuf;
2520
2521 /* We didn't find a NUL terminator we were looking for. Attempt
2522 to peek at the next character. If not successful, or it is not
2523 a null byte, then force ellipsis to be printed. */
2524
2525 peekbuf = (gdb_byte *) alloca (width);
2526
2527 if (target_read_memory (addr, peekbuf, width) == 0
2528 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2529 force_ellipsis = 1;
2530 }
2531 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
2532 {
2533 /* Getting an error when we have a requested length, or fetching less
2534 than the number of characters actually requested, always make us
2535 print ellipsis. */
2536 force_ellipsis = 1;
2537 }
2538
2539 /* If we get an error before fetching anything, don't print a string.
2540 But if we fetch something and then get an error, print the string
2541 and then the error message. */
2542 if (errcode == 0 || bytes_read > 0)
2543 {
2544 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
2545 encoding, force_ellipsis, options);
2546 }
2547
2548 if (errcode != 0)
2549 {
2550 char *str;
2551
2552 str = memory_error_message (errcode, gdbarch, addr);
2553 make_cleanup (xfree, str);
2554
2555 fprintf_filtered (stream, "<error: ");
2556 fputs_filtered (str, stream);
2557 fprintf_filtered (stream, ">");
2558 }
2559
2560 gdb_flush (stream);
2561 do_cleanups (old_chain);
2562
2563 return (bytes_read / width);
2564 }
2565 \f
2566
2567 /* The 'set input-radix' command writes to this auxiliary variable.
2568 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2569 it is left unchanged. */
2570
2571 static unsigned input_radix_1 = 10;
2572
2573 /* Validate an input or output radix setting, and make sure the user
2574 knows what they really did here. Radix setting is confusing, e.g.
2575 setting the input radix to "10" never changes it! */
2576
2577 static void
2578 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
2579 {
2580 set_input_radix_1 (from_tty, input_radix_1);
2581 }
2582
2583 static void
2584 set_input_radix_1 (int from_tty, unsigned radix)
2585 {
2586 /* We don't currently disallow any input radix except 0 or 1, which don't
2587 make any mathematical sense. In theory, we can deal with any input
2588 radix greater than 1, even if we don't have unique digits for every
2589 value from 0 to radix-1, but in practice we lose on large radix values.
2590 We should either fix the lossage or restrict the radix range more.
2591 (FIXME). */
2592
2593 if (radix < 2)
2594 {
2595 input_radix_1 = input_radix;
2596 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2597 radix);
2598 }
2599 input_radix_1 = input_radix = radix;
2600 if (from_tty)
2601 {
2602 printf_filtered (_("Input radix now set to "
2603 "decimal %u, hex %x, octal %o.\n"),
2604 radix, radix, radix);
2605 }
2606 }
2607
2608 /* The 'set output-radix' command writes to this auxiliary variable.
2609 If the requested radix is valid, OUTPUT_RADIX is updated,
2610 otherwise, it is left unchanged. */
2611
2612 static unsigned output_radix_1 = 10;
2613
2614 static void
2615 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
2616 {
2617 set_output_radix_1 (from_tty, output_radix_1);
2618 }
2619
2620 static void
2621 set_output_radix_1 (int from_tty, unsigned radix)
2622 {
2623 /* Validate the radix and disallow ones that we aren't prepared to
2624 handle correctly, leaving the radix unchanged. */
2625 switch (radix)
2626 {
2627 case 16:
2628 user_print_options.output_format = 'x'; /* hex */
2629 break;
2630 case 10:
2631 user_print_options.output_format = 0; /* decimal */
2632 break;
2633 case 8:
2634 user_print_options.output_format = 'o'; /* octal */
2635 break;
2636 default:
2637 output_radix_1 = output_radix;
2638 error (_("Unsupported output radix ``decimal %u''; "
2639 "output radix unchanged."),
2640 radix);
2641 }
2642 output_radix_1 = output_radix = radix;
2643 if (from_tty)
2644 {
2645 printf_filtered (_("Output radix now set to "
2646 "decimal %u, hex %x, octal %o.\n"),
2647 radix, radix, radix);
2648 }
2649 }
2650
2651 /* Set both the input and output radix at once. Try to set the output radix
2652 first, since it has the most restrictive range. An radix that is valid as
2653 an output radix is also valid as an input radix.
2654
2655 It may be useful to have an unusual input radix. If the user wishes to
2656 set an input radix that is not valid as an output radix, he needs to use
2657 the 'set input-radix' command. */
2658
2659 static void
2660 set_radix (char *arg, int from_tty)
2661 {
2662 unsigned radix;
2663
2664 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2665 set_output_radix_1 (0, radix);
2666 set_input_radix_1 (0, radix);
2667 if (from_tty)
2668 {
2669 printf_filtered (_("Input and output radices now set to "
2670 "decimal %u, hex %x, octal %o.\n"),
2671 radix, radix, radix);
2672 }
2673 }
2674
2675 /* Show both the input and output radices. */
2676
2677 static void
2678 show_radix (char *arg, int from_tty)
2679 {
2680 if (from_tty)
2681 {
2682 if (input_radix == output_radix)
2683 {
2684 printf_filtered (_("Input and output radices set to "
2685 "decimal %u, hex %x, octal %o.\n"),
2686 input_radix, input_radix, input_radix);
2687 }
2688 else
2689 {
2690 printf_filtered (_("Input radix set to decimal "
2691 "%u, hex %x, octal %o.\n"),
2692 input_radix, input_radix, input_radix);
2693 printf_filtered (_("Output radix set to decimal "
2694 "%u, hex %x, octal %o.\n"),
2695 output_radix, output_radix, output_radix);
2696 }
2697 }
2698 }
2699 \f
2700
2701 static void
2702 set_print (char *arg, int from_tty)
2703 {
2704 printf_unfiltered (
2705 "\"set print\" must be followed by the name of a print subcommand.\n");
2706 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
2707 }
2708
2709 static void
2710 show_print (char *args, int from_tty)
2711 {
2712 cmd_show_list (showprintlist, from_tty, "");
2713 }
2714
2715 static void
2716 set_print_raw (char *arg, int from_tty)
2717 {
2718 printf_unfiltered (
2719 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
2720 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
2721 }
2722
2723 static void
2724 show_print_raw (char *args, int from_tty)
2725 {
2726 cmd_show_list (showprintrawlist, from_tty, "");
2727 }
2728
2729 \f
2730 void
2731 _initialize_valprint (void)
2732 {
2733 add_prefix_cmd ("print", no_class, set_print,
2734 _("Generic command for setting how things print."),
2735 &setprintlist, "set print ", 0, &setlist);
2736 add_alias_cmd ("p", "print", no_class, 1, &setlist);
2737 /* Prefer set print to set prompt. */
2738 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
2739
2740 add_prefix_cmd ("print", no_class, show_print,
2741 _("Generic command for showing print settings."),
2742 &showprintlist, "show print ", 0, &showlist);
2743 add_alias_cmd ("p", "print", no_class, 1, &showlist);
2744 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
2745
2746 add_prefix_cmd ("raw", no_class, set_print_raw,
2747 _("\
2748 Generic command for setting what things to print in \"raw\" mode."),
2749 &setprintrawlist, "set print raw ", 0, &setprintlist);
2750 add_prefix_cmd ("raw", no_class, show_print_raw,
2751 _("Generic command for showing \"print raw\" settings."),
2752 &showprintrawlist, "show print raw ", 0, &showprintlist);
2753
2754 add_setshow_uinteger_cmd ("elements", no_class,
2755 &user_print_options.print_max, _("\
2756 Set limit on string chars or array elements to print."), _("\
2757 Show limit on string chars or array elements to print."), _("\
2758 \"set print elements unlimited\" causes there to be no limit."),
2759 NULL,
2760 show_print_max,
2761 &setprintlist, &showprintlist);
2762
2763 add_setshow_boolean_cmd ("null-stop", no_class,
2764 &user_print_options.stop_print_at_null, _("\
2765 Set printing of char arrays to stop at first null char."), _("\
2766 Show printing of char arrays to stop at first null char."), NULL,
2767 NULL,
2768 show_stop_print_at_null,
2769 &setprintlist, &showprintlist);
2770
2771 add_setshow_uinteger_cmd ("repeats", no_class,
2772 &user_print_options.repeat_count_threshold, _("\
2773 Set threshold for repeated print elements."), _("\
2774 Show threshold for repeated print elements."), _("\
2775 \"set print repeats unlimited\" causes all elements to be individually printed."),
2776 NULL,
2777 show_repeat_count_threshold,
2778 &setprintlist, &showprintlist);
2779
2780 add_setshow_boolean_cmd ("pretty", class_support,
2781 &user_print_options.prettyformat_structs, _("\
2782 Set pretty formatting of structures."), _("\
2783 Show pretty formatting of structures."), NULL,
2784 NULL,
2785 show_prettyformat_structs,
2786 &setprintlist, &showprintlist);
2787
2788 add_setshow_boolean_cmd ("union", class_support,
2789 &user_print_options.unionprint, _("\
2790 Set printing of unions interior to structures."), _("\
2791 Show printing of unions interior to structures."), NULL,
2792 NULL,
2793 show_unionprint,
2794 &setprintlist, &showprintlist);
2795
2796 add_setshow_boolean_cmd ("array", class_support,
2797 &user_print_options.prettyformat_arrays, _("\
2798 Set pretty formatting of arrays."), _("\
2799 Show pretty formatting of arrays."), NULL,
2800 NULL,
2801 show_prettyformat_arrays,
2802 &setprintlist, &showprintlist);
2803
2804 add_setshow_boolean_cmd ("address", class_support,
2805 &user_print_options.addressprint, _("\
2806 Set printing of addresses."), _("\
2807 Show printing of addresses."), NULL,
2808 NULL,
2809 show_addressprint,
2810 &setprintlist, &showprintlist);
2811
2812 add_setshow_boolean_cmd ("symbol", class_support,
2813 &user_print_options.symbol_print, _("\
2814 Set printing of symbol names when printing pointers."), _("\
2815 Show printing of symbol names when printing pointers."),
2816 NULL, NULL,
2817 show_symbol_print,
2818 &setprintlist, &showprintlist);
2819
2820 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
2821 _("\
2822 Set default input radix for entering numbers."), _("\
2823 Show default input radix for entering numbers."), NULL,
2824 set_input_radix,
2825 show_input_radix,
2826 &setlist, &showlist);
2827
2828 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
2829 _("\
2830 Set default output radix for printing of values."), _("\
2831 Show default output radix for printing of values."), NULL,
2832 set_output_radix,
2833 show_output_radix,
2834 &setlist, &showlist);
2835
2836 /* The "set radix" and "show radix" commands are special in that
2837 they are like normal set and show commands but allow two normally
2838 independent variables to be either set or shown with a single
2839 command. So the usual deprecated_add_set_cmd() and [deleted]
2840 add_show_from_set() commands aren't really appropriate. */
2841 /* FIXME: i18n: With the new add_setshow_integer command, that is no
2842 longer true - show can display anything. */
2843 add_cmd ("radix", class_support, set_radix, _("\
2844 Set default input and output number radices.\n\
2845 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
2846 Without an argument, sets both radices back to the default value of 10."),
2847 &setlist);
2848 add_cmd ("radix", class_support, show_radix, _("\
2849 Show the default input and output number radices.\n\
2850 Use 'show input-radix' or 'show output-radix' to independently show each."),
2851 &showlist);
2852
2853 add_setshow_boolean_cmd ("array-indexes", class_support,
2854 &user_print_options.print_array_indexes, _("\
2855 Set printing of array indexes."), _("\
2856 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
2857 &setprintlist, &showprintlist);
2858 }
This page took 0.091342 seconds and 4 git commands to generate.